
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Reducing Computation by
Unifying inference with User interface

Mark w. Perlln
June 1988

CMU-CS-88-150

Abstract

User interfaces are becoming an integral component of usable interactive artificial intelligence systems. A
high-bandwidth graphical interface between the user and the computer's representation of knowledge
greatly facilitates intelligent human/computer interaction. When user input or inference modifies
knowledge base assertions, computationally expensive cascaded updates often propagate through the
underlying knowledge representation. To communicate these changes to the user, the graphical display
must also be updated.

The speed of knowledge base update is crucial in Al interfaces. Real-time global update is often
infeasible due to the richness and complexity of knowledge bases. Interestingly, the user's display
usually presents only a fraction of all the available internally represented information. To rapidly show the
user the global effects of changes, knowledge base update can be restricted to just those computations
required for maintaining an accurate display.

We have developed an integrated approach to inference and user interface which offers a new
programming paradigm for the construction of Al interfaces. The methodology:

• greatly simplifies the design, construction and runtime execution of user interfaces to
knowledge bases;

• reduces inference computation by user interface-constrained lazy evaluation: only what the
user can observe is computed;

• integrates inference and user interface into one system specifically tailored to the Al user's
immediate needs.

This publication was supported in part by grant R29 LM 04707 from the National Library of Medicine.

Table of Contents
I. Background
II. Inference
III. User Interface
IV. Unifying Inference and User Interface
V. Acyclic Update

V.1 . Dependency data structure
V.2. Topological^ sorted update
V.3. View mechanism

VI. Architecture
Vl.1. Control structure and paradigm
VI.2. An implementation

VII. Graph Update
VIII. Conclusion
ACKNOWLEDGEMENTS
REFERENCES

PAGE I

List of Figures
Figure V-1: A prototypical dependency network. 4
Figure V-2: The subgraph of nodes dependent on leaf B. 5
Figure V-3: The DAG subgraph dependent on leaf B needed for view E. 7
Figure VI-1: A mutual control structure for Inference and display. 9
Figure VI-2: Update time as a function of the number of active windows. 10
Figure VIM: A labeled scene from the constraint propagation program. 10

PAGE H

I. Background
In integrating user interfaces (Uls) with artificial intelligence systems, the primary focus moves away from

the underlying inference, and toward the user's interactive needs. From the system builder's perspective,

a natural display representation of inference would ease Ul design, implementation and, ultimately,

runtime operation. A functional interactive interface requires an additional feature: realtime speed. A

serious problem, therefore, is that complete inferencing in Al systems is often too time consuming for

interactive use.

Previous user interface work in Al has been from the system builder's perspective. The object-oriented
approach [10] offered part-whole relationships and object inheritance to ease Ul design. In adding
constraints, systems like Sketchpad [17] and Thinglab[1] incorporated useful inference into the Ul.
These systems also addressed the larger issue of how a separate (domain-specific) inference system can
drive the Ul control structure.

To achieve the realtime performance crucial for usable interactive Uls in Al, we have developed a new

stratagem: use the Ul to reduce inference. In our approach the user's perspective provides a powerful

constraint, unlike prior systems (e.g., [1]) which only use internal constraints. Of the dozens of windows

depicting inference available to the user, ordinarily only several are presented at any one time. When a

reasoner can prove to itself that an inference which will not affect the visible display can be deferred, we

defer it. Essentially, lazy evaluation derived from the user's active display can effectively constrain

inference.

II. Inference
Inference in symbolic Al is often the cascading of small, uniform computations. The cascading is
apparent in frame system inheritance [2], in the chaining of rules [3], in propagating constraints [16], and
other graph-based algorithms. With rule chaining, for example, the uniform cascade is independent of
direction (forward or backward).

This local regularity often enables the recursive cascade to form the control structure of other

computation. Most commonly, it is exploited by attaching "demon" procedures [21], to generate useful

side effects. Such procedural attachment is seen, for example, in the internal implementation of object or

frame inheritance relations. A common useful side effect of the inference system, but external to it, is

generating user interface and graphical output. The effects of inference can be pushed even further into

the external world to drive the effector actions of an intelligent sensor-based system.

