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Abstract

We analyse the structure of filters which are space-time oriented. Basically, this paper consists of two parts. In the
first one, we present the cascade of space-time DOG as an energy filter, discuss its general properties and show how
to compute its energy. In the second part, we discuss the consequences of applying the sampling theorem to
uniformly translating patterns in the presence of motion uncertainty. It is shown that, for a given motion
uncertainty, there exists a bound on the maximum sampling interval, such that for larger values aliasing will occur.
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1 INTRODUCTION 1

1 Introduction

The problem of the extraction of the optical flow has, in recent years, been treated from a new point

of view, that is, through the use of space-time filters [7,4,6,5]. The basic idea behind this method

is to extract the optical flow without having to perform any type of operation other than to use a

collection of filters which axe tuned to different orientations in space-time (or equivalently in the

frequency domain)* Also, given that the outputs of these filters have been computed, it is necessary

to establish a method by which we can determine the value of the estimated optical flow, because

the output of a filter tuned to a specific orientation (even if with maximal response) is not enough to

extract die optical flow and we have to use a complete set of filters (in the sense that it takes into

account all possible orientations), in space-time filtering, we convolve a sequence of images with a

(space-time) filter, such that the interval between sucessivc images is small. The minimum temporal

interval between succssive images is basically dictated by practical consideraticms, because if it is too

small we get little amount of information about the moving pattern from frame to frame. On the other

hand, we would like to know what the value of the maximum temporal interval between sucessive

images should be such that we continue to be aide to use a filtering approach to the extraction of

optical flow

The answer to this question comes by considering the sampling issues involved in this filtering

process. As I will show in section 3, if there exists a certain degree of motion uncertainty, then

the maximum sampling interval, is fixed by this motion uncertainty. This means that there exists a

(non-linear) relationship between the motion uncertainty and the maTimmTi sampling interval.

The procedure of using a collection of filters to extract optical flow corresponds, in a general

sense, to a signal processing approach, which is mainly concerned with the extraction of information

about the original signal, in the presence of noise. It involves the construction of filters, if possible

optimal (Mies, parameter estimation and the analysis of sampling issues.

On die other hand, in the feature based approach to the extraction of optical flow [3] it is necessary

to, previously to the actual computation of of me optical flow, extract edges (zero crossings) which
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have to be matched in succssivc frames. If the temporal interval between succesive images is large

and the number of edges to be matched between frames is not high, then a contour-based approach

can be sucessful in extracting the optical flow. But, on the other hand, if the number of edges is

large, the amount of mismatchings can lead to a high rate of error, and as a consequence of this to a

wrong estimation of the optical flow.

It is therefore important to be able to detect moving features and extract their optical flow in

the presence of noisy data and imprecise measurements. Depending on the spatial complexity of

information available at each image, in the temporal sequence of images, it can be more reliable to

use a filtering approach, especially for the case in which the interval between these images is small

and there exits a high spatial content of information (which makes a feature matching approach highly

unstable).

In tM$ paper we discuss, in section 2, die issue of extracting the optical flow through feature

or intensity based approaches versus space-tune filtering, and present the space-time DOG cascade

as an energy filter. In section 3 we analyse sampling issues which apply for uniformly translating

patterns in the presence of noise (motion uncertainty). Finally, we draw conclusions in section 4,

and make an analogy between the long and short-range processes of motion extraction in the human

visual system and die feature-based and space-time filtering methods in Computer Vision.

2 Space-time filtering

2JL Extraction of the optical Sow in intensity and feature-based approach

The extraction of the optical Sow nddfrocnihem^

il very recently, in Computer Vision, as a fcanirr or intensity-based problem. In the feature-based

we have ID dsi&ct relevant feaiunes* such as edges, from a pair of snccssive images (in

m temporal sequence of images)* met aftawtifls psffomi t matching of corresponding demons, so
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that, as a result of this procedure, we assign a specific value of the optical flow to the corresponding

elements.

This method has to overcome two major problems:

1. The correspondence problem

2. The aperture problem.

The correspondence problem [1] addresses the question of how to assign the same identity for

elements which appear in temporal succssion of images. The correspondence, or matching, can be

computed in different ways, depending, in part* on the temporal interval between succesive images.

