
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

June 1987 Annual Report:
Development of an Integrated

Mobile Robot System at Carnegie Mellon

Steve Shafer and William Whittaker
Principal Investigators

CMU-RI-TR-88-10

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 1987

© 1987 Carnegie Mellon University

This research is sponsored by the Defense Advanced Research projects Agency, DoD, through DARPA
order 5682, and monitored by the U.S. Army Engineer Topographic Laboratories under contract
DACA76-86-C-0019. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or of the U.S. Government.

Table of Contents

Abstract 1

I: Introduction Steve Shafer and Red Whittaker 3
Introduction 3
Accomplishments 5
Personnel 6

Publications 6

II: NAVLAB: An Autonomous Navigation Testbed 7
K. Dowling, ft Guzikowski, J. Ladd, H. Pangels, J. Singh, and W. Whittaker

III: Vision and Navigation for the Carnegie-Mellon NAVLAB 53
C. Thorpe, M. Hebert, T. Kanadef and S. Shafer

IV: The CMU System for Mobile Robot Navigation 81
Y. Goto and A. Stentz

Abstract

This report describes progress in development of an integrated mobile robot system at the Carnegie
Mellon Robotics Institute from July 1986 to June 1987. This research was sponsored by DARPA as part of
the Strategic Computing Vision program.

Our program includes a broad agenda of research in the development of mobile robot vehicles. In the
year covered by this report, we addressed two major areas in vehicle development {NAVLAB vehicle and
Robot control system) and two major areas in robot architecture development (CODGER blackboard and
Navigation architecture):

1. NAVLAB vehicle. We built the NAVLAB mobile robot vehicle by outfitting a commercial
truck chassis with computer-controlled drive and steering controls and a set of on-board
computer workstations. The NAVLAB serves as a mobile navigation laboratory that allows
researchers to interact intensively with the system during testing and execution.

2. Robot control system. We developed a real-time controller system for the NAVLAB using
a collection of coordinated processors and software. This system implements a Virtual
Vehicle that can interpret and execute commands from the high-level planning system. The
Virtual Vehicle hides many of the physical details from the higher level system so that
research in perception and planning can take place very rapidly.

3. CODGER blackboard. We designed and implemented the CODGER blackboard system
for robot perception and reasoning on a distributed collection of processors. CODGER
incorporates substantial features for geometric reasoning and task synchronization that
have not been incorporated in blackboards before. These features are essential for robot
navigation.

4. Navigation architecture. We developed the Driving Pipeline architecture for coordinating
road following, obstacle avoidance, and vehicle motion control. The Driving Pipeline allows
these functions to be combined in a single system and provides continuous motion rather
than stop-and-go.

This hardware and software combination is the basis for the New Generation System (NGS) for robot
vision and navigation, which will tie together existing and emerging technologies

This report begins with an introduction, summary of achievements, and lists of personnel and
publications. It also includes relevant papers resulting from this research.

Section I

Introduction

Introduction and Overview

This report reviews progress at Carnegie Mellon from July 1, 1986, to June 30, 1987, on research
sponsored by the Strategic Computing Initiative of DARPA, DOD, through ARPA Order 5682, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0019, titled
"Development of an Integrated Mobile Robot System." This report consists of an introduction and
overview, and detailed reports on specific areas of research.

During this time period we designed and built a robot vehicle, the NAVLAB, as a tool and testbed for
research in robot navigation, and we developed a software framework for integrating vision, planning, and
control modules into a single working system. The modules themselves were developed under a related
research effort in "Road Following11, which is also sponsored by DARPA. The total system has been
demonstrated in outdoor navigation runs without human intervention, on a road in Schenley Park,
Pittsburgh, near the Carnegie Mellon campus. The vehicle and architecture developments are described
briefly below, and at length in the following chapters of this report.

Development of the NAVLAB Mobile Robot Vehicle. The hardware portion of this research was
aimed at accomplishing two tasks: developing a mobile robot research testbed vehicle, and outfitting it
with the necessary controllers, sensors, and computers to support increasingly ambitious navigation
system demonstrations. To fulfil these tasks, we developed the NAVLAB mobile robot vehicle to serve as
a testbed for research in outdoor navigation, image understanding, and the role of human interaction with
intelligent systems.

Vehicle development: The NAVLAB is a roadworthy truck modified so that humans or computers can
control it as the occasion demands. It acts as a mobile navigation research environment, accommodating
onboard researchers as well as significant onboard computing power. Because it is self-contained, it is
not subject to telemetry bottlenecks, communication faults, or dependence on stationary infrastructure.
The NAVLAB can travel to confront navigation problems of interest at any site.

The NAVLAB locomotion configuration consists of a chassis, drivetrain, and shell. The chassis is a
modified, cut-away van with a computer-controllable hydraulic drivetrain. Driver's controls allow a human
monitor to override automatic control for overland travel, position the vehicle for each experimental run,
and recover from errors as the software is improved and debugged. The shell houses all onboard
equipment including computers, controllers, telemetry, and internal sensors. In addition, it provides a
working area for operators, allowing researchers to be in intimate contact with the computer programs
that are controlling the vehicle. Equipment racks, seating, lighting, air-conditioning, desk space, monitors,
and keyboards create a mobile environment for research.

Outfitting of the vehicle: The core of the NAVLAB is the vehicle controller. In the autonomous mode,
this multi-processor computer controls all locomotion, actuation, and physical sensing. It interacts with a
computer host and human operator to provide varying degrees of autonomy. The NAVLAB controller

queues and executes "Virtual Vehicle" commands originating from a computer or human host. This
command set provides high-level motion and control primitives that mask the physical details of the
vehicle, and is extensible for control of other mobile systems.

The NAVLAB also supports a choice of sensing equipment to accomodate many types of navigation
perception research. Video cameras provide color and intensity images for scene interpretation. A
scanning rangefinder is used to sweep the surroundings with a distance-measuring laser that provides
three-dimensional information about the geometry and reflectivity of the environment. Taken together,
data concerning color, intensity, range, and reflectance provide a rich basis for building scene
descriptions In the complex outdoor environment. The sensor information from these sources is fused
together to achieve robust perception.

Finally, the NAVLAB incorporates a network of several general-purpose (SUN) computer workstations,
complete with operators1 keyboards and monitors, connected by an on-board Ethernet. These
workstations perform the perception and planning tasks for the NAVLAB, and communicate with the
sensors and the Virtual Vehicle controller to receive sensor data and issue commands for vehicle motion.
The use of general-purpose computers in the NAVLAB makes available a full range of software
development tools for use by researchers in perception, path planning, and navigation.

Both the vehicle development and its outfitting with sensors and computers are described in the
following report, "NAVLAB: An Autonomous Navigation Testbed11.

Development of an Integrated Software System for Navigation. The software integration effort is
designed to produce a single system that incorporates all of the key technologies needed for an
autonomous vehicle to perform sophisticated missions. In the past, efforts to build outdoor mobile robot
vehicles have fallen into one of two categories, according to the mission they were designed to address:
road-following systems that use the road edges for navigation, with minimal ability to detect and avoid
obstacles; and cross-country systems that use range-finders to traverse open country, with little or no
ability to cross or travel on roads. Our research is aimed at developing the first robot vehicle to
incorporate road-following, cross-country travel, obstacle detection and avoidance, object recognition, and
mission planning all in one single framework. In order to achieve this, substantial progress is needed in
all of these individual technologies as well as the building of the complete system. The system-building
task is the goal of the Software portion of this research. There are two parts to this task: development of
a software framework for system integration, and design of a navigation architecture to coordinate the
various vision, planning, and control modules of the system* Together, these form the backbone of the
New Generation System (NGS) for Vision.

Software framework for system integration: The CODGER blackboard. We have developed the
CODGER blackboard for robot navigation, which incorporates several features needed for mobile robot
system development The structure of CODGER is a central database to which any number of modules
can be attached. The whole system runs on a collection of general-purpose machines (SUNs and
VAXes, with Ethernet connection), giving the module programmers the best possible software
development environment. CODGER implements a central database that is utilized by the modules
acting in concert as a distributed system. Each module is a self-contained program that stores data in
.CODGER and can retrieve data. Much of the data is of a standard form long known in database design:
strings, numbers, arrays, etc. However, to support robot planning and perception, a tremendous amount

of geometric computation is also needed. For that reason, a complete set of geometric primitives and
operations is also included in the CODGER system. An example of its use is this: a road-following
module finds a road polygon on the ground, and an obstacle detection module locates objects to be
avoided; the path-planning module can then ask CODGER to find the set of obstacles that lie within the
detected road area. In addition to these basic geometric operations, CODGER has a special mechanism
for managing multiple coordinate frames. This kind of geometric reasoning has not been incorporated
within a general-purpose database in the past, and it is essential for robot navigation.

Navigation architecture: The Driving Pipeline In addition to the CODGER blackboard, the software
integration effort has produced a design for a collection of modules to utilize this blackboard and
implement initial versions of the integrated NGS. This design has been implemented and demonstrated
in road-following tasks on several occasions through 1986 and early 1987.

The Driving Pipeline is one of the key contributions of the software integration effort, and introduces
two new concepts for robot vehicle system design. The first of these is the driving unit a "chunk" of
roadway or off-road terrain that can be seen in a single view of the camera or range-finder. This unit will
be predicted from the map, utilized for both kinds of perception, then passed along to the path planner for
planning, Finally, the resulting path is passed on to the vehicle control system. The use of driving units
allows all activities to be coordinated easily, since they all process the same stretch of roadway in turn.
The entire length of the route followed by the vehicle is broken into driving units as the vehicle travels.
Driving units are also a convenient way to integrate intersections (each is one driving unit) and cross-
country terrain (broken into small patches) into the total system.

If each driving unit had to be processed from start to finish as the vehicle passes from one to the next,
it would require that the vehicle stop at the end of each driving unit, process the next one, then begin
moving. In order to provide a higher rate of processing and allow continuous motion, the software
modules are arranged into a Driving Pipeline that uses the concept of pipelined processing to provide a
higher throughput. In the Driving Pipeline, the prediction is made three units ahead of the vehicle's
current position. Perception takes place by looking ahead two units in advance of the vehicle, where ihe
prediction was already completed; path planning, which must follow perception, occurs on the unit directly
in front of the vehicle. Finally, the vehicle control operates on the driving unit the vehicle is currently
traversing. With the Driving Pipeline, the various processing steps can proceed in parallel on successive
driving units in front of the vehicle. The NAVLAB proceeds using continuous motion by means of the
streamlining provided by the Driving Pipeline.

These software developments - the CODGER blackboard and the Driving Pipeline architecture - are
described in more detail in the report below, "The CMU System for Mobile Robot Navigation." The entire
system, including CODGER, the Driving Pipeline, and the perception processes, is described in the
following report, "Vision and Navigation for the Carnegie-Mellon NAVLAB."

Accomplishments

The key accomplishments of this research in the time period from July 1986 to June 1987 have been:

• Development of computer controls for the NAVLAB vehicle.

• Development of real-time control system for NAVLAB.

• Implementation of Virtual Vehicle command interface for the control system.

• Development of CODGER blackboard system for geometric reasoning and synchronizing
distributed tasks.

• Integration of subsystems for road following, obstacle avoidance, and path planning.

• Design of Driving Pipeline architecture for continuous motion.

• implementation and demonstration of complete system in Schenley Park, Pittsburgh.

Personnel

Directly supported by the project, or doing related and contributing research:

Faculty: Takeo Kanade, Steve Shafer, Chuck Thorpe, William Whittaker.

Staff: Mike Blackwell, Tom Chen, Jill Crisman, Kevin Dowling, Ralph Hyre, Jim Ladd, Jim Martin, Jim
Moody, Tom Pafmeri, Jeff Singh, Chuck Whittaker, Eddie Wyatt.

Visiting scientists: Yoshi Goto, Taka Fujimori.

Graduate students: Rob Guzikowski, Joe Kuefler, InSo Kweon, Henning Pangels, Doug Reece, Tony

Stertz.

Publications

Selected publications by members of our research group, supported by or directly related to this
contract:

1. NAVLAB: An Autonomous Navigation Testbed. Dowling, K.t et al. Technical report CMU-
RI-TR-87-24, November 1 987.

2. Mobile Robot Navigation: The CMU System. Goto, Y. and Stentz, A. IEEE Expert, Winter
1987, p.44-54.

3. The CMU System for Mobile Robot Navigation. Goto, Y. and Stentz, A. Presented at IEEE
Intl. Conference on Robotics and Automation, April 1987, p.99-105.

4. A Feasibility Study for a Long Range Autonomous Underwater Vehicle. Hebert, M., et al.
In Proa Fifth Intl. Symposium on Unmanned Unteihered Submersible Technology, June
1987, p.1-13.

5. Error Modeling in Stereo Navigation. Matthies, L and Shafer, S. IEEE J. Robotics and
Automation, June 1987, p.239-248.

6. Vision and Navigation for the Carnegie-Mellon NAVLAB. Thorpe, C. et al. Annual Reviews
of Computer Science 1987, vol. 2, p.521-556.

7.1986 Year End Report for Road Following at Carnegie Mellon. Thorpe, C. and Kanade,
T. Technical Report CMU-RI-TR-87-11, May 1987.

Section II

NAVLAB: An Autonomous
Navigation Testbed

Kevin Dowling
Rob Guzikowski

Jim Ladd
Henning Pangels

Jeff Singh
William Whittaker

Abstract

The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of human

interaction with intelligent systems. It accommodates researchers and all computing onboard. The core

of the NavLab is the vehicle controller, a multi-processor computer that controls all locomotion, actuation

and physical sensing; it interacts with a computer host and human operator to implement varying degrees

of autonomy. The chassis is a modified van with a computer-controllable, hydraulic drivetrain. The

NavLab supports a choice of sensing to accommodate many types of navigation research. This report

details the control computing and physical configuration of the NavLab vehicle.

1. Introduction
The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of human
interaction with intelligent systems. A mobile navigation habitat, rt accommodates researchers and
significant onboard computing. Applications for field navigation vehicles include mapping of hazardous
waste sites, off-road haulage, material handling at construction worksites, and exploration of planetary
surfaces.

The NavLab is a roadworthy truck modified so that humans or computers can control as occasion
demands. Because it is self-contained, it is not subject to telemetry bottlenecks, communication faults or
dependence on stationary infrastructure, and can travel to confront navigation problems of interest at any
site.