Just as inference can initiate other computation, inference can also be constrained by outside

computation. In data-driven reasoning [6], for example, forward chaining from data tightly constrains the

topology of the search space. Similarly, target goals prune the search space in goal-directed inference.

This reduction in computation is more explicit in the constraint-based reasoners found in parsing [4],

matching [8], planning [14] and scheduling [9] problems. Inference can also be bounded by resource

limitations (fixed time or search depth) and by knowledge [12].

PAGE 1

III. User Interface
The user interface is the communication window between human user and machine. Via the Ul display,

the computer outputs a perspective on underlying computation, and also receives user input for initiating

further actions. Symmetrically, the Ul display is the input the user receives from the program; the user's

output (i.e., actions) provides the interface with input for the computer. Graphical presentation of I/O is

increasingly common due to the low expense (both computational and price) of bit-mapped display [7]

technology.

The control structure of the Ul display often parallels the application program. As the underlying program

performs computation, it drives associated user interface computation for displaying its results. This

approach is used, for example, in object-oriented user interface programming. Two problems that arise

when display is procedurally attached to underlying computation are

1. display computations for undisplayed windows may be executed unnecessarily, and

2. display computation may be redundantly repeated for the same window.

A solution using topological^ ordered update is proposed in Section V.2.

Just as the user interface can be driven by some computations, so too can it constrain other

computations. Restricting user actions to a specific syntax (via keyboard or mouse) is a simple

mechanism for limiting the initiation of computation. More generally, the user interface should assist an

application program in avoiding computation not visible to the user. In Section IV, we shall introduce a

new mechanism for filtering computation based on the current set of displayed windows.

IV. Unifying Inference and User Interface
Inference performed at execution time is the natural control structure for driving user interface display

update. Typical updating requirements include graphical recomputation and display (e.g., window)

organization. Following the object-oriented side effect approach, Ul update can be readily implemented

via procedural attachment of display demons to inference computations. This can establish an efficient

display regimen, tailored to showing the occurence and effects of inference.

By embodying the problem-solving focus of the user, the user interface can constrain inference. This is

our. key new idea: never compute anything the user cannot see. When a reasoner can establish that

deferring a computation will not affect the user's interactive display, lazy evaluation can be invoked. How

does a system know what is displayable? By letting the user's perspective, defined by the current set of

display windows, filter computation. 1

In a sense, the current window set forms the "goal" of a user's interface display. The set implicitly defines

Per iod ica l ly , the user will c h a n g e which windows appear on the display. T o preserve the integrity of the inferences a
complete update must then b e performed. In practice, the associated delay requires less time a n d is more acceptable to the
than continual update delays incurred with e a c h user action.

PAGE 2

for the computer the central concerns of the user. 2 Where possible, then, inference should be
constrained by these implicit user goals. This presents the implementer with an opportunity for reducing
time-intensive Al inference.

The ideas in this section unify the perspectives introduced in Sections II and III, and suggest a new

paradigm: inference both driving and contrained by the user interface. An algorithm (Section V) and an

architecture (Sections VI and VII) emerge from this paradigm, with an integrated approach to the design,

implementation and execution of user interfaces to inference systems.

V. Acyclic Update
A substantial number of inference techniques in Al employ directed acyclic graphs (DAGs) in their data
structures and algorithms. DAGs effectively combine the flexibility of graphs with the indexing
performance of trees. When dynamic DAG data structures are created and modified, their individual
components (both node connection topology and node data) require updating. Acyclic update refers to
this DAG update process.

Acyclic update is ubiquitous in Al. Efficient matching in rule systems, as with the RETE discrimination

network [8], relies on forward propagation of assertion (working memory) changes through a compiled

rule-pattern DAG. Equational networks, such as Bayesian networks of probabilities [5], use DAGs to

avoid redundant numerical recomputation. In natural language processing, advanced syntactic [20] and

semantic [4] methods use acyclic update to constrain and reduce search. In planning [14] and plan

recognition [15], DAGs cache partial updates to reduce computation.