If this interval is small, the correspondence between features can be performed through a set of local

operations over elements which are spatially close to each other. One of these operations [1,17]

consists in the minimization of the distance a set of elements takes to travel from one image to its

sucessive one. On the other hand, if this temporal interval is large, it is more likely that a more

global type of operation for the matching of features has to be implemented. In general, the matching

of corresponding elements in sucessive images can be unstable, due to noise in the image, and also

computationally expensive if the number of features to be matched is large.

In respect to the aperture problem, which states that it is not possible to measure both components

of the optical flow field given a small aperture in the image, we have to introduce additional contrainis

into the model describing the extraction of optical flow, so as to make it possible to obtain the

full optical flow field. Actually, given a small aperture, we are only able to measure the normal

component (to the gradient of the intensity) of optical flow field, while its tangential component

remains undetermined. As one example of the solution to the aperture problem, we can mention the

area-based [2] formulation which assumes the use of a smoothness term, in addition to the intensity

continuity equation, represented by the sum of the squares of the spatial derivatives of the optical Sow

field components. Another example is given by the contour-based [3] approach, whore the contraint

is represented, by the gradient in respect to the arc length along the intensity gradient of the optical
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flow field, in addition to die difference between the nonnal component of the optical flow and its

measured value.

Both* die correspondence and the aperture problem, involve in practice a certain amount of

arbitrariness in tains of haying to choose a set of constraints which enable us to extract the full

optical flow. It is therefore desirable to be Ale to »iwnwiati» the necessity of having to cope with both

of these problems. The method of space-time filtering does this, in part by eliminating altogether the

sity of the use of the correspondence problem. In respect to the aperture problem the solution

given by Heeger [5] consists in modeling the image flow as (locally) purely translational, so that

die optical flow is extracted by fitting a plane to the energy of die filter. This is equivalent to the

computation of both components of the optical flow field, because for translational motion the support

in the frequency domain is given by a plane whose orientation is a function of the velocity vector.

2 2 Space-time oriented filters

Space-time filtering flpwjrf^y, basically, in the convolution of a temporal sequence of images (closely

displaced) with a (space-time) filter. The most important aspect of space-time filtering lies in the fact

Omu iff we consider an uniformly translating pattern, we arc aide to select a specific velocity by using

(space-time) oriented filters [6].

Let us ftpfefc die example of one-dimensional motion (in die x direction). If we analyse the picture

which Is generated in space-lime by m uniformly translating pattern (through a cross-section parallel

the x-i plane), then we can conclude that the orientation of the individual elements (like lines or

stripes) is intrinsicaily determined by the velocity of the pattern (the slope of a line in the EPI plane

is equal to the velocity of tic Jaime associated to it). A very interesting example of this Mud of

relationship between (space-dmc) orientation and velocity is described by the epipolar plane images

(BPls) created by Bollcs and Baker [8] for the case of a camera moving (perpendicularly to the

direction of motion) m a static anriramanL There, at a given EPI, we are able to track the temporal

erafatka ci zach image etcmoot m a ijced heigh), and tills is described by a straight line.
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Once we know that, for uniform translation, the space-time evolution of image elements is given

by straight lines, in order to select a specific velocity (optical flow), we can use (space-time) oriented

filters [6,7]. A particularly important aspect of this analysis comes from the fact that, for an uniformly

translating pattern, the support of the contrast function in the frequency domain is given by a plane

(or a line for the case of one-dimensional motion) [7,10] passing through the origin of the coordinate

system. In tenns of space-time filtering, this means that, in order to select a specific velocity of an

uniformly translating pattern, we have to tune the filter to the orientation in the frequency domain

which gives the highest response.

The use of directionally selective (space-time) filters pose a limitation in the sense that they are

phase sensitive [6]. This means that, depending on the alignment between the space-time configuration

of moving patterns and the filter shape, we can get different results: the filtered output may oscillate

or vary between positive and negative values. A solution to this problem is given by computing the

energy (power spectrum) of the filter output. The energy of a convolved signal is independent of any

phase problem, and for the case of an uniformly translating pattern its output is constant.