The core of the NavLab is the vehicle controller. In autonomous mode, this multi-processor computer
controls all locomotion, actuation and physical sensing. It interacts with a computer host and human
operator to implement varying degrees of autonomy. The NavLab controller queues and executes Virtual
Vehicle commands originating from a computer or human host. This command set provides high-level
motion and control primitives that mask the physical details of the vehicle, and is extensible for control of
other mobile systems.

The NavLab configuration consists of a chassis, drivetrain and shell. The chassis is a modified, cut-away
van with a computer-controllable, hydraulic drivetrain. Driver's controls allow a human monitor to override
automatic control for overland travel, setup and recovery from experimental errors. The shell houses all
onboard equipment including computers, controllers, telemetry, and internal sensors. In addition, it
provides a working area for operators, allowing research within the confines of the vehicle. Equipment
racks, monitors, lighting, air-conditioning, seating and desk space create a mobile environment for
research.

Humans can monitor and supervise the NavLab from the operator's console for setup, error recovery and
tuning. Interface modes include Virtual Vehicle instructions, joystick motion control, and direct servo
motion commands. The console also incorporates several displays to show the current states of both the
vehicle and control computer.

The NavLab supports a choice of sensing to accommodate many types of navigation research. Video
cameras provide color and intensity images for scene interpretation. NavLab vision experiments use a
single camera to analyze road edges through intensity, texture, and color segmentation. A scanning
rangefinder sweeps the surroundings with a distance-measuring laser that provides useful three-
dimensional information about the geometry and reflectivity of the environment. Laser experiments
navigate through geometric features like trees and buildings. Taken together, data of color, intensity,
range and reflectance provide a rich basis for building natural scene descriptions. Sensor information
from several sources can be fused to achieve more robust perception. A blackboard architecture
integrates the distributed processes that sense, map, plan and drive.

The NavLab represents continuing evolution in the design of navigation vehicles. Fully self-contained, ft
s a milestone in mobile robotics*

This technical report details the control computing and physical configuration of the NavLab vehicle.
Information on other aspects of the NavLab, including perception, modelling, planning and blackboard

10

architectures, can be found in articles listed in Appendix V.

11

2. Controller
The NavLab controller parses and implements a Virtual Vehicle instruction set. The controller is
implemented as a loosely coupled parallel processor. Commands are received via a serial link from Host
computers or an onboard console. Five axes of motion are controlled: drive, steering, pan and tilt motions
for the cameras, and a pan motion for a laser ranging device. Status of devices onboard is monitored by
a sensor subsystem that constantly polls processors dedicated to groups of sensors via a high-speed
serial bus. Status information is displayed on the console inside the vehicle and is available to the Host
computer via queries.

2.1 System Architecture
The control computing for the NavLab is based on the hierarchy shown in Figure 2-1, a system
architecture for robot modeling and planning associated with autonomous task execution in unstructured
and dynamic environments. The NavLab controller is tantamount to the lowest level of the architecture.
The need for an interface protocol between the control computing and the higher level computing forges
the virtual system, which allows the low-level control computing to mask the physical implementation
details from the higher level computing. This is accomplished through command primitives that define the
interface. Using the virtual system, many of the high-level modeling and planning functions can port
across a number of different physical systems that can be controlled with the same command primitives.
Only the lowest level control computing must deal with the physical differences of the system.

Complex systems usually defy any attempts at mathematical modeling techniques, which makes control
parameters impossible to even estimate. A set of pseudo constants, tunable from an operator's console,
adjust the parameters and gains. The NavLab maintains these constants in file structures that remain on
disk for power-up initialization. The system always starts up with default values established from the most
recent tuning of the system.

The control computing accepts commands from a host or human operator who can intervene at various
levels of control to insure safe operation during experiments. The assumption during development is that
the higher levels of computing will not succeed in all situations. The control computing thus provides a
graceful transition between computer and human control when failures occur The hooks for human
inputs are also useful for setup and recovery during experiments.

The sensors monitored by control computing reflect the state and ability of the system to respond to
commands issued by the cognitive planning layers. The values of the observed parameters have fixed
maximum limits that are characterized by the physical system. These finrts, however, am not static and
can move inwaid during certain operating condtions. Physical parameters such as heat and pressure can
diminish NavLab's mechanical ability to respond to commands. The parameter limits are dynamically
adjustable by the controller to protect the NavLab. When controlling with a powerful physical plant like the
NavLab, erroneous plans and commands have significant impact. The control computer should never
execute commands Windy, so mechanisms are needed for validating ami rejecting commands, wth
advisories communicated to the source of commands.

Control competing, the lowest of the three levels within ttie autonomous mobile system architecture,
interacts with the physical system. The design criteria set forth tor the NavLab Iow4evel controller include
an open-tnded archtecture* a virtual system interface and multiple command streams.

12

Planning: What to do?

/Semantic^
Models

High-Level
Modeler

/Symbolic^
Modeling: (Models J-

What exists? 7K

Low-Level
Modeler

i
|Raw

c

Strategic
Planner

Tactical
Planner

Reflexive
Planner

/Cognitive]
- j l Plans J

High-Level
Interpreter

(Bementan
- j l Tasks J

Elemental
Tasks) Interpretation:

How to do?

Low-Level
Interpreter

f
• ^

Direct
Actions

Physical World j

Figure 2-1: The Hierarchical Layering of a System Architecture for Modeling
and Planning

2.2 Virtual Vehicle
A Virtual Vehicle is a man-machine interface that accepts conceptual commands and provides a dean
separation between the navigation host and vehicle control. This interface masks implementation details
of the physical vehicle, facilitating adaptability to future navigation testbeds.

The Host (the computing engine that does planning) communicates with the Virtual Vehicle via ASCII data
transmitted over a serai line. The communication falls into three categories:

» Commands issued by the Host
• Queries by the Host about the status of devices
• Reports initiated by the Virtual Vehicle on completion of commands and in case of

emergency.

In the current imptefnertatlon, the vehicle is directed along circular arcs because arcs are quickly

computed and absolute position is not critical (the arcs are being upgraded to dctftcids). Because 1 s

rot posstote for a vehicle to switch between a t art of one curvature and another instantly, path transitions

13

Host Computer

^ Machine Interface J (^ Console Interface j+

Command Prepn

Action Cmds.

Motion Control J
mot

C Fast Sensor Monitoring j C Bitbus Server J

Sensor Management

Int&rTupt Line

C Bump Detection c Motion limit Generator

Advisor

Operator's Console

3itbus Sensors/
Control

FI§yre2-2: Archiecture of Controller

boards and shared memory spaces. Criticai memory and I/O locations are controlled using a semaphore
system while bus contention is arbitrated in hardware. Interrupt lines in the Multibus backplane tie the
processors together for inter-processor communications.

Each processor is identically configured with 256 K local ROM, 512 K local RAM, and a 256 K window to
the Multibus. The ROMs on the I/O processors only contain operating system software and a downtoad
facility to allow loading of applications. The multiple bus structure permits a total system memory of 2.5
MB even though only 1 MB is addressable from each processor.

The controller also contains intelligent slave boards for I/O expanston and servo motor control. These
boards may be accessed by any bus master. Often, access is restricted to a specific processor to avoid
contention problems.

14

are inexact. Errors are compensated for by dynamically planning arcs to reach subgoal points along the
path.

To facilitate synchronization, all drive and steering commands are initiated at the transitions between
arcs. The capability is provided to make changes to vehicle motion (e.g., curvature of the arc, vehicle
velocity) on the fly. Arcs (specified as [arclength, radius of curvature]) can be queued for sequential
implementation.

The Virtual Vehicle and Host interact as follows:
• The Host issues a new arc command before the arc in execution is completed.
• If an immediate condition is specified, the old arc is discarded and the new arc is accepted

immediately. Otherwise, the new arc is initiated at the end of the arc being executed.
• When a new arc is initiated, vehicle position is reported to the Host for use in calculating

future path plans.
• The Host incorporates the reported position in planning the next arc, thereby compensating

for deviations from the desired path.

The Virtual Vehicle instruction set and details of interfacing can be found in Appendix IV.

2.3 Controller Architecture
The NavLab controller is a powerful and flexible multi-processor system. A functional block diagram of
the controller is shown in Figure 2-2. A Pilot module, responsible for management and operation of the
key peripherals and I/O devices in the system, maintains direct control of all physical action and motion.
The Pilot is also responsible for system startup and synchronization and acts as the hub in a star
configuration for inter-processor communication. A Command Preprocessor manages I/O between the
controller and devices that communicate with it. The Sensor Manager controls a network of 8-bit micro-
controllers distributed throughout the vehicle to provide points of intelligent analog and digital I/O.
Accommodations are made for an Advisor to set limits on physical motion parameters based on the
perceived condition of the mechanical systems of the vehicle. The Advisor incorporates a bump detection
subsystem that signals the Pilot if immediate action is necessary.

Each module in the system contains its own operating environment for independent/parallel operation.
The operating environments are subsets of those used for system development. Code for each module is
down-loadable to permit easy modification to the system.

2*3.1 Hardware
The WavLato controller is designed as a two-tiered multi-processor system. The first tier is responsible for
the primary computing, control I/O and motion control. It is comprised of 4 Intel 28612 processor boards
residing in a common Multibus backplane. The second tier performs remote data acquisition and control
of devices located around the vehicle using a serial network of 3-bft micro-controllers. The Sensor
Management System in the first tier is the interface between the two tiers.

2.3*1.1 Primary Computing

Processors in the first Her take advantage of the multiple bus structure of the system to increase
processing throughput Each processor contains a local bus with enough memory resources to support
is own execution environment Processors have bus master capabilities to access and control I/O

15

PROCESSORS PERIPHERALS MOTION CONTROL

ISBC 286/12
COMMAND PREPROCESSOR

ISBC 286/12
PILOT

IS BC 286/12
BITBUS SERVER

ADVISOR

ISBC

tSBC

208

412

IS8CS44

Disk

128

Controller

K Memory

Serial I/O

DISTRIBUTED SENSING

ISBC 3448ittxjs-MuHibu8 Interface

IRC8 4410
Biflbus
Node

JRC8 4410
Bitbus
Node

iRCB4410
Bitbus
Node

iSBC 519 Parallel LO

GAUL 201 Drive Control

GAUL 201 Steering Control

/%*••• ~ « Range-Finder Pan
GAUL 201 c^Jo,

i**in **« Camera Pan A
GAUL 200 jut control

Figure 2-3: Hardware Configuration

2.3,12 Secondary Computing
The second computing tier physicalty distributes sensing and control of devices around the vehicle by
using nodes that consist of 8-bit microcontrollers communicating over a high-speed serial bus using a
message protocol called Bitbus. The network is controlled by a Master node that either continually polls
other nodes to read analog and digital inputs or continuously commands them wfth reference values. The
communication overhead makes Bitbus suitable to tasks that require high-level control and slow data
acquisition. The serial bus network is extensible to support up to 250 nodes. Further implementation
details of Bitbus can be found in Section 2.3.5.1.

2.3.2 System Software
System software for the controller is based on the iRMX 86 real-time operating system. iRMX is
configurable to customize operating environments for each processor in the system. These operating
environments are resident in ROM local to each board and are booted from reset iRMX 86 provides
objects to support an event-driven, multi-tasking environment.

A facility to down-load object code was developed for building and testing multiprocessor systems. A
single processor accesses the mass storage device containing object code files for downloading. This
processor, like a system server, toads object cede into shared memory and signals the appropriate target
board when a valid record is available. The other processors contain consumer jobs to copy records from
shared memory to their local memory. On signal from the server processor, a consumer job releases the
server CPU to aftow the local Operating System to start the jobs from the newly loaded code. Once the
application software is running, the consumer load job lies idle and waits for a signal from the server
processor to reset and begin the bad sequence again. This flexible toad facility is a valuable tool for
building and testing multiprocessor systems.

16

2.3.2.1 Interprocessor Communication
Processors communicate using shared memory in two different ways. Common variables are accessed
by multiple processors to share state information (scratch pad communication). Messages can also be
written to specific memory locations on other processor boards and the receiving board is signaled by an
interrupt. This method is often used by one board to direct processing on another board.

Scratch Pad Communication
This method is a simple solution to sharing a large amount of data between modules. Processes that
acquire data (status of devices, vehicle orientation, speed, etc.) post this information to the scratch pad
area instead of sending the data to all modules that need them. Most shared variables are independent
of each other; hence contention problems are limited to access of the individual memory locations to read
or write. Dependent variables (ones that must be accessed as a group) require a software semaphore to
provide mutual exclusion. An indivisible test and set instruction provided by PUM-86 was used to create
the semaphore system.

Module tor Interprocessor Communications
The Module for Interprocessor Communication (MIC) was developed to support flexible pipelined
communications between tasks running on separate processor boards. MIC provides the applications
programmer with a simple set of procedure calls from which a task can queue messages containing a
board and task destination. MIC handles the transfer of these messages between boards.

MIC is implemented as a star architecture. All messages are sent through a central node to limit the
number of required interrupt lines. This scheme is well suited to the NavLab controller because most
interprocessor communications are to a central node (the Pilot).

MIC was built using tools provided by iRMX including inter-task communication, dynamic memory
allocation, and FIFO queues. MIC runs as an internipt-driven task. It responds to signal interrupts to
determine the destination of a received message and then sends it to the appropriate task. iRMX system
calls permit asynchronous message transfers between tasks.

MIC was designed to be compact (5 K), fast, and capable. MIC is able to dynamically allocate message
segments to meet the load of interprocessor communication traffic that varies from processor to
processor. This prevents wasting memory and time required by the system programmer to tune buffer
sizes for individual boards. When application code is modified to change message traffic, MIC can adjust
to use only the necessary memory resources.

2.3.3 Command Preprocessor
The Command Preprocessor front-ends I/O originating from two sources: the driving Host computer
(Host) and the operator's console (Console). At the lowest level, it drives the physical data inks
supporting these command streams. In the NavLab controller, RS232C serial channels are controlled. At
the next level, it validates data integrity of Host-originated Virtual Vehicle Interface (WI) command
packets by checking format correctness, parameter count and packet size. At the highest level it chads
parameter values against established limits. The Command Preprocessor has the ability to reject
commands exceeding the current operating limits, but the Pilot has final authority on command
acceptance. Query commands issued by the Host are handled directly by the Command Preprocessor
without Riot involvement.

17

The Command Preprocessor communicates primarily with the Pilot module. The other modules are
indirectly accessed through value lookups in the Scratch Pad. All commands involving action, such as
motion commands or control commands to a device managed by the Bitbus Sensor/Control Network, are
first sent through the Pilot to update its knowledge of the vehicle state affected by the controller.