We present here a new algorithm for restricting computation in DAGs to just those results which interest

the user. The algorithm is generally applicable to all DAG-based inference; we will explore in Section VI.2

a specific example with equational networks. After reviewing the DAG data structure in Section V.1 , we

show in Section V.2 how topological sort can eliminate redundant updates. The view mechanism of

Section V.3 applies the user's focus of attention in further restricting computation.

V.1. Dependency data structure
DAGs may be useful whenever there exists a partial ordering 3 relation < between objects. Depending on
the application, the partial ordering may assume various names, such as "depends-onM in planning and
equational nets, "part-of" in window systems, and H is-aM in inheritance relations. Since our focus here is
the dependency of one computation on another, we shall use Ndepends-onM to describe the relationship
between different computational objects. If object A's computation propagates to B (i.e., B depends on
A), we write A - > B .

*The inferencer, of course, m a y bring new information to the user's attention in system-created windows This however
represents the computer 's (versus user's) a g e n d a , a n d can b e treated appropriately. r h , S ' h 0 W e v e r *

3 " £ " is a partial ordering on a set S if a n d only if for any two e lements A, B in S , A <; B, B <; A, or A a n d B are unrelated.

PAGE 3

Given a consistent collection of dependency relations, we obtain a corresponding directed acyclic graph,

as in figure V -1 . Objects independent of all others are called leaves. Changes made to a subset of

leaves (independent premises) propagate up though the DAG, updating the nodes in the leaves' transitive

closure. A way of uniformly propagating changes is to associate a list of candidate predicate-action pairs

with a propagation. At each visited node, for every predicate-action pair on the list, when the node

satisfies the predicate, the local action is performed.

E O O F

/ \ /
c O O D

/ \ /
A O O B

Figure V - 1 : A prototypical dependency network.

For example, suppose the list contains only the pair

(t

(recompute-value *node*)).

That is, the predicate is always true, and the local action is to recompute 4 the node's value from the

values of its predecessors. The simplest node traversal is depth-first search (DFS) from the leaves. In

figure V-1 , starting from the singleton leaf set {B}, we visit nodes in the order <B, C, E, D, E, F>. Clearly

this DFS update schedule is inefficient, since some values (e.g., node E's value) are redundantly

recomputed several times. Other traversal schedules, such as breadth-first, may be inefficient or yield

incorrect results. In section V.2 we introduce a DAG traveral that is both optimally efficient and correct.

V.2. Topological^ sorted update
Topological sort [11] is usually described as an algorithm for listing out the elements of a partially ordered

set in an order satisfying: if a<b, then a is listed before b. If the partial ordering represents a

dependency relation, then a topological sort will assure that no element appears until all of its

predecessors have appeared. Since this DAG traversal visits dependent nodes only after all their

predecessors have been visited, it assures update correctness. Further, since each required element in

the traversal appears exactly once, a reasonable implementation would also be optimally efficient.

We have devised a topological sort algorithm for DAGs using a modified mark/sweep garbage collection

scheme [11] with reference counts. The first pass is a dependency marking to determine which graph

nodes are dependent on modified predecessor nodes. This is done in a depth-first manner, recording the

4 T o fix ideas, think of the D A G as a n equational network, w h e r e each node has a formula for computing its value from its

immediate predecessors.

PAGE 4

number of immediate predecessors which have been modified. The second revision pass sweeps

through the marked subgraph, updating a node only when all its marked immediate predecessors have

been updated. Before formally presenting the algorithm, we give an example.

Consider the update following a change in leaf B. 5 This change propagates to all the descendants of B,
as shown in the shaded area of figure V-2.

Figure V-2: The subgraph of nodes dependent on leaf B.

A depth-first traversal from B, propagating only on the first visit, marks the nodes in the order <C, E, D,

F>. Using reference counts, node C has a count of 1 (only one immediate predecessor, B, was marked

for update), node E a count of 2, node D 1, and F 1.

