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rhe structure of a computer program and the extent to which that structure is visit

amatically affect the clarity of the program. Programming languages therefore conta

ruduring mechanisms to provide a framework within which to structure progran

bis thesis describes a new program structuring mechanism, called the grid.



The grid mechanism was designed to specify, represent, document and enforce t

ructure of large programs having a layered organisation. Layered programs ar:

benever levels of abstraction, layers of protection or multiple views of objects are use

it they are not handled adequately by other structuring mechanisms.

The structure of a layered program is conveniently modeled by a layered gra

insisting of interacting layers, each of which is a directed graph of program parts. T

id mechanism is based on this model. A grid specification identifies the lay<

:plicitly, and specifies program structure in terms of them. Similarities between lay<

e exploited to simplify a specification. Differences between layers, as well as a

ructural irregularities or relaxation of access restrictions, are highlighted.

The grid mechanism emphasises human readability. It uses some novel techniques

•ecify layered graph structures in a clear and concise manner, including specification

regular structures as regular structures with explicit deviations, omission of unnecessa

>tail, and localisation of information. The grid can specify multiple relationshi

tween program parts. It also serves as a structured repository for information about

ogram, such as documentation or the information required by source management

rsion control systems.

\ prototype implementation of the grid mechanism was developed, to check the actu

ructure of Modula-2 programs against grid specifications. Experience with a number

amples, including a large system in widespread use, indicates that the implementati*

n perform the necessary checks with acceptable efficiency, that grid specifications <

>t grow excessively large as program size increases, and that the grid mechanis

fectively specifies the structure of large, layered programs in a clear and conci

anner.



ANEW
PROGRAM STRUCTURING MECHANISM

BASED ON LAYERED GRAPHS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Harold Leon Ossher

December 1984



Copyright, © 1985

by

Harold Leon Ossher



To the memory of my parents

Yale and Freda Ossher

and to

Ruth and Joel



 



Acknowledgements

It has been a great pleasure and privilege for me to work with my advisor,

Brian Reid. He has been an unfailing source of expertise, whether on technical

matters, writing style, document preparation or steak restaurants. I cannot even

begin to thank him for all the time he has given me, for his encouragement and

assistance, for his good humour, and for his patience.

The members of my reading committee, John Hennessy and Jim Horning,

made a number of valuable contributions to this dissertation. They drew my

attention to a variety of related research, discussed my ideas with me, and

helped me to present them more clearly, accurately and convincingly. I enjoyed

my interaction with them, and benefited from it in many ways.

A number of other people discussed my work with me: Danny and Lucy

Berlin, Miriam Blatt, Danny Bobrow, Lori Clarke, David Elliott, Stu F eld man,

Ivar Jacobson, Mark Linton, Ernst Mayr, Jack Wileden, and Alexander Wolf.

Their comments have been most helpful, and more than once led to new

insights.

My thanks to those people who helped with the preparation of this

dissertation: Danny and Lucy Berlin, Linda Kovach and Ruth Ossher. They

saved me valuable time when it mattered most. Special thanks to Linda for

providing friendly and outstanding secretarial support all the time I have known

her.

British spelling is used throughout this thesis.



 



During part of my graduate studies, I was supported by a National

Scholarship awarded by Rhodes University, Grahamstown, South Africa. I

gratefully acknowledge their generosity.

To my office-mates, Lia Adams, Paul Asente, Carolyn Bell and Glenn

Trewitt, my thanks for providing a congenial working environment, and for

putting up with my increasing ill-humour as deadlines approached. Special

thanks to Glenn for writing the program I use most (Vemacs), for keeping the

hardware running, and for sneaking an extra half Megabyte of memory into my

Sun station.

My wife, Ruth, has been a constant source of love, support, assistance and

good food. I am greatly looking forward to being able to spend some time with

her again.

Finally, thanks to my baby son, Joel, for his unfailing ability to entertain me,

amuse me, delight me, and keep me awake.

The research reported in this dissertation was supported in part by the

Defense Advanced Research Projects Agency under Contract No. MDA 903-80-

C-0432.



 



Table of Contents

1. Introduction 1
1.1. Background: Structure and Structuring Mechanisms 5

1.1.1. Organisation 6
1.1.2. Interactions 8

1.2. Background: Fable 10
1.3. Research Goals 12

1.3.1. Specification 13
1.3.2. Documentation 15
1.3.3. Enforcement 18
1.3.4. Representation 18
1.3.5. Ability to Handle Layered, Object-Oriented Programs 19
1.3.6. Scale 20

1.4. Prior Work 21
1.4.1. Nesting 21
1.4.2. Visibility Control Lists 22
1.4.3. MIL 75 23
1.4.4. DF Files and SML 24
1.4.5. PIE 25
1.4.6. Structured Analysis 26
1.4.7. Summary 27

1.5. The Grid Mechanism 28
1.6. A Simple Example 30

1.6.1. Nesting 33
1.6.2. Visibility Control Lists 35
1.6.3. The Grid Mechanism 36

2. Layered Graph Structures 41
2.1. Layered, Object-Oriented Programs 41

2.1.1. Example: A Simple Shared Database 45
2.2. Layered Graphs 48
2.3. Techniques for Specifying Layered Graph Structures 51
2.4. Factorisation 53
2.5. Clustering 58
2.6. Deviation 66
2.7. Approximation 72



3. The Grid Mechanism 75
3.1. Overview 75
3.2. Domain of Discourse 81
3.3. Abstract Syntax 83

3.3.1. The Abstract Syntax of Grids 83
3.3.2. The Abstract Syntax of Directories 87
3.3.3. The Abstract Syntax of Qualifiers 95

3.4. Semantics 100
3.4.1. Concepts and Terminology 101
3.4.2. The Semantics of Ideal Grids 104
3.4.3. The Semantics of Grids with Qualifiers 106
3.4.4. The Semantics of Directories with Qualifiers 108
3.4.5. The Semantics of Qualifier Sequences 110
3.4.6. The Semantics of Qualifiers 114
3.4.7. Examples 117

4* The Prototype Implementation 123
4.1. Overall Structure 125
4.2. Tools 128
4.3. The Grid Core 129
4.4. Intermediate Form 130

5. Examples 135
5.1. The Shared Database Example 135
5.2. The Grid Implementation 139

5.2.1. The Specification 139
5.2.2. Interesting Features 141

5.2.2.1. The Abstract Data Type Discipline 141
5.2.2.2. Language-Independence of the Grid 144
5.2.2.3. Restricted Use of Library Modules 144
5.2.2.4. Saving of Intermediate Structures 145
5.2.2.5. Multiple Programs 146
5.2.2.6. Limiting Recompilation 147
5.2.2.7. Revelation of Structural Violations and Peculiarities 147
5.2.2.8. Grid Construction Aids 148

5.2.3. Checking Interactions 148
5.2.4. Evaluation 149

5.3. Scribe 150
5.3.1. Units 151
5.3.2. The Matrix 153
5.3.3. The Object Directory 154

5.3.3.1. High Levels 154
5.3.3.2. The Core 156
5.3.3.3. Servers 161
5.3.3.4. Low Levels 162



5.3.4. The View Directory 164
5.3.5. Qualifiers 171
5.3.6. Interesting Features 177

5.3.6.1. System Dependencies 177
5.3.6.2. Device Dependencies 178
5.3.6.3. The Debugger 178
5.3.6.4. ZWRString 179
5.3.6.5. Facilities 180
5.3.6.6. Obsolete Units 180

5.3.7. Checking Interactions 181
5.3.8. Evaluation 182

5.4. Scaling 184
6. Directions for Further Research 180

6.1. Qualifiers 189
6.2. Semantics 193
6.3. Implementation 197
6.4. Object-Oriented Programming with Multiple Views 198
6.5. Further Generalisation 200

7. Conclusions 201
References 207
Appendix A. The Shared Database Example 215

A.I. The Program 216
A.2. The Relation "DefUses" in Intermediate Form 218
A.3. The Relation "ImpUses" in Intermediate Form 220
A.4. Listings of Relations 222
A.5. The Unit Table in Intermediate Form 227
A.6. The Grid in Intermediate Form 229
A.7. The Comparison 236



 



Chapter 1

Introduction

The structure of a computer program and the extent to which that structure

is visible dramatically affect the clarity of the program. Clarity, in turn, affects

other important attributes such as reliability and modifiability. For this reason,

structure and its specification are of central importance to programming.

Computer programs consist of collections of parts, such as modules,

procedures, statements and expressions. The precise nature of these parts

depends on the programming language being used. The structure of a program is

the organisation and interactions of its parts.

Programming languages contain structuring mechanisms to provide a

framework within which to organise program parts and to specify their

interactions. One of the primary purposes of a structuring mechanism is to

document structure in a clear and concise manner. Equally important, the

structuring mechanism must enforce the documented structure, ensuring that

the program does indeed conform to the structure specified. A structuring

mechanism should also be sufficiently rich to cope with the wide diversity of

program structures that arise in large systems.

Structuring mechanisms are traditionally able to handle programs that are

hierarchically organised, or programs that consist of amorphous collections of

modules. Examples are static nesting, which is widely used for specifying

hierarchical structures, and visibility control lists (import/export lists), which



control interactions between the modules in an amorphous collection. There is a

third form of program organisation that is important and useful, but for which

no structuring mechanism exists: layered organisation, in which a program

consists of a number of separate but interacting layers, each of which has its

own internal structure. This thesis introduces and defines a new structuring

mechanism, called the grid, that is especially suited to specifying the structure of

layered programs.

The grid mechanism was designed as part of Fable, a language for specifying

integrated circuit fabrication processes [Ossher-Reid 83]. Such processes, as well

as the fabrication equipment that performs them, are described at multiple levels

of abstraction. At the same time, each step of a process and each piece of

equipment is complex and structured, and is treated as an object. A Fable

program is thus an object-oriented program in which objects are described at

multiple levels of abstraction. A natural and convenient model for the structure

of such a program is a layered graph, in which each layer corresponds to an

abstraction level. Layered graph structures occur whenever levels of abstraction

are used to guide system design and implementation; areas in which this is

common include digital systems and communication protocols.

Layered structures also arise when objects are used in different ways by

different clients. In such cases, it is convenient to regard each client as having its

own view of each object it uses. The layers then correspond to views, with each

layer containing descriptions of many objects, all from a single point of view.

Layers corresponding to levels of abstraction are generally ordered, whereas

layers corresponding to alternative views might not be ordered; the layered

graph model is applicable in both cases. The grid mechanism is based on this

model, and is able to specify arbitrary layered graph structures.

When specifying structure, there is often tension between accuracy and

readability. Accurate specifications of complex structures tend themselves to be



complex, and therefore difficult to read. One of the most important functions of

a structuring mechanism is to document structure, and such documentation is

particularly valuable if a new reader who is completely unfamiliar with a

program can gain an appreciation of its overall structure without having to

examine excessive detail. The technique of hierarchical decomposition facilitates

this to some extent, by allowing the reader to select how much detail to

examine. It is often inappropriate, however, as few large systems conform to a

rigid hierarchical structure, though many are nearly hierarchical

The grid mechanism emphasises documentation of structure, and addresses

the issue of specifying complex structures in a readable fashion. It uses four

techniques for reducing complexity: factorisation, clustering, deviation and

approximation.

The techniques of factorisation and clustering both involve collecting closely

related nodes together and then treating all nodes in a collection uniformly,

replacing the interactions between individual nodes by interactions between the

collections. This process has much in common with hierarchical decomposition;

the technique of clustering is, in fact, a form of hierarchical decomposition.

The technique of deviation is the key to the success and generality of the

other techniques. Though treating collections of nodes uniformly often results in

great simplification, it also often results in inaccuracy: the nodes in a collection

are in fact different, and might behave differently in some respects. Deviation

involves explicit specification of the manner in which individual nodes deviate

from the assumed uniform behaviour of collections. It allows a clear, simple

overview to be presented, together with specifications of how the actual

structure differs from the overview. It allows a nearly hierarchical program to

2
Traditional hierarchical decomposition achieves the same goal to some extent, but low-level

details sometimes have to intrude at higher levels to preserve accuracy. Deviation allows such
details to be specified separately, without complicating the overview.



be specified as an hierarchy, with deviations specified separately. It allows an

unfamiliar structure to be specified as a similar but familiar one, together with a

description of how they differ. The deviations often contain the most valuable

information about program structure, because they specify those aspects that are

exceptional and non-intuitive.

The technique of approximation exists in recognition of the fact that not all

deviations are material in all contexts. It allows specifications of deviations to be

ignored when not needed, giving rise to approximate specifications of structure

that are simpler yet sufficiently accurate. A new reader can begin with a simple

but gross approximation, and then proceed to consider further details only as

needed.

The grid mechanism has a number of additional important features. A single

grid can specify multiple kinds of relationships between the parts of a program.

Multiple grids can be used to specify the structure of the same program from

multiple points of view. Though designed as part of Fable, the grid mechanism is

completely language-independent; in fact, it is not restricted even to programs,

and can be used to specify the structure of any collection of entities. A grid is

textually separate from the program whose structure it specifies, so it can be

created before the program is written, and then used to check that the

developing program conforms to the specified structure at all times. It also

provides a structured repository for information about the program, such as

documentation or information for use by source maintenance or version control

systems. These features enhance the usefulness of the grid, though its chief

advantage remains its ability to specify layered graph structures in a concise and

readable fashion.

This thesis motivates the need for the grid mechanism, defines it

mathematically, and describes a prototype implementation for representing and

enforcing the structure of Modula-2 programs. The remainder of this chapter



gives background information about structuring mechanisms and Fable, discusses

the requirements of a structuring mechanism for Fable, describes some existing

structuring mechanisms in the light of these requirements, and motivates the

need for a new mechanism. Chapter 2 describes layered programs and the

layered graphs used to model their structure, and gives details of the four

techniques for specifying layered graph structures in a readable fashion. It also

introduces an important example that is used consistently throughout subsequent

chapters. Chapter 3 gives an overview of the grid mechanism itself, followed by

precise definitions of its abstract syntax and semantics. Chapter 4 describes the

prototype implementation of the grid mechanism for Modula-2. Chapter 5

describes three example grid specifications, including one of a large, widely-used

program; extracts of actual computer input, output and intermediate forms

associated with one of these examples are included as Appendix I. Chapter 6

discusses directions for further research and a number of ideas that have not yet

been explored in detail. Finally, Chapter 7 summarises the features of the grid

mechanism and shows that it does indeed meet its requirements.

1.1. Background: Structure and Structuring Mechanisms

This section introduces some important concepts and terminology associated

with structure and structuring mechanisms.

Structuring mechanisms specify program structure by specifying the

organisation and interactions of program parts. They can serve a variety of

purposes, including documentation/representation and enforcement of structure,

controlling visibility, and aiding program design and construction. The relative

importance of these various purposes depends on the environment and manner in

which a structuring mechanism is to be used, and greatly affects the design of

the mechanism. Those of importance to this research are discussed in detail in

Section 1.3.



The parts of a program can vary greatly in size and complexity, and some

can contain others; for example, modules can contain procedures, which in turn

can contain statements. Any structuring mechanism must consider certain parts

to be atomic, and specify the structure of the program in terms of those atomic

parts. The term unit is used throughout this thesis to denote such an atomic

part. The nature of the units determines the granularity of the structuring

mechanism; the smaller the units, the finer-grained the mechanism. A

mechanism that treats entire modules as atomic is sometimes referred to as a

module interconnection language [DeRemer-Kron 76].

1.1.1. Organisation

Programs can be classified, from a structural point of view, according to the

manner in which their units are organised. Structuring mechanisms can be

classified according to the categories of program organisation they can handle.

Although a great many ways of organising the units of a program can be

imagined, three emerge as prominent based on usage in practice:

Amorphous. Units form an unorganised collection.

Hierarchical. Units are classified into an hierarchy.

Layered. Units are partitioned into layers, each of which has
its own internal structure.

The amorphous approach tends to be followed when a program is viewed as a

collection of separate and largely independent units that can be pieced together

and used as needed. It is common in Fortran [Golden 65], Lisp [Teitelman 78]

and CLU [Liskov, et al. 81] programs, which consist of amorphous collections of

subprograms, functions and clusters, respectively, all of which are available for

general use. The problem with this organisation is that it does not explicitly

identify coherent groups of closely related units.

3The CLU library does allow hierarchical classification of units, however.



As pointed out by Parnas, the term "hierarchy" is used in many different

ways, to the extent that "hierarchically structured" actually means very

little [Parnas 74]. Throughout this thesis, I shall use term hierarchy as

synonymous with tree structure: programs that are hierarchical according to this

interpretation most commonly arise as a result of textual nesting in Algol-like

languages. Units in an hierarchical program are grouped according to common

features, such as common function, common purpose or common attributes; the

common features of a collection of children are associated with and characterise

their parent. This kind of grouping is natural and intuitive, and corresponds to a

large extent to the way in which people structure their thoughts and concepts.

Hierarchical organisation is extremely common in computer programs, as

elsewhere. It is supported by languages that allow static nesting, such as

Algol60 [Naur 63], Pascal [Jensen-Wirth 78] and Ada [ANSI 83], by object-

oriented languages that include class hierarchies, such as Simula 67 [Dahl-

Myhrhaug-Nygaard 68] and Smalltalk [Ingalls 78], and by a variety of structure

specification languages, such as MIL 75 [DeRemer-Kron 76], Gandalf

SVCL [Kaiser-Habermann 82], C/Mesa [Mitchell-Maybury-Sweet 79] and

SML [Schmidt 82].

A layered program consists of a number of layers, each of which consists of a

collection of units organised in some other way. Layers commonly represent

levels of abstraction or viewpoints: ideally, the units in a layer describe entities

at a consistent level of abstraction or from a single, consistent point of view.

When layered structures arise from levels of abstraction, the layers are generally

ordered on the basis of degree of abstraction; when they arise from the presence

of multiple viewpoints, there might be no such ordering. Horning and Randell

give a lucid description and analysis of layered structures, among others, in their

paper on process structuring [Horning-Randell 73]. Layered organisations are

common in such fields as digital system design and communications protocols.

Some examples from another area, operating systems, are the "THE" Operating

System [Dijkstra 68] and MULTICS [Project MAC 74]; in the latter, the layers



are referred to as "rings of protection", and have a complex dynamic protection

scheme built on top of them. The structure of the "THE" system is often

considered to be hierarchical as well as layered; Parnas discusses this issue in

detail [Parnas 74]. Layered programs are not always hierarchical, however;

Section 1.6 gives an example of one that is not.

1.1.2. Interactions

For the purposes of this thesis, any relationship of interest between a pair of

units is considered to be an interaction between those units. Many different

relationships between units, and hence many different kinds of interaction, are

possible. For example, one unit might refer to a type defined in another, invoke

a procedure defined in another, be a subclass or superclass of another, etc. The

most common kind of interaction is "references", or "uses": unit a references or

uses unit 6 if and only if the text of a somewhere mentions 6. This kind of

interaction subsumes most of the others, and is often the only one used for

specifying program structure.

Permitted interactions are often characterised by means of visibility: if one

part of a program is visible to another, according to the rules of the

programming language, then the two parts can interact. The concept of

visibility, however, implies that different kinds of interaction between program

parts are not differentiated; it is suitable only for specifying structure in terms of

references, where different kinds of references are not distinguished. A more

general model than visibility is needed to characterise multiple kinds of

interactions. The one used throughout this thesis is the relational model: each

kind of interaction is characterised as a separate relation on units. Many such

relations may be useful in specifying the structure of a single program.

4
This is a broad definition of the term. It is appropriate here because any kind of relationship

between units can provide valuable structural information.
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There are four fundamental approaches to specifying what interactions are

permitted between the units of a program:

No Restriction. Arbitrary interactions between units are permitted.

Implicit. Permitted interactions are derived entirely from
the organisation of the units.

Explicit. Permitted interactions are specified explicitly; any
interaction that is not specified is not permitted.

No Interaction. The units are independent.

Structuring mechanisms can be classified according to which of these approaches

they use.

The most common example of implicit derivation is the Algol60 scope

rules [Naur 63]. They derive permitted interactions from hierarchical structure

as follows: a unit can access only its children, its siblings, and its ancestors and

their siblings. This approach is appealing because specification of organisation

and interactions are so closely related, and in a natural and intuitive manner.

Unfortunately, this close relationship often leads to difficulties: a logical program

organisation might permit either too many or too few interactions, and

tampering with the organisation so as to permit a specific set of interactions is

invariably inelegant and often impossible.

Explicit specification of interactions is general and powerful, allowing

arbitrary interactions to be specified accurately. It is epitomised by the

mechanism of import lists in such languages as Ada [ANSI 83], Mesa [Mitchell-

May bury-Sweet 79] and Modula-2 [Wirth 83], or export lists (called access lists)

in Gypsy [Ambler, et al. 77]. Such specifications can make use of organisational

information, and can use interactions derived automatically from program

organisation as defaults to handle common cases.



1.2. Background: Fable

The research described in this thesis was motivated by the need for a

structuring mechanism for the Fable language [Ossher-Reid 83]. A brief

discussion of the purpose and nature of Fable follows, to give insight into the

requirements of the mechanism.

Fable is being developed as a recipe language for describing integrated circuit

fabrication processes. The purpose of a Fable program is to specify an entire

fabrication process and all the equipment it uses, in sufficient detail and with

sufficient precision that it can be used to control actual fabrication. The

following fundamental requirements of the recipe language were identified early

in the design effort:

• Completeness. It must be possible to express any conceivable recipe
in the language. This should hold true even with dramatic and
unforeseen changes in technology.

• Readability. A recipe must be clear and easy to follow, yet complete,
rigorous and unambiguous. This is particularly important as the
readers of recipes will be fabrication engineers, not computer
scientists.

• Safety. Fabrication processes make use of deadly gasses, high
temperatures and delicate equipment. It must not be possible for an
error in a recipe to lead to disaster.

• Portability. It is particularly important that a recipe developed at
one site can be used at another, similar site. Portability through time
is equally important: it must be possible for a recipe developed now
to be used years in the future, despite changes in technology.

• Suitability for processing by other programs. The system as a whole
is intended to contain expert systems and other programs that assist
engineers in designing recipes and in compensating for errors. These
programs must be able to treat recipes as data in a convenient
manner.

The means by which we hope to satisfy these requirements are discussed in

Fable is still under development. The following description is sufficiently general, however,
that it is likely to remain valid even as details of the language change.



detail in the paper introducing Fable [Ossher-Reid 83]. Only structural aspects of

the language are considered here.

Because of the complexity of modern integrated circuit fabrication processes,

a Fable program that completely describes a real process is expected to be vast

and complex. To make the size and complexity manageable, and for reasons of

portability, processes and equipment are specified at multiple levels of

abstraction, called views:

• The process view. This is just the name of the process, and details of
any parameters it takes.

• The material view. This level consists of operations described in
terms of their effect on the raw material being processed, without
reference to specific fabrication equipment. An example of such an
operation is uput a coating of oxide on a wafer".

• The abstract equipment view. This level describes all the fabrication
equipment used by the process in abstract terms, identifying the
operations that can be performed by each piece of equipment. A
furnace, for example, is specified as a piece of equipment that can
uheat up", ubake", and so forth.

• The interface-independent view. This level describes all details of
equipment that are not dependent on whether the equipment is
controlled manually by technicians or automatically by a computer
system. A furnace, for example, consists of various components,
including a temperature controller and several gas controllers.

• The technician view. This view describes each piece of equipment as
seen by technicians who control it manually, giving details of all
knobs, gauges, buttons, lights, etc. that form the
technician/equipment interface. The temperature controller of a
furnace, for example, might consist of three control knobs and three
gauges: one knob and gauge for each end of the furnace tube, and
one for the centre.

• The system view. This view describes each piece of equipment as
seen by a computer system that controls it automatically, giving
details of all signals that can be sent and all information that can be
requested.

A Fable program therefore has layered organisation, with each layer

corresponding to a view. The technician and system views are alternatives at the

same level of abstraction.



In the domain of fabrication, where one is dealing with physical objects, it is

natural to adopt an object-oriented style of progamming [Dahl-Myhrhaug-

Nygaard 68, Ingalls 78, Bobrow-Stefik 83]. Fable is based upon this style. Each

piece of fabrication equipment is an object, as is each of its components and

subcomponents. Each piece of material that is processed, such as a wafer, is an

object. Each type and value used in a Fable program is an object. The

fabrication facility itself is an object that contains all the others. The objects in

a Fable program can interact in a variety of ways. From this point of view,

therefore, a Fable program is a large collection of interacting objects.

Fable programs are thus both layered and object-oriented. Such programs

also occur in other domains, and present some special problems from the point of

view of structure specification. Layered, object-oriented programs are described

in detail in Section 2.1.

Constructing, maintaining and understanding a Fable program, like any large

program, is difficult. Understanding its structure is a crucial first step, but is

itself a complex task. There is a clear need for a structuring mechanism to

provide assistance with this task. The next section discusses the specific

requirements of the mechanism; the rest of this thesis describes the actual

mechanism that was developed to meet these requirements.

1.3* Research Goals

The nature of Fable, and the manner and environment in which it is to be

used, dictate the following key requirements for its structuring mechanism:

• Specification. It must facilitate the explicit specification of program
structure by human beings involved in the development of programs.

• Documentation. The specification must be clear and readable, and
act as an aid to readers in understanding the program.

• Enforcement. The specified structure must be enforced
automatically, to ensure both that the specification is accurate and
that unintended interactions are not introduced into the program.



• Representation. The specified structure must be represented in a
form suitable for use by software that is concerned with program
structure, such as a browser, editor, compiler or interpreter.

• Ability to handle layered, object-oriented programs. The mechanism
must be able to handle layered, object-oriented programs well,
explicitly identifying the layers and objects and specifying their
interactions.

• Scale. The mechanism must be able to handle large programs, and
structure specifications must not grow unmanageably large and
complex as program size increases.

Each of these is discussed in detail below, first in general and then with specific

reference to Fable.

The goal of the research described in this thesis was to develop a structuring

mechanism that meets the above requirements.

1.3.1. Specification

There are two approaches to making the structure of a program apparent:

specifying it in a suitable fashion, or deriving a suitable description

automatically by analysing the program itself. The specification approach is

followed by structuring mechanisms; the analysis approach is followed by

analysis and display tools, such as Masterscope [Teitelman-Masinter 81], and by

software databases, such as OMEGA [Linton 83]. There are advantages to both

approaches, and there is place for both in a single programming environment.

The fundamental advantage of the specification approach is that it provides

a means to communicate structure between people. The designer of a program

will generally have a mental model of the program's structure. That model

affects his understanding of the program, his design decisions, and ultimately the

details of the program itself. A reader of the program, particularly a reader

unfamiliar with it, is likely to derive great benefit from knowing the structural

model that the program designer used. A structure specification allows the

designer to communicate this model to all readers. This argument is similar to



an argument against automatic type assignment in polymorphic languages

attributed to Hoare: since the author of a program knows the type of each

variable, it is senseless to throw that information away and then attempt to

deduce it automatically. DeRemer and Kron argue similarly:

An MIL [module interconnection language] should provide a means
for the programmer(s) of a large system to express their intent
regarding the overall program structure in a concise, precise and
checkable form. [DeRemer-Kron 76]

Another advantage of the specification approach is that the added

redundancy introduces the possibility of added control and safety. A program

can be checked against its structure specification to determine the validity of all

interactions. A structure specification can aid program development and

maintenance: the structure can be designed and specified prior to or in parallel

with program development, and the specification used as a means of

communication among team members and from designers to implementors to

maintainers. A structure specification can even be used to control program

development if it contains sufficient supplementary information about

responsibility, deadlines, and so forth: it can prevent unauthorised read or write

access to program units, can help monitor development progress, and can ensure

at all times that only authorised interactions actually occur between program

units. These safeguards are not available if the analysis approach is used.

The fundamental advantages of the analysis approach are two-fold: it frees

the program designer from the burden of writing a structure specification and

updating it as the program changes, and it allows the structure to be examined

in different ways and from different points of view. This is a more dynamic

approach, allowing the reader to control the particular viewpoint he wishes to

take. Unfortunately, the option of taking the designer's viewpoint is seldom

available, as it cannot, in general, be derived accurately from the program.

Many of the structural views that can be derived directly from a program can also be
derived from a specification of the structure of that program. A browser for examining structure
specifications can therefore provide many of the facilities of analysis tools.



Although, in general, there is room for argument as to which approach is

preferable, the primary importance of safety in the Fable environment strongly

indicates the specification approach.

1.3.2. Documentation

The structure of a large program can be exceedingly complex, yet an

appreciation of it is vital to an understanding of the program. It is, in fact, so

important, that one generally tries to understand the overall structure before

examining the details. Understanding the structure helps to put the program into

perspective, introduces one to its parts, and helps to direct one's attention to the

parts one needs to examine in detail. The many advantages of structured

programming derive from the fact that good structure is an important aid to

human beings in understanding and managing complexity [Dijkstra 72]. They

apply only if the structure is readily apparent. Structuring mechanisms can aid

significantly in making structure apparent and in communicating it between

people. They therefore have an important effect on program readability.

Two alternatives have a substantial effect on the value of a structure

specification from the point of view of documentation:

• Permitted versus actual interactions.

• Global versus local perspective.

When specifying interactions between units, one can specify either

interactions that one considers permissible and that might potentially occur in

the program, or interactions that actually occur in the program. When engaged

in program design, one is likely to be most interested in permitted interactions:

as one is composing a unit, one can determine what interactions it is permitted

to engage in. Permitted interactions tend to convey designer's intent. Actual

interactions, on the other hand, reflect the current state of the program. They

are particularly important to systems, such as compilers and version control

systems, rather than to human readers, and they can be derived from the



program in a straightforward manner. Permitted interactions are therefore more

important from the documentation point of view.

Structure can be examined from either a global or a local perspective. When

examining the structure of a program from the global perspective, one is

interested in gaining an appreciation of the overall structure, in finding out the

major parts of the program and how they interact. This perspective is especially

applicable to a reader unfamiliar with the program, who is trying to gain an

understanding of it. When dealing with a particular part of a program, on the

other hand, one tends to be interested in how that part interacts with other

parts; this is the local perspective. It is especially applicable to a programmer

working on a single part of a program, or to a system attempting to determine

what to recompile when a particular part of the program changes. Local

perspectives can generally be derived from a comprehensive global specification,

or from the program itself, but not vice versa (see Section 1.3.1). Thus, from the

point of view of documentation, the global perspective is superior.

It is important to note that readability of a structure specification is a

notational rather than a semantic issue. A variety of notations for specifying

structure might be semantically equivalent, in that they are able to specify the

same structures accurately, yet might differ widely in how intelligible they are to

human readers. This situation is similar to the "Turing tarpit" of programming

languages: though programming languages are Turing-equivalent and hence can

specify arbitrary algorithms, they differ widely in how naturally they express the

algorithms that arise in diverse domains. Hoare has written of programming

languages that:

The most valuable feature of a programming language is that it
provides the programmer with a conceptual framework which enables
him to think more clearly about his problems and about effective
methods for their solution; and it gives him a notational technique
which enables him to express his thoughts clearly. [Hoare 68]

This remark is equally true of structuring mechanisms.



As an illustration of the importance of notation, imagine a programmer

presented with a program he has never seen, and a set of ordered pairs

representing interactions between the parts of the program. Such a set of pairs is

an excellent means of specifying interactions from a semantic point of view: it

captures all the relevant information in a simple and elegant manner. Yet the

first thing the programmer is likely to do it is to construct a diagram from the

set. The first diagram to emerge is likely to be a directed graph, with each edge

corresponding to a pair in the set. This diagram is nothing other than a

graphical representation of the set of pairs, and can be thought of as a mere

syntactic variation, but it is an important one because it is much more readily

apprehended by human beings. If the set of pairs is very small, such a diagram

might suffice. Otherwise it quickly becomes too complex to make any sense,

whereupon the programmer resorts to other techniques. Common ones are

rearranging the nodes so as to reduce the number of intersecting lines, and

grouping the nodes into clusters. These processes are greatly enhanced by an

understanding of what the nodes represent, such as might be obtained from

comments in the program. Even such diagrams might become too complex, in

which case they might be split into multiple diagrams, have textual annotations,

labels and labelled arrows added, and so on. The end result will look much

different from the set of ordered pairs, though the essential information it

represents is the same. It is likely to be much easier for another human being to

understand; anyone else given the program, the set of pairs and the diagrams is

likely to examine the diagrams first, and, if they are accurate and complete, may

never look at the set of pairs at all. The difference between the diagrams and

the set of pairs is purely notational, yet the difference in their readability is vast.

Documentation of structure is of primary importance in the Fable

environment because of the readability, safety and portability requirements of

Fable. An accurate understanding of program structure is particularly important

when any modification is to be made, whether to change the effect of the

program or to change the fabrication equipment on which it can run, because



such understanding reduces the risk of unintended side-effects. In a fabrication

environment, such side-effects are no mere nuisance; they can be costly and even

dangerous.

1.3*3. Enforcement

The utility of a structure specification increases enormously if the specified

structure is enforced automatically. The primary reasons are as follows:

• Consistency. Enforcement ensures that the specification of structure
and the actual structure of the program are consistent. This is in
contrast to most forms of documentation, where enforcement is not
possible and maintaining consistency is a major problem. It means
that a reader can examine the structure specification with confidence
that it truly reflects the structure of the program.

• Debugging aid. Unintended interactions can be trapped before they
give rise to strange runtime errors.

• Control. Unauthorised interactions can be trapped, preventing a
programmer from violating interface conventions established by the
project leader. A good example of this use of enforcement is the
separation of definition (specification) from implementation in many
modern languages, such as CLU [Liskov, et al. 77], Ada [ANSI 83],
Mesa [Mitchell-Maybury-Sweet 79] and Modula-2 [Wirth 83]: a unit
can use only the facilities made public in the definition part of
another unit, and is never allowed access to details of its
implementation.

Even apart from all its other advantages, enforcement is an absolute

requirement in the Fable environment because of the importance of safety

during fabrication.

1.3.4. Representation

A structure specification can be a valuable representation of program

structure, of use to software that manipulates programs. Such software includes:

• Browsers. Browsers allow a human reader to view portions of a
program, and to move from one portion to another. Such motion
between portions is largely governed by program structure. A notable



example is the browser within the PEE system [Goldstein-Bobrow
80a, Goldstein 81].

• Program development aids. If the structure of a program is
determined and specified early, the programming environment can
monitor the program development process to ensure that the
developing program conforms to the specified structure. If additional
information is added to the structure specification, the environment
can also restrict access to units under development and assist in co-
ordinating the development effort. This aspect has been explored in
MIL 75 [DeRemer-Kron 76] and Gandalf [Habermann, et al. 82].

• Version control systems. Version control systems make heavy use of
program structure, and are based upon representations of program
structure. Notable examples are Make [Feldman 79], Gandalf [Kaiser-
Habermann 82], PIE [Goldstein-Bobrow 80a] and SML [Schmidt 82].

The use of a structure specification as a representation of structure is, of course,

dependent on its being machine-readable.

Fable programs are required to be suitable for processing by other programs.

To fulfil this requirement, it is necessary that structure specifications of Fable

programs be suitable for such processing also. That way, software operating on

Fable programs can obtain any needed structural information directly from the

structuring mechanism, without having to derive it from the program.

1.3.5* Ability to Handle Layered, Object-Oriented Programs

The units of a layered, object-oriented program can be categorised according

to two criteria: layer and object. All the units in a layer, describing different

objects, but from a single point of view, form a cohesive group. At the same

time, all units describing a single object, but from different points of view, also

form a cohesive group. This dual categorisation of units is an important aspect

of the structure of a layered, object-oriented program; it is illustrated and

discussed in detail in Chapter 2.

Structuring mechanisms traditionally categorise units in only one way,

usually as an hierarchy. Handling dual categorisation poses interesting challenges

for structuring mechanisms, including:
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• Identifying the layers and specifying how they are related.

• Identifying the objects and specifying how they are related.