The Command Preprocessor contains two separate subprocesses to service the Host and Console
concurrently. The Host Interface is responsible for maintaining communications between the controller
and the Host. The Console Interface interprets commands from the operator console keyboard. The
Console is given priority over the Host so that it is possible for the operator to override Host commands.
Commands are received as ASCII packets. The Host sends only numeric data; each command is given
an opcode. The Console allows the operator to enter commands as simple mnemonics.

Communication errors are trapped by syntactic data validation. The Command Preprocessor takes two
different actions based on the type of command it receives. For motion commands, the arguments are
validated based on the allowable ranges of vehicle motions posted in shared memory by the Advisor. If
all the arguments are acceptable, the command is passed on to the Pilot An acknowledge message is
then sent, signaling that the command was accepted and will be executed. If for any reason the
command is found to be invalid, a disacknowledge message along with an explanation for rejection is
sent to the command initiator.

The Command Preprocessor processes query commands {e.g., heading, position). The requests are
satisfied by accessing the shared memory region where the information is updated constantly. This
method makes it unnecessary to interrupt other processes. The data is formatted and shipped to the
requestor.

The Command Preprocessor also maintains the display on the operator console onboard the NavLab.
The screen is divided into three parts:

1. Display - A window displays vehicle data. The operator can select between 5 different
displays:

• Sensor data shown in graphical form (vertical bars).
• Sensor data shown in alphanumeric form.
• Status of switches controlled by the controller shown in alphanumeric form.
• Command packets between controller and the Host.
• A help screen that explains how the operator can control the vehicle by using the

Virtual Vehicle instruction set.

2. Command line - Allows the operator to:

• Enter Virtual Vehicle commands.
• Enter software joystick commands.
• Turn on/off switches controlled by the Bitbus network.

3. Information area - A window is reserved for special messages that may be sent by any
process in the controller.

2.3*4 Pilot
The Pilot's main (unction is controlling or initiating all physical action ami motion control. The Pilot also
plays the central mte in fetter-processor communications by acting as the hub In a star configuration. All
commands altering the state of the vehicle are filtered through the Pilot, eliminating contention and state
ambiguity problems potential to systems altered by multiple independent processes. For the generalized

18

case, the Pilot module would occupy several processor boards and handle manipulation as well as
locomotor control.

The Pilot is composed of a hierarchy of concurrent processes (tasks), each of which is dedicated to
maintaining a specific subset of state variables and initiating all actions affecting those variables. At the
lowest level, each axis of motion has an individual driver process associated with it that formats motor-
controller specific command strings, performs I/O exchanges with the motor-controller board, and
maintains the current values of all pertinent variables for that axis in local memory. The axis drivers at
this level have no notion of the physical configuration of the overall system. Coordination of motions is
handled by higher-level processes.

Action requests can be submitted to the Pilot by the Command Preprocessor at any time. On receipt of
such a request, the Pilot returns an acknowledge/disacknowledge message to the Command
Preprocessor indicating whether it can execute the command. If the received command can be executed,
it is decoded and forwarded to the appropriate subprocess for handling. Depending on the type of action
requested, this process may then

• direct motions (via the appropriate axis drivers)
• read or set parallel I/O lines (for example, to select a different transmission gear)
• update the values of some state variables.

Because individual processes each have a specific run-time priority, critical commands (e.g., "STOP")
always obtain control of the CPU, even if a lower-priority command is still in progress. Also, because task
scheduling is event-driven rather than time-shared, high-priority processes always run uninterrupted, i.e.,
in constant time.

A special set of tasks within the Pilot maintains and processes a queue of arcs specifying a path for the
vehicle. These arcs are executed continuously and a position report is issued to the Command
Preprocessor on completion of each arc. Velocity and acceleration parameters can be updated at any-
time during execution of an arc; in addition, one value for each of these variables may be queued to go
into effect with the beginning of the next arc execution.

The Pilot has the final responsibility for command acceptance or rejection, command queue management
and implementing established equations to achieve requested arc trajectories. Implementation details of
the vehicle are masked by the Pilot

The NavLab incorporates braking as well as forward ami reverse propulsion in a single, bi-directional
hydrostatic drive. For the generalized vehicle case, the Pilot would coordinate brake/throttle control to
achieve velocity and position objectives. At the servo level, motion is controlled by motion control bcaros
commanded by the Riot. Emergency stop conditions are signaled to the Pilot by a critical interrupt Sine
controlled by a planned Health Preservation module with bump detection facilities. On assertion of this
line, the Pilot is responsible for graceful shutdown, leaving the vehicle ready for recovery actions issued
from the operator's console. Because only the Pilot controls the motion, it is always aware of the curreff
motion state.

Rnafiy, a few background processes perform such functions as maintaining the system dock ami
calculating position coordinates based on sensor measurements.

19

2.3.5 Sensor/Device Management System
Apart from the five main axes of motion, there are numerous sensors that must be monitored and devices
that must be activated. The Sensor/Device Management System manages two classes of sensors. The
first class is characterized by sensors and devices that need not be monitored/controlled frequently. For
example, a sensor might be dedicated to monitoring hydraulic fluid temperature; while this information is
important, it is not essential that it be updated more frequently than once in several seconds. Another
class of sensors is that group of devices that must be monitored frequently. An example is a process that
must analyze data from inertial devices and post these results in shared memory several times a second.

2.3.5.1 BItbus System
The Bitbus System is a highly flexible and expandable data acquisition and control system. By taking
advantage of the Bitbus distributed control architecture, the Distributed System supports analog status
sensors and digital I/O channels using microcontrollers distributed on a serial network. Nodes on this
network transfer data to the Bitbus Server module using the Bitbus message passing protocol. The Bitbus
nodes are programmable to meet a wide range of sensor and control configurations. Data returned to the
Bitbus server are conditioned and scaled at the Bitbus node, reducing computational requirements of the
Bitbus server.

The primary responsibility of the Bitbus server is to acquire and move sensor data to shared memory
locations recognized by other modules in the controller. When the Pilot sends an action command
request, the server must format messages to control any devices supported by a Bitbus node. In support
of these functions, the server must also handle node initialization, self-monitoring, and fault recovery for
the Bitbus network. The chief advantage of using a Bitbus network is the modular expandability and
flexibility that is inherent to the Bitbus architecture. Complex inter-processor message passing facilities
are included in the architecture, relieving the programmer of much responsibility.

In simple systems with limited I/O points, the Distributed System could be replaced with a single board
computer equipped with the appropriate I/O expansion modules.' An effort should be made to keep I/O
operations local to the processor to avoid consuming bus bandwidth. With either implementation
scenario, the update rates of shared variables should be adjustable to control the bus access frequency
of the Distributed System for toning purposes.

The Bitbus network provides a distributed control structure to service the first class of sensors. A list of
sensors and devices on this network can be found in Section 2.5.2.

The Bitbus network is based on a master (Bitbus server) and slave (Bitbus nodes) concept (Rgure 2-4).
Nodes provide the connection between the sensors/devices and the central Bitbus Server. Because each
node operates independently, fast data acquisition can be achieved by distributing the work load among
many nodes. Nodes can also be programmed to perform control tasks by reacting immediately to critical
conditions as they arise.

The BMXJS Server, one process on the Sensor Management Module, initializes the network and monitors
status, Because the nodes cannot initiate communications, the Server must continuously pol each node
for output data, When the Server receives a message from a node, I posts the relevant information in
shared memory for reference by other processes. When some high-level process needs to control a
Btbus node, a message is sent to the Server. This message is then broadcast on the network where it is

20

Pilot

Status Sensor Manager

{Receive Control] [Post New |
Command J I values J

c
t

Format Bitbus
message

Pol! Noder
for Sensor Data

Receive
Node Response

a]

/ network \
/ interface \

Shared
Memory
Region

Twistedpair

Bitbus
Nodes node

3

sensor

switch

Figure 2-4: Bitbus Server

trapped and processed by the addressed node.

2.3.5.2 Fast Sensor Monitoring
The Sensor Management system also maintains processes to monitor those devices that must be
serviced at a high frequency. At present, the only such device envisioned is an Inertial Navigation
System anticipated to report position and orientation data about 10 times/sec. The incoming data is
parsed and posted in shared memory. Other devices that need to be monitored constantly can be added
to the controfer simply by alocating a process to them This method Is preferable to the Bitbus method
when data must be accessed frequently ami must be made available to the entire system quickly.

2,4 Motion Control
Of the 5 axes of motion, only drive and steering can be controlled .both- manually ami automatically. T t *
other three motions of pan and tilt are only need in automatic operation. Figure 2-5 (a) stows I t *
configuration during manual operation. Al axes of motion on the Navlab are physically controlled W
Gal DMO200 series motor ooitroffers. These conbolers were chosen for

• Multibus compatfoiiy
modes of contra! (position, velocity* torque)

21

• coordinated motion of two or more axes (DMC-200 only)
• programmable acceleration and slew rates
• status, position, and error reporting.

A digital phase lead control law with adjustable gain, pole and zero provides a stable closed-loop system
for a wide range of plant dynamics. The motor controllers communicate with the Pilot subsystem through
Multibus I/O ports for data as well as handshake exchange.

Single axis Galil DMC-201 controllers are used for steering, drive, and laser-ranging pan motions, while a
DMC-200 two-axis unit is used for the camera pan and tilt (Figure 2-5 [b]). Each controller is software*
calibrated at power-up to match the dynamics of the controlled axis. Thus, motor controller boards can be
interchanged simply by selection of appropriate I/O addresses via jumpers.

2.4.1 Dash Panel Control
The vehicle operates manually to simplify transport to and from test sites. Manual operation doesnt
require any computing or generator power. The electronic components active during manual operation
are powered by the NavLab's 12 V system.

Emergency

Brake Speed
Peoai Control

Figure 2-6: Dash Panel Layout

A human interface is incorporated for safe and easy use by drivers of standard automobiles. Rgure 2-6
shows illuminated pushbutton controls mounted within reach of the driver.

• High, Neutral, & Low: allow the operator to choose gears. Because switching directly from
one gear to another produces an unsafe lurching of the vehicle, a hardware logic function
allows switching only by first selecting Neutral.

• Forward, Reverse: select the direction in which the vehicle moves.
• Auto/Manual: a puil-push switch that switches between manual and automatic control.
• Emergency Slop: disables autonomous locomotion and brings the vehicle to a rapid,

controlled stop. Servo-lock of steering is disabled; steering is returned to manual' control.
• Brake Pedal: as in commercial anise control systems* a light touch of the 'brake pedal brings

22

C
o
O

o
o

o
CO

c
0

CO

1
i

fi
o

i

fo
lia

r

••c
o
O

c
o
O

o
c

0

Figure 2-5: Motton

23

the vehicle back under manual control.
• Speed Control Pedal: activates a 20K ohm potentiometer to produce a voltage proportional

to the angle of deflection of the pedal.
• Throttle Control: this dial sets the vehicle engine RPM as detailed in Section 4.2.1.1.
• HE: this switch turns on/off the heat exchanger fan for the hydraulic system.
• HP, LP: These lamps are lit when the dirty oil filters in the high and low pressure hydraulic

systems indicate an alarm.

By default, when the vehicle is powered up, It is put into manual mode, neutral gear, and forward
direction. It is necessary to provide the ability to override the autonomous mode in a fast but controlled
manner if an emergency develops. To ensure reliable operation, manual override is a hardwired
electronic circuit with sealed electromagnetic relays instead of sequential logic gates. This design proved
to be immune to the noise and power fluctuations common to automotive electrical systems. Because
this circuitry is essential to vehicle locomotion, it is powered by the vehicle 12 V system rather than the
generator.

An electronic ramp/hold circuit in series with the foot pedal provides adjustable limits on acceleration and
deceleration and ensures that abrupt movements of the foot pedal do not cause the vehicle to lurch. This
feature was included both for safety and ease of driving. A second ramp/hold unit ensures a smooth
deceleration in case of an emergency stop.

2.4.2 Steering Control
The steering control system consists of a computer-controlled DC servo motor linked to the steering
column by a toothed belt. A single axis motor controller (DMC-201) uses feedback from an optical
1200-line incremental encoder mounted directly on the motor shaft to maintain tight position control over
the steering wheel. A servo-amplifier converts the +/- 10V control signal from the motor controller to drive
the DC motor with up to 11 amps of continuous current. At maximum speed, the steering mechanism can
be moved between its two extreme positions in 2 seconds.

Feedback is obtained from an encoder on the motor shaft thai is mated to the steering wheel, which is
always turned a specified amount. Differences between intended and achieved radius occur due to
linkage non-linearities and factors such as friction between the road and the wheels, grade of the road,
vehicle speed, and speed with which the steering wheel is turned.

Limit switches on the steering linkage are hardwired inputs to the controller board and provide both a
safety stop to protect the steering mechanism and a reference point for roughly calibrating the steering
control system to a known position on power-up or system reset.

2A3 Drive
A single axis motor controBer services the drive system. The voltage (-10V to 10V) produced by the
motor controller is converted to a current signal (-1 OOrnA to 100mA) by an amplifier that directly operates
a hydraulic servo valve to set t ie speed of the hydraulic motor. Acceleration of the vehicle Is limited by a
ramprtiold circuit, mentioned in Section 2.4.1, in effect providing a low pass filter to the input signal. An
optical 300-line incremental encoder mounted on the hydraulic motor shaft provides feedback to the
motor controller. Because the transmission is downstream of the hydraulic motor (Le.f between the motor
and the driveshaft), the encoder pulses must be interpreted differently for high and low gears.

2.5 Sensors/Devices
At present, the controller features for handling sensors are not fully implemented. Two fronts of
expansion are proposed for the near future. An Inertial Navigation System will be incorporated to provide
continuous position and orientation information. A Bitbus network will be used to monitor and control
devices distributed around the vehicle*

2,5.1 Inertial Navigation
An Inertial Navigation System (INS) to be deployed on the NavLab will receive distance data as input and
will provide position and inclination data along the axes specified as output. The INS detects initial
heading on its own and provides updates of position and heading.

The following information will be obtained from the INS:
1. True heading of the vehicle - 0.5 degree resolution.
2. Rate of change of heading - 0.5 clegs/sec resolution.
3. X, Y, Z position in cm - 10 cm resolution. This will allow movement on a 100 km2 grid.
4. Roll and pitch inclination - 0.5 degree resolution.