If, for example, we compute the energy associated to a space-time Gabor filter [5] convolved with

an aifHtrary function, then the final result will not oscilate or depend on any phase factor. This leads

to the concept of space-time oriented filters as energy filters, which, with the assumption of random

textured images and ParsevaTs theorem made it possible for Heeger [5] to, analytically, predict the

energy associated to a particular space-time oriented pattern.

23 Space-time Difference-of-Gaussian (DOG) cascade as an energy filter

Space-time filtering, either through energy filters or cascades, is primarily concerned with the pro-

cessing of a temporal sequence of images, such that the interval between successive images is small.

On one hand, the work of Heeger [5] showed us that it is possible to obtain a dense image flow



2 SPACE-TIME FILTERING 6

map by using a collection of twelve space-time Gabor filters* each tuned to a different direction in

space-time. The space-time Gabor filter is parametrized by three (gaussian) filter sizes (<rz, ay and

<rf), in addition to the (three) sine or cosine space-time frequencies (whose relative ratios correspond

to different orientations in space-time). It would be desirable to have a broader space-time tuning

capability, as, for example, in the case of the cascaded filters proposed by Fleet and Jepson [9]. They

proposed the construction of space-time oriented filters in teims of cascades of the CS filter The CS

filter is defined as the difference of spatial gaussians which are each multiplied by a temporal expo-

nentially decaying function, corresponding to a temporal center (Q-sunound (S) model, in analogy to

biological systems, plus, a temporal delay tenn cmboddied in the S pan. The space-time orientation

is obtained by convolving the CS filter with a sum of (space-time) Dirac distributions, each centered

at a specific location in space-time so that the result is a oriented pattern. The use of layered cascades

of the CS filter improves the (mentation specificity of the filters, as shown by Fleet and Jepson [9].

In respect to its rating capabilities, these layered cascades of the CS filter, are able, in addition to

their specific orientation, to select features moving at high or low speed by adjusting the ratio of the

spatial or temporal filter sizes to (Hie, respectively.

We would like to use a filter which exibits a wide range of space-time tuning and can also be used

to extract the image flow as an energy filter. The simplest fusion of these two aspects is exibited by

the space-time DOG filter, used in cascade. In fact, if we substitute the temporal exponential decay

torn in the CS filter by a temporal gaussian, and eliminate the temporal delay, we get a space-time

DOG. The number of parameters of this filter is equal 9, where 4 correspond to the center ami

surround filter sizes (the spatial filter sizes are assumed to be equal), spatial and temporal offsets

make up 3 parameters, plus the center and surround multiplicative constants. The only reason for

not using the CS cascade filter of Fleet and Jepson directly as an energy filter comes from the fact

thai the energy expression turns out to be more complex than that of the space-time DOG cascade

because it has a linear temporal exponential decay, whereas for the DOG filter the temporal decay is

gaussian, thus making it easier to pcrfoim the temporal integral in order to get the energy expression.

We should remind ouisetves that the space-time DOG and Gabor filters arc non-causal, as a

consequence of die Palcy-Wiener theorem [12] which states thai* if a temporal §lter/[f) has a square
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integrable Fourier transform/(w) and satisfies the relation

r M ^ , , <., a i )

then/(r) is causal. The CS filter, on the contrary, due to its linear exponential temporal decay, is a

causal filter.

The space-time DOG filter is given by the following expression

^ ) , (2.2)

where crc (<rs) and ptc (Ms) are the center (surround) spatial and temporal filter sizes respectively, wixile

Ac and A9 are adjustable parametexs (used in the discrete version of the filter to tune the sum of all

elements of the mask to zero). Its Fourier transform is given by

D(k,w) = ^ ^

OPZ trf (23)

where the spatial and temporal frequencies are respectively given by k (k = (kx, ky)) and w.

A cascade of filters corresponds to applying, in sucession, a set of linear filters, to a collection of

signals [9], such that the interval between their sucessive positions of highest magnitude is measured

by the offset In the case of space-time filtering these ofisets have a spatial as well as a temporal

part. Also, they can occur in a set of layers, where each layer corresponds to a different collection

of space-time offsets.