The second pass traverses the same subgraph, decrementing a node's count when each immediate

predecessor is updated. A node is updated and propagates only when all of its predecessors are

updated, i.e., when its reference count is decremented back to 0. For example, starting from node B,

node C is visited and its reference count is decremented from 1 to 0. Node C is then updated (possibly

using information from its immediate predecessors A and B), and locally propagates to its immediate

successor E. Node E is not updated yet, because it depends on unupdated D; E knows this because its

count is still >0. Control recursively returns to node B, which then propagates to its other immediate

successor, D. D has no unupdated immediate predecessors, so it updates itself, and passes control to

nodes E, then F. With all relevant predecessors updated, E and F can now be updated. Unlike DFS, the

order of updates is topological^ ordered as <C, D, E, F>. The order ensures that nodes (e.g., E) are

updated only after all their updated predecessors.

The algorithm UPDATE is called on a subset of the leaf nodes.
UPDATE (L: a set of leaves)

iterate DEPENDENCY over L
iterate REVISION over L

ourUar^Ste t G a , 9 0 n t h m i S e q u a " y e f f i d G n t w h e n c h a r ^ e s " m a d e t 0 m u , t i P | e , e a v e * ; simplicity, we change only one leaf in

PAGE 5

The marking phase DEPENDENCY records the number of immediate predecessors of a node in the

dependency subgraph which have been marked.
DEPENDENCY (node: a nod* in the DAG)

increment node.counter
if first-visit(node)

then iterate DEPENDENCY
over node.successors

node.successors is the list of immediate successors of the node, first-visit is determined by simply

looking at the counter (which is initialized to zero).

The sweep phase REVISION performs the local update computation when all predecessors are updated.

REVISION (node: a node in the DAG)
decrement node.counter
if last-visit(node)

then{ perform local update(s)
iterate REVISION

over node.successors }
The updates may be a simple formula evaluation, or may be a complex series of computations (e.g.,

value update, diagnostic messages, output display demons) conditional on the local state. The predicate-

action list mechanism described above in Section V.1 is especially well-suited to complex conditional

updates.

Let L be the subset of modified leaves. Algorithm UPDATE satisfies:

1. The set of updated nodes is precisely the set of nodes dependent on L.

2. Every dependent node is updated exactly once.

3. Update at a node is performed only after all its predecessors have been updated.

Facts 1 and 2 assure the efficiency of UPDATE, while facts 1 and 3 guarantee correctness. These facts

can all be easily proven from the monotonic increase, then decrease, of the local reference counts.

Let n be the size (number of nodes) of the DAG, and m < n the size of the subgraph dependent on the

leaf subset L. k is the branching factor of the DAG. The bookkeeping counter operations require O(km)

operations, O(k) branches for each of O(m) node expansions. 6 Typically, though, the very expensive

computation is all in the local update operations; UPDATE limits these to m. This is better than the 0(n 2)

complexity of the totally naive method 7 and the 0 (m 2) behavior of DFS update.

V.3. View mechanism
Suppose, out of the entire network of possible computation, the user is focused on the outcome of only

several results. From the user's perspective, then, all computations not directed toward these results are

wasted effort. This suggests an approach to speeding up user interaction time. We describe in this

e Equivalent ly , o n e bookkeeping operation is required for e a c h edge in the dependent subgraph. T h e number of such edges is

product k m .

7 l g n o r e ail leaf information, a n d repeatedly update everything until consistent.

PAGE 6

section a DAG update algorithm which filters computation based on the user's perspectives, or views.

Our goal is to avoid updating any nodes which are not in a view. A node will be active, therefore, if it has

been explicitly set active as a user view, or if it is required as a predecessor computation for a view node.

The active nodes are established by a reverse propagation from a view node back toward its

predecessors. When UPDATE is initiated from a leaf set L, it will only update a node which both

descends from a leaf in L, and has been activated by (precedes) a view.