Performance criteria include:

• Dead Reckoning Capability: Speeds along the direction of travel of up to 60 km/hour; turning
speeds (change of orientation) of up to 40 degrees/sec.

• Accuracy: Maximum long track error: 1% of distance traveled. Maximum cross track error:
0.1 degree/hour.

• Updates: Must be able to handle the accuracy requirements above with updates coming only
once an hour or once in 5km.

• Necessity of Stopping: Must not need more than 5 minutes for the vehicle to be completely
stationary on power-up or on recalibration.

At present a device that uses three mechanical gyroscopes and requires an odometer input is being
considered. A second device being considered is a strap-down system that uses ring laser gyroscopes.
This is much more accurate than the first and does not require odometer input.

2.5.2 Sensors/Devices on Bitbus Network
The following is a list of sensors and devices that are monitored and controlled by the Bitbus network
Scan cycle time indicates the period at which each of the sensors is monitored. Temperature units are
degrees centigrade. Pressure units are pounds/so, inch.

Sensor
Thermocouples
Engine Oil
Engine Coolant
HavLab Cabin
NavLab External
Hydraulic Reservoir

Pressur® Transducers
Engine Oil
Hi-pressure System (input)
Hi-pressure Systam (output)

Scan Cycle

sec
sec
sec
sec

30
30
30
30
30

10 sec
10 sec
10 sec

0 deg
0 dag
-10 deg
-10 deg
0 dags

psi
psi
psi

Haxi]

175 deg
150 deg
40 dag
40 deg
100 degs

60 psi
3000 psi
3000 psi

3. Vehicle Shell
NavLab's foundation is a 1985 General Motors Vandura cutaway chassis chosen as a commercial base
to simplify development. As acquired, the vehicle consisted of a chassis, a drivetrain and a cab. A
custom shell was constructed to house the onboard AC power generation, power distribution, control and
computing equipment. Space for operators is provided, allowing research activity within the confines of
the vehicle. The original configuration also included a 350 ci V-3, cruise control, an automatic
transmission, dual rear wheels, power steering, power brakes and a 33 gal fuel tank.

3.1 Exterior Design
The shell was custom-built with particular attention paid to strength requirements, anticipating needs for
extensibility. The roof and cab support air-conditioning, antennas, sensors, and working personnel. The
floor of the shell supports about 2000 kg. The shell is dimensioned so that researchers can stand inside;
five equipment racks are housed side by side along one side of the vehicle. Figure 3-1 shows a rear and
side view of the vehicle.

Hie shell is made entirely of steel. Heavy gauge was used on the front and back walls while lighter
gauges were used along the side walls and roof. A metallic blue paint protects the entire shell There are
compartments for the generators and power-related equipment. Louvered metal doors provide outside
access; there is no access to these compartments from inside the vehicle to keep fumes from entering the
shel

A wiring port in the floor behind the driver's seat allows wiring from the underside to enter the vehicle.
Another access vent in the shell above the passenger compartment enables wiring from cameras and
range sensors to enter the vehicle.

3.2 Interior Design
Figure 3-2 shows a topdown view of the NavLab. The cab has two seats, one for a driver and one for a
passenger. A console located between the two seats allows the operator to control and monitor the
transmission. A research area behind the cab contains computing, sensing, and control equipment, as
well as space for two researchers.

Five equipment racks are located on the left side. A desk area extending the length of the research area
is located opposite the racks across the aisle. Three video monitors mounted above the desk area can
swivel to a desired viewing position.

Along the rear edge of the desktop an outlet strip provides power for the various terminals ami test
equipment. Soft-down inserts with elastic straps prevent computer equipment from sliding on the desktop
when the vehicle is moving.

Cabling between devices passes through cable trays mounted close to the ceiling. The tray design
securely holds video ami communication cables but allows for easy removal or addition. Track-mounted
lights above the desk area provide independently aimed illiminartfon.

in addition to the two seats in the cab, a swivel seat9 centered in the desk area, Is mounted on the wai of
a generator compartment Extra removable seats can be mounted in the aisle for more researchers.

26

Voltages & Currents
Battery Voltage
RPM
GAS Level
Low Laval Reservoir
Swash Plate Angle

Switch Settings
Transmission Gear State
Generators (2)
Heat Exchanger

30
2
60
60
1

1
1
1

sec
sec
sec
sec
sec

sec
sec
sec

0 V
0 V
0 V
0 V
-10 V

15 V
5 V
5 V
5 V
10 V

27

Side View

General Navlab Specs
Total Weight 5449kg
Minimum Turning Radios: 750 cm
Center of Gravity: (112cm, 244cm)

(x*y*) with rear comer on the
driver's side as the origin.

Rear View

Figure 3-1: Side and Rear View of the Vehicte

28

550 cm

Figure 3-2: Interior Laycxrt of Vehtele

&2.1 Cooling
The heat generated by power conditioning, lighting, and electronics would damage some of ft*
experimental computing. Thus in addition to the air conditioning provkJed on the van, a standard roof*
mounted recreational vehicle air conditioner provides cooing.

29

4. Locomotion
Steering and drive motions coordinate to drive the NavLab through planned trajectories. Both axes of
motion are controlled by analog signals issued by the controller while in automatic mode or through
manual controls.

4.1 Steering
Figure 4-1 shows a front and side view of the NavLab steering mechanism.

Toothed bdt couplet
to

Stomng Wheel

Steering Whed

Steering cohrrrm
shaft

Predika
toochedbefc

CDC Servo
Motor

Optically encoded
DCi

SIDE VIEW FRONT VIEW

Figure 4-1: Steenng Adaptation

The original linkage and steering column are driven by a DC servomotor mounted below the steering
column. The motor is connected to the steering column shaft via a precision toothed belt; two toothed
pulleys provide a gear reduction of 5 to 1. This configuration provides high enough torque to turn the
steering shaft but tow enough for the operator to overpower the steering motor in an emergency. A
special hub ties all the steering elements together and a safety enclosure houses the moving parts. Umit
switches at the extremes of steering travel prevent command error from damaging the system.

4.2 Drive
A hydraulic pump and motor combination comprises NavLab drive. This hydrostatic combination was
selected because 1 provides precise control of position, speed and acceleration. Hydrostatic equipment
also has a long history of smooth control and finefy adjustable response.

Drive power comes from the main vehicle engine. Engine Rpy is limited by a governor to prevent
overdriving the attached hydraulic pump. Pump output is controlled by an analog signal.1 The

1TW» «g« i origkiaftM from mfm a foot pedal tmt mplacm tm standard gas pmM or m <Mm contraltr, d»p#mc§ng on whettwr
tm v&mde is m mtmmi or automatic mode,.

30.

Fiber insulation between the shell and interior panels also provides protection from the heat. Insulation
inside and outside the shell helps control interior climate. Underfloor insulation keeps heat from the
hydrostats and exhaust from entering the interior. Rat sheets of fiberglass covered with thin gauge
aluminum are inserted in floor areas between frame members. High temperature silicon-based insulation
covered with heavy gauge aluminum foil covers exhaust pipes.

31

HYDRO
MOTOR

1
CO

en
DRIVESHAFT

CLUTCH
DIFFERENTIAL

REAR WHEEL

Figure 4-2: Schematic of Vehicle Drivetrain

displacement of the pump (proportional to the signal from the footpedal) determines the speed at which
the hydraulic motor moves. The motor in turn powers a two-speed transmission which operates at either
a 4:1 (low gear) or 1:1 (high gear) ratio, turning the driveshaft connected to the vehicle differential. Figure
4- shows a schematic of the drivetrain.

The configuration described above makes control of vehicle motion simpler than if the vehicle
transmission and brakes had to be controlled to produce desired velocity. The standard braking system is
intact but is only used in case of emergency because the analog signal to the hydraulic pump controls
both accelerations and decelerations.

4.2.1 Vehicle Engine
The standard 350 d V-8 engine is the main source of driving power. The following modifications were
made:

• An electrically actuated clutch was installed to couple the vehicle engine to the hydraulic
pump. The clutch is disengaged to isolate it from the engine when the engine is being
started.

• The alternator was upgraded to a 120 amp dual output unit to satisfy the additional
requirements of the two-battery, 12 volt system onboard.

• One stock emission control air pump was substituted by a hydraulic power takeoff unit. It is
driven from the crankshaft end and shares a stock V-beft with the power steering pump.

• An engine oil cooler was installed to reduce oil deterioration caused by the constant high
engine temperature.

4.2.1.1 Engine RPM Control

An engine RPM control keeps the vehicle engine running at a determined range of RPM irrespective ol
grade and speed. A magnetic pickup on the output shaft of the engine provides feedback to a specialized
controller that maintains a constant RPM by moving an actuator linked to the engine carburetor Rgure
4-2 shows a schematic of the mechanism.

CARBURETOR

ACTUATOR

RPM
CONTROL

i

§ OUTPUT
• SHAFT

i

RPM
FEEDBACK

RPM
SET&.

DISPLAY

MAGNETIC PICKUP

Rgure 4-3: Mechanism for Engine RPM Control

4.22 Hydraulic Pump
The output of the engine drives a hydraulic pump through a flexible coupling. The pump is suspended
from a frame cnossmember with rubber shock mounts to allow movement with the engine.

The pump, a Sunstrand axial piston pump, is equipped with an electronic displacement control valve thai
alters the angle of an internal swashplate between 0 and 18 degrees, depending on an input signal that
varies from -10 to 10 V. Negative voftages cause the pump to turn in the reverse direction. At 0 vots the
pump has a holding torque to keep the vehicle stationary. At 10 V the displacement is maxima
corresponding to maximum driving speed.

Hydraulic fluid is supplied to the pump from the reservoir by an integral charge pump to replace the fluid
pumped to the motor while an equal amount of surplus hot oil is drained from the pump case and passed
through the main heat exchanger.

4,2,3 Hydraulic Motor
Hydraulic power from the pump is transmitted to a matching fixed displacement motor attached directly to
the transmission. High-pressure flexible hose couples the motor ami pump. Because the motor is a feee
displacement type, it always turns the same amount for every unit volume of fluid pumped in, resitting in

art RPy of the motor that is directly proportional to the input signal of the pump.

A to micmn filter cleans the return leg of the high pressure system. An additional crossmember supports

33

the hydrostatic motor. The motor unit has an SAE standard shaft mounted to a mating flange on the
driveshaft's forward universal joint yoke.

4.2.4 Transmission
The Funk transmission, an electrically shitted two-speed gear box installed between the hydraulic motor
and the driveshaft, is bolted to a reinforced frame member. It is mechanically coupled to the motor on the
input side and to the driveshaft on the output side. The transmission provides a ratio of 3.950:1 in low
gear and 1.0441:1 in high gear. Low gear supports low-speed experimentation (0-20 km/h); high gear
(O-40 km/h) transports the vehicle along public roads in manual mode. The gear is selected electronically
by applying a voltage to one of two solenoids on the transmission; if neither solenoid is activated, the
transmission is in neutral gear. It is necessary to shift into neutral when changing from one gear to
another.

A flow-through lubrication and charge system was added to the transmission to circulate hydraulic fluid.
The fluid is returned to the reservoir through a low-pressure filter.

4.2.5 Reservoir, Heat Exchanger, and Filters
A reservoir holds about 80 liters of hydraulic fluid. Because seals and bearing surfaces are sensitive to
temperature and contamination of the hydraulic fluid, oil returned to the reservoir must be allowed enough
time to de-aerate and cool. Heat is removed by passing oii from the pump case drain through a heat
exchanger. Cooled oil is directed back to the reservoir. Dirt in the oil is filtered at two points: in the return
leg of the high-pressure system and between the transmission and the reservoir.

A series of valves assist in the cooling and circulation of working fluid. A shuttle valve and a low pressure
bleed-off valve act together to allow a small portion of the working fluid to circulate through the oil cooler
and reservoir. A make-up pump replenishes the fluid that is removed via a bleed-off valve.

The reservoir is equipped with a thermistor and a level gauge to relay tank status to the vehicle controller.

4.2.8 Hydrostat Sensor and Control System
Rgure 4-5 shows the sensing and control system associated with the hydraulic drive system. All the
components are located on the underside of the vehicle so all lines enter the vehicle through a wiring port
in the floor behind the driver's seat.

Control toes include:
1. Hydrostatic pump displacement: This line controls the swash plate angle in. the pump

regulating the displacement of hydraulic fluid to the motor.
2. Gear selection: This fine controls the gear (high or low) of the transmission.
3. Heat exchanger fan control: This ioe controls the on/soft state of a fan that ooote the

hydraulic f iuid.

Sensors include:
1. Dirty filter sensors: one dirty f ler sensor is installed in each of the high- and tow-pressure

legs of the hydraulic system. These sensors trigger an alarm when they become clogged*
2. Pressure transducers: These read system pressure at input and output of the hydraulic

motor

34

transmission circuit
supply

Chevy 35Oci. V-8
Transmission

Circuit
Pump

case drain to heat exchanger

high pressure
drive circuit

returns from
transmission circuit
^ motor

charge pump
supply

High pressure
lOikron

Hlter

temperature
sensor^ high pressure ^ ^

^ drivecircuit ^

motor case drain to

lube and cham
suction X fluid level

sensor

lube and
charge reti

2 Speed Transmission

Low Pressure
FilterI lube and charge

I < * -

Supply 10 IT2BS.
circuit mcior

Minimum

murntotsik

charge pump

A. Transmission

B. Funk Qsarge Pump
C. Scavenge Pump

n§tifi4-4: Hydro Drive System

•• *

35

8. Funk Charge Pump
C Scavenge Pump

Figure 4-5: Hydrostat Sensor and Control Unes

3. Reservoir sensors: These measure fluid level and temperature of hydraulic fluid in the
reservoir.

4. Motor encoder feedback: An optical encoder mounted on the shaft of the hydraulic motor
provides feedback to the drive controller.

5. Steering limit switches: Limit switches are installed on the steering mechanism to signal an
alarm if the wheels are cranked beyond acceptable limits.

5. Electrical System
All the electrical power needed by the NavLab is available onboard the vehicle. Electrical power can,
however, be brought in from a shore power plug while the vehicle is in a fixed location. Power is
distributed such that the generators are not needed to drive the NavLab manually.

5.1 AC Power

RACKS RACK4 RACK3 RACK2 RACK1

AirCand.