• Identifying correspondences between units in different layers. This
includes identifying the units in the various layers that correspond to
each object, thereby making the dual categorisation explicit.

• Identifying any similarity of structure between different layers. Since
the layers represent different views of the same objects, there is
reason to expect at least some similarity. Specifying it explicitly is a
great aid to understanding structure.

The layered, object-oriented programming style is an integral part of Fable.

It is therefore imperative that the structuring mechanism for Fable be able to

handle adequately the dual categorisation of units.

1.3*6. Scale

DeRemer and Kron introduced the notion that structuring large programs is

a substantially different activity from writing small programs [DeRemer-Kron

76]. They analyse the problems inherent in structuring large programs, and list

the requirements of a module interconnection language. The primary problem in

dealing with large programs is the management of complexity: many techniques

that are successful in dealing with small programs break down in the face of the

complexity of large programs.

The anticipated size and complexity of Fable programs makes scale a critical

issue. The structuring mechanism for Fable must provide as much assistance as

possible with developing, maintaining and understanding large programs. It must

also be such that the structure specification itself does not grow unmanageably

large and complex as program size and complexity increase.
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1.4. Prior Work

This section describes important structuring mechanisms that existed prior to

the development of the grid, in the light of the requirements identified above.

Some of the mechanisms described are programming language constructs, some

are explicitly intended as mechanisms for specifying structure, some form the

basis of version control systems.

1.4.1. Nesting

Nesting schemes facilitate the specification of hierarchical structures, by

allowing children to be textually enclosed within their parents. Permissible

interactions are derived from the hierarchical organisation, using the Algol60

scope rules or a variant of them in which the additional rule is added that a unit

can never access other units that appear after it in the program text. Nesting

has been in widespread use since the advent of Algol60, and is provided in many

modern languages, such as Pascal, Ada, Mesa and Modula-2.

The main advantages of nesting are that it can specify the hierarchical

structures so common in modern programming, and that it is easy to implement

and to explain. Nesting as a means of documenting hierarchical structure is

reasonable, but not ideal. In long programs with many levels of nesting it is

difficult to discern the structure by examining the code, particularly because of

the wide spatial separation of different parts of the same construct needed to

make way for subsidiary constructs. The chief disadvantage of nesting schemes,

however, is that is often impossible to restrict interactions adequately. Clarke,

Wileden and Wolf demonstrate this clearly, argue that modules and current

thoughts on programming methodology have rendered nesting obsolete, and

advocate a nest-free program style for Ada [Clarke-Wileden-Wolf 80]. It is

certainly true that, though nesting is useful in some circumstances, it is not

adequate in general.



1.4.2. Visibility Control Lists

Many programming languages require interactions between units to be

specified explicitly by means of import and/or export lists, referred to here as

visibility control lists. Examples of such languages are Ada, Mesa, Modula-2

and Gypsy. Gypsy uses export lists, called access lists, whereas the other three

use import lists, called with clauses in the case of Ada. Visibility control lists

make no statement about program organisation, and so treat programs as

amorphous collections of units.

The nature of visibility control lists varies from language to language, and

they are not always detailed enough to facilitate precise specification of

interactions. Wolf, Clarke and Wileden have developed a formalism for

describing and evaluating visibility control mechanisms [Wolf-Clarke-Wileden

83]. They define the concepts of accessibility and provision, and measure the

preciseness of structuring mechanisms on the basis of how accurately they can

specify both accessibility and provision. They use their formalism to evaluate a

few mechanisms, including nesting, Ada's with clauses and Gypsy's access lists.

They also propose language constructs for precise interface control that are, in

effect, detailed visibility control lists [Clarke-Wileden-Wolf 83]. They are

currently developing a support environment consisting of a number of tools for

managing libraries, creating and modifying modules, and analysing structure.

The chief advantage of visibility control lists is that, provided they are

sufficiently detailed, they can specify and enforce arbitrary structures. They are

also an excellent means of specifying structure from the local perspective: the

import list of a unit directly specifies all other units it uses, and the export list

directly specifies all other units it is used by. In small programs, visibility control

lists are also adequate for providing the global perspective. Their chief

disadvantage is that they fail to provide an adequate global perspective of the

structure of large programs. The lists are scattered throughout the program and



define an interaction graph of potentially immense complexity, and since they

deal with amorphous programs there is no logical grouping to assist the user in

dealing with the large number of units.

1.4.3. MEL 75

In their classic paper on programming-in-the-large, DeRemer and Kron

proposed a module interconnection language, called MEL 75, for specifying the

structure of large systems [DeRemer-Kron 76]. The basis of a MIL 75 structure

description is a system tree defining a system hierarchy. The tree is augmented

by resource information, accessibility information and modules. The resource

information lists the resources required of and actually provided by each system

in the hierarchy. The accessibility information specifies permitted interactions

between systems in the hierarchy; default rules cover common cases. The

modules are the actual units making up the program and responsible for

providing all the resources; they can be written in any programming language(s).

MEL 75 thus combines hierarchical organisation with explicit specification of

interactions. This is a powerful combination, for it provides the advantages of

hierarchical decomposition without being subject to the limitations of nesting.

Unfortunately, MIL 75 does not allow arbitrary interactions to be specified: the

specifications are closely tied to the hierarchical structure, and are governed and

restricted by it to a large extent.

MIL 75 was intended to serve as a project management tool, a design tool, a

means of communicating between programmers, and a means of documenting

structure. It takes the global perspective, and does a good job of making the

overall structure of a program apparent. It also explicitly supports the important

Automated tools for analysing and displaying structure, such as Masterscope [Teitelman-
Masinter 81], can assist in making sense of this complexity, by attempting to derive a global
perspective. This approach was discussed in Section 1.3.1.



techniques of stepwise refinement [Dijkstra 72], information hiding [Parnas 71],

and the construction of virtual machines [Dijkstra 72]. It has no mechanism for

identifying layers explicitly, however, and so is not suited to layered programs

that are not also hierarchical.

1.4-4. DF Files and SML

The culmination of recent work in the area of version control and automatic

system maintenance is the work of Lampson and Schmidt [Schmidt

82, Lampson-Schmidt 83] on controlling the software development of

Cedar [Deutsch-Taft 80]. They refer to various previous systems, such as

Make [Feldman 79], SMF [Cristofor-Wendt-Wonsiewicz 80], Gandalf [Cooprider

79, Tichy 80, Kaiser-Habermann 82] and C/Mesa [Mitchell-Maybury-Sweet 79].

Only the Lampson-Schmidt work is discussed here, however, as it subsumes the

structure specification facilities of all the others.

Lampson and Schmidt developed two languages for describing

interconnections between Cedar modules in large systems: simple description

files (DF files) and the much more sophisticated system modeling language,

SML. A DF file simply lists all files making up a system or sub-system. Various

kinds of files, such as source, object, documentation and command files, are

included, and specific locations and versions are specified. A number of useful

tools process the files listed in a DF file, checking them for version consistency,

releasing them for general use, and so on.

As mentioned by Schmidt, DF files contain little structure [Schmidt 82].

Their most important structural property is that one DF file can "Include"

another, giving rise to a tree DF files. This compact hierarchy concentrates in

one place information that is otherwise scattered, and is undoubtedly an aid to

perceiving structure.

A system model written in SML is an extremely detailed applicative program



describing how the modules making up the system are to be bound. It augments

the import and export lists of the Cedar source program, specifying precisely

which version of each module is to be used in each situation. Module types

appear in the model, and are checked for consistency. Models are updated

automatically when modules are edited, so as accurately to reflect the

interconnections specified in the source program. A system modeller executes

SML models, thereby constructing the specified systems.

SML models can be structured hierarchically, and accordingly they support

hierarchical organisation of systems. Like MIL 75, they specify interactions

explicitly, though in a rather different way. SML emphasises version control, but

a system model serves also as a means of documenting structure. The fact that

models are updated automatically when modules are changed, however, implies

that SML is not used to enforce a predetermined structure. It also provides no

support for layered structures.

I.4.5. PIE

PIE is a personal database system, used for organising and manipulating

multiple versions of programs, documents or other structured

information [Bobrow-Goldstein 80, Goldstein-Bobrow 80a, Goldstein-Bobrow

80b, Goldstein-Bobrow 80c, Goldstein 81]. Its best-known use is as a

programming environment and version control mechanism for Smalltalk [Ingalls

78], and it is in this context that it will be described here.

A Smalltalk program is generally represented as a network; PIE extends this

model to include layers for handling version control. A layer encapsulates a

collection of related changes made to the network for some purpose. A context is

a sequence of layers. When a context is installed, the changes specified in its

layers take effect; changes in layers occurring early in the sequence dominate

conflicting changes in layers occurring later in the sequence. This is an elegant



mechanism for isolating and categorising changes in such a way that any desired

version can be specified and installed. In addition, nodes representing layers and

contexts are themselves added to the network and can have documentation

associated with them, making the system self-contained and encouraging the

user to provide full and structured documentation.

Another interesting feature of PIE is the perspective mechanism: a number of

special objects called perspectives can be attached to a node in the network,

each reflecting a different view of the entity represented by that node and

providing operations, called methods, for manipulating that view. This

mechanism therefore allows multiple views of objects to be specified and

manipulated. It is independent of layers, however, which are used only for

version control.

PIE is of interest here because of the perspective mechanism and its use of

layers. It is not really a structuring mechanism, however, as no specification of

structure is involved: the network PIE deals with is the program itself. This

means that any display of structure provided by PIE must be derived from the

program, and that PIE is not used for enforcement of structure.

I.4.6. Structured Analysis

Structured Analysis (SA) is a language for communicating ideas [Ross-

Schoman 77, Ross 77, Dickover-McGowan-Ross 77]. It provides a structural

framework within which anything can be expressed in any language, and hence

is an extremely general structuring mechanism. Its primary intended use is as a

blueprint language for the specification of computer software, and it is the basis

of Structured Analysis and Design Technique (SADT ), SofTech's proprietary

systems analysis and design methodology [Ross-Schoman 77, Dickover-

McGowan-Ross 77].

g
SADT is a trademark of SofTech, Inc.
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An SA model consists of an hierarchy of descriptions, each of which is a

single-page diagram. Diagrams are constructed from some 40 symbols, chiefly

boxes, arrows and annotations. A single model specifies a particular aspect of a

system (called viewpoint) at a particular level of abstraction (called vantage

point) [Ross-Schoman 77]. A complete specification of a system consists of

multiple models covering a number of viewpoints and vantage points, as

determined by the purpose of the specification. The organisation of an SA

specification is more complex than any of the program organisations considered

in Section 1.1.1. However, if only a single viewpoint is used, the specification has

a layered organisation in which each layer is an hierarchical model describing

the system from a particular vantage point.

The primary purpose of SA is to serve as a design tool and a language for

human communication, rather than a structuring mechanism for computer

programs. Its diagrammatic nature serves this end well, but makes it unsuitable

for automatic processing as it stands. It therefore has no mechanism, other than

discipline, for enforcing the structures it specifies, and is unsuitable as a

representation of structure for use by software.

1.4.7. Summary

Though many of the structuring mechanisms described above satisfy some of

the requirements listed in Section 1.3, none satisfies all the requirements. The

most important shortcoming is that none of the mechanisms providing automatic

enforcement of structure can handle layered, object-oriented programs

adequately. The grid mechanism was specifically designed to do so.



1.5. The Grid Mechanism

The grid mechanism was designed to meet all the requirements discussed in

Section 1.3. It derives its name from the fact that it arranges units on a two-

dimensional grid, one dimension corresponding to layer and the other to object.9

It thus provides explicit support for layered, object-oriented programs, clearly

identifying the layers and objects and the correspondence between units in

different layers. It uses four techniques, called factorisation, clustering,

deviation and approximation, to help manage complexity, simplify structure

description, and identify similarities of structure between layers. These

techniques are described in detail in Chapter 2.

In addition to satisfying its fundamental requirements, the grid mechanism

also has the following properties:

• Multiple grids can be used to specify the structure of a single
program from multiple points of view. This is analogous to multiple
indexes into a single database.

• Multiple relationships between program units can be specified, either
within a single grid, or by means of separate grids.

• The grid can handle multiple, alternative implementations of a single
specification. Such alternative implementations do not occur
frequently, but are useful in some important special cases.

• The grid can be specified as an abstract data type, which then serves
as a uniform interface to all software associated with it, such as
editors, browsers and compilers.

• The grid is completely programming-language independent, and can
even be used to specify the structure of entities other than programs.
A potential problem with language-independent mechanisms is that
the structural information they specify might be inaccessible to the
language system (compiler, debugger, etc.). This problem is solved in
the case of the grid mechanism by providing an interface through
which communication with a language system can take place.

9
There is no reason why the grid mechanism could not be used in other cases of two

simultaneous categorisations, or be extended to handle more than two.

The prototype implementation of the grid does not yet have all these properties; the design
of the grid, and of the implementation, ensures that they can be added gracefully.
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• The syntax of the grid can be tailored to that of any language,
allowing it to be integrated gracefully with any existing programming
language.

• A grid is textually separate from the program whose structure it
specifies. This has several advantages:

o The structure specification can be perused separately from the
program, and used as an index into the program.

o Structural information is concentrated in one place, rather than
being scattered throughout the program.

• A grid describing program structure can be wholly or partially
constructed before the program is written, and then used to control
program development.

• A grid can be constructed from an existing program, either
automatically or with guidance from the user. This process often
highlights errors or structural peculiarities previously unnoticed by
the author of the program.

• The grid provides a convenient, structured repository for information
about a program, such as documentation. This facility can also be
used by source management, project management and version
control systems, and the like.

Though the requirements for the grid mechanism were motivated by the

nature of Fable and the Fable environment, they are not peculiar to Fable; nor

are the additional properties listed above. Large, layered, object-oriented

programs arise in many other contexts also, as described in Section 2.1, and a

structuring mechanism suited to specifying, documenting, enforcing and

representing their structure would be of general use. Since the grid mechanism is

completely language independent, it is suitable for use in other contexts.

Henceforth it is described as a general structuring mechanism, without further

reference to Fable.



1.6* A Simple Example

This section introduces the grid mechanism by means of a small, yet

important, example; details of the grid are given in subsequent chapters. The

example program is described, and its structure is specified using first nesting,

then visibility control lists, and finally the grid.

The example is based on a discussion by Woitok of alternative

implementations of the abstract data type list [Woitok 83]. Consider a program

consisting of the following objects:

• An abstract data type, C, implementing complex numbers. It
provides operations plus and minusy among others, and is
implemented as a pair, (z, y), of reals.

• An abstract data type, L, consisting of lists of elements of type C. It
provides operations head and tail, among others.

• Two user procedures, CU and UU\ CU uses C, and LU uses L.

The nature of the program is such that the same complex number is never

placed on more than one list.

Figure 1-1: Cons Cell Implementation

link link link

Figure 1-2: Link Field Implementation

Suppose a linked implementation of L is to be used. If one is concerned about

data abstraction and information hiding, the traditional way of doing this is by

means of cons cells, as illustrated in Fig. 1-1. An alternative implementation,

which is more appealing in many situations for reasons discussed by Woitok,

involves incorporating a link field into the implementation of type C, as

illustrated in Fig. 1-2. However, this approach violates the abstract data type

discipline, because part of the implementation of C is affected by and used by L.
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Woitok solves this problem by introducing incremental records: records whose

fields are declared and used in disjoint scopes, but are implemented

contiguously. Multiple views and the grid mechanism can be used to achieve a

similar effect, without the introduction of incremental records into the

programming language.

abstract view

list view

concrete view
link

Figure 1-3: The Three Views of C

The key to the grid solution is the identification of three views of C,

illustrated in Fig. 1-3:

• The concrete view describes the actual implementation of C as a
record, with link field included. As in the case of classical abstract
data types, this view is hidden from all other objects.

• The list view consists just of the operations get-link and set-link for
manipulating the link field, and null and equal on objects of type C.
They are implemented in terms of the concrete view in the obvious
way. This view is available only to L.

• The abstract view consists of the operations defined on C, with no
reference to lists. These operations are implemented in terms of the
concrete view, as in the case of classical abstract data types. This
view is generally available to users.

The other objects are also arranged within this view framework, and appear in

the abstract view. The abstract view of L consists of the list operations, which

are implemented in terms of the list view of C; in other words, the
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Figure 1-4: Overall Structure

representation of type L is the list view of type C. The users CU and LU are

also placed in the abstract view, and can interact only with other units in the

abstract view. Fig. 1-4 presents the overall picture. The arrows in the figure

represent permitted interactions, or references.

This example program is an extremely simple layered, object-oriented

program. To specify its structure adequately, in accordance with the

requirements listed in Section 1.3, a structuring mechanism must be able to:

• Specify the dual categorisation of units according to object and view
illustrated in Fig. 1-4.

• Specify the permitted interactions accurately. The following two
restrictions that ensure proper information hiding are particularly
important:

o The concrete view of C can be used only by other views of C.

o The list view of C can be used only by L.

The remainder of this section examines the extent to which three structuring

mechanisms achieve these aims: nesting, visibility control lists and the grid

mechanism.

An alternative way of handling L is to define a concrete view as well, equate it to the list
view of C, and specify that the abstract view of L is implemented in terms of the concrete view
of L. This is an elegant approach, but slightly more complex.



1.6.1. Nesting

For the purposes of this example, assume the availability of Ada-like nested

modules: each module consists of a visible part and a hidden part, and either

part can contain nested submodules [ANSI 83]. In this context, organisation is

specified by grouping units into modules, and information hiding is accomplished

by placing units to be hidden in the hidden parts of their modules.

In this simple example, the dual categorisation of units according to object

and view can specified quite well by associating a module with each object, and

a submodule with each view of that object. The fact that only abstract views are

generally available suggests placing abstract view submodules in the visible parts

of their parent modules, and all other views in the hidden parts. The result is

shown in Fig. l-5(a). All the modules are assumed to be at the top level, and

hence available to one another. There are two problems with this solution:

• All abstract views can potentially interact with all other abstract
views, whereas Fig. 1-4 specified only two specific interactions
between abstract views. This problem is unfortunate, but not

12critical.

• The list view of C is not accessible to L. This problem is critical, for
such access is essential.

The list view of C can be made accessible to L in one of two ways:

• Placing it in the visible part of module C, as shown if Fig. l-5(b).
This also makes it visible to all users of the abstract view of C, a
grave violation of information hiding.

• Making module L a submodule of the visible part of C, as shown in
Fig. l-5(c). This makes the concrete view of C accessible to L,
another grave violation of information hiding. Also, this organisation
is somewhat inferior, as objects C and L are no longer well separated.

No nested solution is possible that does not involve one or other of the above

information hiding violations.

12Interactions can, of course, be restricted by the use of visibility-control lists, if they are
available in addition to nesting. A solution combining nesting and visibility control lists is
presented in Section 1.6.2.
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Figure 1-5: Three Nested Solutions

In summary, nesting is unable to specify the structure of this example

program. Nesting supports information hiding adequately in the common and

important case where the hidden unit is accessible to exactly one higher-level

unit, its parent; nesting always fails when the hidden unit must be accessible to

two or more specific higher-level units.



module abstract-CU;
imports abstract-C;

module abstract-CU;

end;

module abstract-LU;
imports abstract-L;

end;

module abstract-L;
imports list-C;

end;

module abstract-C;

imports concrete-C;

end;

module list-C;

imports concrete-C;

end;

module concrete-C;
end;

end;

module abstract-LU;

end;

module abstract-L;

exported to abstract-LU;

end;

module abstract-C;

exported to abstract-CU;

end;

module list-C;

exported to abstract-L;

end;

module concrete-C;
exported to abstract-C, list-C;

end;
Figure 1-6: A Solution with Import Lists Figure 1-7: A Solution with Export Lists

1.6.2. Visibility Control Lists

Visibility control lists do not specify organisation at all, so they cannot make

the dual categorisation explicit. They can, however, always specify interactions

with complete accuracy. Figs. 1-6 and 1-7 show import and export lists,

respectively, that specify the permitted interactions shown in Fig. 1-4. In the

case of a small program such as this, visibility control lists are reasonably

adequate; there are few enough units and interactions that one can gain an
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Figure 1-8: A Combined Solution

appreciation of the overall structure of the program by examining the lists. This

is not true of large programs.

Perhaps the best way of structuring the example program using traditional

mechanisms is by means of a combination of nesting and detailed visibility

control lists. Fig. 1-8 shows a combination of the nested modular organisation of

Fig. l-5(b) with detailed import lists that allow only L to access the list view of

C. Though the modular organisation was patterned after Ada, this solution

cannot be programmed in Ada because with clauses cannot mention submodules.

1.6.3. The Grid Mechanism

The grid mechanism specifies program organisation by arranging units on a

two-dimensional grid, called the matrix. The rows of the matrix correspond to

views, and the columns to objects. Fig. 1-4, without the arrows, is thus an

accurate illustration of the grid matrix.

Instead of specifying interactions between individual units in the matrix, as

was done in Fig. 1-4, the grid mechanism specifies interactions between objects
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Figure 1-9: A Grid Solution

in an object directory, and interactions between views in a separate view

directory. The complete grid is shown in Fig. 1-9.

The directories are hierarchies, allowing for hierarchical classification and

decomposition; in this simple example, they contain only one level below the

roots. The arrows in the directories specify permitted interactions; they are

always between siblings in the hierarchy, and hence are called sibling

interactions. The annotations attached to directory nodes and arrows are called

qualifiers, and specify restrictions and/or additional permitted interactions. In

general, an interaction between two units is considered permissible if and only if:

• The arrows and qualifiers in the object directory specify an
interaction between the objects they describe, and

• The arrows and qualifiers in the view directory specify an interaction
between their views.

However, an Also qualifier in one directory specifies an interaction that is always

permissible, irrespective of the arrows and qualifiers in the other directory.

13
Detailed discussion of the grid in succeeding chapters should clarify the need for both sibling

interactions and qualifiers as means of specifying interactions.



Consider the view directory first. The arrows specify that units in the

abstract view can use units in both the abstract view and the concrete view, and

that units in the list view can use units in the concrete view. These arrows alone

allow free access to the concrete view, which would be a violation of information

hiding. The Same qualifier restricts such access to units describing the same

object, thereby capturing the essence of the information hiding requirements.

Note that no access to the list view is provided in the view directory.

The arrows in the object directory correspond to the horizontal components

of the arrows in Fig. 1-4, and most of them specify interactions between objects

in the obvious way. The qualified arrow from L to C is of special interest, and is

interpreted as follows:

• The arrow itself specifies that L uses C, as expected.

• The Also qualifier specifies that the abstract view of L uses the list
view of C, despite the arrows and the Same qualifier in the view
directory.

• The Only qualifier specifies that the interaction between the abstract
view of L and the list view of C is the only permissible interaction
between L and C. It explicitly excludes the interaction between the
abstract view of L and the abstract view of C, which would otherwise
be considered permissible; it also excludes the interaction between
the abstract view of L and the concrete view of C, but this has
already been excluded by the Same qualifier in the view directory.

This grid specification illustrates a number of important properties of the

grid mechanism:

• The dual categorisation of units according to object and view is
specified explicitly by the matrix.

• By looking at the object directory in isolation, one can get a general
picture of how the objects interact, without being concerned with
details of the views.

• By looking at the view directory in isolation, one can get a general

14
More precisely, the Same qualifier states that an interaction between two units is

permissible only if they belong to the same object and/or the same view.



picture of how the views interact, without being concerned about the
particular objects involved. In fact, the view directory specifies a
particular information hiding discipline that might be useful in other

situations.

• The arrows tend to specify "ordinary" interactions, whereas the
qualifiers specify restrictions or "exceptional" interactions. One can
thus get an overview of structure by looking just at the arrows, and
can concentrate on irregularities or peculiarities by looking just at
the qualifiers.

• Violations of information hiding can be specified when needed, but
they are always highlighted by qualifiers.

Though this example is tiny, it is an interesting illustration of the capabilities

of the grid. It is not, however, a convincing demonstration of the superiority of

the grid over visibility control lists, which are adequate for small programs, but

do not scale well. Chapter 5 describes the use of the grid to specify the structure

of two real, large programs (12000 and 29000 lines), and shows that the grid is

indeed effective at specifying and documenting the structure of large programs

as well.

For example, the view directory specifying the standard abstract data type discipline is
similar to this one, except that the list view is absent and the concrete view is allowed to access
the abstract view without the Same restriction.
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Chapter 2

Layered Graph Structures

The grid mechanism was designed to specify the structure of layered, object-

oriented programs, introduced briefly in Chapter 1. Section 2.1 describes such

programs in detail, and introduces an example program that is used as a running

example throughout this thesis. Section 2.2 introduces layered graphs as an

appropriate model of the structure of layered, object-oriented programs. Section

2.3 outlines the techniques developed for specifying complex layered graph

structures, and the remaining sections describe the techniques in detail.

2.1. Layered, Object-Oriented Programs

A layered, object-oriented program describes and manipulates a number of

objects, some or all of which are described from multiple points of view. Each

layer in such a program corresponds to a viewpoint: the units in one layer

describe different objects, but from a single, consistent point of view. Units in

different layers can describe a single object, but from different points of view.

Multiple views of objects arise whenever multiple levels of abstraction are used:

each level of abstraction corresponds to a view. Multiple views also arise when a

shared object is used in different ways by different users: each user has its own

view of the shared object.

Example 2-1: A simple example of a system in which multiple
views of objects arise as a result of levels of abstraction is an
electronic mail system. Objects in such a system include messages,
buffers and name tables. At least three views of a message can be
discerned:
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Figure 2-1: Multiple Views of a Mail Message

• User view: a message is a piece of text.

• Mail system view: a message might be a structure consisting of
such fields as source, routing information, time stamp and text.

• Network view: a message might be a collection of packets.

This situation is illustrated in Fig. 2.1. The three layers shown
correspond to the three views identified above. A view of the message
object appears in each layer. Buffers and name tables, on the other
hand, appear only in the mail system view, as they are of no concern
either to the user or the network.

A more complex example, based on a shared object used in
different ways by different users, appears in Section 2.1.1.

Layered, object-oriented programs as used in this thesis incorporate the

important notion of separating definition from implementation. This notion

was introduced by the data abstraction languages CLU [Liskov, et al. 77, Liskov,

et al. 81] and Alphard [Wulf-London-Shaw 76], and since then has been used in

many modern programming languages such as Ada [ANSI 83], Mesa [Mitchell-

Maybury-Sweet 79] and Modula-2 [Wirth 83]. Each unit of a layered, object-



oriented program describes a particular view of a particular object, and is

assumed to consist of a definition subunit and one or more implementation

subunits. The definition subunit defines the view of the object by specifying

the facilities, such as operations, that it makes available. Each implementation

subunit specifies how these facilities are implemented, either in terms of other

views of the same object, or perhaps in terms of other objects. Multiple

implementation subunits are allowed, to facilitate the specification of multiple,

alternative implementations of the same view. Though not widely used, this

facility is useful in some important cases.

Example 2-2: In the case of the mail system example, the user
view of messages is implemented in terms of the mail system view,
and the mail system view in terms of the network view. Consider the
relationship between the user and mail system views:

• The definition subunit of the user view of messages will define
them as text, and specify the operations that can be performed
on them by the user, such as sending and receiving.

• The definition subunit of the mail system view of messages will
define them as structures, and specify the operations that can
be performed on them by the mail system, such as constructing
and enqueuing them.

• The implementation subunit of the user view of messages will
specify how each user operation is implemented in terms of the
mail system operations on messages, and perhaps on other
objects that form part of the mail system. For example, a
user's message might be sent by constructing a suitable message
structure from the text and enqueuing it on an appropriate
queue.

Multiple views of objects are commonly encountered in many fields. An

automobile has an owner's manual and a mechanic's manual, describing it from

11\
Definitions are also commonly known as specifications or interfaces, and implementations

as bodies or program modules. An alternative approach is to consider definitions and
implementations to be full-fledged units, rather than subunits, and to deal with two categories of
units. This approach has some advantages, but is less convenient for the purposes of the grid
mechanism. This issue is discussed further in Chapter 6.



different points of view. The same is true of most appliances. Engineering

blueprints describe and illustrate a single object from many points of view, such

as side-view and cross-section. Many database systems allow the data they store

to be viewed in different ways, and the database itself can be viewed at the

physical, conceptual and view (or subscheme) levels [Ullman 82]. The PEE

system, described in Section 1.4.5, has an explicit mechanism, called

perspectives, for specifying multiple views of objects [Goldstein-Bobrow 80a],

and this mechanism has been carried forward into the Loops language [Bobrow-

Stefik 83]. Structured Analysis, described in Section 1.4.6, can be used as a

blueprint language for software, and allows software objects to be described

from multiple viewpoints and vantage points [Ross 77]. In any class

hierarchy [Ingalls 78, Bobrow-Stefik 83], each ancestor of an object is a view of

that object at some level of abstraction. In the Fable language for specifying

integrated circuit manufacturing processes, both processes and the equipment

that performs them are described at various levels of abstraction, giving rise to

multiple views of each process and each piece of equipment [Ossher-Reid 83].

Some programming languages provide facilities for specifying multiple views

of objects explicitly. Mesa is a good example: multiple interface modules

associated with a single program module can be used to specify multiple views of

a single object. This usage does not seem to be common in practice, however. At

Xerox Systems Development Division (SDD), for example, programmers tend to

write a single interface for each module, incorporating everything that any user

might need and often including default parameters that can be ignored when not

needed [Elliott 84]. The chief technical reason for this is probably that

inadequate programming environment support is provided for multiple views.

Many of the views of an object are often very similar, and in the absence of tools

to assist with their specification, a great deal of source-code duplication is

required. If good programming environment support were provided, this usage

might become more popular, though there would still be cultural issues to

overcome: Mesa programmers, at least within Xerox SDD, tend to use carefully

developed and well-entreiiched standard programming practices [Elliott 84].
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• Two objects, hash and random, are used to implement db.

• Objects values, alists, lists, pairs and strings export data
types for general use and are referred to as utilities.

The interactions between a, 6 and db are illustrated in Fig. 2-2.

Three different views of db are thus present in this example:

• The complete view, DB, containing details of all the operations
and attributes.

• a's view, DBA, containing just those aspects of db that are
visible to a.

• 6's view, DBB, containing just those aspects of db that are
visible to b.

Three units describe these views, each of which is an Ada package
consisting of a package specification and a single package body. The
specifications are shown in Fig. 2-3. The bodies of DBA and DBB
implement their views in terms of the complete view, DB, and the
body of DB implements the complete view in terms of the objects
hash, values, alists and strings. Each of the other objects is
described by means of a single unit: the names of these units are A,
B, H, R, V, AL, L, P and 5, corresponding to objects a, b, hash,
random, values, alists, lists, pairs and strings, respectively. These
units are not shown, as their details are of little concern here.

Two kinds of interactions between units are of importance in this
example, and indeed in most programs in which definitions and
implementations are distinguished. Each is characterised by a
relation. The relation DefUses relates a unit to all the units used by
the definition subunit of that unit. Similarly, the relation ImpUses
relates a unit to all units used by the implementation subunit of that
unit. These relations are illustrated graphically in Figs. 2-4 and 2-5,
primarily to show their complexity and the inadequacy of direct
graphical representations. The specification techniques on which the
grid mechanism is based are applied to these relations in subsequent
examples.
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Thus, despite the fact that multiple views of objects occur so naturally and

frequently, they are seldom made explicit within computer programs. This does

not argue against the layered, object-oriented model, however. The model itself

has much intuitive appeal, and I believe it can result in clean and well-

structured programs. If good programming language environment support were

provided for it, such as by a complete environment based on the grid

mechanism, it might gain sufficient users that its merits could be judged from

practical experience.

2*1.1. Example: A Simple Shared Database

This section describes a layered, object-oriented program that is used as a

running example throughout this thesis. It is a simple case of a shared resource

being used in different ways by different users.

Figure 2-2: Two Packages Sharing a Database

Example 2-3: The shared database program consists of ten
objects:

• The central object is an extremely simple, in-core database, rf6,
consisting of a network of named, attributed nodes. It provides
operations create, destroy, fetch and store, and supports
attributes p, q and r.

• Two objects, a and 6, use db; a uses all the operations provided
by rfft, and manipulates attributes p and <jr, whereas 6 uses the
fetch and store operations only, and manipulates attributes p
and r.
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with V, S; use V, S;
package DB is

type attribute is (p, q, r);
procedure create(node: string);
procedure destroy(node: string);
function fetch(node: string; attr: attribute) returns value;
procedure store(node: string; attr: attribute; val: value);

end DB;

with V, S; use V, S;
package DBA is

type attribute is (p, q);
procedure create(node: string);
procedure destroy(node: string);
function fetch(node: string; attr: attribute) returns value;
procedure store(node: string; attr: attribute; val: value);

end DBA;

with V, S; use V, S;
package DBB is

type attribute is (p, r);
function fetch(node: string; attr: attribute) returns value;
procedure store(node: string; attr: attribute; val: value);

end DBB;

Figure 2-3: Specifications of DB, DBA and DBB

00 (RJ

Figure 2-4: The DefUses Relation Figure 2-5: The ImpUses Relation



2.2. Layered Graphs

Graphs are commonly used to model and illustrate program structure, as in

Figs. 2-4 and 2-5. The nodes of a graph represent program units, and the edges

represent interactions between units. Since multiple kinds of interactions

between units can occur, and each is characterised by a separate relation, the

following definition of a graph is appropriate in the current context:

Definition 2-1: A graph is a pair (N, /?), where AT is a set of
nodes, and R is a set of relations on N specifying interactions between
the nodes.

Throughout this thesis, all relations are assumed to be binary.

A particularly natural and convenient model for the structure of a layered,

object-oriented program is a special kind of graph called a layered graph. A

layered graph consists of a number of horizontal layers, each of which is a graph.

Each node in the layered graph represents the unique unit describing a specific

object from a specific point of view. Each layer corresponds to a viewpoint, and

is called a view slice, or simply view: the nodes in a view describe different

objects, but from the same point of view. All nodes in the various views that

describe a single object can be arranged on a vertical plane orthogonal to the

views. Each such plane corresponds to an object, and is called an object slice:

the nodes in an object slice describe the same object, but from different points of

view. Edges in the graph represent interactions between units, and can cross

object slice and view boundaries arbitrarily.

Example 2-4: A layered graph that models the structure of the
shared database program is shown in Fig. 2-6. There are four views,
called a, 6, db and u. View a specifies the program structure from A's
point of view: it contains nodes representing A and all units used by
A, and shows how they interact. Similarly, views 6 and db specify the
program structure from B and DB's points of view. The fourth view,
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Figure 2-6: Layered Graph

u, contains nodes representing the utilities, and shows how they
interact. There are ten object slices, called a, b, db, h, r, v, al, I, p and
s, corresponding to the objects a, b, db, hash, random, values, alists,
lists, pairs and strings, respectively. All nodes and all views are
shown in full, but only four object slices, to keep the diagram
intelligible. The omitted object slices h and r contain just single
nodes, and the omitted object slices v, al, I and p are similar to object
slice s. The arrows represent pairs in the relation ImpUses; for
simplicity, this single relation is used in all examples appearing in this
chapter.



As expected from the description of the example, three different
views of the database are present in the graph. Less expected,
perhaps, are the multiple views of the utilities. Consider the utility
strings, which is typical. Its object slice, s, contains four nodes,
corresponding to four units called SA, SB, SDB and S. Each unit
describes a distinct view of strings. Since all these views are in fact
identical, they were not distinguished in the original description of the
program; they are introduced here to ensure that each layer in the
graph presents a complete picture of the program structure from the
appropriate point of view: since A, for example, uses strings, a view
of strings must appear in layer a. Each of SA, SB and SDB
consists of the same definition as 5, and a trivial implementation
implementing the definition in terms of S. These implementations
account for the arrows lying within object slice s in the figure.

In this example, each interaction crosses either an object slice
boundary or a view boundary, but never both. This is quite common
in well-structured layered graphs, but is not necessarily the case. In
general, interactions can be arbitrary.

