
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

rcE>
C l > / THE STATE UNIVERSITY OF NEW JERSEY

^/RUTGERS

TECHNICAL REPORT

Department of
Computer Science

Laboratory for
Computer Science
Research

REFINEMENT OF EXPERT SYSTEM
KNOWLEDGE BASES: A METALINGUISTIC
FRAMEWORK FOR HEURISTIC ANALYSIS

A. Ginsberg

CBM-TR-147

Laboratory for Computer Science Research
Hill Center for the Mathematical Sciences

Busch Campus, Rutgers University
New Brunswick, NJ 08903

This research was supported in part by the Division of Resarch Resources, Nati
Institute of Health, Public Health Service, Department of Health, Education, and Wei
under Grant NIH RR02230 to the Special Research Resource: Computers in Biomedicir
Rutgers University, New Brunswick, New Jersey 08903.

© 1986

Allen Ginsberg

ALL RIGHTS RESERVED

REFINEMENT OF EXPERT SYSTEM KNOWLEDGE BASES:

A METALINGUISTIC FRAMEWORK

FOR HEURISTIC ANALYSIS

by Allen Ginsberg

A dissertation submitted to the

Graduate School — New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Professor Sholom M. Weiss

and approved by

New Brunswick, New Jersey

May, 1086

ABSTRACT OF THE DISSERTATION

REFINEMENT OF EXPERT SYSTEM
KNOWLEDGE BASES: A METALINGUISTIC
FRAMEWORK FOR HEURISTIC ANALYSIS

By Allen Ginsberg, Ph.D.

Dissertation Director: Professor Sholom M. Weiss

itiowledge base refinement involves the generation, testing, and possible incorporation

usible refinements to the rules in a knowledge base with the intention of then

Droving the empirical adequacy of an expert or knowledge-based system, i.e., its abil

correctly diagnose or classify the cases in its domain of expertise.

'he research presented in this thesis contributes to the development of useful knowle<

;e refinement systems both at the concrete level of system design, implementation. <

ting, and also at the "meta-leveP of development of tools and methodologies

•suing research in this area. Relative to the former level, the following contributi

/e been made: 1) the empirically-grounded heuristic approach to refinement generat

eloped by Politakis and Weiss has been generalized and extended, i.e., the approach

\n made applicable to a more powerful rule representation language, and heuris

ompassing a larger class of refinement operations have been incorporated, 2)

omatic refinement system utilizing this approach has been implemented and, based u]

liminary testing, has been shown to be capable of generating effective refinements.

relative to the level of tools and methodology, a high-level Refinement Metalangui

1, allowing for the specification of a wide variety of alternative refinement conce]

iristics, and strategies, has been designed and implemented. In addition to allowing

i growth of refinement systems by facilitating experimental research, RM also provide

ans for refinement system customization and possible enhancement through

orporation of domain-specific metaknowledge. The incorporation of a fori

talanguage for knowledge base refinement represents an extension of the traditional me

of an expert system framework, and is a step in the direction of more powerful,

and self-improving expert system technology.

ACKNOWLEDGMENTS

If this work makes any significant contributions to the study of knowledge base

refinement, it is because of the solid foundation provided by the earlier work of

Peter Politakis and Sholom Weiss [Politakis 82, Politakis and Weiss 84]. It has

been a privilege and a pleasure to work with Sholom Weiss, the chairman of my

thesis committee, in the advancement of this research program.

I am indebted to Sholom Weiss and Casimir Kulikowski not only for their

intellectual advice and guidance in every phase of this work, but also for helping

to provide the support, environment, and encouragement without which this work

would not exist

I thank Alex Borgida, Peter Politakis, and Saul Levy, for their help in

weeding out errors, improving the clarity of the presentation, and pointing out

problems and possibilities that would otherwise have gone unrecognized. I also

thank Jack Mostow for discussions that were helpful in designing the experiments

described in Chapter 7.

Thanks also to Kevin Kern, for programming work on SEEK2, Hobbit, for

dealing with VMS, Keith Williamson, for comments on an earlier draft, and Jack

Ostroff, for answering the kinds of questions to which no one else seems to have

the answer. I especially thank Angela DiCorrado for always having a word of

encouragement, and usually having the best advice on the vicissitudes of life.

My dear wife, Gail and our wonderful son. Alexander, are responsible for

making it all worthwhile. My only regrets concerning this work are the times it

kept me from being with them.

Finally, I thank my parents and brother for their lifelong moral support.

This work was supported in part by the National Institutes of Health under

grant P41 RR02230.

TABLE OF CONTENTS

Abstract ii

Acknowledgments iv

Table Of Contents vi

List Of Figures xii

1. Introduction and Overview 1

1.1. Main Research Accomplishments 1

1.2. Automatic Knowledge Base Refinement 3

1.2.1. Knowledge Acquisition and Knowledge Base Refinement . . 3

1.2.2. Conservatism and Radicality; Refinement and Optimization . 6

1.3. Designing Automatic Refinement Systems 12

1.3.1. Strategic Subsystems 15

1.3.2. Refinement System Design: A Special Case 16

1.4. An Overview of SEEK2 18

1.4.1. Localization 19

1.4.2. Heuristic Refinement Generation 22

1.4.3. Verification, Selection, and Control Strategy 25

1.4.4. Session Example and Perfonnance 28

1.5. Metalanguage and Methodology 28

1.6. Some Assumptions 33

1.7. Synopsis 36

vi

2, Related Research in AI

2.1. Expert Systems, Knowledge Base Refinement, and Pattern Recognition

2.2. Relation to Automatic Knowledge Acquisition

2.3. Relation to Learning

2.3.1. A Knowledge Intensive Learning Apprentice Approach to

Knowledge Base Refinement

2.4. Relation to Discovery

3. Formal Elements of Knowledge Base Refinement

3.1. Formal Account of Refinement Operators

3.1.1. The Rule Representation Language

3.1.2. Generic Refinement Operators

3.1.3. Primitive vs Complex Refinement Operations

3.1.4. Operators vs Operations

3.2. Semantic Properties of Refinement Operators

3.3. Semantic Properties of Refinement Operations

3.3.1. Aspects of the Informal Notion of Plausibility

3.3.2. Expected Empirical Utility of A Refinement Operation . .

3.3.2.1. On-Target Refinement Operations: Intuitive Picture . .

3.3.3. On-Target Refinement Operations: Formal Explication . . .

3.3.3.1. R-Phase Space and Microstates .

3.3.3.2. S p e c i f y i n g M a c r o s t a t e s : I n t u i t i v e P i c t u r e

3.3.3.3. M i c r o s t a t e s A c c e s s i b l e t o A M a c r o s t a t e

3 . 4 . R a d i c a l i t y a n d P l a u s i b i l i t y

3 . 4 . 1 . R a d i c a l i t y M e t r i c s

3.4.2. Radically Operationalized for First-Order Refinement . . . 76

4. Heuristic Refinement Generation 80

4.1. Frequently Used RM Primitives 82

4.2. The Paradigm 83

4.3. First-Order vs. Higher-Order Refinement 87

4.3.1. Estimate of Cost 91

4.4. A General Architecture for Heuristic Refinement Generation . . 93

4.4.1. Three Types of Refinement Heuristics 94

4.4.2. Levels of Analysis 96

4.5. First-Order Case Analysis 100

4.5.1. Nature of the R-Situations 100

4.5.1.1. Constraint on M 101

4.5.1.2. Constraint on R 102

4.5.2. First-Order R-functions on Rules: Satisfaction Measures . . 105

4.5.2.1. Closeness to Satisfaction 106

4.5.2.2. Satisfaction Measures for Complex Forms 115

4.5.2.3. Closeness to Dissatisfaction 117

4.5.3. Generalization Related R-Functions 121

4.5.3.1. R-Functions Related to Confidence Boosting 121

4.5.3.2. R-Functions Related to Component Alteration 123

4.5.4. Specialization Related R-Functions • . 130

4.5.5. R-Functions for Conservation 134

4.6. Cost of Case Analysis 138

4.7. Refinement Knowledge: Heuristics for First-Order Refinement . . 142

4.7.1. Discussion of Max-Gain+Min-Loss Heuristics 143

4.7.2. Discussion of Max-Gain Heuristics 149

4.7.2.1. Mixed Approaches 149

4.7.3. Specification of Refinement Experiments 150

4.7.3.1. SEEKTs R-Knowledge 152

4.8. Failure-Driven Higher-Order Analysis: Outline of a Scenario . . 157

4.9. Summary 159

5. Strategy and Tactics 161

5.1. Integration of The Three Strategic Components 161

5.2. Fault Localization 162

5.2.1. Philosophical Prelude 162

5.2.2. Strategic Principles for Initial Fault Localization 166

5.3. Verification and Selection 168

5.3.1. An Important Ground Rule 169

5.3.2. Verification and Selection in Ground-Zero Refinement Systems 170

5.3.3. Verification and Selection in Single-Generation Refinement

Systems 177

5.3.4. Verification and Selection in Multiple-Generation Refinement

Systems 179

5.4. Selection Criteria 183

5.5. Searching The Universe of Knowledge Bases 186

5.5.1. KB-Space: The Universe of Knowledge Bases 187

5.5.2. Maximization: Local and Global 191

5.5.3. Maximization vis-a-vis Heuristic Refinement Generation . . 193

6. A Metalanguage for Knowledge Base Refinement 197

6.1. RM Primitives 200

6.1.1. The Interface 200

6.1.2. Primitive R-Functions 201

6.1.3. Primitive Actions 203

6.1.3.1. Primitive Operators 203

6.1.3.2. Modifying the Knowledge Base 204

6.1.3-3. Creating Mathematical Objects 205

6.1.3.4. Creating Refinement Objects 207

6.1.3.5. Using Refinement Objects 209

6.1.4. Adequacy of the Primitives 211

6.2. Designing R-F unctions and Heuristics 212

6.3. Designing Refinement Strategies 220

6.4. Domain-Specific Metaknowledge in RM 224

6.5. Incorporation of Failure-Driven Higher-Order Refinement . . . 227

6.6. Summary 238

7. Conclusion 239

7.1. Research Significance 239

7.1.1. Feasibility and Validity of The Approach 239

7.1.1.1. Evidence of Feasibility 240

7.1.1.2. Evidence of Validity 241

7.1.2. General Methodology for Knowledge Base Refinement . . . 250

7.2. Future Directions 252

7.2.1. More Powerful Rule Representation Languages 252

7.2.2. Rule Acquisition 254

7.2.3. Parallelism 257

7.2.4. Growth, Maintenance, and Integration of Knowledge Bases . 258

7.3. Concluding Remarks 258

7.3.1. Costs and Benefits of Domain-Specific Metaknowledge . . 258

7.3.2. Philosophical Finale 261

Appendix A. List of RM Primitives and Some Constructs 263

A p p e n d i x B . G e n e r i c A t o m i c R e f i n e m e n t O p e r a t o r s f o r E X P E R T . . . 2 7 5

Appendix C A Grammar for the Canonical Rule Representation Language 279

References 282

Vita 285

LIST OF FIGURES

Figure 1-1: Knowledge and Metaknowledge for Knowledge Base 9

Refinement

Figure 1-2: Elements of A Refinement System Design Problem 14

Figure 1-3: Structure of A Knowledge Base 21

Figure 1-4: Basic SEEK2 Cycle 26

Figure 1-5: SEEK2 Refinement Experiment Example 27

Figure 1-6: SEEK2 Session Example 29

Figure 1-7: Role of Refinement Metalanguage 31

Figure 3-1: Refinements As Transformational Operators 55

Figure 3-2: Rule-Contexts 56

Figure 3-3: The On-Target Relation 68

Figure 3-4: A Partial Radicality Ordering 78

Figure 4-1: Heuristic Generation of On-Target Refinements 88

Figure 4-2: First vs. Higher-Order Refinement 90

Figure 4-3: Architecture of Heuristic Refinement Generator 98

Figure 5-1: Multiple-Generation System 181

Figure 6-1: A Portion of An Outcome-Vector 235

Figure 7-1: Train and Test Experiment 243

Figure 7-2: Train and Train Again Experiment 249

Figure C-l: Context-Free Grammar for Canonical Language 281

CHAPTER 1

INTRODUCTION AND OVERVIEW

We begin this chapter with a brief account of the main research

contributions of this thesis. The rest of the chapter gives an overview of a) the

problem of knowledge base refinement and a general account of the knowledge

and subsystems required by refinement systems, b) the SEEK2 automatic

refinement system, and c) the role and content of a metalinguistic framework for

experimental research in this field.

1.1. Main Research Accomplishments

From a broad perspective, this research deals with two related issues. The

first issue concerns the possibility of automating knowledge base refinement at all:

can practical and effective automatic refinement systems, capable of dealing with

large-scale knowledge bases, be constructed? The second issue concerns the

question of what methodology should be utilized in order to formulate and pursue

a reasonable research strategy for making progress in the design and

implementation of such systems.

This thesis addresses these issues within the context of an ongoing research

program in knowledge base refinement at Rutgers University, a program whose

first major milestone was the SEEK system [Politakis 82], [Politakis and Weiss

84]. In terms of this ongoing effort, the research presented here makes the

following three concrete advances:

• We have generalized and extended the empirically-grounded

heuristic approach to refinement generation that was originally

developed in conjunction with SEEK. The generalized approach is

now incorporated in a new system, SEEK2 [Ginsberg, Weiss, and

Politakis 85]. Whereas SEEK's refinement concepts and heuristics are

applicable only to knowledge bases written in a specialized rule

representation scheme called criteria tables, SEEK2's refinement

concepts and heuristics are applicable to any knowledge base written

in the more general EXPERT [Weiss and Kulikowski 79] rule

representation language. SEEK2 is an extension of SEEK in the

sense that it includes concepts and heuristics pertaining to types of

refinement operations that were not incorporated in SEEK.

• An automatic knowledge base refinement system, SEEK2, has been

designed, implemented, and, to a limited degree, tested. The results

of these tests provide evidence that the heuristic approach to

refinement generation can form the foundation of successful large-

scale automatic knowledge base refinement In addition, analyses of

various refinement strategies, as well as a description of the nature

of the types of heuristics and knowledge required to implement them

in an automatic system, have been provided.

• A Refinement Metalanguage, RM, that enables a researcher to easily

formalize and test concepts, heuristics, and strategies for knowledge

base refinement, has been designed and implemented. This system has

been instrumental in revising and debugging SEEK2, e.g., the /

discovery of new refinement concepts has been facilitated by RM.

1.2. Automatic Knowledge Base Refinement

1.2.1. Knowledge Acquisition and Knowledge Base Refinement

The problem of constructing an efficient and accurate formal representation

of an expert's domain knowledge, the knowledge acquisition problem, is a key

problem in AI. As a practical matter, the most time consuming aspect of expert

system design is the construction of the knowledge base; the rate of progress in

developing useful expert systems is directly related to the rate at which it is

possible to construct knowledge bases whose level of performance is comparable

to that of an expert's in the field.

Conceptually it is worthwhile to view knowledge acquisition as having two

phases. In phase one the knowledge engineer extracts an initial rough knowledge

base from the expert, "rough" in the sense that the overall level of performance

of this knowledge base is usually not comparable to that of the expert. At the

same time, the knowledge engineer will attempt to extract what we shall call case

knowledge from the expert This is an important concept in our work, and in

expert systems research generally, so it is worthwhile to explain its role here.

There is no question that an important part of what makes someone an

expert in a domain of expertise, is the ability to "perform correctly11 in cases

that fall within that domain. Depending on the sort of domain we are talking

about, a case can be anything from a patient exhibiting certain observable or

measurable symptoms, to a set of equations that must be solved or used in some

way to calculate the expected value of some physical quantity in a given situation,

etc. Any interesting domain of expertise will have a very large, and often

potentially infinite, set of distinct cases associated with it Any expert will have

the ability to "perform correctly11 in a certain subset of this infinity of potential

cases; we call this set of cases the expert's complete case knowledge. Case

knowledge is any subset of the expert's complete case knowledge. When we talk

about a case c in this work, we think of the expert's "evaluation" (conclusion) or

"performance" in c as being part of it.

Expert systems research is concerned with the construction of systems that

yield high-performance in "real world" problems, or certain aspects, of such

problems. Thus part of what gives one the right to call a computer program an

expert system is the ability of the program to perform well in cases within the

given problem domain. The basic source of evidence that such a program does

perform well over cases in its domain, is its ability to reproduce an expert's

performance. Case knowledge, therefore, is not just something that we may or

may not want to gather in order to help us in the knowledge acquisition task: it /J

provides the only direct way of validating the adequacy and accuracy of the

expert system's performance. One expects, therefore, that any serious effort to /

construct an expert system will involve an attempt to gather case knowledge and

use it as both a guide towards improved performance as well as a measure of

current performance.

However, one also expects the result of phase one will be a knowledge base

that does not have performance comparable to the expert's. One way we will

know this will be if the knowledge base does not completely reproduce the

expert's judgments in the currently available case knowledge. This brings us to the

second phase of knowledge base construction. In the second phase, the knowledge

base refinement phase, the initial knowledge base is progressively refined into a

high performance knowledge base, in part by using the currently available case

knowledge to guide the refinement process.

In terms of a rule-based knowledge base, we expect that phase one involves ,

the acquisition of entire rules, indeed entire sets of rules, for concluding various

hypotheses. Ideally, at the end of phase one, we hope to be in possession of

what we shall call a rule-complete knowledge base. We think of a rule-

complete knowledge base as one that is not "missing" any rules, i.e., a final high-

performance version of the knowledge base can be obtained by altering

components - excluding conclusions - of the current set of rules. Thus the

refinement phase is characterized not so much by the acquisition of entire rules

but by the addition, deletion, and alteration of rule-components, including

confidence factors, in certain rules in the existing knowledge base, in an attempt

to improve the system's performance. While one cannot give a "fool proof"

empirical criterion for confirming rule-completeness of a knowledge base, this is

an assumption that will be more or less justified in any particular refinement

problem.

The assumption of rule-completeness is a way of marking a strict

demarcation between rule-acquisition and rule-refinement for the purposes of

research and the development of refinement systems. In practice, one expects

that one may, and should be able to, discover evidence of rule-incompleteness of

a knowledge base while attempting to refine it One would like to make

refinement systems more "robust" by giving them the capability to recognize such

situations and act in an appropriate manner. This is a topic for future research,

though chapters 4 and 7 contain some discussion of rule-acquisition issues.

1.2.2. Conservatism and Radicality; Refinement and Optimization

Let kb be an initial knowledge base, let C be the currently available case
o

knowledge for the domain of expertise in question. We assume that kb will not
o

be a high-performance knowledge base at this time, and we expect this fact to be

reflected in kb *s performance over the cases in C. That is, we expect that kb
o o

will not completely reproduce the expert's judgments over C1.

The job of a refinement system is to discover, test, and possibly (tentatively)

incorporate modifications to the rules in kb , with a view towards improving the
0

empirical adequacy of the knowledge base, i.e., making it capable of reproducing

the expert's performance in more cases. At the same time the refinement system

must try to avoid the recommendation or incorporation of refinements that will

not meet with expert approval. In order to do this the refinement system will

make use of various sources of knowledge and metaknowledge, and case

knowledge is only one of these. Case knowledge will be used both as a source

of evidence for generating refinements, as well as a source of test cases for

determining the expected gain in empirical .adequacy of the refinements generated.

Note that we are not making any assumptions concerning the availability of
information pertaining to the underlying probability distribution of cases; we
therefore do not assume that C necessarily represents a statistically valid case
population. One would expect that in working with a particular expert, the
knowledge engineer will be able to extract a representative sample of the "local"
case population confronting the expert within some period of time. Clearly if we
are in possession of useful and accurate statistical information, there is good
reason to apply statistical techniques to the problem of constructing and refining
a knowledge base. Since, however, expert systems approaches tend to be applied
precisely in domains where either little reliable statistical information is available,
or where the dimensionality of the underlying "feature space9' is so large as to
make the use of statistical methods computationally impractical, we do not expect
that such information will be available to us in the refinement phase [Weiss and
Kulikowski 84].

The general idea is that by making good use of all the sources of knowledge

and metaknowledge available, the process of generating refinements that improve

kb 's performance over C, has a good chance of generating some refinements that
o

improve the empirical adequacy of the knowledge base in general, and that do not

simply reflect "statistical fluctuations" in C.

While some sources of knowledge and metaknowledge may be unavailable in

particular cases, there is one important source of knowledge that must always be

available. This is simply kb itself (see figure 1-1). We are assuming that kb
0 0

has been obtained through interaction with an expert, at the very least, the expert

has assented to the truthfulness of the rules contained in kb . This does not
o

mean that the rules must be correct as they are; or there would be no need for

refinement This does mean that kb represents "sensible," more or less accurate,
0

knowledge concerning the domain of expertise. Moreover, if we have reason to

believe that kb is close to being rule-complete, then we know that the knowledge

base possesses the requisite degree of generality, i.e., it should be capable of

dealing with a wide variety of cases in the domain of expertise. Under these

assumptions, a conservative refinement strategy is indicated, where this is one

"In keeping with accepted statistical practice, disjoint sets of case knowledge
should be used for the purposes of refinement generation and testing. In terms
of the approach taken in SEEK2, this would mean dividing C into a "training set"
and a "testing set," using the former in the actual run of SEEK2, and then seeing
how well the resulting knowledge base performs on the latter. Such an
experiment has been performed; the results are encouraging, and are reported in
chapter 7.

Figure 1-1: Knowledge and Metaknowledge for Knowledge Base Refinement

that obeys certain general, and possibly domain-specific, constraints or intuitions

concerning the "radicality11 of refinements to the knowledge base. A conservative

strategy is one that attempts to improve the empirical adequacy of kb while
0

making the least radical changes to kb possible.
o

Clearly, the notion of the radicality, or relative radicality, of a refinement is

an important notion in this overall conception of knowledge base refinement. A

formal general understanding of radicality can be given. In chapter S we will see

how given a kb one can define a mathematical construct called kb-space whose
0

points represent all the possible refined versions of kb . Given any two pomts in

kb-space there will be a way, perhaps several ways, of "refining" one to the

other. If one could define a (path independent) distance function over kb-space,

in the same way that one talks about the (pythagorean) distance function defined

on points in physical 3-dimensional space, then one would ipso facto have

defined a radicality metric on refinements. That is. if kb is a refined version

of kb , then the radicality of kb with respect to kb is the distance in kb-space
0 0

from the one to the other. The goal of knowledge base refinement could then

be stated as the attempt to find the points in kb-space closest to kb that give
0

the greatest improvement in empirical adequacy over C i.e., as a search for the

closest local maxima in kb-space.

Looking at the problem in the way just indicated, we see that knowledge

base refinement resembles both mathematical optimization problems and search

problems in certain ways. The "objective function" to be optimized in knowledge

base refinement is simply the number of cases in C in which the knowledge base

performs correctly. However since the underlying search space, kb-space, is not a

Euclidean vector space, it is impossible to apply the techniques of linear or

dynamic programming to this optimization problem, [Bazaraa 77]. In kb-space

one cannot take the gradient of a function at a point in order to determine the

direction of its greatest ascent; in order to get this information one would have

to sample all of the point's closest neighbors in kb-space.

But there is an even greater obstacle in applying mathematical optimization

methods to knowledge base refinement We have shown how radicality may be

thought of as a distance function on kb-space, and we could even define such a

metric. The problem is that there are many metrics that could be used, and, in

contrast to the situation in mathematics and physics, the question "which metric is

the right one?" cannot be answered by means of empirical observation. While

there seem to be several general reasonable "axioms" that any such metric should

obey (see chapter 3), and certain non-controversial intuitions concerning the

relative radicality of certain refinement operations - e.gM deleting two components

from a rule is more radical than deleting one - these axioms and intuitions do

not determine a unique radicality metric. Instead of picking a metric by fiat as

the "right" one, it is wiser to leave unspecified those things whose specification is

properly consigned to the level of a domain-specific refinement problem. In

other words, it belongs to the theory of knowledge base refinement to think

about the general forms in which radicality information may be expressed, and

how such information may be used in the refinement process, but it belongs, for

the most part, to the knowledge engineer or domain expert to supply the actual

information itself.

For this reason, we simply cannot proceed under the assumption that an

accurate radicality metric will always be available. Without such a metric the

idea of the closest neighbors of a point in kb-space is not well-defined, and,

therefore, in such a case there is even a larger gap between mathematical

optimization and knowledge base refinement.

1.3. Designing Automatic Refinement Systems

So far we have not explicitly stated any assumptions concerning the nature

of either the expert system frameworks, or the domain problems we expect to

consider. The discussion has been somewhat tendentious, in that we have mainly

spoken about the expert's conclusion or judgment in a case, instead of, for

example, the expert's performance or plan of action in a case. This is in

keeping with the fact that this work is focused on expert system frameworks that

are designed to deal with classification problems. But, from a general point of

view, there is nothing in the notion of an expert system that requires such a

system to deal solely with classification as opposed to, say, planning problems.

We can capture this level of generality by talking about refinement system

design problems. Such a problem is defined by providing a formal

specification of an expert system framework, where in order to give such a

specification one must formally specify the syntax and semantics of the items that

can appear in a knowledge base, and the nature of the mechanisms that will be

applied to these items by the expert system. Assuming that we are dealing solely

with rule-based systems this is equivalent to specifying a) a rule representation

language, and b) an inference and control mechanism that determines which rules

will be applied in any context A formal specification of such an expert system

framework need not, however, be an exact specification of any actually existing

framework.

Given an expert system framework specification ES, there is a corresponding

refinement system design problem, design a generic refinement system for ES.

That is, design a refinement system that will be of use in refining any knowledge

base that can be written in the rule representation language of ES.

As is shown in figure 1-2, there is a general structure to refinement systems

design problems. To design a refinement system one must specify how

metaknowledge concerning the expert system framework's rule, case, and

inference structures will be incorporated and used by the refinement system. In

other words a knowledge representation problem must be addressed: find effective

ways of representing formal knowledge about the expert system framework in

question. One must also provide the actual refinement metaknowledge that will

be used by the system. At the design level this means that one must specify

generic refinement metaknowledge (that will be useful in refining any knowledge

base written in ES), as well as general forms for expressing domain specific

metaknowledge that may be deemed to be of use - and hopefully available - in

Figure 1-2: Elements of A Refinement System Design Problem

Various
Domains-of-expertlse

Various
Knowledge Bases

Known
!ases

Known \ :J*^ Formal Specification
Cases L ^/ of an

Expert System
Framework ^

Rule Representation Inference
Language Mechanism

KB

KB

Formal Specification
of a

Refinement System

General
Svntax & Semantics

Inference
Mechanism

STRATEGIC
SUBSYSTEMS

Refinement Metaknowledae

Generic. Domain-Specific

dealing with some of the actual domains of expertise that are to be modeled by

knowledge bases written in ES. Finally one must specify the strategic

subsystems of the overall refinement system in such a way that it is clear how

the system will make use of its metaknowledge in achieving its aim.

Detailed descriptions of the generic refinement metaknowledge that is used in

SEEK2 will be given in chapter 4, and some examples will be given in section 1.4

below. Put simply, generic refinement metaknowledge is knowledge that relates

certain observable or measurable features of rule behavior to possible corrective

refinement actions.

1.3*1. Strategic Subsystems

There are four issues that must be addressed by any automatic refinement

system; we say that there are four strategic subsystems of such a system.

In the first place the refinement system must address the issue of

localization. This refers to the process of determining that a certain subset of

rules, R, in the knowledge base is the likely cause of a certain subset, M, of the

currently misdiagnosed cases. We call the pair <R,M> a refinement-situation or

r-situation for short. The localization module of a refinement system is

responsible for dividing up the overall problem of improving the knowledge base's

empirical adequacy into r-situations that can then be addressed independently.

The next issue that must be addressed is refinement generation. Given an

r-situation <R.M>, the problem is to generate specific plausible refinement

suggestions involving the rules in R with the intention of correcting the cases in

M. In this work a refinement is said to be plausible if it "has a chance11 of

correcting certain cases. A precise analysis of this notion is given in chapter 3.

A refinement system must have a verification procedure for testing the

efficacy of the refinements that are suggested by its refinement generator. It

may also require a selection criterion for determining when a refinement should

be tentatively incorporated in the knowledge base.

Finally, these subsystems must be integrated into a coherent overall procedure

by the refinement system's control strategy.

1.3.2. Refinement System Design: A Special Case

The research presented here focuses on refinement system design for expert

system frameworks that are intended to be used to solve classification problems.

In particular, we focus on frameworks whose rule representation languages have

the expressive power of propositional logic, conjoined with certain special "surface

forms," and confidence factors. Such frameworks do not. for example, allow for

the dynamic binding of variables during run-time.

The term classification problem is a technical term in this work, and we

use it as a "shorthand" for a whole set of assumptions concerning the nature of

the knowledge bases we expect our refinement systems to be dealing with. Many

of these assumptions will be clear from the context of the discussion, but some,

especially those that are important in understanding how SEEK2 works, must be

made explicit at this point. Additional assumptions of a more technical nature

are discussed below (see section 1.6).

1. The knowledge base is a collection of rules of inference that

include many that are inductive in nature, i.e., the truth of the

premises of a rule does not logically entail the truth of the

conclusion. This means that one counterexample to a rule of this

type does not invalidate it

2. The knowledge base has been obtained via interaction with a domain

expert. This supports the wisdom of taking a conservative refinement

strategy.

3. The problem domain and knowledge base are such that a complete,

fixed, and finite set of possible "endpoints," i.e., conclusions, can be

specified, and is in fact given to the automatic refinement system.

The expert's conclusion in any case must be one of these endpoints.

4. The knowledge base will be considered to have performed correctly

in a case if its conclusion matches the expert's for that case,

otherwise it has performed incorrectly. What matters is the

knowledge base's answer, not how it reached it If the knowledge

base employs confidence factors, then its conclusion in a given case

will be taken to be the conclusion with the highest confidence factor.

1.4. An Overview of SEEK2

In this section we present a brief overview of SEEK2. This automatic

refinement system - the result of a collaborative effort involving myself,

S. Weiss, P. Politakis, with programming assistance from K. Kern - grew out of

an ongoing effort at Rutgers University on the topic of knowledge base

refinement As the name implies, SEEK2 is the successor of a previous system,

viz., SEEK [Politakis and Weiss 84]. In order to appreciate the specific research

progress represented by SEEK2, we briefly compare it with its immediate

predecessor SEEK.

SEEK is a purely interactive system, and thus does not address the full

complement of issues involved in doing automatic refinement SEEK presents the

user with a list of refinement suggestions with respect to an r-situation. If

requested by the user, SEEK will calculate the results of incorporating any one of

these refinements in the knowledge base. But it is up to the user to decide 1)

which r-situations to investigate, 2) which suggested refinement experiments to

attempt, 3) which refinements to incorporate in the knowledge base, and 4) when

to stop the current refinement process. SEEK2, on the other hand, makes these

decisions on its own.

SEEK works only with knowledge bases that employ a specialized rule

representation format known as criteria tables. All of the refinement operations.

metaknowledge concepts and heuristics used in SEEK are well-defined only in

relation to this mode of representation.

SEEK2, on the other hand, will work with any knowledge base written in

the EXPERT rule representation language [Weiss and Kulikowski 79], and thus -

since any criteria table knowledge base can easily be "translated" into EXPERT,

but not conversely - is a more general refinement system than SEEK. In

designing SEEK2 an effort was made to generalize the refinement concepts and

heuristics of SEEK in appropriate ways whenever possible. However, certain

primitive refinement operations that were not included in SEEK are utilized in

SEEK2, e.g., shifts of boundaries on numerical ranges, and there are other

operations that, though of minimal utility in SEEK, are of more importance in

SEEK2 in virtue of the fact that new concepts and heuristics for these operations

have been devised, e.g., alteration of confidence factors.

Finally, SEEK2 makes uses of a partial radicality ordering (see chapter 3) in

its selection regime. The idea of using a radicality ordering on refinement

operations is entirely new to SEEK2.

1*4.1. Localization

Any knowledge base that meets our assumptions (p. 17) must have a definite

hierarchical structure that will help in devising localization principles (see figure

1-3). SEEK2*s localization principles are a combination of "divide and conquer"

together with a goal-directed backward chaining mechanism. As we said above,

we assume that the expert and knowledge engineer can identify a finite set of

final diagnostic conclusions or "endpoints;" these are the conclusions that the

expert uses to classify the given cases. One can then confine one's attention to

the refinement of rules that are involved in concluding a particular endpoint, e.g.,

if the domain is Rheumatology one may decide to work on refining those rules

involved in concluding the single final diagnosis Systemic Lupus. This is the

major divide and conquer part of the strategy; it means that at any given moment

the system is applying the refinement heuristics only to a proper subset of the

rules in the domain knowledge base, and only to a proper subset of the

misdiagnosed cases, viz., those that are either a false positive or a false negative

for the endpoint in question.

The goal-directed backward chaining mechanism comes into play once an

endpoint has been chosen. If our chosen endpoint is Systemic Lupus, for

example, we begin by applying the heuristics to all the rules in the knowledge

base that directly conclude Systemic Lupus, i.e., rules whose right hand side is

this conclusion. We call these end point-rules. A rule that directly concludes

some endpoint will, in general, have components on its left hand side that

themselves are the conclusions of some other rules: such components are called

intermediate hypotheses, and the rules that conclude them are called

intermediate rules (see figure 1-3). The rules that conclude intermediate

hypotheses may themselves include components that are intermediate hypotheses.

Whenever the refinement heuristics suggest modifying an intermediate hypothesis

IH, such as deleting it from some rule, the rules that conclude IH are thereby

Figure 1-3: Structure of A Knowledge Base

DIAGNOSTIC
ENDPOINTS:

ENDPOINT
RULE
LEVEL

INTERMEDIATE
RULE LEVELS

implicated as candidates for refinement.

1.4.2. Heuristic Refinement Generation

In terms of their semantic properties, many refinements of production rules

may be thought of as falling in one of two possible classes: generalizations and

specializations [Politakis 82]. By a rule generalization we mean any modification

to a rule that makes it "easier" for the rule's conclusion to be accepted in any

given case. A generalization refinement is usually accomplished by deleting or

•altering a component on the left hand side of the rule or by raising the

confidence factor associated with the rule's conclusion. By a rule specialization we

mean modifications to a rule that make it "harder" for the rule's conclusion to be

accepted in any given case. A rule specialization is usually accomplished by

adding or altering a component on the left hand side or by lowering the

confidence factor associated with the rule's conclusion.

On the side of evidence for rule generalization, one of the concepts we have

employed in SEEK2, a concept originating in SEEK, is a statistical property of a

rule computed by a function that we call Genfru/e). Gen(rule) is the number of

cases in which (a) this rule's conclusion should have been reached but wasn't.

(b) had this rule been satisfied the conclusion would have been reached, and

(c) of all the rules for which the preceding clauses hold in the case, this one is

the "closest to being satisfied." A measure of how close a rule is to being

satisfied in a case, based on the number of additional findings required for the

rule to fire, is easily computed given the case data (for details of the algorithm

used by SEEK see [Politakis 82]; SEEK2's closeness measure is essentially the

same, see chapter 4).

On the side of evidence for rule specialization, one of the concepts we have

defined is a statistical property of a rule that is computed by a function we call

SpecAlruleL SpecA(rule) is the number of cases in which (a) this rule's

conclusion should not have been reached but was, and (b) if this rule had

failed to fire the correct conclusion would have been reached, i.e., the correct

conclusion was the "second choice" in the case (due to its having the second

highest confidence), and the only circumstance preventing its being the "first

choice" is the fact that this rule is satisfied. If there is more than one

satisfied rule that concludes the incorrect first choice then none of these rules

has its SpecA measure incremented; instead we have defined an additional concept

to cover this situation called SpecBfrule): each of these rules has its SpecB

measure incremented.

To get a feeling for the sort of heuristics employed by SEEK2 suppose that

for a certain rule r it has been found that Gen(r) > [SpecA(r) + SpecB(r)], in

other words the evidence suggests that it is more appropriate to generalize than

specialize r. Another piece of information would help us decide which

component of r should be deleted or altered, viz., the most frequently missing

component, i.e., the component of r that has the lowest frequency of satisfaction

relative to the cases that contribute to Gen(r). The function that computes this

statistic is called Mfmcfru/e). Mfmc(rule) also tells us the syntactic category of

24

this most frequently missing component. For example, one sort of component

often used in medical diagnostic systems is called a choice component. These

have the form [k: C , ..., C], where k, the choice number is a positive integer
1 n

and the C's are components (findings or hypotheses, but not choices). A choice
i

component is satisfied iff at least k of its C's are satisfied. If we know that
i

the rule r should be generalized and that Mfmc(r) is a particular choice

component, then a natural thing to do is to decrease the choice number of that

choice component. Being conservative we decrease the choice number by 1.

To summarize the discussion in this section we now display in full the

particular heuristic we have described.

If: Gen(rule) > [SpecA(rule) + SpecB(rule)] &

Mfmc(rule) is CHOICE-COMPONENT C

Then: Decrease the choice-number of

CHOICE-COMPONENT C in ru le .

Reason: This would generalize the rule so that it

will be easier to satisfy.

This heuristic and the concepts it references are examples of what we are

calling generic refinement metaknowledge.

1.4.3. Verification, Selection, and Control Strategy

SEEK2 first obtains a performance evaluation of the initial knowledge base

on the data base of cases. This is done by "running" the initial knowledge base

on each of the cases in the data base, and then comparing the knowledge base's

conclusion with the stored expert's conclusion. The performance evaluation

consists primarily of an overall score, e.g. 75% of cases diagnosed correctly, as

well as a breakdown by final diagnostic category of the number of cases in which

the system agrees with the expert in reaching a particular diagnosis, i.e., "true

positives," and the number of cases in which the system reaches that diagnosis but

the expert does not. i.e., ftfalse positives."