Let us define, analogously to Fleet and Jepson [9], the one-layer cascade by the expression

Ox,3M) * D(jc,y, 0 * Afey,D, (2.4)

where

^ -f*y-ty>t-T), (2.5)
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6{-) is the Dirac delta (distribution), D(x,y,t) the space-time DOG as given by formula (12) and *

the convolution operation. In the frequency domain this cascade is given by

Z&w) = D&w)E(k,w) (2.6)

where

j [ l • « ( * • € + w r ) ] , (2J)

and I>(i, w) is given by (23).

By increasing (decreasing) the offset values of, for example* the one-layer cascade we get more

fless) specificity to velocity. This can be observed by comparing Figures 1 and 2, or their respective

Fourier transform, Hguxts 3 and 4. We fix Ue » 1.0, Ua « 3.0, M€ = 1.0, Ms = 3.0, Ac = 1.0 and

A , m 1.0.

For Figure 1 we have £* » 0.77,fy « 0 and r = 2.89, whereas for Hgure 2, & » 0.52,^y = 0

and r * 1.93, which correspond to a slope of IS deg in the x-t plane (or 0.26 pixels per frame). If

we inspect Figures 3 and 4 it becomes dear that for larger ofisets (Hgure 3) we get more tuning to

vdodty, although more ringing [9] (due to aliasing of adjacent patterns), for small velocities. A way

by which we get less ringing and more velocity specificity, as described by Fleet and Jcpson [9], is

to build cascades DIE of more than one layer. For example, a two layered cascade is constructed by

convolving two one-layer cascades, each with a different collection of offset values, that is

y, r) « Ci(x,y, r) • C2(x,yf t), (2.8)

where
(2.9)

(2.10)

^y-ei^-r1), (2.11)
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For this two-layer cascade. Figure 5, and its Fourier transform Figure 6, we can observe (we

use the same space-time scale as for the one-layer cascade Figures) that there occurs much less

ringing (Figure 6) and its space-time shape exibits a broader (also narrower), support at the particular

orientation for which it is tuned.

In general, irrespective of the set of parameters that we choose for the filter, there always exits a

specific amount of directional uncertainty which is a consequence of the fact that the filter response is

not perfectly tuned to a particular orientation. This is a consequence of the fact that, in addition to the

response of the filter to the particular (mentation for which is tuned, there exists a non-zero respense

to a restricted range of orientations in its neighborhood. For example, in the case of one-dimensional

motion (parallel to the x axis) of a given image pattern, in order to filter the specific direction (in the

x-t plane or, equivalently, in the frequency domain) associated to its velocity, we should use a filter

which exibits its support at a given orientation and is zero otherwise. In practice, we will only be

able to select a given orientation inside a cone, such that its aperture is proportional to the motion

uncertainty. This is a consequence of the fact that any (real) filter will not only select the particular

direction for which it was designed, but also adjacent directions inside a fixed aperture. As a result

of this, there will always result a motion uncertainty, and consequently, this will affect (space-time)

the sampling properties of the filter. This issue will be discussed in detail in the next section.

Hie energy (power spectrum) associated to the one-layer cascade is given by

dk

Jt / dw{Di(.k,w)[l + 2cos(k-Z + wr) + axt(k*'t + * r ) ] } . (2.13)
—oo •/—> oo

Since we assume only translational motion, in which case it holds that

w = *-v aw)

where v is the velocity field, we can rewrite the previous energy expression in the following form
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[£+vr))+ap(-2iJfc-(e+ *• ) ) ] ] } . ais)

As a next step we want to develop the expression of the energy (2.15), by perfonning the integral

over £ In this respect, it is useful to notice that formula (2.15) contains the following algebraic

expression

where a can be any positive integer nmni*»r If we use the definition of £(Jfc, w) and the constraint

(2.14), then

x aqt-
+ £)). (2.17)

Now, by insening (2.17) into expression (2.16), we get

, r ) , (2.18)

where

? ) } , (2.19)

x ap(-

and
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Finally, if we use the (gaussian) integral formula

dkap(i(.<px<pyy I "" I + - ^ ( f c ^ M " 1 I I)

(222)

for an arbitrary (2 x 2) matrix A, then F\ will be given by

+ :̂ 7xVyt) (6+Vxr

Analogously* F% and F3 aie givai by a similar expression, if we substitute a^f & by a]y £ and