A layered graph as used in this context is defined as follows:

Definition 2-2: A layered graph is a triple (G, V, R)} where G and
V are partitions of a set, AT, of nodes, and R is a set of relations on N
specifying interactions between the nodes. The members of G are

An alternative approach is also possible, in which only a single view of each utility, the u
view, is present, and users in all views use this single view. No additional units are introduced in
this case, but a view can no longer be said to contain a complete picture of the program
structure from a particular point of view. This approach was followed in specifying the structure
of Scribe, as described in Section 5.3

18
These identical views and their trivial implementations would not have to be specified by

source-code duplication in a sophisticated programming environment; they could merely be
declared to exist. This provides the conceptual clarity of having a separate view for each user,
without introducing the many difficulties associated with maintaining multiple copies.

19
For example, if the alternative approach to the handling of the utilities is used, all arrows

from user nodes to utilities lead down to the u view, crossing both object slice and view
boundaries.



called object slices, and the members of V are called view slices, or
simply views. The partitions G and V^must have the property that
the intersection of any object slice and any view contains at most one
node.21

An important consequence of the restriction on G and V is that any node can be

uniquely identified by specifying its object slice and view. The syntax g/v is used

to denote the node in object slice g and view v.

The only formal difference between the layered graph (G, V, R) and the

graph (N, R) over the same set of nodes is that the object slices and views are

identified explicitly. This is a crucial difference, however, as specification of

grouping is one of the most important aspects of documenting structure.

2.3. Techniques for Specifying Layered Graph Structures

The interactions between nodes in a large layered graph can be so complex

that no direct representation of them would make the structure readily visible.

This Section introduces techniques for simplifying the specification of layered

graph structures. The techniques are based on the following principles:

• Abstraction. It is easier to understand a complex system if it is
presented at multiple levels of abstraction. A reader can then begin
at the highest level and proceed to more detailed levels as and when
desired.

• Grouping. It is easier to understand a complex system if coherent
collections of parts are identified and used in describing it.

The symbol "G" derives from the original use of the term "group" for "object slice". Since
"O" is already an overloaded mathematical symbol, retaining "G" seems as good as any
alternative.

21
The names object slices and views reflect the interpretation placed on these partitions by

the grid mechanism. This definition, as well as the techniques for specifying layered graph
structures described later, in no way depend on this interpretation. The techniques, and the grid
mechanism itself, are therefore valid in dealing with any graph having two separate partitions of
nodes with the required property. They could also be trivially extended to the case of more than
two partitions.



• Deviation. It is easier to understand a complex system if it is
specified as a similar system that is simpler or more familiar,
together with details of how they differ. The utility of this principle
depends on how clearly and concisely the differences can be specified.

• Approximation. It is easier to understand a complex system if all
unnecessary detail is omitted.

Abstraction and grouping are widely used in computer science, whereas

deviation and approximation are relatively untried in this area, though common
22

in everyday life. An interesting application of the principle of deviation in

computer science is the define command in Scribe [Reid 80, Reid-Walker 80].

This command allows a new environment to be defined as equivalent to an

existing one, except for explicitly specified differences; the user need not even

understand all the details of the existing environment in order to use it.

The simplification techniques underlying the grid mechanism result from

applying the above principles to the specification of layered graph structures.

Let L = (G, V, R) be a layered graph, as defined in Section 2.2, where

R = { /?1, J?2, . . . , Rk } is a set of relations on the nodes making up partitions

G and V. The techniques are outlined here, and described in detail in subsequent

sections:

• Factorisation. Interactions between nodes are replaced by
interactions between object slices and interactions between views.
The result is called the pure factored form of L,

Lpf={GG, VG)

where GG is the object graph specifying interactions between object
slices, and VG is the view graph specifying interactions between
views. Lpf is an abstraction of L that contains considerably less
detail, and is therefore not, in general, an accurate specification of L;
in special cases where it is, the layered graph is called regular.

• Clustering. This technique is applied to both the object graph and
the view graph of the factored form of a layered graph. Nodes
representing object slices or views are grouped into clusters, and

22
Consider descriptions such as "the table-top is rectangular, but with rounded corners", or

"the flower bed surrounds the lawn, except for a gap at the gate".



interactions between nodes in different clusters are replaced by
interactions between the clusters themselves. The technique is
applied recursively until all clusters are small and simple. The result
is called the pure clustered form of L,

Lpfc = (GGpc, VGpc)

where GGpc and VGpc are the results of applying the process of
clustering to GG and VG respectively. Lpfc is an abstraction of Lpf
that contains considerably less detail, and is therefore not, in general,
an accurate specification of Lpf; in special cases where it is, the
clustering is called uniform.

• Deviation. The techniques of factorisation and clustering allow a
regular, uniformly clustered graph to be specified accurately, clearly
and concisely in pure clustered form. The technique of deviation
extends the advantages of such specification to arbitrary layered
graphs. It allows an arbitrary layered graph, L, to be specified as a
pure clustered graph, Lpfc, together with qualifiers specifying
exactly how L differs, or deviates, from Lpfc. Thus L is specified in
qualified clustered form as the triple

Lfcq = (GGpc, VGpc, Q)

where Q is a sequence of qualifiers specifying deviations.

• Approximation. The technique of approximation allows qualifiers
specifying unimportant deviations to be omitted. Thus L is
approximated by

Lfcqa = {GGpc, VGpc, Qa)

where Qa is a subsequence of Q that specifies only deviations that
are judged to be important.

The remainder of this chapter describes these four techniques in detail, and

shows that an arbitrary layered graph can be specified by means of them.

2.4. Factorisation

Interactions between nodes in a layered graph can be arbitrary, and can cross

object slice and view boundaries. However, the organisation of the layered graph

suggests the possibility of factoring these interactions into two orthogonal

components: interactions between object slices, and interactions between views.

Two object slices (views) interact if any node within the first interacts with any



node within the second; the interactions between object slices and views thus

subsume all interactions between nodes. This can be illustrated by adding a new

view, called the object graph, that specifies the interactions between object slices,

and a new object slice, called the view graph, that specifies the interactions

between views. The object and view graphs are important, because they form

the basis of an effective means of specifying the interactions within a layered

graph.

Example 2-5: The object and view graphs of the shared database
example are illustrated within the framework of the layered graph in
Fig. 2-7; the top-most layer is the object graph, and the right-most
vertical plane is the view graph.

The factorisation process is now described more rigorously. Let

L = (G, V, R) be a layered graph, where R = { Rl, R2, . . . , Rk } is a set of

relations. Then for each x, 1 < x < k, relations Rxg on object slices and Rxv

on views can be derived from L and Rx as follows:

{ (9V 92) € G X G I 3 vv V2 ^ Vsuc^ t h a t (9i/v
v 92/

v
2) € Rx )

Rxv = { (vv v2) e V X V | 3 gv g2 G G such that (gjvv gjvj G Rx }

The Rxg are called the object relations and describe the object graph; the Rxv

are called the view relations and describe the view graph.

A new relation on nodes can be derived from Rxg and Rxv by attributing to

every node all the interactions in which its object slice and view are involved.

The new relation is referred to as the derived relation after factorisation, Rxf,

and is defined as follows:

= { (9x/vv 92/v2) eNxN | {gv g2) G Rxg and {vv v2) G Rxv

A consequence of this definition is that Rxf D Rx. Further define
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Figure 2-7: Object and View Graphs

Dxf=Rxf-Rx

Then Dxf is the set of interactions specified by Rxf that are not present in Rx,

and is referred to as the set of deviations associated with the factorisation

process applied to Rx.
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Figure 2-8: Derived Relation after Factorisation

Example 2-6: The derived relation after factorisation in the
shared database example is illustrated within the framework of the
layered graph in Fig. 2-8. To keep the diagram intelligible, only a
few nodes are included, but all interactions between those nodes are
shown. Dotted arrows represent interactions that are present in the
original layered graph, as can be seen by comparison with Fig. 2-7.
Solid arrows represent deviations. The deviations shown fall into
three categories:



1. Interactions that cross both object slice and view boundaries.

2. Interactions between utilities.

3. The interaction between db/b and alists/b.

This is a representative sample of the types of deviations that are
frequently associated with the factorisation process.

It follows from the definitions of Rxf and Dxf that

Rx = Rxf - Dxf

Since Rxf can be derived from Rxg and Rxv in a simple and direct manner, it

follows that Rx can be accurately and completely specified by the triple

{Rxg, Rxv, Dxf), which is referred to as the factored form of Rx. This is the

key result concerning factorisation. It allows the layered graph

L = ( G , V , R ) = ( G , V , { R x | s = l , 2 , . . . , * } )

to be specified in factored form as

Lf={G,V,{{Rxg,Rxv,Dxf) \ x = 1, 2, . . . , * } )

Defining

Rg={Rxg \ x = l,2,...,k]
Rv = { Rxv | x = 1, 2, . . . , k }
Df={Dxf | s = l , 2 , . . . , * }

and rearranging, yields

Lf=((G,Rg),(V,Rv),Df)

According to definition 2-1, GG = (G, Rg) and VG = (V, Rv) are graphs; they

are the object graph and the view graph introduced informally above. Thus the

process of factorisation allows an arbitrary layered graph L = (G, V, R) to be

specified in factored form as



Lf = (GG, VG, Df)

The pure factored form mentioned in Section 2.3 consists of Lf with Df omitted:

Lpf=(GGfVG)

If Df = 0, the layered graph can be specified accurately in pure factored form,

and is termed regular.

Specifying a layered graph in factored form has the following important

advantages:

• Simplicity. The object and view graphs are usually considerably
smaller and simpler than the original layered graph. Provided the
deviations can be characterised concisely, the factored form of the
graph is therefore simpler than the original. Characterisation of
deviations is discussed in Section 2.6.

• Grouping. Identifying and exploiting logical groupings of nodes is
one of the most important factors in documenting structure. The
factored form specifies interactions in terms of the two important
groupings, objects and views.

The first step in specifying the structure of a layered graph is therefore to

specify it in factored form, as an object graph, a view graph, and a set of

deviations. The second step is to specify the object and view graphs in a clear

and concise manner, as described in the next section.

2*5* Clustering

The object and view graphs produced by the process of factorisation are

ordinary graphs. Direct representations of graphs, such as visibility control lists,

do not work well because they are too complex in the case of large graphs, and

they fail to specify grouping. The process of clustering allows graphs to be

specified in a concise and readable fashion, largely as a result of making

grouping explicit. It is similar to the process of grouping pieces of program into



modules, and results in an hierarchy much like the system tree in MIL

75 [DeRemer-Kron 76],

Consider a complex graph consisting of many nodes representing objects or

views, and involving many interactions between the nodes. The process of

clustering involves grouping the nodes into clusters, and replacing all

interactions between nodes in different clusters by interactions between the

clusters themselves. The result is a graph of clusters, each of which is a graph of

nodes.

Example 2-7: Consider applying clustering to the object graph of
the shared database example (Fig. 2-7). There are various ways of
grouping the nodes (objects) into clusters. Since a and 6 in this
example are users, and the other objects exist solely to provide them
with the services they require, one grouping that immediately comes
to mind consists of just two clusters, users and servers, as follows:

users = { a, b }
servers = { db, h> r, v, al, I, p, s }

Fig. 2-9 shows these clusters.

The result of replacing all interactions between nodes in different
clusters with interactions between the clusters themselves is shown in
Fig. 2-10.

The clustering process can be repeated recursively. If the graph of clusters is

complex, it can be clustered further: this is the bottom-up approach. Alter-

natively, any subgraph that is complex can be clustered: this is the top-down

approach. Whichever approach is used, the result is an hierarchy of graphs in

which all the graphs are simple and all interactions are between siblings in the

hierarchy.

Example 2-8: The cluster servers in Fig. 2-10 is sufficiently
complex to warrant recursive clustering. Once again, many different
groupings can be used; one possible result is shown in Fig. 2-11. All
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Figure 2-0: Object Graph Showing Clusters

Figure 2-10: Partially Clustered Object Graph



Figure 2-11: Fully Clustered Object Graph

subgraphs are now sufficiently simple that no further clustering is
necessary.

The clustering process is now described more rigorously. Let L = (G, V, R)

be a layered graph specified in factored form as Lf = {GG, VG, Df)1 as

described in Section 2.4. The process of clustering is applied to both the object

graph, GG = {G, Rg), and the view graph, VG = {V, Rv); let P= (TV, R) stand

for whichever of these is currently under consideration, where

R = { /?1, R2, . . . , / ? / ; } is a set of relations.

The first step of the clustering process consists of choosing a partition C of N

into clusters Cv C^ • . . , Cl of nodes. The nature of this partition greatly

affects the process, as will become clear below. Choosing it is a difficult problem

requiring an intimate understanding of the graph and the program whose

structure the graph represents, and is analogous to the problem of finding an

appropriate modularisation for a large program. Neither the technique of
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clustering nor the grid mechanism solves this problem, but they do provide a

means of using a well-chosen partition to simplify structure specification.

Once the clusters have been chosen, each relation Rx G R can likewise be

partitioned into sets Rx.•, 1 < •', j < /, as follows:

\ n. G C, and njG C.}

For each i, 1 < • < /, the pair

S. = (C., { Rx.. | x = l , 2 , . . . , / : } )

is a closed subgraph of P. Let

Then for each 1 < x < k, a relation on 5 \ called the subgraph relation,

RXQ, can be derived from the Rx^ % j£ j , to describe the relationships between

these subgraphs, as follows:

This amounts to condensing all pairs describing relationships between the

members of two clusters into a single pair relating the two clusters themselves.

Note that Rxs is, by definition, non-reflexive.

Rxs is a relation on subgraphs, whereas Rx.. and Rx are relations on the set

of original nodes, AT. A new relation on AT, called the derived relation after

clustering, Rxc, can be derived from S1 and Rxs as follows:

Rxc = D Rxi{ U { (n., nj) \ 1 < t, j < I, i ^ ;,



Thus, if two subgraphs are related by Rxs} then all nodes in the first are related

to all nodes in the second by Rxc. A consequence of this definition is that

Rxc D Rx. Further define

Dxc = Rxc - Rx

Then Dxc is the set of interactions specified by Rxc that are not present in Rx>

and is referred to as the set of deviations associated with the clustering process.

Figure 2-12: Derived Relation after Clustering

Example 2-0: Consider the clustering process described in
Example 2-8 that transformed the partially clustered object graph of
Fig. 2-10 into the fully clustered object graph of Fig. 2-11. The
derived relation after clustering is shown within the framework of the
partially clustered graph in Fig. 2-12. Light arrows represent
interactions that are present in the original graph, as can be seen by
comparison with Fig. 2-10. Heavy arrows represent deviations. The
deviations arise because the derived relation after clustering specifies
that db interacts with all nodes in clusters hash and utilities,
whereas, in the original graph, it interacts with only some of them.
This type of deviation is typical of the clustering process.



It follows from the definitions of Rxc and Dxc that

Rx = Rxc - Dxc

Since Rxc can be derived from S* and ifas in a simple and direct manner, it

follows that Rx can be accurately and completely specified by the triple

(5 \ Rxs, Dxc), which is called the clustered form of Rx. This is the key result

concerning clustering. It allows the graph

to be specified in partially clustered form as

/V = (S\ { {Rxsy Dxc) | x = 1, 2, . . . , k })

Defining

Rs1 = { Rxs | x = 1, 2, . . . , k }
Dc1 = {Dxc I x = 1, 2, . . . , k }

and rearranging, yields

/V = (5 \ ifc', Dc')

The process of clustering can be repeated recursively on any of the subgraphs

within 5" that are sufficiently complex to warrant it. If /V itself is sufficiently

complex, the process can be applied to the graph (S", Rs1). For each relation

Rx £ /?, all sets of deviations arising from recursive clustering applied to Rx are

united with Dxc £ Dc' to form a combined set of deviations; the collection of

these combined sets is denoted by Dc. When all subgraphs are sufficiently small

and simple, the result,

Pc = (S, Rs, Dc)



is termed the clustered form of the original graph P. The pure clustered form

consists of Pc with all deviations omitted:

Ppc= (S, Rs)

If Dc = 0, the original graph can be specified accurately in pure clustered form,

and the clustering is termed uniform.

Specifying graphs in fully clustered form has the following advantages:

• Simplicity. The hierarchy of simple graphs making up the fully
clustered form is usually simpler and easier to understand than the
original graph, provided the clusters are well chosen, and the
deviations can be characterised concisely. Characterisation of
deviations is discussed in Section 2.6.

• Grouping. The clusters are explicit, and the information they convey
about grouping is an important aid to understanding. In fact, the
hierarchical organisation of the fully clustered form is a good guide
to the structure of the program, even if interactions are ignored.

Returning to the layered graph L = (G, V, R) with factored form

Lf = (GG, VG, Df)y suppose the process of clustering is applied to the object

graph GG and the view graph VG until both are in fully clustered form,

GGc = [SG, RsG, DcQ)

VGc = (Sv Rsv Dcv)

Then the clustered form of L is

Lfc = ((SG, RsG)} {Sv Rsv), {Dxf U DxcG U Dxcy \ x = 1, 2, . . . , k})

= {GGpc, VGpc, D)

The pure clustered form mentioned in Section 2.3 consists of Lfc with all

deviations omitted:
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Lpfc = {GGpc, VGpc)

The second step in specifying the structure of a layered graph is therefore to

specify both the object graph and the view graph in fully clustered form. The

next step is to characterise the set of deviations, if any, arising from factorisation

and clustering. This process is described in Section 2.6.

2.6. Deviation

The processes of factorisation and clustering allow a regular, uniformly

clustered layered graph to be specified accurately, clearly and concisely in pure

clustered form. Most layered graphs are not regular, however, and uniform
no

clusterings are often uninteresting. The technique of deviation allows an

arbitrary layered graph to be specified in pure clustered form, together with

details of how the actual graph deviates from the pure clustered form. One

important aspect of the technique of deviation has already been described

formally: sets of deviations were derived as part of the processes of factorisation

and clustering, described in Sections 2.4 and 2.5. This section discusses how

deviation sets can be characterised in a clear and concise manner.

Let L = (G, V, R) be an arbitrary layered graph, where

R = { /?1, /?2, . . . , Rk } is a set of relations. Suppose the pure clustered form

of L is

Lpfc = {GGpc, VGpc)

Then a set of relations, Rpfc = { Rlpfc, R2pfc, . . . Rkpfc } can be derived

from Lpfc as described in Sections 2.4 and 2.5. The clustered form of L is then

Lfc = (GGpc} VGpc, D)

23
The only uniform clusterings of a set of nodes that are guaranteed to exist are the two

trivial clusterings: all nodes in one cluster, or each node in its own cluster.



where D = { Z)l, Z)2, . . . , Dk } is a collection of deviation sets such that

Dx = Rxpfc - Rx

Each set of deviations, £>x, is characterised by a separate sequence of

qualifiers, Qx. The qualifiers are intended to specify large sets of deviations in a

concise and intuitive manner, and are especially designed to handle important

special cases easily and gracefully. A sample of qualifiers is presented in this

section; all qualifiers currently defined for the grid mechanism are presented in

Section 3.3.3. The identification and definition of additional qualifiers is one of

the most interesting areas of further research based on the grid mechanism, and

is discussed in Chapter 6.

Most qualifiers involve sets of layered graph nodes, called node sets. A node

set can be specified in any of the following ways:

• A node name, denoting a singleton set.

• An object slice, view or cluster name, denoting all nodes in that
object slice, view or cluster.

• A set of any of the above.

• An asterisk, denoting all nodes in the graph.

Throughout the ensuing description, S., for some t, denotes a node set, and N

denotes the set of all nodes in the layered graph.

The following is a small sample of possible qualifiers:

• The qualifier except(Sv S^) specifies deviations directly. It states

that all pairs in the set S+ X S* are deviations.

• The qualifier only(Sv 52, 5^, S^) is the complementary form of
except, for use when it is more convenient to specify explicitly the
interactions that do occur rather than interactions that do not. It
states that all pairs in the set (Sl X S2) - (S3 X S,) are deviations.

24
The negative sense of this qualifier, and some of the others, may seem confusing in this

context: the qualifier except specifies pairs that are deviations. The reason for this choice is
explained below.
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• The qualifier same(Slf S2) is used to express succinctly that no
interactions between nodes in sets S^ and S2 cross both object slice
and view boundaries. More precisely, it states that all pairs in the
set ,

Sl X S2 I h^ h a n d vl
are deviations.

• The qualifier horne-vietv(g, v) specifies that the unit g/v is distin-
guished, in that all other units in object slice g interact only with
g/v; no restrictions are placed on g/v itself, however. This handles
the common situation in which a single, detailed unit defines an ob-
ject, all other views of that object are implemented in terms of the
defining unit, and the defining unit itself is implemented in terms of
other objects. More precisely, the qualifier states that all pairs in the
set

{ {9/vv g2/v2) £NX N | vx ^ v and gjv2 ^ g/v }

are deviations. As an abbreviation, g can be replaced by a set of
object slices.

• The qualifier hidden(h), where h is an object slice, view or cluster,
specifies that h is local to its innermost cluster, and is hidden from all
nodes in other clusters. More precisely, it states that all pairs in the
set

{ (nv n2) G N X N | n2 G h, c is the innermost cluster of h,
and n x ^ c}

are deviations. A node is considered to be a member of a cluster, c, if
and only if it is a member of some object slice, view or cluster that is
a member of c. As a useful abbreviation, h can be replaced by a set
of object slices, views or clusters.

• The qualifier exports(c, E), where c is a cluster and E is a subset of
the members of c, is the complementary form of the hidden qualifier,
for use in cases where it is more convenient to specify the nodes
exported by a cluster rather than those hidden within it. It is
equivalent to hidden(c - E).

It is worth noting that, from a theoretical point of view, a sequence of except

qualifiers suffices for specifying arbitrary deviations. The other qualifiers are

introduced for the sake of clarity and convenience in practice.



Example 2-10: Each of the three categories of deviations
identified in Example 2-6 can be characterised by means of a single
qualifier, as follows:

1. same(*,*)

2. home-view({v, utilities}, u), where utilities is a cluster
consisting of object slices al, I, p and s (see Fig. 2-11).

3. except(db/b, alists/b)

All the deviations shown in Fig. 2-8 can therefore be specified by the
sequence

same(*,*); home-view({v, utilities}, u); except(db/bf alists/b)

In this case the ordering is immaterial, though in general it is

important, as described below.

Example 2-11: The deviations identified in Example 2-9 can be

characterised by the following sequence of qualifiers:

only(db, utilities, db, {al7 s}); hidden(random)

There are also many other legitimate sequences.

Qualifiers like except and only are called specific, because they list specific

deviations explicitly. Qualifiers like same and home-view are called general,

because they specify general rules based on program organisation. Specific

qualifiers deal with individual special cases, whereas general qualifiers deal with

structuring principles. As a result, general qualifiers are preferable, and should

be used whenever possible: even though the except qualifier suffices in all cases,

it should in fact be used as little as possible.

The reason for using sequences of qualifiers, rather than sets, is that qualifiers

can sometimes conflict, in which case ordering is needed resolve the conflict.

Example 2-12: Suppose exactly one interaction, (nv n2), crosses
both object slice and view boundaries. The qualifier same(*,*)
conveys the general picture correctly, but also eliminates (nv n2).
The complete picture can be specified by the sequence



also(nv n2);

The also qualifier is a special one introduced for the purpose of correcting "over-

shooting" by general qualifiers: also(Sv 52) specifies that all interactions in

Sx X S2 are valid (i.e. are not deviations), despite qualifiers occurring later in

the sequence. The general rule applying to sequences of qualifiers is that when

qualifiers conflict, the one occurring earliest in the sequence applies. This rule is

stated precisely in Section 3.3.3.

The essential purpose of qualifiers, in the framework of the mathematical

arguments given in this chapter, is to specify deviations. From a practical point

of view, however, it is usually more convenient to think of them as describing

modifications to be made to a derived relation, Rxpfc, in order to produce the

corresponding original relation, Rx. When using this approach, it is more helpful

to read a qualifier sequence in reverse, bearing in mind the relation being

specified: one begins with Rxpfc, and modifies it as specified by each qualifier in

turn. This usage explains the names of the qualifiers, and the reason they are

couched in positive rather than negative terms.

Example 2-13: The following table illustrates this approach as
applied to the qualifier sequence in Example 2-12:

Qualifier Relation specified

- Rxpfc

sarae(*,*) All interactions in Rxpfc that lie in a horizontal
or vertical plane.

also(nv n2) All interactions in Rxpfc that lie in a horizontal
or vertical plane, and also (nv n2).

The importance of sequences of qualifiers used as described above is two-fold.

First, it allows general qualifiers to be used even in cases where they over- or

under-specify the deviation set. Since general qualifiers convey much more



structural information than specific ones, and in a more intuitive manner, this is

a great advantage. Second, when considered in reverse order they present the

reader with an increasingly more detailed and more accurate specification of a

relation. This can be a considerable aid to understanding.

Returning to the layered graph L = (G, V, R), the clustered form

Lfc = (GGpc, VGpc, D)

can now be rendered as

Lfcq = {GGpc, VGpc, Q)

where Q — { Ql, Q2, . . . , Qk } is a collection of sequences of qualifiers

characterising the deviation sets in D. This is called the qualified clustered form

of L. Specifying a layered graph in qualified clustered form has the following

advantages:

• Aids understanding. A graph in pure clustered form is particularly
easy to understand, because object slices, views and clusters relate to
each other in "regular", "uniform" ways. If one understands the
object graph describing interactions between objects, for example,
then one understands the structure of each separate layer, since all
layers are "regular". The pure clustered form thus provides a
particularly appealing first approximation to program structure as an
introduction to the new reader. Once a reader has gained an
understanding of this approximation, he will be able to see how the
actual structure of the program differs from it by examining the
qualifiers. Provided the qualifiers are not too numerous and
complex, this is a good way to introduce complexity while allowing

the reader to retain his higher-level impression of the structure.

• Encourages regularity and uniformity. Loosely speaking, the less
regular and uniform a clustered layered graph, the more qualifiers

25
Experience with two large examples, discussed in Chapter 5, indicates that the number of

qualifiers remains reasonably small even as program size and complexity grow. Even more
important, qualifiers are carefully localised in a grid specification, as described in Section 3.3.3,
so that only those that are relevant are encountered in any particular context.
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will be needed to specify its structure accurately. A program designer
who is required to construct a specification of the structure of his
program is therefore encouraged in a practical way to strive for
regularity and uniformity whenever possible, with resultant beneficial
effects on the readability of the program. Nonetheless, the technique
of deviation does provide a means of handling structures that are not
regular and uniform when they are truly necessary.

The third step in specifying the structure of a layered graph is therefore to

characterise all deviations arising from factorisation and clustering by means of

qualifiers. The final step is to remove unneeded complexity by eliminating

unimportant qualifiers. This process is described in Section 2.7.

2*7. Approximation

All deviations add complexity to a structure specification, and therefore

reduce its readability. This is true even of deviations that can be characterised

by short sequences of qualifiers, though the simpler their characterisation the less

serious their effect. Also, in many cases the deviations correct trifling

inaccuracies that are not material to an understanding of the program. The

technique of approximation exists in recognition of the fact that not all

deviations are material, and it consists solely of ignoring them by discarding the

qualifiers that characterise them. This has the effect of approximating the actual

structure of the program by a structure that is more regular and/or more

uniform, and that differs from the actual structure only in unimportant respects.

The important advantage of this technique is that it removes unneeded

complexity from a structure specification.

The programmer has the choice of which deviations to consider important

enough to include, and which to ignore. It is important to note, however, that

ignoring deviations can never result in omitting from the specification

interactions that actually occur in the program.



Example 2-14: The only qualifier in Example 2-11 specifies that
db does not use certain of the utilities. This type of deviation is
typical, and is a good candidate for omission: it is usually sufficient to
know that db uses some of the utilities, without knowing the details.
The the except qualifier in Example 2-10 is unimportant for similar
reasons, and can be discarded.

Though specifying permitted interactions is generally more important than

specifying actual interactions, for reasons of documentation discussed in Section

1.3.2, actual interactions are sometimes of interest. The technique of

approximation can be used as a bridge between the two. The interactions

actually present in a program form a (usually proper) subset of the potential

interactions permitted by the program designer. Actual interactions can

therefore always be specified by adding (zero or more) qualifiers to a description

of permitted interactions; omitting the additional qualifiers by the process of

approximation restores the original specification of permitted interactions .

This fact suggests an attractive approach to program development: begin by

specifying permitted interactions, but when the program is complete, add the

qualifiers needed to produce a specification of actual interactions (for use in

determining compilation dependencies, for example). The addition of qualifiers

can be completely automated, though intelligence applied to the task might

result in fewer and "better" qualifiers.

Approximation can be applied repeatedly, giving rise to a sequence of

increasingly less detailed structure specifications. This sequence, when considered

in reverse, presents a reader with increasingly more detailed and accurate

approximations of the actual structure. Especially if the qualifiers selected for

omission at each stage are logically related in some way, and their relationship is

documented, such a sequence of approximations can be a useful aid to

26
It is, of course, possible to arrive at specifications of permitted and actual interactions

independently, in which case they may differ by more than just a few qualifiers; for example,
completely different clusterings might be used. This approach seems to have limited utility.
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understanding structure. The simple sequence described here could even be

extended to a full abstraction hierarchy; how useful this would be is a matter for

further investigation.
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Chapter 3

The Grid Mechanism

The grid is a program structuring mechanism based on the results of the

previous chapter: it specifies layered graph structures using the techniques of

factorisation, clustering, deviation and approximation. Section 3.1 gives a brief

overview of the grid mechanism, and Sections 3.2 through 3.4 then define it

precisely.

3.1. Overview

A grid corresponds to a layered graph that has undergone the processes of

factorisation, clustering, deviation and approximation. It consists of a two-

dimensional matrix of units and two directories, called the object directory and

the view directory. The matrix specifies the organisation of units into object

slices and views, the object directory is a representation of the fully clustered

object graph, and the view directory is a similar representation of the fully
27clustered view graph.

The matrix is a projection of the layered graph onto a plane orthogonal to

both the object slices and the views. Each row of the matrix is called a view, and

corresponds to a view of the graph: the units in a view describe different objects,

but from the same point of view. Each column of the matrix is called a object

slice, and corresponds to an object slice of the graph: the units in an object slice

27
Though these representations are suitable for internal use by computers, the directories are

illustrated graphically in this thesis. A complete programming environment based on the grid
would provide a sophisticated user interface to allow users to manipulate directories graphically.



views

A

B

DBA

OBB

DB H. R

VA

VB

VDB

V

ALA

ALB

ALOB

AL

LA

LB

LOB

L

PA

PB

P08

P

SA

SB

SOB

S a

r n
b

r
db

J L

r
u
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describe the same object, but from different points of view. The matrix thus

completely captures the orthogonal partitioning of the nodes of a layered graph

into object slices and views.

Example 3-1: The grid matrix corresponding to the layered graph
of Fig. 2-6 is shown in Fig. 3-1. The unit names correspond to those
listed in examples 2-3 and 2-4. The object slice and view names are
based on those listed in example 2-4, but they have been subscripted
to distinguish them from each other and from node names: this is for
purposes of exposition only, as meaning can always be determined
from context within a grid. The matrix is obtained from the graph by
dragging each node along the line of intersection between its object
slice and its view until it reaches the front of the diagram. This
projection loses no information, just spatial arrangement that was
important for illustrative purposes but did not add in any way to the
specification of structure. Note that no arrows are shown in the
matrix, since the matrix specifies organisation only; all interactions
are specified in the directories.

Each directory is a tree of named nodes representing a fully clustered graph.

In the object directory, leaves represent object slices; in the view directory they

represent views. In both cases, internal nodes represent clusters. Interactions and

qualifiers are represented as attributes of directory nodes. Interactions are
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between sibling nodes only, and, for each kind of interaction, each node in a

directory contains a list of siblings with which it interacts. Thus an arbitrary

number of different kinds of interactions can be specified within a single

directory. A wide variety of other information, including documentation, can

also be associated with directory nodes. A directory thus resembles a MIL 75

system tree [DeRemer-Kron 76], an hierarchy of configuration files in

C/Mesa [Mitchell-Maybury-Sweet 79], or an hierarchy of DF files in Schmidt's

scheme [Schmidt 82], though it differs from these in some important details. The

abstract syntax of the grid mechanism is described in detail in Section 3.3.

Information in a directory is highly localised: every item of information is

attached to that part of the directory to which it applies. For example, sibling

interactions are attached to their source nodes, and qualifiers are attached to the

nodes, or even to the individual sibling interactions, to which they apply. This

localisation ensures that only relevant information is encountered in any

particular context, which greatly enhances readability.

Example 3-2: The view directory of the shared database example
is shown in Fig. 3-2, and the object directory in Fig. 3-3. Interactions
are illustrated by means of arrows: arrows above their source and
target nodes represent DeJUses interactions, and arrows below their
source and target nodes represent ImpUses interactions. Qualifiers are
shown explicitly. Details of these diagrams, such as the attachment

29points of the qualifiers, are explained in Section 3.3.

The above discussion reveals the following correspondence between the

28
A leaf node is permitted to interact with itself, however.

29
The diagrams of the directories, especially the object directory, appear rather complex,

largely because they are intended to illustrate the abstract syntax of the grid in detail, not to
provide an overall picture of structure. A sophisticated programming environment based on the
grid could provide clearer pictures of the directories in various ways. For example, it could
display selected portions of the information only, as directed by the user, or it could use
perspective as in Fig. 2-11. It could also use colour to great advantage, if available.



<(Same); (NonUnitReflexive)>

<(Only,dbls)>

<(Also, DB, ALDB);
(Only, db, s)>

Figure 3-3: The Object Directory

abstract syntax of the grid and the techniques for specifying layered graph

structures:

• The matrix derives from the dual categorisation of units according to
object and view.

• The presence of two directories derives from the technique of
factorisation.

• The hierarchical nature of the directories derives from the technique
of clustering.

• The qualifiers derive from the technique of deviation.

There is no direct support for the technique of approximation. Approximation is

achieved, instead, by the author of a structure specification omitting



unimportant details, and possibly providing multiple grid specifications of the

same program that differ in the amount of detail included. The alternative

approach of having all detail included in a single grid, together with a means of

selecting what details to omit in a particular context, is preferable for a number

of reasons. Section 6.2 discusses the issue of extending the grid mechanism to

handle this approach.

From a semantic point of view, the purpose of a grid is to specify which

interactions between units are valid. Consequently, the semantics of the grid can

be characterised by the predicate, valid, that determines whether a given

interaction of a given kind is specified as valid by the grid. Briefly, an

interaction is valid if and only if the object directory specifies that the object

slices of the two units interact in the appropriate fashion, and the view directory

specifies that their views interact in the appropriate fashion. Since the object

directory is a tree, any two object slices will have unique ancestors that are

siblings. In the absence of qualifiers, two object slices interact if and only if an

interaction of the appropriate kind is specified between these ancestors. The

analogous situation is true of the view directory. Qualifiers override this

"default" determination of validity in a variety of ways, and can even allow one

directory to override the other. The semantics of the grid mechanism are

described in detail in Section 3.4.

The grid is defined entirely in abstract terms in this thesis: an abstract

syntax is defined, but no concrete syntax. This is deliberate. The grid

mechanism is language independent, yet if it is to be used conveniently with a

particular language, its syntax should be compatible with that of the language.

Leaving the syntax undefined allows complete flexibility in selecting a suitable

syntax for a particular application.