The system must then decide on the ordering in which it will consider the

endpoints in order to generate refinements for them. (Since SEEK2 always

considers every endpoint in a cycle, the ordering could be arbitrary.) In the

current implementation, SEEK2 orders the endpoints in descending order according

to a simple measure on the number of "false negatives1* and "false positives/'

information that is given by the performance evaluation phase. Then the system

generates and tests refinements for each endpoint in the ordering in turn; when

an endpoint is under consideration it is said to be the current "GDX" or "Given

DX."

When SEEK2 tests a refinement it does so by running the proposed refined

version of the knowledge over every case in the data base of casesisee figure

Figure 1-4: Basic SEEK2 Cycle

START

ACCEPT

SINGLE
8EST

EXPERIMENT

SELECT
NEXT
GOX

COMRAREW1TH
CURRENT BEST

GATHER STATISTICS
FOR GOX RULES

INVOKE HEURISTICS
& POST SELECTED

EXPERIMENTS

TEST OVER
ALL CASES

1-4). Out of all the experiments attempted SEEK2 "accepts" only one, the one

that gives the greatest net gain in knowledge base performance for all final

diagnostic conclusions. An internal record of the accepted refinement is kept;

and then the next automatic pilot cycle begins. If the current automatic pilot

cycle is such that no attempted experiment leads to an actual net gain, SEEK2

stops. Figure 1-5 shows an example of the output SEEK2 produces in the course

of running a refinement experiment.

Figure 1-5: SEEK2 Refinement Experiment Example

TESTING EXPERIMENT:

In rule 3.7 (the seventh rule in rule-table 3) decrease the choice
number of choice component 1

Estimated net gain of this refinement: 16 cases

Choose 3 of the following 5:
147 [H(RAYES,0.9:1)
148 [F(SW0LH,T)
149 [F(SCLDY,T)
150 [F(DCO,0:69)
151 [H(MYOSS,0.9:1)
-> H(MCTD,0.4)

Before After

True Positives False Positives True Positives False Positives

MCTD 9/ 33 (277.) 0 17/ 33 (527.) 0
RA 42/ 42 (100%) 11 42/ 42 (100/0 10

SLE 12/ 18 (67%) 4 12/ 18 (67%) 3
PSS 22/ 23 (96%) 4 22/ 23 (96%) 2
PM 3/ 5 (60%) 1 3/ 5 (60%) 1

Total 96/121 (79%) 105/121 (87%)

The automatic pilot algorithm just described is a quasi-hill-climbing

procedure: at each step SEEK2 is guided totally by the "local" information as to

which proposed refinement on the current knowledge base results in the best

improvement, i.e., leads in the direction of "steepest ascent"

1.4.4. Session Example and Performance

Figure 1-6 shows the "before and after" performance breakdowns for an

actual SEEK2 run. The endpoints are listed in their mnemonic form, i.e., "RA"

is short for "Rheumatoid Arthritis", etc. SEEK2 currently has ten statistical

concepts and nine heuristics for generating refinements. Working in automatic

pilot mode on this Rheumatology knowledge base of approximately 140 rules with

5 final diagnostic categories, and using a data base of 121 cases, SEEK2 was able

to increase the overall performance of the system from a value of 73% (88/121)

to a value of 98% (120/121). It used approximately 18 minutes of Vax-785 cpu

time. The total number of experiments tried was 112, out of which 9 were

accepted.

1.5. Metalanguage and Methodology

There is no magic formula or algorithm for designing useful concepts and

heuristics for knowledge base refinement Discovery of such concepts and

heuristics involves a combination of common sense, insight, and trial-and-error.

SEEK2, for example, has undergone several substantial changes in concepts and

heuristics, changes that were suggested by experimentation.

It is apparent, therefore, that progress in the field of knowledge base

refinement would be facilitated by a system that gives a researcher the ability to

conduct such experiments with relative ease. Such a system, called RM, - for

Refinement Metalanguage - has been designed and implemented. A detailed

account of this system is given in chapter 6, however, since RM concepts are

Figure 1-6: SEEK2 Session Example

Initial Performance by Endpoint

RA
MCTD
SLE
PSS
PM

Total

RA
MCTD
SLE
PSS
PM

Total

True
42/
9/
12/
22/
3/

Pos
42
33
18
23
5

88/121

*
;itives
(100%)
(27%)
(67%)
(96%)
(60%)

(73%)

Final Performance

True

42/
32/
18/
23/
5/

Positives

42
33
18
23
5

120/121

(100%)
(97%)
(100%)
(100%)
(100%)

(99%)

False Positives
11
0
4
4
1

bv Endpoint

False Positives

0
0
1
0
0

Cases in which the knowledge base's conclusion matches the
given correct conclusion. Thus the figure 9133 in the second row in
the initial breakdown, for example, means that out of 33 cases having
as correct conclusion MCTD, the knowledge currently diagnoses 9 of
them correctly.

Cases in which the knowledge base's conclusion is not identical
to the given correct conclusion. Thus the figure 11 in the first row
of the initial breakdown, for example, means that the knowledge base
has incorrectly reached the conclusion RA in 11 cases.

used throughout this work, an appendix listing the main primitives of RM is

provided (see appendix A).

RM is based upon a methodology and metalinguistic framework that was

actually used in the design phase of SEEK2, albeit "by hand.'9 As we shall see in

chapter 4, every refinement concept used in SEEK2, e,g., Gen(rule), has a

straightforward definition in RM. RM makes such definitions possible because it

allows the user to focus entirely on the "essential" content of the concept he has

in mind: one only needs to be concerned with what one wants done, not with

how it is to be done.

The role envisioned for RM is illustrated in figure 1-7. We see that the

refinement metalanguage plays a role in the specification of both the methods of

heuristic analysis applied by a refinement system, and the overall control strategy.

The figure is also meant to convey the idea of RM being used not only as a tool

for experimental research, but also as a device for customizing refinement

systems.

The basic thrust of the methodology behind RM can be put in a nutshell

thusly: find a set of high-level primitives powerful enough to represent the space

of possible solutions to the given refinement system design problem. The

necessary primitives fall into several categories:

1. Primitive Refinement Operators: Given the formal specification of

the rule representation language, one must select and represent a set

of primitive generic rule modifications or operators, such that all

intuitively reasonable rule refinements can be expressed using them.

Thus the system should be of use not only in finding or fine-tuning

heuristics for refinements that are currently in use, but also offer the

possibility for designing heuristics that suggest heretofore unused

refinement operations.

2. Primitive Refinement Concepts: These are a set of concepts whose

Figure 1-7: Role of Refinement Metalanguage

GENERAL
PRODUCTION-RULE

DOMAIN KB

OVERALL
PERFORMANCE

EVALUATION
WITH BREAKDOWN

BYDX

KB REFINEMENT
METALANGUAGE

GATHER STATISTICS,
EVALUATE HEURISTICS
FOR RELEVANT RULES

&
SUGGEST RERNEMENTS

TRY AN
EXPERIMENT

H BEFORE-AFTER
COMPARISON

SELECT RERNEMENTS
TO BE

INCORPORATED IN
DOMAIN KB

KB FOR
RULE REFINEMENT

AUTOMATIC PILOT
CONTROL

HEURISTICS

interpretation is based upon our understanding of the entities.

knowledge, metaknowledge, etc. that comprise the domain of

knowledge base refinement For example, corresponding to the fact

that knowledge base refinement involves modifying rules in a

knowledge base, in RM we provide a high-level primitive variable

rule, which ranges over the set of all rules in the given knowledge

base. One must also postulate primitive refinement functions which

enable a user to access or describe any important component or

"behavioral feature" of the pertinent objects. For example, in RM,

the function rule-conclusion(rule) returns the conclusion of rule, the

function satisfied!rule,case) returns true if and only if rule is

satisfied in case, else it returns false (case, of course, is a primitive

variable over the data base of cases). These primitive refinement

concepts form the building blocks out of which sophisticated generic

refinement concepts, e.g., Gen(rule), are constructed in RM.

3. Primitive Metalanguage Operators: In order to allow for the

construction of sophisticated refinement concepts out of primitives,

and for the definition of heuristics, one must also specify primitive

operators belonging to the metalanguage per se. Most of the RM

primitives belonging to this category are familiar from simple set

theory, logic, and arithmetic.

4. Primitive Constructive Actions: Certain primitive actions must be

provided by a metalinguistic framework for knowledge base

refinement. Among these are actions such as the following: creating

a definition of a set of objects, creating a new variable of an

already defined type (e.g. let r be a variable of type rule), creating

a new function or heuristic, creating a refined version of a

knowledge base, etc. In other words, the system must allow the user

to create entirely new objects by defining them out of primitives and

previously defined objects, as well as to create new instances of

previously defined objects.

5. Primitive Manipulative Actions: Certain primitive ways of using or

manipulating both primitive and defined objects must be provided.

Among these we have, for example: evaluating definitions and

heuristics, trying a refinement experiment, accessing a version of the

knowledge base. It must also be possible to combine primitive

actions into procedures, so that complete automatic refinement

systems can be designed and tested.

1.6. Some Assumptions

An expert system framework is more than a rule representation language, it

is also a way of using linguistic representations to reach conclusions. Therefore

we need, as it were, a canonical form for the "inferencing mechanism" of such a

system. We try to avoid biasing our account in favor of any current approach to

inductive inference; the theory of refinement ought not to exhibit a preference

for one approach over another.

We assume the existence of two data structures evidence space, and

hypothesis space, such that the following assumptions are satisfied:

1. The evidence pertaining to a case is presented in its entirety once

and for all, at the start of the "consultation/* and recorded in

evidence space. The expert system must be run in a non-interactive

mode, e.g., no questioning of the user occurs, no changes in the

evidence occurs. (This is an implementation constraint.)

The evidence includes the following sorts of items: 1) the truth-

values of propositions - not necessarily limited to a two-valued logic:

2) numerical values, or ranges associated with quantitative properties.

Possibly, confidence values or ranges associated with hypotheses in

the knowledge base may be presented initially as well. These may

represent prior probabilities or simply volunteered information

pertaining to the specific case, and are deposited in hypothesis

space. In addition, it is possible that items in categories (1) and (2)

are also presented with associated confidence values or ranges

indicative of the user's degree of belief in the evidence, and these

values are deposited in evidence space along with the associated

findings.

2. Initially, the expert system makes all inferences that it can on the

basis of the contents of evidence space alone, i.e., every rule is

evaluated using the evaluation conventions of the particular expert

system framework, and if satisfied the resulting inference (including

confidence, and rule identification) is recorded in hypothesis space,

which is a separate space from evidence space.

3. At this point control is passed to a global inference agent whose

job it is to review and revise the current state of hypothesis space

according to the rules of confidence combination, etc. that are used

by the particular expert system framework.

4. Control is now passed back to each rule in turn ("local inference

agents"), which are now re-evaluated with reference to the current

state of hypothesis space, as well as evidence space. Only rules that

go from being previously unsatisfied to currently satisfied are of

interest. Any such rules will deposit their conclusions in hypothesis

space as before.

5. Steps (3) and (4) are repeated until hypothesis space reaches a stable

configuration, i.e., does not change from one pass through the loop

to the next Clearly, it is possible to construct "pathological" rule

sets that will prevent hypothesis space from ever reaching a stable

condition in this sense. We take the position that the detection

and/or prevention of such situations falls, however, within the

province of expert system framework design, and is not a proper

concern for the theory of refinement.

1.7. Synopsis

Chapter 2 is a brief summary of other work in knowledge base refinement

and related fields.

Chapter 3 introduces the necessary formal elements for giving a precise

characterization of the goals and methods of knowledge base refinement. This

involves a treatment of the formal syntax of refinement operations, and a

discussion of some semantic properties of refinement operations. In particular a

precise definition of the relevant sense of the notion plausible refinement is

given. This chapter also addresses the problem of radicality measures on

refinement operations.

In this work we will delve into the foundations of the heuristic approach to

knowledge base refinement, and we will show that a reasonable general

architecture for refinement generation based upon the use of heuristic analysis can

be devised. This general architecture is not merely descriptive of the current

system, but also has implications for the directions of future research. This

discussion is given in Chapter 4. This chapter also contains a detailed description

and analysis of the refinement concepts and heuristics used in SEEK2.

Alternative control strategies and various verification and selection regimes

for refinement systems are discussed and in chapter 5. This chapter also shows

how knowledge base refinement may be viewed as a search problem over a space

of knowledge bases.

SEEK2 is a milestone within a more ambitious ongoing research program.

Two of the goals of this program are to formulate ever more powerful heuristics

and strategic principles for dealing with refinement problems - potentially

involving richer rule representation languages - and also to eventually extend the

heuristic approach to the problem of knowledge acquisition. In this work we will

exhibit a methodology and an associated metalinguistic framework for facilitating

progress in this endeavor. Specifically, in chapter 6 we present a metalanguage

for the design and testing of concepts, heuristics, and strategic principles for

automatic knowledge base refinement.

Chapter 7 concludes the work with a summary of research significance and

possible future directions for research. Certain experiments that provide evidence

for the feasibility and validity of the heuristic approach to knowledge base

refinement are introduced and discussed in this chapter.

CHAPTER 2

RELATED RESEARCH IN AI

This chapter is a brief survey of research of relevance to the problem

addressed in this thesis. Depending on how narrow or broad one's scope is, the

amount of research of relevance is either very small or very large: if one asks

about automatic knowledge base refinement, as we have defined it here, there

is very little research that has taken this as its primary focus; if, however, one

relaxes the assumptions made above in certain ways, or looks at the problem from

a broader point of view, then one can see automatic knowledge base refinement

as being a special case of automatic knowledge acquisition, and as being related to

such AI fields as "learning" and "discovery." Therefore, in each of the subsections

below I first show how automatic knowledge base refinement is conceptually

related to one of these other fields; I then refer to those parts of the existing

literature in that field that are of greatest relevance to the proposed research.

First it must be noted a good deal of the research presented here is a direct

descendant of the SEEK project of Politakis and Weiss. A discussion of SEEK

and its relationship to SEEK2 may be found in [Ginsberg, Weiss, and Politakis

85], and in chapter 4.

2.1. Expert Systems, Knowledge Base Refinement and Pattern Recognition

In order to avoid misunderstandings concerning our view of knowledge base

refinement and the techniques we advocate for doing it, it is worthwhile to

briefly draw some important distinctions between what we are doing and

approaches to modeling decision-making and problem-solving based on pattern

recognition techniques [Duda and Hart 73].

The crucial difference between knowledge base refinement and pattern

recognition techniques lies in the comparative role and value they each accord to

the various components of the expert's knowledge. The goal of knowledge base

refinement is not merely to revise a set of rules so that performance will be

optimized, it is to do so in a manner that is likely to meet with the

approval of the expert whose know/edge we are trying to capture in

constructing an expert system in the first place. While the expert's case

knowledge can be said to drive our techniques, without the initial knowledge

base acquired from the expert there is simply nowhere to go. Moreover, the

constraints of conservatism, both the general constraints that we as knowledge

engineers feel justified in imposing and the domain-specific constraints the expert

may be able to provide, limit the impact that the particular case knowledge we

have available to us can have on knowledge base during a refinement session, i.e.,

in a real sense the initial knowledge base itself is a major determining factor of

the direction in which refinement will proceed. The more substantial and reliable

the constraints, the less likely it becomes that biased case knowledge can lead us

astray. Finally, when a refinement system presents an expert with certain

refinement suggestions, not only is the expert the final judge of their validity,

this sort of judgment is one that presumably falls within the expert's competence

to make.

Pattern recognition, on the other hand, is not limited by such concerns. It

is a much more general set of mathematical techniques that seeks to do whatever

can in principle be done, given whatever knowledge is available. For

example, while certain pattern recognition techniques rely on what we call case

knowledge - which means knowing the important features of cases in general,

and having a data base of correctly classified cases - some of them can be used

even when no cases with known classification are available, e.g. clustering.

Moreover, while additional knowledge beyond case knowledge is welcome and

useful, e.g., knowledge of prior or conditional probabilities, pattern recognition

can get along without it, and as a practical point, the gathering and validation of

such knowledge is not an important part of the methodology of the field. And

it is not clear that the ability to make judgments concerning prior probabilities of

hypotheses in a domain is necessarily a part of expertise in a domain, e.g., while

it is natural to expect an expert in Rheumatology to be able to judge whether a

certain finding is consistent with or indicative of Arthritis, it is much less clear

that it falls within his expertise to judge the prior probability of Arthritis within

the patient or general population. Given that neither the expert nor the data

usually available can give us reliable estimates of prior and conditional

probabilities, pattern recognition often makes use of techniques that are entirely

driven by case knowledge, with the intent of constructing an optimal classifier

over the same set of cases. This is one reason why, for such techniques, it is

important that the optimized classifier be tested on a new set of cases, or

subjected to another form of verification that would tend to limit the influence

of bias in the set of training cases.

There is a difference in the nature of the optimization processes used in

pattern recognition and the optimization process in knowledge base refinement

In a typical pattern recognition scenario the optimization of the classifier (or set

of classifiers) tends to be a global affair in the following sense. At every point

in the process any and every coefficient is subject to "refinement"; furthermore,

the concept of a radicality measure on refinements has little or no point in

mathematical optimization procedures, since adjustment of coefficients is usually

the major type of refinement contemplated.

In knowledge base refinement, on the other hand, even ignoring for the

moment the assumption that the knowledge base truly represents useful expert

knowledge, the very fact that the items in the knowledge base are complex

objects, e.g. rules, the components of which can be altered in a wide variety of

ways, makes the notion of a radicality ordering on refinements an interesting and

rich idea. But when we add on the assumption that the given knowledge base

represents useful domain knowledge, it is quite clear that the desire to construct

an optimized version under the "constraints of conservatism," is not only a

worthwhile thing to do, but is essential to the success of the enterprise. While

there are many more refinements than adjusting weights possible in refining

knowledge bases, there are also more dangers and liabilities, and hence less

willingness to tamper with what is given.

Knowledge base refinement is a "local" optimization problem in the sense

that it is assumed that "large" portions of the knowledge base will be left

unchanged by the process. While it is true that we want to improve the

performance of the knowledge base as a whole, this does not mean that "anything

goes." Although we cannot know in advance which portions of the knowledge

base will escape refinement, unless of course we have domain-specific directives

from the expert on this score, we do insist that a "knowledge base" whose final

form is not expected to bear an overwhelming resemblance to the current form,

is not one that is .ready for refinement. To put the difference in the nature of

the optimization processes into a nutshell: in classical pattern recognition

techniques the emphasis is on the actual construction of an optimal classifier,

while in knowledge base refinement the emphasis is on correcting a small number

of flaws in a complex structure that is assumed to be largely correct

2.2. Relation to Automatic Knowledge Acquisition

In contrast to knowledge base refinement, which deals with modifications to

components of existing rules, knowledge base acquisition deals with actions

intended to bring entirely new rules into the knowledge base. Knowledge base

refinement "merges" into knowledge acquisition if we remove the assumption that

refinement does not increase or decrease the number of rules in the knowledge

Even within knowledge acquisition, however, one should draw a distinction

between what we may call "raw" knowledge acquisition and "contextual" knowledge

acquisition, i.e., between the process of acquiring new rules, presumably with the

help of an expert, when initially nothing about the domain is known, and the

process of acquiring new rules when one has already acquired a good number of

rules or other forms of knowledge concerning the domain, that is, when one is

acquiring new knowledge within the context of a non-trivial amount of current

knowledge. Knowledge base refinement is thus very closely related to contextual

knowledge acquisition, since the former is concerned with refinements to existing

knowledge in the context of an existing knowledge base. If we relax our

assumption that knowledge base refinement does not alter the number of rules, we

arrive at contextual knowledge acquisition, not raw knowledge acquisition. It

seems likely that the framework and techniques we find useful in knowledge base

refinement will have extensions that are useful for contextual knowledge

acquisition.

Relevant work in the field of contextual knowledge acquisition includes

Davis' approach to interactive contextual knowledge acquisition [Davis 79], and

the automated approach of Drastal and Kulikowski to contextual knowledge

acquisition, using structural and causal knowledge in conjunction with case

knowledge, and raw knowledge acquisition, using only case knowledge [Drastal and

Kulikowski 82]

2.3. Relation to Learning

If we agree that a system that improves its performance with respect to its

task domain can be said to have learned something, then there is an obvious

connection between learning and automatic knowledge base refinement, viz., if S

is the automatic refinement system and K is the object-level expert system, then

the combined system S+K is one that learns.

There is a deeper sense, however, in which the S+K system is a learning

system. While improved performance over time is a sign that a system is

capable of learning, it is, in my opinion, not a logically sufficient condition for

predicating that accolade of a system. Learning, in the deep sense, is the ability

of a system to successfully construct or modify representations of some aspect of

reality in order to achieve some purpose. Production rule expert systems, whether

we regard them as "direct" representations of aspects of the object domain, or as

representations of some aspects of an expert's representations of the object

domain, are clearly representations of some aspect of reality. An automatic

refinement system can be viewed as endowing an expert system with the capacity

to modify such representations in the light of empirical evidence in order to

achieve a better match with the reality they purport to represent. A consequent

improvement in performance may be viewed as evidence that the refinement

responsible for it in fact does make the knowledge base a better match to reality.

Another connection with the area of learning is apparent if we relax

assumption 4 (see page 17 above) which concerns the criterion of correctness for

knowledge base performance. Suppose that we adopt a criterion of correctness

which involves the idea that the way in which the expert system reaches its

conclusion must meet a given standard, e.g., it must take the most efficient path,

or its reasoning must match an expert's. We may further assume that the control

regime of the object knowledge base is accessible to and modifiable by to the

automatic refinement system, i.e., the latter has an understanding of how the

object expert system uses its knowledge base to reach conclusions. In attempting

to maximize performance under these assumptions, a refinement system would be

concerned not only with adjustments to the object knowledge base but also with

adjustments to the object level control structure3 . Much of the work in learning

has been concerned with exactly this question, viz. How can a problem solving

system learn to improve its problem solving abilities?

A final connection to research in learning is the idea of applying a

knowledge base refinement system to itself in order to refine its own rules and

associated knowledge for doing knowledge base refinement [Lenat 83]. Taking

the liberty of regarding ourselves as the experts from whom the knowledge has

been extracted, we may regard the concepts and heuristics we use in our

refinement system as itself an initial "knowledge engineering" knowledge base for

the domain of knowledge base refinement The problem now is to refine this

3Of course it is possible that the object level control structure is itself partially
embodied in its own production rule knowledge base.

knowledge base into a better one. The required data base of cases for this

application would be a collection of cases of the following schematic form:

Case Findings:

1) a knowledge base kb, and associated cases

2) the item x in kb that is being considered for refinement

3) the information available to the refinement system

concerning the behavior of x over the data base of cases

Conclusion of the knowledge engineering knowledge base:

The refinement operation recommended for x by the

refinement system

Expert Conclusion

The action prescribed for this rule by the

knowledge engineer/expert in this case.

Alternatively, the system could use the

results of its own testing as a feedback

mechanism, i.e., did the refinement lead

to a net gain in this case?

There are two problems with this idea. First, it is extremely doubtful that

there is anyone who is really qualified to play the role of the expert in compiling

this case knowledge; therefore we would be forced to rely on the purely empirical

feedback as mentioned above. Secondly, if the refinement system's heuristics and

associated knowledge are poor to begin with, then it seems rather unlikely that

they would suggest good experiments for modifying themselves. Assuming that

the knowledge engineering knowledge base is pretty good to begin with - this is

after all something we assume about the ordinary knowledge bases to be refined -

it is conceivable that this approach could yield some worthwhile results of a

limited nature but the value of these ends may not justify the cost of the means.

This is a possible avenue of future research.

Relevant work in learning includes Mitchell's work on concept and rule

learning [Mitchell 82, Mitchell 833, and recent work by Fu and Buchanan on the

learning of metarules for guiding the invocation of object level rules [Fu and

Buchanan] 84].

2.3.1. A Knowledge Intensive Learning Apprentice Approach to Knowledge

Base Refinement

In a recent paper Reid Smith et.al [Smith 85], discuss an approach to

knowledge base refinement for "learning apprentice" systems. In contrast to an

expert system, such a system is not expected to (initially at least) perform at

expert levels of competence, but is supposed to function as an "apprentice" to an

expert Such a system "interactive and gradually refines its knowledge through

experience gained during normal problem solving [Smith 85]."

While there are certain similarities between the approach discussed in [Smith

85] and the approach taken by SEEK2, there are also major differences. For

example, a key element in our approach is to generate refinements by looking for

patterns over potentially large sets of cases in a case data base; a key element of

a learning-apprentice approach is to generate refinements "on the fly" one case at

a time, as a problem arises. This fundamental difference makes it seem as

though the two approaches are really addressing two different problems.

Forgetting about this fundamental difference, however, there are features in

the approach to refinement generation described in [Smith 85] that we can

focus on as a basis of comparison. The learning-apprentice approach relies upon

the "justification structure" of a knowledge base rule r in order to generate

refinements for r. A justification structure "explicitly records the assumptions

and approximations involved in the derivation of a shallow rule [Smith 85],"

where a "shallow" rule is simply a rule in the expert system knowledge base.

Since such a structure encodes knowledge over and above the knowledge in the

expert system rules, we may call this approach a know/edge intensive approach.

The basic idea is that if we want to refine r in case c, we look at r's

justification structure to determine the "assumptions and approximations" that are

false or unjustified in the circumstances of c. At that point one looks at ways

of altering these implicated elements of the justification structure so that c will

be diagnosed correctly. This may be a matter of altering a default assumption

concerning a parameter value - in this case the rule r is itself left unchanged -

or it may be a change in a component in a "justifier belief" that will "propagate"

through the justification structure and entail a change in a component of r.

In terms of the nature of the refinement generation analysis carried out by

the knowledge intensive approach, it seems that the goal is to find refinements

that actually correct the currently misdiagnosed c. In terms of the dimensions

of refinement generator classification (see chapter 3) we say that the goal is to

generate exact refinements with respect to the currently misdiagnosed case. The

focus of SEEK2, on the other hand, is to generate refinements that "have a

chance" of correcting a certain subset of the current set of misdiagnosed cases,

we call such refinements plausible refinements (see chapter 3).

As is discussed in chapter 3 the informal notion of plausibility of a

refinement to some piece of knowledge involves a number of aspects, one of

which is the idea of the expected empirical utility of the refinement, i.e., how

great an improvement in the empirical adequacy of the knowledge base do we

expect to see by making a certain refinement? Another aspect of the informal

notion is raised by the question of the theoretical acceptability of the

refinement, i.e., does a refinement "make sense" in terms of the underlying

domain theory? In SEEK2 we attempt to increase the likelihood of generating

plausible refinements, in this sense, by adopting a conservative strategy. Also, at

various places throughout the work we indicate ways in which certain varieties of

domain-specific metaknowledge would contribute towards this aim.

It is clear that the approach taken in [Smith 85] focuses on the generation

of refinements that are plausible in the sense that they have theoretical

acceptability. Since the SEEK2 approach deals mainly with one aspect of the

informal notion of plausibility, and the knowledge-intensive approach deals mainly

with another aspect of this notion, there is no incompatibility in their

fundamental models of refinement Since the ideal goal of a refinement system

is to produce refinements that meet all the criteria associated with the informal

notion of plausibility, we would expect an "ideal" refinement system to

incorporate aspects of both approaches.

2.4. Relation to Discovery

To my mind, discovery is what happens when someone learns something that

is. up until that time, unknown (relative to an appropriate reference class of

intelligent agents). Therefore, having established a connection between automatic

refinement and learning, we have ipso facto established a connection with

discovery. While discovery of object level knowledge is not the primary goal of

an automatic refinement system, it seems likely that the more sophisticated the
»

refinement system is, the more likely it is to discover connections among object

level features that have hitherto escaped the attention of experts, and hence the

more likely it is that the system will make discoveries.

Relevant work done under the rubric of discovery includes Lenat's approach

to discovery and modification of heuristics [Lenat 83], and the work of Langley,

Bradshaw, and Simon concerning "discovery" of laws stating empirical regularities

in natural science domains [Langley 83].

CHAPTER 3

FORMAL ELEMENTS OF KNOWLEDGE BASE

REFINEMENT

In this chapter we will be concerned with formal issues that must be

addressed in the design and construction of both automatic refinement systems,

and the design and construction of meta-level systems for the specification of the

former.

The key questions may be posed as follows: What sort of thing is a

refinement?. How are they specified?, and What sorts of properties do they have?

We will see that, given a grammar for a rule representation language, refinements

may be viewed as transformational operators on the parse-trees accepted by the

grammar. This analysis will also lead to a canonical form for specifying generic

refinement operators. We then discuss some of the important well known

semantic properties of such operators, e.g., the notion of generalization and

specialization. After this, semantic properties that are crucial from the point of

view of knowledge base refinement are discussed and, as far as possible, defined,

i.e., the ideas of plausibility and radicality.

3.1. Formal Account of Refinement Operators

We can think of the rules in a knowledge base as formal objects whose

syntactic structure is totally defined by their parse-trees in a grammar for the

rule representation language we are employing. We may then think of

refinements as operators that map complete parse-trees into complete

parse-trees, similar to Chomsky's transformational operators [Chomsky 57].

3.1.1. The Rule Representation Language

To carry out this program we need to decide on a rule representation

language. In order to keep the discussion at the most theoretically useful level of

generality, our policy is to work with a canonical rule representation language,

rather than any particular expert system rule language. The grammar for this

language is given in appendix C.

There are two points to be made concerning our canonical language. First

of all, it has the expressive power of first-order logic. The second point is that

it contains what we call specialized surface forms. These are forms that,

logically speaking, do not increase the expressive power of the language, but that

represent convenient short-hand notations for certain useful constructs. Experience

has shown that specialized surface forms may not only be more readable than

their corresponding "deep" forms, but also sometimes have naturally

corresponding, useful, and well-understood refinement operations associated

with them. In such cases we prefer to incorporate the specialized form in our

rule representation, rather than insist on a translation that would necessitate

complicating the definition of the corresponding refinement operations.

To illustrate these remarks let us consider choice-components, a type of rule

component used in EXPERT. A choice-component has the following syntax:

[<Choice-number>: <choice-list>], where the choice-number is a positive

integer, and choice-list is list of finding/hypothesis components. A choice-

component is satisfied just in case at least <choice-number> of the components

in its choice-list are satisfied. As we will shall see, there are a number of

natural generic refinement operations associated with such components, e.g., one

can raise or lower the choice-number.

Another useful surface form allowed by our canonical language is the notion

of a range. Ranges are of two sorts: 1) numerical ranges associated with findings

that correspond to a quantity, and 2) confidence ranges for hypotheses. Thus, for

example, the form (Temp [0:50]) can be used to represent the proposition Mthe

temperature is between 0 and 50." The form (Battery-i$-Dead [.5:1]) can be

used to represent the proposition "the hypothesis that the battery is dead is

supported to a degree between .5 and 1." Again there are natural generic

refinement operators associated with such components, e.g., raise or lower the

value of one of the range boundaries.

3.1-2. Generic Refinement Operators

Figure 3-0 shows how the refinement operation of altering a choice-number

can be viewed as a transformational rule on parse-trees.

An important distinction between refinement operators has to do with the

way in which the parse-tree transformation defining the refinement is specified.

If the transformation is specified without reference to any nodes in the parse tree

containing terminal symbols, then the operator is generic, otherwise it is

non-generic. (Note that symbols for logical operators and punctuation that are

special symbols required by the language, e.g., '&', f:\ %[\ etc., are not terminal

symbols in the sense we have in mind here.)

To clarify this definition we define a complete rule-context as a sequence

of non-terminal, and possibly terminals symbols, i.e., symbols actually belonging to

the canonical language, such that there is a parse-tree (possibly incomplete) with

these symbols as its tip or leaf nodes. See figure 3-1 for an example of a

complete rule-context and its corresponding parse-tree. Now a rule-context in

general, is either a complete rule-context, or a sequence of symbols that can be

obtained from a complete rule-context by removal of symbols corresponding to

certain tip nodes in the parse-tree for the complete rule-context See figure 3-1

for an example.

Thus instead of viewing refinement operators as transformations on parse-

Figure 3-1: Refinements As Transformational Operators

Rule

[2: P [.9:1], Q, R, D [0:69], S] & (F a) -> C [.4]

Parse Tree & Transformation

cPrem»ses>

<Component> <Connectrve>

&

Choi^ < c n o i

<Choice-number> : <Choice-list>
I * •

2 :

<Conclusion> <Confidence-Factor>

.4

lusion

<Premls

<ComponentxConnective><Premises>

<Predicate-Form> A A

I

<Component> <Connective>

<Choice-number> : <Choice-list>
I •

1 :

<Conclusion> <Confidence-Factoi>

.4

susion>

<Premis

<ComponentxConnective><Premises>

<Predicate-Form> A A

Figure 3-2: Rule-Contexts

cPremises>

Rules

<Condusion> <Confidence-Factor>

<Component> <Connective>

&

[<Choice-number>": <Choice-list>

<Premis

<Component><Connective><Premises>

I I
A A

Corresponding Complete-Rule-Context

[<Choice-number>: <Choice-list>] & <Component> -> <ConcIusion><Confidence-factor>

A Rule-Context Derived From The Above

[<Choice-number>: <Choice-list>) ... -> <Conclusion><Confidence-factor>

trees we may view them as transformations on rule-contexts. To specify such a

transformation it is usually sufficient to exhibit the initial and resulting rule

contexts, together with a set of conditions that define the way in which the

elements in the two contexts are related as a result of the transformation (see

appendix B). Now we say that a refinement is generic if the initial and

resulting rule-contexts contain no terminal symbols of the canonical language,

otherwise it is non-generic.

In general we work only with generic refinement operators since their

conditions of applicability in no depend upon the literal content of a specific

knowledge base. However some non-generic refinements involve symbols of such

wide use that they could, for all intents and purposes, be viewed as being generic.

For example, consider the refinement operation:

.. . O <term> <term>)... —• . • . (> <term> <terin>) . . .

This transformation is specified using the terminal symbols "=" and ">," but

it is clearly one that has potential applicability to many knowledge bases.

3.1.3. Primitive vs Complex Refinement Operations

In order to complete our fonnalization of the notion of refinement it is

necessary to actually designate a set of primitive refinement operators for our

language, such that for every possible rule the set of all possible refinements to

that rule can be generated by the sequential application of primitive refinement

operators. I have specified such a set of primitive operations only for a subset

of the canonical language (see appendix B), since, at this time, our research deals

only with a subset of this language.

The primitive refinement operations we will be using have some nice

properties that we will discuss later. For now I want to point out that these

operations appear to have a truly "primitive11 or "atomic" nature, in the sense that

they all involve making a single modification to a single rule component More

complex changes to a rule would involve either application of a composition of

two or more operators in tandem, or, equivalently, the sequential application of

two or more operators. A particular refinement operation 7 will be said to be

an nth-order refinement operation, for some n £ l , where n is the number of

primitive operators used in 7. A first-order refinement system, such as SEEK2,

will suggest and attempt refinements operations all of which involve the

application of a single primitive operator.

3.1.4. Operators vs Operations

For the purposes of the discussion below it is important to draw a

distinction between refinement operators and refinement operations. An operator

is a general abstract mathematical object which may or may not have parameters.

A parameter is a variable that must be given a value before the operator can

actually be applied to an object An operation is an instance of the application

of an operator. For example the operator that raises the value of a numerical

boundary is parameterized by a real variable which is intended to be assigned the

value of the increment to the original value, or simply the new value.

Application of this operator to a particular rule component with a specific

increment is an example of an operation.

All the semantic properties we shall discuss are, in the first instance,

properties of refinement operations. However, when a refinement operator is

such that every one of its instances possesses a certain property, then we say that

the operator also possesses the property. In section 3.2 we deal with properties

that do apply to operators in this sense; in section 3.3 we deal with properties

that can only be predicated of operations.

3.2. Semantic Properties of Refinement Operators

An important semantic trichotomy exists among refinement operations: any

refinement operation must be either a generalization, specialization, or neither

of the two.

Intuitively, a generalization refinement to a rule is one that makes it "easier"

for that rule's premises to be satisfied in any given case, or one that makes the

rule reach a "stronger" conclusion on the basis of exactly the same premises. In

precise terms, for our purposes a generalization refinement operator is one whose

application always results in a rule being transformed into one of its

generalizations, where in order for a rule r' to be a generalization of another r

it must at least be the case that i) it is logically impossible for the premises of r

to be satisfied without the premises of r / being satisfied, and ii) the confidence

factor for r' is equal to or greater than the confidence factor of r.

This definition implies that if two rules are completely identical except for

their confidence factors then the one with the greater confidence factor is a

generalization of the other. This accords with the idea that a refinement that

keeps a rule's premises constant but allows it to reach a stronger conclusion in

the logical sense is to be considered a generalization. This implication is

warranted, of course, only if having a higher confidence factor is indeed

consistently interpreted as meaning that the conclusion is more strongly warranted;

but that is one of our assumptions.

Intuitively, a specialization refinement to a rule is one that makes it

"harder" for that rule's premises to be satisfied in any given case, or one that

makes the rule reach a "weaker" conclusion on the basis of exactly the same

premises. In precise terms, for our purposes a specialization refinement operator

is one that always transforms a rule into one of its specializations, where in

order for a rule r' to be a specialization of another r it must at least be the

case that i) it is logically impossible for r' to be satisfied without r being

satisfied, and ii) the confidence factor for r' is equal to or less than the

confidence factor of r.

It is easy to give examples of refinement operations that are neither

generalizations nor specializations. For example, suppose a rule has a component

of the following form:

...(Predicate...<constant >...)... —*...(Predicate...<constant >...).
1 2

An instance of this "constant switching'1 operation would be changing (F a)

to (F b). There are no interesting logical relationships between these two forms

per se, so the operator is neither a generalization nor a specialization operator.