Warpl host

Waxp2host

Warpl cluster

Warp2 cluster

Sun 3/180

UPS

Load
Centers

Disk Drives
580MB

Sun 3/180

UPS

Video Amps
Video Patch

Camera
Controller

Sun 3/180

UPS

Air Conditioning—

lights —

Desk Strip-

Controller

Servo
Amplifiers

ERIM
processor

-Monitor Scrip

Generator (20KW) O O-
Shore
Power

Figure 5-1: Wiring Schematic for AC Power

Figure 5-1 shows a schematic of the AC power system onboard the NavLab.

5.1.1 Generators
The generator supplies 100 VAC power to the variety of devices on the NavLab. The generator resides in
a compartment accessible only from the outside of the vehicle, insuring the separation of noxious fumes
from the interior.

Two compartments house an engine that is hydraulfcaiy coupled to a hydraulic generator unit in the
forward compartment. This arrangement allows a single source of power up to 20 KW. Fuel to supply the
engine comes from the vehicle fuel lines ami the eiectiical1 power to start the generator is supplied by the
vehicle 12 VDC system. The unit can be stopped and started by a panel switch.

38

5.1.2 Shore Power
The NavLab can plug into power from a building when stationary, alleviating constant generator
operation. An extension cord from a nearby power outlet (220 VAC 50A) mates to a 220 VAC single-
phase plug mounted in the outside center compartment.

5.1.3 Power Condi t ioning

Because variations in load and temperature affect generator power output, the power from the generators
must be be conditioned to protect sensitive machinery from spikes and brown-outs. This is done by
passing power through Unintenuptable Power Supplies (UPS). These devices not only condition the
power from the generators but also provide full-load backup for up to 15 minutes, even if the generators
or shore power are shut down, allowing a graceful system shutdown if power fails. Three UPS devices
provide a total of 6KW of conditioned power, which will more than suffice for a complete configuration of
computing equipment. The lights, air conditioner, video monitors, and servo-amplifiers do not receive
conditioned power because they are much less prone to fluctuations in generator output.

5.2 OC Power
Because many of the devices onboard use DC power, the stamlard vehicle 12 V system was extended by

adding an extra batteiy and replacing the alternator with a dual output 120 anp unit that charges both

batteries.'

Rgure 5-2 shows a wiring schematic for the DC power system. The original battery powers:
1. Vehicle ignition - starting power for the engine;
2. Dash panel - all switches on the dash panel;
3. Interior lights - overhead lights in the research area;
4. Control electronics - the input voltage to two power supplies. One converts the 12 V into

-12 V and the other converts 12 V to 5 V. Each power supply has a limit of 3 amps.

The second battery provides:
1. starting power for the generators;
2. power for generator compartment lights;
3. power to run the hydraulic fluid cooler fan.

An additional 28V power supply is mounted in the equipment racks. This takes an input from the 110 AC
system and produces up to 30 amps of current, most of which is used by an EFUM laser scanner. The
inertia! navigation device will operate on the same power supply.

39

Regulator
To ignition < | | DuaJOutpi*

120 Amp
AltonMor

Controller* Dm Coastal

DashPmel

laerior

Inicrior
Tight

Figure 5-2: Wiring Schematic for DC Power

6. Telemetry
Telemetry to the vehicle was thought to be useful inhere environmental sensitivity, location, or size of
computing equipment precludes installation onboard the NavLab. This feature has not yet found use in
practice. NavLab telemetry provides control and monitoring from a remote site, allowing stationary
computers to be used in navigation experiments.

REMOTE SITE

Figure 6-1: Telemetry Configuration of NavLab

The scenario in Figure 6-1 shows the closed loop set-up of a vehicle experiment where computing might
be distributed offboard. The camera outputs a video signal that is broadcast over a UHF frequency and
picked up by an antenna and receiver located on the Carnegie Melton campus. The receiver provides the
video signal to a frame buffer within the computer that processes the image. The signal is digitized and
then analyzed. Commands to the vehicle are sent over a serial line to a wireless modem. A radio
modem on the vehicle picks up this signal and feeds rt to the controller.

6.1 High Bandwidth Transmission
An experimental racfio license obtained from the FCC covers several broadcast frequencies. The license
covers 2 UHF television channels, a ful duplex radio 'ink, and a 2 MHz microwave link.

The video signal is transmitted on the video transmitter while range data are transmitted over an ayrat
sideband of one UHF channel Because transmission rates can be as high as 56 K baud, the other aural
sidebands no! currently in use could serve several other data transmission needs.

6.2 Low Bandwidth Transmission
Two sets erf 1200 baud radio moderns are used for simple, tow«baoc!width digital communication. These
devices provide a transparent RS*232 connection between computers and facilitate sending commands
to and from an offboamd machine ami the NavLab controller.

41

6.3 Cellular Phone
Separation of vehicle from stationary base facilities involves not only communication over distance for the
machines but also for humans. For this reason, a cellular phone using existing mobile communications
networks within the city has been installed.

42

7. Perceptive Sensing and Computing
A variety of sensors can be mounted on the NavLab depending on the type of research being conducted.
Vision, laser ranging, and sonar ranging are the most popular sensing modes. More details of sensors
and computing can be found in articles listed in Appendix V.

7.1 Video
Cameras provide a standard RS-170 video image to the frame buffer. Vision processing transforms this
image into a scene description to support navigation.

Typically, a single camera mounted in the front of the vehicle provides a wide-angle view of the scene.
Some vision algorithms, however, call for a stereo pair of cameras. Broadcast-quality cameras that
provide red-green-blue color signals are used. Remote control units allow control over camera functions
like gain, color balance, and iris size. Presently, camera focus and zoom must be controlled manually.

7.2 Laser Ranging
Laser ranging is useful in areas where vision algorithms fail - in detecting depth discontinuities in scenes
where the edges are not obvious and in those scenes mat have uneven lighting because of shadows.
Whereas the camera is a passive instrument, the laser rangefinder is an active device that emits a beam
in a raster fashion and captures the reflection to provide two types of information - distance and
reflectance. The data are then analyzed to provide a scene description. Laser ranging provides a direct
3-D description of the scene while vision requires more expensive computation to extract this information.
Range readings are particularly useful because they are not affected by ambient light.

The current laser ranging device, manufactured by ERIM, provides a 256x64x8 bit depth map. The
scanner output is processed by a Motorola M68000 processor and sent to a Sun computer dedicated to
ranging.

7.3 Pan and Tilt Mechanism
Vision and ranging sensors can be mounted in various configurations. Most configurations call for two
independent pan motions - one for the laser scanner and another for the cameras. Tilt is needed for
both the laser scanner and cameras.

Pan and t l design reflects a need to accurately position sensors over a large viewing range. Less than 4
seconds is required to view 180 degrees.

Cameras are mounted on rigid 5 cm dameter aluminum poles 2 meters tong mounted horizontally
through a worn* drive gearset with a hollow bore. The gearset provides a 50:1 ratio and is driven by a DC
brushed servo motor. An 800 line encoder provides feecfoack for the t l motion.

7.4 Computing Configuration for Sensing
Figure 7-2 shows configuration of oomputing for simple, perceptive sensing. Much more complex setups

are common. Each sensor commonly requires Is own workstation or specialized processor. Another

computer runs t i e blackboard system that integrates perception, modeling, ami planning.

43

Camera
Pan A Till

Figure 7-1 : Pan and TBt Mechanism

ERiM

Camera

JVCBY110U

RS232

S«rial Lin*

V5d«o
Signal

Driving Actuator

Steering Aouator

Status Sensors

Omnibyte
Matrox MIP-512
Serial I/O

Sun

Display

Sony PVM-1270Q

Frame Buffer
Matrox MtP-512

Display

VMEBw

Sun

3/75

rocesslng

3/180

Image Processing

Sony PVU.1270Q

Vehicte Controller

Intsl Uultibus System ;

Sun 3/75

UJ

B^acxboard System

nowr»7-2: Typical Architecture

A 4

1. Modifications to Vehicle
The chassis was originally rated for 10,000 lbs. gross vehicle weight. The final vehicle weight was
established as 12,000 lbs., thus necessitating a more robust suspension. In order to achieve the
necessary load rating the front coil springs were upgraded and two extra leaves were added to the rear
springs, increasing the gross vehicle weight by 2400 lbs. Heavy duty gas/oil shock absorbers were
installed to minimize a slight tendency to prtch due to the extra weight. In addition, the original equipment
tires were exchanged for Goodyear radiais with a higher toad and all-weather rating.

Modifications to the frame were minimized to preserve strength and stiffness. However, in order to mount
some of the larger hydrostatic components alterations had to be made. The main forward crossbeam,
transmission rear support beam and surrounding floor were completely removed. The crossbeam was
replaced by a box section which bridges the hydrostatic pump. A channel section was added as support
for the pump and also provides additional frame strength.

47

IV. Implementation of the Virtual Vehicle Instruction Set
Protocol
A simple high-level handshaking protocol has been designed for RS-232 communication between the
Virtual Vehicle and any host computer issuing commands to the vehicle. It provides a means of
exchanging commands and status information with a reasonable level of reliability and optional error
recovery. The motivation for this is that errors in communication should be detected and acted upon
without interfering with normal operations of host or Virtual Vehicle. By adhering more or less strictly to
the protocol, the relative importance and subsequent computational overhead of error-free communication
can be chosen at will and may be varied dynamically.

Messages between Virtual Vehicle and host are of the following form:

<length><packet IDXopcode> [<arguxnent 1>/. ./<argument n>/]<CR>

The individual fields of a packet are defined as follows:

<iength> 2 characters wide. Contains the total number of ASCII characters in the packet,
including the length field itself. Length is represented in decimal, so messages are
limited to 99 characters.

<packet I D > 3 characters wide. Unique identifier to be used as reference to the packet in
subsequent protocol transactions. Can be any combination of printable ASCII
characters (20H - 7FH), although numeric values (30H through 39H) will be used
most frequently. See description below for usage and purpose of this field.

<opcode> 2 characters wide. Represents, in decimal, the numeric index of the command to be
acted upon by the Virtual Vehicle. This implies a range of 0 through 99 for possible
opcodes.

<arguments> Zero or more numeric arguments, of variable width. Arguments are terminated by a
slash (7"). Leading zeroes are allowed. All arguments must be integer values.

<CR> Carriage Return (ODH) character indicates end-of-packet Must follow immediately
after the last argument-terminating slash, or after the opcode in the case of zero
arguments. The <CR> is NOT considered part of the packet, so it is not included in
the <length> field.

The following rules define the handshake between two devices. They should be followed closely to
achieve maximum communication reliability. However, as is indicated in the appropriate paragraphs,
error checking is done at the discretion of the receiving device.

• For every packet to be sent, the sending device generates a unique 3~character packet ID
code. This can be done, for example, by incrementally numbering packets or by encoding the
current system time. Random generation of codes is discouraged, since this theoretically
allows duplicate packet ID'S. Using the full range of 96 symbols in each of the 3 character
positions yields a range of 884,736 unique ID codes, which is in excess of the anticipated
number of messages exchanged during a typical mission of the Virtual Vehicle.

• Packets are prefixed with the length of the packet and terminated by the end-of-packet
character <CR>. The receiving device should check the actual length of the received packet
against the <iength> field to ensure integrity of each packet.

• Each packet received may be further validated by ensuring that

• the opcode is valid,

• the number of arguments is correct for the given opcode, ami

• the arguments are within allowable limits. These limits may change dynamically as a

48

Racfc 1:

Total

Rack 2

Total

Rack 3i

Total

Rack 4^

Total

Rack 5k.

Total

UPS
2 Amplifiers,
1 Transformer,
3 Power Supplies

Intel Chassis
Patch Panel 6

Control Circuitry
Tables

42,287

Video
SRIM Power Supply

Sun
UPS

Sun

Exspty

Pan £ Tilt
" 2 1135 Motors

2 Turntables
1 Tilt Gearing
1 Aluminum Rod
2 JVC's
SRZM
PMX motor
56 C Coupling
Bracketing
lower mount
upper mount

total

Shell

Van Body
front axle
rear aacle

42,226

42,165

42,104

42, 43

121,447

121,171

101,427
101,109

54,4

52.2
24.9

9.1
11.3

152.0

22.7
24.0
46.7

68.0
54.4

122,5

68.0
68.0

0.0

8.9
26.3
22.7
4.5
5.0

34.0
4.5
4.5

18.1
45.4

174.0

1153

1120
649

Overall:
Cantor of Gravity: 112,244 Weight Total: 5449kg

49-.

function of, for example, vehicle speed or road conditions.

• If none of the above error conditions are detected, the receiving device returns an ACK
message to the sender, indicating that the message was received correctly and the
appropriate action, if any, is being performed. The ACK message uses the same packet ID
as that of the message being acknowledged.

• In case of an error, the receiving device must return a NAK message to the sender to
indicate that the packet was rejected and no command is being executed. As its only
argument, the NAK message contains an error code indicating the reason for rejecting the
packet. A NAK message also has the same packet ID code as the message in question.

• Upon receiving a NAK as reply to a message, a device has the option of retransmitting the
offending message (with new packet ID), logging the error, ignoring it, or taking any other
action that might be appropriate. By the same token, while expecting a NAK or ACK in
response to a transmitted message, a device may choose to time out, wait forever, or take
other appropriate action. These conventions provide for very flexible operation that allows
critical system operations to continue even in case of protocol errors. In dealing with these
situations, the Virtual Vehicle will adhere to the following conventions:

• NAK or ACK messages are always generated and sent in response to data.messages
received by the W l . At this point, handshake for the current message is considered
complete; i.e., no further action is expected.

• Unexpected NAK or ACK messages (i.e., those referring to an unknown or previously
acknowledged packet ID) are ignored. However, the error is togged and/or announced
at the W system console.

• If a NAK is received as response to a message originated by the W , the message
may or may not be retransmitted repeatedly (with a new packet ID), depending on the
type of message and reason for rejection.

• If neither NAK nor ACK is received by the W wfthin a certain timeout period
(configurable parameter, typically on the order of seconds), the error condition is
logged and/or announced at the W system console. After this, the W still expects a
response to the packet in question, but no further action is taken and subsequent
messages are treated as if no error had occurred.