The complete expression for the energy is given by

>[(^

x((& + vxr)(£y + v y r ) ) | e + A*Y 2
VlVy^ I

\ * J \ /

1 2 2.-2

f ^ + npj J \ Zy +
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If we want to extract the optical flow field by using a set of energy filters, each tuned to a different

orientation in space-time, then we arc confronted with another source of motion uncertainty. This

comes from die fact that we have to determine the optical flow field, given the output of a number

of energy filters (with different orientations). For example, in Heeger's approach the estimated field

(vx» Vy) minimizes a cost fiinction, which consists in the sum of the difference between the measured

(motion) energy and its predicted value, over all twelve filters. This means that there will always

exist a non-zero contribution from filters which do not correspond to the right orientation, due to an

overlap in the shape of neighboring filters. If we wish to reduce the uncertainty in die motion estimate

because of neighboring interaction among filters, we have to enhance the orientation specificity of

each filter (thus leading to less lateral overlap). But this has the consequence that, to a fixed number

of filters, some orientation (mainly corresponding to the orientations between that of neighboring

filters) will not be able to be selected my more. So we are faced with a track-off between being

able to select a specific orientation in space-time, with a minimum of uncertainty, and the mkimum



3 SPACE-TIME SAMPLING

numbers of filters necessary to span all orientations.

13

The method of optical flow extraction used by Heeger [5], although it is able to determine the

optical flow for a collection of different types of moving patterns, contains some limitations which

should be mentioned, that is:

1. It assumes that all images can be modeled as (locally) random patterns

2. In older to be able to use Parseval's theorem, it is necessary to approximate the expression of

the energy

3. The optimization procedure, which has to be performed at each image pixel, is computationally

very expensive.

In particular, the issue of approximating the integral in Parseval's theorem, leads to errors in the

estimated value of the optical flow in regions where it is discontinuous, thus making it difficult to

use the estimated value as input for the operation of region segmentation. This and other questions

will be discussed in another paper [11].

3 Space-time sampling

In the previous section I discussed the question of extracting the optical flow by using space-time

filters, considered as energy filters. Also, I proposed the use of cascades of space-time filters like the

ones constructed by Fleet and Jepson as energy filters, which cm be accomplished by substituting the

temporal exponential by a gaussian. A consequence of adopting a filtering approach to the extraction

of the optical flow is the fact that it is necessary to sample the niter, or more specifically, to perform

a space-time sampling of the filter. The temporal sampling issue is very clearly determined by the

fact that the temporal interval between siicessive images used in space-time filtering, although small,
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is finite. A question which is naturally raised in this context is in respect to how much can we

(temporally) undersample die filter, or in a more complete statement, the convolution of the image

sequence with the space-time filter, so that we arc still able to reconstruct the original signal. For

uniformly translating patterns, the spatial and temporal sampling ratios ate not independent, and, as

it is shown next, rf there exists a certain amount of motion uncertainty, then there exists a maximum

sampling interval, in either space or time, such that aliasing does not occur. This maximum sampling

interval is shown to be a (non-linear) function of the motion uncertainty.

initially, I will describe very sucdntly, for one-dimensional functions, the sampling theorem and

generalize it to three-dimensions (two spatial and one temporal). Next, I show that for an uniformly

translating pattern it is only necessary to sample in cither the spatial or temporal variables. Finally,

I relate motion uncertainty with the maximum sampling interval such that there is no aliasing.

The sampling theorem [12] gives us a mathematical formulation for the reconstruction of a con-

tinuous function in terms of a collection of samples of this function, over a specific domain. If we

deal with real signals, on the other hand, there is always a certain amount of under or oversampling

depending on the specific architecture of the filters being used. In particular, for the case of undersam-

pling (where die spatial or temporal sampling rate is larger than the one established by the sampling

theorem - die Nyquist rate), we have to deal with the aliasing problem. The degree of aliasing which

is permitted (so that it still is possible to reconstruct the original function, modulo small distortions)

depends not only on the filter characteristics but also on the type of data being filtered.