Yet one can imagine instances, that can be specified in domain-independent

fashion, in which such a refinement would be reasonable. For example we may

mistakenly start out believing that a's possession of the property F is important in

inferring some hypothesis that has observable consequences O. By examination of

cases we find, however, that there are many cases in which a is observed to have

F but O is not observed. On the other hand, in every case that O is observed, b

is also observed to have F. In the situation described we have case evidence that

(F a) should be changed to (F b), and it would not be unreasonable for a

refinement system to offer this refinement suggestion if it led to an increase in

empirical adequacy. Moreover, in light of the description I have just given, it is

plausible to assert that a general heuristic concerning the conditions under which

this refinement should be attempted can be formally specified.

Our work to date has focused on primitive refinements that are either

generalizations and specializations, and complex refinements that can be formed by

composition of these primitives. Focusing on these two fundamental modes of

refinement has been fruitful, because we have an intuitive general understanding

62

of what sorts of "faults" in rule or component behavior call for the application

of a generalization or specialization refinement, see chapters 6, and 4. However,

as the second example above indicates, there is good reason to hope that detailed

investigations into the semantics of certain operations in the third category may

yield useful results.

3.3. Semantic Properties of Refinement Operations

Informally speaking, an important semantic property of any contemplated

refinement operation is whether or not it is a "good" refinement with respect to

a given knowledge base and data base of cases. Obviously one can define a

"good" refinement as one that corrects some error in the knowledge base, or that

corrects currently misdiagnosed cases; but this is a useless definition from an

operational point of view. For a semantic property of refinement operators to be

useful in the actual generation of refinements, it must be one that a) can be

evaluated by the refinement system itself, and b) does not involve simply testing

the refinement for its effect on the known cases.

In this section we will formulate a precise, operationally significant sense in

which a refinement may be said to have a certain degree of plausibility.

3.3.1. Aspects of the Informal Notion of Plausibility

There are several aspects to the "common sense" notion of plausibility.

First, there is the degree to which the refinement is theoretically acceptable

given our (i.e., the experts') current understanding of the domain. This involves

the issue of the meaning or semantic content of the rules in the knowledge base

insofar as they are representations of laws or facts in the object domain. To

determine whether, and to what degree, a contemplated refinement is plausible, in

this sense, generally requires a much richer representation of domain laws.

processes, etc. than is contained in a knowledge base. For this reason we do

not deal with this sense of plausibility in this work .

Secondly, there is the degree to which the refinement is likely to improve

the empirical adequacy of the knowledge base. In ordinary and scientific usage,

the fact that a refinement to a theory corrects or is believed to have a chance of

correcting some currently incorrect predictions of the theory, is in itself taken as

evidence of the plausibility of the refinement. Indeed, it can happen that a

"refinement" that can explain or predict empirically verifiable results which would

otherwise remain unexplained, will tend to be adopted no matter how a priori

implausible it seems on the basis of current theory, e.g., Einstein's special theory

of relativity. It is this aspect of plausibility, what we may call the expected

empirical utility of a refinement, that we are most concerned with in this work,

4The approach to refinement discussed in [Smith 85] would seem to provide a
way of capturing this aspect of plausibility.

and that we will be defining below.

There is, however, a third aspect to the common sense idea of plausibility

that must concern us. This is the degree to which a refinement represents a

departure from what is currently believed to be an acceptable theory, or law.

This is what we have termed the radicality of a refinement We have already

seen that the operational goal of knowledge base refinement (for expert system

knowledge bases) is to improve the empirical adequacy of a knowledge base under

the constraints of conservatism, see chapter 1. One of the constraints of

conservatism is to prefer less radical refinements to more radical refinements,

other things being equal. How general intuitions as well as domain-specific

metaknowledge concerning radicality can be captured will be discussed below.

3.3.2. Expected Empirical Utility of A Refinement Operation

The plausibility of a refinement is directly proportional to its expected

empirical utility, where the latter is the number of currently misdiagnosed cases

that the refinement has a chance of correcting. In order to formulate an

operational notion of plausibility, we must therefore understand exactly what is

meant by the idea of a refinement's "having a chance" of correcting a case.

3.3.2.1. On-Target Refinement Operations: Intuitive Picture

Given any knowledge base kb, a case m currently misdiagnosed by kb, and

any refinement 7 to one or more rules in kb, the incorporation of 7 in kb will

either cause kb to correct its diagnosis for m or not Talk of 7's having a

chance of correcting m is meaningful, therefore, only when one brings another

term into the relation, viz., what is known (by the relevant agent or system)

concerning the state of affairs involving the misdiagnosis. In other words, the

question 'Does 7 have a chance of correcting m?' is meaningful only when posed

in relation to a body of knowledge (or beliefs) concerning the relevant r-

situation, and since different agents or systems may possess distinct knowledge

concerning the same r-situation, the answer to the question may vary from

system to system.

Let C be the data base of cases. We may think of <kb,C> as a "combined

system" that can be in any one of a number of completely specified states called

microstates. A formal account of these will be given below. For the time

being it suffices to think of a microstate as containing everything there is to

know about the behavior of every rule and rule-component in kb vis-a-vis every

case in C.

The knowledge that a system has concerning an r-situation <R,M> - where

R contains those rules in the knowledge base that are suspected of causing the

misdiagnosed cases in M - will be called the system's View of the r-situation.

Such a body of knowledge will be thought of as specifying a macrostate of the

combined system <kb,O. Again these will be defined formally below. For the

time being it suffices to think of a macrostate as being a partial specification

of the actual microstate of <kb,C>. In other words, in general, being in a

macrostate is consistent with being in any one of a number of accessible

microstates.

Given a view V of <R,M>, let us designate the set of microstates accessible

relative to V as M(V). Relative to V, a refinement 7 to R will be said to be

On-tar get with respect to mcasescM if and only if there is at least one

microstate aSM(V) such that, if o is the actual microstate of the <kb,C> system ,

the refinement 7 corrects every case in meases. Thus, for 7 to have a chance of

correcting a case m, is for 7 to be On-Target with respect to m (relative to the

system's view).

A simple example will help in drawing an intuitive picture of these notions.

The reader should refer to figure 3-3 for this example. Let kb and R consist of

a single rule r, as illustrated (we ignore confidence factors in this example). Let

C and M consist of two (misdiagnosed) cases, 1 and 2, whose correct conclusion

DX is also the conclusion of r. In addition to this information, assume that the

system's view of this r-situation contains only the information that the first

component of r is unsatisfied in both cases. The accessible microstates for

<kb,C> are as diagramed in figure 3-3. Note that while there is a microstate,

number 4, in which deletion of component A from r will result in no gain, there

is also a microstate, number 1, in which this refinement will correct both cases.

Intuitively, from the system's point of view, this refinement has a chance of

correcting these cases because, relative to the system's view, microstate 1 is

accessible (can obtain). We say that deletion of component A from r is on-target

with respect to these cases. (Note that deletion of component B from r is not

on-target for either case, and note that the system can know this on the basis of

the information in its view.)

A refinement 7 is said to be exact with respect to mcasescM if every

microstate that is accessible relative to V is one in which application of 7 causes

every case in meases to be diagnosed correctly by the knowledge base. Given an

r-situation <R,M> and a view V, the set of refinements that are exact is a subset

of the set of refinements that are On-targeL This work is concerned only with

the generation of On-Target refinements.

3.3.3. On-Target Refinement Operations: Formal Explication

This section shows how the intuitive picture drawn in the preceding section

can be justified by means of precise mathematical constructions. This section may

be skipped without loss of continuity.

3.3.3.1. R-Phase Space and Microstates

First we need to define the notion of a microstate of the system <kb,O.

We shall introduce a mathematical construct called r-phase space. A microstate

will be any point in this space.

A point in the r-phase space corresponding to the microstate of the system

Figure 3-3: The On-Target Relation

View V or Macrostate
Correct Conclusion in

•/ \ _ * i ! cases! & 2 is DX v~ * ^ „.
Component A of r is unsatisfied
v : in cases 1& 2 ;

Rule r

A & B - • DX

Refinement Y
Delete Component A

State

Microstates Accessible to This Macrostate

Case

1

A

•§
i,

11

A

F

F

T

F

A

F

F

F

T

A

F

F

£

F

F

<kb,C> is determined by specifying the value of every feature for every case in

the data base of cases. By a feature we mean the "real world" fact or quantity

that determines the value of some finding component in the knowledge base. For

example, if KB contains a finding component of the form temperature of

patient in range 700... 103, then the corresponding feature will be a quantity

corresponding to the given patient's temperature. True/false finding components,

such as, Patient has swoiien hands, correspond to features that take on the

value 1, if the feature obtains, a value of 0 if the feature is known not to

obtain, and some designated third value if it is not known whether the feature

obtains or not. Formally, if there are m features 0, 1 £i £m, and n cases,
i

then the dimensionality of r-phase space is (m+l)xn, where the increment in the

feature count represents the feature corresponding to the stored expert's

conclusion of a case k (what we call the PDX(k) in RM), and will be designated

<t>. A point in r-phase space (a microstate) will then have the following form:

1 J n

<*, . . . ,0 ,...,0 >
0 i m

where the subscript is an index on the features, and the superscript is

an index on the cases.

For later purposes it will be useful to define the notion of a feature-vector

corresponding to a case ([Duda and Hart 73]). Given a microstate

specification a, as above, and a case with index k, then the feature-vector

corresponding to this case is given by the following "sub-vector" of a:

k k

1 m

and will be denoted by the notation #(a,k).

Note that this account may be generalized to deal with knowledge bases that

employ the full power of the predicate calculus by associating a distinct feature

to every object in the domain of discourse when necessary. For example, if the

knowledge base contains a finding component of the form Patient x has

temperature in range 100.,,103, then for every "patient object" in the domain

of discourse there is a feature that corresponds to the temperature of that patient.

In general we may presume that the domain of discourse is finite. However,

even if the domain of discourse is infinite, the current approach will still be

applicable.

3.3.3.2. Specifying Macrostates: Intuitive Picture

A macrostate encapsulates a certain body of knowledge concerning an r-

situation. We may think of a macrostate involving a particular r-situation as being

expressed by the values of certain functions as applied to the given r-situation;

we will call these r-functions. In other words, the r-functions in question are

generally applicable to any r-situation that might be encountered by the

refinement system, and the knowledge that the system will gather concerning any

r-situation can be no greater than the knowledge expressed by the application of

these r-functions to the r-situation. While a single system's knowledge-gathering

capabilities, and hence its associated set of r-functions, are fixed, one system's

knowledge-gathering capacity and depth of analysis may be greater than another's.

This difference would be mirrored by the relative power embodied in the two

differing sets of r-functions associated with the two agents.

In order to say precisely what the content of any possible r-function can

be, yet still maintain the requisite degree of generality and flexibility, one must

specify certain primitive r-functions and primitive operations for combining

the former, i.e., one must specify a metalanguage for the construction of such

functions. An r-function will be any function that can be constructed from the

primitive r-functions by means of the primitive operations. Primitive operations

are taken from logic, simple set theoretic operations, arithmetic, and certain

algorithmic constructs. The primitive r-functions used in RM are described in

appendix A; their use is demonstrated throughout chapter 4, and they are

discussed in detail in chapter 6. This discussion is not repeated here, for present

purposes it suffices to assume that a sufficiently rich metalanguage for r-function

construction is a given.

Let * be the set of r-functions associated with a refinement system. By the

notation $(<R,M>) we designate the act of applying every <*>e $ to every possible

argument for 0 in the r-situation <R,M>, as well as the collection of resulting

values. We call this collection of values the refinement system's view of the r-

situation, and we call * the viewfinder.

3.3.3.3. Microstates Accessible to A Macrostate

Let V=4>(<R,M>) be a refinement system's view of a particular r-situation.

V may contain objects of many different sorts, e.g., numbers, sets of objects,

sequences, etc. However for the purposes of analysis it is most useful to view

each v e V as a proposition that expresses the information yielded by the

corresponding application of the r-function in question. For example, if f is an

r-function on pairs consisting of rules and sets of cases that returns the number

of those cases in which that rule is satisfied, then ordinarily f returns a number

as its value. But we view it as returning a proposition P of the form, "The

number of cases in C in which r is satisfied is n." V as a whole, therefore, may

be regarded as a collection of propositions concerning the objects in the

knowledge base and the data base of cases.

Similar remarks apply to microstates: the elements of a microstate can be

regarded as representing propositions concerning the values of features in cases

(including the expert's conclusion).

Given a v e V and a microstate a, there are two possibilities of interest: the

values of the features in a are consistent with the truth of v or they are not

For example if v is the proposition that a (non-numerical) finding component c

is unsatisfied in case m, then microstates in which the feature corresponding to

the value of this finding in case m has the value 1 (true) are inconsistent with

the truth of v; all other microstates are consistent with the truth of v.

A microstate o is accessible relative to a view V if and only if o is

consistent with the truth of every veV, otherwise a is inaccessible relative to

V.

Before defining the On-target relation it will be useful to discuss some

preliminaries. We define the notion of an end point-vector as follows. Assume

the set of endpoints, DX, of the domain knowledge base is enumerated in some

fixed order, i.e., dx ,...dx . Then an endpoint-vector is a vector of confidence
1 n

factors of length n. Intuitively, the ith entry in an endpoint-vector corresponding

to a case m is the confidence accorded to the dx by the knowledge base in case

m. We may therefore regard a knowledge base kb as defining a partial function

from feature-vectors to end point-vectors*, let % be a feature-vector, and let ? be

an endpoint-vector; then we say that kb(<£)=t if and only if running kb over the

data represented by % results in final hypothesis confidence factors for the

endpoints identical to the values in t.

Let V be a view of a given r-situation <R,M>, where RcKB. Let M(V)

denote the set of microstates accessible relative to V, and let a be a variable over

the members of M(V). Let 7 be a refinement operation involving (only) rules in

R, and let KB' be the knowledge base that results after application of 7 to

R. Let meM, and let $(a,m) be the feature-vector corresponding to case m in

microstate a. Then 7 is On-target with respect to m if and only if there is a

such that the endpoint-vector t=KB'$(a,m)) accords the highest

confidence to PDX(m); if 7 is not on-target with respect to m then we say that

it is off-target with respect to m. A refinement 7 is On-target with respect to

a set of mcasescM if and only if there is a o*u(V) such that for every

me meases the endpoint-vector ?=KB'$(cMn)) accords the highest confidence to

PDX(m). Note that in the preceding definition the universal quantifier falls

inside the scope of the existential quantifier, i.e., in interpreting the definition

one should imagine that we first fix o to refer to a particular microstate and

then we would show that 7 will correct each m given its feature-vector ^(a,m) in

a.

In words, we say the relation On-target(7,V,M) is true if and only if there

is a microstate o accessible to V relative to which application of 7 to kb will

correct every case in M.

3.4. Radicaiity and Plausibility

The basic task of a refinement system is to offer refinements that are

known to improve empirical adequacy and that are likely to meet with expert

approval. Since the expert has already assented to the rules in the knowledge

base, we assume, other things being equal, that he will prefer refinements that

tend to preserve the knowledge base in its current form. The radicaiity of a

refinement operation is a property that tells us how great a departure a refined

version of a rule (or a kb) is from the initial version.

3-4.1. Radicality Metrics

As we mentioned in chapter 1 a radicality metric on the space of all refined

versions of a knowledge base kb can be formally defined. The problem is that

many different radicality metrics may be defined, and there is no one of these

that is the "correct" one. Moreover, it is not clear what sort of information,

even domain-specific information, one can use to make a selection of radicality

metric in a particular instance.

On the positive side, there are two points to be made concerning the

possibility of arriving at a useful version of such a metric. First, one can specify

several natural "axioms" that it would seem reasonable for any such metric to

obey, e.g., if the radicality of 7=0, then the radicality of 7~1=0, where 7 1 is the

inverse operation to 7. Secondly, there is a function that obeys these axioms and

that can always be used as a metric, viz., the number of primitive operators in 7

can be taken as a measure of the radicality of 7. Note that this metric is of no

use in doing pure first-order refinement, since it will assign every first-order

refinement a radicality of 1.

In any event, if a radicality metric, Rad(7> is given, then one may use it

together with On-targct to form a measure of plausibility as follows. Suppose

that 7 is on-target with respect to the cases u. Then the plausibility of 7 is

defined as the ratio u/Rad<7). Intuitively this number may be interpreted as the

the estimated number of cases gained per unit change.

3,4.2. Radicality Operationalized for First-Order Refinement

The notion of a radicality metric is not only a theoretical ideal, it also has

limited practical value in knowledge base refinement. The fact is that if there is

some reason to believe that a refinement 7 has a chance of correcting a large

number of cases, then 7 should be tested and, if it does indeed have a dramatic

impact on the empirical adequacy of the knowledge base, the system should, at

the very least, report this information. This seems to be a desirable mode of

operation regardless of the radicality of 7.

Depending on the strategic configuration of the refinement system, radicality

information may be useful at various "decision points" or perhaps not at all A

system that does not tentatively incorporate refinements, what we call a

ground-zero system (see chapter 5), may have no use for such information, since

it never has to make a decision concerning incorporation of refinements. A

system that does tentatively incorporate refinements, what we call a generational

system (see chapter 5), e.g. SEEK2, can use radicality information 'to decide

among competing refinements that are known to yield an improvement in

empirical adequacy. (In SEEK2 radicality comes into play only when competing

refinements yield an equal net gain in performance.) We now describe a general

scheme for operationalizing radicality for first-order systems.

Given a set of primitive generic refinement operations for (a subset of) our

canonical language, we specify a partial ordering on these operators

corresponding to our (qualitative) intuitions concerning the relation operator x is

more radical than operator y. Such an ordering - in fact, the one used in

SEEK2 - is exhibited in figure 3-3. If x and y are two refinement operators,

then if a path can be traced down from x to y then y is more radical than x:

if the reverse is true then x is more radical than y; if neither is true then x and

y are noncomparable according to this relation. For us noncomparability means

that, other things being equal, there is no reason to prefer one operator over the

other in terms of radicality, and we say that the operators are at the same level

of radicality.

Note that the partial ordering is an ordering on operators. Thus, from the

point of view of this ordering alone there is nothing to distinguish two distinct

applications of a confidence raising operator, even if one application involves a

greater increase than another. Therefore, for operators that do involve such

numerical parameters, a quantitative radicality ordering is imposed on the

corresponding operations according to the size of the parameter. For example, a

confidence increase of .3 is more radical than a confidence increase of .2.

As mentioned above, in SEEK2 the radicality orderings just described come

into play only when two or more refinement operations have been found to yield

an equal net gain in performance. This is the simplest policy, others can be

implemented using the same orderings. Thus, one might insist that as long as any

combination of operations from a qualitatively lower radicality level in the

ordering can be found that yields an equal improvement to even one operation at

Figure S-4: A Partial Radicality Ordering

alter
numerical or
confidence

range

alter
choice
number

delete or add
component

or
subcomponent

alter
rule

confidence
factor

a qualitatively higher level, then the former should be preferred to the latter.

For example, suppose that within a given cycle of refinement generation and

testing it is found that deletion of component c from rule r yields a net gain of

10 cases (and suppose this is the greatest net gain over all refinements tested).

Suppose it has also been found that raising a numerical boundary in component c

of rule r , yields a gain of 5 cases, and that raising a numerical boundary in

component c of rule r , yields a gain of 5 cases. Note that we cannot assume

that the joint effect of these two operations will be a net gain of 10 cases. Let

us suppose that the two operations are now tested in tandem to determine what

there joint effect is, and suppose the resulting gain is 10 cases. Then according

to the policy we are describing, the system should select these two changes for

tentative incorporation in the current cycle, rather than the qualitatively more

radical deletion operation.

There are other factors that go into a judgment concerning a proposed

refinement's radically that are not taken account of in this scheme. Some of

these factors can be quite sophisticated and difficult to "quantify," such as the

desire of avoiding refining components that have survived a long "evolutionary

history" intact Others are easily incorporated, but it is difficult to give any a

priori (domain-independent) justification on whether and how they are to be

employed, e.g., a preference for refining endpoint rules over intermediate rules, or

vice versa. At any rate, the incorporation of such factors is a subject for future

research.

CHAPTER 4

HEURISTIC REFINEMENT GENERATION

In chapter 3 we showed that the notion of a refinement's having a certain

degree of plausibility can be formalized. The basic concept is that of a

refinement being On-Target with respect to set of misdiagnosed cases, relative, of

course, to a given view.

A goal of this chapter is to show that this notion is operationally significant,

that is, a refinement system can generate On-Target refinements in an efficient

manner, without resorting to brute force methods. The paradigm for refinement

generation presented in this chapter is called heuristic refinement generation.

since it makes use of rules or heuristics for generating on-target refinements.

The term "heuristic" is also applicable because the approach is not intended to

generate every on-target refinement that exists with respect to a given r-situation

and view. This is a paradigm that was first developed in the SEEK system

[Politakis 82, Politakis and Weiss 84].

This chapter should also be viewed as providing the necessary background

information and motivation for our future discussion of the metalinguistic

approach to refinement system construction (see chapter 6). The refinement

concepts and heuristics presented here encapsulate our current state of knowledge

concerning heuristic refinement generation. While a good number of the concepts

and heuristics to be presented have been discussed elsewhere [Politakis

82, Politakis and Weiss 84, Ginsberg, Weiss, and Politakis 853, it is only by

reviewing the current situation, and describing possible alternatives and extensions

to it that we will have a better understanding of the sorts of capabilities that

should be provided in a refinement metalanguage. Moreover, in this chapter all

refinement concepts will actually be defined using the metalanguage RM. This

exposition will serve to illustrate both the power and desirability of the

metalinguistic primitives selected, and will demonstrate the systemization of

metaknowledge that can be achieved by applying a metalinguistic approach.

After a discussion of the general heuristic refinement generation paradigm,

we will consider the issue of the relative merits and costs of doing first-order vs.

higher-order refinement based upon a heuristic approach. This will lead us to

the notion of failure-driven higher-order refinement, and a proposal for a

general architecture for heuristic refinement generation that can accommodate the

former. The bulk of this chapter is taken up with the description and analysis of

the heuristic generation of first-order on-target refinements.

4.1. Frequently Used RM Primitives

In describing refinement concepts and heuristics in this chapter we will mai

extensive use of the RM metalanguage. An annotated list of the most importa

RM primitives is given in appendix A. However a list of the more frequent

used RM primitives, and some useful defined notions, is provided below.

Variables

case * a variable ranging over cases in the data base

rule * a variable ranging over rules in the model

hypothesis = a variable ranging over hypotheses

dx * a variable ranging over endpoints (note than any

dx is a hypothesis by definition)

mease = a variable over the set of misdiagnosed cases.

Functions

CDX(case) * knowledge base's highest confidence conclusion in case

CDX-2(case) = the knowledge base's second highest conclusion

in case

PDX(case) - expert's conclusion in case

RuIeCF(rule) = confidence-factor of rule

ModelCF(hypothesis,case) • the confidence accorded to hypothesis by

the knowledge base in case

Rules-for(hypothesis) * the set of rules with hypothesis as their

conclusion

Satisfied(item, case) * T iff item is satisfied in case

s F iff item unsatisfied or unknown in case

where item can be a rule, a rule component,

or a rule subcomponent.

4.2. The Paradigm

Suppose our view V of an r-situation <R,M> consists of the following

information: i) r is unsatisfied in mcasescM, ii) for each mease € meases r

concludes PDX(mcase) with a confidence factor high enough to correct the case,

and iii) component c of r is unsatisfied in every mease € meases. In terms of our

semantic definition, it is clear that deletion of component c from r is on-target

with respect to meases: there is an accessible microstate a - namely, the one in

which every other component in r is satisfied in each mease e M - such that this

refinement corrects these cases relative to their feature-vectors in a.

This bit of reasoning can be encapsulated in a general "rule of thumb," in a

manner that is exactly analogous to typical expert system rules in ordinary

applications. Since our goal is to generate plausible refinements, the rule is most

useful in the following form:

If in the current view V,

there is a rule r with component c is such that:

i) r is unsatisfied in mcasesCM,

ii) for each measeemeases r concludes PDX(mcase)

with a confidence factor high enough to correct the case,

iii) component c of r is unsatisfied in every mease € meases.

Then

On-Target(delete c from r,V,meases)

The conclusion of this rule is to be interpreted as making the assertion that

deletion of component c from rule r is on-target with respect to meases. Note

that since we have an independent semantic characterization of what it is for a

refinement operation to be on-target, we have a criterion by which to judge the

truth or falsity of such rules as general principles. From our discussion it is

clear that the rule is an example of a true rule.

What makes the rule useful is not only the fact that it is true, but that it is

in a form which allows us to see how simple deductive mechanisms can be

applied to it so as to generate specific plausible refinement suggestions for a

given r-situation <R,M>. Thus imagine that the viewfinder contains the following

r-function:

F(cr,M) »

the set of cases m e M such that

rule r is unsatisfied in the misdiagnosed case m &

the conclusion of r * PDX(m) &

the confidence factor of r ^ the hypothesis confidence

of CDX(kb,m) in m &

component c of r is unsatisfied in m

(Note: the notation c designates a variable over the components c

of rule r)

In terms of this r-function the above rule may be rewritten as:

If in the current view V,

F(c ,M) * $ * emptyset

Then

On-target(delete cr,V,$)

In gathering the view of <R,M> the value of F(cr,M) will be computed for

every component of every reR. If for a particular cr the antecedent of the

refinement heuristic is satisfied, then the conclusion is drawn. While a conclusion

so drawn tells us something that is true, it also may be thought of as offering a

suggestion, viz., deletion of cr will aid in accomplishing the goal of correcting the

cases in M.

Generalizing from our example, we see a familiar paradigm taking shape.

Heuristic refinement generation is exactly analogous to the familiar rule-based

framework used in ordinary expert systems. A heuristic refinement generator may

be seen as consisting of a v/ewfinder, and a knowledge-base of heuristics

similar to the one we have shown in figure 4-1. In order to avoid confusion, we

will call a refinement generator's heuristic knowledge base its r-know/edge. The

viewfinder is a mechanism for ascertaining the presence/absence or values of

useful features concerning r-situations. This is similar to an ordinary expert

system in which there is a fixed set of features that can characterize any case in

the domain; the values of these features may be ascertained by the expert system

itself or by interrogation of a human observer. R-knowledge is a set of

principles or rules of thumb that relate the presence of certain complex patterns

of features in a view of an r-situation to the existence of plausible refinements

for the correction of the misdiagnosed cases in that r-situation. Again this is

similar to an ordinary expert system in which the knowledge base contains rules

that relate the presence of complex patterns of features to classification endpoints

(i.e., diagnoses) or to suggested courses of action (i.e., treatments).

4.3. First-Order vs. Higher-Order Refinement

As conceived in this work, heuristic refinement generation is a process

driven by empirical case analysis: given an r-situation, <R,M>, a refinement

generator will gather certain kinds of information by examining the behavior of

the rules in R with respect to the misdiagnosed cases in M. This is the process

that we have dubbed as gathering a view V of the r-situation, or determining

the macrostate of the r-situation. What enables a refinement system to

construct a V for an r-situation is its viewfinder *. * is a collection of r-

functions that, for a given refinement system, is fixed. Case analysis is the

application of the r-functions in • to the objects in an r-situation in order to

construct a view. Once the view is obtained, r-knowledge is invoked to generate

specific refinement suggestions.

A first-order refinement system is one that limits its refinement suggestions

to operations that involve the application of a single primitive refinement

operator (see chapter 3). Intuitively, the viewfinder of such a system can be

expected to contain r-functions that represent certain patterns of features that are

relevant to the application of a single primitive refinement operator. Since

primitive refinement operators apply to a single rule component, the r-functions

in the viewfinder will be functions of single rules and single rule-components.

Figure 4-2 shows a simple illustration of the point If we are interested in

generating a first-order generalization refinement to a rule r, we will search for

Figure 4-1: Heuristic Generation of On-Target Refinements

Refinement
Heuristics

Generation
Mechanism

the following sort of pattern in the currently misdiagnosed cases: r's conclusion is

correct, r's confidence is greater than the confidence of the current incorrect

conclusion, etc. This pattern represents a complex property that can be attributed

to r, e.g. in SEEK2 we talk about Gen(r) = the number of misdiagnosed cases in

which a pattern similar to that just indicated is satisfied by r.

Now suppose that we were interested in generating second-order on-target

refinements. Intuitively, the viewfinder of a system capable of generating on-

target second-order refinements can be expected to contain r-functions that

represent certain patterns of features that are relevant to the joint application of

pairs of primitive refinement operators. Establishing the presence of such

patterns in a case will require the joint examination of pairs of rules and/or

rule-components: we say that second-order case analysis is required in order to

generate second-order on-target refinements. Figure 4-2 again gives a simple

example. A second-order specialization refinement to two (endpoint) rules r and

r̂ will be on-target only when a certain type of pattern is jointly satisfied by the

two rules. For example, both r and r must be satisfied and conclude the

incorrect conclusion at a confidence greater than the confidence accorded to the

correct conclusion, etc.

Figure 4-2: First vs. Higher-Order Refinement

First-Order

Unit of analysis: single ruies, components

Refinement Type Pattern

r's conclusion Is correct,
Generalize a rule r h a a c o n f W e n c e » confidence accorded

to currently incorrect conclusion by KB
: * . * • • •

Second-Order

Unit of analysis: pairs of rules, components

Refinement Type Pattern

Specialize a rule r, r i * r 2 « • b« t h satisfied
& conclude Incorrect conclusion

in tandem with
with confidence > the confidence

Specialize a rule r^ the correct conclusion Is accorded by

the KB In this case

4.3.1. Estimate of Cost

An important use of r-functions is to help the refinement generator select

prime refinement candidates from the set of initial candidates R. The exact details

of how this is done will of course vary from one refinement system to the next.

A typical first-order refinement generator might start out by calculating the

values of certain r-functions of the form f(rule,M) for every rule in R, where M

is a set of misdiagnosed cases. For the sake of argument let us make the

egregious assumption that the amount of computation required to compute a call

to any r-function of any order is constant. Then the cost of the first phase of

the typical first-order refinement generator is on the order of |R|*n, where n is

the number of r-functions calls made for each rule.

Let us suppose that we have n second-order r-functions of the form

f(<rule ,rule >,M) and that our refinement generator is to apply them to each pair

1 2

of rules in R. The amount of work done on this analysis will be on the order of

, ,-> IRI

|Rr*n. Going to the logical limit, there are V ' subsets of R for which it is

conceivable one might wish to calculate some nth-order r-function call and so

the amount of effort expended by such an analysis is clearly exponential in |R|.

Assuming that the first phase of case analysis has produced a set R' of

prime refinement candidates that are either single rules or ordered n-tuples of

rules, the next step is to apply further case analysis to each of these items in an

effort to find the rule-components, or combinations of rule-components that are

prime candidates for refinement. Let m be the total number of components in

the rules in R'. If we apply n first-order r-functions of the form

f(component,M) to each component, then, by our assumption, the amount of

effort expended is on the order of m*n. Application of n second-order r-

functions will require work on the order of nf*n, and since there are 2m subsets

of the set of components in R/, the amount of work required to do a "complete"

nth-order analysis is exponential in m.

Even this simple analysis is persuasive: to the greatest extent possible one

would like to do first-order case analysis, and revert to higher-order analysis only

when indicated. However there are a number of caveats to be made. The first

is that while an r-function may be explicitly first-order in form, it may

implicitly be more or less equivalent to higher-order r-f unctions in content.

Consider for example the first-order r-function:

f(rule,cases) * the <component1,component > pair in rule that is

jointly most frequently satisfied in the cases.

• Select <c ,c > with Max

Joint-Satisfied-Count (<c ,c >, cases)

Clearly a single call to this r-function implicitly involves many calls to the

second-order r-function Joint-Satisfied-Count, where the latter is a specially

defined r-function that returns the number of cases in which the two components

are jointly unsatisfied.

The second caveat, also illustrated by the preceding example, is simply to

once more point out that the assumption that any call to any r-function involves

the same amount of computation is absurd. The amount of work expended is

clearly related to the "length" of the definition of the given r-function, and the

complexity of the constructs used therein.

Additional discussion on the cost of case analysis is given in section 4.6.

4.4, A General Architecture for Heuristic Refinement Generation

Every refinement system, whether based on first or higher-order case

analysis, has to confront the problem of how to recognize failures of refinability

(see chapter 1), i.e., r-situations in which rule acquisition, as opposed to rule

refinement, is desirable. Now an analogous problem arises for first-order systems,

or any system whose order of analysis is not exhaustive with respect to the given

r-situations, namely, how do we recognize failures of "first-order refinability,"

i.e., r-situations in which complex refinement operations, generated by higher-

order analysis, are needed? In this section we briefly discuss this question from a

general point of view.

Suppose that either within a single cycle, or perhaps over the course of a

number of cycles, a first-order refinement generator has generated and tested one

or more refinements for a set of misdiagnosed cases, meases, but with limited or

no success, i.e., no matter what the system tries all or most of the meases remain

misdiagnosed. The question is whether, and how, by reviewing the record of its

failures concerning these cases, and perhaps gathering additional information via a

higher-order case analysis, the first-order refinement generator can temporarily, as

it were, operate in a higher-order mode in order to generate complex

refinements. This type of temporary higher-order operation is called

failure-driven higher-order analysis. Concrete examples of scenarios in which

failure-driven higher-order analysis is called for, are given latter in this chapter

(see section 4.8).

In this section we present a general architecture for heuristic refinement

generation that is powerful enough to accommodate the process of failure-driven

higher-order analysis.

4.4.1. Three Types of Refinement Heuristics

We may draw a distinction between r-knowledge heuristics whose premises

contain only r-function calls (of course, the premises may contain comparisons

and mathematical /logical operations on these values), and those whose premises

also include components of the form On-target(7,V,mcases), i.e., contain

components that might be concluded from other r-knowledge heuristics. R-

knowledge heuristics of the first form will be called view-to-refinement

heuristics, or vr-heuristics for short R-knowledge heuristics of the second form

will be called refinement-to-refinement heuristics or rr-heuristics for short.

One use for such rr-heuristics is as a way of implementing some aspects of

the constraints of conservatism. For example, suppose a vr-heuristic is satisfied

and recommends deletion of a component. In the spirit of conservatism one

should try to avoid such an action if a less radical measure is possible. For each y

component type one might incorporate an rr-heuristic that would act as a

"demon" with respect to recommendations concerning components of that type,

making sure that whenever a deletion is proposed alternative measures are also

tried. For example, one such rr-heuristic would say that if a numerical finding

is recommended for deletion, then one might achieve the same goal by extending

the associated numerical range of the finding.

The third type of r-knowledge heuristics will be called control heuristics or

c-heuristics. Strictly speaking, the consideration of such heuristics, as their name

implies, belongs more with a discussion of the strategic control principles of a

refinement system than with a discussion of refinement generation per se.

However, insofar as issues of control strategy are intertwined with issues in

refinement generation, some discussion of c-heuristics is appropriate here.

Whether we think of vr and rr heuristics as stating facts (about what

refinements are on-target) or as offering advice (about what refinements we

ought to try), heuristics in these categories have one function, viz., to generate

specific plausible refinement suggestions. On the other hand, while the "ultimate"

function of c-heuristics is to aid in the generation of plausible refinements, their

immediate function is to get the refinement system to take an action that is

indicated in the current situation, e.g., conduct a higher-order analysis of some

rules belonging to the current r-situation. In other words, while the conclusion

of any vr or rr heuristic is always of the form On-target(7,V,mcases), the

conclusion of a c-heuristic always involves a directive constructed out of

primitive actions available to the refinement system. Such an action might be,

for example, to gather joint dissatisfaction statistics for components in a rule that

should be generalized, but for which generalization of the most frequently missing

component has failed: this would be an instance of the primitive action

Compute!r-function). (A list of primitive actions that can be performed by a

refinement system is included as part of the specification of a metalanguage for

the specification of control strategies (see appendix A)).

In addition, the premises of c-heuristics may contain components that

express feedback information of two possible types: i) information concerning the

effectiveness of refinements that have already been suggested and tested, ii)

information concerning the changes that take place in a view of an r-situation as

a result of incorporating a refinement

4.4.2. Levels of Analysis

As can be seen in figure 4-3, we may view a refinement generator as being

organized into levels. Each level has its own set of vr, rr, and c-heuristics. At

level /?, we find the items that are to be used in conducting nth-order case

analysis with the intention of generating refinements applicable to kb-objects of

order n. C-heuristics that operate within a level will be called tactical

c-heuristics. Oheuristics that are not part of any level but operate between

levels will be called strategic c~heuristics', they are like switches that cause the

system to move up or down the various levels of analysis.

As an example of a tactical c-heuristic we cite a control principle that is

used in SEEK2. Considered abstractly, SEEK2 may be thought of as dealing with

r-situations <R,M> in which R always consists of all the rules in any rule-chain

leading to a specified dx. The fact is, however, that initially SEEK2 does case

analysis and refinement generation only for the end point-rules that conclude dx.

If during the course of this initial generation process a refinement that involves

deleting/altering a hypothesis component H in an endpoint rule is generated, then,

and only then, is refinement generation initiated for the intermediate rules that

conclude H. This "backchaining" on implicated hypothesis components may be

iterated.

Giving a realistic example of a strategic c-heuristic is not an easy matter,

since, to my knowledge, there is no refinement system in existence that makes use

of any. For a detailed description of a scenario in which such c-heuristics would

be applicable, and what they would say, the reader should refer to the discussion

of failure-driven higher-order analysis in section 4.8. In this section we will

simply give a brief abstract description of the role envisioned for strategic c-

heuristics in the overall architecture of a refinement generator.