The matrix of a grid can be specified using any simple notation or naming

scheme that is able to specify the position of units in the matrix. The directories



directory views is
view a DefUses a; ImpUses a, db, u;
view b DefUses b; ImpUses b, db, u;
view db DefUses db; ImpUses db, u;
view u DefUses u; ImpUses u;

end views;

directory objects is
cluster users ImpUses servers;
cluster servers;
Same; NonUnitReflexive;

end objects;

cluster users is
object a;
object b;

end users;

cluster servers is
object db DefUses v, utilities(Only(db, s));

ImpUses db, hash, v, utilities(Also(DB, ALDB), Only(db, s));
cluster hash;
object v DefUses utilities;

ImpUses v, utilities;
cluster utilities;

end servers;

cluster hash
object h ImpUses r;
object r;
Hidden;

end hash;

object v is
ImpUses: HomeView u;

end v;

cluster utilities is
object al ImpUses al, 1, p;
object 1 ImpUses 1, p;
object p ImpUses p;
object s ImpUses s;
ImpUses: HomeView u;

end utilities;

object r is
Hidden;

end r;

Figure 3-4: The Directories in Textual Form



can be specified using any notation that is able to represent trees of nodes with

attributes in a clear and concise manner. Qualifiers can be specified using any

notation that provides simple and clear abbreviations for all important special

cases.

Example 3-3: The matrix of the shared database program,
illustrated in Fig. 3-1, can be specified by a sequence of statements
such as

db/a = DBA; db/b = DBB; db/db = DB;. . .

The directories are specified in an Ada-like syntax in Fig. 3-4. All
qualifiers are shown in the figure, for completeness. In practice, those
discarded by the process of approximation (see example 2-14) would
be omitted.

3.2* Domain of Discourse

The domain of discourse of the grid mechanism consists of three sets: units,

relation identifiers and interaction triples. The purpose of a grid is to specify

the structure of a particular set of units; i.e. how the units are organised, and

how they interact. From the point of view of the grid, each unit is atomic.

Throughout the descriptive passages of this thesis, each unit is assumed to be

part of a program, written in some programming language; different units can be

written in different languages. This interpretation is not essential to the grid,

however, and does not appear in any of the formal definitions. The grid can thus

be used to specify the structure of any collection of entities.

There can be many different kinds of interactions between units. For

example, an object in Smalltalk [Ingalls 78] can be a subclass of one object, a

superclass of another and an instance of a third. Each kind of interaction is

characterised by a separate relation, denoted by a relation identifier; the

italicised words in the previous sentence are examples of relation identifiers. The



grid does not make direct use of relations, but it does use the relation identifiers

that denote them. For convenience, a relation identifier is sometimes said to

denote a "kind of interaction", and is sometimes used as an adjective, as in "a

superclass interaction".

An interaction triple describes a potential interaction of a particular kind

between two units:

Definition 3-1: An interaction triple is a triple (uv u2, rid),
where ul and t*2 are units and rid is a relation identifier. This triple
describes an interaction of kind rid between units ul and «2.

The following definitions introduce useful terms associated with interaction

triples:

Definition 3-2: Let R be a relation denoted by rid. Then the
interaction triple (tij, t*2, rid) is valid for R if and only if
{uv u2) e R.

Definition 3-3: Let i = (tij, u^, rid) be an interaction triple.
Then t/j is called the source of t and t*2 is called the target of i.

The terms "source" and "target" are also applied to the interactions described

by interaction triples.

A grid specifies the organisation and interactions of units. The set of all

interactions specified by a grid is termed its set of valid interactions. Thus:

Definition 3-4: Let GRID be a grid. Then an interaction triple is
valid for GRID if and only if the interaction it describes is specified
by GRID.

A definition of how to determine whether an arbitrary interaction triple is valid

for an arbitrary grid constitutes a semantic definition of the grid mechanism.

Such a definition is given in Section 3.4.
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3.3. Abstract Syntax

This section describes the abstract syntax of the grid mechanism using

algebraic notation. Many explanatory statements are included to indicate the

meaning and purpose of the various components of the grid. Though semantic in

nature, these statements should be regarded as aids to intuition, not as semantic

definitions. The abstract syntax definitions are presented primarily top-down, to

provide an overall picture as early as possible.

3.3.1. The Abstract Syntax of Grids

The abstract syntax of a grid is defined as follows:

Definition 3-5: A grid is a tuple,

GRID = {Uf Rid, My N, GD, VD, L, leaf)

where

• U is a set units. GRID specifies the organisation and
interactions of these units.

• Rid is a set of relation identifiers. Each identifier in this set
denotes a particular kind of interaction that is specified by
GRID.

• M is a two-dimensional matrix of units. The rows of the matrix
are called view slices, or simply views, and the columns object
slices. The set of view slices is denoted by V, the set of object
slices by G, and their union, the set of all slices, by SL. Each
position in the matrix is occupied by at most one unit. The
matrix thus defines two orthogonal partitions, G and V, of U.

• N is a set of directory nodes, often referred to merely as nodes.

• GD e N and VD G iV, GD ^ VD, are the root nodes of two
directories, called the object directory and the view directory,
respectively. The directories are disjoint trees of nodes from the
set N] the tree structure is determined by the attributes of



nodes, defined in Section 3.3.2. There is a one-to-one
correspondence between leaf nodes in the object directory and
object slices in the matrix, and between leaf nodes in the view
directory and views in the matrix. The object directory
specifies interactions between objects, and the view directory
specifies interactions between views.

• L C N is the set of leaf nodes in the two directories.

• leaf: SL -» L is a bijection. It specifies the one-to-one
correspondence between slices and leaf nodes, mapping each
object slice in the matrix to the corresponding leaf node in the
object directory, and each view in the matrix to the
corresponding leaf node in the view directory.

The abstract syntax of nodes is defined in Section 3.3.2.

Example 3-4: Let GDB be the grid describing the structure of the
shared database program introduced in Example 2-3. Unless otherwise
stated, all examples in this chapter refer to GDB. The matrix and
directories of GDB were illustrated in Figs. 3-1, 3-2 and 3-3; frequent
reference is made to these figures throughout the ensuing examples.

According to the definition above,

GDB = [U, Rid, M, N, GD,VD, L, leaf)

where:

• U is the set of all the units shown in Fig. 3-1:

( 7 = { A, B, DBA, DBB, DB, H, R, VA, VB, VDB, V,
ALA, ALB, ALDB, AL, LA, LB, LDB, L,
PA, PB, PDB, P, SA, SB, SDB, S }

• GDB specifies just two kinds of interactions, DefUses and
ImpUses, so:

Rid = { mDefUsesm, mImpUsesm }

• M is the matrix illustrated in Fig. 3-1. The object slices and
views are:

30
The term "hierarchy" is used synonymously with "tree" throughout. The properties of tree

structures and the terminology commonly associated with them are used henceforth without
further comment. Knuth's Art of Computer Programming contains a detailed and excellent
exposition of such structures [Knuth 73].
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G = {v V dbg> hg> v v al
9> '«• *v 8 p }

V= { av, bv, dbvf uv }

Each object slice is actually a set consisting of all the units in
its column, and each view is a set consisting of all the units in
its row. For example:

dbg = { DBA, DBB, DB }

uv= {V,AL,L,P,S}

• N is the set of all the directory nodes in both directories:

AT == { objects, users, servers, users.a, users.b, servers.db,
hash, v, utilities, h, r, al, I, p, s,
views, views.a, views.b, views.db, u }

Qualified names are used when necessary to identify nodes
uniquely. Most subsequent examples deal with the object
directory, so qualifications will be omitted from the names of
object directory nodes for convenience. Thus a, 6, and db stand
for users.a, users.b and servers.db henceforth, whereas views.a,
views.b and views.db are always named in full.

• GD = objects and VD = views are the roots of the directories.
The partitioning of the nodes into two directories is clear from
the figures.

• L is the set of all leaf nodes:

L — { a, b, db, h, r, v, al, I, p, s,
views.a, views.b, views.db, u }

• The mapping described by the function leaf is clear from the
correspondence between object slice, view and leaf node names.
Some examples are:

leaf{ag) = a

leaf(av) = views.a

The matrix M defines three mappings with obvious semantics:
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MU:G XV-+U
MG.U-+G
MV:U-+V

The mappings have the property that, for any M G ^ ,

MU{MG{u), MV{u)) = u

As a result, u can be uniquely identified by the pair g/v, where g = MG(u) and

v — MV[u).

Example 3-5: Some examples drawn from GDB are:

MU(dbg7 av) = DBA

MG(DBA) = dbg

MV{DBA) =av

As a result, DBA can be uniquely identified by the pair db /av. Note
that MU(a , bv) is undefined in GDB} as there is no 6 view of a.

It is sometimes necessary to identify which of the directories contains a

particular node. Hence the following definition:

Definition 3-6: Let n be a directory node. Then n is contained in
the object directory if and only if n is a descendant of G£>, and n is
contained in the view directory if and only if n is a descendant of
VD.

The fact the the directories are disjoint guarantees that any node is contained in

just one directory.

The leaf function is defined on slices; for convenience, it is extended to units,

as follows:



Definition 3-7: Let « G U be a unit. Then

leafGD(u) = leaf(MC(u))

and

/ea/^ti) = leaf{MV[u))

are the /ea/ nodes corresponding to u in the object and view
directories, respectively.

Example 3-6: Some examples drawn from GDB are:

leafGD(DBA) = db

leafy^DBA) = views.a

3.3.2. The Abstract Syntax of Directories

The directories are hierarchies of nodes. The leaf nodes of the directories

represent slices, which in turn contain units. It is often convenient to think of

the slices and their units as "hanging" from the directories, and to be able to

refer to all the slices or units that "fall under" a particular directory node.

Hence the following definition:

Definition 3-8: A slice, si, is said to be subsidiary to a directory
node n if and only if leaf[sl) is a descendant of n. A unit, u, is said
to be subsidiary to a directory node n if and only if leafGD{u) or
leafyp(u) is a descendant of n.

A corollary of this definition and the one-to-one correspondence between leaf

nodes and slices, is that all object slices and all units are subsidiary to GD, and

all views and all units are subsidiary to VD.

Example 3-7: In GDB, object slices h and r are both subsidiary
y y

to hash. As a result, units H and R are subsidiary to hash. These

31
A node is always considered to be a descendant (similarly ancestor) of itself. Thus si is

always subsidiary to leaf(sl).



same object slices and units are also subsidiary to servers and to
objects, but not, for example, to users or utilities.

The directories serve two purposes: to specify the hierarchical organisation of

objects and views into clusters, and to specify interactions. The first purpose is

achieved by the tree structure of the directories, and the second by attributes of

nodes specifying interactions between nodes. Though interactions between nodes

are different from the interactions between units described in Section 3.2, they

are interactions nonetheless, and it is convenient to use similar terminology for

them. Accordingly, the terms source and target are used in the obvious way, and

the notion of an interaction triple is extended to interactions between nodes as

follows:

Definition 3-0: A node interaction triple is a triple (nv n2, rid),
where n. and n2 are nodes in the same directory, and rid is a relation
identifier. This triple describes an interaction of kind rid between
nodes n1 and n^

The most usual case is that in which both nodes are leaves of a directory:

Definition 3*10: A leaf interaction triple is a node interaction
triple (ftp n2, rid), in which both n+ and n2 are leaf nodes contained
in the same directory.

The qualifications "node" or "leaf" are sometimes omitted when they are clear

from context.

The attributes of nodes that specify interactions fall into two categories:

• Sibling interactions specifying interactions between sibling nodes in
the directories. They correspond to subgraph relations produced by
the process of clustering described in Section 2.5, and to the "sibling
accessibility links" of MIL 75 [DeRemer-Kron 76].

• Qualifiers specifying deviations.

Sibling interactions are a special case of node interactions. Reflexive sibling

interactions are allowed for leaf nodes, but not for internal nodes.



Example 3-8: The arrows in Fig. 3-3 specify sibling interactions.
For example, the arrow from users to servers specifies the sibling
interaction (users, servers, mImpUses*). The arrow from al to itself
specifies the sibling interaction (al, al, * ImpUses*), which is an
example of a reflexive sibling interaction involving a leaf node; it is
needed to specify that some views of al are implemented in terms of
other views of al. Qualifiers are shown explicitly in the figure.

In the absence of qualifiers, the validity of a unit interaction is determined

solely by the sibling interactions in the two directories. A sibling interaction

(sv s2, rid) in directory D implies that all unit interactions of the form

(t*|, «2, rid), where u. is subsidiary to s+ and u<> is subsidiary to s^ are valid

according to D. A specific unit interaction is valid according to the grid if and

only if it is valid according to both directories. This interpretation is derived

from the techniques of factorisation and clustering.

Example 3-9: If the qualifiers in Fig. 3-3 are ignored, the sibling
interaction (users, servers, *ImpUses*) implies the unit interactions
(A, R, mImpUsesm) and (A, S, * ImpUses*), among others. The
reflexive sibling interaction (al, al, * ImpUses*) implies the unit
interaction (ALA, AL, * ImpUses*), among others. If qualifiers are
ignored, the sibling interactions of kind • ImpUses* in both directories
imply 191 unit interactions.

Qualifiers are needed when some of the unit interactions implied by the

sibling interactions are in fact not valid. Such unit interactions are called

deviations, and the purpose of qualifiers is to specify them. Some qualifiers are

local, and specify only deviations associated with specific sibling interactions;

others are global and specify deviations involving an entire subtree, and often an

entire directory.

Example 3-10: The Hidden qualifiers in Fig. 3-3 specify that the
unit interaction (A, R, mImpUses*) of Example 3-9 is in fact not
valid. The interaction (A, S, * ImpUses*) remains valid despite the



qualifiers. In all, the qualifiers specify that only 45 of the 191 unit
interactions implied by the sibling interactions are in fact valid. The
Only and Also qualifiers in the figure are local; all the others are
global.

The considerations above motivate the following definition of directory

nodes:

Definition 3-11: A directory node, or simply node, of grid

GRID = {U, Rid, M, N, GD, VD, L, leaf)

is a triple n = (p, IL, GQn), where

• p £ N is the parent of n in directory that contains it. If
n = GD o rn = VD, then p is undefined. Otherwise there is a
sequence of nodes nl = n, n2, . . . , nk (k > 2), with p{nk)
undefined and p(n{) = nt.+1 (1 < i < k). This sequence is
referred to as the path of n. This definition of p guarantees
that the directories are trees, and, since GD ^ VD, that they
are disjoint.

• IL is a set of interaction lists associated with n, specifying all
sibling interactions of which n is the source. There is one list in
IL for each kind of interaction of which n is the source. The
node n is called the owner of every interaction list in IL.
Interaction lists owned by different nodes are assumed to be
distinct, so each interaction list has a unique owner.

• GQn is a sequence of global qualifiers associated with n that
apply to all unit interactions whose sources, or in some cases
whose targets, are subsidiary to n.

Interaction lists and qualifiers are defined below.

Example 3-11: The node db in Fig. 3-3 is the triple

(servers, IL, {))

where () denotes the null sequence, and IL consists of two interaction
lists, one for *DefUsesm and one for *ImpUses*. The mDefUses* list
specifies sibling interactions with v and utilities, and the * ImpUses*
list specifies sibling interactions with db itself, hash, v and utilities.
The sequence of global qualifiers, GQn, is null, because the node has
no such qualifiers associated with it. This situation is common.



Interaction Specifier, specifying:
a single sibling interaction
of kind 'rid1

with source 'nf

Interaction List, specifying:
all sibling interactions
of kind 'rid1,
with source 'n1

Node, specifying:
all sibling interactions
of all kinds
with source *nf

Figure 3-5; Specification of Sibling Interactions

The task of specifying sibling interactions is the responsibility of the

interaction lists in IL. There is one interaction list for each kind of interaction.

Each interaction list, in turn, consists of a number of interaction specifiers,

each specifying a single sibling interaction. This situation is illustrated in Fig.

3-5, to place the ensuing definitions of interaction lists and interaction specifiers

in perspective.

Example 3-12: The interaction lists and interaction specifiers of
db are shown in Fig. 3-6(a). Qualifiers have been omitted temporarily.
While this form of illustration makes the details clear, it is too
cumbersome for use in full examples. A more compact illustration of
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the same information is shown in Fig. 3-6(b). Each interaction list
belonging to a node is represented by a separate heavy line emanating
from that node, and each interaction specifier is represented by a
light arrow leading from its interaction list to the appropriate target
node. In all diagrams of the directories of GDB, interaction lists
emanating from the tops of nodes specify mDefUsesm interactions, and
interaction lists emanating from the bottoms of nodes specify
*ImpUsesm interactions. These conventions were used in Figs. 3-2 and
3-3, and should be used to interpret all arrows occurring in those
figures.

Interaction lists are defined as follows:

Definition 3-12: An interaction list with owner n is a tuple
U = [rid, I, Ql, GQl), where

• rid £ Rid is a relation identifier indicating the kind of
interactions specified by t7.

• / is a set of interaction specifiers, specifying all sibling
interactions of kind rid of which n is the source. The node n is
said to be the owner of every interaction specifier in /, and rid
is said to be the kind of every interaction specifier in /. Each
interaction specifier has a unique owner and kind.

• Ql is a sequence of local qualifiers that apply to all the sibling
interactions specified by /.

• GQl is a sequence of global qualifiers that apply to all rid
interactions whose source is subsidiary to n.

Interaction specifiers and qualifiers are defined below. For any node, n, the set

IL(n) has the property that no two interaction lists in the set have the same rid.

There need not be an interaction list corresponding to each rid £ Rid, however;

this merely reflects the fact that not all nodes are the sources of sibling

interactions of all kinds.

Example 3-13: The *ImpUsesm interaction list of db is the tuple

{•ImpUses; / , ( ) , ( »



where / contains four interaction specifiers, one for each of the sibling
interactions with source db:

(db, db, mImpUsesm), (db, hash, mImpUses*),
(db, v, mImpUses*), (db, utilities, *ImpUsesm)

Both sequences of qualifiers are null in this case.

Example 3-14: The *ImpUses* interaction list of utilities is the
tuple

(•ImpUses*, 0, (), {(Home, u)))

In this case, the set of interaction specifiers is empty, as utilities is
the source of no sibling interactions. The interaction list exists solely
to provide an attachment point for the global qualifier (Home, u) that
applies to all *ImpUsesm interactions whose sources are subsidiary to
utilities.

An interaction specifier specifies a single sibling interaction, and any

qualifiers associated with it:

Definition 3-13: An interaction specifier with owner n and kind
rid is a pair is = (s, Qi), where

• s E N is a sibling of n, specifying the sibling interaction
(n, s, rid). If n is a leaf node, s can be equal to n, specifying a
reflexive sibling interaction.

• Qi is a sequence of local qualifiers that apply only to the
sibling interaction specified by s.

The abstract syntax of qualifiers is defined in Section 3.3.3.

Example 3-15: The interaction specifier with owner db and kind
'ImpUses* that specifies the sibling interaction
(db, hash, "ImpUses*) is

(hash, <))

There are no local qualifiers in this case. The interaction specifier
with owner db and kind "ImpUses* that specifies the sibling
interaction (db, utilities, *ImpUsesm) is
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{utilities, {{Also, DB, ALDB)\ {Only, db, s)))

3.3,3. The Abstract Syntax of Qualifiers

The reason for the complex, three-tier scheme for specifying sibling

interactions, involving nodes, interaction lists and interaction specifiers, is that it

provides four different and useful attachment points for qualifiers. These are

illustrated in Fig. 3-7. They are used to determine to which interaction triples

each qualifier applies, and in what order qualifiers are examined. Details are

given in Section 3.4.

Qualifiers applying to:
a single sibling interaction
of kind'rid1

with source *nf

Qualifiers applying to:
all unit interactions
of all kinds

Qualifiers applying to:
all sibling interactions
of kind 'rid'
with source 'n'

Qualifiers applying to:
all unit interactions
of kind 'ridf

with source subsidiary to 'n'

with source subsidiary to fnf

Figure 3-7: Attachment Points for Qualifiers



Oi><(Onlytdb.8)> -

Qi - <(Atao. OB, ALOB); (Only, db, •)>

(a) Full Form

Qj . <> Qj = <(Only, db, s)>

Qi = <> Qi - <(Also, DB, ALDB);
(Only,db,s)>

(b) Compact Form

Figure 3-8: Qualifiers of db



Example 3-16: Fig. 3-8(a) shows the interaction lists associated
with node db, with attachment points for qualifiers indicated. Only
one sequence of qualifiers is actually present however. The same
information is shown in compact form in Fig. 3-8(b). This form was
used in Fig. 3-3 of the full object directory, which includes further
examples of attachment points: the Same, NonUnitReflexive and
Hidden qualifiers are attached to nodes, the Home qualifiers are
attached to interaction lists, and the Also and Only qualifiers are
attached to an interaction specifier.

Most qualifiers involve unit sets, and it is convenient to define these before

defining qualifiers themselves. A unit set specifies a set of units, but the

specification can be in terms of directory nodes; unit sets are thus directly

analogous to the node sets of Section 2.6.

Definition 3-14: A unit set is a member of 2' U ^. In other
words, it is a set of units and/or directory nodes.

Unit set membership is defined as follows:

Definition 3-15: Let S = { sv s^, . . . , sk } be a unit set, and
let u £ U be a unit. Then u £ S if and only if 3 1 < i < k such that
u = «. (if sf. is a unit) or u is subsidiary to si (if s{ is a node).

The asterisk used in node sets in Section 2.6 to denote all units is replaced here

by GD or VD, the roots of the directories. Object slices and views are denoted

by the leaf nodes corresponding to them in the directories. For convenience, the

braces are usually omitted from a unit set consisting of a single unit or node:

thus { sl } is usually written as just Sy

Example 3-17: In GDB, the unit set {v}, or just v, corresponds to
object slice v : its members are VA, VB, VDB and V. The unit set
{hash}, or just hash, specifies all units subsidiary to node hash: its
members are H and R. The unit set {v, hash] is the union of the two



unit sets above. The unit sets {objects} and {views} are equal, and
consist of all the units in the program.

The qualifiers themselves are now defined. In all cases, Sj and 52 denote unit

sets. In the comments describing the intent of the qualifiers, u. is assumed to be

a member of 5. if S. appears in the qualifier and of U otherwise, and rid denotes

any interaction kind to which the qualifier applies. The informal descriptions of

intent are made precise in Section 3.4.

Definition 3-16: Let S^ and 52 denote arbitrary unit sets. Then
a qualifier is any of the following:

• An Except qualifier,

q = (Except, Sv S2)

This qualifier removes interactions of the form (tij, t*2, rid).

• An Only qualifier,

q = {Only, Sv S2)

This qualifier removes interactions that are not of the form
(uv u2, rid).

• An AlsoHere qualifier,

q = (AlsoHere, Sv S2)

This qualifier adds interactions of the form (u^ t*2, rid).

• An Also qualifier,

q = (Also, Sv S2)

This qualifier adds interactions of the form (uv «2, rid), and in
addition overrides any specifications to the contrary that occur
in the other directory. It is used to avoid duplication in both
directories of qualifiers adding interactions between individual
units.

• A Same qualifier,

q = (Same)

This qualifier removes interactions of the form (w., t*2, rid) in
which ul and u2 do not belong to either the same object slice or
the same view, or both.



• A SameOther qualifier,

q = (SameOther)

If this qualifier occurs in the object directory, then it removes
interactions (tij, tig, rid) in which u* and «2 do not belong to
the same view. Similarly with "object" and "view" exchanged.

• A Home qualifier,

q — (Home, I)

where / is a leaf node representing an object slice or view. If
this qualifier occurs in the object directory, it is referred to as a
home-view qualifier, and / is a leaf node in the view directory
specifying a view. It removes all interactions of the form
(tip w2, rid) except those for which u. is in the view denoted by
/, or Uj and u2 are in the same object slice and u2 is in the view
denoted by /. Similarly with "object" and "view" exchanged.

• A NonUnitReflexive qualifier,

q = (NonUnitReflexive)

This qualifier removes all interactions of the form (uv u^, rid)
in which ul = u^.

• A Hidden qualifier,

q = (Hidden)

This qualifier specifies that the node to which it belongs is local
to its parent and is hidden from all nodes that are not
subsidiary to its parent.

Most of these qualifiers correspond in meaning, and largely in form, to those

introduced in Chapter 2. The main difference in form is that some of the unit

sets are deduced from the attachment point of the qualifier in the grid, and

hence are not explicit components of the qualifier. There is no direct analogy of
on

the Exports qualifier in the grid: it is realised by means of Hidden qualifiers.

32
A concrete syntax of the grid could contain an Exports qualifier, that would simply be

translated into the appropriate Hidden qualifiers.
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Example 3-18: Fig. 3-3 contains examples of several of the
qualifiers above.

Many other qualifiers are possible, and exploring them is one of the most

interesting areas of further research associated with the grid. This issue is

discussed further in Chapter 6.

Qualifiers add considerable complication to a grid, so it is sometimes

convenient to deal with qualifier-free grids:

Definition 3-17: A grid is termed ideal if all sequences of
qualifiers within it are null.

The close correspondence between the grid mechanism and the techniques

described in Chapter 2 ensures that the pure clustered form of a layered graph

can be specified directly as an ideal grid. As a result, an ideal grid is also an

accurate representation of a regular, uniformly clustered layered graph.

3.4. Semantics

This section defines the semantics of the grid mechanism precisely by

defining the predicate

: U X U X Rid —* Boolean

that determines whether a given interaction triple is valid for GRID. Some

useful concepts and terminology used in the definition are introduced first in

Section 3.4.1. Since qualifiers cause considerable semantic complexity, the

semantics of ideal grids with no qualifiers are defined next, in Section 3.4.2.

Subsequent sections then deal with the semantics of grids that include qualifiers.

Section 3.4.7 contains three complete examples based on GDB, showing the steps

involved in determining the validity of three different interaction triples.
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3.4.1* Concepts and Terminology

Let GRID = {U, Rid, M, N, GDy VD, L, leaf) be the grid whose semantics

are to be specified. For any unit u £ U} the matrix associates a unique object

slice and a unique view with u, and the function leaf associates unique leaf nodes

with the object slice and view. These leaf nodes are important because they

characterise u within the directories.

Definition 3-18: Let u £ U be a unit. Then the leaf pair of u is
the pair of nodes

{leafQD(u), leafy^u))

Example 3-19: Consider the grid, GDB, describing the structure
of the shared database program. The leaf pair of DB is (db, views.db).
The leaf pair of PDB is (p, views.db).

The fact that the directories are trees guarantees that any two nodes in a

directory have a unique lowest common ancestor.

Example 3-20: In GDB} the lowest common ancestor of db and p
is servers. The lowest common ancestor of a and s is objects.

This property of directories leads to the following definition, which plays a

major role in the semantics of grids:

Definition 3-19: Let n^ and n2 be leaf nodes in a directory. Then
the sibling ancestor pair of (nv n2) is defined as follows:

• If n1 = n2 = n, then the sibling ancestor pair is (n, n).

• Otherwise, the sibling ancestor pair is the pair (sv s2), where Sj
is an ancestor of nv s^ is an ancestor of n2, and both sl and s2

are children of the lowest common ancestor of nl and n2.

The tree structure of the directories ensures that the sibling ancestor pair of any

pair of leaf nodes exists and is unique.
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Example 3-21: The sibling ancestor pair of {db, p) is
{db, utilities). The sibling ancestor pair of {a, s) is {users, servers).
The sibling ancestor pair of {views.db, views.db) is
{views.db, views.db).

The notion of sibling ancestor pair is extended to units, as follows:

Definition 3-20: Let D be a directory, let u^ and u^ be units, and
let n1 = leafD{u^) and n2 = leafD{u2) be the leaf nodes
corresponding to ul and i*2 in D. Then the sibling ancestor pair of
(tip u2) in D is the sibling ancestor pair of (nv n2).

Any pair of units therefore has a unique sibling ancestor pair in each directory.

Example 3-22: The sibling ancestor pair of {DB, PDB) in the
object directory is {db, utilities), and in the view directory is
{views.db, views.db). The sibling ancestor pair of {A, S) in the object
directory is {users, servers), and in the view directory is {views.a, u).

Suppose («p t*2, rid) is an interaction triple, D is a directory, and (Sp s<>) is

the sibling ancestor pair of (tip «2) in D. The significance of this pair is that, if

(t/p w2, rid) is valid for D, there will be an interaction specifier attached to sl

that names s2 as the target sibling, and this interaction specifier will be in the

rid interaction list associated with s*. These considerations lead to the following

definitions:

Definition 3-21: Let (n^ n2, rid) be a leaf interaction triple, and
let (Sp $2) be the sibling ancestor pair of (rip n2). Then II^sA is the
set of interaction lists associated with s+. If

3 U = (r; /, Ql, GQl) G / Z ^ ) such that r = rid

then il is called the active interaction list of {nv n2, rid). If no such
il exists, then the active interaction list of (rip- n2, rid) does not exist.
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<(Same); (NonUnitReflexive)>

Active Interaction List
of (a, s, "ImpUses")

Active Interaction Specifier
of (a,s, "ImpUses")

a b

Active Interaction List
of (db, p, "ImpUses")

Active Interaction Specifier
of (db, p, "ImpUses")

<(Home,

<(Also, DB, ALDB);
(Only, db, s)>

h r

Active Interaction List
of (al, s, "ImpUses")

Figure 3-9: Active Interaction Lists and Specifiers

Example 3-23: The active interaction lists of (db, p, * ImpUses*),
(af s, * ImpUses*) and (al, s, * ImpUses*) are shown in Fig. 3-9. The
active interaction list of (a, b, * ImpUses*) does not exist.

Definition 3-22: Let (nv n2, rid) be a leaf interaction triple, let
{sv s2) be the sibling ancestor pair of (n p n2), and let il be the active
interaction list of (np n2, rid), if it exists. Then I{il) is the set of
interaction specifiers associated with U. If 3 is = (s, Qi) G I{H) such
that s = s2, then is is called the active interaction specifier of
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(fip n2, rid). If il does not exist, or if no such is exists, then the active

interaction specifier of (rij, n2, rtrf) does not exist.

Example 3-24: The active interaction specifiers of

(db, p, "ImpUses*) and (a, s, *ImpU8es*) are shown in Fig. 3-9. The
active interactive specifiers of (al, s, mImpU8esm) and
(a, b, mImpUsesm) do not exist.

3.4*2. The Semantics of Ideal Grids

Throughout this section, we assume that we are dealing with an ideal grid,

and hence that all qualifier sequences are null. In this case, the directories are

entirely independent: the object directory deals only with objects and the view

directory deals only with views.

The semantics of an ideal grid are defined in terms of the validity predicates

of its directories:

Definition 3-23: The validity predicate of a directory D is a

predicate

validD: LD X LD X Rid —* Boolean

where LD C L is the set of leaf nodes of directory D. The predicate

determines whether a given leaf interaction triple is valid for D.

The details of valid^ are given below.

The independence of the directories motivates the following simple definition

of the semantics of an ideal grid:

Definition 3-24: Let GRID = {U, Rid, M, N, GD} VD, L, leaf)

be an ideal grid as defined in Section 3.3, let (tij, u^ rid) be an

interaction triple, and let (<JL, VA be the leaf pair of u+ and (g^ v<y) be

the leaf pair of u^ in GRID. Then



validGRID{uv u2, rid) = validQD{gv g2, rid) A
validVD{vv v2, rid)

where validGD and validyD are the validity predicates of the object

and view directories, respectively.

It remains to define the semantics of qualifier-free directories by specifying

the details of the predicate validp. All the groundwork was laid by the

discussion of active interaction specifiers, so the definition is simple:

Definition 3-25: Let D be a directory, and let (nv n2, rid) be a

leaf interaction triple in D. Then valid^(n^ n2, rid) is true if and

only if the active interaction specifier of (fij, n2, rid) exists.

Example 3-25: Let IGDB be the ideal grid derived from GDB by
omitting all qualifiers. The active interaction specifier of
(db, p, *ImpUsesm) exists, as shown in Example 3-24, so

validGD(db, p, mImpUsesm) = true

Examination of the view directory reveals that the active interaction
specifier of {views.db, views.db, mImpUses*) exists also, so

validyAviews.db, views.db, mImpUsesm) = true

As a result,

validIGDB{DB, PDB, mImpUsesu)

= validGD(db, p, mImpUsesm) A
Jviews.db, views.db, mImpUsesm)

= true

The active interaction specifier of (a, s, mImpUsesm) exists, as

shown in Example 3-24, so

validGD(a, s, mImpUses*) = true

However, the active interaction specifier of (views.a, u, *ImpUsesm)

does not exist in the view directory, so

validyjj^views.a, u, mImpUses*) = false

As a result,
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validIGDB{A, S, *ImpUses*)

= validGD(a, s, *ImpUses*) A
.a, u> mImpUses*)

= false

3.4.3. The Semantics of Grids with Qualifiers

Qualifiers complicate the semantics of the grid in two ways. First, and most

obvious, they affect the validity predicates of the individual directories: the

validity of a leaf interaction triple can no longer be determined solely be

examining interaction specifiers. Second, they can violate the independence of

the directories: a qualifier in one directory can refer to nodes in the other, or to

specific units. A qualifier in one directory can even override the other directory

entirely, by specifying that a particular unit interaction triple is valid

irrespective of the information in the other directory.

The semantic definition of grids with qualifiers is based upon the semantic

definition of ideal grids, but with the following modifications to take account of

the complications mentioned above:

• Qualifier sequences within a directory are used to determine validity,
in addition to interaction specifiers.

• The validity predicates of the directories are replaced by validity
functions that return four-valued rather than Boolean results. The
additional values allow one directory to override the other when
necessary.

• The validity functions of the directories take unit interaction triples
as arguments, rather than leaf interaction triples.

Validity functions of directories are defined as follows:

Definition 3-26: The validity function of a directory, Z>, is a
function



validD: U X U X Rid -* { Valid, ValidHere,
NotValidHere, NotValid }

that determines whether a given unit interaction triple is valid for D.

The results Valid and NotValid are absolute, and override the results of the

other directory. The results ValidHere and NotValidHere indicate that the other

directory must also be checked. Details of this function are given in Section

3.4.4.

The semantics of the grid are now defined in terms of the validity functions

of the directories:

Definition 3-27: Let GRID be a grid, and let (tij, u^ rid) be an
interaction triple. Then

validGRW(uv u2, rid) =
[validGD(uv u2, rid) = Valid] V
[validVD{uv u2, rid) = Valid] V
[validGD(uv u2, rid) = validyD(uv «2, rid) = ValidHere]

where validGD and validyp are the validity functions of the object
33and view directories, respectively.

33
Minor variations in this definition can lead to interesting alternative semantics. For

example, one directory can be prohibited from overriding the other, or the second directory can
be ignored completely unless the first returns the result ValidHere. There are many other cases
in the semantic definition where minor changes result in interesting variations, and one
advantage of this definition, and of the implementation based upon it, is that such variations
can be explored easily. This issue is discussed further in Chapter 6.
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3.4.4* The Semantics of Directories with Qualifiers

In the presence of qualifiers, the semantics of a directory are defined in terms

of qualifier sequences rather than just interaction specifiers. Validity functions

are defined for qualifier sequences, as follows:

Definition 3-28: The validity function of a qualifier sequence, Q,
is a function

validQ: U X U X Rid -> { Valid, ValidHere,
NotValidHere, NotValid }

that determines whether a given unit interaction triple is valid for Q.

Details of this function are given in Section 3.4.5.

The validity of an interaction triple for a directory depends on its validity for

a single qualifier sequence within that directory, called the active qualifier

sequence. This sequence is an extension of the notion of an active interaction

specifier, and is defined as follows:

Definition 3-20: Let (n^ n2, rid) be a leaf interaction triple, and
let the path of n1 be p1 — nv p2, - • • > P&> where pk is the directory
root. Then the active qualifier sequence of (nv n2, rid) is

Qi + QI + GQlx + GQnx + GQl2 + GQn2 +
. . . + GQlk + GQnk

where "+" denotes sequence concatenation, and

• Qi is the local qualifier sequence of the active interaction
specifier of (n«, n2, rid). If this active interaction specifier does
not exist, then Qi is null.

• QI is the local qualifier sequence of the active interaction list of
(ftp n2, rid). If this active interaction list does not exist, then
QI is null.

• GQL is the global qualifier sequence of the rid interaction list
associated with node p.. More precisely, let
il = (r, 7, QI, GQl) G /£(/>,-) be the unique interaction list in
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;) such that r = rid. Then GQL = GQl. If no such il

exists, then GQ^ is null.