Let us start with one-dimensional signals, represented by the function/(x). We obtain a sample

of/(r), fs{x), by multiplying it by a (infinite) sum of (Dirac) delta distributions, such that the sample

points are equidistant (by #*). The sample function J*(x) is given by

(3.1)

whore
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In the frequency domain, (3.1) is represented by the convolution

with

/(**)

1 °°- E
Px _{-*„

Hi
Px

15

(3.3)

(3.4)

If we assume that/(fe) is band-limited (/(A*) is zero for |Jfcr| > L*), then it is easy to check

that, unless px < j £ , there will exist a region where the adjacent lobes overlap, which is a signal of

undersampling, and as a consequence of this we have the aliasing phenomenon. In order to avoid this

6wn happening, we multiply formula (3.3) by a function #(**), as for example the ideal low-pass

filter (which is 1 for Ifel < L*, and 0 otherwise), as a result of which (33) reduces to/(J»). This has

the consequence that/(x) can be exactly recovered from its samples. We can synthesize this result,

by stating that, iff(kx) is band-limited and has no singularities at its extremeties (kz=±Lx)f then

/(*)= E /(^--
where

which is a version of the sampling theorem [13].

(3.5)

(3.6)

We can generalize the sampling theorem to three-dimensional functions. So, given that/(x, y, t)

is a (space-time) function and/(£*, ky,w) its Fourier transform (ks, ky and w are the Fourier variables

associated to x, y and r), / is zero for %\ > L* \ky\ > Ly and \w\ > U and it does not have

singularities at j*rj = Z,, l^j = Ly and \w\ = L,9 then, by the sampling theorem

E / ( ^ ^ ^

The case of translations! motion [14,15], in which case it holds that

(3.8)
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(which is equivalent to say that w is different from zero only on the plane determined by Jt • v), the

sampling theorem reads
oo oo _

/or - w - v) = E E A5f» r W 2 L i ( I -v*' - 21*"

x ancOLyiy - V - # • ) ) • (3.9)

This means that we only need to sample/(x,y). at die Nyquist rate, in tenns of its spatial variables.

Another way to understand mis issue is given in tenns of a fourier analysis, which, as a matter of

simplicity, we apply for the two-dimensional case (x-t space). We know that for pure translation,

because of formula 0.8), the sampled function fs (£*, w) (analogously to (3.3)) is given by

*[ f ; ILt&ik,- 2nJ*) Y, 2L,S(w - 2n,L,)], (3.10)

which can be rewnten in die fonn

(3.11)

By using that

y (3.12)

in the integral over w \ and

Jdxf(x)S(x - a)*(x - b) =f(a)6(a - ft), (3.13)

m the 4 integral, we have that (3.11) results in

oo

£ n,Lr))J.(3.14)

We o n conclude thm, If we stan by assuming that/U-vrr) is sampled independently in its spatial

aid temporal variables, then, due to the constraint of uniform translation, we are led to conclude ±i;
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we only need to sample in the spatial (temporal) variable. So, we can simplify equation (3.10) to the

following fonn

£<fc,w)-/<fc)*(w- fevx)* [ £ 2LxSCkx-2»xLsn, (3.15)

or, by expanding the convolution we get

(3.16)

which leads us to the two-dimensional version of equation (3.9). The expression (3«16) is identical to

the one discribing the Burr's experiment [15] which consists in sampling in space, at a fixed temporal

interval* a pattern which moves at constant rate.

For illustration, if we consider a (space-time) band-limited function which describes an uniformly

translational motion, then, by the constraint (3.8) its support (in frequency domain) is given by a line

segment, as it is shown in Figure 7. Its sampled version, satisfying equation (3.16) with Mx = 2Lx,

consists of a collection of replicas of the original line segment, which are uniformly sampled at

intervals of Mx (see Figure 8).

From this we can deduce that, once the support o f / ( i x ) is defined by the straight lines whose

slope is given by vXf its sampling rate is equal to the spatial sampling rate (or equivalently to the

temporal sampling). Hie function/(x, t) (which is identical to / (x+ vz;)) can be reconstructed from

Is (Ax* w) by applying a filter which has a support parallel to the line w = £rVx, and more than this,

as it is shown by Crick et al. [14], this support can be reduced to an infinitesimally narrow strip,

as long as thane is no motion uncertainty. This means thatl for the case of translational motion, we

can increase the sampling rate px as much as we wish, given that we are able to exactly measure

the velocity vx. On the other hand, if we deal with real images, there is always a certain degree of

uncertainty in the motion measurement, so that the previous considerations do not hold. This leads

us to the issue of considering the sampling theorem in the presence of noisy daxa (thus generating

motion uncertainty). As a consequence of this, we have to know in what way the sampling theorem (as

previously described) has to be modified in order be able to deal with motion uncertainty. Specifically,

in the presence of motion uncertainty, it is no longer possible to arbitrarily increase the sampling



3 SPACE-TIME SAMPLING 18

interval* without getting aliasing. This establishes a relationship between the maximum sampling

interval (in space) (or minimal in the frequency domain) and motion uncertainty.