Given the costs of doing exhaustive higher-order analysis, the idea is to start

Figure 4-3: Architecture of Heuristic Refinement Generator

First-order Level

First-order
Viewfinder

First-order
VR Heuristics

First-order
RR Heuristics

t
Tscticsl

C-Heuristlc*

First-order
Refinements

Feedback
From

Testing

Strategic
C-Heuristics

Nth-order Level

out by doing exhaustive first-order analysis for the complete set of r-situations

presented to the refinement generator, including the generation and testing of

refinements. Once this has been done, strategic c-heuristics evaluate the feedback

and make a determination as to whether or not higher-order analysis of some

aspects of one or more of the r-situations is called for. This determination may

involve evaluating several features including 1) the overall degree of success

achieved by the first-order analysis, and, 2) for meases that have resisted

correction ascertaining whether refinements that are on-target with respect to

these meases are failing to improve empirical adequacy because they do not

correct them, or because, while they do correct them, they also cause currently

correctly diagnosed cases to become misdiagnosed. The relevance of (1) is

obvious: we may find that an adequate overall improvement in knowledge base

performance is achieved by first-order refinement The relevance of (2) is as

follows. If a refinement y does a good job of correcting the meases it is

intended to correct - those for which it is on-target - but fails generally

because it causes more new misdiagnosed cases M, then in conducting a higher-

order search for complex refinements we will want to examine the cases in M and

the rules R/ invoked in those cases. Formally, if <R,M> is the r-situation that

led to generation of 7, then we would now be doing a higher-order analysis for

the augmented r-situation <RuR',M>. On the other hand, if 7 failed because it

simply did not correct its on-target cases, then in moving on to a higher-order

analysis we will still be concerned with the same r-situation as originally led to

generation of 7, but now we will be examining it with a finer-grained analysis.

4.5. First-Order Case Analysis

First-order case analysis is of interest theoretically since it represents the

simplest case. Intuitively one hopes that a first-order viewfinder can be

implemented so as produce views in roughly linear time, i.e., so that the overall

complexity of view construction would be on the order of | R | +1 components of

the rules in R| in the worst case, where this number is given in terms of two

fundamental operations: 1) simple access to values of primitive r-functions, and 2)

primitive operations on such values. We address this issue below.

First-order case analysis is also of interest because SEEK2fs heuristic

refinement generator can be formulated in terms of first-order r-functions. It

therefore provides a testbed for questions concerning first-order case analysis,

viz., can first-order case analysis be done in linear time, how effective is such

analysis in suggesting plausible refinements, etc.

4.5.1. Nature of the R-Situations

For both strategic and theoretical reasons it is important to specify the

nature of the r-situations that a heuristic refinement generator will confront.

This is done by imposing constraints on R and M. As a matter of strategy such

considerations should, and will, be discussed separately from the issue of

refinement generation per se. However, without making some assumptions about

the nature of the r-situations that the refinement generator is to confront it is

very difficult to do concrete work.

4.5.1.1. Constraint on M

Our first order of business, therefore, is to constrain the contents of M and

R in such a way that the rules in R may be thought of as possible candidates

for refinement with respect to the meases in M. This is done by relying on the

endpoints of the knowledge base for providing a "principle of division."

Specifically, M must consist of meases such that PDX(mcase) or CDX(mcase) is

identical to a specific common endpoint dx. Since, by definition an mease

satisfies PDX(mcase) * CDX(mcase), this means that M consists of meases whose

conclusion should be dx but is not, or whose conclusion is dx but should not be.

An mease in the former category represents a false negative judgment on the

part of the knowledge base, or an FN for short, and an mease in the latter

category represents a False Positive judgment, or an FP for short Let

FN(dx,mcase) and FP(dx,mcase) be r-functions, actually, r-predicates, that return

true or false according as to whether mease is a FN or FP with respect to dx.

Then M(dx) may be defined as an r-function that returns {mease | FN(dx.mcase)

v FP(dx,mcase)}, i.e., M(dx) is the set of all FP's and FN's with respect to dx.

The rationale for choosing M(dx) as a principle of division is simple: if all

the meases in M(dx) are corrected then, other things remaining equai, the

refined knowledge base's performance with respect to the endpoint dx will be

perfect (over C of course). Clearly, if the knowledge base has no FN's or FP's

with respect to dx, then every time the knowledge base should conclude dx it

does, and it never concludes dx in a case that it should not

102

Therefore, unless otherwise stated, the M in an r-situation o will be

understood to be the value of M(dx) for some dx. At the very least M must be

a subset of such a M(dx). Therefore we will speak of the endpoint or dx

associated with M, or that generates M.

4.5.1.2. Constraint on R

Given an M, we now want to state a constraint on the possible members of

R, the set of initial refinement candidates with respect to M.

1) An endpoint rule r is an initial refinement candidate with

respect to M if there is an mease e M such that either

a) r's conclusion = PDX(mcase) or

b) r's conclusion = CDX(mcase) and

r is satisfied in mease, and

r's confidence factor £ the final hypothesis

confidence factor of PDX(mcase) in mease.

2) An intermediate rule r is an initial refinement candidate with

respect to M if r is a member of a rule-chain whose last link is an

endpoint rule that is an initial refinement candidate with respect to

M.

The definition can be viewed as being recursive: rules that do not directly

conclude classification endpoints, i.e., intermediate rules, become refinement

candidates through their ultimately being connected to refinement candidate rules

that do directly conclude endpoints, i.e., endpoint rules.

Some simple ideas and terminology associated with this constraint on R are

worthy of comment An instance of an mease satisfying clause (La) in the

definition will be said to provide evidence that r ought to be generalized, i.e.

have some generalization refinement applied to it, while an instance of an mease

satisfying clause (l.b) provides evidence that r ought to specialized, i.e., have

some specialization refinement applied to it. Corresponding to these circumstances

we will speak of a rule being a candidate for generalization/specialization.

While a single mease m cannot simultaneously satisfy clauses (La) and (l.b)

with respect to the same rule r, m can independently satisfy these clauses with

respect to distinct rules, and it is clearly possible for two or more cases to

provide evidence that r should be both generalized and specialized. The latter

circumstance might indicate that one component of the rule should have a

generalization operation applied to it, while a distinct component of the rule

should have a specialization refinement applied to IL Given this analysis it might

seem wise to adopt an policy of non-comparability of these two sorts of

evidence in the formulation of refinement generation principles, i.e., refinement

generation principles for generalization refinements ought not take account in any

way of evidence for specialization and vica versa. However, as we shall see

below, there are reasons for taking an approach to refinement generation that

allows for the comparability of these two sorts of evidence.

We note that a rule can be a candidate for generalization regardless of its

satisfaction status. If r's conclusion=PDX(m) * CDX(m), and r is satisfied, then

the only relevant generalization operation is to raise r's confidence factor so its

conclusion=PDX(m) can become the endpoint with the highest hypothesis

confidence factor in mease m. On the other hand, rules can be implicated by a

case as requiring specialization only if they are satisfied in the case.

Notice that while the definition specifies clearly how intermediate rules, i.e.,

those that do not directly conclude an endpoint, may become refinement

candidates, it does not help us very much in determining whether the evidence

indicates a need for generalization or specialization operations for such rules.

The reason is that with the introduction of intermediate rule levels the complexity

of the problem again mushrooms. We will see below how heuristic refinement

principles that reduce the problem complexity can be used to generate refinements

for intermediate rules. For now, in order to indicate the nature of the

complications introduced by intermediate rules, we point out that one and the

same mease m can implicate a single intermediate rule r in two different

ways by virtue of the fact that i) m provides evidence that endpoint rule r

should be generalized, ii) m provides evidence that endpoint rule r should be

specialized, and iii) r's conclusion H occurs in components of both r and r .

Without further analysis of this specific mease it is impossible to know whether i)

r's refinement candidacy as evidenced by m should be taken seriously at all i.e.,

whether we should act upon it, ii) m really supports the generalization of r, or

iii) m really supports the specialization of r.

The last example raises a general point, viz., a rule's being a refinement

candidate in the sense provided by the above definition, certainly does not mean

that it really ought to be refined in any way: for one thing other refinements

may do a much better job of correcting the problem. For a rule, or any item,

to be a refinement candidate means that we have some reason for attempting to

generate refinements for it.

4.5.2. First-Order R-functions on Rules: Satisfaction Measures

Given an r-situation o the first order of business for "a 'first-order

refinement generator is to apply r-functions to the rules in R, the set of initial

refinement candidates, in an effort to locate a few of them that are prime

refinement candidates. In this section we discuss first-order r-functions on rules

that are intended to aid in accomplishing this task.

One of the advantages of dealing solely with generalization and specialization

refinement primitive refinement operators, is that every first-order r-function is

naturally "geared" toward providing evidence for the application of one or the

other sort of refinement category. Therefore, we can divide our discussion into a

consideration of r-functions relevant to generalization operators* and those

relevant to specialization operators.

Before doing so however, we discuss a pair of r-functions on rules and rule

components of great interest, not only to first-order case analysis, but to case

analysis in general. As is the case with the other r-functions, one of the two

relates to generalization and the other to specialization. The former is a measure

of how close an unsatisfied rule is to being satisfied, and the latter measure

of how close a satisfied rule is to being dissatisfied. These two concepts

are useful as a kind of "primary" filter on the set of refinement candidates.

4.5.2.1. Closeness to Satisfaction

To appreciate the potential usefulness of a closeness measure in generating

plausible refinements, consider again the following simple scenario. Suppose we

know, on the basis of other r-functions, that r is a rule that would correct
i

mease m if it were to be satisfied in m, and that component c e r is

unsatisfied in m. As we have said before this gives us some reason to believe

that deletion or some generalization of c could correct m. We can't be sure of

this because there may be other components of r unsatisfied in m. Now add the

following information to the scenario. There is another rule r for which exactly

the same property holds with respect to m, i.e., if satisfied r̂ would correct m,

and we know r̂ is missing a component ĉ too. In fact there may be several

rules for which exactly the same property holds. Without further information, we

have no reason to favor one of these rules over the other.

Short of doing an exact analysis, what further information could help us in

distinguishing the "refinement potentials" of these candidates with respect to m?

Suppose that we knew in some intuitive sense that r was in fact "very far" from

being satisfied in m, but that r̂ was "very close" to being satisfied. Given this

information, even if we were told that refinement to c would still not correct

mease, if forced with a choice we would choose to refine c above c . The
2 1

reason is that since r̂ is already closer to satisfaction than r , the refinement to

ĉ will bring us closer to correcting m than the refinement to c . A fortiori, if

we do not know that the refinement to c is guaranteed to fail, all the more

reason to choose it. Another reason to choose the rule closer to being satisfied is

that this policy seems to be more in accord with the spirit of conservatism; one

may view this rule as the one intended to cover the situation.

Politakis [Politakis 82] showed how the intuitive idea of closeness to

satisfaction could be measured in a quantitative fashion. With minor changes, the

same closeness measure is employed in SEEK2. The measure I am going to

define here is a revised version of the measure used in SEEK2. The differences

between the newer measure and that used in SEEK2 will be pointed out after the

definition has been given.

Intuitively one would expect a measure of a rule's closeness-to-being

satisfied in m to be related to a measure of the radicality of the least radical

refinements necessary to make the rule become satisfied in m. In the presence of

a well-defined radicality metric one might opt to take these measures as being

identical. The problem, as we have had occasion to point out before, is that the

choice of metric can in large part be a measure of taste, or domain-specific

considerations.

However, there is a deeper philosophical argument for keeping these two

measures distinct. A radicality metric on refinements is supposed to capture some

of our intuitions about the "comparative meaning" of rules, i.e., about when rules

can be said to be more similar in meaning than others, etc. Radicality metrics

are therefore solely a function of objects in the knowledge base, and have no

dependence on what the "external world" is like. But this is precisely what a

closeness measure on rules is intended to capture, viz., how close is a rule to

being satisfied by the current state of the world, i.e., how close is a rule to being

satisfied in terms of the findings given in the current case. This is intended

to be a wholly objective domain-independent measure of an empirically verifiable

feature of rules. While it is true that we cannot alter the findings that make a

rule unsatisfied, but only the rule itself, it does not follow that the "minimum

changes needed" to make the rule satisfied are an accurate measure of how close

the rule is to being satisfied by the case findings. For one thing, since there

may be a number of different ways in which a rule can be changed to make it

satisfied, in order to specify one as being the "minimum change," one must make

a judgment concerning the relative radicality of the alternatives. As we have

discussed previously (see chapter 3), radicality judgements may often be a matter

of opinion.

Be that as it may, we present a closeness measure on rules over cases that is

based on a measure of the minimum number of findings in a case whose values

prevent the rule from being satisfied. The partial satisfaction measure of a rule

in a case, or PSMfruie,case) is a recursive r-function that is defined in terms of

the partial satisfaction measures of the components in rule. In order to avoid

counting the same finding component more than one time, we state the definition

in a sort of semi-procedural form, where we start with the first component on

the extreme left, c , and proceed sequentially to the last component c :
1 n

1. PSM of a rule

PSM(rule,case)«

E PSM (cease)
c 6 rule

2. PSM of components

i) If c is a truth-valued finding;

PSM(finding,case) * 1 if SatisfiedCfinding, case) - F

and this component has not already been

counted in computing the PSM of a c
J

where j < i

• 0 if SatisfiedCfinding, case) * T, or

c. has already been counted

ii) If c. is a numerical-valued finding with

associated range [l:h], and value v in case:

PSM(finding,case)

| Min {v-l.v-fa} |
* ~, if Satisfied(finding, case) - F

38 0 if Satisfied(finding, case) * T, or

c. has already been counted

iii) If c. is an intermediate-hypothesis, Hypo, with

associated confidence range [l;h]:

PSM(Hypo,case) * minimum PSM(r,case) of all rules r that

conclude Hypo with confidence

somewhere in the range [l:h]

iv) If c is a Choice, i.e., [k: ch(l),...,ch(n)3

PSM([k: ch(l) ,...,ch(n)] ,case)

j-k

E Min[PSM(ch(j),case)]
i - l

58 sum of the k lowest PSM(ch(j), case), where in

computing each PSMIchi j),case) sequentially we again

take care not to count the same component more than

once.

One immediate difference between this and the earlier PSMs is the care we

have taken to be sure not to count the same finding more than once. This was

never explicitly stated in SEEK or in SEEK2, and the fact is that SEEK2's

currently implemented PSM will count findings more than once. Whether

situations in which findings are over-counted arise depends upon the logical

structure of the rule-chain in the knowledge base. Here is a simple schematic

example of a realistic situation in which this could happen. Let r be of the

form ...H &H ...-> dx, where H and H are intermediate hypotheses. Now

suppose that the only rules for these two hypotheses are r and r ^ of the form

...F...-> H and ...F...-> H , respectively, where the F that appears in these two

rules represents exactly the same finding component, and occurs as a conjunct

at the top level of the rules. Suppose that in m all three rules are unsatisfied.

Then in computing PSM(r ,m) we will count F twice unless we explicitly take care

to avoid counting findings more than once.

This is one way in which the new PSM differs from the previous ones.

Another way concerns the definition of the PSM of a numerical-valued finding

component, clause (2.ii) of the definition. The PSM of a numerical-find ing F

with value v is defined as the ratio of the distance of v from the ciosest

range-boundary to the distance of v from the midpoint of the range. This

ratio is always less than or equal to 1, and approaches 1 asymptotically as v gets

further and further away from the closest range-boundary. This behavior is

clearly consistent with the desired interpretation of PSM.

The justification for incorporating this new clause in our PSM definition can

be easily illustrated by the following example. Let r be a rule that is missing

only truth-valued finding component F in case m, let r be a rule that is

missing only numerical-valued component F with range [l:h] and value v.

According to the earlier closeness measures both rules have a PSM=1. However,

suppose that v is "almost" in the range [l:h], whereas the truth value of F in m

is simply the opposite of what F says it should be. Intuitively F is closer to

being satisfied than F .

One could argue, cogently I believe, that whether this sort of PSM on

numerical findings is appropriate may depend upon domain-specific, and perhaps

even knowledge-base specific considerations. In some cases one is willing to say

that being outside the range is simply equivalent to being false, and there is no

merit to being closer to a boundary rather than farther away. But in such cases,

I would suggest, one thereby shows that one has no intention of allowing

refinements to the boundaries in the first place, i.e., one is so confident about

the existing boundaries that they are not subject to refinement. Conversely, if

one is willing to consider refinements to boundaries then I can see no way of

escaping the conclusion, assuming one abides by the spirit of conservatism of

course, that being closer to a boundary rather than farther away counts for

something. And what it counts for is a measure of how close the component is

to being satisfied (as well as a measure of the radicality of the refinement needed

to make the component satisfied).

Alternative schemes for dealing with numerical findings are possible. For

example, one could measure the distance from v to the closest endpoint or the

midpoint against the total size of the range, i.e h-1. This would allow for PSM

values > 1, indeed it would allow for unbounded PSMs. This would seem to be

an undesirable consequence.

One might wonder why a similar PSM measure for intermediate hypothesis

components is not advocated. In other words, instead of or in addition to

looking at the the minimum PSM of the rules that conclude the hypothesis H, as

described in clause (2.iii) of the definition, why not also look at the distance of

the actual knowledge base confidence in H from the closest range-boundary. For

example if the component is of the form H [.5:1], and the actual confidence in

H in the case is .4, then analogously to numerical findings we compute a PSM =

.1/.35 *.29.

First of all, it is obvious that we would not want this sort of computation

to completely replace computing PSMs for rules that conclude H, even though

this would result in savings in the complexity of the overall computation. This

would result in extremely counterintuitive judgments of closeness, as the reader

may ascertain for himself. But even to include this calculation in any way as

part of the PSM of H, seems to violate the philosophical position outlined above.

In the case of a numerical finding when we measure distance from satisfaction

in the way we have advocated, we are measuring values whose interpretation is a

matter of objective empirically verifiable features of the real world - a numerical

finding represents an objective feature of the domain of expertise which exists

whether or not a given knowledge base mentions it This is not the case with

confidence ranges for intermediate hypothesis. When we measure the distance

from H's actual confidence to the closest range-boundary, we are measuring values

that have meaning only within the context of a knowledge base of rules together

with a method of handling uncertainty. In other words, we are talking about

constructs that we use to measure our confidence in conclusions, constructs whose

meaning and use may vary from person to person, as well as from system to

system. I am not saying that these constructs have no value, or that they should

not be used. What I am saying is that a closeness measure that incorporates the

sort of calculation over confidence ranges that we are discussing, is less objective

than one that does not, i.e., it is less of a direct measure of the degree of match

of case findings to rule satisfaction.

4.5.2.2. Satisfaction Measures for Complex Forms

Ultimately the PSM of any kb-object in a case will depend upon the

satisfaction ora dissatisfaction of its "constituent" findings, i.e., the primitive r-

function Satisfied! find ing,case) is an essential ingredient in the definition. In

our discussions we haven't said much about the logical form of findings; we know

that they are simple-components which in turn can be propositional or predicate

forms (see chapter 3). In most real life expert system the findings can essentially

be thought of as propositional in nature, even if, as in EMYCIN, their internal

structure can be exhibited to a limited degree. But what becomes of the notion

of a findings being's satisfied or having a closeness measure if it contains either

free or quantified variables!

Presumably if an expert system makes actual use of variable x, then it must

have access to (a representation of) a domain of individuals that can be the value

of x. Therefore when we speak of a form containing x free, e.g., F(x) as being

satisfied in a case, we are generally speaking about x as denoting a particular

individual in the domain for which F(x) is true. There is no ambiguity about the

satisfaction conditions of an existentially or universally quantified form.

Does the notion of closeness to satisfaction make sense for rules containing

such forms? Consider the case of free variables first. For rules with free

variables the meaning of closeness must be redefined in terms bindings of the

variables in the rules that minimize the PSM as defined above. For example,

consider the rule schema:

(F x) & (G x) & (H x) -> (I x) (1)

Suppose the rule is not satisfied in case c. Now it doesn't make sense to

say that 1 has a PSM of n in case c; one must relativize the PSM to a choice of

bindings for the variables in the rule. For example suppose case c involves 2

objects A and B that can each be bound to x. To compute the closeness measure

for 1 in case c we have to compute the PSM of the two possible instantiations

of 1 using our definition and take the minimum.

The more objects that the can be bound to a variable in a case, the more

costly the calculation is. Moreover 1 is the simplest case. Consider a revised

version:

(F x) & (G y) & (H x) ->.(I x) (2)

Now we have to compute the PSM for each of he following possible

bindings:

x y

A B

B A

B B

and take the minimum. Note that if a predicate in 2 is an intermediate

hypothesis, then we have to do the same thing for every rule that concludes it

before the closeness of 2 can be known.

The closeness of an existentially quantified form is calculated in more or less

the samev way as for free variables. The case of a universally quantified

component or rule is different. Here one has to sum over the PSM of the form

for every binding of the variable that does not satisfy the form. The closeness

of multiply quantified forms can be obtained in similar fashion.

Even for a small universe of individuals, these cases involve considerable

computation. The value of computing closeness measures for such forms is

questionable, especially when the costs are so large that one is spending more time

calculating PSMs than generating and testing refinements. This is an issue that

must be left to future research.

4.5.2.3. Closeness to Dissatisfaction

PSM is an r-function that aids in filtering out good generalization

candidates. By "symmetry" one is led to wonder whether we can identify an r-

function measuring "closeness to dissatisfaction" of satisfied rules, as an

aid in to filtering out prime specialization candidates. Such an r-function

was not devised in the original SEEK nor in our work on SEEK2. We will see

that such a closeness to dissatisfaction measure or DSM can be defined, and that

it can have a variety of uses.

At first glance one might think such a notion is misconceived: if a rule is

satisfied, then all its components are satisfied; to make it dissatisfied one has only

to make one of its components dissatisfied, and so every rule will have the same

DSM. This would be true if every component of every rule had exactly the

same formal structure. But we know this is not so. Consider the following

simple example. Let r be a one-component rule whose left hand side is of the

form [1: ch(l), ch(2), ch(3)]; r can be satisfied in a case c in virtue of exactly

one, or exactly two, or all three of the choice elements being satisfied in c.

Intuitively in each case r is closer to being dissatisfied than in the next The

DSM of a choice component will therefore be the sum of the minimum DSMs of

the required number of choice elements that need to be dissatisfied in order to

make the entire component dissatisfied.

In the case of numerical findings it is also clear that one satisfied finding

may be closer to being dissatisfied than another on the grounds that the value in

the former case is closer to one of the range-boundaries. In fact the same

formula that we used for the PSM of a numerical component can be used in

defining its DSM.

The DSM of a satisfied/unsatisfied truth-valued finding is 1/0.

Clearly the DSM of a rule will be equal to the minimum DSM of its

components. The DSM of an unsatisfied rule is 0, the DSM of a satisfied rule is

a number greater than 0.

These remarks are sufficient to show that a DSM r-function can be defined.

Of what use would a DSM be?

At the level of first-order analysis of endpoint rules DSM does not have

a filtering role analogous to PSM. The reason is that for first-order heuristic

analysis the main r-situations of interest in relation to specialization are SpecA

situations (see section 4.5.4). In a SpecA situation there is a unique rule, the

SpecA rule, whose dissatisfaction will correct the mease. Therefore there is not a

group of initial specialization candidates from which we want to filter out the

best candidate, i.e., the one that is already closest to being dissatisfied. There is

only the SpecA rule to worry about. (Similar remarks apply to SpecB situations:

while we can compare the DSMs of the SpecB rules, the fact is that every one

of them must be dissatisfied if mease is to be corrected.)

However, once we move to the level of intermediate rules, DSM has a

role to play, even in a first-order system. The reason is simple. Suppose a

SpecA rule r contains two or more intermediate hypotheses, and say, for the sake

of argument, that r's left hand side contains only hypotheses. Now if we want to

focus our attention on a particular component of r to specialize it makes sense to

work with the hypothesis whose DSM in mease is a minimum, since it is already

closest to being dissatisfied in mease.

• There is, however, an important implication of this example: even if the

SpecA rule consists entirely of non-hypothesis components, it is worthwhile

knowing the DSM of each of its components in order to help us select one of

them as a prime candidate for specialization. In other words, what PSM is to

rules, DSM is to components. Let r be a rule that we want to specialize, and

suppose that r has more than one component. To pick a single component of r

to modify we can take the DSM of each component in r, and then generate

refinement experiments only for the component with the minimum DSM.

DSMs of rules becomes useful when we move on to higher-order analysis.

For example in a situation in which it is determined that several satisfied rules

are independently sufficient causes of the misdiagnosis, higher-order analysis might

be applied to yield a joint generalization-specialization refinement in which we

might choose to specialize only those satisfied rules with the minimum DSM.

Finally, in either first or higher-order analysis DSM might be of use as an

indicator of a possible failure of refinability of the knowledge base, and therefore

as an indicator of a need for renewed knowledge acquisition. As an example of

this consider a set of SpecB rules each having components that are extremely

"over-satisfied" in mease, and suppose we have reason to believe that these rules

are basically in correct form. Suppose in addition that there was also no good

candidate of sufficient confidence for generalization in mease. It is intuitively

appealing to view this situation as calling out for new endpoint rules for

PDX(mcase).

4.5.3. Generalization Related R-Functions

4.5.3.1. R-Functions Related to Confidence Boosting

Situations that are amenable to correction by confidence boosting are easy to

identify at the endpoint level using first-order analysis. Basically we look for

satisfied rules for PDX(mcase), if there are any, then the one whose confidence

factor is closest to the value of CDX(mcase) is singled out, since it will require

the least boost in confidence to correct the case\ This is called a genCF

situation and the chosen rule is called the genCF rule.

If one intends to use confidence boosting as a refinement mechanism, there

are two pieces of information that are worth gathering: a) how many times is a

rule a gen-cf rule relative to a set of meases, and b) given this information, how

big a confidence boost in the rule will be required for it to correct

all/most/some of those cases? The r-f unctions that return this information are

genCFIrule,meases) and Mean-CDX-CF(meases) and are defined below.

(First we define some r-functions used in the d e f i n i t i o n of genCF)

genCF-rule(mease)

5Clearly a number of the satisfied rules could meet this specification. One
therefore has to decide whether to arbitrarily choose one of them, or consider the
whole set of them. We opt for the former policy.

the rule such that

a) PDX(mcase)ssconclusion(rule)

b) rule is satisfied in incase

c) of all the rules satisfying conditions

(a) and (b) in incase, none has a greater

confidence factor than rule.

Select rule € Satisfied-rules-f or (PDX(incase) ,mease)

with Max RuleCf(rule)•

genCF-mcases(rule,meases)

38 {measeemeases | rule - genCF-rule(mease)}

genCF(rule,meases)

- |genCF-mcases(rule,meases)|

Mean-CDX-CF(meases)

= the mean value of the confidence of CDX(mease)

over meases

Mean(CDX(mease),mcases)

In computing the mean value of CDX(mcase) over the meases, instead of the

maximum, we reveal our intention to try to correct most (raise the genCF rule's

confidence to the mean plus, say, two standard deviations) or some (raise to the

mean) but not all of the cases. In other words, we want to err on the side of

caution.

The situation with intermediate rules is basically the same. The notion of a

genCF situation can be extended to apply to intermediate rules in the following

way. Let r be an endpoint rule that is to generalized, and suppose that the

single missing component that is to be generalized is the intermediate hypothesis

H with range [a:0]. If there are satisfied rules for H then this is a genCF
$ g

situation, because by raising the confidence of one of these rules to fall within

[a:0] one will correct the case. Note also that this back-chaining of genCF

possibilities could proceed to any intermediate rule level. With minor revisions,

therefore, the r-functions defined above can be made to apply to these situations

as well. (In the current implementation of SEEK2, however, genCF information

is gathered only for endpoint rules).

4.5.3.2. R-Functions Related to Component Alteration

The types of generalization that involve alteration of rule components are

far more varied and subtle than simple confidence boosting. Moreover, in the

general case an unsatisfied rule may have a number of unsatisfied components.

These factors increase the complexity of the problem, sometimes to the point

where first-order analysis is not sufficient. Here we are talking about r -

functions that are first-order not merely "in name" only, but in spirit as well

i.e., do not involve calls to higher-order r-functions in their definitions. We will

elaborate-on this point" below.

At the endpoint level a gen situation is one in which there are unsatisfied

rules for PDX(mcase) anyone of which would correct mease if it were satisfied.

In the typical case there will be many such "gen candidates" in a gen situation.

This is where our PSM comes in. The gen-rule in a gen situation is that "gen

candidate" rule whose PSM(rule,mcase) is a minimum. Analogously to genCF

situations, if we are to capitalize on the refinement possibilities in gen situations

we need to two things: a) how many times is a rule a gen-rule with respect to a

set of meases, and b) which components of the rule ought to be generalized to

correct those cases?

The following are the r-functions that provide the answers:

gen-rules(mease)

* the rules for PDX(mease) that would correct mease

if satisfied

- {rules Rules-For(PDX(mease)) |

RuleCF(rule) >ModelCF(CDX(mease) ,mease)}

(Note that we do not need to specify that these rules are

unsatisfied, since that is entailed by the other clauses)

gen-rule(mease)

« the rule in gen-rules(mease) that minimizes PSM(rule,mease)

= Select rules gen-rules(mease) with Min PSM(rule,mease)

gen-meases(rule,meases)

= the subset of meases in which rule = gen-rule(mease)

* (mease6meases| rule-gen-rule(mease)}

gen(rule,meases)

= the size of gen-meases(rule,meases)

• |gen-rule(rule,meases)|

Mfmc(rule,cases)

* the most frequently missing (i.e., unsatisfied)

component of rule relative to the set of cases

3 Select c^rule with Min Satisfaction-count(c,cases)

An instance of Mfmc of particular interest is:

Mfme(rule,gen-rule(rule,meases))

= the most frequently missing component of rule relative to the

subset of meases in which rule is the gen-rule.

It is easily inferred from these r-functions that we intend to focus attention

on the Mfmc of rule in its gen-mcases as our prime refinement target. This

approach has its drawbacks - as well as some intuitive appeal - but it has the

virtue, as we shall see below, of being first-order in spirit as well as name. The

same cannot be said of a more sophisticated approach that would involve use of

the following r-function:

Mcomp(c ,cases)

= the subset of cases in which c is unsatisfied

• (cases cases I ̂ SatisfiedCc ,case)}

We could compute the value of this r-function for every component of a

rule over its gen-mcases, i.e., for each cr we would have a subset of the gen-

mcases in which it is unsatisfied. We would then compile these results to get

data of the form "cr is unsatisfied in gen-mcases x,y,..." Except for the space

requirements (to keep track of the subsets), so far the procedure could be done

in linear time, i.e., when we examine a gen-mcase we add it to a list for every

cr such that -»Satisfied(cr,mcase). However, the idea now would be to

"consolidate" the information in these subsets in a useful fashion, which does not

come down to simply taking an intersection (but even this would not be first-

order in spirit). Rather, one would want to find the smallest set of cr whose

joint dissatisfaction fully accounts for as many as the meases in the gen-mcases

as possible. As an example, let r be a rule with three components, and let

meases consist of six cases identified by the integers from 1 to 6. Then in the

first phase of this analysis we will have gathered information that can be

represented in tabular form as follows, where an entry under a component

represents the circumstance that the component is unsatisfied in that case:

Component

Case

Notice that in this example ĉ and c each have equal claim to being Mfmc.

While it is only by working on all three components that we can correct all the

meases, the fact is that there is only one mease, viz. 3, in which all three

components actually take joint responsibility for the misdiagnosis. By working on

c alone we may correct meases 1 and 2. By working on c and c together we

may correct 4, 5, and 6. And since we can correct meases 4, 5, and 6 only by

working jointly on ĉ and c , {c ,c } is therefore the smallest set of components

whose joint dissatisfaction is responsible for the largest share of the meases.

To produce the analysis given in the preceding paragraph from the above

table is easier said than done. In general if r has n components, the

corresponding table has n columns, and in the worst case each column will have

| meases | rows. Starting with the first element in the leftmost column, we will

have to compare it with every element in each of the other n-1 columns, i.e., we

do (n-1) | meases | comparisons. However, we have to do this for every element

in the first column, and since there are | meases | of them the total cost is on

the order of (n-1) | meases |", in terms of the number of comparisons. While this

is a very coarse-grained analysis, it is enough to show that a sophisticated

approach to component generalization is definitely not first-order in spirit.

Before moving on to intermediate rules we discuss two other r-functions

geared to the generalization of numerical ranges (or confidence ranges). Let F be

a numerical finding with range [L:H] that we wish to generalize with respect to

meases. In order to do this we might wish to lower the value of L or raise the

value of H. Here we talk about the r-function related to lowering the value of

L; the other case is completely analogous.

L-Miss(cr [L:H],cases)

* the subset of cases such that the value of c is less

than L

* {case € cases | value (c ,case) < U

L-down(c [L:H] ,incases)

* the mean value of c in the incases in which it falls

below L

• Mean(value(c , L-miss(c [L:H],meases))

Note that these definitions apply equally well to intermediate hypothesis

components.

This brings us to the consideration of intermediate rules. As with genCF

situations, it turns out the same r-functions that apply to gen situations with

endpoint rules are applicable to intermediate rules. Whether we decide to refine

only the Mfmc of an endpoint rule, or some combination of missing components,

the fact is that consideration of intermediate rules can be delayed until an

intermediate hypothesis H has been targeted at the endpoint level. Once that has

happened, we can look at all unsatisfied intermediate rules for H in the

appropriate confidence range and take their PSMs over each of the meases that

implicate H, i.e., we can apply a suitably revised version of gen-rule(mcase) to

gen situations at the intermediate level Clearly, therefore we can use gen-

mcases(rule,mcases) and gen(rule,mcases) at the intermediate level as well.

Obviously each intermediate gen-rule that we identify will have a Mfmc with

respect to its gen-mcases. If the Mfmc is also an intermediate hypothesis, the

same analysis can be back-chained to the next level of intermediate rules,

otherwise appropriate action will be taken just as for the Mfmc of endpoint

rules.

4*5.4. Specialization Related R-Functions

First it is convenient to define a subset of the meases that are

relevant to first-order specialization.

Spec-Meases (incases)

38 the subset of meases in which PDX(mcase) is the 2nd highest

knowledge base conclusion

= {measeemeases| PDX(mease)-CDX-2(mease)}

Let specmcase be a variable over Spec~Mcases for a fixed set

of meases

Spec-rules(spec-mcase)

- the set of satisfied rules for CDX(spec-mcase) with

confidence factor greater than or equal to

PDX(spec-mcase)*CDX-2(spec-mcase)

* (rules Satisf ied-rules-f or (CDX(spec-mcase) ,spec-mcase) |

RuleCF(rule) £ModelCF(CDX-2 (spec-mcase) ,spec-mcase)}

SpecA-mcases(rule,meases)

* the spec-mcases in meases such that rule is the only member

of Spec-rules(spec-mcase)

• {spec-mcase//7mcases | Spec-rules (spec-mcase)* {rule} }

SpecA(rule,meases)

* the size of SpecA-mcases(rule,meases)

* |SpecA-mcases(rule,meases)|

SpecB-mcases(rule,meases)

m the spec-mcases in meases such that rule is only one of

the members Spec-rules(spec-mcase)

= {spec-mcase £ meases| rule s Spec-rules(spec-mcase)}

SpecB(rule,meases)

35 the size of SpecB-mcases (rule,meases)

= |SpecB-mcases(rule,meases)|

We earlier spoke of the value of DSM in localizing components of SpecA or

SpecB rules as refinement targets. Since we currently do not employ a DSM in

SEEK2 we will not include it in further discussions, though it is a subject for

future research.

One might decide to deal with a Spec situation by lowering a rule's

confidence. Analogous to the role of Mean-CDX-CF in genCF situations, we

define an r-function:

Mean-PDX-CF(meases)

= the mean value of the confidence of PDX(mcase)

over meases

* Mean(PDX(mease),meases)

so we can know to what value the confidence should be lowered.

Specialization of numerical and confidence ranges can be defined in a way

that is somewhat analogous to the generalization of such ranges. For example,

the following r-functions can be used in determining when and to what value a

lower bound L should be raised:

L-spec(c [L:H],cases)

- the subset of cases such that the value of c is greater

than or equal to L but less than or equal to the midpoint

of the range

- {case€cases| 1 > value (cr, case) £ (L+H) /2 }

L-up(c [L:H] ,incases)

the mean value of c in the meases in which it falls

between L and the midpoint

- Mean(value(c , L-spec(c [L:H],meases))

The idea is to specialize the component by raising L to a value closer to the

midpoint as detennined by L-up.

As with genCF and gen situations, SpecA and SpecB have application at

intermediate rule levels in a way that can be detected by first-order analysis.

Once an intermediate hypothesis H in an endpoint SpecA rule r has been targeted,

for example, then if there is only one satisfied intermediate rule r' that

concludes H with confidence in the specified range, then r' may be considered a

Spec A rule at the intermediate level. If r' is only one of a number of satisfied

rules for H, then r' is a SpecB rule at the intermediate level, albeit r is a

SpecA. (The current implementation of SEEK2 does not gather specialization

information for intermediate rules).

4.5*5. R-Functions for Conservation

We have defined an r-situation as a <R,M> pair satisfying certain conditions.

We will now see that, for certain kinds of case analysis, this notion of an r-

situation must be extended or modified. All the r-functions we have talked

about so far are designed to gather information from misdiagnosed cases alone.

Do the other cases in C have any role to play in refinement generation (it is

obvious that they have an important role in refinement verification)*!

Correct cases, i.e., cases for which PDX(case)=CDX(case), do have a role to

play in refinement generation, viz., they can be used to filter out on-target

refinements that nevertheless have some chance of degrading the knowledge base

performance over currently correct cases. In other words, these cases can be used

to guard that only conservative modifications are adopted.

It is worth noting, however, that since we propose to test every generated

on-target refinement over the entire data base of cases anyway, if we err against

caution in the refinement phase due to a lack of such information, this error will

always be detected in the verification phase. However, if we fail to generate a

plausible refinement due to such estimates, we may be making an error that we

will never detect. It does not pay to be overly conservative in the refinement

generation phase.