• GQrij — GQn{p{) is the global qualifier sequence associated

with node p^

Example 3-26: Consider Fig. 3-9, showing the active interaction

lists and specifiers of some interaction triples in the object directory

of GDB. The active qualifier sequence of {db, p, * ImpUses*) is

{{Also, DB, ALDB); {Only, db, s); {Same); {NonUnitReflexive))

The active qualifier sequence of {a, s, mImpUsesu) is

{{Same); {NonUnitReflexive))

The active qualifier sequences of {al, 8, * ImpUses*) and

{al, p, * ImpUses*) are both

{{Home, u); {Same); {NonUnitReflexive))

The active qualifier sequence of {views.db, views.db, * ImpUses*) in
the view directory is null. Since the view directory contains no
qualifiers, all active qualifier sequences there are null.

The concept of active qualifier sequences is extended to units as follows:

Definition 3-30: Let D be a directory, let {u^ u^, rid) be an

interaction triple, and let n1 = leafD{u^) and n2 = leafD{u<y) be the

leaf nodes corresponding to u^ and u^ in D. Then the active qualifier

sequence of {uv «2, rid) in D is precisely the active qualifier sequence

of (n p n2, rid).

Example 3-27: The active qualifier sequence of
{DB, PDB, * ImpUses*) in the object directory is

{{Also, DB, ALDB); {Only, db, s); {Same); {NonUnitReflexive))

and in the view directory is null. The active qualifier sequence of
{A, S, mImpUses*) in the object directory is

{{Same); {NonUnitReflexive))

and in the view directory is null.



The semantics of directories are now defined in terms of the semantics of

qualifier sequences as follows:

Definition 3-31: Let D be a directory, let (uv u2, rid) be an
interaction triple, and let Q be the active qualifier sequence of
(iij, «2, rid) in D. Then

validD{uv «2, rid) = validg{uv u2, rid)

The semantics of qualifier sequences are described in the next section.

3.4.5. The Semantics of Qualifier Sequences

Whether or not a unit interaction triple (uv t*2, rid) is valid for a qualifier

sequence often depends on whether «2
 ls "exported" to tij. The notion of exports

in the context of the grid is formalised in the following definitions:

Definition 3-32: Let n be a directory node. Then n is directly
exported if and only if GQn(n) does not contain a Hidden qualifier.

Example 3-28: In GDB, all nodes except r and hash are directly
exported.

A node that is hidden is "known" only in the subtree rooted at its parent. A

node that is directly exported is uknown" in the subtree rooted at its

grandparent. It is also "known" wherever its parent is known:

Definition 3-33: Let n and a be directory nodes, such that a is an
ancestor of n, and let the path from n to a be
p1 = nf p2, . . . , pk = a. Then n is exported by a if and only if each
pi (1 < i < k) is directly exported.

Note that a itself need not be directly exported.

Example 3-20: In GDB, h is exported by hash and s is exported
by servers, but h is not exported by servers because its parent, hash,
is not directly exported.



The definition of exported is extended to units in the following manner:

Definition 3-34: Let D be a directory, let u1 and «2 be units, let
n^ = leafjJuJ} be the leaf node corresponding to u~ in Z>, and let
(sv s2) be the sibling ancestor pair of (tij, t*2) in D. Then u^ is
exported to ul in D if and only if n2 is exported by s^

Note that if a grid contains no Hidden qualifiers at all, then every unit is

exported to every other unit. This does not mean that all interactions are valid,

however: validity is also affected by interaction specifiers and other qualifiers.

Example 3-30: In GDB, h is exported to db and s is exported to
a, but h is not exported to a. Note that h is also exported to v and
utilities, but these do not in fact interact with it, as no appropriate
sibling interactions are specified.

The simplicity of the definitions of exports above derives from the simple

nature of the Hidden qualifier. More complex qualifiers could be used to specify

more elaborate export schemes. One obvious extension is to allow a node to

control which of its exported descendants are to be exported further. Another is

to allow nodes to be exported only to specific "users". Yet another is to allow

separate specifications of exports for each kind of interaction (relation identifier).

Qualifiers to specify these and other extensions are not currently part of the grid

mechanism, but they could be added if they prove to be necessary.

In addition to exports, the semantics of qualifier sequences depend on the

semantics of individual qualifiers:

34
Adding such qualifiers would probably require a more elaborate semantic framework than

currently provided, such as active target qualifier sequences analogous to the active (source)
qualifier sequences already present. This would also have the advantage of creating symmetry
between import-style specifications and export-style specifications; at present the grid favours
import-style specifications. This issue is discussed further in Chapter 6.
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Definition 3-35: The validity function of a qualifier, q} is a

function

valid : U X U —» { Valid, ValidHere, Inapplicable,
NotValidHere, NotValid }

that determines whether a given pair of units is valid for q.

Details of this function are given in Section 3.4.6. The additional result,

Inapplicable, reflects the fact that not all qualifiers affect the validity of all

interaction triples: a qualifier that returns the value Inapplicable for a particular

interaction triple is transparent as far as that triple is concerned, and has no

effect on its validity. The following definition is convenient:

Definition 3-36: If q is a qualifier and ul and u2 are units, then q

is applicable to (uv u2) if and only if valid (uv u^) 7^ Inapplicable.

Unlike the validity function of a qualifier sequence, which applies to interaction

triples, the validity function of a qualifier applies to pairs of units. The reason is

that the relation identifier that forms the third component of an interaction

triple is used to determine validity if no qualifiers are applicable, but does not

affect the semantics of individual qualifiers.

The semantics of qualifier sequences are now defined in terms of the notion of

exports and the validity functions of individual qualifiers, as follows:

Definition 3-37: Let Q be a qualifier sequence in directory Z), and

let (ul, u2, rid) be a unit interaction triple. Then:

validQ(uv u2) =

ValidHere if Q is null,
the active interaction specifier

of (tij, Uy rid) exists,

and H2 is exported to ul
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applicable qualifier in the sequence (the Only qualifier; see Section
3.4.6). If none of the qualifiers were applicable, it would be ValidHere,
as its active qualifier sequence exists, PDB is exported to DB in the
object directory.

In an ideal grid, all active qualifier sequences are null, and no Hidden

qualifiers are present. Thus the validity of an interaction triple depends entirely

on the existence of its active interaction specifier. These are precisely the

semantics of ideal grids defined in Section 3.4.2.

3.4.6. The Semantics of Qualifiers

This section completes the semantic definition of the grid by defining the

semantics of individual qualifiers. The definition is based on the abstract syntax

of qualifiers (definition 3-16), and makes use of unit sets and unit set

membership (definitions 3-14 and 3-15):

Definition 3-38: Let q be a qualifier. Then the validity function of
q, valid , is defined as follows:

If q = (Except, 5 p S2) then

valid (uv u2) = NotValid if u^ £ S^ and u2 £ S2

Inapplicable otherwise

If q = {Only, Sv S2) then

valid (uv u2) = NotValid if ul g Sj or u2 £ S2

Inapplicable otherwise



NotValidHere if Q is null, but
either the active interaction specifier

of (tip u2> rid) does not exist
or 1*2 is not exported to u*

Validhead{QiUV U2^ i f $ i s n o t nul l>
and head(Q) is applicable to (tij, ti2)

l} U2^ otherwise

Considering this definition together with the definition of the semantics of

directories (definition 3-31) yields the following rules for determining the validity

of an interaction triple for a particular directory:

• If the active qualifier sequence is null, then the validity of the
interaction triple depends on the active interaction specifier and on
exports. In the absence of Hidden qualifiers, exports are unrestricted,
and the interaction triple is ValidHere if the active interaction
specifier exists, and NotValidHere if it does not.

• If the active qualifier sequence is not null, then the validity of the
interaction triple depends on the first applicable qualifier in the
sequence. If no qualifier in the sequence is applicable, validity
depends on the active interaction specifier and on exports, as in the
case of a null sequence.

Example 3-31: As mentioned in Example 3-27, the active qualifier
sequence of (DB, PDB, mImpUsesm) in the view directory is null Its
active interaction specifier exists, and there are no Hidden qualifiers
in the view directory. Consequently,

validy^DB, PDB, mImpUsesm) = ValidHere

The active qualifier sequence of (A, S, *ImpUsesm) in the view
directory is also null, but its active interaction specifier does not exist.
Consequently,

validyjj^A, S, uImpUsesm) = NotValidHere

The active qualifier sequence of (DB, PDB, mImpUsesm) in the object
directory is

({Also, DB, ALDB); {Only, db, a); {Same); (NonUnitReflexive))

The validity of this triple is therefore determined by the first



If q = {AlsoHere, Sv S2) then

validq{uv u2) = ValidHere if ux G Sx and u2 G s / 5

Inapplicable otherwise

If q = (A/so, 5 p 52) then

valid (uv u2) = Va/«rf if tij G S'j and t/2 G 5 2

Inapplicable otherwise

If q = (5ame), the leaf pair of tij is (jfj, v^) and the leaf pair of u2 is
((/2, v2), then

valid (uv u2) = NotValid if ^ 7^ gf2 and vx 7^ v2

Inapplicable otherwise

If q = (SameOther), the leaf pair of tz. is (JL, v j and the leaf pair of

U2 i s ^ 2 ' V2^ t h e n

«rf (tij, t̂ 2) = NotValid if 9 is in the object directory and
vx ^ v2, or

if q is in the view directory and

9i^92

Inapplicable otherwise

35
According to this definition, the AlsoHere qualifier overrides all export control provided by

Hidden qualifiers, because it does not check that u<y is exported to u+. This is appropriate in
some cases. A variant that does check exports might be more appropriate in others, and can be
added gracefully if needed.
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If q = (Home, /), the leaf pair of tij is (gv Vj) and the leaf pair of u2

is (<72, v2), then

valid (uv u2) = NotValid if q is in the object directory and

¥ l A {gt 7^ g2 V v2 ^ /), orv
l

if q is in the view directory and

Inapplicable otherwise

If g = (NonUnitReflexive), then

wz/id (tip ti2) = NotValid if te1 = ti2

Inapplicable otherwise

If q = (Hidden), then

va/id (tip ti2) = Inapplicable

Hidden qualifiers are used only to determine exports, as described in
Section 3.4.5, and are inapplicable in all other contexts.

Many other qualifiers and many semantic variations are possible. The semantic

framework laid out above, involving validity functions, qualifier sequences and

exports, was designed to facilitate addition and modification of qualifiers.

Some suggestions for additional qualifiers, and a discussion of the considerations

involved in adding them, appear in Chapter 6.

Example 3-32: The following are some examples, drawn primarily
from the active qualifier sequences appearing in previous examples:

mlid(Also, DB, ALDBJDB>

Valid(Also, DB, ALDB)(DB> ALDB) =Valid

For example, the return value NotValidHere is not used by any existing qualifiers, but is
provided nonetheless for completeness and future expansion.



valid(Only, db, siDB> SDB) = inapplicable

valid(Only, db, 4DB> PDB) =NotValid

valid(Same{DB> SDB) = inapplicable

valid,SamJDB, S) = NotValid

mlid(NonUnitReflexive{DB> SDB) = inapplicable

Valid(NonUnitRefleXive)(DB> DB) = N°tValid

valid(Home, u ) ^ ' ^ = inapplicable

valid(Home, uj^' PB) = inapplicable

valid(rr JlALB, AL) = Inapplicable

valid(Home, u)^8' PB) = NolValid

ZA.7. Examples

This section integrates the examples that have been used throughout the

semantic definition above. It consists of three examples. The first two complete

the determination of the validity of the two interaction triples that were used in

most of the preceding examples. The third presents a step-by-step account of

how the validity of a third interaction triple is determined.

Example 3-33: The active qualifier sequences of
(DBy PDB, • ImpUses*) were determined in Example 3-27. They are:

Qg = ((Also, DB, ALDB); (Only, db, s);
(Same); (NonUnitReflexive))

in the object and view directories, respectively. The next step in
determining the validity of (DB, PDB, * ImpUses*) is to determine its
validity for these qualifier sequences.

In determining validQ(DB, PDB, mImpUsesm), consider the
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qualifiers in order. The first qualifier, (Also, DB, ALDB), is
inapplicable to {DB, PDB) because PDB is not a member of the unit
set denoted by ALDB, which contains ALDB alone. The second
qualifier, {Only, db, s), is applicable to (DB, PDB):

™lid(0nly, db, 4DB> PDB) = N0tValid

Thus

validQ (DB, PDB, * ImpUses*) = NotValid

and so

validGD(DB, PDB, * ImpUses*) = NotValid

Next consider the validity of Qv. Since Qv is null,
validQV(DB, PDB, * ImpUses*) depends on whether the active
interaction specifier of (DB, PDB, *ImpUses*) exists in the view
directory, and on whether PDB is exported to DB. The active
interaction specifier does exist, and, since the view directory contains
no Hidden qualifiers, PDB is exported to DB. Thus

validQv(DB, PDB, * ImpUses*) = ValidHere

and so

validy^DB, PDB, * ImpUses*) = ValidHere

Combining the results of the validity functions of the two
directories as required by definition 3-27 yields the result

validGDB(DB, PDB, * ImpUses*) = false

This is consistent with the fact that no interaction DB ImpUses PDB

occurs in the program (see Fig. 2-6).

Example 3-34; The active qualifier sequences of

(A, S, * ImpUses*) were determined in Example 3-27. They are:

Qg = ((Same); (NonUnitReflexive))

In determining validQ (A, S, mImpUses*), consider first the Same
qualifier:
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valid(SameiA> S) = NotValid

because A and S are not in the same object slice or the same view.
Thus

validQ (A, S, mImpUsesm) = NotValid

and so

validGD(A, S, mImpUsesm) = NotValid

Since Qv is null, and the active interaction specifier of
(A, S, mImpUsesm) does not exist,

validyjJ^A, S, *ImpUsesm) = NotValidHere

The interaction triple is thus rejected by both directories, and

validGDB(Ay S, "ImpUses*) = false

This is consistent with the fact that no interaction A ImpUses S
occurs in the program (see Fig. 2-6).

Example 3-35: This example gives a step-by-step account of how
to determine whether (V̂  L, *DefUsesm) is valid for GDB. We will
examine its validity in the object directory first, then in the view
directory, and then combine the results. Fig. 3-10 illustrates key
points in the object directory, and Fig. 3-11 in the view directory.

The leaf nodes corresponding to Fand L in the object directory are
v and /, respectively. The lowest common ancestor of v and / is
servers, and so their sibling ancestor pair is (v, utilities). The
*DefUsesm interaction list of v contains an interaction specifier with
target utilities: these are the active interaction list and specifier of
[V, L, mDefUsesm). Since the active interaction list and specifier
themselves have null qualifier sequences, the active qualifier list
consists just of global qualifiers on the path from v to the root:

Qg = ((Same); (NonUnitReflexive))

We now examine each of these qualifiers in turn, in search of the first
applicable one. Since both V and L belong to the same view, the
qualifier (Same) is not applicable, and since V 7^ L, the qualifier



<(Same); (NonUnitReflexive)>

— Lowest Common Ancestor

Active Interaction List

Active Interaction Specifier

V L

Figure 3-10: Testing (V, L, uDefUsesm): The Object Directory

Interaction List

4 Active Interaction Specifier

Sibling Ancestor Pair

V

L

Figure 3-11: Testing {V, L, *DefUsesm): The View Directory



(NonUnitReflexive) is not applicable either. The remaining qualifier
sequence is null, so the validity of the interaction triple is determined
by the existence of its active interaction specifier, and by exports. The
active interaction specifier exists, as described above. Because L
contains no hidden qualifier, it is directly exported. It is therefore
exported by utilities, and hence is exported to V As a result,

validQ (V, L, * DefUses*) = ValidHere

so

validGD{V, L, mDefUsesm) = ValidHere

This process is now repeated in the view directory. The leaf node
corresponding to both V and L in the view directory is u. By
definition, their sibling ancestor pair is therefore (u, u). The
* DefUses* interaction list of u contains an interaction specifier with
target u, specifying the reflexive sibling interaction (u, u, *DefUses*):
these are the active interaction list and specifier of (V, L, * DefUses*).
The active qualifier sequence, Qv, of (V, L, * DefUses*) is null,
because there are no qualifiers in the view directory. Also, the active
interaction specifier exists, and u is exported to u: a unit is always
exported to itself, and, besides, there are no Hidden qualifiers in the
view directory. Thus

valid Qv{Vy L, * DefUses*) = ValidHere

and so

yjfV, L, * DefUses*) = ValidHere

Because

validGD{V, L, *DefUses*) = validity L, *DefUses*)

= ValidHere

we conclude that

validGDB(V, L, *DefUses*) — true

This is consistent with the fact that the interaction V DefUses L does
occur in the program (see Fig. 2-6).

The last example is rather long-winded, to show all the steps involved. In
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practice, the validity of an interaction triple can often be determined at a glance

from diagrams such as Figs. 3-10 and 3-11. This is especially true if few qualifiers

are used.

37
Certain conventions in the use of qualifiers can help also. For example, if one never uses a

qualifier in the view directory that can override the object directory by returning Valid, then
one need examine the view directory only in the case of interaction triples that are ValidHere
for the object directory. This convention can easily be enforced by a trivial change to definition
3-27, as is in fact done in the prototype implementation.
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Chapter 4

The Prototype Implementation

A prototype implementation of the grid was constructed to test the semantics

of the grid mechanism, and to facilitate future exploration of its features. Its

internal structures closely mirror the abstract syntax defined in Section 3.3, and

it implements the va^Qf>rr) predicate defined in Section 3.4 (with one minor

variation, described below). As such, it can be used to test the validity of

arbitrary interactions, and hence to check that the grid mechanism as defined

behaves as expected and desired. It can also be used to explore variations in the

semantic definition, and to try out new qualifiers. It was expressly designed and

built with flexibility in mind, to make such exploration convenient.

The prototype implementation, as it stands, is not intended for general use,

however. It is unsuitable for this purpose primarily for three reasons:

• It has an inadequate user interface. Grids are represented externally
in a form that corresponds closely to the internal form, and no good
facilities are provided for creating and manipulating them. The
representation used has many advantages for testing, but is
inconvenient for users.

• It is slow. Flexibility was considered paramount at this stage, and
efficiency suffered as a result.

• It does not provide support for creating and manipulating multiple
views of objects. The usefulness of the grid in practice largely
depends on the extent to which programmers make use of multiple
views of objects. As discussed in Section 2.1, they cannot be expected
to do so without adequate programming environment support.

Nonetheless, the prototype implementation does provide a starting point for the

construction of a more complete programming environment. Section 6.3 contains

some suggestions for upgrading it and improving; its efficiency.



The prototype implementation allows the grid mechanism to be used online

to represent, document and enforce the structure of Modula-2 systems [Wirth

83]. In this context, a Modula-2 "system" means any collection of Modula-2

definition, implementation and program modules: it need not be a single

program, and it need not be complete (i.e., modules within the system can refer

to modules outside the system). The implementation consists of a collection of

basic tools for manipulating grids, relations, and Modula-2 systems. These tools

can be combined in traditional Unix fashion [Ritchie-Thompson 74, Kernighan-

Mashey 81] to perform a variety of useful, higher-level functions, such as

comparing two grids or checking that all interactions occurring in a Modula-2

system are valid according to a grid. Only one of the tools actually deals with

Modula-2 modules, and it is the only one that has any knowledge of the syntax

or semantics of Modula-2; all the other tools treat units as atomic, and are

completely language independent. In fact, the implementation was carefully

constructed to facilitate portability to other languages.

This chapter describes the main features of the prototype implementation.

Section 4.1 describes the overall structure of the implementation; some

additional structural details are given in Section 5.2, which describes a grid

specification of the implementation. The remaining sections discuss the tools

provided, the implementation of the va^dGRjD predicate, and the intermediate

form used for long-term storage of structures. The prototype implementation

was used on three examples: the shared database example introduced in Chapter

2, the prototype implementation itself, and the Scribe document processing
39

system. These examples are discussed in Chapter 5, and extracts of computer

input, output and intermediate structures associated with the shared database

example are included as Appendix I.

38
Unix is a trademark of AT&T Bell Laboratories.

39
Scribe is written in Bliss, not Modula-2. Conversion of the prototype implementation to

handle it proved simple, and is described in Section 5.3.
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4.1. Overall Structure

The overall structure of the prototype implementation is governed by the

desire to keep the grid mechanism language-independent, yet to use it to specify

the structure of actual systems written in some specific language, called the unit

language (in this case, Modula-2). Three techniques are used to achieve these

aims:
All language-dependent information is encapsulated within two
abstract data types and one tool. The internals of these can be
changed with no disruption to the rest of the implementation.
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• Two structures are introduced to serve as an interface between the
grid and the unit language: unit tables and relations. A unit table
characterises the units making up a system, and relations
characterise the interactions between them. These structures are
independent of both the grid and the unit language.

• The grid itself is separated into two parts: the core, which knows
nothing of program- or programming language-related concepts at
ail, and surrounding support, which makes limited and restricted use

of such concepts.

The resulting structure is illustrated in Fig. 4-1.

The abstract data types representing language-dependent information are

source positions and unit descriptors. The tool that deals with Modula-2

programs is called m2«r, which stands for uModula to unit table and relations".

A source position specifies a location in a system, usually of a unit or an

interaction. Source positions are used by various of the tools making up the

prototype implementation to provide output that is helpful to the user. A unit

descriptor contains language-dependent information about a unit. Unit

descriptors are used only by m2ur} though they are stored in unit tables and are

potentially available for use by any language-dependent software.

A unit table is an atom table that stores information about the units of a

system. A separate unit table is constructed for each system, and it completely

characterises the units of that system. One of the tasks of m2ur is to create the

unit table corresponding to a system. A unit table stores the following

information about each unit:

40
This separation is conceptual rather than physical: core and support procedures sometimes

appear in the same module. An analysis of structure reveals that it is valid to consider the core
and support parts to be separate nonetheless, and that physical separation would be easy to
achieve if desired.

Source positions are not shown in the figure: they are encapsulated within a collection of
utilities that are available for general use. The type identifiers used in the actual program code
are "SourcePosition" and "Programlnfo". In general, I have tried to avoid using program tokens
in the text of this thesis; in most cases, the correspondence between text and code should be
clear. An exception is tool names, which are used unchanged in the text.
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4.2. Tools

The basic tools making up the implementation were shown in Fig. 4-1.4

They are as follows:

m2ur

g2r

rcheck

rlist

rlistl

rlist2

rrcom

Creates the unit table and two relations that characterise a
Modula-2 system.

Creates a relation specifying all the interactions of a
particular kind that are valid according to a grid.

Checks that all the interactions specified by a relation are
valid according to a grid, and produces error messages
identifying all invalid interactions.

Lists a relation. Each line of the listing consists of a source
unit, a target unit, and the source position at which the
interaction occurred.

Lists a relation. Each line of the listing consists of a source
unit and all the target units with which it interacts. Source
positions are omitted.

Lists a relation. Each line of the listing consists of a target
unit and all the source units that interact with it. This is
therefore an inverted listing. Source positions are omitted.

Compares two relations, identifying whether
interaction occurs in the first, the second or both.

each

These tools can be combined to form a variety of useful, higher-level tools, sue]

as the following:

glist Lists all the interactions of a particular kind that are valid
according to a grid.

mcheck Checks that all the interactions in a Modula-2 system are
valid according to a grid, and produces error messages
identifying all invalid interactions. This is the principal
tool used for enforcing the structure specified by a grid.

gmcom Compares a grid and a Modula-2 system, identifying
whether each interaction occurs in the grid, the system or
both.

42
The tools are "basic" from the point of view of this exposition; some of them consist o

combinations of various programs, including several standard Unix programs.
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• A unique atom name, assigned to the unit by the table.

• A unit identifier, derived from the program code by m2ur.

• A unit descriptor, also derived from the program code by m2ur.

Atom names are the sole means of referring to units internally throughout the

implementation. Unit identifiers are used by various of the tools to provide

output that is meaningful to the user. Unit descriptors are used only by m2ur

itself.

A relation specifies interactions of a particular kind between units. A unique

relation identifier associated with each relation denotes the kind of interactions

it specifies. A relation uses atom names to refer to units, and is bound to a unit

table that provides an interpretation of those names. In addition to recording

interactions, a relation records the position in the source program at which each

interaction is specified. The other task of m2ur is to create two relations,

DefUses and ImpUses, describing the interactions within a Modula-2 system.

The core of the grid implements the va^Qmj) predicate, as defined in

Chapter 3. It makes use of atom names and relation identifiers, but not of any of

the language-dependent abstract data types, nor even of unit tables and

relations. The surrounding support provides higher-level functions based on the
va^Qjljj) predicate, such as producing a relation describing all interactions of a

given kind in the grid. It makes use of unit tables, relations and source positions,

but does not have direct access to the representation of any language-dependent

information.

Some additional structural details are given in Section 5.2.
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ggcorn Compares two grids, identifying whether each interaction
occurs in the first, the second or both.

An interesting and useful by-product of the prototype implementation is the

ability to use some of the tools, often in combination with Unix programs and

editor functions, to analyse the structure of Modula-2 programs independent of

the grid. For example, one can produce a "makefile" [Feldman 79] for a

Modula-2 system, list the DeJUsea and ImpUses interactions in standard and

inverted form, and explore different clusterings by selecting a collection of units

and determining all interactions between units in the collection and units outside

it. This usage has proven convenient in analysing the structure of the prototype

implementation itself as part of the process of creating a grid to specify its

structure. It is an illustration of how (in this case very rudimentary) structure

analysis tools can be used successfully in parallel with the grid mechanism.

4.3, The Grid Core

The grid core is the part of the prototype implementation that implements

the va^dGRID predicate. Its internal structure is based on the abstract syntax of

the grid defined in Section 3.3, though it differs in some details, primarily in the

interests of efficiency and convenience. For example, instead of Hidden qualifiers

being treated as global qualifiers associated with a directory node, they are

implemented as a Boolean field "Exported" that is false if the node is hidden.

The semantics of the implementation are as defined in Section 3.4, with one

exception: the validity of an interaction is first checked in the object directory,

and only if the result is ValidHere is the view directory examined. This approach

does not affect the semantics of the grid provided no qualifier in the view

directory returns the result Valid, overriding the object directory. No such

qualifier has yet appeared in any of the examples used.

It is worth noting that the implementation of the core does not explicitly
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construct active qualifier sequences; it merely examines qualifiers in the

appropriate order. A variety of other techniques are also used to improve

efficiency without affecting semantics or flexibility, though there remains much

scope for improvement.

The implementation of the core contains many hooks for anticipated future

features, such as more or different qualifiers and direct support for

approximation. Some of these are mentioned in Chapter 6.

4.4. Intermediate Form

Grids, relations and unit tables are used for communication between different

tools. They are also used for communication between tools at different times,

and they must generally remain in existence for as long as the Modula-2 systems

they describe. To facilitate such communication and long-term storage, all

structures are saved in a standard intermediate form, suitable for use by all

tools at all times.

The intermediate form chosen is an ASCII encoding based on the IDL

canonical external representation [Nestor-Wulf-Lamb 81]. This form treats all

structures as collections of nodes with attributes; links between nodes are just

examples of attributes. In the external form, each node is represented by a list of

attribute-value pairs. Each attribute is named explicitly and in full. Values
JO

appear literally in some contexts, and as references in others. Fig. 4-2 shows an

extract of a saved relation in this form, and Fig. 4-3 shows a complete directory

node (node v of the shared database example, illustrated in Fig. 3-3). It is clear

43
IDL allows a value in any context to appear either literally or as a reference. This is the

only significant difference between the grid intermediate form and the IDL external
representation.
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interaction [
source 4;
destination 9;
position SourcePosition [

fileName ./DBA.def;
tokenNumber 6

interaction [
source 4;
destination 25;
position SourcePosition [

fileName ./DBA.def;
tokenNumber 9

]

Figure 4-2: An Extract of a Relation in Intermediate Form

from the figures that the intermediate form is clumsy. On the other hand, it is

easy to read, to edit and to relate to the internal structures. As such, it is ideal

for use during program development and testing, while the internal structures

are in a state of flux.

A version control mechanism built into the prototype implementation allows

changes to the intermediate form to be handled gracefully. Such changes occur

frequently during program development, as they are often needed to reflect

changes made to the internal structures. A separate version number is associated

with each data type, and controls the manner in which values of that type are

read and written. Only the latest version of a type is ever written, but code is

retained to read earlier versions whenever possible. When a structure is saved in

intermediate form, all the current version numbers are written at the beginning

of the file, for use when the structure is loaded at a later stage.

44
In fact, reading and writing the external form appears to be the major cause of inefficiency

in the prototype implementation.



132

Node [
Name
Id
Parent
FirstChild
NextSibling

Vector45

Exported
Interactions

8;
v;
3;
0;
9;

6;
TRUE;
<

InteractionList [
Relationld DefUses;
Entries <

Interaction [
Sibling

InteractionList [
Relationld ImpUses;
Entries <

Interaction [
Sibling

Interaction [
Sibling

46
GeneralQualifiers <

Qualifier [
Kind
HomeVector

9

8

9

Home;
4

>
]

Figure 4-3: Directory Node v in Intermediate Form

45"Vector" is an obsolete term for "Slice".

46
"General qualifier" is an obsolete term for "global qualifier".
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The prototype implementation requires the grid specifying a Modula-2 system

to be supplied by the user in intermediate form. This is clearly inconvenient, but

is adequate for the purposes of demonstrating the functionality of the grid. One

of the first enhancements to the implementation would be the addition of a

parser to allow the user to supply grids in a more convenient form.



134



135

Chapter 5

Examples

This chapter discusses the use of the grid mechanism to specify the structure

of three example programs: the shared database example introduced in Section

2.1.1, the grid implementation itself, described in Chapter 4, and the Scribe

document processing system [Reid 80, Reid-Walker 80]. The programs differ

greatly in nature and in size, and the last is an example of a real, large system

that is in widespread use. Sections 5.1, 5.2 and 5.3 describe the three examples,

and evaluate the effectiveness with which the grid can specify their structure.

An important question in evaluating the grid mechanism is whether it will

scale well: will a grid specification grow unreasonably large and complex as

program size grows, or will it remain a concise and readable specification of

structure? Section 5.4 discusses this issue in the light of the three examples.

5*1. The Shared Database Example

The shared database example introduced in Section 2.1.1 has already been

discussed extensively, and a complete grid specification of its structure was

shown in Figs. 3-1 through 3-3. This section describes the use of the prototype

implementation on this example, including an experiment with qualifiers.

Representative extracts of input and output, and of structures in intermediate

form, are included as Appendix I.

To allow the shared database example to be processed by the prototype

implementation, a skeleton Modula-2 module, consisting just of import
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specifications, was constructed for each definition and implementation subunit,

and the grid specification was encoded in intermediate form. The tools were then

used to generate the unit table and the De/Uses and ImpUses relations

characterising the program, to list the relations, and to check the relations

against the grid specification.

The tool mcheck was run to check actual interactions in the program against

the grid specification: it reported that all interactions are valid. There are 45

ImpUses interactions in the program. Checking these took took 15.2 processor

seconds on a lightly loaded Vax 11/750. Much of this time was spent reading

the intermediate forms of the grid, unit table and ImpUses relation, which the

prototype implementation does inefficiently. To determine the time actually

taken by the grid core to check the interactions, a stub was substituted for the

core, and the interactions "checked" again; this run took 12.1 seconds. The grid

core therefore spent 3.1 seconds checking the 45 interactions, for a rate of

approximately 14.5 interactions per second. This rate is rather slow, but is

reasonable if one considers that few units, even in a large program, interact with

more than 14 other units. The representation of the core lends itself to a variety

of optimisation techniques that should improve the checking rate considerably;

some of these are discussed in Section 6.3.

The tool gmcom was used to compare the grid and the program. It revealed

that the grid specifies the structure of the program with complete accuracy: all

interactions occurring in either the grid or the program occur in both. The full

report produced by gmcom is included as Appendix 1.7.

An experiment was performed to explore the effect of omitting qualifiers, and

hence of the process of approximation. All qualifiers were stripped from the grid,

and gmcom was run. Then the qualifiers were replaced, one kind at a time, and

47All timings are averages of a few runs, measured using the Unix timer.
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Number of units: 27

Number of interactions tested: 729 (27 )

Number of checks in the object directory: 729

Number of DefUses interactions in the program: 22

Number of ImpUses interactions in the program: 45

Table 5-1: Some Statistics of the Shared Database Example

Qualifiers

None

Hidden

+ NonUnitReflexive

+ Same

+ Home

+ Only and Also

Table 5-2: The Effect of Qualifiers on DefUses

teractioni

31

31

31

31

31

22

s View Checks

124

124

124

31

31

22

Qualifiers

None

Hidden

+ NonUnitReflexive

+ Same

+ Home

+ Only and Also

Valid Interactions

198

191

168

84

53

45

i View Checks

318

311

288

123

72

63

Table 5-3: The Effect of Qualifiers on ImpUses
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gmcom was run each time. The results are summarised in Tables 5-2 and 5-3;

the information in Table 5-1 is useful in interpreting the results. The

"Qualifiers" column of each table of results describes the kinds of qualifiers

present in the grid. The "Valid Interactions" column lists the number of valid

interactions specified by the grid with those qualifiers. The uView Checks"

column lists the number of interactions that were found to be ValidHere by the

object directory, and hence required the view directory to be checked. The

ImpUses table shows the power of the Same and Home qualifiers, both in

reducing the number of valid interactions and the number of view checks. The

tables reveal that the Only and Also qualifiers eliminate nine DefUses

interactions and eight ImpUses interactions. These are listed in Table 5-4. They

are sufficiently unimportant in most contexts that these qualifiers could be

omitted by the process of approximation.

DBA DefUses ALA DBA ImpUses ALA

DBA DefUses LA DBA ImpUses LA

DBA DefUses PA DBA ImpUses PA

DBB DefUses ALB DBB ImpUses ALDB

DBB DefUses LB DBB ImpUses LB

DBB DefUses PB DBB ImpUses PB

DB DefUses ALDB

DB DefUses LDB DB ImpUses LDB

DB DefUses PDB DB ImpUses PDB

Table 5-4: Deviations Corrected by Only and Also

The grid mechanism successfully specifies the structure of this small, but

important, example. In particular, it identifies the three views of db described in

Section 2.1.1, and restricts access to them as required. This demonstrates that

the grid can handle the important case of a shared resource being used in

different ways by different users.



139

5.2. The Grid Implementation

The prototype implementation of the grid, described in Chapter 4, is a

layered, object-oriented program, consisting of some 12000 lines of

Modula-2 [Wirth 83] code. A complete grid specification of its structure was

written, and the implementation itself was used to check actual interactions in

the code against the specification. The process of constructing the specification

was a valuable exercise in the use of the grid mechanism, and also brought to

light a number of structural errors and peculiarities in the program.

This section gives a brief overview of the grid specification, and discusses a

few interesting structural issues and how they are specified. The complete grid,

in the intermediate form used by the prototype implementation, is available

from me on request. Section 5.3 contains a more comprehensive description of an

even larger grid specification.

5.2-1. The Specification

The prototype implementation of the grid mechanism is a Modula-2 system

consisting 11 programs. The system contains 168 units, many of the which are

shared by several programs. Each unit consists of a definition module and the

corresponding implementation module, except:

• Each of the 11 main-program units consists of a single program
module.

• Four Modula-2 library modules used by the implementation are
treated as units, so that the manner in which they are used can be
specified and documented. The composition of these units is not of
interest.

The only kind of interaction specified in the grid is Uses: a Uses b if and only if

the text of a (definition, implementation or program module) contains a

reference to 6.

The units in the system describe 67 objects from 10 points of view. The
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matrix thus consists of 10 rows and 67 columns. Each column contains at most

five units: no single object is described from more than five points of view. Many

columns contain four units, and many others just one.

Four kinds of objects can be distinguished for convenience:

• Programs. Each main program is an object. These programs are
closely related to the basic tools described in Section 4.2, but are not
identical to them: some basic tools are made up of combinations of
Modula-2 programs and standard Unix programs. There are 11
program objects in all.