Commands issued by Host/Console

NAK

ACK
ABC
STO
5TA
TSA

; upcoos

00

01
02
03
04
05

W f l M It i3L TtrJ

Negative Acknowledge

Acknowledge
Abort Motion
Stop/Suspend Motion
Startup
Travel

MJEtgUMm

CC/
cc= 00

01
02
03
IX

2X

1/r/i/
1
r
i

: Packet length error
: Num. of Args error
: Not ready for cad
: Illegal Opcode
: X'th argument below

(1 < X < 9)
« X'th axgumuxt above

(1 < X < 9)

rare length
: radius of cmrr.
: 1 a* imediate

50

CHP Change Position

STM
SVL

SAC

SP1

STl

SP2

STl

SSR

INF
POS
TIM
VH«
ACC
PK1
TXil
PH2
TL1
STR
ROXi
KLR
PIT
PTR
HBR
REP

11
12

13

14

15

16

17

18

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Set time to zero
Set Velocity

Set Acceleration

Set Pan 1

Set Tilt 1

Set Pan 2

Set Tilt 2

Set Steering Rate

Get Vehicle Info
Get position
Get Vehicle Time
Get Vehicle Velocity
Get Vehicle Ace.
Get Pan Angle 1
Get TUt Angle 1
Get Pan Angle 2
Get T U t Angle 2
Get Steering Rate
Get Roll
Get Roll Rate
Get Pitch
Get Pitch Rate
Get Heading Rate
Get Status

x :
y :
h :

•/i/
• :

i :
a/i/

a :
i :

p/
P -

t/
t -

p/
P

t/
t

s/
s

d/

A x pea. i
A y pos. [
A heading i

I
\velocity f

1 m immediate]

acceleration
1 s immediate

pan angle

: tilt angle

: pan angle

: tilt angle

: steering rate s
(0-99 %)

d : device number

Responses from Virtual Vehicle
Mnemonic Opcode Maaxiing Arguments

00 Ac^moirledge cc/
cc« 00

01
02
03

Packet length error
H w . of Arcs error
Hot ready for and
Illegal Opcode

IX : X'th argument below
current yn^ ̂ ̂ <"w<" li

KfZ
01
51

Acknowledge
In£o

(1 < X < 9)
2X m X'th argtnyant above

current naxiiaus li
(1 < X < 9)

1/w/h/g/a/x/y/s/

51

KVP

RVT
K W
RVA
RP1
RT1
RP2
RT2
RSR
RRL
RRR
RPT
RPR
RHR
RST

ADN

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66

80

Vehicle position

Vehicle Time
Vehicle Vel.
Vehicle Ace.
Pan angle 1
Tilt Angle 1
Pan angle 2
Tilt Angle 2
Steering Rate
Roll
Roll Rate
Pitch
Pitch Rate
Heading Rate
Report Status

Axcdona

1
w
h

m

y
s

. length
width

• height
. weight

. X of C.G
Y of C.G
0 » wheel steer
1 as skid steer

x/y/h/t/
x : x position
y : y position
h : heading
t : time

t/
v/t/
a/t/
p/t/
t/t/
p/t/
t/t/
a/t/
r/t/
r/t/
p/t/
p/t/
h/t/
d/s/t/

d : device number
s : status code

id/x/y/h/t/
id : arc ID code
x,y : Pos. at end of arc
h : heading at end of arc
t , time at end of arc

Note: All distance units are cm, time units are msecs, velocity units are cm/s, acceleration units are cm/s2

and angle units are half degrees. Weight units are kilograms.

52

V. References . M o b i l e Robot Navigation,- in IEEE International
Goto. Y. and A. Slentz. "The CMU System
Conference on Robotics and Automaton, 1987.

Conference on Robotics and Automation, 1986.

Kanac*. T.. C. T**e.
Computer Conference, Febfuan; 1986

. ^ C. , 9 8

institute, Carnegie Mellon University. 1986.

•

Section III

Vision and Navigation
for the Carnegie Mellon Navlab

Charles Thorpe
Martial Hebert
Takeo Kanade
Steven Shafer

and the members of
the Strategic Computing Vision Lab

1. Introduction
Robotics is where Artificial Intelligence meets the real world. Al deals with symbols, rules, and

abstractions, reasoning about concepts and relationships. The real world, in contrast, is tangible, full of
exceptions to the rules, and often stubbornly difficult to reduce to logical expressions. Robots must span
that gap. They live in the real world, and must sense, move, and manipulate real objects. Yet to be
intelligent, they must also reason symbolically. The gap is especially pronounced in the case of outdoor
mobile robots. The outdoors is constantly changing, due to wind in trees, changing sun positions, even
due to a robot's own tracks from previous runs. And mobility means that a robot is always encountering
new and unexpected events. So static models or preloaded maps are inadequate to represent the robot's
world.

The tools a robot uses to bridge the chasm between the external world and its internal representation
include sensors, image understanding to interpret sensed data, geometrical reasoning, and a concept of
time and of the vehicle's motion over time. We are studying those issues by building a mobile robot, the
Carnegie Mellon Navlab, and giving it methods of understanding the world. The Navlab has perception
routines for understanding color video images and for interpreting range data, CODGER, our whiteboard,
proposes a new paradigm for building intelligent robot systems. The CODGER tools, developed for the
Navlab and its smaller cousin the Terregator, handle much of the modeling of time and geometry, and
provide for synchronization of multiple processes. Our architecture coordinates control and information
flow between the high-level symbolic processes running on general purpose computers, and the lower-
level control running on dedicated real-time hardware. The system built from these tools is now capable
of driving the Navlab along narrow asphalt paths near campus while avoiding trees and pausing for
joggers that get in its way.

This report describes the Navlab [Singh 86] and the software we have built over the past year: color
vision, for finding and following roads [Thorpe 86]; 3-D perception, for obstacle avoidance [Hebert 86];
and the CODGER whiteboard [Shafer 86].

2. Navlab: Navigation Laboratory
The Navigation Laboratory, Navlab, is a self-contained laboratory for navigational vision system

research {see figures 1 and 2). The motivation for building the Navlab came from our earlier experience
with the Terregator, a six-wheeled vehicle teleoperaled from a host computer through a radio Sink. The

54

Figure 1: The Navlab

Terregator had been a reliable workhorse for small-scale experiments, such as the Campus Sidewalk
navigation system [Goto 86]. However, we have outgrown its capabilities. As we began to experiment
with sensor fusion, the Terregator ran out of space and power for multiple sensors. When we wanted to
expand our test areas, communications to a remote computer in the lab became more difficult. And as
the experiments became more sophisticated, we found it more productive for the experimenters to test or
debug new programs near or in the vehicle, instead of in a remotely located laboratory. All these factors
culminated in the design and construction of the Navlab [Singh 86].

Navlab is based on a commercial van chassis, with hydraulic drive and electric steering. Computers
can steer and drive the van by electric and hydraulic servos, or a human driver can take control to drive to
a test site or to override the computer. The Navlab has room for researchers and computers on board,
and has enough power and space for ail our existing and planned sensors. This gets the researchers
close to the experiments, and eliminates the need for video and digital communications with remote
computers.

Features of the Navlab include:

• Onboard computers: We have five computer racks, one for low-level controllers and power
smoothing, one for video distribution, VCRs, communications and miscellaneous equipment,
two racks for general-purpose processors (currently Sun workstations), and one for a Warp
.processor.

• Onboard researchers: There is always a safety driver in the driver's seat. There is room
for four researchers in the back, with a terminal or workstation for each. An overhead shelf
holds video monitors and additional terminals* The researchers can monitor both their
programs and the vehicle's motion.

• Onboard power: The Navlab carries two 5500-W generators, plus power conditbning and
battery backup for critical components.

• Onboard sensors: Above the cab is a pan mount carrying our laser scanner and a
mounting rail for a color TV camera. There will eventually be a separate pan/tilt mount for
stereo cameras.

« Evolving controller: The first computer controller for the Navlab is adequate for our current

* » • , •

55

Figure 2: Navlab interior

needs. It steers the van along circular arcs, and has commands to set speed and
acceleration, and to ask for the current dead reckoned position estimate. The controller will
evolve to do smoother motion control, and to interface with an inertial guidance system
possibly even with GPS satellite navigation. It will also eventually watch vital signs such as
computer temperature and vehicle hydraulic pressure.

3. Color Vision
The Navlab uses color vision, specifically multi-class adaptive color classification, to find and follow

roads. Image points are classified into MroadM or Mnon-road* principally on the basis of their color. Since
the road is not a uniform color, color classification must have more than one road model, or class, and
more than one non-road class. Because conditions change from time to time and from place to place
over the test course, the color models must be adaptive. Once the image is classified, the road is
identified by means of an area-based voting technique that finds the most likely location for the road in
the image.

3.1. Vision Principles for the Real World
We based the development of our vision system on the following principles:

Assume variation and change. On sunny days there are shadowed areas, sunlit areas, and patches
with dappled sunlight. On rainy days, there are dry patches and wet patches. Some days there are wet,
dry, sunny and shadowed areas all in the same image. The road has clean spots and other places
covered with leaves or with drips of our own hydraulic fluid. And as the sun goes behind a cloud or as the
vehicle turns, lighting conditions change. We therefore need more than one road and non-road color
model at any one time, those color models must adapt to changing conditions, and that we need to
process images frequently so that the change from one image to the next will be moderate.

Use few geometric parameters. A complete description of the road's shape in an image can be
complex. The road can bend gently or turn abruptly, can vary in width, and can go up- or downhill
However, the more parameters there are, the greater the chance of error in finding those parameters.
Small misclassifications in an image could give rise to fairly large errors in perceived road geometry.
Furthermore, if all the road parameters can vary, there are ambiguous interpretations: Does the road
actually rise, or does it instead get wider as it goes? We describe the road with only two free parameters:
its orientation and its distance from the vehicle. Road width is fixed, we assume a flat world, and we
decree that the road is straight. While none of these assumptions is true over a long stretch of the road,
they are nearly true within any one image; and the errors in road position that originate in our
oversimplifications are balanced by the smaller chance of bad interpretations. If our system, classifies a
few pixels incorrectly as road, the worst it will do is to find a slightly incorrect road. A method that tries to
fit more parameters, on the other hand, may interpret parts of the road perfectly, but could find an abrupt
turn or sudden slope near any bad pixels.

Wort in the image. The road can be found either by projecting the road shape into the image ami

searching in image coordinates, or by back prelecting the image onto the ground and searching in world
coordinates. The problem with the latter approach comes in projecting the image onto an evenly spaced
grid in the world. The points on the world grid close to the vehicle correspond to a big area in the lower
part of the image; points farther away may correspond to one or a few pixels near the top. Unless one

uses a complex weighting scheme, some image pixels (those at the top that project to distant world

57

points) will have more weight than other (lower) points. A few noisy pixels can then have a big or a small
effect, depending on where in the image they lie. On the other hand, working directly in the image makes
it much easier to weight all pixels evenly. We can directly search for the road shape that has the most
road pixels and the fewest non-road pixels. Moreover, projecting a road shape is much more efficient
than back projecting all the image pixels.

Calibrate directly. A complete description of a camera must include its position and orientation in
space, its focal length and aspect ratio, lens effects such as fisheye distortion, and nonlinearities in the
optics or sensor. The general calibration problem of trying to measure each of these variables is difficult.
It is much easier, and more accurate, to calibrate the whole system than to tease apart the individual
parameters. The easiest method is to take a picture of a known object and build a lookup table that
relates each world point to an image pixel and vice versa. Projecting road predictions into the image and
back projecting detected road shapes onto the world are done by means of table lookup (or table lookup
for close-by values with simple interpolations). Such a table is straightforward to build and provides good
accuracy, and there are no instabilities in the calculations.

Use outside constraints. Even without a map of our test course or an expensive inertial navigation
system, we know, based on the previous image and on vehicle motion, approximately where the road
should be. Our whiteboard, described in section 5, can predict where the road should appear if the road
were straight and vehicle navigation were perfect. Adding a suitable margin for curved roads and sloppy
navigation still gives useful limits on where in the image to look for the road.

Test with real data- We ran our VCR nearly every time we took the vehicle out, to collect images
under as many conditions as possible. We recorded sunny days, cloudy days, rainy days, leaves on
trees, leaves turning color, leaves falling, early morning, noon, after dusk, even a partial solar eclipse.
Strategies that worked well on one set of images did not always work on the others. We selected the
toughest images, ran our best algorithms and printed the classification results, changed parameters or
algorithms, reran the data set, and compared results. This gave us the best chance of being methodical
and of not introducing new bugs as we went. When the image processing worked to our satisfaction, we
ran simulations in the lab that included the whiteboard, range processing, path planning, and a vehicle
simulator, with the vision component processing stored images and interacting with the rest of the system.
When the simulations worked in the lab, we moved them to the vehicle. Only after the simulations worked
on the vehicle's computers, and we were sure that all necessary software was on the van, did we go into
the field for real tests. Even then not everything worked, but there were many fewer bugs than there
would have been without the simulations and tests.

3.2. Road Following Algorithm
We followed these principles in building and tuning adaptive cotor classification for following roads.

Figure 3 shows a relatively simple scene to help explain our algorithm. As shown in figure 4, the
algorithm involves three stages:

1. Classify each pixel.

2. Use the results of classification to vote for the best-fit road! position,

3. Collect new color statistics based on the detected road and non-road regions.
Pixel classification Is done by standard pattern classification. Each class Is represented by the means,
variances, and covariances of reds green, and blue values, and by its a priori likelihood1 based on

58

Figure 3: Original Image

expected fraction of pixels in that class. For each pixel, calculating the class to which it most likely
belongs involves finding how far the pixel's values lie from the mean of each class, where distance is
measured in standard deviations of that class. Figures 5 and 6 show how each pixel is classified and how
well it matches.

Once each point has been classified, we must find the most likely location of the road. We assume the
road is locally flat, sfraight, and has parallel sides. The road geometry can then be described by two
parameters as shown in figure 7;

1. The intercept, which is the image column of the road's vanishing point This is where the
road centeriine intercepts the horizon (or more precisely the vanishing line of the locally flat
plane of the road; since the camera is fixed to the vehicle this vanishing line is constant
independent of the vehicle's pitch, roll, and yaw). The intercept gives the road's direction
relative to the vehicle.

2. The orientation of the road in the image, which tells how far the vehicle is to the right or left
of the centering

We S'et up a two-dimensional parameter space, with intercept as one dimension and orientation as the
otter. E«Sh point classified as road votes tor all road orientation/intercept combinations to whfch it could
belong, white ronroad points cast negative votes, as shown in figure 9. The orientatfonflrtercept pair that

receives the most votes is the one that contains the most road points, and 1 is reported as the road. For
the case of figure 3, the votes in orientation/Intercept space took like figure 10. Figure 11 shows the
detected position and orientation of the road, it is worth noting that since this method does not rely on the

exact focal geometry of the road, i is very robust The road may actually curve or rot have parallel
edges* or the segmentation may not be completely correct. But since this method does not rely on exact
geometry, the answer i produces is adequate to generate an appropriate steering command.