\Ve will use cease as a variable over correct cases, and ceases as a variable

over sets of correct cases. There are four r-functions dealing with ceases that

have at one time or another found their way into a version of SEEK or SEEK2.

Specifically Hitsfru/e) and Signif(rule) are generalized versions of concepts

originating in SEEK; Fftsfru/e) originated with SEEK2, but is not used in the

current implementation; Signif-Level(rule,cf) originated with SEEK2 and is an

example of a refinement concept that was discovered with the aid of the

metalinguistic framework RM. We define them below in order of increasing

usefulness.

F i t -Ceases (ru le , ceases)

* the subset of ceases in which PDX«CDX and this rule

is satisfied and concludes CDX

* {ceases ceases| PDX(ceases)*CDX(cease)~Conclusion(rule)}

Fits(rule,ceases)

18 the size of Fit-ceases (rule, ceases)

* I Fit-Ceases(rule,ceases)I

Hit-Ceases(rule,ceases)

= the subset of Fit-Ceases(rule,ceases) in which rule concludes

CDX with confidence £ the knowledge base's

confidence in the 2nd highest ranked conclusion

• (cease e Fit-Ceases (rule, ceases) |

RuleCF(rule) £ModelCF(CDX-2(cease) ,cease)}

Hits(rule,ceases)

88 the size of Hit-Ceases (rule, ceases)

• |Hit-Ccases(rule,ceases) |

Hit-Rules(cease)

- the set of rules that are "hits11 with respect to cease

- {ruleeSatisfied-ruies-for(PDX(Ccase))|

RuleCF(rule) >ModelCF(CDX-2 (cease) , cease)}

Signif-Ccases(rule,ceases)

= the subset of ceases in which {rule}*Hit-Rules(cease)

- {ceased ceases I Hit-Rules(ccase)-{rule} }

137

Signif(rule,ceases)

* |Signif-Ceases(rule,ceases)

Signif-Level(rule,cf,ceases)

= the size of the subset of Signif-Ccases(rule,ceases) in which

the 2nd highest conclusion in cease has a confidence greater

than CF

* | (ceases e Signif-Ccase (rule, ceases) I

ModelCF(CDX-2 (cease) , cease) >CF} I

Intuitively a rule's Signif-Ccases are ceases for which the rule, in its current

form, may be said to be the sine qua non. In contemplating refining a rule in

order to correct a certain number of meases we want to be conscious of the

number of Signif-Ccases that are potentially at stake. Signif-Level is a

refinement of this notion that is particularly applicable to contemplated reductions

in confidence of a SpecA rule. Clearly in reducing the confidence of a SpecA

rule r to gain meases we want to avoid reducing it to the extent that we lose

ceases belonging to Signif-Ccases of r. If CF is the value to which we

contemplating reducing r's confidence factor, then Signif-Level(r,cf,ccases) tells us

how many Signif-Cases of r's will be lost by doing so.

4.6, Cost of Case Analysis

Our hope has been that a first-order viewfinder would be capable of being

implemented so as to produce views in linear time, where the complexity is

measured in terms of the number of calls to primitive r-functions and the

number of operations on the resulting values.

Consider the following example. A satisfied rule is a genCF rule in mease

if its confidence for PDX(mcase) is higher than any other satisfied rule that

concludes PDX(mcase). If an implementation of the genCF idea "mirrored" this

intuitive statement, then the resulting complexity would be non-linear. To see

this let r and r be two satisfied rules for PDX(mcase) in a genCF situation.
i :

Then in calculating genCF(r) (genCF(r)) according to the preceding specification,

we will not only call primitive r-functions with the current argument as value but

also for r (r) as well. Clearly this represents a duplication of effort that can

be avoided by judicious reformulation of r-function definitions. Fortunately there

are ways of implementing genCF ideas, as well as all of the other first-order r-

functions presented here, so that primitive r-function calls never need to be

repeated unnecessarily, and the observant reader will note that we have often

structured our formal definitions with this goal in mind. Moreover, it seems

reasonable to suppose that any set of r-functions, even of higher-order, can be

"optimized" in this fashion, viz., calculations on the values of primitive r-

functions can be arranged so that repeat calls are avoided.

This leaves the question of whether in terms of the number of operations

performed in the calculations done on the values of primitive r-functions, the

first-order r-functions presented here are linear functions of the number kb-

objects examined in the given r-situation. In order to deal with this question let

us try to determine the most efficient way in which genCF-mcases(rule,mcases)

could be determined for every relevant rule in R an r-situation with M=mcases.

By dint of its form we tend to view this-process of evaluation of genCF-

mcases(rule,mcases) over R as proceeding from a fixed rule in R to a search over

the meases. But this approach definitely entails a duplication of effort as we

have seen above. The key to optimizing the process is to view it in an exactly

opposing manner, i.e., as proceeding from a fixed mease to a search of all the

ruies in R. For every mease, we find the rule (or rules), if any, that is the

genCF rule for that mease, and increment its genCF "count" accordingly. Every

rule looked at will have the same fixed number of operations O applied to it, i.e.

a) does conclusion(rule)=PDX(mcase), b) is Satisfied(rule,mcase)=T, c) what is the

value of the distance=ModelCF(C3DX(mcase),mcase)-RuleCF(rule), and d) is it less

than the currently smallest distance? When we have looked through all the rules

in this way, we will know which rule is the genCF rule in this mease. After we

have done this for each mease in meases we will know the value of

genCF(rule,mcases) for every rule. Therefore the total amount of work done per

rule is O|meases| , and the total amount of work overall is |R|*O*|mcases|,

i.e., proportional to the number or rules examined.

The preceding argument can easily be repeated for SpecA, SpecB, and the

various mean values that are calculated in case analysis. Fits, Hits, Signif, and

Signif-Level are r-functions that deal with a rule's correct or desirable behavior,

and therefore have a cease or ceases argument instead of an mease or meases

argument in their definitions. Therefore the cost of evaluating one of these r-

functions per rule will be O*| ceases |, where ceases is a relevant set of correctly

diagnosed cases. If the given r-situation has the form <R,mcases,ccases> then the

total cost of analysis will be on the order of | R | *O(| meases | + | ceases |), i.e.,

the overall cost is linear in (| meases | + | ceases |).

We have not, however, mentioned gen(rule,mcases), a cornerstone of our

analysis (nor Mfmc, but the latter is less problematic). The reason is that one

might suspect that the complexity of computing PSM(rule,mcase) - which is

needed for gen - for every rule in R and mease in meases, is not proportional to

the number of distinct components in R and | meases |, due to the interleaving

of rule-chains. It would seem that we would be forced to duplicate some of our

efforts every time the same hypothesis appears in more than one rule-chain.

In order to show that this is not the case, it is sufficient to note the

following points. First of all, given an mease and a knowledge base kb, one can

arrange the order of computation of PSM for every component and rule in kb,

so that each of them needs to computed exactly once. Of course, this can only

be done if we are willing to store PSM values for components and rules. The

computation would start by computing PSM for every distinct finding component

in the kb. We then use these values in computing PSMs of the components and

rules that they are part of, and so on. Essentially, if one views the rules in kb

as corresponding to an acyclic digraph, with the various nodes representing the

components and rules, and the arcs representing the containment relation, then

what we would be doing is to process the PSMs of the nodes in a topological

ordering produced by starting with finding nodes (these would have no arc

entering them) and ending with the nodes corresponding to endpoint rules. Each

node would be visited exactly once, and at the time of its visitation all the

information relevant to determining its PSM would already have been computed

and stored6.

The second point needed to demonstrate the linearity of PSM, is that the

To elaborate somewhat, the digraph consists of typed nodes, where the nodes
can have elements in them. A node is of one of the following types: 1) finding
component, whose elements will either a numerical range or a truth-value, 2)
hypothesis component, whose elements will include a confidence range, 3) choice
component, whose elements will include a choice-number, 4) rule, whose elements
will include a confidence factor. An arc from node a to node 0 exists if any of
the following is true: i) a corresponds to a component that is contained (at the
top level) in the rule that corresponds to 0, ii) a is a type 4 node that
corresponds to an intermediate rule r with confidence factor CF and 0 is a type
2 node corresponding to a hypothesis component whose range includes CF, iii) a
is a node corresponding to a rule component that is a choice-element in the
choice component corresponding to 0. Note that while identical components may
have distinct occurrences in distinct rules, the corresponding rule map has only
one node per distinct rule-component Given our assumptions concerning the
logical structure of kb, this digraph must contain both nodes that have no arcs
coming into them, and nodes that have not arc leaving them; the former are all
the finding nodes (we are ignoring finding-to-finding rules), and the latter are all
nodes that correspond to endpoint rules. Moreover, it is clear that the map will
contain no cycles. The nodes of such a digraph can be topologically ordered.

complexity of computing the PSM of any component or rule, provided it is done

in the ordering described, is a function of that kb-object's type and parameters

only. In particular, the complexity of computing the PSM of any finding

component and any hypothesis component may be viewed as essentially a constant;

for a choice component it will depend on the size of the choice-list; for a rule

it will depend on the number of components in the rule. In the latter two cases

the amount of computation done is therefore variable, but it must be bounded by

some finite constant imposed by the maximum number of components that can

occur in a choice component or a rule. Therefore as we visit each node in the

digraph in turn, the work we do in computing PSM for that node is always

bounded by some constant x. Therefore the total work done in computing PSM

for every component and rule in kb is bounded by xinumber of rules in kb +

number of rule-components in kb).

4.7. Refinement Knowledge: Heuristics for First-Order Refinement

We now know how to do first-order case analysis, the question is what r-

knowledge do we need to combine it with in order to generate plausible

refinements? Before we delve into the nuances of any particular set of heuristics,

it may be helpful to consider some higher level options.

The task of a heuristic refinement generator is to generate on-target

refinements. Or is it? The fact is that two attitudes are possible here. We can

view the basic driving desire behind refinement generation as being the generation

of refinements that maximize expected gains in performance over the meases

in the given r-situation. Or we can view this desire tempered by the desire

not to degrade performance over cases currently diagnosed correctly, i.e., the goal

is generate refinements that maximize expected gains over the meases in M,

but minimize the expected losses over the set of Ceases. Let us call the first

attitude max-gain, and the second max-gai n+min-1oss.

This is an issue we have already broached in this chapter (see p. 134). To be

consistent with what we said earlier - that to be overly cautious in refinement

generation is a mistake - it would seem that we should advocate taking a max-

gain attitude. However, as we shall see shortly, the r-knowledge in SEEK2 is

best understood as resulting from a max-gain+min-loss position. Fortunately,

however, it is relatively easy to parse SEEK2's r-knowledge into those parts that

implement the max-gain goal and those parts implement the min-loss goal.

Therefore once we have understood the structure and content of this r-knowledge

it is an easy matter to "strip off" the pieces relevant to min-loss in order to

derive a pure max-gain refinement generator.

4.7.1. Discussion of Max - Gain+Min- Loss Heuristics

In addition to FN and FP which we defined above, we need the notions of

a True Positive, or TP, and a True Negative, or 77V. If PDX(case)=CDX(case)=dx,

then the knowledge base has made a TP judgment with respect to dx in case; if

dx * PDX(case) * CDX(case), then the knowledge base has made a TN judgment

with respect to dx in case. Formally we define the following r-functions:

TP(dx,case) - T i f PDX(case)-CDX(case)-dx

F otherwise

TN(dx,case) - T if dx * PDX(case) # CDX(case)

38 F otherwise.

For the purposes of the present discussion we may fix dx to be some

constant endpoint, and the set of cases in M=M(dx) (see p. 101).

The goal of the overall knowledge base refinement process is to minimize

the number of FP and FN judgements of the knowledge base, consistent with

the spirit of conservatism. (Minimizing FPs is equivalent to maximizing TN and

minimizing FNs is equivalent to maximizing TP.) Given this overall goal a

generalization refinement may be seen as an attempt to contribute to it by

increasing the number of TPs for an endpoint (equivalents, decreasing the

number of FNs for that endpoint, and possibly, but not necessarily, decreasing the

number of FPs for other endpoints). A specialization refinement is an attempt to

contribute to the overall goal by decreasing the number of FPs for an endpoint

(equivalently, increasing the number of TNs for that endpoint, and possibly, but

not necessarily, increasing the number of TPs for other endpoints.)

However, anytime a generalization is made there is a possibility that the

refinement will lead to an increase in the number of FPs for the endooint in

question as well, which is clearly at odds with our goal. Anytime a

specialization is made there is a possibility that the refinement will lead to an

increase in the number of FNs (equivalently, a decrease in the number of

TPsJ for the endpoint in question as we//, which is also at odds with our goal.

From the max-gain+min-loss point of view it is the role of the refinement

generator to produce refinements that not only have the chance of reducing the

number of FPs and FNs over M, but that also have the least chance of

generating new FPs and FNs over other currently correctly diagnosed cases in C.

In order to discover how we may attempt to generate such refinements using

the information in the view of a, consider the following notions. Let ATP

represent the total net change (over all cases and all endpoints) in TPs that will

occur due to a generalization refinement 7; let AFP represent the total net
g

change in FPs that will occur due to 7 . Then the refinement 7 contributes to

our overall goal iff

ATP>0

and

ATP>AFP (/) .

Similarly, let ATN represent the total net change (over all cases and all

endpoints) in TNs that will occur due to a specialization refinement 7; let AFN
s

represent the total net change in FNs that will occur due to 7. Then the
s

refinement 7 contributes to our overall goal if:
s

ATN >0

and

tJN > LFN (2)

In terms of Max-gain+Min-loss way of looking at refinement generation, an

optimal heuristic for generating generalization refinements would be one that

never suggested a refinement that violates condition (1), and, an optimal heuristic

for generating specializations would never suggest a refinement that violates

condition (2). It is doubtful that there are any truly heuristic principles that

are optimal in this sense. (Obviously a "heuristic" that says, "Incorporate such-

and-such a refinement, then recalculate the knowledge base's performance, and

accept the refinement only if either (1) or (2) is satisfied." is not the sort of

thing that we have in mind. Such a "heuristic" pertains to the problem of

experimentation and selection of refinements for incorporation of into the

knowledge base, not to refinement generation.) One has to settle for something

that is less than optimal, and computationally feasible as well.

This is where r-functions come into the picture. The r-functions, such as

Gen. have a twofold character: they can be used as indicators of pathological rule

behavior, but they can also be used as estimators of expected gains due to

refinements. Thus Gen and GenCF can be used as estimators of ATP for

appropriate generalization refinement operations, and, intuitively, this seems

plausible. Therefore, if we can find a plausible estimator of LFP for

generalization refinements then we will be able construct heuristics for generating

generalizations that use these estimators as an approximation to condition (1). A

seemingly good concept for this role would be something like the following:

BadGen(r) = the number of correctly diagnosed cases in which,

if r had been satisfied for had a higher confidence

factor) the case would have been misdiagnosed.

The problem with BadGen, however, is that from a computational point of

view it is not consistent with a general divide and conquer strategy. To compute

BadGen(r) requires one to analyze every case in the data base having a PDX that

does not match the conclusion of r (to see whether the satisfaction of r, or an

increase in its confidence factor would lead to a false positive). In general for

any endpoint there will be far more cases in which it is the wrong conclusion,

than cases in which it is the right conclusion. (Nevertheless, it might be

worthwhile to implement something like BadGen on the grounds that its potential

for yielding savings by filtering out more unacceptable refinements at the

generation phase might be worth the additional cost; in general there is a trade-

off between the amount of time one is willing to invest in the refinement

generation process and the amount of work one will have to do in the

experimentation process. This is an example of an option that is made available

by utilizing a metalinguistic approach.)

We therefore have settled on the quantity [SpecA(r) + SpecB(r)] as an

estimator of LFP due to a generalization refinement, and as such the conditions

148

Gen(r) > [SpecA (r) +
SpecB (r)]

and

GenCf (r) > [SpecA (r) + SpecB (r)]

in our generalization heuristics for SEEK2 are our approximations to condition

(1). In this context we are using [SpecA(r) + SpecB(r)] as a estimator on the

grounds that the "future will resemble will the past," i.e., generalizing a rule that

is aiready responsible for [SpecA(r) + SpecB(r)] FPs will cause the rule to

generate another [SpecA(r) + SpecB(r)] FPs.

A similar account of the role of the conditions

SpecA(r) >Signif(r)

and

[SpecA (/-) + SpecB (r)] > Si gnif-Level (r,Mean-PDX-CF (
[SpecA- mceses (r) + SpecB-meases (r)]))

as approximations to condition (2) can be given. In this case we use SpecA

and [SpecA * SpecB] as estimators of A7W due to a specialization refinement,

and Signif and Signif-Level as an estimators of LFN for the same refinement;

these correspondences are intuitively plausible. (Signif-Level is used only for

evaluating confidence lowering refinements).

4.7.2. Discussion of Max-Gain Heuristics

Taking the Max-gain approach to refinement generation means not worrying

about the possibility of increasing the number of FFs and FN's over Ceases when

generating refinements to reduce their number over the meases. Given our

analysis for the Max-gain+Min-loss approach, it is a simple matter to recover

from it an analysis for the pure Max-gain approach. The basic alterations to the

analysis are to ignore the second clauses in conditions (1) and (2). Therefore, for

generalizations we want predictors of LTP only, and for specializations we want

predictors of LTN only. The same estimators of these quantities that were used in

the Max-gain+Min-loss approach can obviously be used in the Max-gain approach

as well. Thus, e.g., instead of comparing Genfr) with SpecAirhSpecB(r), we

simply check whether Genfr) is greater than 0, to determine whether

generalization refinement experiments for r should be generated. Note that, for

any r-situation, the experiments suggested by this Max-Gain approach must be a

superset of the experiments suggested by the Max-Gain+Min-Loss approach.

4.7.2.1. Mixed Approaches

There is, however, a third possibility. Signif and Signif-Level are two r-

functions for rule conservation that are basically intended to be estimators of

LFN that can occur as a result of a specialization refinement One might

therefore use these r-functions as before, but eschew the use of SpecA, SpecB as

estimators of AFP for generalizations, since we know that the latter are not

particularly suited for this role. This approach is a mixture of max-gain and

max-gain+min-loss .

4.7.3." Specification of Refinement Experiments

Actually the analysis so far provides only one piece of information, viz., for

which rules should have we generate refinements? Depending upon whether one

adopts max-gain or max-gain+min-loss, one may get different answers to this

question for a given r-situation, but the next questions are the same no matter

which approach we use: given an implicated rule, which of its components should

be revised, and in what manner?

Sometimes the answers are obvious given the information that implicated the

rule in the first place, e.g., genCF rules should have their confidence factors

raised, where the new value can be determined in the manner we discussed earlier

(p. 121). When the answers are not obvious we can try to answer the first

question by using additional relevant r-function calls in an attempt to localize the

problem to certain components in the rule. For example, for implicated gen

rules, a natural thing to do in first-order analysis is to find Mfmc. (For

implicated Spec rules a natural thing is to find the components with minimum

DSMs, but as we mentioned earlier this measure is not currently implemented in

A version of SEEK2 that uses a mixed approach has been implemented and
compared with the currently used Max-gain+Min-loss approach. The results
agreed with our expectations: the set of experiments suggested by the latter
approach was a subset of the experiments suggested by the former. However, in
the cases tested, the additional experiments generated by the mixed approach did

SEEK2).

At this point we have either managed to localize our concern to a single

component of the rule, or not In the latter case - which will generally arise for

Spec rules - since our goal is to generate refinements with the largest On-target

sets, the best thing we can do is to select a component of a type that has the

least radical generic refinement operators applicable to it. Once a component has

been selected in this manner, we proceed in the same way we do for the former

case.

In whatever manner we have managed to localize our considerations to a

single component c, our choices for y are obviously constrained by the nature of

c, the refinement operators applicable to it, and the type - generalization or

specialization- of refinement to be generated. As we have seen in our discussion

of r-functions, in some cases, e.g., a numerical finding, additional r-function calls

can provide useful information in formulating an effective refinement operation.

If such additional information is not available, we make an educated guess on the

basis of the aforementioned constraints and conservatism constraints. For

example, if we have localized to a choice component of a gen rule, and we have

no further information, a conservative educated guess is to decrease the choice-

number by 1.

There is one special case. If the localized component is an intermediate

hypothesis H, then besides possibly generating a refinement to H itself, we

definitely want to back-chain the analysis to the intermediate rules that conclude

H. As we have seen above, back-chained analysis of intermediate rules closely

resembles the initial analysis of endpoint rules. (Recall that SEEK2 does not back-

chain on intermediate hypothesis in Spec situations.)

The reader is now in a position to fully understand the r-knowledge, or r-

heuristics, that we have incorporated in SEEK2, and that is exhibited in below.

4.7.3.1. SEEKTs R-Knowledge

VR-Generalization Heuristics

(These are called VR heuristics because they contain only r-function

calls in there premises).

1. If: Gen(rule) > [SpecA(rule) + SpecB(rule)] &

Mfmc(rule) is equal to CHOICE c

Then: Decrease the choice-number of CHOICE c in rule.

2. If: Gen(rule) > [SpecA(rule) + SpecB(rule)] &

Mfmc(rule) is some NON-CHOICE component

Then: Delete this NON-CHOICE component in rule.

3. If: GenCF(rule) > [SpecA(rule) + SpecB(rule)]

Then: raise the confidence level of the rule to

Mean-CDX-CF(GenCF-mcases(rule)).

RR-Generalization Heuristics

(These are called RR-heuristics because their premises make reference to

the conclusions of VR or RR heuristics.)

4. Refine Confidence Range of Intermediate Hypothesis

i) If: the NON-CHOICE component that has been suggested to be

deleted from rule rl is an INTERMEDIATE-HYPOTHESIS H with

associated confidence range (L:U) &

the majority of Gen-mcases(rl) in which H is not set in

the range (L:U) are ones in which H's confidence factor

is set below L

Then: lower the value of L in the range (L:U) in rl to

Mean-value(H> (case) case is a member of Gen(rl) & the

confidence for H in case is less than Ll)

ii) If: the NON-CHOICE component that has been suggested to be

deleted from rule rl is an INTERMEDIATE-HYPOTHESIS H with

associated confidence range (L:U) &

the majority of Gen-mcases(rl) in which H is not set in

the range (L:U) are ones in which H's confidence factor

is set above U

Then: raise the value of U in the range (L:U) in rl to

Mean-value(R {case| case is a member of Gen(rl) & the

confidence for H in case is greater than U})

5. Refine Range of Numerical Finding

i) If: the NON-CHOICE component that has been suggested to be

deleted from rule rl is a NUMERICAL-FINDING F with

associated range (L:U) &

the majority of Gen-mcases(rl) in which F does not have a

value in the range (L:U) are ones in which F's value

is less than L

Then: lower the value of L in the range (L:U) in rl to

Mean-value(F, (casej case is a member of Gen(rl) & the value

for F in case is less than L})

ii) If: the NON-CHOICE component that has been suggested to be

deleted from rule rl is a NUMERICAL-FINDING F with

associated range (L:U) &

the majority of Gen-mcases(rl) in which F does not have a

value in the range (L:U) are ones in which F's value

is greater than U

Then: raise the value of U in the range (L:U) in rl to

Mean-value(F, {case| case is a member of Gen(ri) &. the value

for F in case is greater than U})

Control Heuristics

(The following is said to be a control heuristic because it specifies

under what circumstances analysis should be backchained to intermediate

rules.)

6. If: the NON-CHOICE component that has been suggested to be

deleted from the rule rl is an INTERMEDIATE-HYPOTHESIS &

r2 is a rule that concludes the INTERMEDIATE-HYPOTHESIS (at

the indicated confidence range) &

r2 is closest to being satisfied in a plurality of Gen-mcases(rl)

Then: Identify the most frequently missing component of r2 relative

to the cases in which rl was chosen to be generalized; if

it is a CHOICE, lower the choice-number, if it is a

NON-CHOICE, delete it, or, if it is an INTERMEDIATE

HYPOTHESIS, apply this heuristic again.

Specialization Heuristics

7. If: SpecA(rule) > Signif(rule) &

there is a CHOICE in rule

Then: Increase the choice-number of CHOICE in rule.

8. If: SpecA(rule) > Signif(rule) > 0 &

c component with range [L:U] in rule &

L'=Mean(c,Signif-cases(rule))-2*(Standard-deviation) &

L < L* < Mean(c,Signif-cases(rule))

Then: raise L to V

9. If: SpecA(rule) > Signif(rule) > 0 &

c component with range [L:U] in rule &

U<=Mean(c,Signif-cases(rule))+2*(Standard-deviation) &

Mean(c,Signif-cases(rule)) < IT < U

Then: lower U to U'

10. If: [SpecA(rule) + SpecB(rule)] >

Signif-Uvel(rule,Mean-PDX-CF([SpecA-mcases(rule) +

SpecB-mcases(rule)])

Then: lower the confidence level of the rule to

Mean-PDX-CF([SpecA-mcases(rule) + SpecB-mcases(rule)]).

4.8. Failure-Driven Higher-Order Analysis: Outline of a Scenario

Suppose that r is the only gen rule for a given a, and c is its Mfmc.

Suppose that we have generated and tested every plausible refinement to c. and

that in each case no improvement in empirical adequacy resulted. At this point,

the first step is to find out whether these failures resulted because actual gains in

TPs over M were offset by new FPs over Ceases, or because these refinements

were not effective in increasing TPs over M itself. We analyze the latter case

first

Obviously, if even deletion of c from r did not increase TPs over M, there

must be at least one other component of r missing in each of the meases in the

on-target set. This is a situation reminiscent of our discussion above (page 126)

of the more sophisticated higher-order approach to localizing likely components

of gen rules. At this point therefore, some version of that idea might be used

identify either a single component other than Mfmc to generalize, or some

combination of Components.

If we are in the former situation, however, there is no point in looking for

better ways to generalize r, since the refinements already generated are known to

increase TPs over M. The problem is to prevent their increasing FPs over Ceases.

Let v be the set of former ceases that become meases when r is generalized. On

the face of it, it seems that we have a dilemma: either we generalize r and lose

the u ceases, or we fail to generalize r and continue to lose the gen-mcases(r).

Does this failure of refinability call for rule acquisition or higher-order analysis?

There are higher-order procedures that can be attempted in this situation.

For example, maybe the problem can be alleviated by lowering r's confidence in

tandem with one of the original refinements that was successful over M. The idea

is to lower r's confidence to a point where it still corrects as many cases in M as

possible, but reduces the size of u as far as possible. To do this we could take

the mean of PDX over the cases in M=m and the mean of the CDX over the
i

cases in gen-mcases(r)=m . We know that we can drop the confidence of r to a

value somewhere above m , and still correct the majority and perhaps most of the

cases in gen-mcases(r). If m <m • this lowering of confidence will still result in

the majority of cases in u being lost. On the other hand, if m > m , then it is
1 2

possible that lowering r's confidence to a value closer to m and farther from m ,

will have the effect of correcting the majority of cases in gen-mcases(r) without

causing major loses over the current ceases.

4.9. Summary

In this chapter we have presented the viewfinder of SEEK2's first-order

heuristic refinement generator. In part this was done in order to pave the way

for discussions of the role of a metalinguistic framework in the design of

refinement systems; the exposition was also intended to show the power of the

metalinguistic primitives selected.

We have also presented an architecture for extending or deepening the

simple or "flat" model of heuristic refinement generation. We have discussed

situations in which the notion of failure-driven higher-order refinement has

applicability, and have given some idea of heuristics and procedures that can be

applied in these situations. The question of when to look for and attempt to

take advantage of such situations, is a key issue in contemplating higher-order

refinement. For example, should a refinement system "always" attempt to

discover situations amenable to higher-order refinement, i.e., in every cycle of

refinement generation, or should it only make such an attempt when it reaches a

point where all of its proposed first-order refinements are known to fail? These

are issues involving the overall control strategy and tactics employed by a

refinement system, which is the subject of the next chapter. Once we have

160

discussed general questions concerning control we will be in a position to discuss

some of the concrete issues involved in implementing a failure-driven approach to

higher-order refinement (see chapter 6).

CHAPTER 5

STRATEGY AND TACTICS

5.1. Integration of The Three Strategic Components

There are essentially three distinct strategic aims one usually wants to

accomplish in one way or another with a refinement system.

The first aim is to locate, as well as possible, and to as fine a grain as is

possible, "places" in the knowledge base where errors are present This is

analogous to the problems of locating hardware flaws in an actual circuit or a

design flaw in a circuit schematic. In fact all of these problems can be

considered as instances of a class of problems that I have defined elsewhere,

[Ginsberg 84], and called localization problems. I therefore call the first

component of our strategy the fault localization component The localization

issue is one that we have already touched upon in our discussion of refinement

generation; we will have a brief discussion of it below.

Given that we have reason to believe that certain rules or rule-components

are faulty, our second aim is to suggest ways of correcting these errors. This is

the issue addressed by the second component of the overall strategy, and we will

call it the refinement generation component This strategic aim is truly at the

heart of the problem, but since it is an issue to which we have already devoted

much attention (Chapters 6, 4), we have little to add here.

The third component addresses the issue of refinement verification and

selection. Once we have generated some refinement possibilities, we want to

know which of them, or which combinations of them, improve the empirical

adequacy of the knowledge base, and which ought to be recommended for

adoption, or tentatively incorporated in the knowledge base. This is the strategic

aim that we have said the least about up until this point, and will therefore

concentrate on in this chapter.

The main task of this chapter is to consider ways in which these three

components may be integrated in a unified coherent strategy for doing knowledge

base refinement.

5.2. Fault Localization

5.2.1. Philosophical Prelude

The analogy between the strategic aims of fault localization in knowledge

base refinement and hardware fault diagnosis, also carries over to a certain degree

at the level of strategic principles in the two problem domains. For example, in

both problems one tries to use the inherent hierarchical relationships among the

components of the entire (domain) system in order to aid in the search for

flaws [Genesereth 82].

But the analogy has its limits and can be misleading if carried too far. In

hardware (or design) fault diagnosis the issues of where the fault is and what to

do about it, are not only conceptually distinct, they can be attacked separately in

practice, and successfully so. This is because there are, in general, definitive

observable criteria by which it can be determined that a fault exists at a certain

location in the circuit. For example, if a circuit module is supposed to output a

1 at a port when a 0 is input at another port, then if the expected behavior is

not observed we know that the module is faulty. Of course, to know this with

"absolute certainty" in the case of an actual piece of hardware we have to know

certain other things with absolute certainty, e.g., the failure was not a transient

effect of random interference from a distant source. Clearly we are never in a

position to rule out every other possible explanation of the failure with absolute

certainty, but rarely is anything remotely approaching such certainty desired. If

we are willing to make some assumptions, that may often be justified in ordinary

circumstances, then we can say that obtaining conclusive evidence of faultiness

is not only a real possibility in hardware fault diagnosis, but is in fact often

obtained. This observation is even more pertinent with respect to fault diagnosis

at the design level. This means that, for most intents and purposes, one can

drive a fairly sharp wedge between the strategic goals of fault localization (where

is the fault?) and fault classification (what is its nature?) and correction (how

to fix it?) in hardware fault diagnosis.

The situation in knowledge base refinement is usually quite different,

depending upon the nature of the domain of expertise the knowledge base is

intended to capture. In the usual case, the rules in an expert system represent

inductive rules of inference, and this is what we assume in our work. (If a

knowledge base, however, contained rules that were intended to represent relations

between premises and conclusions that could be made with deductive or

mathematical validity, the analogy to fault localization in hardware fault diagnosis

would be that much deeper, since putative logical or mathematical relationships

must hold universally, i.e., one counterexample is proof of invalidity.) In a

typical expert system domain, e.g., a branch of medical diagnosis, the rules will

represent empirical associations of varying degrees of "necessity." Often the

necessity of the association is purely a matter of statistical relevance of certain

features to others; sometimes there is an understanding of the association in terms

of underlying causal mechanisms, but more often than not the complexity of the

problem together with limitations in the experts' understanding of these

mechanisms is such that they must be regarded as non-deterministic, i.e., the

corresponding associations must still be expressed in statistical laws. In such a

domain the fact that a single case is known in which a rule sanctioned an

inference that is incorrect, is usually not conclusive evidence that the rule is

suitable for refinement. What is worse, definitive criteria for such evidence

cannot be given. If we observe ten counterexamples and no positive instances to

a rule which has a confidence factor of, say .7, is that definitive evidence that

the rule is flawed in any way? The answer is no, for a very simple reason: the

problem can always in principle be attributed to a failure to acquire other rules,

rather than to a flaw in this rule.

165

In knowledge base refinement, therefore, while we can drive a conceptual

wedge between the strategic aims of fault localization and fault correction, in

practice this distinction can be sometimes obscured. The best evidence that we

have located a faulty rule is the knowledge that if we refine it in a certain way

then empirical adequacy is improved. If case evidence leads us to believe that a

rule is flawed and we find that a certain refinement to the rule improves

empirical adequacy, and we find no other refinement to another rule that does

equally well, then we have even more reason to believe that we located a "real"

flaw to begin with. If the expert approves of this refinement, then we are

finally justified in concluding with relative certainty that a flaw was located.

However, even after the refinement has been given expert approval, we can still

pose doubts concerning its appropriateness or validity. Conversely, if we find

that all plausible refinements to the rule in question fail to lead to adequate gains

in empirical adequacy, etc., we may consider this as evidence that the rule was

"OK" to begin with after all. Knowledge base refinement is truly an exercise in

pragmatism.

The result of this discussion is that our division of the problem into three

components does not mean that solutions to each component can be given in

complete isolation from the others. Thus while we may offer certain strategic

principles in relation to the interpretation of one strategic component, in many

cases the principle will have implications for the entire problem.

5.2.2. Strategic Principles for Initial Fault Localization

While we can't hope to localize faults all the way down to the component

level without doing refinement generation, we can hope to initially localize faults

to the rule level, i.e., to sets of rules, by using other criteria. The details of

how this is done for a first-order refinement system have already been discussed

in chapter 4. To review briefly, given any mease we can localize the rules

responsible for it to those in rule-chains for either PDX(mcase) = the expert's

conclusion in mease, or CDX(mcase) = the knowledge base's conclusion in mease.

This criterion is sufficient to enable us to divide the overall problem of

improving the knowledge base's performance into subproblems involving one dx,

i.e., we deal with r-situations <R,M> in which

M=M(dx)= {mease | FP(dx,mcase)vFN(dx,mcase)}, and R is defined as in chapter 4,

i.e., the set of rules that are in some rule-chain with dx as the endpoint Note

that R is also a function of dx, so we can write R(dx). It is then up to the

refinement generator to further localize the problem.

One must be clear, however, as to how far this application of the strategy

of divide-and-conquer goes. One could understand it as extending through all

three strategic components of the refinement process. Viewing it in this way

would mean that one would deal with each r-situation independently of the others

even in the verification and selection phases of the process. In other words, for

each endpoint dx, one would refine the rules for it with the goal that the cases

in M(dx) should be corrected, without worrying about the other cases.

In the general case this wholesale adoption of divide-and-conquer is

misguided. If we reduce the size of M(dx) by refining the rules involved in

concluding dx , while ignoring the effects of the refinements on other cases, then
i

we have no way of knowing that we haven't created more meases than we have

gained. Divide-and-conquer makes sense for localization and refinement

generation. To use it in verification and selection is, in general, a waste of time,

and likely to be counterproductive. Only if we have special knowledge to the

effect that the rules and cases for each dx have minimal "interaction" with one

another, is wholesale use of divide-and-conquer justifiable.

Another important strategic principle for fault localization is also already

familiar from our previous discussions. This is the idea of using the hierarchical

logical structure of the knowledge base to guide our search for faulty rules.

Thus, in heuristic refinement generation, we begin our analysis with endpoint rules

and proceed to intermediate rules only when hypotheses components are implicated

in the former. As noted before, back-chaining up a rule-chain may be repeated

as many times as warranted.

There is another manner in which this strategic principle may be applied in

knowledge base refinement. In some knowledge bases, the endpoints themselves

are ordered in hierarchical fashion; we call such an ordering a taxonomy ([Weiss

and Kulikowski 79]). To use automobile fault diagnosis as an example, while

both dx = car has electrical system problems and dx = battery is discharged

are both endpoints, if we employ a taxonomy we will designate dx as a

"predecessor" of dx , i.e., dx̂ is one type of electrical problem. Such a taxonomy

is a hierarchical structure whose logical properties can be exploited for the

purpose of more efficient fault localization. For example, if PDX(mcase)=dx ,

but CDX(mcase)=dx , where, as above dx falls under dx in the taxonomy, then
1 2 1

we can localize the fault in this mease to the rules that conclude dx .
2

5.3, Verification and Selection

We now move on to the topic of strategies for verification and seiection

of refinements. In contrast to fault localization, the situation here is somewhat

less clear. Aside from the knowledge that it is wise to test refinements over the

entire data base of cases, there are no obvious strategic principles that determine

the basic outlines of the process. In large part, the choice of verification and

selection regime depends on the sort of performance we would like our

refinement system to achieve, and the nature of the search algorithm used to

achieve that level of performance. The nature of this connection will become

clear below. But the fact that the connection exists makes it difficult to discuss

verification and selection in a vacuum, i.e., without assuming something about the

overall search strategy employed.

Therefore in this section we will discuss the issues of verification and

selection of refinements in relation to three very general, mutually exclusive, and

exhaustive options for doing knowledge base refinement. The three options are i)

ground-zero systems: these work solely with the initial knowledge base, i.e., they

do not tentatively incorporate refinements, ii) single-generation systems: these

incorporate refinements, analyzing successive versions of the original knowledge

base, but at any time have access only to the latest version, iii)

mufti pie-generation systems: these are like single-generation systems except that

they have access to multiple versions of the knowledge base at any time.

5.3.1. An Important Ground Rule

Before discussing the three options, we first need to state a "ground ruleM

that all three of them will be understood to obey.