• Abstract data types. The abstract data type discipline is used
extensively throughout the system, and is enforced by means of the
grid. Each abstract data type, however simple, is an object. There
are 43 such objects.

• Collections of procedures. Nine objects consist of collections of
procedures that are functionally related, but are not associated with
any specific abstract data type.

• Library Modules. Each of the four Modula-2 library modules is an
object.

The object directory specifies the hierarchical clustering of these objects, and

their interactions. It consists of six levels. The top level merely segregates the

objects into two clusters, users and utilities, and specifies that the users can use

the utilities. Levels two and three, within the cluster users, are the most

interesting. They were described in Section 4.1 and illustrated in Fig. 4-1; details

given there are referred to frequently below. Lower levels, and the details of

utilities, are not described in detail, though some points of special interest are

discussed in Section 5.2.2.

Of the ten views, five are used extensively, primarily to enforce an extended

variant of the abstract data type discipline:

• Type. Every abstract data type has a unit in this view, defining the
type without specifying any of its properties: it consists just of an
opaque type definition [Wirth 83].

• Abstract. This view specifies the operations provided by the abstract
data type.



• Public. This view is an alternative to Abstract, used in the case of
types and utilities that are considered public, such as strings. It
specifies the operations provided by such a public type or utility.

• Concrete. This view specifies the representation of the abstract data
type, in terms of other abstract data types or of types provided by
Modula-2.

• Save. This view handles reading and writing of values of the type in
intermediate form.

The other views serve special purposes, and are as follows:

• Grid. This view contains those unit table units that are available to
the grid core or grid support. It is used to ensure that no language-
dependent information in the unit table is accessible to the grid.

• Read. This view is related to Save, and deals with reading
intermediate forms. It contains units that provide high-level
primitives for performing the read operations.

• Write. This view analogous to Read, but provides write primitives.

• Program. This view contains all the units that are main programs.

• Special. This view contains some special units, exclusively for use by
main programs. These units provide access to command-line
parameters and the user's terminal.

The view directory specifies the hierarchical clustering of the views, and their

interactions. The most important features are discussed in the next section.

5.2.2. Interesting Features

This section discusses some interesting features of the prototype

implementation, the grid specification, and the process by which the grid

specification was constructed.

5.2.2.1. The Abstract Data Type Discipline

The abstract data type discipline is enforced by the restriction that the

Concrete view of an object can be used only by certain other views of the same

object, but never by other objects. This restriction is specified by means of Same

qualifiers in the view directory.
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There are cases in the program, however, where an object does, in fact, use

the Concrete views of other objects. This is a deliberate violation of the abstract

data type discipline, permitted for reasons of convenience and/or efficiency.

Most violations amount to a compromise that treats closely related objects as a

cohesive group: units in such a group can use the Concrete views of certain other

objects in the group, but no unit outside the group can use the Concrete view of

any unit in the group.

Though such violations of the abstract data type discipline are quite common

in programming, the ability to specify them is not. Languages that enforce a

strict abstract data type discipline, such as CLU [Liskov, et al. 77, Liskov, et al.

81], do not allow violations, whereas languages that allow violations do not make

the abstract data type discipline explicit, and do not distinguish between regular

interactions and violations. In the grid specification, the strict abstract data type

discipline is specified in the view directory, as described above, and violations

are specified by means of Also qualifiers that override it. These qualifiers are in

the object directory, attached to the nodes or interactions to which they apply.

Each qualifier specifies a particular violation of the discipline, or a set of related

violations, and serves to document and highlight them.

The question arises of why multiple views are used for handling abstract data

types. The traditional approach in Modula-2 is to define the uabstract view" in a

definition module, and then hide the "concrete view", together with

implementation details, in the associated implementation module. The whole

type is then defined within in a single unit, and multiple views arise only

conceptually. The multiple view approach has two primary advantages over the

traditional approach, however:

• More than one "abstract" view is possible. This is valuable for a
variety of reasons, described below.

• Access to the concrete view by other types is possible. Such access
should be used sparingly and be carefully controlled, but it is
sometimes useful for reasons of convenience and efficiency.
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Multiple " abstract" views of an abstract data type are useful for the following

reasons:

• The operations provided by the type can be packaged in a variety of
ways, based on function, intended users, or any other criteria. The
separation of the Abstract and Save views is a good illustration of
this.

• The operations made available to specific users can be restricted
conveniently: different users can be given access to different views.
The Grid view, for example, is used to restrict access to unit table
operations, as described in Section 5.2.2.2.

• Recompilation can be reduced when changes are made. If a view is
changed, only users of that specific view need be recompiled, rather
than all users of the type. The separation of the Abstract and Type
views is an illustration of this. Definition modules import only types,
of which almost all are opaque and therefore defined in the Type
view. If opaque types were defined in the Abstract view instead, any
change to the abstract operation definitions of a type would require
recompilation all units whose definition modules import that type.

• Recompilation can be eliminated when new operations are added. If
a new operation is needed, it can be placed in a view of its own, used
only by units that need the operation. This entails no recompilation,
whereas changing an existing view to include the new operation
might require massive recompilation. Views introduced in this fashion
should probably be regarded as temporary, to be removed as soon as
the overhead of recompilation is acceptable. The Read and Write
views are separate for this reason, as discussed in Section 5.2.2.6.

The implementation of each abstract view might require access to the concrete

representation of the type. The traditional approach, which hides the concrete

representation within a single module, therefore fails whenever there is more

than one abstract view. This issue was the central theme of both the list example

of Section 1.6 and the shared database example introduced in Section 2.1.1.

48
Recompilation problems such as this could be eliminated by a sophisticated programming

environment fine-grained enough to examine individual definitions. It is a fact of life, however,
that many environments in widespread use do not address these problems. The multiple view
approach is valuable in such cases. Actually, the Type view was originally introduced, not for
this reason at all, but to overcome a more serious weakness of the Modula-2 environment:
circular references among definition modules are not permitted.
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5.2*2*2* Language-Independence of the Grid

An important design goal of the prototype implementation was to keep the

actual grid (i.e. the grid core and grid support in Fig. 4-1) completely

independent of the language in which the units are written. This was achieved

primarily by the introduction of unit tables and relations to act as buffers

between the grid and the unit language, as described in Section 4.1 and

illustrated in Fig. 4-1. Relations do not contain any language-dependent

information; the unit table does contain language-dependent unit descriptors,

but hides them from the grid.

The above discipline is specified as follows:

• The grid is permitted to use unit tables and relations, but none of the
objects that are language-dependent, such as unit descriptors. This
is specified by means of sibling interactions.

• The grid is permitted to use only the Grid, Type and Save views of
the unit table; the Abstract view is deliberately excluded. This
restriction is specified by means of a single Only qualifier attached to
the sibling interaction between the grid and the unit table. The
permitted views contain no mention of the language-dependent
information, and do not allow access to it.

5*2.2.3* Restricted Use of Library Modules

The Modula-2 environment provides a number of library modules, of which

four are used by the prototype implementation: io, parameters, strings and

unix. Though these are publicly available from the point of view of Modula-2,

only io is used freely within the prototype implementation; use of the others is

restricted as follows:

• The library module parameters is responsible for providing access to
command-line parameters. It is accessible only to main programs

49
There are other ways of specifying this discipline. A particularly attractive way is to allow

the grid to use only the Grid, Type, Save and Public views of any exterior object it is allowed to
use at all. Then any non-public object that is to be used by the grid must provide a Grid view,
explicitly specifying the operations made available to the grid. This approach is more elegant,
but introduces some additional units.



(i.e. units in view Program). This is specified by placing parameters
in the Special view, which is accessible only from the Program view.

• The prototype implementation contains abstract data types defining
three different types of strings: variable-length, fixed-length and
identifiers. These are publicly available to all other objects. The
Modula-2 strings module, however, is used only to implement fixed-
length strings, and is hidden from all other objects by means of
clustering and a Hidden qualifier.

• The library module unix provides an interface to Unix system calls.
It is used only by the error-handling object of the prototype
implementation, and is hidden from all other objects.

Such restricted use of library modules is quite common, but the ability to

specify it not. Some languages require library modules to be imported explicitly,

others do not, but in neither case can a unit be prevented from importing and

using a library unit. The grid mechanism provides several alternatives. A library

unit can be:

• Hidden within a cluster, even though it is part of the language
environment rather than the user program. This was done in the
case of strings and unix.

• Placed in a view to which access is restricted, as in the case of
parameters.

• Made universally available, eliminating the need for an explicit
import specification in every unit that uses it, as in the case of io.

• Ignored completely, by treating it as part of the programming
language rather than as a unit.

5.2.2*4. Saving of Intermediate Structures

The portion of the prototype implementation responsible for saving

intermediate structures is interesting from a structural point of view. Each

abstract data type that might have to be saved on an intermediate file has a

unit in the Save view, specifying appropriate read and write operations. This

unit has access to the Abstract and Concrete views of the same type; the

Concrete view because it must know the representation, the Abstract view for

convenience. The Save view of a type with components also has access to the
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Save views of its components, so that it can cause them to be read or written.

For convenience, it also has access to the Abstract views of its components (for

operations such as null and equal), but never to their Concrete views.

Only three major kinds of objects are ever saved: grids, unit tables and

relations. All other objects are saved only as components of these. Each of the

three major types has a Load and a Save operation in its Abstract view, which

invoke the read and write operations in its Save view. No other accesses to the

Save view are permitted; this restriction is specified by means of a Same and an

Only qualifier in the view directory. The Save view is thus an almost isolated

layer of units, dedicated to performing a particular function.

The units in the Save view all use an object, called Sio} that performs the

character-level input/output operations. Conversely, Sio is solely for the use of

the Save view. This is an interesting case of an object being associated with a

view. It is specified as follows:

• Sio is hidden in the object directory, and is the target of no sibling
interactions. Thus it cannot be used, in the ordinary way, by any
other object.

• A single AlsoHere qualifier in the object directory specifies that all
units in the Save view can use Sio. The fact that the qualifier is
AlsoHere rather than Also means that such interactions are still
subject to the view restrictions in the view directory.

5.2.2.5* Multiple Programs

The prototype implementation consists of 11 programs. A few units are

specific to individual programs, but most are shared by several programs. A

single grid specifies the structure of all these programs, so information about the

shared units need not be duplicated. The main-program units themselves are

placed in a distinguished view, the Program view: a reader of the specification

has only to scan this view to find all the programs.

This use of a single grid to specify the structure of a collection of related



programs suggests that the grid mechanism might be useful for specifying entire

libraries of programs and/or modules.

5.2.2.6. Limiting Recompilation

The Read and Write views, providing high-level primitives for use by units in

the Save view, might well be combined. The primary reason for their separation

is that the write primitives were introduced after the read primitives were

already in widespread use. Changing the Read view to incorporate write

primitives would therefore have entailed a great deal of recompilation, whereas

introducing the new Write view entailed none. This is an interesting use of views

that is valuable in the short run, though views introduced this way should

probably be treated as temporary and eliminated eventually.

In this particular case, the Read and Write views are implemented in terms of

the Abstract view, and require no access to the Concrete view. In general,

however, a new view of an abstract data type, created for whatever purpose, is

likely to require access to the Concrete view. Such access is possible only if

abstract data types are implemented in terms of separate views, as described in

Section 5.2.2.1.

5.2.2.7. Revelation of Structural Violations and Peculiarities

An outline of the grid specification of the prototype implementation was

written before programming began, and most aspects of the view structure were

designed in advance. However, the detailed specification was constructed only

after the program was complete. The process of constructing the specification

and checking actual interactions in the code against it, revealed some violations

of structural discipline and some interesting structural peculiarities. This is a

valuable service provided by the grid.

A few of the violations and peculiarities were corrected in the program. In

most cases, however, qualifiers were inserted into the grid specification to
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account for them, since the program works well despite them. These qualifiers

document the violations and peculiarities, and serve as reminders that they

remain to be dealt with. This is another valuable service provided by the grid.

5.2*2.8. Grid Construction Aids

Since the grid specification was constructed largely after the program was

written, some analysis of the program proved helpful in constructing it. Those

tools in the prototype implementation that deal with relations and with

Modula-2 systems were valuable in this regard. For example, m2ur was used to

produce the Uses relation for the program, and various other tools were used to

list the relation in convenient formats. More sophisticated analysis tools,

especially tools based on the grid and able to assist with the exploration of

alternative clusterings, would have been more useful still.

Another aid to grid construction was the use of qualifiers as stubs. When

concentrating on one part of a grid, it is convenient to be able to ignore internal

details of the rest simply by specifying that "anything goes". Details of

interactions within a cluster, c, can be ignored by attaching the "stub" qualifier

[AlsoHere, c, c) to the directory node representing c. For a considerable period

of time, the entire view directory was ignored by attaching such a qualifier to its

root. The use of "stub" qualifiers is discussed further in Section 5.3.3.4.

5.2.3. Checking Interactions

The prototype implementation itself was used to check the interactions

actually present in its own code against the specification. There are 845 such

interactions, all of which were reported as valid.

Checking the 845 interactions took 146.6 processor seconds on a lightly

loaded Vax 11/750. Of this, the core took 66.3 seconds to perform the actual



checks, for a rate of approximately 13 interactions per second.50 This rate is

90% of the rate measured in the case of the shared database example, described

in the section 5.1, which is excellent considering the fact that the grid

specification is considerably more complex in this case.

5.2.4. Evaluation

The grid implementation is a real, large program, written using the layered,

object-oriented style. Its structure was designed with the grid in mind. In

particular, multiple views of objects were used from the start, and proved to be

an aid to program development, as well as to structure specification.

The grid mechanism successfully specifies the structure of the

implementation, including a number of interesting structural features described

above. The matrix identifies the objects and views explicitly. The object

directory highlights similarities between views, by specifying interactions

between objects independently of views (except for some qualifiers). The view

directory specifies the abstract data type discipline, and other view restrictions,

independently of specific objects. Qualifiers specify special cases and violations of

the structuring discipline. This demonstrates the ability of the grid both to

specify and enforce a strict structuring discipline, and yet to allow it to be

overridden in a controlled and well-documented manner.

The grid is of manageable size and complexity, despite the size of the

program; this issue is discussed in detail in section 5.4. In addition, information

in the grid is well localised, so that only small chunks need be examined in any

particular context. The implementation, though inefficient, is able to check

interactions in its own code against the specification at an acceptable rate.

The grid implementation therefore serves as a first demonstration that the

Determined using the stub technique described in Section 5.1.



150

grid mechanism can specify the structure of large programs in a concise and

readable manner. An even larger example is described in the next section.

5.3. Scribe

The first example discussed in this chapter, the shared database example, is

small, and though it illustrates a number of interesting points, it does not

demonstrate that the grid is suitable for handling large programs. The second

example, the prototype implementation, is a large program, consisting of some

12000 lines of Modula-2 code, and the grid mechanism succeeded in specifying its

structure well. Another, even larger, example was desired, not written by me, to

provide further evidence that the grid mechanism can handle large programs.

The Scribe document processing system [Reid 78, Reid 80] was chosen, a grid

specification of its structure was constructed, and the actual interactions

occurring in the code were checked against the specification by a slightly

modified version of the prototype implementation.

The Scribe source used as the basis of this example was the 1979 version

numbered 2A(400) that was written by Reid at Carnegie Mellon University. It

consists of approximately 29000 lines of Bliss [Wulf-Russell-Habermann 71] code.

Reid himself provided much valuable assistance, explaining the structure to me,

critiquing grid specifications, and helping to isolate the interactions actually

present in the code.

This chapter describes the structure of Scribe by presenting the grid

specification step by step. All diagrams used are derived directly from the grid:

they are no more than graphical representations of portions of the directories.

This exposition of the structure of Scribe in terms of the grid specification

confirms the claim that the grid provides a suitable framework within which to

describe and discuss the structure of large programs. The final sections of this

chapter draw attention to interesting aspects of the specification, describe the
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evaluate the performance of the grid on this example.

The description of structure that follows, and the accompanying diagrams,

give full detail down to a certain level, as explained below, but no detail below

that level. The full grid specification, in the intermediate form used by the

prototype implementation, is available from me on request.

5.3.1. Units

The Scribe system consists of 11 require files and 43 modules. The require

files list global names and define global macros; only such names and macros are

accessible in more than one module. The modules themselves consist of data

definitions, routines (procedures and functions), and local macros. Some routines

contain nested routines or macros. The interactions of interest in this example

are references of one unit by another, which are characterised by the relation

Uses.

Three issues arise in the choice of units: granularity, nesting and domain. A

coarse-grained specification of structure could be obtained by considering each

require file and each module to be a unit, whereas an extremely fine-grained

specification could be obtained by considering each definition within a require

file or module to be a unit. A compromise was fact adopted, in which each

individual definition is considered to be a unit, except that all the data

definitions in a require file or module are considered to be a single unit. This

keeps the number of units from becoming excessive, without reducing structural

information significantly. Such flexibility in the choice of units is a useful

advantage of the grid.

Since a unit is treated as atomic by the grid, one would expect constructs

nested within units to be invisible. Too much structural information can be lost

if this approach is followed, however, resulting in a structure specification that is
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too coarse-grained. A finer-grained specification can be obtained by flattening

the program, determining the units from the flattened program, and then

specifying the nesting of units through the hierarchical structure of the object

directory. This approach was in fact followed.

The Scribe source contains a number of calls to operating system routines

and machine operations. These can be treated as part of the Bliss language, and

ignored, or they can be treated as units and calls to them specified explicitly in

the grid. Since such calls are system-dependent, it is important to document

them and the disciplined manner in which they are used. To this end, system

routines and machine operations are treated as units.

The above considerations lead to a structure specification in terms of the

following kinds of units:

Assembly. A routine coded in assembly language for maximum
efficiency.

DataDefs. All the data definitions in a single module.

GlobalVar. A variable that is available to more than one module.

Machop. A machine operation invoked from Bliss code.

Macro. A Bliss macro, including a macro nested within a

routine.

Main. The main program.

Proc. A Bliss routine, including a routine nested within
another routine.

Require. All the data definitions in a single require file.
System. A routine that is part of the operating system or

language environment and is invoked by Scribe.

There are 1154 units in all.

The low levels of the object directory were not developed in sufficient detail to show the
nesting, however. All units, nested or not, that occur in a module are simply siblings in a cluster
corresponding to that module, as described in Section 5.3.3.4. Specifying the nested structure
within modules would be simple, if tedious.



The prototype implementation of the grid mechanism requires unit identifiers

to be unique: it does not explicitly handle nested units or qualified names.

Unique unit identifiers were derived as follows:

• The DataDefs unit associated with module m has identifier m\data\.

• The Require unit associated with require file r has identifier r[req].

• The main program has identifier scribe[main].

• All other units have identifiers identical to those in the Bliss
program, except that a disambiguating suffix is added when
necessary. The suffix is usually of the form "[module-name]", but in
the case of units local to different procedures within the same module
it is "[procedure-name]".

5.3.2. The Matrix

Multiple descriptions of single objects do not occur in Scribe; there are no

cases where two different units can be considered to specify a single object from

different points of view or at different levels of abstraction. Instead, each unit is
52treated as a separate object. There are thus 1154 object slices in the matrix,

each containing but a single unit.

Despite the trivial nature of the object slices, views are nonetheless valuable

as a means of categorising units according to kind and/or usage, as described in

Section 5.3.4. Twenty-five categories of units proved useful, so there are 25 view

slices in the matrix.

The matrix thus consists of 25 rows and 1154 columns, with exactly one unit

in each column.

5~̂It is convenient to use object terminology for consistency with the grid, even though Scribe
would not normally be considered an object-oriented program.
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5.3.3. The Object Directory

The object directory contains 1154 leaf nodes, one for each object in the

Scribe system. The next level, called the module level, consists of clusters

representing the require files and modules in the source program; the object

directory thus preserves the modular structure of the source program (except for

two important special cases discussed in Sections 5.3.6.3 and 5.3,6.4). Higher

levels of the object directory specify further logical grouping not explicitly

identified in the source program. The entire object directory is now presented

top-down.

Debugger

debug

foobaz

Q1

Code

Ql: {(Also, Debugger, Debug[viewJ))

Figure 5-1: The Object Directory: Top Level

5.3.3.I. High Levels

At the highest level, the Scribe system consists of a debugger and code, as

illustrated in Fig. 5-1. In this and subsequent diagrams, clusters representing

modules are denoted by lower-case names, possibly enclosed in light boxes; in

this case there are two: debug and foobaz. Higher-level clusters are denoted by

heavy boxes with capitalised names; in this case there are two, Debugger and

Code. A simple cluster might have its contents shown in detail, as in the case of

Debugger; a complex cluster will instead contain an icon denoting a detailed

diagram to follow, as in the case of Code.



GQ2

GQ2: {(Also, scribe, All-Scribe))

Q3: {(Also, dvdbl, ZWRString(DVDblj);
(Also, dvxgp, ZWRString(DVXGP|))

Q4: ((Only, {msg, osiflO, symbol}, scribe))

Q5: {(AlsoHere, msg, driver);
(Also, msg, Send);
(Only, DecToJulian, DayNum))

Q6: {(Only, {msg, strn}, input))

Figure 5-2: The Code Cluster: Top Level

The debugger was based on the standard Bliss debugger, but was hand-

crafted to allow examination of important Scribe structures. Calls to the

debugger are permitted within the code. The debugger itself can access all

objects exported by Code, as well as some additional ones specified by the
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qualifier Ql. All qualifiers in the grid are shown in the figures in which they

belong, but are explained in Section 5.3.5.

The debugger is simple from a structural point of view, and does not merit

further attention. The Code cluster consists for four sub-clusters, as shown in

Fig. 5-2:

• scribe is the module containing the main program itself.

• Core is the heart of the Scribe compiler, consisting of all the routines
for processing text and commands and producing finished output.

• Source consists of routines for reading and scanning input.

• Servers contains utilities for general use throughout the system.

Solid arrows in all diagrams represent "normal" interactions; if they have

qualifiers beside them, the qualifiers specify additional, extraordinary access

(such as access to hidden units). Dashed arrows represent "restricted"

interactions; they are always accompanied by qualifiers specifying the

restrictions. The qualifiers are explained in Section 5.3.5. At this, high level it is

sufficient to note that the major parts of the system can interact freely, except

that Servers have only restricted access to the rest of the system. This is as

expected, for servers are generally universally available, but largely independent.

Cluster Source is too simple to warrant further examination. Clusters Core

and Servers are described in detail in Sections 5.3.3.2 and 5.3.3.3.

5.3.3.2. The Core

The top-level structure of Core is shown in Fig. 5-3. The three sub-clusters

are as follows:

• Control contains modules that control the flow of data, examining
input to distinguish between text and commands and causing it to be
processed as appropriate.

• Processing contains the modules that actually convert input text to
finished output, and maintain all the information required to do this.

• The module sepcom handles the separate compilation feature of
Scribe, that allows parts of a document to be processed in isolation.
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"TW"
sepcom

Q7

Processing
09

N

I
Q10

Q7: ((Also, Textlnit, {LINEcreate, HZFcode, ChrWid}); (Also, CMauxfont, DevFont))
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Figure 5-3: The Core Cluster: Top Level

It is separate from the other clusters, and most interactions with it
are restricted, because it is somewhat anomalous and violates
information hiding constraints.

A further level of detail within the Core cluster is shown in Fig. 5-4.

Control is simple, consisting of just three modules:

53

53
Because the core is a closely-knit portion of the program, and is of manageable size, it is

helpful to introduce lower level detail while preserving the higher-level context, rather than
of sub-clusters separately.
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• The module driver contains the main loop of Scribe, reading input,
determining whether it is command or text, and invoking the
appropriate unit to act upon it.

• The module init is responsible for document initialisation. This
involves processing all the initial commands that occur before any
text in the document, and includes loading of appropriate database
files.

• The module command is responsible for executing all commands that
occur in the document text.

The module command is hidden, as indicated by the "H" in the diagram: it is

accessible only to driver.

The Processing cluster is more complex, consisting of three sub-clusters:

• Info contains modules that maintain information about the
document style and current environment, and make it available to
other modules.

• Gen contains modules that are responsible for constructing the
generated portions: those parts of the finished output, such as
bibliography and index, that are constructed by Scribe rather than
being obtained directly from the manuscript text.

• Finished contains the modules that actually synthesise and output
the finished document.

Fig. 5-5 shows the Core cluster in full detail, down to the module level. Only

clusters Gen and Finished are of interest. The sub-clusters within Gen are as

follows:

• Portions contains modules to process the four primary generated
portions: the bibliography, the index, foot and end notes, and cross-
references.

• The module outlin produces the outline file; since this is an auxiliary
file rather than part of the finished output, it is not considered to be
a true generated portion.

• The module gener is responsible for actually having the generated
portions included in the output.

The Finished cluster is of primary interest. At the first level, it consists of

two sub-clusters:
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• Formatting contains modules that take text, whether from the
manuscript file or generated, and format it for output. They deal
with such issues as line breaking, justification, spacing, hyphenation,
font selection, pagination and figure placement. All the modules are
absolutely device-independent.

• Devices contains modules that produce the final raw output for the
appropriate device, and provide details of device capabilities.

The Devices cluster is in turn divided:

• The cluster DeviceDrivers contains one module for each device
supported by Scribe; there are five in this version. Each module
produces raw output for its device. These are the only device-
dependent modules in the entire Scribe system. The large "H" in the
figure indicates that they are hidden within Devices.

• The module dev acts as an interface to the device drivers, exporting
device-independent operations that it realises by calling the
appropriate drivers.

The structure of Devices is such that outside modules can communicate only

with module dev, ensuring that no device dependencies are introduced into the

rest of the system.

5,3o3.3. Servers

The cluster Servers of Fig. 5-2 is expanded in Fig. 5-6. It consists of three

sub-clusters:

• High contains high-level support, such as a system-independent
operating system interface, some utilities, and configuration
information.

• Low contains system-independent low-level support, such as macros
for performing arithmetic or transfer operations efficiently.

• Machine contains all the machine operations that are used by Scribe.

Fig. 5-7 shows the Servers cluster in full detail, down to the module level (except

that the fine structure and interactions within BlissLibrary are omitted from the

diagram, though they are specified fully in the grid). The BlissLibrary,

containing the Bliss input/output and memory allocation modules, is hidden, and

is accessible to users only through the operating system interface, osiflO.



Figure 5-6: The Servers Cluster: Top Level

5.3.3*4. Low Levels

The previous three sections covered the entire object directory down to the

module level. The qualifiers, described further in Section 5.3.5, and the views

described in Section 5.3.4, often deal with specific units within a module; thus,

although all sibling interactions discussed so far specify interactions between

entire modules, or clusters of modules, the grid as a whole is finer-grained.

Nested structure within a module could be specified by means of additional

levels of the object directory below the module level, and intra-modular

interactions could be specified by means of sibling interactions between nodes at

these levels. This detail would contribute little to an overall understanding of

Scribe, and is not needed to demonstrate the ability of the grid to handle large

programs. The following approach was therefore followed instead:

• All units in a module, whether nested within routines or not, are
simply children of the cluster corresponding to the module.

• Each cluster corresponding to a module, m, has attached to it the
global qualifier

(AlsoHere, m, m)

specifying concisely that all intra-modular interactions are permitted
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54by the object directory. These qualifiers are not shown in the
diagrams.

This approach results in an approximation that is appropriate in the present

context, by omitting much low-level detail. The ability of the grid to specify

54T
It would be still better to make the notion of "module" explicit in the grid, perhaps by

tagging nodes corresponding to modules. Then a single qualifier could be used to specify that all
intra-modular interactions are permitted, instead of a separate qualifier being needed for each
module. These facilities are not currently supported by the grid; tagging of nodes and the
introduction of additional qualifiers are discussed in Section 6.1.
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greater or lesser detail, and to specify different portions of the program at

different levels of detail, is important. It is particularly valuable during grid

construction, allowing a top-down approach to be used: qualifiers such as the

above can be used as stubs that take care of portions of the program that have

not yet been dealt with in detail.

5.3*4. The View Directory

The previous section showed how the objects making up the Scribe system

are classified hierarchically according to function, in the object directory. It is

also convenient to classify units according to kind and usage, so as to document

system dependencies, restrict interactions, and handle some special structural

issues. Views are used to achieve this second classification, and the views

themselves are classified hierarchically in the view directory. This directory is

now described top-down.

The top level of the view directory is shown in Fig. 5-8, and consists of:

• The cluster l/ser, containing all units that are part of the Scribe
system proper.

• The view System[view], containing all machine operations and
operating system routines. This view clearly identifies all units that
form part of the particular computer system on which this version of
Scribe runs. All units that use units in this view would have to be
rewritten if Scribe were ported to a different system.

• The view Unused[view], containing all units that are not used at all.
This view clearly identifies all unused units, so that they can be
eliminated if desired.

• The view Obsolete[view], containing units that should be discarded.
No other view uses this view, so any remaining interactions with an
obsolete unit will be trapped by the view directory.

Units in Unused[view] and Obsolete[view] are allowed to interact freely with

other views; since these units are likely to be discarded or ignored, what exactly

The suffix "[i>tew]" is appended to all view names to distinguish them from object and
object cluster names.
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Figure 5-8: The View Directory: Top Level
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they use is of little interest. Interaction between the User views and

System[view) are rigidly restricted, however, as specified by qualifier Q16. The

qualifiers are explained in Section 5.3.5.

The User cluster consists of two sub-clusters, as shown in Fig. 5-9:

• Public contains views that are universally available. The units in
these views are referred to as public units.

• Restricted contains views whose use is restricted in one way or
another. The units in these views are referred to as restricted units.

The arrow specifies that all the Restricted views can use all the Public views,

and GQV7 specifies that the public views can use one another.

Fig. 5-10 shows all remaining detail in the User cluster. Four public views

are differentiated:

• Config[view] contains units that describe the system configuration.
All units in this view are also in the object cluster Configuration.

• Syslnt[view] contains all public units in cluster Servers that are
system-dependent, but that provide a system-independent interface
to their users. This view clearly identifies units that would have to be
rewritten if Scribe were ported to another system.

• Variable[view] contains all global variables (units of kind GlobalVar).

• General\view\ contains all other public units.

This differentiation is entirely for documentation purposes, but the categories

identified are useful, especially Syslnt.

The role of the restricted views is interesting, and relates to the object

structure specified in the object directory. Consider an interaction between two

clusters in the object directory, say between Finished and Info in Fig. 5-5. This

interaction specifies that all units within Finished can use all units within Info

that are not hidden. This is an inaccurate picture, however. Info maintains

information about the current style and environment, which is primarily set up

56
The "[view]" suffixes are omitted, to avoid cluttering the figure.
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by module command during the processing of commands; Finished merely uses

it in the process of producing the finished document. Another way of putting

this is that command and Finished have different views of Info: the command

view consists primarily of units that manipulate the information, whereas the

Finished view consists primarily of units that provide access to it. The restricted

views specify such differences in usage.

A question of granularity arises at this point. It is theoretically possible to

associate a view with each module, containing just the units used by that

module. A separate view could even be associated with each object, for complete

accuracy, giving rise to a vast, square matrix. Such fine granularity tends to lead

more to confusion than to clarity. In this particular example, much coarser

granularity, involving just large, high-level object clusters, is adequate for

expressing all important view restrictions.

Accordingly, certain high-level object clusters are identified as major; the

major clusters are precisely those shown in Figs. 5-1, 5-2 and 5-3. Code, Core

and Processing contain other major clusters; the others do not, and are called

minimal major clusters. View structure is specified in terms of the major

clusters as follows:

• Within each minimal major cluster, arbitrary interactions between
User views is allowed, including Restricted views. These interactions
are specified by means of the first group of qualifiers in GQlb.

• Across major clusters, Restricted views can be used only as explicitly
specified in the second group of qualifiers in GQ15. The views and
their uses are described below.

The Restricted views fall into four categories:

• Local[view] consists of units used only locally within the minimal
major clusters. It includes all hidden units (i.e. units that are not
declared to be "global" in Bliss, and hence have Hidden qualifiers
attached to their nodes in the object directory).

• Device[view] consists of units within object cluster Finished that deal
only with device characteristics and not with the document. Units in



this view cannot be used outside Finished, nor can they themselves
use restricted units outside Finished.

• All-Source. These views derive from four possible uses of Source that
are worth distinguishing. The modules in Source read the source
input and provide access to parameters that control this process; they
also allow text to be inserted into the input, for macro processing and
evaluation of string constants, for example, and they allow the
control parameters to be set. Hence the following four views:

o Consume[view] consists of all units that read input.

o Get[view] consists of all units that provide information about
control parameters.

o Produce[view] consists of all units that insert text into the
input.

o Set[view] consists of all units that allow the control parameters
to be set.

Different object clusters use different views of Source, as specified in
GQlb.

• Each of the other views is associated with a specific object cluster or
set of object clusters; a unit in such a view can be used only by units
in the associated object cluster(s) (as well as by other units in its own
minimal major cluster):

o The All-Command views consist of units used by modules
associated with command execution and related processing: all
modules in Control and Gen, as well as envir and scribe. Those
in Joint[view] are also used by the object cluster Finished, and
those in Source[view] by Source, whereas those in
Command[view] are used by neither Finished nor Source.

o The All-Scribe views consist of units used exclusively by
module Scribe, or by each other as indicated by the arrows in
the figure. View Ini[view] contains initialisation routines,
Fin[view] contains finalisation routines, and Scribe[view]
contains a few other units used exclusively by the scribe
module.

o Debug[view] consists of debugging units, used exclusively by
object cluster Debugger and by each other.

o Doclnit[view] consists of document initialisation units used
exclusively by module init.

Throughout this list, "exclusively" refers to interactions across major clusters; interactions
within minimal major clusters are always allowed and are therefore not taken into consideration.



170

o Envir[view] consists of units used exclusively by module envir.

o Finished[view] consists of units used exclusively by object
cluster Finished.

o Processing[view] consists of units within Control that are used
by units within Processing.

o SepCom[view] consists of units used exclusively by module
sepcom.

The object/view interactions just described are specified by means of
the second group of qualifiers in (7Q15.

The view directory in this example is especially interesting because it

specifies primarily interactions between objects and views, rather than between

views and views. This phenomenon explains the preponderance of qualifiers:

view/view interactions can usually be specified primarily by means of sibling

interactions, whereas object/view interactions can only be specified by means of

qualifiers. The dominance of object/view interactions arises from the fact that

many views are used specifically to identify which units can be used by certain

objects, and interactions between those objects and views are then specified

directly. An alternative approach is to duplicate units, so that identical units

appear in multiple views, and then specify interactions between views instead.

This approach was followed in the case of the shared database example, and was

explained in Example 2-4. It was not followed in this example for two reasons: to

illustrate the alternative approach, and to avoid introducing any units that are
58not actually part of Scribe.

58
A third approach is perhaps best of all, but is not currently supported by the grid: instead

of duplicating units, allowing a single unit to belong to multiple views. The possibility of
extending the grid to allow this is discussed further in Section 6.2.
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5.3,5. Qualifiers

This section explains all the qualifiers occurring in the grid specification. For

convenience, all qualifiers in the object directory are collected together in Fig.

5-11, and all qualifiers in the view directory in Fig. 5-12.