As an example, consider imposing views on the DAG of figure V-1 . Suppose we are interested in node
E. A reverse propagation from E activates all nodes but F. If an update from leaf B is done, we update the
intersection of successors of B and predecessors of E (i.e., B, C, D, and E), as is shown in figure V-3.
Changes to the view state can be done incrementally. Activating node D with node E already set active,
necessitates only setting D active: the active state need not be propagated to D's (already active)
predecessors.

Figure V-3: The DAG subgraph dependent on leaf B needed for view E.

The active state can be defined locally with a bit and a counter. Each node records

1. whether it has explicitly been set active as a view, and

2. the number of immediate successors which are active.

The recursive ACTIVE predicate succeeds if a node is either explicitly set active, or has at least
active successor. To activate a view, ACTIVATE-VIEW is called on the view node.

ACTIVATE-VIEW (node: a node in a DAG)
explicitly set the node active
if the predicate ACTIVE (node) changed

then iterate ACTIVATE
over node.predecessors

ACTIVATE (node: a node in a DAG)
increment node.active-successor counter
if the predicate ACTIVE(node) changed

then iterate ACTIVATE
over node.predecessors

DEACTIVATE-VIEW and DEACTIVATE are similar incremental algorithms.

PAGE 7

To work with views, UPDATE is modified to filter out inactive nodes. For example, DEPENDENCY is

changed to propagate only to active successors.
DEPENDENCY (node: a node in the DAG)

increment node.counter
if first-visit(node)

then iterate DEPENDENCY
over the ACTIVE node. successors

The modification to REVISION is analogous.

The correctness of (DE)ACTIVATE follows from a simple induction on the DAG using the ACTIVE

predicate. The computational cost is linear in the number of nodes activated, which is < O(n). The

incremental approach improves average behavior.

VI. Architecture
We introduce a DAG-based control structure for user displays, and then describe its associated

programming paradigm. We conclude with an example implementation.

VI.1. Control structure and paradigm
We have been using the "depends-on" relation in the sense of "depends-on-value". A more primitive
Mdepends-onH relation is simply "depends-on-existence". (Note that if B "depends-on-value" A, then also

B "depends-on-existence" A.) In object-oriented window systems, the primary relations are "part-of" and
M is-aM, though more advanced systems may have other relations, such as "constrains" [1]. Interestingly, if

A is "part-of" B, then B "depends-on-existence" A; with this observation, we unify inference and user

interface.

For each node in the inference DAG with an associated window display object, we interface inference and

display with an input and/or output node. Figure VI-1 shows the interface relations between the DAG and

the window system. UPDATE will follow "depends-on-existence" links, hence all "depends-on-value" links

in the DAG and all "part-of" links in the display. Therefore, as UPDATE is used in inference, the display

will correctly and efficiently reflect the DAG state. Conversely, the view mechanism propagates from the

user's selected windows, back through the DAG. These views selectively activate just those DAG nodes

which affect the user's display, and thereby constrain inference.

This architecture offers a paradigm for building DAG-based inference systems with displays.

Design. The display can be independently designed, specifically for the (graphical)
representation of domain and inference concepts.

implementation. Inference and display can be built and prototyped separately, and later merged using

the input/output graphics nodes.

Execution. Updates on the inference DAG are the primary control structure for the output
display. Symmetrically, the current window set propagates views onto the underlying
inference DAG, filtering out computation (both inference and display) not needed for
the user's interaction.

PAGE 8

output

. x DAG
inference window

display
depends-on-value
p a r t - o f
function call

Figure VI-1: A mutual control structure for inference and display.

VI.2. An implementation
In medical magnetic resonance imaging (MRI), an important task of the radiologist is to select MR
scanner parameters [19] in accordance with his/her imaging goals. This is the domain task of the
CONTRAST expert system [13]. Much of the imaging goal interactions can be approximated using
equations from the underlying MR physics. For example, contrast-to-noise between tissues A and B is
roughly

C/N= S/N | I A - I B | ,

where l A , l B and S/N recursively depend on other formulas. These relationships form a DAG equational

network, which is used by CONTRAST in the inner loop of its problem solver. The network is also used to

control the display graphics in the user interface. Windows associated with DAG nodes represent

domain-dependent concepts (e.g., contrast, voxel, geometry) as user-manipulable graphics objects.