The ground rule is the rule of complete case analysis. This is a shorthand

way of referring to the principle that no selection (or final ranking) of

refinements generated for any r-situation is to be done prior to the generation

and testing of refinements for every r-situation involving the* current knowledge

base. In other words, before selecting any refinement for tentative incorporation,

the refinement system must first do refinement generation and testing (of every

refinement so generated) for every dxeDX, i.e., every <R(dx),M(dx)> must be

analyzed. (Of course if M(dx)=# for a dx, then the "analysis" of the

corresponding r-situation is trivial.)

In a work where we have usually expended considerable effort in order to

keep our analysis as general and flexible as possible one might wonder why we

choose to impose such a seemingly arbitrary ground rule. For one thing the

assumption of complete case analysis makes it much easier to conduct a

meaningful comparative discussion of the three strategies to be presented. The

main reason, however, is that no matter which strategy we use, the assumption of

complete case analysis makes good sense. Clearly, for ground-zero and single-

generation systems it would be reckless to change the only version of the

knowledge base we have before completing our analysis of it. In the case of

multi-generation system, since multiple versions of the knowledge base are in

hand, failure to adhere to the principle of complete case analysis would not be

disastrous. However, as we shall see below, there are nonetheless good strategic

reasons for adhering to this principle.

5.3.2. Verification and Selection in Ground-Zero Refinement Systems

A ground-zero system is one that never selects refinements for tentative

incorporation in kb (the initially given knowledge base), rather its analysis is
o

always conducted with respect to kb . As output a ground-zero system will, at
o

the very least, produce a list of refinements to kb that have been verified to
o

yield such-and-such a gain in empirical adequacy.

Failure to incorporate refinements is not, in itself, a failing, since the expert

is always the final judge over the admissibility of refinements. However, while a

ground-zero system does not need to worry about selection issues as such, if the

system is to be of maximum utility, it has to be all the more concerned with

verification issues. In other words, if all the system does is report findings of

the form "refinement y yields net gain of n cases/' where the list of such

findings is potentially large, the system is less useful than one that could say

something more about the relative merits of these refinements. Simply reporting

the results in order of decreasing net gain would be of some use. However, what

we have in mind is something much more useful. Suppose that refinements 7
1

and 7; are known to result in (positive) net gains n and n^ respectively. This

information still leaves open the question of what the combined effect of

incorporating both 7 and 7 in kb will be. The simple way of obtaining this
1 2 0

information is to do a test of this joint refinement over the entire data base of

cases, just as we have already done for each refinement separately.

Let G(7,kb,C) be a function that for a given refinement to the kb, whether

simple or complex, returns the net gain in cases in C that results. For

7= {7 ,7 }, there are four possibilities of interest-

Empirical non-interference

G(7,kb,C)=G(7 ,kb,OG(7^kb,C)

Constructive interference:

G(7,kb,C)

Destructive interference:

G(T,kb,C) < Max {G^.kb.O.G^.kb.

Indeterminate:

G(7.kb,C) * Max {G(7 ,kb,C),G(7 ,kb.C)}
I 2

and

G(7,kb,C)

Let us examine each of these in turn. If 7 and 7 are empirically

non-interfering, the net effect of their joint incorporation is simply the sum of

the net effect of their single incorporation. It is important to note that

empirical non-interference of refinements, as well as the three other properties

listed, is not a function solely of the refinements and the kb but also of the

current composition of C. Two refinements that are empirically independent with

respect to C might fail to be so if new cases were added to C.

If it turns out that the net effect of joint incorporation is greater than the

sum of the two refinements taken singly, then we have constructive interference.

If it turns out that the net effect of joint incorporation is less than the

maximum of the two refinements taken singly, then we have destructive

interference. In this case, and only in this case, can we say with certainty that

somehow one or more cases that would have been gained by one of the

refinements singly, is lost as a result of the joint refinement If the joint result

is greater than or equal to the maximum of the two but less than their sum, this

could just as easily be the result of the two refinements being redundant over

some cases, i.e., there is some overlap in the cases they correct singly; for this

reason we label the results indeterminate.

Common sense seems to dictate the following precepts. Empirically non-

interfering and constructively interfering refinements ought to be grouped together

and recommended for joint incorporation. Destructively interfering and

indeterminate refinements should be kept apart

There is no reason to limit this joint verification idea to two refinements.

Given a set r of n refinements of positive net gain, we would like to know all

the "maximal" joint subsets of I\ i.e., subsets of T consisting of refinements

whose joint incorporation into kb results in a net gain that is greater than

or equal to the sum of the single gains, and such that no other member of T

can be added to the subset without violation of this condition.

A sophisticated ground-zero system might therefore work something like this.

First it will generate and test refinements for each current r-situation over C,

keeping a list of those that have positive net gain. At the end of this phase it

will compute all the maximal joint subsets of refinements from this list, and then

rank the resulting maximal sets in order of decreasing net gain.

Such a procedure might seem to be too costly. If there are n members of

the initial list, then 2n subsets will have to be tested. Note that we cannot cut

174

down on the cost by making use of assumptions concerning the above properties

that may seem natural but are in fact not justified. There is no reason to

believe, for example, that empirical independence is a transitive property, i.e., if

a and 0 are empirically independent and 0 and y are empirically independent, it

does not follow that a and y are.

Given that this procedure is too costly, what are the alternatives? An

approximation algorithm that I find attractive will now be discussed.

Intuitively, the idea behind the algorithm is to find one or more maximal subsets

in an incremental fashion, although none of the maximal subsets generated is

guaranteed to be among the best in terms of overall net gain. Let r=7 ...7 be
1 n

the initial set of refinements ordered (from 1 to n) in terms of decreasing net

gain. Let <J be initialized to {7 }. Let $ be initialized to 7 . Now for every

other 7, i=2 n we do the following.

if

G U J {7) .kb.C) £ CHw.kb,C)+G(7 ,kb,C)
1 l

(adding 7 to u leads to an increase over G(cj,kb,C)
i

as least as great as G<7 ,kb,O)

then

(add 7 to u)

else

At this point CJ is a maximal set in the above sense - this is obvious by its

construction - although it need not be one with the greatest net gain. At this

point we can repeat the procedure using 5 as the initial set We continue until

every member of the initial set belongs to some maximal set, i.e., until a pass

yields $=0. In the worst case this procedure will require on the order of n2

verification runs over C. When we are done we may not have discovered all the

maximal sets, nor those with greatest net gain, but we have succeeded in imposing

some order on what is otherwise a mass of unrelated results. As we shall see

below, this procedure is also useful in single and multi-generation systems.

The general point to be made here is that a good refinement system cannot

avoid the issue of selection. A good ground-zero system will present its findings

in a way that is more or less the same as a system that does tentative selection.

Therefore the issue of choice of a selection criterion, which we discuss below, has

implications for the verification component of a ground-zero system.

The main advantage of a ground-zero system is also its main disadvantage.

By eschewing tentative incorporation of refinements a ground-zero system

eliminates the problem of "dependency chains" of refinements, that is, the final

results reported by a ground-zero system are independent, in the sense that the

net gain engendered by one refinement does not depend upon incorporation of

any other refinements presented. This is true even if the results are in the form

of maximal sets as we have advocated, i.e., incorporation of any non-empty subset

of a maximal set will result in a net gain. But there is another sense in which

these refinements are independent: each refinement is discovered by doing

refinement generation over kb . In a generational system, on the other hand,
o

after doing some tentative incorporation, one may be working only with

knowledge bases that are refined versions of kb . The results of refinement
o

generation over these refined knowledge bases may depend upon earlier changes

made to kb . If the earlier changes are later rejected by the expert, the work
0

done in latter phases was for nought.

But the whole point of a generational system is to introduce changes in kb
0

that will "loosen things up a bit" and thus lead to new possibilities for refinement

generation, and discovery of proven refinements. If tentative incorporation of

refinements to kb does not ipso facto lead to new refinement generation
o

possibilities, or positive verification for refinements that previously resulted in

zero or negative net gain, then we may as well use a ground-zero system.

Therefore, the main disadvantage of a ground-zero system is that it misses out on

the discovery of new refinement generation possibilities that could come from

tentative incorporation.

How much of a loss or disadvantage this is depends upon the level of

analysis carried out by a ground-zero system's refinement generator. The higher

the order of the analysis, the more complex the generated refinement operations

can be, and therefore the less likely it is that a useful refinement will be missed.

5.3.3. Verification and Selection in Single-Generation Refinement Systems

A single-generation refinement system is one that at any time has only one

version of the knowledge base available for analysis. Whenever a tentative

incorporation is made, the old version of the knowledge base is no longer

available. A single-generation system that does tentative incorporation is said to

be cyclic, where the cycles are demarcated by the sequence of successive

knowledge bases.

As we remarked in the previous section, the intent of such a system is to

follow up on new refinement generation possibilities, as well as retest old

refinements in a new environment, created by incorporating proven refinements.

The fact is that no matter what the level of analysis conducted by the refinement

generator, one cannot rule out the possibility that incorporation of a proven

refinement will result in r-situations that will yield new plausible refinements

when analyzed by the same mechanism. Moreover, once some tentative

incorporation is made, old refinements that previously led to little or no gain,

may now produce positive net gains.

SEEK2 [Ginsberg, Weiss, and Politakis 85] is a cyclic system. In each cycle

it does a complete case analysis, as defined above, and then it tentatively

incorporates the single refinement that yields the greatest net gain over the

current version of the knowledge base. It halts when none of the refinements

generated in a cycle lead to a positive net gain. The output of the program is

the set of refinements that have been discovered to lead to this result, together

with the appropriate statistics on net gain and overall performance breakdown.

Given our previous discussion, there is one way in which a cyclic system

such as SEEK2 can be augmented by additional useful information. When the

system halts and has selected a set of refinements 7 ...7 (listed here in order of
1 n

selection) the user is not told whether or not there are any dependencies among

these refinements. Since 7 was selected with respect to kb , we know that it
1 0

can be incorporated into kb with a resulting net gain. But we don't know
0

whether the same can or cannot be said of 7 through 7 . A simple way in
2 n

which information concerning this question can be obtained is the following. Let

0 be the set of refinements generated and tested in the first cycle that are

verified to lead to a positive net gain. Note that if any of the selected

refinements 7 is a member of 0 , this entails that 7 can be incorporated directly
i 1 i

into kb with a resulting positive net gain. On the other hand, if 7 is not a
0 1

member of 0 then it may be concluded that 7 's positive contribution to
1 i

empirical adequacy is dependent upon at least one of the earlier refinements 7,
j

j<i. Therefore, by keeping a record of 0 a cyclic system can give the user

some information concerning the relative dependence or independence of the final

set of refinements selected.

This point also raises a question concerning the selection policy of a cyclic

system. Instead of incorporating the single best refinement in a cycle, one could

incorporate a maximal subset of all generated refinements in the cycle that have

positive net gain. The approximation algorithm given above could be used for

this purpose. In terms of cost-effectiveness, the idea is that while the cost per

cycle would increase, one would avoid re-generation and re-testing of the same

refinements over and over again in successive cycles.

An interesting question concerning this procedure is whether it has a good,

bad, or no effect on the nature of the final refined version of the knowledge

base produced. Assuming that both the simple selection policy and the complex

policy can be employed in such a way as to always lead to a local maximum -

this is an assumption we will investigate and justify below (see section 5.5) - can

one be said to generally reach a better local maximum than the other? We will

consider this once we have examined further how either of these procedures can

be said to reach a local maximum.

5.3.4. Verification and Selection in Multiple-Generation Refinement Systems

In a multiple-generation refinement system at any given time the system has

access to an, in principle, unlimited number of refined versions of kb . Data
0

structures and procedures for implementing such a scheme have been design and

utilized in RM (see chapter 6). At this point the basic fact to keep in mind is

that any refined version kb ' of kb is completed determined by the set of
o

refinement operations that lead from the latter to the former.

The new possibilities for verification and selection policies opened up by a

multiple-generation system are legion. For example, suppose all the "old" versions

of the knowledge base are accessible, along with several "current" versions (see

figure 5-0), i.e., we have a lattice of knowledge bases rooted at kb . Essentially,
o

at any time, we now have an historical record of how the refinement session has

proceeded. Looking up the paths in the lattice, we can access (perhaps by re-

generating) the earlier views of the knowledge base. This allows for the

possibility of strategic c-heuristics (see chapter 6) that take account of the

evolution of the views associated with the various versions of kb , and not just
o

the knowledge bases themselves. Perhaps by comparing mfonnation from earlier

views with a current view, and using feedback information generated by the

earlier testing of refinements, one might be in a position to predict the effect of

a currently suggested refinement. This idea is speculation, but it a potential topic

for future investigation.

At a less speculative level, there are several advantages to using a multiple-

generation control strategy, as opposed to a cyclic system. First, such a strategy

can be used to decrease the number of arbitrary choices that must be made by a

cyclic system. In a cyclic system it can happen that within a given cycle two or

more refinements are tied for first place in net gain. We must choose one. (A

similar arbitrary choice between maximal subsets of refinements can also arise in

the case of the more complex selection strategy). If these refinements are

empirically equivalent or destructively interfering we may never again have the

opportunity to choose the refinement that was rejected, since under such

Figure 5-1: Multiple-Generation System

o - Active knowledge base

circumstances it is unlikely that it will be re-generated in ensuing cycles. Perhaps

if we had chosen differently, the final results might be different. Moreover, who

is to say that the refinement we rejected, quite arbitrarily, is not a good one in

the eyes of the expert? By allowing for multiple current version of the

knowledge base one can adjudicate such conflicts in a perfectly fair manner: every

time such a choice would have to be made in a cyclic system, a multiple-

generation system will create a new version of the knowledge base corresponding

to each of the possible choices. Of course, this means that the number of

current knowledge bases available for further analysis will increase by the same

number.

Taking the logic of this argument to an extreme, one can argue that the

policy of selecting the single best refinement (or single best maximal subset of

refinements) generated in a cycle is also somewhat arbitrary. For example, if the

best refinement has a net gain of +25, and the next best has a net gain of ^24,

why select the former over the latter? A response to this criticism would lead us

in the direction of a type of breadth-first search algorithm. This would work as

follows. Starting with kb as the root node, we generate all refinements, as
0

required by the principle of complete case analysis, test them over C and for

each refinement that has a positive net gain we generate a successor node

representing the kb that results from refining kb in the specified way. We now
o

do the same thing for every successor node, etc.

Besides the fact that this approach will be too costly to use in general, it

suffers from the problem we have mentioned in connection with cyclic systems,

viz., there could be concealed dependencies among the refinements generated in

successive nodes. This problem can be addressed by incorporating something like

the approximation algorithm given above into the current procedure. Thus given

a node kb that has already been generated, using the approximation algorithm we

would generate kb's successors as follows. Let r be the set of refinements with

positive net gain generated at node kb. We apply our approximation algorithm

for generating maximal subsets of F. For each such subset F' generated we

create a successor node kb' that represents the knowledge base resulting

from application of T' to kb. We now generate refinements for kb' and all the

other successors of kb and proceed as before.

Neither the simple breadth-first search technique, nor the complex version

of it just presented are likely to be computationally practical. However, it would

be premature to rule out such procedures on grounds of complexity, without first

looking into the expected improvements that would ensue via exploitation of the

inherent parallelism of the procedure. Again, this is a topic for future

investigation.

5.4. Selection Criteria

Up until now we have used size of the (positive) net gain of a refinement

as the sole selection criterion for both tentative incorporation in generational

systems, and for ranking of maximal sets in a ground-zero system. This is the

obvious choice, is it the only choice?

First of all, what happened to the spirit of conservatism? The first answer

to this question is to remember that considerations of conservatism are already

taken to account in the refinement generation process, so that highly radical

refinements with relatively small on-target sets are not likely to be offered in the

first place (given that more plausible refinements exist). But one wonders

whether the selection criterion should not provide a second line of defense against

radicalism? Recall our earlier discussions of this topic (especially in chapter 3)

which assumed that other things being equal, a less radical refinement is

preferable to a more radical one. Thus if two refinements are known to yield

not only the same net gain in terms of numbers of cases, but also in terms of

the actual cases they gain, then conservatism will surely lead us to select only the

less radical of the two. But once we compare situations that are different in

some way there are bound to be differing views as to how radicality versus net

gain should be weighed and balanced against one another. Moreover, it may be

that each of the possible attitudes towards the issue of radicality vs net gain

trade-off is most appropriate at a certain point in the evolution of a knowledge

base.

Ideally, therefore we would like to expand our metalanguage for knowledge

base refinement with primitives that are useful for customizing a system's

commitment to conservatism to suit the occasion and the expert's or knowledge

engineer's tastes. An obvious and simple idea is to allow for the specification of

thresholds on net gains, so that a refinement whose net gain falls below the

threshold will not be selected. A more sophisticated idea is to comparatively

evaluate refinements not only on the basis of the size of their net gains, but also

on the basis of how the net gain is produced. For example, suppose in r-

situation <R,M> refinement r has a net gain of three cases that results entirely

from the correction of three cases in M, while r̂ has a net gain of three cases

also but it results from six cases in M being corrected but three cases in C being

lost. Even from this information alone, conservatism constraints can be used to

justify a preference for r over r . To make the case stronger, one can add, let

us suppose, the fact that the three lost cases were present from the "very

beginning" of the enterprise of knowledge base construction and figured crucially

in the acquisition and refinement of the rules that accounted for their correct

diagnosis. A complete conservative with regard to the preservation of correct

diagnoses might argue that once the expert has sanctioned a version of the

knowledge base that correctly diagnoses a set of cases D. no refinement that loses

any of the cases in D should be selected no matter how many new cases it gains.

(Though, I, for one, am not that conservative.)

In order to allow for the metalinguistic specification of selection criteria that

embody these constraints, we introduce the notion of a paradigm. A paradigm is

a relationship between a set of rules R ckb and a set of cases C that are known
p p

to be correctly diagnosed by kb "in virtue of" R , i.e., these rules were intended
p

to deal with these cases. Specification of one or more paradigms for a

knowledge base is an instance of the use of domain-specific metaknowledge. We

stipulate that a single rule can belong at most to one paradigm. Intuitively a

paradigm should be stipulated only when the defining condition of the relation is

both known to hold for a <R ,C > pair and it is desired that any refinement to
p p

R ,or perhaps even to other rules, will preserve the paradigm. In other words,
p

there is an option here. We can be wary of violating paradigms only when

refining rules in the paradigm, or also when refining rules outside the paradigm.

There seem to be no good reasons for using paradigms in the latter way, so we

ignore it here.

Whenever a refinement for a rule r is to be evaluated for selection we

check to see if r belongs to a paradigm. If it does, we must check to see

whether r causes kb to lose any of the cases in the paradigm. If so, we can

take appropriate action according to the dictates of our brand of conservatism,

e.g. automatically reject r, reject r if some other refinement gains some/most/all

of the cases it gains without violating the refinement otherwise accept r, etc.

5.5. Searching The Universe of Knowledge Bases

Knowledge base refinement may be thought of as an "optimization" problem

in the following sense: our goal is to maximize the empirical adequacy of the

knowledge base subject to the constraints of conservatism. As we have seen, a

number of general conservatism constraints hold for any knowledge base

refinement problem, e.g., the number of rules does not change, the conclusions of

rules do not change, etc., while other conservatism constraints may be chosen on

a problem-by-problem basis.

Mathematical optimization problems involve a search through a well-defined

space or graph of possible solutions with the goal of discovering a point or a

node that maximizes a given "objective" function. In chapter 1 we indicated that

while a well-defined search space, kb-space, exists for knowledge base

refinement, the representation is not one that is amenable to the application of

mathematical optimization techniques. It is nevertheless useful to show precisely

how knowledge base refinement may be viewed as search through a space of

possible solutions. By doing so we will, for one thing, be able to give more

precise meaning to the notions of local /global maxima in the present context

5.5.1. KB-Space: The Universe of Knowledge Bases

According to our assumptions, every knowledge base contains a finite set of

rules which are "built out of" a finite set of elements. For the rule

representation language we are considering, these elements fall in one of the

following types: 1) findings, 2) hypotheses (as premises), 3) choice components, 4)

conclusions, and 5) confidence factors.

By assumption every finding corresponds to a domain feature that can either

be present or absent in a case, or take on some numerical value in a specified

range. At this point we invoke certain assumptions on numerical features and

their corresponding findings. The basic point of these assumptions is to aid in

"breaking up" one numerical feature 0 with range of possible values [l:h], into a

finite set of true/ false features 0 each representing the presence/absence of the
i

value of 0 in a specified sub-interval of [l:h]. This break-up then induces a

restriction on the way in which the corresponding finding may appear in a rule

of the knowledge base. The assumptions are the following. Let F be a

numerical finding, let <t> be its corresponding feature with range [l:h], and let C

be the ordered sequence of cells corresponding to the <f> that are produced by

breaking up the [l:h] using the step-size 8. We stipulate that whenever finding

F appears in a rule of the knowledge base it must be accompanied by a range

[a:b] that satisfies the following conditions: i) a < b, ii) both a and b are equal to

a boundary of one of the cells in C.

Given our assumptions it follows that for any numerical finding F, there are

only a finite number of ways in which it can appear as a component of a rule in

either the original knowledge base or any refined version of it, i.e., it must take

on the form F[a:b] for a and b that satisfy the stated restrictions. Moreover,

for any numerical finding, we can construct and enumerate its possible ranges.

It follows from these remarks that, in principle, an exhaustive list of all the

finding components that can ever appear in any refined version of the knowledge

base can be enumerated. An analogous set of assumptions and remarks can be

made concerning the possible forms of appearance of hypotheses in the premises

of rules, i.e., we assume each hypothesis has a specified or "legal" range of

values, and that a step-size is given, etc. Therefore for any hypothesis we can

construct and enumerate its possible ranges. Furthermore, we will also assume

that when a hypothesis appears as a rule conclusion, then the confidence factor of

that rule can be raised/lowered only in multiples of the step-size specified for

that hypothesis. A step-size is also provided for each end point. Therefore, for

any rule, there are a finite number of confidence factors that it can take on.

Suppose that for a given knowledge base KB, we have indeed constructed a

list L of all the ways in which findings and hypotheses can appear in the rules,

i.e. we have a finite list with entries of the F[a:b] and H[c:d]. Now all the

choice-components that can ever appear in any rule in the knowledge base must

have a choice-list whose elements come from L. Let n be the number of

elements in the list. Then there are 2n-l non-empty subsets of the elements in

L, and hence the same number of possible choice-lists. For each choice-list <C>

of length /, there correspond /+1 well-formed choice components, i.e., [0: <C>],

[1: <C>] [/: <C>]. Thus we can construct and enumerate all the possible

choice components that can occur in any rule, and add them to our list of

possible rule components.

Given any initial knowledge base kb , it is clear that from it we can, in
o

principle, recover the complete list of all possible rule components, as defined

above. Let us denote this list Cl(kb), where the superscript is an index on its
0

members. Using C'(kb) we will now define the space of all possible refined
0

versions of kb .
0

Let n be the number of rules in the knowledge base kb , let m be the
0

number of elements in C'(kb). A point in the kb-space based on kb will be
0 0

determined by specifying for every rule and every element of C'(kb) whether the
o

latter is a component (conjunct) of the former, and in addition by specifying the

conclusion and confidence factor of every rule. Formally a point in kb-space has

the following form:

1 m+l m+2 m
<X X ,X , . . . , X

1 1 1 n

where the subscript indexes the rules and the superscript indexes the

elements of Cl(kb). For 1 £ i < n and 1 > j £ m, xJ has the value 1 if the ith rule
0 i

contains component (^(kb), and otherwise has the value 0. The element x has
0 i

m+2

as value the conclusion of the ith rule, and the element x has as value the
i

confidence factor of the ith rule.

Clearly kb is represented by a unique point in its kb-space, and it is also
0

clear that any kb obtainable from kb by application of refinement operations
o

will have a representative point in kb-space.

A typical rule in a knowledge base generally has only a few components.

Therefore for the ith rule most of the entries xJ will be 0. This sparsity or
i

"waste of space" of the proposed representation is a non-issue, since kb-space is

important to us as an abstract mathematical tool for analysis, and not as a

potential computer data structure. A good feature of this representation is that it

defines a space of fixed dimensionality, while accommodating the full range of

refinement possibilities associated with kb .
0

5.5.2. Maximization: Local and Global

Given a kb , we have seen how a kb-space that represents its "space of
0

possible refinements'1 may be defined. In terms of kb-space, the process of

knowledge base refinement may be described as the exploration of portions of

kb-space with the point corresponding to kb as the starting point of the search.
0

Ignoring considerations of conservatism for the moment, the basic goal of this

search may be seen as the maximization of an "objective function" that measures

knowledge base performance over the data base of cases.

If c is a case and kb a point in kb-space then CDX(kb,c) returns the dx

that is concluded by kb with highest confidence in case c; if no dx is concluded

with positive confidence in case c, then CDX(kb,c) returns a distinguished "null

value." A case c is diagnosed correctly by kb if and only if PDX(c)=CDX(kb,c).

What we want to maximize is the number of cases for which this condition holds.

Let o be the microstate that characterizes the r-system (see chapter 6).

Then the function we want to maximize may be written as:

f(kb,a) = | {case|PDX(case)=CDX(kb,case)} |

= the number of cases correctly diagnosed by kb.

Let kb be a point in kb 's kb-space. Then kb is a global maximum if
o

and only if f(kb,a)£f(kb',a) for any other point kb'. For n^ l we define the

nth-order neighborhood of a point kb as the set of points that can be obtained

from kb by the application of a single refinement operation of order £n. Then

a point kb is an nth-order local maximum if and only if for any point kb / in

the nth-order neighborhood of kb, f(kb,a)£f(kb',a).

It immediately follows from the definitions that an nth-order local maximum

is an ith-order local maximum for all i

To see why we relativize the notion of a local maximum in this way, let us

consider what the intuitive mathematical notion of a local maximum is. A local

maximum with respect to a function f(p) is a point p such that no matter in

what direction around p one looks, all the points p' in the "immediate

neighborhood" of p have a value f(p')<f(p). In other words, to talk about a

local maximum simpliciter, one has to have a metric or distance-function on

the points of the space, according to which it is possible to define the set of

points that are "closest" to any given point

We have not defined a metric on the points of kb-space- Such a metric

would in fact seem to be nothing more nor less than the previously discussed

radicality metric (see chapter 3). Any two points in kb-space may be obtained

from one another via a (possibly complex) refinement operation 7. Rad<7> may

therefore be used as a distance measure on points in kb-space that are related by

means of 7.

Just as the specification of a radically metric is a domain-specific, and

perhaps somewhat subjective matter, the same must therefore be said concerning a

distance metric on kb-space. Thus we do not assume the existence of such a

metric. Therefore the notion of a local maximum in kb-space simpliciter is not

well-defined, and we must employ notions that are relativized, such as those

defined above.

Note, however, that if we had a metric on kb-space then the goal of

knowledge base refinement could be formulated in very elegant fashion as the

search for the local maxima closest to kb . This formulation automatically takes

account of the idea that conservatism is an important constraint on solutions.

5.5*3. Maximization vis-a-vis Heuristic Refinement Generation

Let us consider a first-order refinement system that operates in the

following manner. Starting with kb , such a system generates, tests, and perhaps

incorporates first-order refinements until it reaches a point in kb-space at which

all the refinements it generates fail to result in improved empirical adequacy, at

which point the system halts. In this section we determine what sort of

performance may reasonably be expected from such systems.

It is not surprising, and easy to show, that any first-order refinement system

can at most guarantee that it always reaches a first-order local maximum. To see

this let kb be the point in kb-space at which the system halts. Before halting at

kb, the system will have investigated a subset of the first-order neighborhood

surrounding kb, perhaps the entire first-order neighborhood. In addition, if the

system employs an approximation algorithm for determining maximal subsets of

refinements (see above p.173), or if it employs some form of failure-driven

higher-order analysis, then it will also have examined certain selected points in

higher-order neighborhoods surrounding kb. Thus it is quite possible that there

is an unexamined point kb7 in the second-order neighborhood surrounding kb

such that f(kb',a)>f(kb,a).
r

The interesting question is under what conditions a first-order refinement

system can actually guarantee that when it halts it has found a true first-order

local maximum? It is obvious that if the system always examines the entire

first-order neighborhood surrounding the current point in kb-space, then when it

halts a first-order local maximum is reached. But is it necessary for the entire

first-order neighborhood to be searched in order for such a guarantee to be

given?

For a refinement system that uses a heuristic approach this is equivalent to

asking the question: "When every generated refinement with respect to point kb is

verified to give zero or negative "increase" in empirical adequacy, may we

conclude that no positive net gain first-order refinement exists with respect to

kb?"

From a purely theoretical point of view it turns out that a first-order

heuristic refinement system can be designed so as justify the drawing of this

conclusion. The proof of this statement, the significance of which is, at this

point, a purely theoretical matter, is far too complicated to be presented here.

One reason the proof is of no practical benefit, is that it hinges upon the notion

of a first-order complete heuristic refinement generator. A heuristic

refinement generator r is said to be first-order complete with respect to a

view V of an r-situation <R,M> if and only if r generates every first-order

refinement to the rules on R that is On-target for any subset of M (with respect

to V). Intuitively speaking, such a r generates every first-order refinement that

has a chance - given the information available in V - of correcting any subset of

the cases in M.

As we pointed out in chapter 4, one reason we use the term heuristic

refinement generation to describe our approach, is because we do not intend to

design systems that generate every refinement in R that has a chance of

correcting any misdiagnosed case in M. It is easy to show that SEEK2 is not a

first-order complete system; in fact this immediately follows from the fact that

SEEK2 uses a max-gain+min-loss refinement generation approach. In a nutshell,

the idea of generating all first-order on-target refinements heuristically -

although not a logical contradiction - is like trying to give a useful prediction of

what, say, the weather will be like tomorrow, by providing a list of every

scenario that has the slightest possibility of occurring.

However, the idea of designing an algorithmic approach to refinement

generation that is complete, in a sense strong enough to guarantee the attainment

of a first-order local maximum, does not suffer from the same sort

incongruity. Whether such approaches to refinement generation can be practi<

is not clear at this time, and is a subject for future investigation.

CHAPTER 6

A METALANGUAGE FOR

KNOWLEDGE BASE REFINEMENT

In the two preceding chapters we saw, among other things, concrete detailed

expositions of the structure of an actual automatic refinement system SEEK2. A

good part of this exposition made use of a metalinguistic framework for

refinement specification. This mirrors the fact that the metalinguistic approach

was actually used in designing SEEK2's r-functions and heuristics, albeit "by

hand." . .

A metalinguistic approach has several virtues as a research tool. First of all,

it allows for generality: the same metalinguistic framework can be used in the

specification of many alternative refinement systems. 'Such an approach also

maximizes flexibility: to alter a feature of a refinement system specified within a

metalinguistic framework is a much simpler affair than altering a hard-coded

system. Finally a properly designed system of high-level metalinguistic primitives

makes it much easier to experiment with alternative refinement systems, since the

user need only be concerned with what he wants a refinement system to do, not

with the internal details of how it is to be done.

In the context of knowledge base refinement, the idea of doing

experimental research involves several possibilities, including: 1) designing,

implementing, and comparing the performance of viewfinders, heuristics, and

architectures for refinement generation, 2) designing, implementing, and comparing

the performance of verification, selection, and control strategies, and 3) finding

ways of expressing and utilizing domain-specific metaknowledge in the refinement

process.

The metalanguage RM - short for Refinement Metalanguage - is a system

that is intended to aid the researcher in doing experimental research in all of the

aforementioned areas. RM may be used to define and utilize r-functions

interactively, or will read and process a file containing definitions written in the

language. In either case, the definitions are first translated into common lisp and

may then be compiled into machine code. In interactive mode, both the

primitive and user-defined r-functions may be used to obtain information

concerning knowledge base performance, or the data base of cases in interactive

fashion. For example, if one types PDX(l) to RM's command interpreter, then

the expert's conclusion in the case whose id is 1 will be returned.

RM is intended to facilitate experimental research in knowledge base

refinement by making it possible for the research scientist to quickly translate

ideas into working definitions in the language. In this way the results of using

alternative r-functions in a viewfinder may be compared without doing any

programming in the traditional sense.

199

While the intended use of RM is as a research tool, such a system could be

used as a framework for the specification of refinement systems in the same

manner that EXPERT is used as a framework for the specification of expert

systems. If the system is to be used for this purpose it would be useful to have

an "optimizing compiler" for the language. Currently, in the time it takes RM to

compute a view of an r-situation, the "hard-coded" SEEK2 system has not only

computed the view but suggested and tested refinements for it This

"performance gap" may be partially attributable to some of the idiosyncrasies of

the current hardware and software configuration. But it is also partially

attributable to the fact that the declarative set-theoretic style of r-function

definition, while useful for its intended purpose, is not easily translated into

highly efficient code.

The preceding remarks lead up to a final virtue of a system like RM. It is

generally easier to verify that a two or three line set-theoretic definition meets

its intended design specification, than a programming language equivalent that may

be spread over several pages of code. Thus RM can be used as a verification

tool. Once we are satisfied that an RM definition captures its intended design

specification, we can test a hard-coded version of the definition against the RM

version. In fact, using RM in this fashion led to the discovery of a bug in the

hard-coded SEEK2 with respect to the definitions of SpecA and SpecB (see

chapter 4).

6.1. RM Primitives

In this section we discuss the key features of the metalanguage RM. A list

of the most important primitives of RM may be found in appendix A.

6.1.1. The Interface

In order for a language like RM - or any metalanguage for studying and

manipulating knowledge bases - to be implemented, certain software capabilities

must exist vis-a-vis the software that implements the rule representation language.

We say that an interface between the metalanguage and the rule representation

language (or expert system framework) must exist, or be built The interface will

allow the user of the metalanguage to 1) access the knowledge base and cases, and

2) modify the knowledge base and create new versions of it, in a way that does

not presuppose knowledge of the internal representations and procedures used by

the rule representation language. The construction of such an interface may be a

relatively simple matter or not, depending upon the nature of the underlying rule

representation framework, but it is something that can always, in principle, be

done.

RM uses an interface to EXPERT [Weiss and Kulikowski 79]. The high-

level primitives described below enable a user of RM to design and test rule

refinement heuristics and strategies for knowledge bases written in EXPERT,

without requiring any knowledge of the internal representations or procedures used

in the EXPERT framework. In other words, a user is expected to know what

rules in EXPERT look like, and how confidence factors work, and other high-

level matters, but he is not expected to know, for example, that EXPERT uses a

"compiled" internal representation of knowledge base rules, rather than a rule

interpreter.

6.L2, Primitive R-Functions

Some primitive variables are needed to provide the system or a user with

the ability to "access" various "objects" in the (available versions of the)

knowledge base and the data base of cases. For example kb is a variable over

the currently accessible versions of the knowledge base; kb is a constant that
o

refers to the initial knowledge base. The term rule is a variable whose range is

the set of rules in the domain knowledge base, case is a variable whose range is

the set of cases in the data base of cases, and dx is a variable whose range is

the set of possible final diagnostic conclusions in the knowledge base. In addition

some primitive functions are needed to allow one to refer to selected parts or

aspects of a rule or a case, e.g., RuleCF(rule) is a function whose value is the

confidence factor associated with rule, PDX(case) is a function whose value is the

expert's conclusion in case ("PDX" stands for "Presumed Diagnosis"), and

CDX(case) is a function whose value is the conclusion reached by the knowledge

base in case ("CDX" stands for "Computer's Diagnosis"). Value(finding,case), is

a function that returns the value of (numerical) finding in case.

Some of the primitives have, as it were, an implicit "knowledge base"

argument For example, CDX(case) must return some kb's conclusion in case,

but which one? While RM allows several versions of the knowledge base to be

accessible at any given time, only one kb is designated as active at any given

time. Basically this means that any functions that requires an implicit kb

argument will always be interpreted as referring to the active kb, whichever one

that may be. Initially kb is the active kb. The RM command Activate(kb) is
o

used to make kb the active kb.

Some primitives can be used to return information concerning either 1) rules,

2) rule components, or 3) rule subcomponents. (In EXPERT the only

subcomponents are the elements of choice-lists.) Rules are identified by numbers

corresponding to their order of occurrence in the knowledge base. Rule

components are identified by two numbers: the rule number and a number giving

the position of the component in the rule (starting with 1 for the leftmost

component). Rule subcomponents are specified by three numbers: rule number,

component number, and a number giving the position of the subcomponent in the

component. Thus, for example, the primitive Range can be used in two ways:

Range(rule,component):

returns the [L:H] boundaries of the range

associated with rule components

Range(rule,component,subcomponent):

returns the [L:H] boundaries of the range

associated with rule subcomponents

Certain special sets of objects are of importance in the knowledge base

refinement process, and it is therefore useful to have primitives that refer to

them, e.g., Rules -For (hypothesis) is a function whose value is the set of rules

that have hypothesis as their conclusion (hypothesis is, of course, a primitive

variable ranging over the set of hypotheses in the knowledge base). In addition,

it is desirable to have the ability to refer to subsets of various objects. Thus, in

RM, cases is a primitive variable over subsets of cases, rules is a primitive

variable over subsets of rules.

Various primitives that in some way involve semantic properties of rules, or

the performance characteristics of the knowledge base as a whole are clearly

required. Satisfied(rule,case) is a predicate that is true iff rule is satisfied by

the findings in case, and false otherwise. (This primitive can also be used with

optional component and subcomponent arguments). ModelCF(hypothesis,case) is a

function whose value is the system's confidence factor accorded to hypothesis in

case.

6.1.3. Primitive Actions

6.1.3.1. Primitive Operators

A refinement metalanguage must provide operators for combining primitive

r-functions in order to form sophisticated r-functions. The basic operators that

are needed are familiar from set theory, logic, and arithmetic. Chapter 4 shows

how all the r-functions used in SEEK2 may be defined using simple primitives

such as set abstraction, i.e., forming a set of objects that meet a certain

condition, boolean operations such as conjunction, disjunction, etc., and arithmetic

operations such as addition, summation, etc. Some procedural or algorithmic

primitives are needed as well, e.g. the select operator.