Ql: {(Also, Debugger, Debug(viewD)

GQ2: ((Also, scribe, All-Scribe))

Q3: ((Also, dvdbl, ZWRString[DVDbl]); (Also, dvxgp, ZWRString(DVXGPD)

Q4: ((Only, {msg, osiflO, symbol}, scribe))

Q5: {(AlsoHere, msg, driver); (Also, msg, Send); (Only, DecToJulian, DayNum))

Q6: ((Only, {msg, strn}, input))

Q7: ((Also, Textlnit, {LINEcreate, HZFcode, ChrWid}); (Also, CMauxfont, DevFont))

Q8: ((Also, DefPart, WHERECMD); (Only, UsePart, Phase))

Q9: {(Also, DefPart, {BoxTest, PageBox, DevCapas, HCURSOR});
(Also, UsePart, {BoxAdd, LINEcreate, PageBox, CVDist, CtrSet});
(Also, PartClose, {DEVmark, Send, QUOTE, XRFMark});
(Only, {}, {}))

Q10: ((Also, NOTINI, CtrRegister); (Only, {}, {}))

Qll: {(Also, REFevaluate, XRref); (Also, AuxStyle, Send); (Only, {}, {}))

Q12: ((AlsoHere, Getevnt, ApEngOrdinal))

Q13: ((Only, gener, {IxActive, IndexClose}))

Q14: {(Only, config, StrCon))

Figure 5-11: Qualifiers in the Object Directory

Qualifier Ql specifies that the Debugger can use all units in the Debug[view]

of cluster Code, even hidden units. Though this is an object/view interaction of

the kind generally specified in the view directory, this qualifier is located in the

object directory because it also overrides Hidden qualifiers in the object



directory. It is an Also rather than an AlsoHere qualifier, because it affects

both directories: it overrides Hidden qualifiers in the object directory, and it

specifies interactions with a view. Qualifier GQ2 is similar, specifying that

module scribe can use all units in the All-Scribe views, even hidden units. It is a

global qualifier because it applies to all interactions whose sources are units in

the scribe module, irrespective of their targets.

Qualifier sequence QS specifies two specific interactions between device

drivers and hidden units within the strn module. These interactions are grave

but deliberate violations of information hiding, described further in Section

5.3.6.4.

The qualifier sequences Q4, Q5 and Qf> restrict the interactions between

Servers and the rest of Scribe. Q4 and Q6 are straightforward; Q5 reads as

follows: "Units in msg can use units in driver to the extent permitted by the

view directory, and units in msg can also use Send, irrespective of the view

directory; otherwise, the only interaction permitted by the object directory is

between DecToJulian and DayNum" These sequences are an interesting

illustration of the manner in which restricted interactions are specified. There

are, in fact, three variations of the specification "Only those interactions in set /

are permitted":

1. "All interactions not in / are invalid". This variation does not state
that the interactions in / are necessarily valid; their validity depends
on other information in both directories. If / is sufficiently simple,
this restriction can be specified by means of a single Only qualifier,
as in QA and Q6. If it is too complex, a sequence of AlsoHere

According to the semantics of the grid, it could be located in the view directory nonetheless.
I have adopted the convention, however, that qualifiers in the object directory can override the
view directory, but not vice versa. This convention is assumed by the prototype implementation,
which checks the view directory only in the case of interactions that are found to be valid
according to the object directory.
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qualifiers terminated by a single Only qualifier must be used.

2. "All interactions in / are valid according to this directory, and all
others are invalid". This variation does state explicitly that the
interactions in / are valid, but only according to the directory under
consideration; the other directory might still find some or all of them
to be invalid. This variation is realised by a sequence of one or more
AlsoHere qualifiers, specifying /, terminated by a dummy Only
qualifier specifying that no other interactions are valid, as in Q16.

3. "All interactions in / are valid, and all others are invalid". This
variation states explicitly that all interactions in / are valid,
according to both directories; it explicitly overrides any information
to the contrary in the other directory. This variation is realised by a
sequence of Also qualifiers, specifying /, followed by a dummy Only

qualifier, as in Q9, Q10 and Qll .6 1

The variations above can exist in combination in a single qualifier sequence; Q5,

for example, is a combination of variations 1 and 3. This illustrates yet another

interesting point: the use of AlsoHere when specifying interactions in terms of

clusters belonging to the same directory {msg, driver), but of Also when

specifying interactions in terms specific units (Send). The rationale behind this

is that, whereas the clusters belong to a single directory, a unit belongs to both;

an AlsoHere qualifier specifying a specific unit will generally have to appear in

both directories.

The qualifier sequence Ql specifies additional, extraordinary interactions in

60
If one of the AlsoHere qualifiers is applicable, then no further qualifiers are examined,

whereas if an interaction is permitted by an Only qualifier, further qualifiers are examined. Thus
a sequence of AlsoHere qualifiers followed by Only does not precisely achieve the effect of a
complex Only qualifier; it has some of the flavour of variation 2. This difference is usually not
material, but a more complex form of Only qualifier to handle all cases of variation 1 would be
preferable.

The way in which the three variations are realised in terms of sequences of Only, AlsoHere
and Also qualifiers is not ideal. It would be better to have a specific qualifier tailored to each
variation, and to allow individual qualifiers to specify arbitrarily complex sets of interactions,
thereby removing the need for sequences in this situation. Proposed additions to the collection
of qualifiers are discussed in Section 6.1.

62
There are, of course, also other criteria for choosing between AlsoHere and Also.
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which module init engages, due to peculiarities of the document initialisation

process. Sequences Q8, QQ and QIO specify interactions involving sepcom. These

are severely restricted and are specified explicitly because they constitute

violations of information hiding required by peculiarities of the separate

compilation facility of Scribe.

Qualifier sequence Ql l specifies the two permitted interactions between Info

and Gen, and Q13 specifies the two permitted interactions between genet and

Portions. These interactions are not anomalous; they are merely the only ones

permitted. Q12 specifies an interaction between a unit within eccles and a

private unit belonging to styles.

Q14 specifies that the configuration module config can use just the string

constructor StrCon. This interaction is also not anomalous, though it seems

surprising at first sight that the configuration module would use anything at all.

The global qualifier sequence GQ\h is the most interesting qualifier sequence

in this grid. It specifies most of the view structure of Scribe. The initial Only

qualifier restricts interactions to User views: the User views cannot interact with

other views except as specified elsewhere (Q16). The collection of AlsoHere

qualifiers following Only specify unlimited interaction between User views within

minimal major clusters. The last one specifies that units in Gen also have access

to all views within Info. The remaining qualifiers specify interactions across

major clusters. The Except qualifier prevents units in Device[view] from

accessing any restricted units in other major clusters. The collection of AlsoHere

qualifiers following Except specify permitted object/view interactions: the source

set of each consists of one or more object clusters, the target set of one or more

restricted views.

The question arises of why all the qualifiers in GQ15 are in a single, long

sequence attached to User, rather than being separated and attached to the



GQ15:{(0nly, User, User);
(AlsoHere, Debugger, Debugger); (AlsoHere, Control, Control);
(AlsoHere, Info, Info); (AlsoHere, Source, Source);
(AlsoHere, Gen, Gen); (AlsoHere, Finished, Finished);
(AlsoHere, sepcom, sepcom); (AlsoHere, scribe, scribe);
(AlsoHere, Servers, Servers); (AlsoHere, Gen, Info);

(Except, Devicejview], Restricted);
(AlsoHere, {Control, Info, Gen, scribe}, All-Command);
(AlsoHere, Control, All-Source);
(AlsoHere, {biblio, styles, strn, Finished}, Consume(viewj);
(AlsoHere, INIT, Doclnit);
(AlsoHere, envir, Envir(viewJ);
(AlsoHere, Finished, {Finished[view], Jointjview]});
(AlsoHere, {styles, msg}, Getjview]);
(AlsoHere, Processing, Processing(viewJ);
(AlsoHere, {envir, Gen, Finished}, Producejview));
(AlsoHere, sepcom, SepCom[view]);
(AlsoHere, {Gen, msg}, Set[view]);
(AlsoHere, Source, Sourcefview]))

Q16: ((AlsoHere, Code, SDC12);
(AlsoHere, {Syslnt[view], OsilNI, TmpCor, EditVersion}, System(viewJ);
(Only, {}, {}))

GQ17: {(AlsoHere, Public, Public))

Figure 5-12: Qualifiers in the View Directory

particular major clusters or views to which they apply. Consider the qualifier

(AlsoHere, c, v)y specifying an interaction between object cluster c and view v. It

cannot be placed in the object directory, either attached to the node

representing c or anywhere else, for it would interfere with object/object

interactions specified in that directory: it would, for example, override any

applicable hidden qualifiers in the object directory. It also cannot be attached

to the node in the view directory representing v} for it applies to interactions

whose targets are in v, whereas the semantics of the grid are that qualifiers are

A possible solution to this is a new qualifier, AlsoOther, which, if attached to a node in the
object directory, would override the view directory, but not interfere with other information in
the object directory. It would thus allow AlsoHere qualifiers in the view directory to be placed
instead in the object directory when appropriate, and vice versa.
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examined only on the paths of sources. Attaching all these qualifiers to User is

therefore the best that can be done in terms of localisation; this does have the

advantage that all these qualifiers are in one place, and so can easily be

examined together.

Q16 specifies all permitted interactions with System[view), thereby

identifying all system dependencies. The first qualifier specifies that any units

within Code can use S7X12, the Bliss debugger. The second qualifier lists the

units that are allowed free access to system units. Syslnt[view] contains all

public units in Servers that are system-dependent. Only three other units can

use system units: OsilNI, the operating system interface initialisation routine,

and TmpCor and EditVersion, two routines within the scribe module.

Q17 simply specifies that the Public views can use each other freely. This

qualifier specifies, in effect, a reflexive sibling interaction involving internal

directory nodes; since reflexive sibling interactions are allowed only for leaf

nodes, global qualifiers are needed to achieve the same effect at higher levels.

Qualifier sequences Ql, GQ2, GQ15, GQ17 and part of Q16 specify the view

structure of Scribe. The role of each qualifier has been explained in some detail,

here and in Section 5.3.4; these explanations could be attached to the qualifiers

in the grid. All the other qualifiers specify either restricted interactions or

extraordinary interactions. There is a reason for each of these, understood by the

author of Scribe; these reasons could also be attached to the qualifiers as

documentation. These documented qualifiers would then serve to highlight and

explain important structural peculiarities and violations of information hiding.

64
A possible solution to this is to change the semantics so that qualifiers on the paths of

targets are considered also. This change has many advantages, and is discussed further in
Section 6.2.

The prototype implementation does not currently support the attachment of documentation
to grid structures; extending it to do so would be straightforward, and is planned for the near
future.



The above discussion of qualifiers revealed some cases where changes in grid

semantics or addition of new qualifiers would result in more concise or more

elegant specifications. Some suggestions for such changes are made in Chapter 6.

Even without them, however, the grid does a good job of specifying the

structure of Scribe and identifying structural peculiarities.

5.3.6* Interesting Features

This section draws attention some special structural features of Scribe, and

how they are specified by the grid.

5.3.6.1. System Dependencies

The Scribe system makes use of some system routines, and even of machine

operations for improved efficiency. However, it does so in a highly disciplined

manner, which would make it relatively easy to port Scribe to different systems.

The discipline used is not specified in any way in the program, however, except

in comments.

The grid specification contains two special views to specify system

dependencies explicitly: System[view] and Syslnt[view]. Sys tern [view] contains

all units that form part of the system, and would not exist if Scribe were ported

to another machine,. Syslnt[view] consists of all units in cluster Servers that use

System units, or that are otherwise system-dependent, such as routines written

in assembly language. These would have to be rewritten if the Scribe system

were ported. The person charged with rewriting them would not have to search

for them; he would merely have to look at the Syslnt[view] row in the matrix.

The fact that Syslnt[view] contains only units in Servers highlights the fact

that the rest of the Scribe system should be absolutely system-independent.

There are in fact two exceptions to this, however:

• The main program itself uses some machine operations. These
interactions are specified by means of qualifier sequence Q16.
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• Units throughout the system call S7X12, the Bliss debugger. These
interactions are also specified by means of qualifier sequence Q16.

Views and qualifiers were thus used to good effect to restrict access to

system-dependent facilities, and to specify and document system dependencies

that are present.

5.3.6.2. Device Dependencies

Scribe can generate finished output for a variety of devices. Most of the

document compilation process is device-independent, however, and Reid was

careful to minimise and isolate the code that depends on specific device

characteristics. To this end, he wrote a single driver module for each device

supported, and a module dev to act as an interface between these and the rest of

Scribe. The module dev exports a collection of abstract device operations, and

realises them in terms of actual device operations provided by the device drivers.

This discipline cannot be specified in Bliss; it is merely documented by means of

comments.

The grid specification uses clusters Devices and DeviceDrivers to isolate the

device drivers, as described in Section 5.3.3.2. Views were thus used to isolate

system dependencies, and hidden clusters to isolate device dependencies. Either

or both of these methods can generally be used to specify information hiding.

5.3.6.3. The Debugger

In the Scribe source, module debug contains a number of routines for

displaying data structures belonging to other modules. These routines more

properly belong in the modules that own the data structures, but they were

placed in debug instead so that all aspects of the system to do with debugging

would be in one place for easy elimination.

In the grid specification, all such routines were moved to the appropriate

modules, but placed in the special view Debug[view], This eliminates all



violations of information hiding, while still grouping all debugging routines

together for easy elimination. A similar approach was followed in the case of

Ini[view] and Fin[view], containing initialisation and finalisation routines,

though in these cases the primary motivation was documentation.

5.3.6.4. ZWRString

Strings in Scribe are almost always treated as abstract data types maintained

by module strn, which implements them as null-terminated sequences of

characters. There are just two cases in which this implementation is inadequate:

two devices, the Diablo and the XGP, require output containing null characters.

Rather than introduce a new abstract data type to handle strings with nulls,

Reid wrote a routine called ZWRString that writes a string maintained by strn,

but uses a count field to determine how many characters to write instead of

stopping at the first null character. This is a violation of the strn abstraction,

and a dangerous one; so dangerous, in fact, that rather than export ZWRString

from strn, thereby making it publicly available, Reid duplicated it and placed

private copies in the device drivers for both the Diablo and the XGP.

Qualifiers in the grid allow ZWRString to be treated more elegantly as the

special case it is. It is included in module strn as a hidden unit, unavailable to

users of strn, but the device drivers for the Diablo and the XGP are given access

to it by means of qualifiers (Q3 in Fig. 5-2). The qualifiers provide the desired

access, disallow any other accesses, and clearly indicate that an unusual situation

exists.

Actually, both copies that occur in the code were retained in the grid, so that actual
interactions derived from the code could be checked again?! the grid.
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5.3.6.5. Facilities

The notion of associating views with objects or object clusters, as in the case

of many of the Restricted views, corresponds closely to an approach followed by

Reid in the design of Scribe. Once the basic Scribe system existed, Reid added

new facilities one at a time, such as cross-referencing, separate compilation, etc.

Each new facility would have a module of its own to do most of the

computation, but would also occasion changes to other modules to provide

support for the new facility. The new module corresponds to an object cluster in

the grid, the changes in other modules to a view; thus each facility has an

associated object cluster and view. The grid specification does indeed have an

object cluster associated with each facility, but its granularity is not fine enough

to identify all the changes to other modules related to a particular facility, many

of which are just a few lines of code within a unit. Nonetheless, the approach is

interesting, generally useful, and well suited to specification by means of the grid

mechanism.

5.3.6*6. Obsolete Units

The view Obsolete[view] provides a way of phasing out obsolete units

gracefully. Other views can initially be allowed access to it, and it can be

allowed access to other views. Units that are to be phased out can then be

moved to it without ill-effect. When one is actually ready to eliminate the

obsolete units, one can disallow access to Obsolete[view] by means of a single,

trivial change to the grid, and all remaining interactions with obsolete units will

be reported as invalid. The version of the Scribe program described still contains

a few such interactions.



5.3.7. Checking Interactions

This section describes the use of a slightly modified form of the prototype

implementation to check the actual interactions occurring in the Scribe code

against the grid specification.

The Scribe source code was processed using a number of Unix shell scripts to

isolate information for use by the prototype implementation of the grid:

• All units of the kinds listed in Section 5.3.1. There are 1154 units.

• All actual interactions between units. There are 5032 interactions.

This information was placed in symbolic form in two tables.

The prototype implementation of the grid described in Chapter 4 can process

only Modula-2 programs. Minor changes were made to allow it to process the

tables of information isolated from Scribe instead. The changes are described

here to show how easily the grid implementation can be adapted to a new

programming language:

• The nature of unit descriptors was changed, to reflect the different
kinds of units present in Scribe. This involved changing two modules.

• Changes were made to ignore case in unit identifiers, since case is
insignificant in Bliss. This involved changing two modules and

Aft

introducing two new ones.
• A new tool, called s2ur, was written to replace m2ur. It creates a

unit table and Uses relation from the tables of information about the
Scribe program.

• Three other modules, affected by the above changes, were
recompiled.

f\7

This involved much less work than having it examine the actual Bliss code, which would
have meant incorporating a full Bliss parser into the grid implementation, including symbol
table. The objective was to check the interactions in Scribe, not to produce a full grid
implementation for Bliss, so the simplest possible approach was followed.
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An alternative approach would have been to change four modules and introduce no new

ones. That would have lead to the need for far greater recompilation.



The modified implementation was then used to check the actual interactions

in the Scribe code against the grid specification described earlier in this chapter.

The result was a report of 16 invalid interactions, all deemed by Reid to be

obsolete, and hence truly invalid [Reid 84]. The report is shown in Fig. 5.3.7; the

token numbers are all zero because source position within file was not

determined by the shell scripts used to process the Scribe program.

Checking the 5032 interactions in Scribe took 807 processor seconds on a

lightly loaded Vax 11/750. Of this, the core took 377 seconds to perform the

actual checks, for a rate of approximately 13 interactions per second. This rate

is the same as was measured in the case of the grid specifying the structure of

the grid implementation, even though Scribe is a considerably larger program.

5.3.8. Evaluation

Scribe is a large and complex system that has been in widespread use for a

number of years. Its author wrote it in a highly disciplined manner, paying

careful attention to information hiding and such issues as device-dependence and

system-dependence. This discipline is not specified except in comments, and is

largely unenforced, because the Bliss language system provides no adequate

mechanism for specifying and enforcing it.

The grid mechanism has proven successful at specifying the structure of

Scribe. It is able to document and enforce the design discipline. It is able to

specify a number of special structural features. The grid is of manageable size

and complexity, despite the size of the program; this issue is discussed in detail

in section 5.4. Information in the grid is well localised, so that only small chunks

need be examined in any particular context; some proposed changes in semantics

and qualifiers would improve this situation still further. Even the slow prototype

implementation is able to check interactions in the code against the specification

with acceptable efficiency.

69
Determined using the stub technique described in Section 5.1.
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Checking Uses

FILE dyio TOKEN 0
Invalid interaction: CLOSE Uses RELYECTOR

FILE Idyio TOKEN 0
Invalid interaction: CLOSE Uses RELVECTOR

FILE Command TOKEN 0
Invalid interaction: CMnewpage Uses PageBrk

FILE PAGE TOKEN 0
Invalid interaction: ForcePage Uses PageBrk

FILE DRIVER TOKEN 0
Invalid interaction: Main Uses PageBrk

FILE msgscan TOKEN 0
Invalid interaction: MSGSCAN Uses EFLOUT

FILE msgscan TOKEN 0
Invalid interaction: MSGSCAN Uses FLOUT

FILE OsiFlO TOKEN 0
Invalid interaction: OsiCldelete Uses STYLVEC

FILE OsiFlO TOKEN 0
Invalid interaction: OsiTrm Uses DevCapas

FILE OsiFlO TOKEN 0
Invalid interaction: OsiTrm Uses PaperWidth

FILE INPUT TOKEN 0
Invalid interaction: PopFile Uses OUTSWITCH

FILE INPUT TOKEN 0
Invalid interaction: PushChannel Uses OUTSWITCH

FILE INPUT TOKEN 0
Invalid interaction: PushString Uses OUTSWITCH

FILE INPUT TOKEN 0
Invalid interaction: ReadChr Uses OUTSWITCH

FILE WantFile TOKEN 0
Invalid interaction: TRYREAD Uses GETVECTOR

FILE WantFile TOKEN 0
Invalid interaction: TRYWRITE Uses GETVECTOR

Number of invalid interactions: 16

Figure 5-13: Report of Invalid Interactions
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The exposition of the structure of Scribe in terms of the grid specification

shows that the grid provides a suitable framework within which to describe the

structure of a large program. The diagrams were derived directly from the grid.

The sequence of the exposition was largely dictated by the grid. Each item in the

commentary explaining the function of a module or cluster could be attached to

the directory node representing that module or cluster. A grid specification with

such comments attached would contain all the information in the exposition

above, but in a concise, precise and machine-readable form. When examined

with a suitable browser, the grid specification should be as readable as the

exposition, with the added advantage that the reader would be able to move

around as desired, and examine or ignore detail as desired.

Scribe was written long before the grid mechanism was designed. Its author

paid careful attention to structure, but did not design Scribe to be either layered

or object-oriented, and did not think in terms of multiple views [Reid 84]. Yet

even in this case, the dual categorisation of units provided by the grid proved

valuable, and the grid successfully satisfied its objectives of specifying,

documenting, enforcing and representing program structure. When new

programs are written with the aid of the grid, by authors familiar with its

features and using the layered, object-oriented programming discipline it was

designed to support, it can be expected to perform even better.

5.4. Scaling

Structural information in a grid specification is highly localised: even if the

overall size of the specification is large, a reader will need to examine only a

small amount of information in any particular context. This is the major factor

determining the readability of large grid specifications, and ensures that the

specification of even a large program will be manageable. Nonetheless, the

overall size of the grid, and the extent to which it grows as program size

increases, are of interest. The three examples discussed in this chapter are of
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Measure of Size Database Grid Scribe

Lines of program code

Units

Objects

Actual interactions70

Lines of grid intermediate form

Directory nodes

Sibling interactions

Qualifiers

71

—

27

10

45

445

10

31

7

(833)

(20)

12000

168

67

845

2144 (4403)

50 (117)

97

46

29000

1154

1154

5032

5982 (18689)

104 (1258)

97

103

Table 5-5: Sizes of the Examples

Measure of Size

Lines of program code

Units

Objects

Actual interactions70

Lines of grid intermediate form

Directory nodes

Sibling interactions

71

Qualifiers72

Database

...

i

0.4

1.7

16.5 (30.9)

0.4 (0.7)

1.2

0.2

Grid

71.4

1

0.4

5.0

12.8 (26.2)

0.3 (0.7)

0.6

0.3

Scribe

25.1

1

1

4.4

5.2 (16.2)

0.1 (1.1)

0.1

0.1

Table 5-6: Per-unit Sizes of the Examples

70ImpUses interactions in the the database example, Uses in the others.

Adjusted to remove unit and object overhead, as described in the text. Unadjusted sizes
are shown in parentheses.

72,Excluding Hidden qualifiers.
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unadjusted grid lines
per unit

adjusted grid lines
per unit

Database Grid Scribe

Figure 5-14: Graph of Grid Lines per Unit

widely differing sizes, and hence provide some insight into the growth

characteristics of the grid. This section compares the sizes of the example

programs and the corresponding grid specifications, and draws conclusions about

scaling.

Table*5-5 gives some measures of the sizes of the example programs and their

grid specifications. Table 5-6 shows the same measures of size, but normalised by

unit. This table therefore gives all sizes relative to the number of units in the

program, and can be used to compare grid growth to program growth.

Comparison of the figures in Table 5-6 reveals that most measures of per-unit

grid size decrease as program size increases, in many cases dramatically. Fig.

5-14 shows this decrease graphically in the case of grid lines per unit. The grid

specifications thus grow considerably more slowly than the programs they

specify.

Portions of the grid are necessarily linear in program size:

• The matrix contains an entry for every unit.

• The object directory contains a leaf node for every object. Each such
node contains several lines of overhead, in addition to any
interactions or qualifiers that are present.



The matrix and the object overhead tend to dominate grid size as program size

increases, yet contain relatively little structural information: human readers will

spend almost all their time examining clusters, sibling interactions and qualifiers.

Adjusted size, obtained by removing this overhead, is therefore a superior

measure of grid complexity, of greater interest in analysing growth

characteristics. Adjusted sizes are shown in the tables, with actual sizes beside

them in parentheses.

The numbers of directory nodes (adjusted), sibling interactions and qualifiers

are the best measures of grid size, as they are independent of representation.

The number of lines in the grid intermediate form gives an exaggerated picture,

because that representation has extremely low information density: usually only

one item of information appears on a line, and many lines contain just

punctuation. It is nonetheless an attractive measure, because it is simple, it

encompasses all the others, and it is good for comparison purposes; it was used

in Fig. 5-14 for these reasons.

The good growth characteristics of the grid seem to be due primarily to two

facts. As the number of units increases:

• The number of interactions per unit tends to remain approximately
constant. It tends to depend on the size of individual units rather
than on the number of units in the system.

• A single sibling interaction or qualifier can specify an increasing
number of interactions. The number of unit-unit interactions
specified by a sibling interaction or qualifier depends on the number
of units subsidiary to the directory node to which it is attached. This
number increases dramatically for high-level nodes as units are added
to the program and levels are added to the directories.

Thus, as the number of units increases, the grid becomes more effective at

specifying large numbers of interactions concisely, yet it generally does not need

to cope with an increasing number of interactions per unit.

The three programs compared above are of widely differing nature, size and
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complexity, so they provide a good, though small, sample for the purposes of

testing growth characteristics. They indicate that the grid mechanism does

indeed scale well, and that total grid size grows slowly relative to program size.

This, combined with the localisation of information within a grid specification,

makes the grid a viable and attractive structuring mechanism for large

programs.
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Chapter 6

Directions for Further Research

Experience with the grid mechanism to date has revealed many interesting

directions for future research. Some of these are discussed in this chapter.

Suggestions on how to proceed, some untested ideas, are included.

6*1. Qualifiers

Qualifiers are intended to handle important special cases in a concise and

intuitive manner. As experience is gained with the use of the grid, unanticipated

cases and ideas for new or improved qualifiers are likely to arise. The semantic

definition of the grid in Section 3.4 is intended to facilitate expansion: it provides

a general framework within which many new qualifiers could be inserted with no

disruption to existing definitions. Some changes may have to be made to this

framework in certain cases, but even that can be done gracefully.

The following is a short list of qualifiers I am currently considering adding to

the grid. The precise semantics of these qualifiers have not yet been worked out:

• OtherDirectory. The view graph, in specifying interactions between
views, effectively specifies the internal structure of each object slice;
it assumes that all object slices have essentially the same internal
structure, which is true if the layered graph is regular. If the layered
graph is not regular, however, the structure of a particular object
slice may be markedly different from that specified by the view
graph. A good way to handle this case is to associate a different view
graph with that object slice, and to use it instead of the standard
view graph for all interactions whose sources and/or whose targets
are in that object slice. The analogous situation with "object" and
"view" exchanged is similar. The most general form of a qualifier to
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accomplish this is (OtherDirectory, rf), which can be placed at any
attachment point in the object (view) directory, and specifies that
directory d is to be used instead of the standard view (object)
directory in determining the validity of all interactions to which it
applies.

• Local. Closely related units are often allowed to use views of each
other that are unavailable to outsiders. This situation is covered by
the Same qualifier in the case where the units all fall in the same
object slice or view. The Local qualifier is an extension of the Same
qualifier to the case where they are in the same cluster. Any
interactions to which a Local qualifier applies are invalid unless the
source and target are * 'sufficiently close" to each other. There are
many ways to define "sufficiently close", for example: the source and
target must have the same parent, either in both directories, or in
the directory containing the qualifier, or in the directory not
containing the qualifier; one of their common ancestors must be
tagged as defining a "locality"; a number n is included in the
qualifier, and the paths from both the source and the target to their
lowest common ancestor must contain fewer than n nodes; etc. A
number of variants of this qualifier might be provided, making a
variety of options available. At present I tend to favour the tagging
scheme, as it is simple, clear and general. If a single tag is too
restrictive, multiple tags could be used to convey multiple levels of
locality. This meshes well with the qualifiers described next.

• Tag, SourceTagged, TargetTagged and BothTagged. These qualifiers
allow one to specify that certain interactions are valid only if they
occur between specified categories of units. Other qualifiers already
handle this situation if the categories correspond to clusters; these
qualifiers introduce additional classifications that are orthogonal to

73
clusters, and possibly to each other. The qualifier {Tag, x) tags a
node as belonging to category x, but does not directly apply to any
interactions. The qualifier (SourceTagged, x) specifies that all
interactions to which it applies are invalid, except those whose
sources are subsidiary to a node tagged x. TargetTagged and
BothTagged are similar.

• AlsoOther. This is related to AlsoHere, but specifies validity in the

Because of their ability to specify categories, these qualifiers also specify some
organisational details, unlike other qualifiers. It might be better to allow multiple clusterings
within a directory instead (i.e. allow directories to be directed acyclic graphs rather than trees),
so that clusters will remain the sole means of specifying categories. This issue is discussed
further in Section 6.2.



other directory instead of in the current directory. One use is to
allow object/view interactions such as those arising in Scribe (Section
5.3.5) to be specified in the object directory without affecting Hidden
qualifiers.

Of the qualifiers defined in Section 3.3.3, AlsoHere and Also are termed

positive because they directly specify interactions that are valid; all the other

qualifiers are termed negative, because they specify interactions that are not

valid. Many other positive qualifiers are possible, some of which lead to

significant abbreviations. For example:

• SliceReflexive. This qualifier specifies that each object slice or view
has a sibling interaction with itself. This is a common situation that
is currently specified by separate sibling interactions.

• Reflexive and ReflexivelfTagged. The qualifier (Reflexive) attached
to directory node n specifies that all interactions whose sources and
targets are both subsidiary to n are valid. It is thus an abbreviation
for the qualifier (Also, n, n). The qualifier (ReflexivelfTagged, x)
attached to directory node n is equivalent to attaching a Reflexive
qualifier to all nodes tagged x that are subsidiary to n. This allows a
single qualifier to be used to specify that a whole category of clusters,
such as those representing modules in the Scribe example (Section
5.3.3.4), are reflexive. "Here" versions, specifying validity only in
the current directory, are analogous.

• Implies. This qualifier specifies that one kind of interaction implies
another (i.e. that one relation is a subset of another). A common
case in many languages is that DefUses implies ItnpUses) this
qualifier would eliminate the need to specify all DefUses interactions
separately as ImpUses interactions as well.

. The primary difficulty with positive qualifiers such as these is determining

what other qualifiers they should override, and when they themselves should be

overridden: the first applicable qualifier should override subsequent positive

qualifiers in some cases, but apparently not in all (consider the Implies qualifier,

for example). Positive qualifiers are also responsible for allowing one directory to

override another, and great care has to be taken when designing or using them

to do this only when appropriate. In short, the semantic framework of the grid

as defined in Section 3.4 is geared towards negative qualifiers, and further
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research is required to determine how best to integrate positive qualifiers into

this framework.

To aid in experimentation with new qualifiers, it would be valuable to define

a qualifier kernel language that would allow new qualifiers to be constructed

from appropriate primitives. Such primitives might include:

• Sets of units and interactions.

• The source and target units and slices.

• The lowest common ancestor, source and target paths, and related
concepts.

• The active interaction list and specifier.

• All tags attached to nodes on the source and target paths.

• The current directory and the other directory.

• A validity pair specifying validity according to the two directories.

• Control flow primitives, such as conditionals, guards and exits.

For example, the qualifier (Except, Sv S^) could be defined as something like

if source-unit £ S^ A target-unit £ 52 then
validity = (NotValid, NotValid)
exit

end if

The interesting research issue is choosing and defining the primitives. Users of

the grid should probably not be allowed direct access to these primitives, as they

will be powerful and dangerous. Rather, the primitives would be used by a grid

administrator to define a set of qualifiers, and those qualifiers would be

available for general use.

A final issue has to do with the abstract syntax of individual qualifiers. As

described in Section 3.3.3, many qualifiers involve pairs of unit sets, used to

specify sets of interactions. For example, {Only, Sv 52) specifies that all

interactions not in the set



are invalid. Since not all sets of interactions can be specified by means of a single

pair of unit sets, sequences of qualifiers might be needed to specify a single

restriction. Such sequences are often unattractive and non-intuitive, involving

mixtures of AlsoHere, Also and Only qualifiers, and sometimes even dummy

qualifiers. This situation was described with reference to the Scribe example in

Section 5.3.5. The solution is to allow sequences of pairs of unit sets within single

qualifiers. This is an almost trivial extension.

6*2. Semantics

A variety of semantic issues remain to be explored. Those discussed here

involve support for approximation, variations and additions to the semantic

framework, structural changes to the matrix and directories, and issues to do

with the combination of grids.

There is currently no direct support for the technique of approximation in

the grid definition: approximation can be achieved only by manually omitting

detail from a grid specification. A better approach would be to allow a fully

detailed specification to be used in all situations, and to provide a parameter to

vatidQKU) specifying what detail is to be omitted from consideration in the

current context. The manner of identifying details to be omitted requires further

investigation. One approach is to allow qualifiers and sibling interactions to be

named and referred to individually by name; another is to allow them to be

tagged according to purpose, level of detail, or other criteria, and be referred to

collectively by category. Some combination of these approaches is probably best.

The semantic definition of the grid provides a semantic framework involving

four components:

• Active interaction lists.

• Active interaction specifiers.
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• Qualifier sequences.

• Exports.

As mentioned in Section 3.4, many variations are possible within this framework.

For example, the issue arises of whether always to examine both directories, or

to examine one first and then examine the other only if the result returned by

the first is ValidHere. Always examining both is more general, but less efficient.

If one is to be examined first, which should it be?

The adequacy of the framework also needs examination; in particular, the

handling of exports could be improved. All the global qualifiers in the active

qualifier sequence of an interaction triple are determined by the source unit of

the triple alone. This means that interactions can be grouped by source for the

purposes of specifying global qualifiers, but not by target, with the result that

import-style specifications are heavily favoured. The sole exception is the

"Hidden" qualifier, which is handled separately from the active qualifier

sequence. A more elegant and general approach would be to have separate active

source and active target qualifier sequences; many semantic details remain to be

worked out.

Issues to do with the structure of the matrix and directories arise primarily

from the desire to share units, nodes or positions in the matrix. There are some

situations in which it is convenient to allow the same unit to appear at more

than one position in the matrix; the most common example is when several of

the views of an object are in fact identical. There are also some situations in

which it is convenient to allow multiple units to occupy a single position in the

matrix; the most common example is when one wishes to treat definitions and

implementations as full-fledged units, and to allow a definition and its

implementations to appear together in the matrix. These changes can probably

be incorporated into the grid mechanism with few changes to the semantics,

though they might have a serious effect on the computational complexity of

validity checking.
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More serious in its impact is the possibility of allowing a single directory node

to appear in more than one cluster. This is appealing in some situations, because

it allows nodes to be classified in many different ways within a single directory,

and because it allows low-level nodes to be shared. The difficulty with this

extension is that it violates the tree structure of the directories, on which the

semantics of the grid are so heavily based: an interaction triple no longer has a

unique lowest common ancestor, sibling ancestor pair or active qualifier

sequence. This extension may therefore result in the entire character of the

directories being changed.

A less dramatic and perhaps more useful change to the structure of the

directories is to allow object slices or views to be associated with internal nodes

as well as with leaf nodes. This is particularly useful in cases where a cluster is

conceptually associated with a high-level entity, and encapsulates all lower-level

entities that are used to implement it. The primary difficulty introduced by this

change is that such a cluster, in its capacity as the representative of a slice, can

have sibling interactions with its children, in addition to the standard sibling

interactions it has in its capacity as a cluster. The effects of this need to be

investigated, and a suitable means of specifying it needs to be found. It is worth

noting that this change can be circumvented by adopting the convention that a

leaf node called "self" actually represents its parent, and is associated with the

slice that corresponds conceptually to its parent. This convention would be in

the abstract syntax only; a concrete syntax could associate slices with internal

nodes directly.

The structural issues discussed above are of particular importance in relation

to two problems: the handling of definitions and implementations, and the

specification of the structure of nested programs. Throughout this thesis, a single

definition and all its implementations were considered to be a single unit. The

definition subunit was distinguished from the implementation subunits when

necessary by the use of two separate relations, DefUses and ImpUses. This is a
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convenient approach in many ways, but I am not convinced it is the best one.

One disadvantage is that different implementations of the same definition cannot

be distinguished: there is no way to specify that implementation a interacts with

x, but implementation b does not. The obvious alternative is to treat each

definition and implementation as a separate unit, but then multiple units can

occupy a single position in the matrix, which leads to naming and other

difficulties.