Image

59

Road/Non-road
Classification

Hough for
Road Position
& Orientation

Road Model
. Width

Position
Orientation

Surface Appearance
(RGBT)

Vehicle

Motion

Figure 4: Color vision for road following, including color classification, Hough transform for road
region detection, and updating multiple road and non-road models.

Figure 5: Segmented image. Cotor and texture cues are used to label points below the horizon
two mad arxl two offraad classes

60

Figure 6: Road probability image,
brightest.

The pixels that best match typical road colors are displayed

Once the road has been found in an image, the color statistics of the road and offroad models are
modified for each class by resampling the detected regions (figure 12) and updating the color models.
The updated color statistics will gradually change as the vehicle moves into a different road color, a s
lighting conditions change, or as the colors of the surrounding grass, dirt, ami trees vary. As long as the
processing time per image is low enough to provide a large overlap between images, the statistics adapt
as the vehicle moves. The road is picked out by hand in the first image. Thereafter, the process is
automatic, using the segmentation from each image to calculate color statistics for the next.

There are several variations on this basic theme. One variation is to smooth the images first. This
throws out outliers and tightens the road and non-road clusters. Another is to have more than one class
for road and for non-road, for instance one for wet road and one for dry, or one for shadows and one for
sun. Other variations change the voting for best road. Besides adding votes for road pixels, we subtract
votes for non-road points. Votes are weighted according to how well each point matches road or non-
road classes. Rnally, an image contains clues other than color, such as visual texture. Roads tend to be
smooth, with less high-frequency variation than grass or leaves, as shown in figure 13. We calculate a
normalized texture measure, and use that in addition to color in the road classification.

3.3. Implementation, Details, and Results
The implementation of road following runs in a loop of six steps: image reduction, color classification,

texture classification, combining color and texture results, voting for road position, and color update.
These steps are shown in figure 14, and are explained in detail below.

linage Reduction. We create a pyramid of reduced resolution Rt Q, and B images. Each smaller
image is produced by simple 2 x 2 averaging of the next larger Image. Other reduction methods, such a s
median filtering, are more expensive and produce no noticeable improvement in the system. We start

61

P: Road direction relative to vehicle

0 : Vehicle position relative to road center

Vanishing Line

Knowledge of Ground Plane

Find a good combination of (P,6)

Figure 7: Hough Transform that considers the geometry of road position and orientation. Geometry of
locally flat, straight, and parallel road regions can be described by only P and 9. Point A classified as road
could be a part of the road with the shown combination of (P, 9), and thus casts a positive vote for it.
Point 8 classified as off-road, however, wit! cast a negative vote for that (Pf 9) combination.

with 480 x 512 pixel images, and typically use the images reduced to 30 x 32 for cofor classification. We
use less reduced versions of the images for texture classification. Image reduction is used mainly to
improve speed, but as a side effect the resulting smoothing reduces the effect of scene anomalies such
as cracks in the pavement.

Color Classification. Each pixel (in the 30 x 32 reduced image) is labeled as belonging to one of the
road or non-road classes by standard maximum likelihood classification* We usually have two road and
two non-road classes. Each class is represented by the mean R, G, and B values of its pixels, by a 3 x 3
covariance matrix, and by the fraction of pixels expected a priori to be In that class. The classification
ptocedure calculates the probability that a pixel belongs to each of the classes, assigns the label of the
most probable dass, and records the maximum road and non-road probabities for each pixel.

62

Figure 8: A road point could be a part of roads with different orientations and vanishing points.

Figure 9: The point from figure 8 would vote for these orientation / intercept values.

Figure 10: Votes for best road orientation and Intercept, and point with most votes (dark square), for
road in figure 3.

63

Figure 11: Detected road, from the point with the most votes shown in figure 10.

Figure 12: Updating road and nonroad model colors, leaving a safety zone around the detected road
region.

Texture Calculation. This is composed of six substeps:
• Calculate texture at high resolution by running a Robert's operator over the 240 x 256 image.

• Calculate a tow resolution texture by, applying a Robert's operator to the 60 x 64 Image.

• Normalize the texture by dividing the high resolution texture by a combination of the average
pixel value for that' area (to handle shadow interiors) and the tow resolution texture {to
remove the effect of shadow boundaries). The average pixel value is the value from the
corresponding pixel in the 120 x 128 reduced Image.

64

Figure 13: Zoomed picture of road-nonroad boundary. The road (at left) is much less textured than
the grass (at right).

EDGE 0

TEXTURE CLASSIFICATION

SAMPLE COXCRS

?;CAD G

M M

fcSS
•Mm

MMM

1 ICLASSIFICATION
COMBIJfATIQN | GRASS

VOTE

VOTE
SRASS

P0SZ7XVE

14: Procassing cycle for color vision.

65

Figure 15: Low resolution texture image, showing textures from figure 3. The brighter blocks ai*e
image areas with more visual texture.

normalized gradient = high-freg gradient
ax taw-freq gradient +p x mean pixel value

Typical values for the coefficients are a « 0.2 and p » 0.8.

• Threshold. Produce a binary image of "tatcroedges" by thresholding the normalized gradient.
A fairly low threshold, such as 1, is usually adequate.

• Count Edges. Count the number of edges in each pixel block. This gives a 30 x 32 pixel
texture magnitude image. Figure 15 shows the texture image derived from figure 3. Each
texture pixel has a value between 0 and 256, which is the number of pixels in the
corresponding area of the full-resolution image that are mnoedges.

• Texture Classification. Classify each pixel in the 30 x 32 image as road or non-road on the
basis of texture, and calculate a confidence for each label. We found experimentally that a
fixed mean and standard deviation for road and non-road textures were better than adaptive
texture parameters. Our best results were with road mean and standard deviation of 0 and
25, and non-road values of 175 and 100. Effectively, any pixel block of the image with more
than 35 rrfcroedges above threshold is considered textured, and is therefore classified as
nonroad.

Combination of Color and Texture Results. Color is somewhat more reliable than texture, so the
coior probabilities are weighted somewhat more than the probabilities calculated by texture. The result of
this step is a final classification into road or non-road, and a '•confidence" calculated by

Max(road confidence, non-ioad confidence) — Min{mad confidence* nonnroad confidence)

Vole for Best Road Position. This step uses a 2-0 parameter space similar to a Hough transform.
Parameter 1 is the column of the road's vanishing point, quantized into 32 buckets because the image on
which the classification and voting are based has 32 ookimns. Parameter 2 Is the road's angle from
vertical in the image, ranging from -1 to 1 radian in 0.1 radian steps. A given road point votes for all
posstole roads that would contain that point. The focus of possible roads whose centerlines go through

6f

that point is an arctangent curve in the parameter space. Because the road has a finite width, the arctan

curve has to be widened by the width of the road at that pixel's image row. Road width for a given row is

not a constant over all possible road angles but is nearly constant enough that it doesn't justify the

expense of the exact calculation. Each pixel's vote is weighted by its calculated confidence. Pixels

classified as non-road cast negative votes (with their weights reduced by a factor of 0.2) while road pixels

add votes. In pseudo C code, the voting for a pixel at (row, col) is

for (theta » -1; theta <=* 1; theta+= 0.1) {
center « col + arctan (theta);
for (c » center - width/2; c <= center + width/2; C++) {

parameter^space [theta] [c] += confidence;
}

}
At the end of voting, one road intercept/angle pair will have the most votes. That intercept and angle

describe the best road shape in the scene.

Color Update. The parameters of the road and non-road classes need to be recalculated to reflect
changing colors. We divide the image into four regions plus a "safety zone": left offroad, right offroad,
upper road, and lower road. We leave a 64-pixel wide "safety zone" along the road boundary, which
allows for small errors in locating the road, or for limited road curvature. For each of the four regions, we
calculate the means of red, green, and blue. We use the calculated parameters to form four classes, and
reclassify the image using a limited classification scheme. The limited reclassification allows road pixels
to be classified as either of the two road classes, but not as non-road, and allows non-road pixels to be
reclassified only as one of the non-road classes. The reclassified pixels are used as masks to recalculate
class statistics. The loop of classify pixels/recalculate statistics is repeated, typically 3 times, or until no
pixels switch classes. The final reclassified pixels are used to calculate the means, variances, and
covariances of Rf G, and B for each of the classes, to be used to classify the next image. Limited
reclasstffcation is based on distance from a pixel's values to the mean values of a class, rather than the
full maximum likelihood scheme used in classifying a new image. This tends to give classes based on
tight clusters of pixel values, rather than lumping all pixels into classes with such wide variance that any
pixel value is considered likely.

Calibration. There is no need for complete geometric calibration. The vision algorithms calculate the
road's shape (road width ami location of the horizon) from the first training image. We also take two
caltoration pictures, with a meter stick placed perpendicular to the vehicle, 8 and 12 m in from. Then
during the run, given the centeriine of a detected road in image coordinates, it is easy to get the x position
of the road at 8 and 12 mt and then to calculate the vehicle's position on the road.

Performance. This algorithm is reliable. Running on the Navlabf with predictions of where the road

should appear, our failure rate is close to 0. The occasional remaining problems come from one of three
causes:

• The road is covered with leaves or snow, so one road color class and one non-road color
class are indistinguishable.

• Drastic changes in Humiliation occur between pictures (e.g. the sun suddenly emerges from
behind a cloud) so all the colors change dramatically from one image to the next.

• The sunHght Is so bright and shadows are so dark in the same scene that we hit the
hardware BmNs of the camera. It is possible to have pixels so bright that all color is washed
ait* and other pixels In the same image so daric that all color is lost in the noise.

67

Not every image is classified perfectly, but almost all are good enough for navigation. We sometimes find
the road rotated in the image from its correct location, so we report an intercept off to one side and an
angle off to the other side. But since the path planner looks ahead about the same distance as the center
of the image, the steering target is still in approximately the correct location, and the vehicle stays on the
road. This algorithm runs in about 10 s per image on a dedicated Sun 3/160, using 480 x 512 pixel
images reduced to 30 rows by 32 columns. We currently process a new image every 4 m, which gives
about three fourths of an image overlap between images. Ten seconds is fast enough to balance the rest
of the system but is slow enough that clouds can come and go and lighting conditions change between
images. We are porting this algorithm to the Warp, Carnegie Mellon's experimental high-speed
processor. On that machine, we hope to process an image per second and to use higher resolution.

4. Perception in 3-D
Our obstacle detection starts with direct range perception using an ERIM scanning laser rangefinder.

Our ERIM produces, every half second, an image containing 64 rows by 256 columns of range values; an
example is shown in figure 16. The scanner measures the phase difference between an amplitude-
modulated laser and its reflection from a target object, which in turn provides the distance between the
target object and the scanner. The scanner produces a dense range image by using two deflecting
mirrors, one for the horizontal scan lines and one for vertical motion between scans. The volume
scanned is 80 degrees wide and 30 high. The range at each pixel is discretized over 256 levels from zero
to 64 feet.

Figure 16: Range image of two trees on flat terrain. Gray levels encode distance; nearer points are
painted darker.

Our range processing begins by smoothing the data and undoing the peculiarities of the ranging
geometry. The ambiguity intervals, where range values wrap around from 255 to 0, are detected and
unfolded. Two other undesirable effects are removed by the same algorithm. The first is the presence of
mixed points at the edge of an object. The second is the meaninglessness of a measurement from a
surface such as water, glass, or glossy pigments. In both cases, the resulting points are in regions limited
by considerable jumps in range. We then transform the values from angle-angle-range, in scanner
coordinates, to x-y-z locations. These 3-D points are the basis for ail further processing.

We have two main processing modes: obstacle detection and terrain analysis. Obstacle detection
starts by calculating surface normals from the x-y-z points. Rat, traversaWe surfaces wifl have vertical
surface normals. Obstacles wifl have surface patches with normals pointed in other directions. This

68

analysis is relatively fast, running in about 5 s on a Sun 3/75, and is adequate for smooth terrain with
discrete obstacles.

Simple obstacle maps are not sufficient for detailed analysis. For greater accuracy we do more careful
terrain analysis and combine sequences of images corresponding to overlapping parts of the environment
into an extended obstacle map. The terrain analysis algorithm first attempts to find groups of points that
belong to the same surface and then uses these groups as seeds for the region growing phase. Each
group is expanded into a smooth connected surface patch. The smoothness of a patch is evaluated by
fitting a surface (plane or quadric). In addition, surface discontinuities are used to limit the region growing
phase. The complete algorithm is:

1. Edges: Extract surface discontinuities, pixels with high jumps in x-y-z.

2. Clustering: Find clusters in the space of surface normals and identify the corresponding
regions in the original image.

3. Region growing: Expand each region until the fitting error is larger than a given threshold.
The expansion proceeds by iteratively adding the point of the region boundary that adds the
minimum fitting error.

The clustering step is designed so that other attributes such as color or curvature can also be used to
find potential regions on the object. The primitive surface used to compute the fitting error can be either a
plane or a quadric surface. The decision is based on the size of the region. Figure 17 shows the
resultant description of 3-D terrain and obstacles for the image of figure 16. The flat, smooth, navigable
region is the meshed area, and the detected 3-D objects (the two trees) are shown as polyhedra.

Obstacle detection works at longer range than terrain analysis. When the scanner is looking at distant
objects, it has a very shallow depression angle. Adjacent scanlines, separated by 0.5 degree in the range
image, can strike the ground at widely different points. Because the grazing angle is shallow, little of the
emitted laser energy returns to the sensor, producing noisy pixels. Moisy range values, widely spaced,
make it difficult to do detailed analysis of flat terrain. A vertical obstacle, such as a tree, shows up much
better in the range data. Pixels from neighboring scaniines fall more closely together, and with a more
nearly perpendicular surface the returned signal is stronger and the data cleaner. It is thus much easier
for obstacle detection to find obstacles than for terrain analysis to certify a patch of ground as smooth and

When neither video nor range information atone suffices, we must fuse data to determine mobility or
recognize an object. One such case occurs in navigating the smaller Terregatfor vehicle around campus
skJewaJcs, At one spot, a sWewalc goes up a flight of stairs and a bicycle path curves around. Video
atom has a tough time cMioguishing 'between the cement stairs and the cement bicycle path. Range
data cannot tel the difference between the smooth rise of the giassy h i and the smooth bfcyde ramp.
The only way to identify the safe vehicle path is to use both kinds of data.