Since RM is built "on top" of common lisp, most of the primitive

operations needed are already available as lisp primitives, and may be used in RM

commands and definitions.

6.1.3.2. Modifying the Knowledge Base

A metalanguage for rule refinement must provide an adequate set of

primitive ruie refinement operators (see chapter 3). It should allow for these

operators to be composed, so that higher-order refinement is possible (see chapter

4). Again, the internal mechanisms that implement these ideas ought to be hidden

from the user.

RM offers a set of primitive operators that is not only sufficient for the

definition of SEEK2, but also goes beyond the current implementation of SEEK2

in power. For example, in SEEK2 all refinement operators apply only to rule

components (including confidence factors); there is no way SEEK2 can apply an

operator to a rule subcomponent, i.e., to an element of a choice-list. In RM, on

the other hand, rule subcomponents can be accessed and manipulated in the same

manner as top-level components.

Higher-order refinements can be incorporated in heuristics by simply

compounding primitive operators together, e.g.

(Operation

(Operation decrease-choice-number n rl c l)

(Operation decrease-CF r2 x))

defines a second order operation: decrease the choice-number of component

cl in rule rl by n, and at the same time decrease the confidence factor of rule

r2 by x. When satisfied for specific bindings of the variables rl.cl, r2, and x, a

heuristic that contains this complex operator expression in its consequent or "then"

clause will suggest this second-order refinement for the objects bound by the

variables.

6.1.3.3. Creating Mathematical Objects

A refinement metalanguage must give a user the ability to define r-functions

using the primitives. In order for this to be possible a user must be able to

create new sets, functions, and variables over both individuals and sets. RM

provides several primitive commands that allows these tasks to be accomplished.

The basic commands relevant to the design of r-functions are: define-set, define-

variable, define-set-variable, and define-function.

As an example consider the following RM commands:

define-variable rl rule

206

define-variable r2 rule

define-variable cl component

define-variable c2 component

define-variable subl subcomponent

define-variable sub2 subcomponent

The first two commands define two new variables of type rule, the second

two define two new variables of type component, and the last two define two

new variables of type subcomponent. Since these are primitive types, RM, using

frame-based property-inheritance, is able to determine what the properties of

these newly defined objects should be.

It is also possible to define variables over user-defined objects. Consider,

for example, the following RM commands:

define-set ttisdiagnosed-Cases (case | (/ - (pdx case) (cdx case))}

define-set-variable meases Misdiagnosed-Cases

The first command defines a new set misdiagnosed'-cases, i.e., the set of

all case such that (Pdx case)*(Cdx case). The second command then establishes

meases as a variable over subsets of mi sdiagnosed-cases. These defined

variables may then be used to define a new r-function as follows:

[define-function jo in t -unsa t i s f ied (r l cl r2 c2 meases)

{case in meases| (= 0 (sa t i s f ied rl cl case)

(sa t i s f ied r2 c2 case))}] .

This command defines a function joint-unsatisfied which is potentially

useful in designing heuristics for second-order refinement When called with

actual arguments, or bindings, for rl, cl, r2, c2, and meases, this function will

return the set of all those cases in meases in which both rule component rl cl

and rule component r2 c2 are unsatisfied.

6.1.3.4. Creating Refinement Objects

A refinement metalanguage must allow the user to define heuristics for

recommending refinements, and it must also provide facilities for the definition

of view finders - see chapter 3 - that contain the r-f unctions called by the

heuristics. RM provides commands and primitive data structures that are

sufficient for the implementation of the general architecture for heuristic

refinement generation described in chapter 4. For example, vr-heuristics and

rr-heuristics are tables that contain heuristics of the appropriate sorts (see

chapter 4), and the commands define-vr-heuristic and define-rr-heuristics are

used to define the heuristics that will occupy these tables. Thus the following

command adds a vr-heuristic to the table of vr-heuristics:

[define - vr - heuristic

(i f (and (> (gen rule) 0)

(is-choice rule (Mfmc rule)))

(decrease-choice-number 1 rule (mfmc rule)))].

(English translation: if Gen(rule) > 0 and Mfmc(rule) is a

choice-component c then decrease the choice-number of c by 1.)

According to the general model of heuristic refinement generation, one will

typically associate a set of heuristics with a set of r-functions that are called by

the heuristics. Collectively, these r-functions make up a viewfinder. The idea

is that there is a certain natural sequence of events in generating refinements

heuristically: first the r-functions in the viewfinder are evaluated for every rule

in the given r-situation, and these values are stored (these stored values are what

we call the view); then the refinement heuristics are evaluated for every rule

making use of these stored r-function values. In RM the define-viewfinder

command allows the user to specify a set of (already defined) r-functions that

are to form such a collection. Consider the following two examples:

[define-viewfinder r u l e - s t a t i s t i c s number

(signif speca specb gencf gen mfmc)]

[define-viewfinder set-valued-functions set

(signif-cases speca-mcases specb-mcases gencf-mcases

gen-mcases mfmc-mcases)]

The first command instructs RM to build a table (2-dimensional array)

called rule-statistics, whose elements will be numbers, and whose columns will

be labelled signif, speca, etc. The second command instructs RM to build a table

called set-valued-functions, whose elements will be sets (lists), and whose

columns will be labelled signif-cases, etc. The nth row of these tables will

contain the values of these r-functions for rule /?.

6*1.3.5. Using Refinement Objects

Finally, a refinement metalanguage must allow the user to evaluate

viewfinders and heuristics, try suggested refinement experiments, and create new

versions of the knowledge base if desired. The metalanguage should also allow

the user to put all these primitive actions together into an overall control strategy

for the refinement process.

There are several major RM primitives for performing these tasks.

Compute-View(viewfindei%rule-set) is a procedure that, given a subset of rules,

rule-set, computes the values of the r-functions in viewfindcr for each of these

rules. (The values are stored in the table viewfinder).

Evaluate-vr-heuristics(rule-set) and Evaluate-rr-heuristics(rule-set) are

procedures that evaluates all the heuristics in the tables vr- heuristics and

rr- heuristics respectively. Each of these procedures may also take an optional

argument specifying a particular subset of the heuristics to be evaluated as

opposed to the entire table.

Suppose that kb is the active knowledge base (see section u.1.2 above).
a

Try-Experiment(operation) is a procedure that 1) applies the refinement.

operation, to kb , 2) calculates the result of running this refined version of kb
a a

over all the cases, and returns a data-structure, called a case-vector, containing

the new results (i.e., the endpoints concluded along with their confidences), and 3)

applies the inverse of operation to kb in order to return it to its original
a

form. Thus this procedure does not change kb permanently; rather the case-
a

vector it returns is used to determine the effectiveness of operation. By

comparing this returned case-vector with the case-vector for kb one can
a

determine the exact effect of operation on a case-by-case basis, if desired. The

function Result-Experiment (operation) will return the net gain (or loss) in cases

due to operation, leaving kb unchanged.

In order to create a refined knowledge base that can be available for future

analysis the procedure Create-Kb(oper at ion) must be invoked. This procedure

"creates a knowledge base" kb that is the result of applying operation to kb (the

active kb). The data structure that represents kb contains a) operation, b) a

pointer to kb , c) a slot for pointers to kb's potential successors, c) a table
a

summarizing the basic performance characteristics of this knowledge base,

including, for example, the total number of cases this knowledge base diagnoses

correctly.

In virtue of these predecessors and successors links, at any time the set of

available knowledge bases forms a tree rooted at kb . When RM is instructed to
0

activate a knowledge base k b * k b , RM traces back through the ancestors of kb
a

until either kb or kb is reached (one of these events must occur). If kb is
a 0 a

reached then in order to activate kb all the refinement-operations occurring in

the path from kb to kb are performed on the current internal version of the
a

knowledge base. If kb is reached, the operator information in the path from
0

kb to kb is used to activate kb. (Note that RM never requires more than one
o

internal copy of the knowledge base; to activate a refined version of kb , the
a

current internal copy is modified in the specified manner using the information in

the "tree of knowledge bases.")

6.1.4. Adequacy of the Primitives

Ideally a set of primitive r-functions should allow for the definition of any

conceivable (computable) r-function, and hence any conceivable viewfinder. A set

of primitive refinement actions should allow for the definition of any conceivable

refinement strategy. In general a refinement metalanguage should be of sufficient

power to express anything that would come under the rubric of generic

refinement metaknowledge.

The characterization of this ideal is, however, too imprecise to allow for a

proof that a system of primitives meets it. The problem is that we do not have

a precise independent characterization of what generic refinement metaknowledge

is. For this reason, just as it can never be proven - but only refuted by means

of counterexample - that the set of computable functions, in the intuitive sense,

is, in fact identical to the set of Turing machine computable functions, so too it

can never be proven that any refinement metalanguage is sufficiently rich to

capture all possible generic refinement metaknowledge.

The best we can do at this time is to devise a system of primitives that is

sufficient to account for the refinement metaknowledge that we either actually

employ (in SEEK2), or that we know to be of possible interest. That the

primitives in RM are sufficient to express the r-functions and heuristics used in

SEEK2 is demonstrated by the analysis of chapter 4. In section 6.3 below we

will see that the entire structure of SEEK2, including control strategy, can be

expressed in RM. A system of primitives that meets these goals is likely to be a

good starting point, and can, if necessary, be incrementally modified to account

for new forms of refinement metaknowledge as they are discovered.

6,2. Designing R-Functions and Heuristics

The methodology that led to the development of RM had already proven to

be of use in the design of SEEK2. Although SEEK2fs viewfinder is "hard-

coded," the fact is that the r-functions comprising it were designed using the

metalinguistic framework that has now been implemented in RM.

Concrete instances of the use of RM in designing r-functions and heuristics

can be given. The discovery of the r-function signif-level (see chapter 4, p.137)

was aided by the interactive experimental use of RM. In this section we will

exhibit another concrete and detailed example of how RM can be used in

designing r-functions and heuristics for knowledge base refinement

In order to present the example it might be helpful to review certain r-

functions and heuristics used in SEEK2. A gencf situation was defined as an r-

situation in which meases can be corrected by boosting the confidence of a

satisfied rule for the correct conclusion. SEEK2 makes use of the r-function

gencf(rule), defined below, in its analysis of such situations.

genCF-rule(mease)

* the rule such that

a) PDX(mease)*conclus ion(rule)

b) rule is satisfied in mease

c) of all the rules satisfying conditions

(a) and (b) in mease, none has a greater

confidence factor than rule*

38 Select rule e Satisf ied-rules-f or (PDX(mease) ,mease)

with Max RuleCf(rule).

genCF-mcases(rule)

(mease I rule * genCF-rule(mease)}

genCF(rule)

* |genCF-mcases(rule)

Mean-CDX-CF(cases)

= the mean value of the confidence of CDX(case)

over cases

- Mean(CDX(case) ,cases)

In particular, we are interested in:

Mean-CDX-CF(gencf-mcases(rule))

the mean value of the CDX in the gencf-mcases(ru

(this is the value to which we plan to raise the

of rule)

A SEEK2 heuristic that makes uses of these r-functions is the followm

If: GenCF(rule) > [SpecA(rule) + SpecB(rule)]

Then: raise the confidence level of the rule to

Mean-CDX-CF(GenCF-mcases(rule)) .

In chapter 4 we justified the if-clause of this heuristic in terms of the

max-gain+min-loss approach to heuristic refinement generation (see p. 148). As

was pointed out, the quantity [specA(rule) + specB(rule)] is certainly not the best

estimator of the number of currently correctly diagnosed cases that might be lost

as a result of raising the confidence factor of the rule. That quantity was chosen

to play this role in the interest of efficiency.

I now want to discuss the possibility of designing a better estimator of the

loss that can result from raising the confidence of a rule. The point of this

discussion is to show how the interactive use of RM can facilitate the

construction of such an r-function.

Let us suppose we are interested in raising the confidence of endpoint-rule

r. If we want to know how many cases we may lose by doing so, we will have

to examine all currently correctly diagnosed cases with PDX * rule-conclusion(r) to

see whether r is satisfied in these cases. Only in these cases does the

contemplated refinement pose a danger. So far this suggests the following

definitions:

Z i O

define-variable cease {case| (« (pdx case) (cdx case))}

[define-function antigenCF-ccases (rule)

{cease| (and (/• (rule-conclusion rule) (pdx cease))

(- (satisfied rule cease) 1))}]

The first command defines a variable, cease, over the set of all currently

correctly diagnosed cases. The second command defines a function

antigenCF-ccases(rule) that returns the set of all cease such that rule concludes

an incorrect conclusion in cease and rule is satisfied in cease.

One of refinements suggested by SEEK2 involved raising the confidence

factor of a certain rule, number 49 to be exact This refinement was suggested

in virtue of the satisfaction of the preceding heuristic. SEEK2 tries the

experiment and discovers that it leads to a net loss of nine cases. Examination

of this situation in RM yields the following information (comments appear in

italics):

meases we are liable to win by raising the CF of rule 49

RM> (gencf-mcases 49)

(11 60 74 84)

Ceases we are liable to lose by raising the CF of rule 49

RM> (antigenCF-ccases 49)

(39 50 51 53 54 65 68 69 76 82 85 101)

We see that there are far more ceases that are liable to be lost than there

are meases that are liable to be won by this refinement.

However, it would be wrong to conclude that raising the confidence factor

of a rule will cause a net loss in cases whenever | antigenCF-ccases(rule) | is

greater than | genCF-mcases(rule) j. Whether a loss will result depends on two

other values: 1) the value to which we have to raise the rule's confidence in

order to win (half or more) of the gen-mcases(rule), i.e., mean-cdx-cf(gen-

mcases(rule)), and 2) the average value of PDX(ccase) in antigenCF-ccases(rule), or

what we defined (in chapter 4) as mean-pdx-cf(cases), i.e.,

Mean-PDX-CF(meases)

= the mean value of the confidence of PDX(mcase)

over meases

= Mean(PDX(mease),meases)

Now, continuing with our RM session, we see that:

find mean value of CF of current highest conclusion in genCF-mcases

of rule 49; must raise CF to this value to win 112 of meases

RM> (mean-edx-cf (gencf-mcases 49))

0.75

find mean value of CF of PDX in Ceases we are liable to lose

RM> (mean-pdx-cf (antigencf-ccases 49))

0.575

This information indicates that while we can expect to win 2 or so cases by

raising the confidence of rule 49 to .75, we can also expect to lose 6 or so

antigenCF-ccases(rule) at the same time, because these cases conclude PDX at a

confidence level around .575.

The lesson of this example can now be generalized into the following

refinement heuristic:

[define-vr-heuristic

(if (and (> (gencf rule) 0)

(< (mean-cdx-cf (gencf-mcases rule))

(mean-pdx-cf (antigencf-ccases rule))))

(raise-cf rule (mean-cdx-cf (gencf-mcases rule))))]

(In English this heuristic says: if gencf(rule) is greater

than 0 and the mean-cdx-cf in the gencf-mcases(rule) is less

than mean-pdx-cf in the antigencf-ccases(rule), then raise

the confidence factor of the rule to mean-cdx-cf in the

gencf-mcases(rule).)

The claim here is not that this is the optimal heuristic for suggesting

confidence-boosting refinements, only that the new heuristic does have certain

advantages over the original SEEK2 version. (In fact, in testing over various

refinement situations the new heuristic suggests every useful refinement suggested

by the original, and succeeds in preventing the suggestion of several poor

experiments that are generated by the original.) The main point is that RM offers

an environment within which such investigations may be carried out with relative

ease.

6.3. Designing Refinement Strategies

We conclude this chapter by showing how RM can be used to specify

control strategies for automatic refinement systems. We show how the control

strategy used by SEEK2 can be specified in RM.

Recall that SEEK2 uses a quasi-hill-climbing cyclic control strategy (see

chapter 1). Within each cycle the single refinement with the highest actual net

gain in performance is incorporated into the knowledge base. The procedure halts

when no refinement yielding a positive net gain is found.

In presenting the RM specification of SEEK2, we use an ALGOL-like

programming notation, since this is the most natural mode of representation in

this case. The actual RM specification makes use of common-lisp constructs,

which although structurally similar to those used below, are less readable. The

main procedure is called SEEK2, and it calls several procedures that are also

presented below.

Variables with delimiting asterisks are global variables. Note that the

procedure SEEK2 determines the number of MCASES={case|(/= (pdx case) (cdx

case)} at the start of each cycle. As with any r-function that does not contain

an explicit kb argument MCASES is always computed with respect to the

currently active knowledge base. Therefore in the first cycle SEEK2 will

compute {case|(/= (pdx case) (cdx case kb))}, since kb is the active knowledge
0 0

base to start with. In subsequent cycles other knowledge bases will be active as a

result of the activate(kb) command that is invoked at the end of any cycle, and

MCASES will then be computed with respect to these knowledge bases. The

function M(dx) was defined in chapter 5. This function returns the set of all

false positives and faise negatives for a given dx with respect to the active

knowledge base.

Control Strategy for SEEK2

PROCEDURE SEEK2

BEGIN

DO WHILE | MCASES | >0

;start of current cycle

3est-Experiment :• <t>

Best-Net-Gain :« 0

FOR EVERY dx in ENDPOINTS DO

dx-mcases^MCdx)

IF dx-mcases*tf> THEN

FOR EVERY rule IN Rules-For(dx) DO

endpoint~experiments:»FIND-ENDPOINT-EXPERIMENTS(rule,dx-mcases)

intermediate-experiments:-FIND-INTERMEDIATE-EXPERIMENTS(rule,

endpoint-experiments)

Suggestions:-Endpoint~ExperimentsUIntermediate-Experiments

TEST-EXPERIMENTS(suggestions)

END FOR ;end of analysis of current endpoint-rule-chain for dx

END FOR ;end of analysis for current dx

IF *Best-ExperimentVcas0 THEN STOP

kb:-CREATE-KNOWLEDGE-BASE(*Best-Experiment*,*active-kb*)

ACTIVATE(kb)

END WHILE ;end of current cycle

END Seek2

PROCEDURE FIND-ENDPOINT-EXPERIMENTS(rule)

BEGIN

Compute-View(first-order-viewfinder,endpoint-rules)

Endpoint-Experiments:«Evaluate-VR-Heuristics(endpoint-rules)

Endpoint-experiments:«

Endpoint-ExperimentsUEvaluate-RR-Heuristics(endpoint-rul

END

PROCEDURE FIND-INTERMEDIATE-EXPERIMENTS(Experiments,meases)

BEGIN

FOR EVERY experiment in Experiments DO

IF r-operation in experiment involves a hypothesis component

THEN

Intermediate-Experiments:-BackChain(hypothesis,meases)

END FOR

PROCEDURE TEST-EXPERIMENTS(suggestions)

BEGIN

FOR EVERY experiment in Suggestions DO

Net-Gain:*Result-Experiment(experiment,kb)

IF Net-Gain>*Best-Net-Gain* THEN

Best-Net-Gain:-Net-Gain

^Best-Experiment'1' :*Experiment

END FOR ;end of tests for current rule-chain leading to

;current endpoint-rule for dx

END

PROCEDURE BackChain(hypothesis,meases)

BEGIN

Compute-view(first-order-viewfinder,Rules-for(hypothesis))

FOR EVERY rule IN Rules-For(hypothesis) DO

Intermediate-Experiments:*Evaluate-VR-Heuristics(rule)

Intermediate-Experiments:-

Intermediate-ExperimentsUEvaluate-RRHHeuristics(rule)

;recursive backchain on implicated intermediate hypothesis

FOR EVERY experiment in Intermediate-Experiments DO

IF r-operation in experiment involves a hypo component

THEN

Intermediate-Experiments:-

Intermediate-ExperimentsUBackChain(hypo,meases)

END FOR

RETURN Intermediate-Experiments

END BackChain

The preceding specification is not intended to function as a guide to the

workings of SEEK2, which was given in chapter 1. The point is that using this

specification, which - together with the RM specification of the SEEK2

viewfinder and heuristics - takes up about five printed pages of text, RM carries

out the same procedure as the hard-coded SEEK2, which takes up about fifty

printed pages of source code. In RM the user need only understand and

manipulate functions, variables, commands, etc., that are really part of the

"essence" of knowledge base refinement, and the user need only be concerned

with what he wants done, e.g., try an experiment, not with the internal details of

how these actions are to be carried out The "dirty work" is taken care of by

RM.

6.4. Domain-Specific Metaknowledge in RM

Certain forms of domain-specific metaknowledge can be incorporated into

RM with little additional effort For example, consider the following set

definition:

def ine-se t NO-TOUCH {25 33 34 55}

where the set (25 33 34 55} contains the id-numbers of rules that are, for

one reason or another not to be refined under any circumstances. (Set definition

via enumeration is available in RM). The way such information would be used is

obvious: one would like to be able to instruct the refinement system's control

strategy that no refinements should be generated for these rules. This would be

done by putting a check in the procedure Test-experiments (see

p.pageref [code]), so that any refinement suggestion that involves an operation on

any of the members of NO-TOUCH is automatically passed over.

In chapter 5 we discussed the notion of a paradigm, i.e., a pair of the

form <rules,ccases> where it is known that ceases are correctly diagnosed in

virtue of the satisfaction of rules, and that this is a relationship that ought to be

preserved in any refined versions of the knowledge base. If a refinement 7 to

the rules in a paradigm causes one or more ceases to be lost, then one may wish

to reject 7 no matter how great a gain in performance it achieves.

This sort of domain-specific metaknowledge can also be accommodated using

RM's current stock of primitives. The following RM definitions illustrates a way

in which this can be done:

define-set paradigm- 1-rules {7 8 9}

define-set paradigm-1-ccases { 1 2 3}

define-set paradigm-1 {paradigm-1-rules paradigm-1 - c e a s e s !

[define-function v io i a t e s -pa rad igm-1 (experiment)

(and

(some y/'member-of parad igm-1- ru les experiment)

(some y/'member-of paradigm-1-cases (l o s t - c e a s e s exper iment)))]

The first three define-set commands create a set named paradigm-1 = {{7

8 9} { 1 2 3}}, whose first member is the set of rules in the paradigm, and

whose second member is the set of ceases in the paradigm, ' in this example we

assume that the user has verified that the rules 7, 8, 9 are indeed each satisfied

in ceases 1,2, and 3, and that they either conclude the endpoint of those cases or

some intermediate hypothesis leading to the endpoint. (Functions that

automatically perform this check can be designed using RM.) The

define-function command then creates a function violates-paradigm- 7, which

will return the value T if and only if some member of rules is refined by

experiment, and some member of ceases is lost by experiment, where the latter

is determined by invoking a defined function lost-ceases, that returns the set of

all ceases that "become" meases through experiment. (This is accomplished by

using Try-experiment(experiment) to return a case-vector for the effect of the

refinement and comparing it case-by-case with the case-vector for the active

knowledge base.)

In this example we have defined a single paradigm and a function that

checks for violations of that paradigm only. If one intends to use this sort of

domain-specific metaknowledge, however, it would be desirable to have a general

command or "macro" define-paradigm that, given a set of rules and ceases,

automatically generates the above sequence of commands (taking care, of course,

that new names are used for each paradigm so defined). This is easily achieved

in RM through use of the underlying common-lisp macro facility.

6.5. Incorporation of Failure-Driven Higher-Order Refinement

A general architecture for failure-driven higher-order refinement and an

outline of a scenario where such ideas might be applied were presented in chapter

4. We are now in a position to consider in greater detail how a failure-driven

approach to higher-order refinement may be incorporated in a first-order

automatic refinement system.

There are four key questions that must be addressed: 1) at what point or

points in a refinement process should higher-order refinements be generated and

tested, 2) what information concerning failures of attempted refinements should be

gathered, 3) when should such information be gathered, and 4) what heuristics for

generating higher-order refinements should be employed? We shall refer to

questions (1) and (3) together as the timing issue, and we shall refer to issues

(2) and (4) together as the epistemological issue.

To answer all these questions in complete detail would be tantamount to

specifying a complete higher-order refinement regime. Moreover, as is the case

with first-order refinement, there is no one "best design" for such a regime; a

full account should deal with the major alternatives and their relative advantages

and disadvantages. Such an account is a subject for future investigation. In this

chapter we will give concrete answers to the questions posed above by considering

how an intuitively acceptable higher-order refinement heuristic could be

implemented in a SEEK2-like first-order refinement system.

Stated in English, the heuristic for higher-order refinement we would like to

employ is the following:

FDH-1

IF:

There is evidence that a generalization refinement 7 to

the most frequently missing component c of a rule r

failed because other components of r are also unsatisfied

in gen-mcases(r) &

CA is a component of r that maximizes the joint-unsatisfied

count of <c,other component of r> with respect to

gen-mcases(r)

THEN:

Determine a set of generalization refinement experiments

F"{7 ...7 } to co by evaluating2 n L

the set of heuristics in the table Basic*Heuristics &

Retry 7 in tandem with each of the experiments in T

respectively.

The consequent of this heuristic, called FDH-1 for "failure-driven-

heuristic-1", refers to a table of Basic-Heuristics. This is a set of vr and re

heuristics of the form:

Component c of rule r is a <component-type> &

c is to <generalized|specialized> with respect to cases

THEN:

{<invoke r-functions> &}

<suggest refinement-operation>

The element <invoke r-functions> is enclosed in braces to indicate that it is

an optional feature. The following is a concrete example of such a basic

heuristic:

IF:

Component c of rule r i s a choice-component &

c i s to be generalized with respect to gen-mcases(r)

THEN:

Decrease the choice-number of c by 1.

In other words, these "basic" heuristics relate the structural features of rules

and the desire to generalize or specialize a rule over a given set of cases, to

classes of refinement operations that may achieve the desired result (and that may

or may not require certain information to be gathered prior to being applied).

Such heuristics are easily specified in RM. The role of Basic-Heuristics in

FDH-1 will become clear in the course of our explication.

FDH-1 concerns a situation in which generalization of Mfmc(r) (the most

frequently missing component of r) is suspected of having failed because other

components are also unsatisfied in gen-mcases(r) (the misdiagnosed cases for

which r is a generalization candidate). Below we will see how evidence

supporting this suspected cause of failure can be gathered. The second clause in

the antecedent of FDH-1 selects a second component ĉ of r such that the pair

<c ,c > maximizes the joint-unsatisfied function over such pairs in r. This

function was defined above (see section 6.1.3.3). The consequent of FDH-1 then

instructs us to evaluate the table of Basic-Heuristics for component c , with

generalization as the refinement goal. Evaluation of these heuristics will yield a

set r = {7 ...7 } of generalization refinement experiments for c . FDH-1 then
2 n 2

instructs us to test every joint experiment of the form <y ,7 > for 2< i <n.
1 i

Let us now turn to the epistemological issue as it pertains to FDH-1. The

first clause in the antecedent of FDH-1 requires a judgment that a refinement

has failed, and a judgment as to the reason for the failure. We already know a

criterion of failure: the refinement leads to zero or negative net gain in

performance. But this criterion is too coarse for the purposes of implementing

failure-driven higher-order analysis. Not every refinement that "fails" according

to the coarse criterion is one for which it is desirable to investigate higher-order

possibilities. For example, if a generalization refinement that is intended to

correct 2 meases results in a net loss of 100 currently correctly diagnosed cases,

then we are well-advised to abandon this refinement altogether: the evidence that

this refinement is wrong is so overwhelming, that its failure is not an "interesting

one." What is needed are features of unsuccessful refinements that make their

failures "interesting,1' in the sense of offering some hope for an ultimate higher-

order success. We also need to have clues as to where to look in attempting to

generate a complex refinement operation.

We will now show how these problems can be addressed by means of a

data-structure that we will call the Outcome-Vector corresponding to a

refinement experiment 7. This can be thought of as a vector of elements

indexed by the case identification numbers for the current stock of cases. Each

element of an outcome-vector contains two items or cells: 1) an outcome-type

cell and 2) a component-success cell We discuss the nature of the component-

success cell first.

Every first-order refinement 7 must operate on a single component c of a

single rule r. Moreover, since every 7 is either a generalization or a

specialization, the "immediate" intended effect of 7 with respect to a single case

must always be to cause an unsatisfied component c to become satisfied

(generalization) or to cause a satisfied component c to become unsatisfied

(specialization). For example if 7 involves decreasing a choice-number of choice-

component c, then 7 has its immediate intended effect with respect to a given

mease if and only if c changes from being unsatisfied to being satisfied in mease.

Whether any first-order generalization or specialization has its immediate intended

effect in a case, is easily computable by means of RM primitives.

The important point is that even if 7 fails to correct an mease it was

intended to correct, this information does not tell us whether 7 achieved its

immediate intended effect in mease, i.e., caused component c to become satisfied

or unsatisfied as the case may be. This is precisely the information that is

contained in the component-success cells of the outcome-vector for 7. That is,

if / is the identification number of mease, then the /th element of the outcome-

vector for 7 will contain a 1 in its component-success cell if and only if 7 has

its intended immediate effect on component c with respect to mease /'; otherwise

this cell contains a 0.

We now discuss the nature of the outcome-type cells. First of all, for any

refinement experiment 7 generated heuristically there is always a set of meases

that 7 is intended to correct; we will call this set the On-Target set of 7, since

7 is presumably On-target with respect to these meases in the sense defined in

chapter 3. For example, if 7 is a component generalization refinement to rule r,

the On-target set of 7 will be given by gen-mcases(r). Now given a 7, its On-

target set r, and any case in the current stock of cases, a set of five mutually

exclusive and jointly exhaustive outcome types can be identified for the purposes

of failure-driven refinement:

1. 7 fails with respect to case: case is a member of r and 7 does

not correct case (Fail-1).

2. 7 causes a new Joss with respect to case: case is a cease

(correctly diagnosed case in the active knowledge base) and 7 causes

it to become an mease (Loss -2).

3. 7 succeeds with respect to case: case is a member of r and 7

corrects case (Success-3).

4. 7 causes a new win with respect to case: case is an mease but not

a member of r and 7 corrects case (Win-4).

5. 7 is neutral with respect to case: case is not a member of r and

7 does not change the endpoint of case (Neutral-5).

For the sake of brevity and clarity we will identify these outcomes by the

accompanying mnemonics given in the above enumeration, e.g. if 7 fails with

respect to case, we will say that 7 is a Fail-1 with respect to case. (Although

uses for the outcomes Win-4 and Neutral-5 can be given, we list them here for

the sake of completeness only.) Given a 7, its associated r, and any case with

identification number /, the /th element of the outcome-vector of 7 will contain

the code for the appropriate outcome type in its outcome-type cell. Again, the

outcome type of any case is easily computed by means of RM primitives.

We are now in a position to see how the notion of a refinements having

failed for a certain reason can be given operational significance using the

information contained in outcome-vectors. We will show this by giving a simple

example pertaining to FDH-1.

Figure 6-1: A Portion of An Outcome-Vector

Outcome - Type Component - Success

Case Number

• • •

3 Fai l -1 1
• • •

5 Fai l -1 1
• • •

8 Loss-2 1

Let 7 be a generalization refinement to component c of rule r. Suppose

that the refinement is tested, is found to lead to zero or negative net gain in

performance, and that we have obtained the outcome-vector V. A portion of V is

displayed in figure 6-1. Notice that cases 3 and 5 are ones in which 1) y failed

to correct an mease in its On-Target set (this is the meaning of outcome Fail-1),

and 2) y did, however, succeed in causing component c to become satisfied.

Clearly these are cases that provide evidence that y failed because there are other

components of c that are unsatisfied in gen-mcases(r). Case 8, on the other

hand, is of outcome-type Loss-2, and, therefore, is evidence that y fails because

it causes previously correctly diagnosed cases to become meases. If there are

more cases akin to 8 than there are cases akin to 3 and S, we cannot logically

expect to produce a successful higher-order refinement by looking for other

components of r to generalize in tandem with c. (We cannot rule out the

possibility that additional generalization of r may yield enough cases with

outcome-type Win-4 to overcome the negative effect of cases with outcome-type

Loss-2; this result would, however, be a matter of luck - Win-4 cases are not in

the On-target set of the refinement - and is not something that one would

expect to happen very often, or that is necessarily desirable.) On the other hand,

if the number of cases akin to 3 and 5 is greater than the number of Loss-2

cases, the search for a higher-order refinement is warranted. And the greater the

(positive) difference between cases of the former and latter types, the more we

stand to gain.

This concludes our discussion of the epistemological issue. We have shown

that Outcome-Vectors can be used to operationalize the notion of a refinement's

having failed for a specified reason. We now briefly consider the timing issue:

when should outcome-vectors be obtained and the pertinent failure-driven-

heuristics (FD-heuristics) be evaluated?

There are many possible answers to this question. In the context of a

SEEK2-like first-order refinement system, two of the obvious and "extreme"

possibilities are: 1) gather outcome-vectors and invoke FD-heuristics for every

first-order refinement experiment as it is attempted, and 2) invoke FD-heuristics

only when a "performance plateau" (which may or may not be a first-order local

maximum) has been attained, i.e., when every first-order refinement generated

yields zero or negative net gain in performance (see chapter 5).

If option (1) is selected, one would gather an outcome-vector for a

refinement 7 at the same time it is being tested over the current stock of cases.

One might then decide to evaluate the pertinent FD-heuristics only if the net

gain achieved by y was judged unsatisfactory. The higher-order refinements

generated would then be tested before returning to the "normal" first-order

regime. Note that the major additional overhead in space required by this option

would be minimal: only one outcome-vector is needed at any given time.

If option (2) is selected one would proceed according to the "normal" first-

order regime until a "dead end" is reached. In a SEEK2-like, Le., single-

generation system, the dead end would leave the refinement system with a final

active knowledge base kb and no other accessible knowledge bases. At this point

one would "rerun" the last first-order cycle - the one in which no refinement

led to any improvement in performance - but this time one would proceed as

described in the previous paragraph. That is, as each first-order experiment is

attempted, an outcome-vector is obtained, the pertinent FD-heuristics are

evaluated, and all generated higher-order refinements are attempted. If some of

the latter lead to a net gain in performance then one could select the one with

greatest net gain (as in the first-order regime). This would lead to a new active

knowledge base, and then one could revert to the first-order regime until another

plateau is reached, and so on. One would halt when invocation of the higher-

regime at a first-order plateau also failed to yield any positive net gain

238

refinements.

Finally, note that in a multiple-generation refinement system, one would not

have to halt when such a "higher-order plateau" is reached. Rather one could

then "back up" to the predecessor of kb, or to anyone of its ancestors, or

activate one of its "siblings" in the tree of knowledge bases, and attempt higher -

order procedures with respect to this knowledge base.

6.6. Summary

In this chapter we exhibited a high-level metalanguage, RM, for specifying,

developing, and studying alternative refinement concepts, heuristics, and strategies.

Concrete examples of how RM can be used as a tool for experimental research,

as a vehicle for the customization of refinement systems, and as a framework for

the incorporation of certain, forms of domain-specific metaknowledge were given.

Finally, a detailed account of the use of RM for implementing a failure-driven

approach to higher-order refinement was given.

CHAPTER 7

CONCLUSION

7.1. Research Significance

The broad objective of this research concerns the discovery, study, and

implementation of principles, methods, and tools for the automatic refinement of

expert system knowledge bases. Within this broader objective, the current

research has made progress in demonstrating the feasibility and validity of an

empirically-grounded heuristic approach to knowledge base refinement, and it has

contributed to the formulation of a general methodology for facilitating the

development of automatic refinement systems that utilize such an approach. In

concrete terms an automatic refinement system, SEEK2, has been designed,

implemented, tested, and studied, and a high-level metalanguage, RM, that allows

for relatively easy experimentation with alternative refinement concepts, heuristics,

and strategies has also been designed and implemented.

7.1.1. Feasibility and Validity of The Approach

To say that an approach to automatic knowledge base refinement is feasible

is to say, at least, two things. First of all, the approach should presuppose as

little specialized domain knowledge as possible. No matter how effective an

approach to the problem is, if it presupposes domain knowledge or metaknowledge

- whether from an expert or another source - that is just as difficult or costly

to acquire as the desired knowledge base, the approach cannot be cost-effective.

Secondly, the approach must be computationally cost-effective, i.e., it must

produce results in a "reasonable" amount of time working on large-scale

knowledge bases. To say an that an approach has validity is to say that, with a

certain degree of reliability, it produces results that actually improve the overall

empirical adequacy of a knowledge base and that are acceptable to the domain

expert

7.1.1.1. Evidence of Feasibility

In terms of the above desiderata, the empirically-grounded heuristic approach

advocated here fares well. While it is true that case know/edge is required by

our approach, it is also true that such knowledge is already a desideratum in

expert systems work to begin with. As we pointed out in chapter 1, it is

difficult, if not impossible, to verify the accuracy and adequacy of a putative

expert system without comparing its performance to that of a domain expert's, or

some alternative source of presumably correct diagnoses. However, while the

approach advocated here does not depend on additional specialized domain

knowledge, we have shown that general constructs that make use of such

knowledge can be effectively utilized by this approach, e.g., radicality orderings

(see chapter 3), the notion of paradigms, etc. (see chapter 5).

In terms of computational cost-effectiveness, we can offer both concrete and

theoretical evidence for the feasibility of the current approach. First of all, as

we have mentioned (see chapter 1.4), SEEK2 shows that the proposed approach

can be relatively fast. In chapter 4 we showed one reason why this is the case:

any purely first-order refinement system can be designed so that the analysis of

an r-situation <R,M> - i.e., gathering the view and evaluating the heuristics -

can, in the worst case, be achieved in time proportional to \M\ *fthe number of

rules in R + the number of rule components in R) We have also seen that an

extended general architecture for heuristic refinement generation which allows for

a failure-driven approach to higher-order refinement can be devised. This gives

us reason to believe that ever more powerful heuristic-based refinement systems

can be developed that still exhibit a high degree of computational cost-

effectiveness.