We know that under the conditions of translaiional motion (let consider only one-dimensional

motion), the Fourier transfonn of a space-time function has support at the lines passing through the

origin, and whose slope is proportional to the velocity of the moving pattern. If we introduce a

specific degree of uncertainty for the velocity, then this support will be given by a (one-dimensional)

cone, whose aperture is proportional to die uncertainty in the velocity (See Figures 9 and 10).

Considering the casc-of a band-limited function (with finite support in the frequency domain), we

can use polar coordinates to describe its (two-dimensional) variables.

For the angular variable 0 we have 0 = arctanv* and the radial variable r is the

of yH^+*I. The motion uncertainty Avx is given by Avx = (tan(0 + A6) — tan0), where A6

corresponds to the angular aperture of the cone, centered at l . Fbr small values of ABy 60, Avx can

be approximated to £vz = sec2 0£0.

If we sample / ( x + V ) along the x direction in intervals of px (or Mx in the frequency domain)

(Figure 10), then it is easy to show that, for a fixed motion uncertainty, there exists a minimum value

of Mx, M™*, such that the adjacent patterns do not overlap.

If we decrease Mx beyond this threshold, aliasing occurs. This establishes a relationship between

and AvX9 as shows by the following theorem.

T h e o r e m : If we have a hand-limited function f(x,t) describing an uniformly translating

pmtem, given that its velocity v*, which is assumed to be different from zero, is measured within

an uncertainty range cfAvX9 that there exists a minimum value for the spatial frequency sampling

interval Mf* such dm no aliasing occurs. M™ is related to Avx by
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where
AyT AvxA8 = arctan(vx + - y ) - arctan(yr — ) ,

r » maxyjw1 + Aj,

tantf = vx.

Proof:

We can observe, from Figure 11 (or Figure 12), that there exists a point F, in the (r,0) plane,

where the adjacent patterns, corresponding to replicas of a (one-dimensional) cone, intersea without

overlapping. This point is the solution to the following equations

= M?* + dcosffz (3.17)

and

dsinOi, (3.18)

where 9\ = 8 - ,d0/2

By substituting d, given by (3.19), into (3.18) we get

? rsin#i(cot#i - cottf2), (3.19)

or

J i f • r*<» - ^ / 2 ) [ a n ( t \ < / 2 ) - ^ J ^ / 2 ) ) . (3.20)

Expanding the sine ami tangent in (3.21) we get the following expression

which, after some algebra leads to

lantf + vm(A6/2) '
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with A$ m 02 - 9u h • arctan(vx + 4 p ) and O\ m aictan(vx - 4 p ) .

This concludes the proof.

The theorem shows us that the tmntmmn interval, in the frequency domain, between adjacent

sampling points (on the its axis) is bound, nonlinearly, by die degree of motion uncertainty. Conse-

quently, the spatial sampling rate px cannot be arbitrarily increased, but depends on the amount of

motion uncertainty. Since the spatial sampling rate px is the inveisc of Afx (px * j^), and Mx is

bound, by motion uncertainty, to a miwwniim value A4Z
VM, p% has a maximum value equal to p^. If

Px > /£•*# we have aliasing of adjacent patterns (cones).