Many programs whose structure is to be specified do not consist of a flat

collection of units, because of nesting or some form of modularisation within the

program. A Modula-2 program, for example, is a flat collection of top-level

modules, and if one treats top-level modules as atomic, no difficulties arise. This

approach was followed in all examples in the thesis, and in the prototype

implementation. If one wishes to use the grid mechanism to specify finer-grained

structure, however, for example by treating declarations occurring within

modules as atomic, one still has to deal with the modules themselves. The

obvious approach is to relate modules to clusters, and allow them to be

represented by directory nodes. The result is that units are no longer the only

components of the grid that correspond directly to entities in the program; the

implications of this need to be explored. Even if finer-grained structure is

specified in a grid, it may sometimes be convenient to treat modules as atomic.

This leads to the notion of an atomic cluster. An interesting possibility is to

allow certain clusters to be atomic in some views, but not in others.

The issue of combining grids raises many interesting questions. Throughout

this thesis, the assumption has been made that a single grid specifies the

structure of a whole program or system. (If multiple grids are used to specify the

structure of a program, they do so from different points of view; each grid still

describes the structure of the whole program.) Since the grid supports top-down

74
I am indebted to Jim Horning for this excellent suggestion.
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development and hierarchical decomposition, this is not a serious limitation.

However, many situations arise in which a system is not constructed from

scratch, but rather is built from existing subsystems. If the structure of the

subsystems is already specified by means of grids, it would be desirable to

combine these grids to form one describing the entire system. Three general

approaches come to mind: nesting, concatenation and merging. Nesting would

treat one grid as an atomic unit within another. Concatenation would combine a

collection of disjoint grids with different objects and views into a single grid.

Merging would use some specified correspondence between slices to merge a

collection of related grids into a single grid. The details remain to be worked

out, but I suspect that merging is the most promising approach. An interesting

related issue is that of using the grid mechanism to specify the structure of

program or subroutine libraries.

6.3. Implementation

The prototype implementation of the grid mechanism is rudimentary and

inefficient. There are many interesting issues associated with extending it to a

full, useful implementation. The following is an incomplete list of possibilities:

• Add a parser for grids, so that users can write grid specifications in a
convenient syntax. A graphical user interface would be better still.

• Extend the implementation to handle some of the semantic
extensions discussed previously, such as the qualifier kernel language
and support for approximation.

• Replace the simple-minded implementations of many of the data
structures in the prototype implementation with full, efficient
implementations.

• Determine sources of inefficiency and attempt to remove them. This
issue is discussed further below.

• Add additional tools, such as a browser, a library manager, a cross-
reference generator and a program, along the lines of make [Feldman
79], for manipulating programs based on information in the grid.

• Extend the implementation to allow finer granularity by treating
individual definitions or declarations as atomic, rather than modules.



• Extend the implementation to handle additional programming
languages.

The prototype implementation contains hooks to facilitate all the above

extensions. The ultimate goal is to construct a complete, integrated, graphical

programming environment based on the grid, including structure-based editors, a

version control system, project management aids, documentation aids and the

like.

There is much scope for improving the efficiency of the prototype

implementation. One serious cause of inefficiency appears to be the reading and

writing of the clumsy ASCII intermediate forms using flexible but inefficient

high-level input-output routines. Efficiency could be improved somewhat by

optimising the routines, and greatly by using binary intermediate forms instead

(the ASCII forms should always be available, however, to facilitate debugging

and portability). Careful profiling is necessary to determine other bottlenecks.

Within the grid core, the techniques of caching and pre-computation should

prove useful. It is common to determine the validity of many interactions of one

kind before proceeding to consider interactions of another kind; caching could

make information about the current kind of interaction readily accessible. Much

of the work done by the core involves following paths in the directories in search

of global qualifiers; qualifier sequences could be threaded to eliminate such

searching, with threads constructed in the background. Many space/time

tradeoffs are also possible, and the directories could be optimised for certain

common relation kinds, such as DefUses and ImpUses.

6*4. Object-Oriented Programming with Multiple Views

The primary advantage of the grid mechanism is that it supports a style of

programming involving multiple views of objects. There are many situations in

which an object is used in different ways by different clients; the examples

discussed in this thesis provide several instances. A natural and intuitive way of

specifying such multiple usages is by means of multiple views. Identification and

separation of views have a number of important advantages:
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• Documentation. Each view documents a particular usage, showing at
a glance how an object appears to a specific client or group of clients.

• Information hiding. The view of an object used by a client should
contain just those details actually needed by the client; all other
details are hidden. This form of information hiding can have vital
security implications in situations where multiple clients are allowed
to modify a shared structure, but in different ways.

• Minimisation of recompilation. Interface changes commonly result
in massive recompilation. When multiple views are used, however,
one view of an object can often be changed without affecting any
other views or their clients, thereby limiting recompilation to units
truly affected.

Multiple views of objects also arise from levels of abstraction: each view of an

object describes that object at a particular level of abstraction. Splitting a sytem

into abstraction levels is a valuable design and implementation technique that is

commonly used in many areas, including digital circuit design and

communications protocols.

Multiple views of objects are not commonly used in programming today. The

chief reason is probably that support for them is inadequate in three areas:

• Structure specification. The use of multiple views in a program
introduces an extra level of complexity from the point of view of
structure specification. In addition to specifying relationships
between objects, it is now also necessary to specify relationships
between views, and to specify which view of an object is the
appropriate one in each context.

• Programming environments. Distinct views of an object are often
similar, and sometimes even identical. In the absence of assistance
from the programming environment, programmers would have to
perform a great deal of source-code duplication to create multiple
views of objects, and would then have the problem of maintaining
multiple similar copies. Programming environment support for these
tasks, along the lines of a version control or configuration
management system, would significantly reduce these difficulties.

• Programming languages. Few programming languages cater directly
for the specification of multiple views of a single object, and though
the effect can usually be achieved with sufficient "cleverness", the
result is often clumsy. Programming language constructs specifically
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designed to allow elegant specification of multiple views are needed.
The ability to define one view in terms of another would be
particularly valuable.

The grid mechanism was designed to solve the problem of structure

specification; the other problems remain to be explored. My expectation is that

even simple solutions to these problems will be sufficient to eliminate most

duplication and clumsiness, and that programming with multiple views will then

become viable and popular.

6.5. Further Generalisation

All work on the grid mechanism to date has dealt with just two partitions of

units, always interpreted to mean categorisation by "object" and categorisation

by "view". Extension of the grid to handle more than two partitions would be

trivial, and might be useful in a number of important situations. For example,

introduction of a third directory, called the version directory} would allow the

grid to specify multiple versions of layered, object-oriented programs. Changing

the interpretation of the partitions would require no semantic changes or

extensions to the grid at all. It would be interesting to explore other partitions of

the units making up computer programs. It would also be interesting to examine

the application of the grid to collections of units other than programs, and to

fields other than computer science.
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Chapter 7

Conclusions

This thesis motivated and described a new program structuring mechanism,

called the grid. The grid mechanism was designed to meet the following

requirements, discussed in detail in Section 1.3:

• Specification. It must facilitate the explicit specification of program
structure by human beings involved in the development of programs.

• Documentation. The specification must be clear and readable, and
act as an aid to readers in understanding the program.

• Enforcement. The specified structure must be enforced
automatically, to ensure both that the specification is accurate and
that unintended interactions are not introduced into the program.

• Representation. The specified structure must be represented in a
form suitable for use by software that is concerned with program
structure, such as a browser, editor, compiler or interpreter.

• Ability to handle layered, object-oriented programs. The mechanism
must be able to handle layered, object-oriented programs well,
explicitly identifying the layers and objects and specifying their
interactions.

• Scale. The mechanism must be able to handle large programs, and
structure specifications must not grow unmanageably large and
complex as program size increases.

An evaluation of the grid mechanism with respect to these requirements follows.

The grid certainly satisfies the requirements of specification, enforcement and

representation. The abstract syntax of the grid, defined in Section 3.3, is a

representation of structure suitable for internal use by computers. It presents a

uniform interface to any software that needs access to structural information.

The semantics of the grid, defined in Section 3.4, ensure that the specified
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structure can be enforced. This has been demonstrated by the prototype

implementation. Furthermore, the descriptions of the processes of factorisation,

clustering and deviation in Chapter 2 showed that a grid can specify arbitrary

layered structures, though is is best suited to specifying layered structures that

are nearly regular and uniform.

The two-dimensional nature of the grid and the fact that it is based on a

layered graph model of program structure make it particularly well suited to

handling layered, object-oriented programs. The various examples discussed in

this thesis demonstrate its ability to do so. The following factors are of

particular importance:

• The matrix identifies the objects and views explicitly, and specifies
the object and view associated with each unit.

• The separation of the directories allows one to concentrate on objects
independently of views, or views independently of objects.

• The sibling interactions in the object directory specify relationships
between objects independently of views, and thus serve to highlight
similarities between views. Qualifiers, by specifying exceptions and
special cases, serve to highlight differences between views. An
analogous statement is true of the view directory.

The requirements that need further consideration are those of documentation

and scale. The grid mechanism certainly documents structure, and can handle

programs of arbitrary size; the question is whether it is able to document the

structure of large programs in a clear and readable manner. Many of its features

were designed specifically with such readability in mind:

• Different aspects of structure are specified separately:

o The entire grid is separate from the program.

o The dual categorisation of units according to object and view is
specified by the matrix.

o The relationships between objects are specified by the object
directory.

o The relationships between views are specified by the view
directory.



o Clustering of objects and views is specified by the hierarchical
structure of the directories.

o Unexceptional interactions are specified by sibling interactions.

o Restrictions and exceptional interactions are specified by
qualifiers.

Because of this separation, a reader can concentrate on a single
aspect without becoming embroiled in the detail of others.

• Structural information is carefully localised, so that only relevant
information is encountered in a particular context. The best
illustration of this is the fact that a qualifier is attached to the node,
interaction list or interaction specifier to which it applies, so that
even if a complete grid contains a multitude of qualifiers, only a
modest and manageable number will be encountered in any
particular context.

• Single qualifiers characterise important restrictions, exceptions and
special cases, thereby specifying a great deal of information in a
concise, precise and intuitive manner. As experience is gained with
the grid and more qualifiers are introduced, the grid is likely to
become increasingly effective at handling important structures that
occur in practice.

• The hierarchical nature of the directories supports the techniques of
hierarchical classification and hierarchical decomposition that are so
important to human understanding.

• The techniques of factorisation and clustering allow the grid
mechanism to specify arbitrary structures in terms of regular,
uniform structures. This has two primary advantages:

o It identifies structural similarities between different objects and
different layers.

o The regular, uniform structure can be treated as a first
approximation of the actual structure. This is valuable because
regular, uniform structures are particularly easy to apprehend:
relationships between objects are independent of view,
relationships between views are independent of object, and all
members of a cluster behave in identical fashion relative to
other clusters.

• The technique of deviation allows the grid mechanism to specify

My intuition is that well-structured programs will actually tend to have a modest total
number of qualifiers. This is confirmed by the examples described in Chapter 5.
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complex structures in terms of simpler or more familiar structures,
with differences clearly identified. This is an especially powerful
documentation aid.

• The technique of approximation, by allowing a reader to omit
qualifiers from consideration in certain circumstances, further
restricts the detail that need be examined in a particular context. In
combination with the hierarchical structure of the directories, it
allows a reader to proceed from a simple, high-level overview to a
detailed, accurate specification by selectively considering more detail
as needed.

• The nature of the grid is such that a grid specification can be
rendered directly in diagrammatic form; it is, in fact, true to think of
the abstract syntax of the grid as a machine-readable encoding of the

diagrams. Diagrams are a particularly effective means of
documentation for human beings.

The large examples described in Chapter 5 demonstrate that the above

features of the grid do indeed lead to readable documentation of large programs.

They also provide evidence that the size and complexity of grid specifications

grow much more slowly than the size and complexity of the programs they

specify, as discussed in Section 5.4. The examples were described in grid terms,

using diagrams derived directly from grid specifications; this confirms that the

grid provides a suitable framework for describing and explaining the structure of

large programs.

Experience to date has shown, therefore, that the grid successfully meets its

requirements. In addition, it has the following important properties:

• Multiple grids can be used to specify the structure of a single
program from multiple points of view. This is analogous to multiple
indexes into a single database.

• Multiple relationships between program units can be specified, either
within a single grid, or by means of separate grids.

• The grid can handle multiple, alternative implementations of a single

7fi

This is the approach I took when designing the grid; I worked solely with diagrams for more
than a year before designing the abstract syntax.



specification. Such alternative implementations do not occur
frequently, but are useful in some important special cases.

• The grid can be specified as an abstract data type, which then serves
as a uniform interface to all software associated with it, such as
editors, browsers and compilers.

• The grid is completely programming language independent, and can
even be used to specify the structure of entities other than programs.
A potential problem with language-independent mechanisms is that
the structural information they specify might be inaccessible to the
language system (compiler, debugger, etc.). This problem is solved in
the case of the grid mechanism by providing an interface through
which communication with a language system can take place.

• The syntax of the grid can be tailored to that of any language,
allowing it to be integrated gracefully with any existing programming
language.

• A grid is textually separate from the program whose structure it
specifies. This has several advantages:

o The structure specification can be perused separately from the
program, and be used as an index into the program.

o Structural information is concentrated in one place, rather than
being scattered throughout the program.

• A grid describing program structure can be wholly or partially
constructed before the program is written, and then used to control
program development.

• A grid can be constructed from an existing program, either
completely automatically or with guidance from the user.

• The grid provides a convenient, structured repository for information
about a program, such as documentation. This facility can also be
used by source management, project management and version
control systems, and the like.

These properties enhance the usefulness of the grid, and its suitability as the

basis of a comprehensive programming environment.

The usefulness of the grid mechanism in practice depends not only on its

effectiveness, but also on the extent to which layered structures are actually

used. Layered structures occur whenever levels of abstraction are used, as in the

Fable language for which the grid mechanism was designed. Perhaps an even
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more fruitful source of layered programs, however, is the style of programming

in which each user of an object has its own view of that object. This style of

programming is not in widespread use, possibly because it is not viable without

sophisticated programming environment support. The grid mechanism is a first

step towards providing such support.

The grid mechanism makes two primary contributions to the field of

structure specification: it is the first structuring mechanism that can specify,

represent, document and enforce layered structures, and it is the first structuring

mechanism to make use of the techniques of deviation and approximation. How

significant these contributions are remains to be seen.
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Appendix A

The Shared Database Example

This appendix contains a selection of computer input used and output

produced by the prototype implementation when processing the shared database

example. Representative extracts of the intermediate forms of all structures are

included; the full text is available from me on request. The appendix contains

the following material:

LI The Modula-2 program.

1.2 The DefUses relation in intermediate form.

1.3 The ImpUses relation in intermediate form.

1.4 Listings of DefUses and ImpUses produced by rlist, rlistl
and rlist2.

1.5 The unit table in intermediate form.

1.6 The grid in intermediate form.

1.7 The comparison report produced by gmcom.



A.l . The Program

The skeleton Modula-2 program for the shared database example is:

DEFINITION MODULE A;
END A.

IMPLEMENTATION MODULE A;
IMPORT DBA;
IMPORT VA;
IMPORT ALA;
IMPORT LA;
IMPORT PA;
IMPORT SA;

END A.

DEFINITION MODULE B;
END B.

IMPLEMENTATION MODULE B;
IMPORT DBB;
IMPORT VB;
IMPORT ALB;
IMPORT LB;
IMPORT PB;
IMPORT SB;

END B.

DEFINITION MODULE DB;
IMPORT VDB;
IMPORT SDB;

END DB.

IMPLEMENTATION MODULE DB;
IMPORT H;
IMPORT VDB;
IMPORT ALDB;
IMPORT SDB;

END DB.

DEFINITION MODULE DBA;
IMPORT VA;
IMPORT SA;

END DBA.

IMPLEMENTATION MODULE DBA;
IMPORT DB;
IMPORT VA;
IMPORT SA;

END DBA.

DEFINITION MODULE DBB;
IMPORT VB;
IMPORT SB;

END DBB.

IMPLEMENTATION MODULE DBB;
IMPORT DB;
IMPORT VB;
IMPORT SB;

END DBB.

DEFINITION MODULE H;
END H.

IMPLEMENTATION MODULE H;
IMPORT R;

END H.

DEFINITION MODULE R;
END R.

IMPLEMENTATION MODULE R;
END R.

DEFINITION MODULE V;
IMPORT AL;
IMPORT L;
IMPORT P;
IMPORT S;

END V.

IMPLEMENTATION MODULE V;
IMPORT AL;
IMPORT L;
IMPORT P;
IMPORT S;

END V.

DEFINITION MODULE VA;
IMPORT ALA;
IMPORT LA;
IMPORT PA;
IMPORT SA;

END VA.

IMPLEMENTATION MODULE VA;
IMPORT V;

END VA.

DEFINITION MODULE VB;
IMPORT ALB;
IMPORT LB;
IMPORT PB;
IMPORT SB;

END VB.

IMPLEMENTATION MODULE VB;
IMPORT V;

END VB.



DEFINITION MODULE VDB;
IMPORT ALDB;
IMPORT LDB;
IMPORT PDB;
IMPORT SDB;

END VDB.

IMPLEMENTATION MODULE VDB;
IMPORT V;

END VDB.

DEFINITION MODULE AL;
END AL.

IMPLEMENTATION MODULE AL;
IMPORT L;
IMPORT P;

END AL.
DEFINITION MODULE ALA;
END ALA.

IMPLEMENTATION MODULE ALA;
IMPORT AL;

END ALA.

DEFINITION MODULE ALB;
END ALB.

IMPLEMENTATION MODULE ALB;
IMPORT AL;

END ALB.

DEFINITION MODULE ALDB;
END ALDB.

IMPLEMENTATION MODULE ALDB;
IMPORT AL;

END ALDB.

DEFINITION MODULE L;
END L.

IMPLEMENTATION MODULE L;
IMPORT P;

END L.

DEFINITION MODULE LA;
END LA.

IMPLEMENTATION MODULE LA;
IMPORT L;

END LA.

DEFINITION MODULE LB;
END LB.

IMPLEMENTATION MODULE LB;
IMPORT L;

END LB.

DEFINITION MODULE LDB;
END LDB.

IMPLEMENTATION MODULE LDB;
IMPORT L;

END LDB.

DEFINITION MODULE P;
END P.

IMPLEMENTATION MODULE P;
END P.

DEFINITION MODULE PA;
END PA.

IMPLEMENTATION MODULE PA;
IMPORT P;

END PA.

DEFINITION MODULE PB;
END PB.

IMPLEMENTATION MODULE PB;
IMPORT P;

END PB.

DEFINITION MODULE PDB;
END PDB.

IMPLEMENTATION MODULE PDB;
IMPORT P;

END PDB.

DEFINITION MODULE S;
END S.

IMPLEMENTATION MODULE S;
END S.

DEFINITION MODULE SA;
END SA.

IMPLEMENTATION MODULE SA;
IMPORT S;

END SA.

DEFINITION MODULE SB;
END SB.

IMPLEMENTATION MODULE SB;
IMPORT S;

END SB.

DEFINITION MODULE SDB;
END SDB.

IMPLEMENTATION MODULE SDB;
IMPORT S;

END SDB.
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A.2. The Relation "DefUses" in Intermediate Form

The intermediate form of the relation DefUaes, produced from the program

by m2ur, is:

Versions [
Identifier
Relation
UnitTable
UnitName
Programlnfo
SourcePosition

Relation [
id
uTab

id

0
2
1
0
0
1

DefUses;
UnitTableRef [

Units;
directory utab

interactions {
interaction [

source
destination
position

6;
11;
SourcePosition [

fileName ./DB.def;
tokenNumber 6

interaction [
source 6;
destination 27;
position SourcePosition [

fileName ./DB.def;
tokenNumber 9

1
interaction [

source 4;
destination 9;
position SourcePosition [

fileName ./DBA.def;
tokenNumber 6

interaction [
source 4;
destination 25;
position SourcePosition [
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fileName ./DBA.def;
tokenNumber 9

interaction [
source 5;
destination 10;
position SourcePosition [

fileName ./DBB.def;
tokenNumber 6

interaction [
source 5;
destination 26;
position SourcePosition [

fileName ./DBB.def;
tokenNumber 9

104 lines omitted

interaction [
source 11;
destination 19;
position SourcePosition [

fileName ./VDB.def;
tokenNumber 9

interaction [
source 11;
destination 23;
position SourcePosition [

fileName ./VDB.def;
tokenNumber 12
3

3
interaction [

source 11;
destination 27;
position SourcePosition [

fileName ./VDB.def;
tokenNumber 15

3
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A.3. The Relation "ImpUses" in Intermediate Form

The intermediate form of the relation ImpUses, produced from the program

by m2ur, is:

Versions [
Identifier
Relation
UnitTable
UnitName
Programlnfo
SourcePosition

Relation [
id
uTab

id

0
2
1
0
0
1

ImpUses;
UnitTableRef [

Units;
directory utab

interactions {
interaction [

source 2;
destination 4;
position SourcePosition [

fileName ./A.mod;
tokenNumber 6

interaction [
source 2;
destination 9;
position SourcePosition [

fileName ./A.mod;
tokenNumber 9

interaction [
source 2;
destination 13;
position SourcePosition [

fileName ./A.mod;
tokenNumber 12

interaction [
source 2;
destination 17;
position SourcePosition [
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fileName ./A.mod;
tokenNumber 15

interaction [
source 2;
destination 21;
position SourcePosition [

fileName ./A.mod;
tokenNumber 18

interaction [
source 2;
destination 25;
position SourcePosition [

fileName ./A.mod;
tokenNumber 21

296 lines omitted

interaction [
source 10;
destination 12;
position SourcePosition [

fileName ./VB.mod;
tokenNumber 6

interaction [
source 11;
destination 12;
position SourcePosition [

fileName ./VDB.mod;
tokenNumber 6

]
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A.4- Listings of Relations

The listing of DefUaes produced by rlist is shown below. The numbers

parentheses are the atom names of the units, listed as a debugging aid.

Listing

(DB
(DB
(DBA
(DBA
(DBB
(DBB
(V
(V
(V
(V
(VA
(VA
(VA
(VA
(VB
(VB
(VB
(VB
(VDB
(VDB
(VDB
(VDB

DefUses

-> VDB
-> SDB
-> VA
-> SA
-> VB
-> SB
-> AL
-> L
-> P
-> S
-> ALA
-> LA
-> PA
-> SA
-> ALB
-> LB
-> PB
-> SB
-> ALDB
-> LDB
-> PDB
-> SDB

) = (6 -> 11)
) = (6 -> 27)
) = (4 -> 9)
) = (4 -> 25)
) = (5 -> 10)
) = (5 -> 26)
) = (12 -> 16)
) = (12 -> 20)
) = (12 -> 24)
) = (12 -> 28)
) = (9 -> 13)
) = (9 -> 17)
) = (9 -> 21)
) = (9 -> 25)
) = (10 -> 14)
) = (10 -> 18)
) = (10 -> 22)
) = (10 -> 26)
) = (11 -> 15)
) = (11 -> 19)
) = (11 -> 23)
) = (11 -> 27)

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

./DB.def

./DB.def

./DBA.def

./DBA.def

./DBB.def

./DBB.def

./V.def

./V.def

./V.def

./V.def

./VA.def

./VA.def

./VA.def

./VA.def

./VB.def

./VB.def

./VB.def

./VB.def

./VDB.def

./VDB.def

./VDB.def

./VDB.def

TOKEN 6
TOKEN 9
TOKEN 6
TOKEN 9
TOKEN 6
TOKEN 9

TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15

The listing of DefUses produced by rlistl is:

DBA:

DBB:

DB:

VA:

VB:

VDB:

V:

VA SA

VB SB

VDB SDB

ALA LA PA SA

ALB LB PB SB

ALDB LDB PDB SDB

AL L P S
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The inverted listing of DejUses produced by rlist2 is:

VA:

VB:

VDB;

ALA:

ALB:

ALDB:

AL:

LA:

LB:

LDB:

L:

PA:

PB:

PDB:

P:

SA:

SB:

SDB:

S:

DBA

DBB

DB

YA

VB

VDB

V

VA

VB

VDB

V

VA

VB

VDB

V

DBA VA

DBB VB

DB VDB

V
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The listing of ImpUses produced by rlist is:

Listing

(A
(A
(A
(A
(A
(A
(AL
CAL
(ALA
(ALB
(ALDB
(B
(B
(B
(B
(B
(B
(DB
(DB
(DB
(DB
(DBA
(DBA
(DBA
(DBB
(DBB
(DBB
(H
(L
(LA
(LB
(LDB
(PA
(PB
(PDB
(SA
(SB
(SDB
(V
(V
(V
(V
(VA
(VB
(VDB

ImpUses

-> DBA
-> VA
-> ALA
-> LA
-> PA
-> SA
-> L
-> P
-> AL
-> AL
-> AL
-> DBB
-> VB
-> ALB
-> LB
-> PB
-> SB
-> H
-> VDB
-> ALDB
-> SDB
-> DB
-> VA
-> SA
-> DB
-> VB
-> SB
-> R
-> P
-> L
-> L
-> L
-> P
-> P
-> P
-> S
-> S
-> S
-> AL
-> L
-> P
-> S
-> V
-> V
-> V

) = (2 ->
) = (2 ->
) = (2 ->
) = (2 ->
) = (2 ->
) = (2 ->
) = (16 ->
) = (16 ->
) = (13 ->
) = (14 ->
) = (15 ->
) = (3 ->
) = (3 ->
) = (3 ->
) = (3 ->
) = (3 ->
) = (3 ->
) = (6 ->
) = (6 ->
) = (6 ->
) = (6 ->
) = (4 ->
) = (4 ->
) = (4 ->
) = (5 ->
) = (5 ->
) = (5 ->
) = (7 ->
) = (20 ->
) = (17 ->
) = (18 ->
) = (19 ->
) = (21 ->
) = (22 ->
) = (23 ->
) = (25 ->
) = (26 ->
) = (27 ->
) = (12 ->
) = (12 ->
) = (12 ->
) = (12 ->
) = (0 ->
) = (10 ->
) = (11 ->

4)
9)
13)
17)
21)
25)
20)
24)
16)
16)
16)
5)
10)
14)
18)
22)
26)
7)
11)
15)
27)
6)
9)
25)
6)
10)
26)
8)
24)
20)
20)
20)
24)
24)
24)
28)
28)
28)
16)
20)
24)
28)
12)
12)
12)

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

./A.mod

./A.mod

./A.mod

./A.mod

./A.mod

./A.mod

./AL.mod

./AL.mod

./ALA.mod

./ALB.mod

./ALDB.mod

./B.mod

./B.mod

./B.mod

./B.mod

./B.mod

./B.mod

./DB.mod

./DB.mod

./DB.mod

./DB.mod

./DBA.mod

./DBA.mod

./DBA.mod

./DBB.mod

./DBB.mod

./DBB.mod

./H.mod

./L.mod

./LA.mod

./LB.mod

./LDB.mod

./PA.mod

./PB.mod

./PDB.mod

./SA.mod

./SB.mod

./SDB.mod

./V.mod

./V.mod

./V.mod

./V.mod

./VA.mod

./VB.mod

./VDB.mod

TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 18
TOKEN 21
TOKEN 6
TOKEN 9
TOKEN 6
TOKEN 6
TOKEN 6

TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 18
TOKEN 21
TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 6
TOKEN 9
TOKEN 12

TOKEN 6
TOKEN 6
TOKEN 6
TOKEN 6
TOKEN 6

TOKEN 6
TOKEN 6
TOKEN 6

TOKEN 6
TOKEN 6
TOKEN 6

TOKEN 6
TOKEN 9
TOKEN 12
TOKEN 15
TOKEN 6
TOKEN 6
TOKEN 6



The listing of ImpUses produced by rlistl is:

A:

B:

DBA:

DBB:

DB:

H:

VA:

YB:

VDB:

V:

ALA:

ALB:

ALDB:

AL:

LA:

LB:

LDB:

L:

PA:

PB:

PDB:

SA:

SB:

SDB:

DBA VA ALA LA PA SA

DBB VB ALB LB PB SB

DB VA SA

DB VB SB

H VDB ALDB SDB

R

V

V

V

AL L P S

AL

AL

AL

L P

L

L

L

P

P

P

P

S

S

S
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The inverted listing of ImpUses produced by rlist2 is:

DBA:

DBB:

DB:

H:

R:

VA:

VB:

VDB:

V:

ALA:

ALB:

ALDB:

AL:

LA:

LB:

L:

PA:

PB:

P:

SA:

SB:

SDB:

S:

A

B

DBA DBB

DB

H

A DBA

B DBB

DB

VA VB VDB

A

B

DB

V ALA ALB ALDB

A

B

V AL LA LB LDB

A

B

V AL L PA PB PDB

A DBA

B DBB

DB

V SA SB SDB



A-5. The Unit Table in Intermediate Form

The intermediate form of the unit table corresponding to the shared database

program, produced from the program by m2ur1 is shown below. An old version

of the intermediate form, in which some fields are not identified by name, is still

used for unit tables. The number "28" appearing just after the version

information is the last atom name used; atom names are just small positive

integers. Each line of four unnamed fields, together with the "Programlnfo"

after it, corresponds to a single unit. The first field is the unit identifier, the

second is the atom name, and the other two are links used within the table. The

unit "top" is a dummy unit that serves as the root of the table.

Versions [
Identifier 0
Relation 2
UnitTable 1
UnitName 0
Programlnfo 0
SourcePosition 1

28
top 1 28 0

Programlnfo [
kind Unknown
]

A 2 0 0
Programlnfo [

kind ModulePair;
defPos SourcePosition [

fileName ./A.def;
tokenNumber 0

impPos SourcePosition [
fileName ./A.mod;
tokenNumber 0

3 0 2
Programlnfo [

kind ModulePair;
defPos SourcePosition [

fileName ./B.def;
tokenNumber 0
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impPos SourcePosition [
fileName ./B.mod;
tokenNumber 0

DBA 4 0 3
ProgramInfo [

kind ModulePair;
defPos SourcePosition [

fileName ./DBA.def;
tokenNumber 0
];

impPos SourcePosition [
fileName ./DBA.mod;
tokenNumber 0

DBB 5 0 4
Programlnfo [

kind ModulePair;
defPos SourcePosition [

fileName ./DBB.def;
tokenNumber 0
];

impPos SourcePosition [
fileName ./DBB.mod;
tokenNumber 0

... 264 lines omitted . . .

S 28 0 27
Programlnfo [

kind ModulePair;
defPos SourcePosition [

fileName ./S.def;
tokenNumber 0
];

impPos SourcePosition [
fileName ./S.mod;
tokenNumber 0



A.6. The Grid in Intermediate Form

The intermediate form of the grid is shown below. This form was constructed

by hand using a text editor.

Versions [
. Node 1

Grid [
NodeTab

lastNode
entries

Node [
Name

Id groups
Parent
FirstChild 2;
NextSibling 0;

Vector78 0;
Exported TRUE;
Interactions

OtherDirectory
Root
LeafTab

NodeTable [
20;

1;
.77

0;

<

<

Directory [

entries <
1 :
2 :
3 :
4 :

16;
LeafTable [

: 17
: 18
: 19
: 20

79
GeneralQualifiers <

Qualifier [
Kind NonUnitReflexive
]

Qualifier [

"Group7' is an obsolete term for "object slice".

7 8"Vector" is an obsolete term for "slice11.

79
"General qualifier" is an obsolete term for "global qualifier".
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Kind Same

Node [
Name 2;
Id users;
Parent 1;
FirstChild 4;
NextSibling 3;
Vector 0;
Exported TRUE;
Interactions <

InteractionList [
Relationld ImpUses;
Entries <

Interaction [
Sibling

... 46 lines omitted ...

Node [
Name 6;
Id db;
Parent 3;
FirstChild 0;
NextSibling 7;
Vector 3;
Exported TRUE;
Interactions <

InteractionList [
Relationld DefUses;
Entries <

Interaction [
Sibling 8

Interaction [
Sibling 9;
Qualifiers <

Qualifier [
Kind Only;
SourceSet {

Element [
FirstElementKind



Group;
FirstNode
]

TargetSet {
Element [

FirstElementKind
Group;

FirstNode 15

InteractionList [
Relationld ImpUses;
Entries <

Interaction [
Sibling
]

Interaction [
Sibling
]

Interaction [
Sibling 8

Interaction [
Sibling 9
Qualifiers <

Qualifier [
Kind Also;
SourceSet {

Element [
FirstElementKind

Unit;
FirstUnit 6

TargetSet {
Element [

FirstElementKind
Unit;

FirstUnit 15

Qualifier [
Kind
SourceSet

Only;
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Element [
FirstEleaentKind

Group;
FirstNode 6

TargetSet {
Element [

FirstElementKind
Group;

FirstNode 15

194 lines omitted . . .

Node [
Name
Id views
Parent
FirstChild 17;
NextSibling 0;
Vector
Exported TRUE;
Interactions

OtherDirectory
Root
LeafTab

16;

0;

0;

<

Directory [

entries <
4

2
3
4
5
6
7
8
9

l;
LeafTable [

4
5
6
10
11
8
12
13
14

10 : 15



Node [
Name
Id a;
Parent
FirstChild 0;
NextSibling 18;
Vector

17;

16;

l;
Exported TRUE;
Interactions <

InteractionList [
Relationld DefUses;
Entries

i
j

InteractionList

<
Interaction [

Sibling

>

[
Relationld ImpUses;
Entries <

Interaction [
Sibling

Interaction [
Sibling

Interaction [
Sibling

17

17

19

20

. 126 lines omitted . . .

GridMatrix Matrix [
lastGroup 10 ;
lastView 4 ;
gTab

GroupTable [
entries <

1 : ViewTable [
entries <

1 : MatrixEntry [
u 2
]

ViewTable [
entries <
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2 : MatrixEntry [
u 3

3 : ViewTable [
entries <

1 : MatrixEntry [
u 4

2 : MatrixEntry [
u 5

3 : MatrixEntry [
u 6

96 lines omitted . . .

uTab
UnitTable [

pUTab

entries

UnitTableRef [
id
directory

XTable [
entries <

2

3

4

5

6

Units ;
utab

: Entry [
group
view

: Entry [
group
view

: Entry [
group
view

: Entry [
group
view

: Entry [
group
view

1 ;
1

2 ;
2

3 ;
1

3 ;
2

CO
 

CO
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88 lines omitted . . .

28 : Entry [
group 10
view 4
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A.7. The Comparison

The report produced by gmcom is shown below. It indicates th

interactions occurring in either the program or the grid occur in both, and

that the grid specifies the structure of the program with complete accuracy

Comparing DefUses
(YB -> ALB ) = (10 -> 14) BOTH
(VB -> LB ) = (10 -> 18) BOTH
(VB -> PB ) = (10 -> 22) BOTH
(YB -> SB ) = (10 -> 26) BOTH
(VDB -> ALDB ) = (11 -> 15) BOTH
(VDB -> LDB ) = (11 -> 19) BOTH
(VDB -> PDB ) = (11 -> 23) BOTH
(VDB -> SDB ) = (11 -> 27) BOTH
(V -> AL ) = (12 -> 16) BOTH
(V -> L ) = (12 -> 20) BOTH
(V -> P ) = (12 -> 24) BOTH
(V -> S ) = (12 -> 28) BOTH
(DBA -> SA ) = (4 -> 25) BOTH
(DBA -> VA ) = (4 -> 9) BOTH
(DBB -> VB ) = (5 -> 10) BOTH
(DBB -> SB ) = (5 -> 26) BOTH
(DB -> VDB ) = (6 -> 11) BOTH
(DB -> SDB ) = (6 -> 27) BOTH
(VA -> ALA ) = (9 -> 13) BOTH
(VA -> LA ) = (9 -> 17) BOTH
(VA -> PA ) = (9 -> 21) BOTH
(VA -> SA ) = (9 -> 25) BOTH