7.1.1.2. Evidence of Validity

The best evidence for the validity of an approach can come only from

actual examples of its successful use. On this score, we can say that with respect

to the rheumatology knowledge base we have used as a test case, SEEK2 has

produced results that are similar to those produced by SEEK, some of which were

found to be acceptable to the experts [Politakis 82].

However, evidence of the reliability of the approach in producing

refinements that improve the general empirical adequacy of a knowledge base

(not just its empirical adequacy with respect to the given data base of cases) can

Another reason for the speed must be reckoned to be the internal structure of
the underlying expert system framework itself, viz., EXPERT, which the RM
interface utilizes in order to test refinements over the data base of cases.

be obtained via experimentation with a single knowledge base. Two experiments

have been performed, and will be related below. The results of both experiments

are encouraging.

The first experiment will be called Train-and-Test, and is actually a series

of similar experiments. In a single typical train-and-test "run" the given data

base of cases is divided into two disjoint subsets (not necessarily of equal size)

preserving the distribution of cases by endpoinL Let us call these sets a and a .

The first phase of a train-and-test experiment involves running SEEK2 using a

as case knowledge, or as the "training" set. SEEK2's refined version of the

knowledge base is then tested over o and the combined set a U a . In the
: 1 :

second phase of the experiment the roles of o and a are interchanged.

Figure 7-1 gives the results of such a run with training and test samples of

equal size. Training over o led to a performance increase of 29% (69% to 98%).

When tested over the new set of cases in o , there was an increase in

performance of 15% (78% to 93%). The results of the second run are similar.

While there was less improvement observed over the test sets than in the training

sets in these runs, the fact is that the experiment shows that refinements that

were "learned" by SEEK2 with respect to one set of cases also improved empirical

adequacy with respect to a new set of cases.

This experiment has another interpretation. In terms of statistical pattern

recognition techniques a single train-and-test experiment can be viewed as giving

Figure 7-1: Train and Test Experiment

Training Set 1 Testing Set 1

Start 42/62 (69%) 46/59 (78%)

Finish 61/62 (98%) 55/59 (93%)

Overall: 116/121 (96%)

Training Set 2 Testing Set 2

Start 46/59 (78%) 42/62 (69%)

Finish 59/59 (100%) 59/62 (95%)

Overall: 118/121 (98%)

an estimate of the probability of error - i.e.. the probability that the refined

knowledge base (classifier) misdiagnoses a case [Fukunaga 72]. Under this

interpretation, the total performance ratio obtained in the test run, e.g., the 93%

figure, estimates the probability of error to be .07. While this figure is certainly

more conservative than the estimate, .01, that would be obtained by using the

results of the training run as an estimate, it is only a point-estimate. To obtain

a more reliable estimate, one needs to average over the results of many train-

and-test experiments. Alternatively, a more accurate figure could also be obtained

by employing a leave-one-out or so-called "jacknifing" technique for error

estimation [Fukunaga 72]. Unfortunately, the general application of these

techniques in knowledge base refinement would appear to be computationally

prohibitive for large-scale problems.

However, additional train-and-test runs for the rheumatology knowledge base

have been performed and these results can be used to derive a more reliable

estimate of the probability of error. In all 15 train-and-test runs were

conducted. In 6 runs, the size of the training sample was 50% of the cases; 3

runs each with training sample sizes of 33%, 67%, and 75%, respectively, were also

conducted. The average performance increase observed in the test cases in these

15 runs was 21.2%. The average total performance over the test cases was 94.5%,

which gives an estimate of probability of error of .055. The lowest overall

performance over a test set obtained in any of these runs was 90% (this occurred

in a run with training sample size 67%), which yields a .1 point estimate of

probability of error. The highest overall performance over a test set obtained in

any of these runs was 100% (this occurred in a run with training sample size

75%).

The second experiment will be called Train-and-Train. The sets o and o
1 2

are defined as in the first experiment. In this experiment, however, after the

initial training over o , we take the generated refined knowledge base and use

it in a second training run over the overall data base of cases a Ua . As

before, the experiment is repeated interchanging the roles of o and o .

Intuitively, this experiment is intended to capture certain aspects of the

actual "standard" use of a refinement system that are not captured in the first

experiment Thus, in the process of knowledge base construction we can expect

that several, perhaps many, refinement episodes will be necessary, and that new

case knowledge may become available in latter refinement episodes. The new case

knowledge will now become part of the the overall data base of cases used in

subsequent refinement episodes, i.e., the size of the data base of cases is expected

to be a monotonically non-decreasing function of time. Now an interesting

question one might ask of a refinement system is this: if at time t the system

selects a set of refinements 7 using case knowledge C , then what do we expect

the refinements 7̂ selected at time t̂ using case knowledge Ĉ to look like, given

that C c c ?
1 2

This is a question whose answer would seem to depend on what assumptions

we make about the statistical distribution of cases received in each of the

refinement episodes. In the train-and-train experiment, the distribution of cases

bv endpoint is the same in both sets o and o . There is no reason to think that
1 2

new case knowledge will always arrive in such fashion. However, this does not

mean that the experiment is totally lacking in general significance. While we

have assumed that neither the expert nor the knowledge engineer has knowledge

of the prior probabilities of case breakdown by endpoint, we can imagine that as

the first batch of cases is gathered, the expert and the knowledge engineer, by

reviewing the case data, will be able to reach some hypothesis about the relative

frequencies of the various endpoints with respect to the "local" population, i.e.,

the distribution of cases that this expert has experienced in his practice. Since

our goal is to construct a knowledge base that reproduces the performance of

this expert, it is reasonable to expect that we will be "tuning" the knowledge base

in a way that reflects the. case population with which he is most familiar.

Therefore, as new cases come in, the knowledge engineer will not initiate a new

refinement episode until such time as the overall distribution of cases again

matches the postulated local frequencies. It must, however, be emphasized that

this "policy" is not being required as a condition of the applicability of SEEK2,

but only as an imagined condition for interpreting the significance of the train-

and-train experiment.

Given this condition, what would be the "best" or "ideal" behavior of a

refinement system over the course of time? Assuming that our system is a

"perfect" refinement system and assuming that the initial batch of cases, o ,

contains cases of every significant type that exists in the domain, we would expect

that every useful refinement would be generated and selected in the initial

training run, and that therefore no new refinements would be proposed in the

subsequent training runs. In general, however, neither of these assumptions is

justified. In general, the new cases in o^ will contain some cases that differ in

one or more significant ways from every case in a . Therefore, it is not

unreasonable to expect a refinement system, even a perfect one, to discover new

refinements in subsequent training runs.

One property we would find in a perfect refinement system, that would be

displayed in such an experiment, is what we may call soundness. A refinement

system may be said to be sound if it never selects a refinement 7 in a session

unless that refinement actually improves the general empirical adequacy of the

system in the long run, i.e., the refinement is not significantly "retracted" by

any possible subsequent refinement episode. Conversely, an unsound system might

select a refinement in one training session, but in a later session it might find

itself selecting the inverse refinement, i.e., simply undoing a modification it had

previously selected. (Note that such a reversal might very well be a good thing

to do in the presence of biased sequences of case knowledge, but this violates

the assumption on case knowledge presentation that we are making.)

Whether this notion of soundness is ultimately a property of interest in

knowledge base refinement is not at issue here. AWe introduce it simply to give

the reader an idea of the kind of behavior that would seem to be desirable in a

refinement system. A system that tends to select refinements that "stand the test

of time/' would seem to be preferable to one that habitually selects refinements

that it later retracts.

With these remarks in mind, we are now ready to discuss the results of the

train-and-train experiment (see figure 7-2). In both runs of this experiment

seven refinements were selected in the first training phase. In both cases six of

these seven refinements are ones that are selected by SEEK2 in the overall run

using the entire data base of cases as the training set, the others are refinements

considered by SEEK2 in the overall run but not selected. In one of these runs,

two additional refinements were selected in the second training phase. These two

refinements were also selected by SEEK2 in the overall run. In the other run,

four refinements were selected in the second training phase, of these three were

accepted in the overall run, and one was not. Thus in both of these runs the

result of the double training experiment was nearly identical to the result of the

overall run: in one run nine refinements were selected, eight of which were

selected in the overall run; in the other run eleven refinements were selected,

nine of which were selected in the overall run. Both of the double training runs

ended with a total performance ratio exactly equal to the overall run.

First let us discuss what might seem to be a negative side of these results.

The fact that the refinements selected by the double training sessions are not

exactly identical to the single overall run is not surprising, since the order in

which refinements are generated, as well as their computed net gain, is sensitive

to the composition of the data base of cases. Since only one refinement is

Figure 7-2: Train and Train Again Experiment

Training Set 1 C I Training Set 2

RUN 1

Start 42/62 (69%) 116/121 (96%)

Finish 61/62 (98%) 120/121 (99%)

RUN 2

Training Set 1 Training Set 2

Start 46/59 (78%) 118/121 (98%)

Finish 59/59 (100%) 120/121 (99%)

selected in a given cycle, even in the case of ties in positive net gain, the

ordering of generated refinements can have an effect upon the refinements

selected. This circumstance also accounts for the fact that at the conclusion of

one of the double training sessions it turns out that two essentially redundant

refinements were selected, viz., the run in which eleven refinements were selected,

only nine of which are needed to reach the identical final performance situation.

This does not mean that such redundancies can occur within the course of a

single SEEK2 refinement session; in fact they cannot It would seem fair to

conclude, therefore, that these features of the result have no negative bearing on

the validity of the basic approach, but only indicate some possibly avoidable side-

effects of the current SEEK2 procedure.

The experiment does, however, seem to provide some evidence that the basic

approach is sound: none of the refinements selected in either of the first training

sessions is retracted in either of the second training sessions.

7.1.2. General Methodology for Knowledge Base Refinement

In terms of general methodology, the work presented here can be seen, first

of all as providing a more general and powerful understanding of the nature and

potential role of heuristic analysis in knowledge base refinement Starting with

the simple paradigm for heuristic refinement generation, we have shown that a

general architecture for heuristic refinement generation that allows for 'he

implementation of failure-driven higher-order refinement can be specified (see

chapters 4 and 6). Moreover a concrete tool that provides the means to

implement this type of architecture has been constructed, RM. With both the

tools and the blueprint on hand, it is reasonable to expect that these ideas will

eventually be realized.

The fact is, however, that RM has already proven to be a useful tool in

facilitating research progress. The RM design methodology was an important

factor in the design, development, growth, and debugging of the SEEK2 system.

Concrete examples of its use have already been discussed in detail in chapter 6.

Here we should note that the two experiments discussed in section 7.1.1.2 above,

are also examples of the type of experimentation that can be easily carried out in

RM. We should also mention that a complete version of SEEK2 has been

specified in RM. Running on the same rheumatology knowledge base, the RM

version achieves the same results as the hard-coded in approximately 2 hours of

CPU time. RM has also been used to specify and run experiments using an

alternative experimentation and selection regime.

Viewed as a testing and debugging tool, what SEEK and SEEK2 are to

knowledge bases, RM is to knowledge base refinement systems: SEEK and SEEK2

help a knowledge engineer to test and debug the rules in a knowledge base, RM

helps a researcher to test and debug refinement system design specifications. The

difference is that RM is not just a single body of procedures, but a flexible

high-level metalinguistic framework within which the design, testing, and

debugging of refinement concepts, heuristics, and strategies are integrated into a

single environment

7.2. Future Directions

7.2.1. More Powerful Rule Representation Languages

Many of the concepts dealt with in this work may be seen as being

generally applicable to any refinement system, and others can be easily extended

to have greater applicability. In other words, the analysis is applicable not only to

refinement systems that are intended to address a particular subclass of

refinement system design problems - those involving expert system frameworks

that are designed with classification . problems in mind - but to the whole range

of refinement systems imaginable. For example, let us consider rule

representation frameworks designed for planning problems, i.e., the rules

represent precondition-action pairs, and the job of a concrete system is to find

a sequence of actions that will achieve a certain given goal (see, for example,

[Stefik 81]). A case would now be interpreted as consisting of data

representing the initial state of the domain together with a specification of the

desired goal state. The expert's conclusion in a case would be the sequence of

actions he would carry out in that case to reach the desired goal. The expert

system would be said to diagnose the case correctly if its "plan" matched the

expert's, or deviated from it only in ways that are of no consequence, the latter

being a determination that could only be made with the use of domain-specific

knowledge. While refinement systems for these types of rule representation

frameworks would certainly differ from those that deal with expert system

frameworks for classification problems, they would also have much in common,

e.g., there would certainly be overlap in the set of primitive refinement

operations, r-functions and heuristics, and control strategies utilized.

However, a planning problem, or a design problem, typically requires a

richer rule representation language than does a classification problem. Systems

that solve planning problems will generally make non-trivial use of rules that

contain variables, i.e., the bindings of these variables may be altered dynamically

as the problem is solved and cannot be fixed once and for all for the course of

the run-time session.

Therefore, a natural path for future research is to think about how the

present paradigm may be generalized to deal with a richer rule representation

language. The first step would be to specify a canonical grammar for such a

language. It may very well be that the grammar given in chapter 3 is a good

place to start. The next step is to think about new primitive refinement

operators that could be added to the present stock. Then one must think about

situations in which it would make sense to apply one of these operators in order

to improve empirical adequacy. One must then try to isolate the features of

these situations that may provide evidence for the application of the operator.

Determining how, and with what cost, such evidence may be gathered is the next

step. At this point one is well on the way to deriving r-functions and heuristics

for the new operator. At the same time one would extend RM so as to include

all the new primitives necessary for dealing with a richer language.

7.2.2. Rule Acquisition

As we have mentioned a number of times, a challenge for any refinement

system is how to recognize r-situations that indicate a failure of ref inability.

A natural extension of this concern is the issue of correcting such failures

through the acquisition of additional rules. Instead of "just*1 flagging such a

failure with a request for additional rules, we would like to find ways of having

the system generate, test, and evaluate rules on its own, and then report the

results. We are talking about failure-driven rule acquisition.

It seems plausible to claim that the basic elements of the approach to

knowledge base refinement discussed in this thesis have counterparts in an

analogous approach to the problem of rule acquisition. An important element in

knowledge base refinement is the classification of the modes of refinement and

the primitive operators that belong to each class. In extending the analysis to

rule acquisition one would need to devise an analogous framework of operators

for the addition and deletion of complete rules. In contrast with the situation in

refinement, a useful set of operators for rule acquisition cannot simply be derived

from the syntax of the rule representation language. The discovery of useful rule

acquisition operators seems to be contingent upon our first having good ideas

about the various sorts of r-situations and "environments" in which rule

acquisition is called for, where by the later term we mean to include such

considerations as whether the knowledge base is in the early or latter stages of

construction.

To get an idea of what would be involved in extending the capabilities of a

refinement system to include failure-driven rule acquisition, we start with a very

simple idea or question. Instead of simply replacing a rule r with its refined

counterpart r\ as we do in knowledge base refinement, what would we be the

effect of adding r' to the knowledge base kb without deleting rt Thinking

about this question will in fact lead us to two types of rule-acquisition operators.

Let r' be a generalization of r. For the sake of simplicity assume that they

have equal confidence factors. By virtue of the meaning of generalization, adding

r' to kb will have the same effect on kb's performance regardless of whether

we delete r or not. (This is not strictly true in an expert system framework

that uses an additive scoring scheme in calculating hypothesis confidence factors:

since r' is satisfied whenever r is, there will be cases in which the hypothesis

confidence factor of the conclusion of r will be boosted by the contribution from

r'.) We may say that adding r' to kb has masked r.

Now let r' be a specialization of r. For the sake of simplicity assume that

they have equal confidence factors. By virtue of the meaning of specialization,

adding r' to kb will have no effect on kb's performance unless r is deleted.

In this case r' is masked by r.

If r is masked by r in kb, either because r is a generalization refinement
1 2 2

of r , or r is a specialization refinement of r , the fact is that the easiest way
1 1 2

to remove the masking is by means of changing confidence factors. Thus if r

is a generalization of r , and we want to add r^ to kb without masking r , then

we should lower the confidence factor of r^ Not only does this remove the

masking, in certain environments it makes intuitive sense in the context of rule

acquisition: in requiring less specific evidence to reach the same conclusion we

would naturally have less confidence in the conclusion. Similarly, if r is a

specialization of r, and we want to add r to kb without its being masked by r ,

then we should raise the confidence factor of r . This also makes intuitive
i

sense in certain environments when doing rule acquisition: in requiring more

specific evidence to reach the same conclusion it is natural that we should have

more confidence in the conclusion.

We have therefore identified two rule-acquisition operators:

Add a generalization of r with lower confidence factor to kb

Add a specialization of r with higher confidence factor to kb

The question is, in what sorts of environments and r-situations does it make

sense to think about applying one of these? An example of a likely r-situation

would be one in which we have found that a rule r is the only good candidate

for generalization with respect to certain meases, but that while the proposed

refined version r' will help win the meases it will simultaneously cause new false

positives to arise for a set of ceases. But suppose analysis shows that to win the

meases the full original confidence factor of r is unnecessary, and that with the

lower value needed to win the meases r' would not generate the new false

positives. Purely in terms of the logic of the situation it makes sense to lower

the confidence of r' to the indicated value and add it to kb, without deleting r

from kb. Whether this action ought to be taken depends upon the environment.

Is kb, for instance, in its early stages of development, so that it may reasonably

be expected to have gaps?

7.2.3. Parallelism

At the algorithmic level it is not difficult to see that all of the types of

refinement systems we have talked about offer opportunities for the exploitation

of parallelism. The hill-climbing approach of SEEK2, for example, is amenable

to parallel computation at every level. In each cycle each dx can be pursued

independently of the others/ Within a cycle, each rule for each dx can be

examined independently of all other rules. Most r-functions can be evaluated

independently of all the others. And finally each experiment can be tested

independently of all the others.

A direction for future research implied by these facts, involves the design of

a realistic machine architecture, based on existing technological possibilities and

limitations, for exploiting the inherent parallelism in the process to the fullest

degree.

7.2.4. Growth, Maintenance, and Integration of Knowledge Bases

It is a well known fact that knowledge engineering does not come to end

with the successful construction of a high-performance knowledge base. As with

any software, such systems must be maintained, and are liable to grow as domain

knowledge and techniques continue to improve. Moreover, from time to time

users may find it worthwhile to attempt to integrate two distinct, but overlapping,

high-performance knowledge bases into a single expert system. Such integration

may initially cause a degradation in performance, and therefore refinement of the

combined system may be required.

There is every reason to believe that the methodology of knowledge base

refinement will prove to be applicable to these tasks as well.

7.3. Concluding Remarks

7.3.1. Costs and Benefits of Domain-Specific Metaknowledge

From time to time throughout this thesis we have seen aspects of knowledge

base refinement that would benefit from or require the use of additional domain-

specific information, e.g., the specification of a radicality metric (chapter 3), use

of a generalization language and other forms of connections among domain

features (chapter 3), specification of rule-case paradigms (chapter 5), etc. We

know that it is possible to do knowledge base refinement without using such

information, but we also know that its use makes for the increased efficiency and

adequacy of the process. The question is, when are the benefits worth the cost?

The answer depends upon what a reasonable estimate of the cost is. This is

something that is really impossible to estimate in the abstract. Much depends on

the degree of "self-knowledge" of the domain expert and his willingness to

cooperate. On the other hand, it is clearly possible for the ambitious knowledge

engineer to take much of the burden on his shoulders. While interacting with

the expert in order to acquire the initial knowledge base, the knowledge engineer

should be on the lookout for clues as to the "expert's metaknowledge/' and should

organize the process in such a way that such clues will be forthcoming. For

example, once one has some cases and rules for a dx, it should be possible to

specify paradigms, if they exist, by simply asking the expert some additional

questions. Finally, some domain-specific metaknowledge may be most easily

acquired by simply making use of a good text on the subject.

The answer to the question also depends on what benefits can reasonably be

expected. Again it is hard to give an estimate in the abstract However one can

make some vague, but possibly useful, general statements. For example, if the

domain of expertise is well established and very sharply defined, one has a good

amount of accurate cases, and access to an outstanding expert, then the benefits

of gathering domain-specific metaknowledge may be so short-lived as to be

negligible. The reason is that, in such a case one may hope for a fairly swift

completion of the entire knowledge acquisition process.

If, on the other hand, the boundaries of the domain of expertise are fuzzy,

case data is hard to come by, and experts in the field are often in disagreement,

260

and/or new developments are the rule rather than the exception, one can expect a

more difficult and drawn out knowledge acquisition process. Therefore the long

range benefits of domain-specific metaknowledge - which, likely as not, the

knowledge engineer will acquire during the course of the process anyway - will

justify the additional costs. Moreover, in a domain of expertise of this nature,

one can expect that the expert's domain knowledge may undergo fairly rapid

revision as a matter of course, in which case, in order to keep the knowledge

base up to date, one will have to do quite a bit of refinement from time to

time.

Note that in reckoning the cost of acquiring domain-specific metaknowledge

against the possible benefits, it is important to keep in mind, that even current

ftreal life" expert systems are expected to do more than give the right answer.

For example, an expert system should be able to explain and justify its reasoning.

The possession of such capabilities may often depend upon the acquisition of

exactly the same domain-specific metaknowledge that would be useful in

refinement, e.g., a generalization language for the domain of expertise will be

useful in tasks other than refinement The overall cost-benefit analysis looks

more favorable once one takes this circumstance into account.

7.3.2. Philosophical Finale

The various refinement strategies, methods, principles, and analyses thereof

discussed in this thesis are, in their intended immediate application, a logical

foundation for both current and future knowledge base refinement and rule-

acquisition tools. Beyond that, however, they represent a step in the direction of

the design of more robust expert systems.

The key idea of expert systems research is that "knowledge is power." No

matter how good a system is at drawing consequences or making inductive

inferences, if it does not have an adequate base of knowledge for its problem

domain to start with, it is not likely to get very far as a problem solver. Put

simply: there is no way - using current theory and technology - to construct

good problem solvers for a domain without engaging in substantive knowledge

acquisition (and knowledge representation) issues.

The research on a metalinguistic framework presented here may be seen as

an exploration of the consequences of applying the "knowledge is power" principle

to the domain of knowledge acquisition itself, and more specifically, to knowledge

base refinement If domain knowledge gives a system problem-solving power, and

if the domain of interest is itself the problem of making a given knowledge base

fit certain given facts more closely, then it follows that metaknowledge about

know/edge representation itself - e.g., knowledge of the ways in which formal

objects can be used or altered to fit facts, knowledge of the sorts of evidence

that can be gathered in support of certain classes of refinements, etc. - must be

an essential ingredient of any successful automatic knowledge base refinement

system, and a fortiori of any successful automatic knowledge acquisition system.

It also follows that just as there is a knowledge acquisition problem for "object-

level" systems, so too there must be a metaknowledge acquisition problem for

knowledge refinement and acquisition systems. Therefore, just as the use of high-

level formal languages has helped researchers to clarify issues and generalize from

experiences with object-level knowledge acquisition, one would expect that the use

of a high-level metalanguage would provide similar benefits with respect to the

metaknowledge acquisition problem. It is hoped that the work presented here will

be seen as justifying this expectation.

APPENDIX A

LIST OF RM PRIMITIVES AND SOME CONSTRUCTS

Primitives

Constants

CASES The set of cases in the data base of cases

kb The initial knowledge base
o

DX The set of endpoints in kb
o

Special Variables

case A variable over CASES

cases A variable over subsets of cases

rule A variable ranging over rules

kb A variable over knowledge bases

dx A variable over DX

component A variable over rule components and sub-components

finding A variable over finding components

hypothesis A variable over hypothesis components

Functions

PDX(case)

the expert's conclusion in case

CDX-Total(case,kb>

The set of dx concluded with positive confidence in

case by kb

CDX(case,kb)

The dx concluded with greatest positive confidence

in case by kb

CDX-2(case,kb)

The dx concluded with, the second greatest positive

confidence in case by kb

RuleCF(rule)

The confidence factor of rule

ModelCF(hypothesis,case,kb)

The hypothesis confidence assigned to hypothesis in

case by kb

Rules-for(hypo thesis)

The set of rules with dx as their conclusion

Conclusion(rule)

The conclusion of rule

Satisfied(item,case,kb)

= T iff item is satisfied in case in kb

= F iff item is unsatisfied or unknown in case in kb,

where item is either a component of a rule or

an entire rule

Value(numerical-finding.case)

The value of numerical finding in case

Mean(quantity,cases)

The mean value of quantity over the set of cases

Component-Parameters(component)

The type of component, and in addition

i) <choice-number, | choice-list | > if component is a choic

ii) <lh> if component is a hypothesis with cf-range [l:h]

iii) <lh> if component is a finding with range [l:h]

Special Operators

Select item with Max/Min specification

returns a single item that maximizes/minimizes

the value of the condition in specification

Select {item} with Max/Min specif/cation

returns the set of item that maximizes/minimizes

Constants

the value of the condition in specification

Useful Defined Notions

CCASES = {case| PDX(case)=CDX(case,kb)}

the set of cases in which the kb's conclusion

matches the expert's (correctly diagnosed cases).

MCASES = {case| PDX(case) * CDX(case,kb)}

the set of cases in which the kb's conclusion does

not match the expert's (misdiagnosed cases).

Note that a null CDX is possible and considered a

misdiagnosis.

Variables

cease A variable ranging over CCASES

ceases A variable ranging over subsets of CCASES

mease A variable ranging over MCASES

meases A variable ranging over subsets of MCASES

Functions

(The following are defined in terms of a fixed kb.)

Satisfied-Rules-For(hypothesis,case)

= {rule e Rules-for(hypothesis) j Satisfied(rule,case)}

TP(dx,case)

= T if PDX(case)=CDX(case)=dx

= F otherwise

TN(dx,case)

= T if dx*PDX(case)*CDX(case)

= F otherwise.

FP(dx,case)

= T if PDX(case) * CDX(case)=dx

= F otherwise

FN(dx,case)

= T if dx=PDX(case)*CDX(case)

= F otherwise.

Primitives for Specifying
Refinement Strategies

Variables and Sets

R-OPERATORS

The set of primitive refinement operations

r-operator

A variable over R-OPERATORS

Primitive-r-operation

A variable over 4-tuples of the form

<rule,component.r-operator,parameters>

where component is the component of rule to which r-operator

is to be applied with the given parameters

Complex -r-operation

A variable over sets of primitive-r-operations

r-operation

A variable over primitive and complex r-operations

experiment

A variable ranging over 3-tuples of the form

<r-operation,kb,cases>

and ordered pairs of the form

<r-operation,kb>

where r-operation is to be applied to kb and then testedwith resnect to rases (VtuniesV or with resneet to TASFS

(pair)

suggestions

A variable over sets of (untried) experiments, that have

been generated by the refinement generator

r-situation

A variable over triples of the form <rules,mcases,CASES>

kb-object

A variable over kb-objects (see chapter 6)

VIEWFINDER

The set of r-functions used by the refinement generator

r-function

A variable over the r-functions in VIEWFINDER

(see chapter 6)

r-f unctions

A variable over subsets of r-functions in VIEWFINDER

R-KNOWLEDGE

The set of heuristics used by the refinement generator

VR-HEURISTICS

The set of heuristics having only r-function calls in

their left-hand-sides (see chapter 6)

RR-HEURISTICS

The set of heuristics referring to the results of evaluation

of other heuristics (see chapter 6)

vr-heuristic

A variable over VR-HEURISTICS

rr-heuristic

A variable over RR-HEURISTICS

Operations and Functions

Compute(r-function,kb-object,mcases)

Returns the value of r-function(kb-object,mcases,CASES) if

kb-object and cases are legitimate arguments for

r-function, otherwise undefined (Recall that CASES is an

optional argument in r-functions)

View(kb-object,mcases,CASES)

for every applicable r-function e VIEWFINDER

Compute(r-function,kb-object,mcases)

and store results

performance(kb,dx,cases)

returns the ordered pair consisting of

< I {case e cases I TP(dx,case,kb)} I f I {case e I FP(dx,case,kb)} I >

Evaluate~Heuristics(heuristicstkb-object,View(kb-object,mcases))

returns the results of evaluating every heuristic in

heuristics for kb-object using information in

View(kb-object,mcases)

Try-Experiment(experiment,kb,cases)

Temporarily incorporates the r-operation in experiment

into kb, then runs the resulting knowledge base over

the specified set of cases; computes, and returns the

net gain of the r-operation over these cases

Create-Kb(experiment,kb)

returns the knowledge base resulting from application

of the r-operation in experiment to kb

APPENDIX B

GENERIC ATOMIC REFINEMENT OPERATORS

FOR EXPERT

Nion - Structural Refinements

Generalizations

Concept Generalization

... [<find j hyp> <value | range>]... —•... [<G(find) | G(hyp)><value | range>]...

where G(item) is a more general concept than item.

Extend a Range From Below

... [<f ind I hyp> <n:m>]... —* ... [<f ind | hyp> <k:m>3

where k<n

Extend a Range From Above

... [<find|hyp> <n:m>]... —• ... [<find|hyp>

where m<k

Non-Structural Specializations

Concept Specialization

... [<find | hyp> <value | range>]... —+ ... [<S(find) | S(hyp)><value | range:

where S(item) is a less general concept than item.

Restrict a Range From Below

... [<find|hyp> <n:m>]... —* ... [<find | hyp>

where n<k

Restrict a Range From Above

... [<find|hyp> <n:m>]... —• ... [<find|hyp>

where k<m

Structural Refinements

Generalizations

Component Deletion

... [<comp>]...

Decrement Choice-Number

... [n: <Choice-list>]... —• ... [(n-1): <Choice-list>]...

Append Component to Choice-list

... [n: <Choice-list>]... —• ... [n: <Choice-list><f ind | hyp>],

Increase Confidence Factor

<Conclusion CF> —* <Conclusion CF'>

where CF<CF/

Structural Specializations

Component Addition

... [<comp>]...

Increment Choice-Number

... [n: <Choice-list>]... —• ... [(n+1): <Choice-list>]...

Delete Component From Choice-list

... [n: <Choice-list><find|hyp>]... —• ... [n: <Choice-list>],

Decrease Confidence Factor

<Conclusion CF> —̂ <Conclusion

where CF>CF/

APPENDIX C

A GRAMMAR FOR THE CANONICAL

RULE REPRESENTATION LANGUAGE

In using this grammar the following points must be kept in mind:

• Expressions in angle-brackets, such as <Rule>, are non-terminals;

expressions in braces, such as {<Range>} represent optional

constructs; expressions delimited by asterisks such as

• Predicate-Symbol* represents valid sequences of terminal symbols,

whose precise formal specification is unimportant for our purposes;

every other symbol is a special symbol belonging to the vocabulary

of the canonical language.

• The given grammar will accept quantified formulas in Prenex normal

form only, i.e., quantifiers are not allowed within the scope of the

boolean operations.

• The given grammar is important as an expository device and is

certainly not the most elegant one that can be devised. The goal is

to provide a grammar that parses all the formal notation that we

intend to employ in a way that helps to clarify the formal nature of

refinement operations.

Figure C-l: Context-Free Grammar for Canonical Language

<Rule>—• <Premises> -> <Conclusion> [•Confidence-Factor*]

<Premises> —* <Component><Connective><Premises> | A

<Conclusion> —* <Simple-Component>

<Connective> —* & | v | —• | A

<Component> —* <Simple-Component> | <Compound-Component> | <Choice>

| <Quantified-Component>

<Quantified-Component> —* (V <*Variable^>)(<Component>)

| (3 •Variable*)(<Component>)

<Simple-Component> —• h } <Propositional-Form> | h } <Predicate-form>

<Chbice> —•• [<Choice-Number>: <Choice-List>]

<Choice-Number> —• •positive-integer*

<Choice-List> —* <Choice-Element>, <Choice-list> | A

<Choice-Element> —̂ <Simple-Component>

<Compound-Component> —* (<Simple-Component><Connective>

<Compound-Component>)

|A

<Propositional-Fonn> —• (*Propositional-Constant* {<Range>})

<Predicate-Form> —• (•Predicate-Constant^ <Parameter-List> {<Range>})

<Parameter-List> —• <Term>|<Tenn>,<Parameter-List>|A

<Term> —• •Variable* | *Constant* | <Function-Term>

<Function-Term> —• (*Function-Symbol* <Parameter-List>)

<Range>—* *Truth-Value* | [*Number*:*Number*]

REFERENCES

[Bazaraa 77] Bazaraa,M., and Jarvis, J.
Linear Programming and Network Flows.
Wiley, New York, 1977.

[Chomsky 57] Chomsky, N.
Syntactic Structures.
Mouton, The Hague, 1957.

[Davis 79] Davis, R.
Interactive Transfer of Expertise: Acquisition of New Inference

Rules.
Artificial Intelligence 12:121-157, 1979.

[Drastal and Kulikowski 82]
Drastal, G., and, Kulikowski,C.
Knowledge-Based Acquisition of Rules for Medical Diagnosis.
Journal of Medical Systems 6(5), 1982.

[Duda and Hart 73]
Duda, R., and Hart, P.
Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

[Fu and Buchanan] 84]
Li-Min, Fu and Buchanan, B.
Enhancing Performance of Expert System by Automated Discovery

of Meta-Rules.
In The First Conference on Artificial Intelligence

Applications. December, 1984.

[Fukunaga 72] Fukunaga, K.
Introduction to Statistical Pattern Recognition.
Academic Press, New York, 1972.

[Genesereth 82]
Genesereth, M.
Diagnosis Using Hierarchical Design Models.
In Proceedings of the Second Annual National Conference on

Artificial Intelligence, pages 278-283. Pittsburg, Pa., 1982.

[Ginsberg 84] Ginsberg, A.
Localization Problems and Expert Systems.
Technical Report, Department of Computer Science, Rutgers

University, 1984.

[Ginsberg, Weiss, and Politakis 85]
Ginsberg,A., Weiss,S., and Politakis,P.
SEEK2: A Generalized Approach to Automatic Knowledge Base

Refinement.
In Proceedings of the Ninth International Joint Conference on

Artificial Intelligence, pages 367-374. Los Angeles,
California, 1985.

[Langley 83] Langley, P., Bradshaw, G., and Simon, H.
Rediscovering Chemistry With the BACON System.
Machine Learning.
Tioga Publishing Company, 1983.

[Lenat 83] Lenat, D.
The Role of Heuristics in Learning By Discovery: Three Case

Studies.
Machine Learning.
Tioga Publishing Company, 1983.

[Mitchell 82] Mitchell; T.
Generalization as Search.
Artificial Intelligence 18:203-226, 1982.

[Mitchell 83] Mitchell, T., Utgoff, P., and Banerji, R.
Learning By Experimentation: Acquiring and Refining Problem-

Solving Heuristics.
Machine Learning.
Tioga Publishing Company, 1983.

[Politakis 82] Politakis, P.
Using Empirical Analysis to Refine Expert System Knowledge

Bases.
PhD thesis, Department of Computer Science, Rutgers University,

1982.

[Politakis and Weiss 84]
Politakis, P. and Weiss, S.
Using Empirical Analysis to Refine Expert System Knowledge

Bases.

Artificial Intelligence 22:23-48, 1984.

[Smith 85] Smith. R., Winston, H., Mitchell T., and Buchanan, B.
Representation and Use of Explicit Justification for Knowledge

Base Refinement.
In Proceedings of the Ninth International Joint Conference on

Artificial Intelligence, pages 673-680. Los Angeles,
California, 1985.

[Stefik 81] Stefik, M.
Planning and Meta-Planning.
Artificial Intelligence 16:141-170, 1981.

[Weiss and Kulikowski 79]
Weiss, S., and Kulikowski, G
EXPERT: A System for Developing Consultation Models.
In Proceedings of the Sixth International Joint Conference on

Artificial Intelligence, pages 942-947. Tokyo, Japan, 1979.

[Weiss and Kulikowski 84]
Weiss, S. and Kulikowski, C.
A Practical Guide to Designing Expert Systems.
Rowman and Allanheld, Totowa, New Jersey, 1984.

VITA

Allen Ginsberg

1952 Born September 21 in Paterson, New Jersey.

1969 Graduated from Eastside High School Paterson, New Jersey.

1969-73 Attended Oberlin College, Oberlin Ohio. Majored in Philosophy.

1973 B.A., Oberlin College.

1974-82 Graduate work in Philosophy, Rutgers, The State University of New
Jersey, New Brunswick, New Jersey.

1976-81 Teaching Assistantship, Department of Philosophy.

1978 M.A. in Philosophy, Rutgers, The State University of New Jersey.

1980-81 University Fellowship, Rutgers, The State University of New Jersey.

1981 Ginsberg, A. Quantum theory and the identity of indiscernibles revisited.
Philosophy of Science, 48: 487-491.

1981-83 Teaching Assistantship, Department of Computer Science.

1982-86 Graduate work in Computer Science, Rutgers, The State University of
New Jersey, New Brunswick, New Jersey.

1983 Ph.D. in Philosophy.

1983-84 Visiting Lecturer, Department of Computer Science.

1983-84 Research Assistant, Department of Computer Science.

1984 Ginsberg, A. On a paradox in quantum mechanics. Synthese, 61:
325-349.

1984 M.S. in Computer Science.

1984-86 Research Associate, Laboratory for Computer Science Research.

1984-86 Investigator, National Institutes of Health Grant P41 RR02230, Rutgers
Resource on Artificial Intelligence in Medicine.

1985 Ginsberg, A., S. Weiss, and P. Politakis. SEEK2: a generalized approach
to automatic knowledge base refinement. Proceedings of the Ninth
Joint International Conference on Artificial Intelligence, 367-374.

1986 Ph.D. in Computer Science.

3 fl4fl5 DQMifl b55

NOV 11 1988

RUTCB 147 c.1
Ginsberg, Allen.
Refinement of expert system
knowledge bases :