Using the above architecture, many versions of the system have been built. The different environments
include

Languages: LISP, OPS5, FRAMEKIT, C, PASCAL;

Machines: VAX, PC, PERQ, SUN;

Window systems: Metawindow, SunView, X.

The current version runs in Common LISP on a color SUN3/260 in SunView. System development time
depends only on working within the particular graphics window system, since the control structure is
handled by UPDATE's DAG traversal. The view mechanism tremendously reduces the computer's
interaction time with the user, particularly when only several windows are displayed. This is
demonstrated in Figure VI-2, which plots the time required to update the system as a function of the
number of active windows.

PAGE 9

Number of active windows

Figure VI-2: Update time as a function of the number of active windows.

VII. Graph Update
Inference traversing graphs with cycles is more general than DAG-based inference. Algorithms based on

graph update include frame system link traversals, truth maintenance system inference and constraint

propagation methods. There are two ways to use the architecture of Section VI on any given graph

update algorithm:
1. explicitly break the cycles, thereby essentially transforming the graph into a DAG, and then

directly use the methods of Section VI, or
2. adapt the notion of views to the particular update algorithm, diverging as necessary from

the strictly DAG-based architecture.
We give an example of the second approach, and how its view mechanism can reduce inference.

Waltz scene labeling [18] is a classic constraint propagation algorithm. A two-dimensional projection of a

three-dimensional scene is considered as a graph of lines and connecting junctions. The output of Waltz'

procedure is a consistent labeling (if one exists) of the lines as convex, concave or boundary; figure VII-1

shows a sample labeled output from our interface. Three-dimensional geometry constrains the junctions

to admit only a small number of the theoretically possible combinations of line labels. These constraints

are readily classified at each junction by the two-dimensional geometry of the lines they connect, and then

propagate throughout the scene graph. Propagations with cycles are inherent to Waltz' formulation.

Clear J

Hortz/Vert /Diac

-*bel
WMlH
Boundary
All
React

Inspect
b c a l e

rJpbv2' •DownJfcL
k l o r m a l U c

Figure V I M : A labeled scene from the constraint propagation program.

PAGE 10

We adapted the acyclic update architecture to Waltz' procedure. Junction and line label update in the

problem solver form the primary control structure of the output display. A modified view mechanism

eliminates much inference by restricting the constraint propagation to "active junctions". The user can

choose from a variety of "active junction" predicates, such as activating only those junctions that are

either on the boundary, or in (or near) the display window. With this tailored view mechanism, inferencing

is substantially reduced. For example, following an initial (one second) boundary computation, the times

needed to label the lines of an interior junction of the scene in figure VI1-1 (including graph update and

display) were 8

single (1) node several (5) nodes all (40) nodes
40 msec 580 msec 1780 msec

These timings demonstrate how views can accelerate user response time.

VIII. Conclusion
We have developed a new paradigm for unifying Al inference with user interfaces. By using the interface

to discern the user's perspective, inference is constrained by lazy evaluation: only what the user can

observe at any time is computed. This reduces both inference and display computation. Symmetrically,

we have also integrated the user interface control structure with inference. This eases the design,

construction and execution of the user interface. Successful application of the paradigm produces

integrated inference/user interface systems tailored to the Al user's needs.

ACKNOWLEDGEMENTS
Jaime Carbonell offered numerous insights. The many conversations with Greg Hood and Bruce
Krulwich were invaluable. Sean P. Engelson and C. Charles Law provided superb programming support
for the implementations. The clarity of the paper was improved by the careful readings of Yolanda Gil,
Dawn Habeiiach, Todd Kaufmann and Ira Monarch.