4 Conclusion

Hie extraction of optic flow, via space-time filtering, is given in terms of a collection of filters which

are fljCT**1*! to different orientations in space-time. The space-time Gabor and Cascades of the CS or

DOG fillers are specially suited for this task because they constitute (space-time) oriented filters. I

show that it is possible, in particular, to use the cascaded filter approach of Fleet and Jepson [9] as an

energy filter, given that the exponential temporal part of the CS filter is substituted by a (temporal)

The space-time filtering approach to the extraction of optical flow is implemented on a sequence

of images which are closely displaced in time. The temporal interval between sucessive images in this

sequence corresponds to the (temporal) sampling rate, which as we saw before, is not independent of

she spaiiai sampling rate. In general, we want to use the sequence of images in such a way thai we

a e still able to extract &m optical flow, but using the mmimmn number of images. This means th£

we have to increase the temporal sampling ratio as much as possible, without getting any aliasing

effect As a censequ succ of this, we have to ask ourselves what is the upper limit for the ten^oral
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(spatial) sampling rate such that:

1. We still arc able to use a filtering approach to extract the optical flow

2. We do not get any aliasing effect

As shown by the theorem of the previous section, for uniformly translating patterns, the maximum

spatial sampling interval is determined by the degree of motion uncertainty. The same can be shown

for the case of temporal sampling. If we sample at a lower rate than the minimum amount established

by the theorem of section 3, we get aliasing. This answers the second part of the question.

The first part of the question is more difficult to be answered. Just as an illustration, we can

mention a problem which bears similarities to the use of a filtering or feature matching approaches to

the extraction of optical flow. It is the hypothesis of the existence of two, distinct, processes to detect

or extract optic flow in humans [18,19], called short and long range processes. They are studied, in

psychophysics, as a phenomenon of apparent motion, which is the capability of the human visual

system to be able to interpolate the (spatial) position of moving objects between discrete presentations

of sucessivc snapshots of the motion. We can establish a general relationship between short-range

Mid the filtering approach to optical flow, and between long-range and the feature matching approach.

The short-range process operates in short temporal intervals (between sucessive frames - also called

inter-stimulus interval ISI, ranging from 50 and 100ms) and angular intervals of 15' or less. The

long-range process, on the other hand, can take place even for ISI as long as 400 ms [1], and it works

mainly through the matching of features (edges, blobs, etc.), thus operating through the identification

of elements in sucessive frames.

If short and long-range processes in humans are really independent and operate through different

mechanisms, it «m point out to flic possibility that if the filtering and feature matching approaches

should bear some resemblance with them* then there should exist a definite borderline between both

approaches. In this sense we cm say that (space-time) aliasing is one criteria by which we can decide

upon this problem.
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Figure 1 One-layer cascade of space-time DOG filler with & • 0*77, £y = IX r » 2.89.



0i«4a5wofacasc«icof^»cc-tiiMDC)Gfilterwith6 = Q-52* 6 = 0, r = 1.93.



Figure 3 Fourier transform of the one-layer cascade of space-time DOG filter with & = 0.77,

m 0. r » 2.S9.



Figure 4 Fourier transform of the ooe-layer cascade of space-time DOG filler with £*

= 0, r = 1.93.



figure 5 Two-layer cascade of space-time DOG filter with

- 1.04, $ m 0, r2 - 3.86.

0.52, 1.93,



Figure 6 Fourier transfonn of tbe one-layer cascade of space-tine DOG filter with £ = &52.

$ - 0, r1 = 1.93. £ * 1.04, £ = 0, r* = 3.86.



7 The sofqxjct, in the domain* for a paur-m moving in ooe dfanrasioi, ai an

umfonn m e . The slope of the sc,gmcni (band-lirmi^d function) of the line is equal to the vclocny of

ifat pattern, ±ai is w



Figure 8 The sampled version of the support of an unifonnly translating pattern, j

by Rgisfe 7. The sampling interval is equal Mx.



#

Figure 9 Toe supper in theffimfomcy dm^am* Qtmmtttiaa&y translating pattern wliose velocity

is m€ami«i with a oenafn nncenamiy. The mpemsm of ills OXK is opal f® tMs



Figure 10 "IT* sampled version of the support represented in Figure 9. 11* sampling interval

Mx is such thai the adjacent cones don't overlap.



Figure U The sampled version of Figure 9 in the case where the sampling me is such that

the adjacent cooes touch each other, but without overlapping. The sampling me Mz = M^* is the

one such that there doesn't occur aliasing.



Figure 12 Tbc

of section 3.

stowing Hie letavam pamaesm involved in tbe proof of tbc