REFERENCES
1. Borning, A. ThingLab - an object oriented system for building simulations using constraints. Proc.
Fifth International Joint Conference on Artificial Intelligence, IJCAI-5, MIT, Cambridge, August, 1977, pp.
497-498.

2. Brachman, R. J. On the Epistemological Status of Semantic Networks. In Associative Networks,
N. V. Findler, Ed., New York: Academic Press, 1979.

3. Buchanan, B.G., and Shortliffe, E.H. (Ed.). Rule-Based Expert Systems. Addison-Wesley, Reading,
MA, 1984.

4. Carbonell, J. G. and Hayes, P. J. Natural Language Understanding. In Encyclopedia of Artificial
Intelligence, Shapiro, S. C , Ed., Wiley & Sons, New York, NY, 1987, pp. 660-677.

8 T h e program w a s written in C o m m o n L ISP, integrated with the X window system, a n d run on a S U N 3 / 2 6 0 . Each time shown is
a n a v e r a g e over five different problem instances.

PAGE 11

5. Charniak, E., and McDermott, D.. Introduction to Artificial Intelligence. Addison-Wesley, Reading,
Massachusetts, 1986.

6. Charniak, E., Riesbeck, C.R., McDermott, D.V., and Meehan, J.R.. Artificial Intelligence Programming.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1987. second edition.

7. Foley, J.D., and VanDam, A.. Fundamentals of Interactive Computer Graphics. Addison-Wesley,
Reading, Massachusetts, 1982.

v 8. Forgy, C.L. "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem".
Artificial Intelligence 19,1 (September 1982), 17-37.

9. Fox, M.S., and Smith, S. "ISIS: A Knowledge-Based System for Factory Scheduling". International
Journal of Expert Systems 1,1 (1984).

10. Ingalls, D.H.H. The Smalltalk-76 programming system: Design and implementation. Principles of
Programming Languages, 5th Annual ACM Symposium, Tucson, Arizona, January, 1978, pp. 9-16.

11 . Knuth, D.E.. The Art of Computer Programming. Volume 1 .Fundamental Algorithms. Addison-
Wesley, Reading, Massachusetts, 1973. 2nd Edition.

12. Newell, A. The Knowledge Level. Carnegie-Mellon University Computer Science Department, 1981.
CMU-CS-81-131.

13. Perlin, M.W., Kanal, E., Carbonell, J.G., and Wolf, G.M. CONTRAST: An Expert System for Optimal
Selection of Magnetic Resonance Scanner Parameters. Book of Abstracts, Society of Magnetic
Resonance in Medicine, New York City, August, 1987, pp. 770.

14. Sacerdoti, E. D. "Planning in a Hierarchy of Abstraction Spaces". Al 5, 2 (1974), 115-135.

15. Schmidt, C , Sridharan, N. and Goodson, J. "The Plan Recognition Problem". Artificial Intelligence
11, 2 (1978), 45-83.

16. Steele, G.L. The Definition and Implementation of a Computer Programming Language Based on
Constraints. Ph.D. Th., Massachusetts Institute of Technology, August 1980.

17. Sutherland, I.E. Sketchpad: A Man-Machine Graphical Communication System. Ph.D. Th.,
Massachusetts Institute of Technology, Cambridge, Massachusetts, January 1963.

18. Waltz, D. Understanding Line Drawings of Scenes with Shadows. In Winston, P., Ed., The
Psychology of Computer Vision, McGraw Hill, New York, 1975, Chap. 2.

19. Wehrli, F. W., MacFall, J. R., Glover, G. H., Grigsby, N., Haughton, V., and Johanson, J. 'The
Dependence of Nuclear Magnetic Resonance (NMR) Image Contrast on Intrinsic and Pulse Sequence
Timing Parameters". Magnetic Resonance Imaging 2,1 (1984), 3-16.

20. Winograd, T.. Language as a Cognitive Process, Volume I: Syntax. Addison-Wesley, 1983.

2 1 . Winston, P.. Artificial Intelligence. Reading, MA: Addison Wesley, 1977.

PAGE 12