We start by fusing the data at the pixel level For each' range point, we find the corresponding pixel in
the video image. We produce a painted range image In which each pixel Is a {red, green, blue, x, y, z}
6-uector. Figure 18 shows the painted range image, rotated and projected from a different angle. We
can then run our standard range segmentation and color segmentation programs, producing regions of
smooth range or constant color For the stairs In particular, we have a special-purpose step detection
program that knows about vertical and horaorta! planes ami how they am related in typical stairs. It is

Obstacle

Shoulder

Smooth Patch

Updated Symbolic Surface Map

Figure 17: The resultant description of 3D terrain and obstacles from the image in figure 16. The
navigable area is shown as a mesh, and the two trees are detected as "textured obstacles" and shown as
blade polygons

easy to combine the regions from these separate processes, since they are all in the same coordinates of
the painted range image. The final result is a smooth concrete region in which it is safe to drive, and a
positive identification and 3-D location of the stairs, for updating the vehicle position.

70

registered, so the color edges and regions line up with range edges and regwns.

71

5. System Building

5.1. Artificial Intelligence for Real World Robots
We have developed a new paradigm for intelligent robot system building. Artificial Intelligence

systems, including intelligent mobile robots, are symbol manipulators. Indeed, the very definition of
intelligence, artificial or otherwise, includes symbol manipulation. But the manipulation used by most Al
systems is based on inference, either by the logic of predicate calculus or by probabilities. The bulk of the
work of a mobile robot, in contrast, is based on geometry and on modeling time. Inference may be a part
of a mobile robot system, but geometry and time are pervasive. Consequently, intelligent mobile robots
need a new kind of expert system shell, one that provides tools for handling 3-D locations and motion.

This fits into the context of changes in the field of Al as a whole. Early systems, such as the Logic
Theorist or GPS [Cohen 82], were search engines that had no domain knowledge. They could solve
problems such as the Towers of Hanoi or Missionaries and Cannibals that are essentially logic puzzles.
"Expert systems" brought lots of knowledge to bear on a problem. A system such as R1 or MYCIN [Cohen
82] has thousands of rules of the form Mif P then try Q" or "if X is true then Y is true with confidence 0.7M.
This type of knowledge allows these programs to deal with many real world problems. However, it is
"shallow11 knowledge in the sense that it deals with externally visible input-output behavior, with no
knowledge of internal structure or mechanisms. MYCIN is like a doctor who has never taken Anatomy or
Physiology, but has seen a lot of cases. Its knowledge is adequate for handling things it has already
seen, but, because it does not understand the underlying mechanisms and structures of its domain, there
is a limit to its competence in reasoning about new or unexpected behavior. The newest generation of
expert systems is beginning to embed more "deep knowledge." For instance, the ALADIN aluminum alloy
design system [Rychener 86] includes both shallow knowledge rules ("If the alloy is too heavy, try^adding
lithium") and deep knowledge of crystal structure and chemical interactions.

The evolution of mobile robot systems is following an analogous course. Early systems such as SRl's
Shakey were based on deduction. Shakey could decide which light switch to flip and in what order to
traverse a sequence of rooms; it was a success with respect to logical action, but it lacked the deep
knowledge needed to move and live in a complicated environment. Its home was a series of empty
rooms with flat floors and uniform walls that allowed Shakey to function with very simple perception and
motion capabilities. In contrast, a robot that must move through the real outdoor world, needs a vast
reservoir of deep knowledge of perception, object models, motion, path planning, terrain models,
navigation, vehicle dynamics, and so forth.

The deep knowledge needed by a mobile robot must be supported by the system architecture and by
the system building tools. We have developed and followed the following tenets of mobile robot system
design in building our system:

Use separate modules. Much of the deep knowledge can be limited to particular specialist modules.
The effects of lighting conditions and viewing angle on the appearance of an object, for instance, are
important data for color vision but are not needed by path planning. So one principle of mobile robot
system design is to break the system into modules and minimize the overlap of knowledge between
modules.

Provide tools for geometry and time. Much of the knowledge that needs to be shared between

11

modules has to do with geometry, time, and motion. An object may be predicted by one module (the
lookout), seen separately by two others (color vision and 3-D perception), and used by two more (path
planner and position update). During the predictions, sensing, and reasoning, the vehicle will be moving,
new position updates may come in, and the geometrical relationship between the vehicle and the object
will be constantly changing. Moreover, there may be many different frames of reference: one for each
sensor, one for the vehicle, one for the world map, and others for individual objects. Each module should
be able to work in the coordinate frame that is most natural; for instance, a vision module should work in
camera coordinates and should not have to worry about conversion to the vehicle reference frame. The
system should provide tools that handle as many as possible of the details of keeping track of coordinate
frames, motion, and changing geometry.

Provide tools for synchronization. A system that has separate modules communicating at a fairly

coarse grain will be loosely coupled. Lock-step interactions are neither necessary nor appropriate.

However, there are times when one module needs to wait for another to finish, or when a demon module

needs to fire whenever certain data appear. The system should provide tools for several different kinds of

interaction and for modules to synchronize themselves as needed.

Handle real-time vs symbolic interface. At one level, a mobile robot reasons symbolically about
perceived objects and planned paths, probably on a slow time scale. At the same time, the vehicle is
constantly moving, and low-level servo processes are controlling steering and motion. The top level
processes need to be free to take varying amounts of time to process scenes of varying difficulty. They
are often event driven, running when a particular object is seen or a particular event occurs. The servo
processes, though, must run continuously and in real time (not "simulated real time" or "real time not
counting garbage collection1*). The system should provide for both real-time and asynchronous symbolic
processes, and for communications between them.

Provide a virtual vehicle. As many as possible of the details of the vehicle should be hidden. At
Carnegie Mellon, we have one robot (the Terregator) that has six wheels, steers by driving the wheels on
one side faster than those on the other side, and carries a camera mount approximately 6 ft high. A
second robot (the Navlab) is based on a commercial van, steers and drives conventionally, and mounts
its camera 2 ft higher. We need to be able to use one system to drive either of the vehicles, with only
minor modifications. This requires hiding the details of sensing and motion in a "virtual vehicle" interface,
so a single "move" command, for instance, will use the different mechanisms of the two vehicles but will
produce identical behavior.

Plan for big systems. It takes good software engineering to build a mobile robot. The system may be
written in a mixture of programming languages, will probably run on multiple processors, and may use
different types of processors including specialized perception machines. System tools must bridge the
gaps between languages, data formats, and communications protocols.

In addition to these tenets of good design, we have identified certain approaches that are
inappropriate. Many good ideas in other areas of Al present difficulties for mobile robots. Specifically, we

avoid the following.

Do not throw away geometric precision. Mobile robots need all the information they can get. It is

often important to know as precisely as possible where an object is located, either for planning efficient

paths or for updating vehicle location. There is TO need to turn a measured distance of 3.1 m into fairiy

73

close. Given the relative costs and speeds of computers and vehicles, it is more efficient to spend extra
computing effort (if any) to handle precise data than to plan fuzzy paths that take the vehicle
unnecessarily far out of its way.

Do not concentrate on explanations. It is important to have hooks inside the vehicle's reasoning, for
debugging and for learning about the system behavior. However, the prime output of the vehicle is its
externally observable behavior. Producing explanations is nice, but is not the primary product as it is in
expert systems for diagnosis or in intelligent assistants.

Do not build an omniscient master process- In some systems (notably early blackboards) a single
master process MknowsM everything. The master process may not know the internal working of each
module, but it knows what each module is capable of doing. The master controls who gets to run when.
The master itself becomes a major Al module and can be a system bottleneck. In contrast, the individual
modules in a mobile robot system should be autonomous, and the system tools should be slaves to the
modules. The module writers should decide when and how to communicate and when to execute. The
system support should be as unobtrusive as possible.

We have followed these tenets in building the Navlab system. At the bottom level, we have built the
CODGER -whiteboard" to provide system tools and services. On top of CODGER we have built an
architecture that sets conventions for control and data flow, CODGER and our architecture are explained
beta*.

5.2. Blackboards and Whiteboards
The program organization of the NAVLAB software is shown in figure 19. Each of the major boxes

represents a separately running program. The central database, called the Local Map, is managed by a
program known as the Local Map Builder (1MB). Each module stores and retrieves information in the
database through a set of subroutines called the LMB Interface which handle all communication and
synchronization with the LMB. If a module resides on a different processor than the LMB, the LMB and
LMB Interface will transparently handle the network communication. The Local Map, LMB, and LMB
Interface together comprise the CODGER (Communications Database with GEometric Reasoning) system.

The overall system structure—a central database, a pool of knowledge-intensive modules, and a
database manager that synchronizes the modules—is characteristic of a traditional blackboard system.
Such a system is called "hierarchical" because the knowledge is scattered among a set of modules that
have access to data at all levels of the database (i.e. low-level perceptual processing ranging up to
high-level mission plans) and may post their findings on any level of the database; in general,
heterarchical systems impose de facto structuring of the information flow among the modules of the
system. In a traditional blackboard, there is a single flow of control managed by the database (or
blackboard) manager. The modules are subroutines, each with a predetermined precondition (pattern of
data) that must be satisfied before that module can be executed. The manager keeps a list of which
modules are ready to execute. In its central loop it selects one module, executes it, and adds to its
ready-list any new modules whose preconditions become satisfied by the currently executing module.
The system Is thus synchronous and the managers function is to focus the attention of the system by
selecting the "best" module from the ready-list on each cycle.

We call CODGER a whiteboard because although it implements a heterarchical system structure, it

74

Blackboard

Monitor &
Display

Blackboard

Obstacle
Avoidance

i

Blackboard

Blackboard

Color
Vision

Blackboard

Pilot

Blackboard

Helm

ITSi
Figure 19: Navlab software architecture

differs from a blackboard in several key respects. In CODGER, each module is a separate, continuously
running program; the modules communicate by storing and retrieving data in the central database.
Synchronization is achieved by primitives in the data retrieval facilities that allow, for example, for a
module to request data and suspend execution until the specified data appears. When some other
module stores the desired data, the first module will be reactivated and the data will be sent to it. With
CODGER a module programmer thus has control over the flow of execution within his module and may
implement real-time loops, demons, data flows among cooperating modules, etc. CODGER also has no
precompiled list of data retrieval specifications; each time a module requests data, it provides a pattern for
the data desired at that time. A whiteboard is heterarchical like a blackboard, but each module runs in
parallel, with the module programmer controlling the synchronization and data retrieval requests as best
suited for each module. Like other recent distributed Al architectures, whiteboards are suited to execution
on multiple processors.

5.3. Data Storage and Retrieval
Data in the CODGER database (Local Map) is represented in tokens consisting of classical

attribute-value pairs. The types of tokens are described in a template file that tells the name and type of

each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers,

floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of

arrays), or geometric locations (as described below), CODGER automatically maintains certain attributes

for each token: the token type and id number, the generation number as the token is modified, the time at

which the token was created and inserted into the database, and the time at which the sensor data was

acquired that led to the creation of this token. The LMB Interface provides facilities for building and

dissecting tokens and attributes within a module. Rapid execution is supported by mapping the module

programmers names for tokens and attributes onto globally used index values at system startup time.

A module can store a token by calling a subroutine to send it to the LMB. Tokens can be retrieved by

constructing a pattern called a specification and calling a routine to request that the LMB send back

tokens matching that specification. The specification is simply a Boolean expression in which the

75

attributes of each token may be substituted; if a token's attributes satisfy the Boolean expression, then
the token is sent to the module that made the request. For example, a module may specify:

tokens with type equal to "intersection0 and traffic-control equal to "stop-sign"

This would retrieve all tokens whose type and traffic-control attributes satisfy the above conditions. The
specification may include computations such as mathematical expressions, finding the minimum value
within an array attribute, comparisons among attributes, etc. CODGER thus implements a general
database. The module programmer constructs a specification with a set of subroutines in the CODGER

system.

One of the key features of CODGER is the ability to manipulate geometric information. One of the
attribute types provided by CODGER is the location, which is a 2-D or 3-D polygon and a reference to a
coordinate frame in which that polygon is described. Every token has a specific attribute that tells the
location of that object in the Local Map, if applicable, and a specification can include geometric
calculations and expressions. For example, a specification might be:

tokens with location within 5 units of (45,32) [in world coordinates]

or

tokens with location overlapping X

where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives
currently provided by CODGER include calculation of centroid, area, diameter, convex hull, orientation, and
minimum bounding rectangle of a location, and distance and intersection calculations between a pair of
locations. We believe that this kind of geometric data retrieval capability is essential for supporting spatial
reasoning in mobile robots with multiple sensors. We expect geometric specifications to be the most
common type of data retrieval request used in the NAVLAB.

CODGER also provides for automatic coordinate system maintenance and transformation for these
geometric operations. In the Local Map, ail coordinates of location attributes are defined relative to
WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB
maintains a time-varying transformation between WORLD and VEHICLE coordinates. Whenever new
information (i.e. a new VEHICLE-to-WORLD transform) becomes available, it is added to the "history"
maintained in the LMB; the LMB will interpolate to provide intermediate transformations as needed. In
addition to these basic coordinate systems, the LMB Interface allows a module programmer to define
local coordinates relative to the basic coordinates or relative to some other local coordinates. Location
attributes defined in a local coordinate system are automatically converted to the appropriate basic
coordinate system when a token is stored in the database, CODGER provides the module programmer
with a conversion routine to convert any location to any specified coordinate system.

Ail of the above facilities need to work together to support asynchronous sensor fusion. For example,
suppose we have a vision module A and a rangefinder module B whose results are to be merged by
some module C, The following sequence of actions might occur:

1. A receives an image at time 10 and posts results on the database at time 15. Although the
calculations were earned out In the camera coordinate system for time 10, the results are
automatical converted to the VEHICLE system at time 10 when the token is stored in the
database.

2. Meanwhile, B receives data at time 12 and posts results at time 17 in a similar way.

3. At time 18, C receives A's and Bfs results. As described above, each such token will be
tagged with the time at which the sensor data was gathered. C decides to use the vehicle

76

coordinate system at time 12 (B's time) for merging the data.

4. C requests that A's result, which was stored in VEHICLE time 10 coordinates, be
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically
interpolate coordinate transformation data to accomplish this. C can now merge A's and B's
results since they are in the same coordinate system. At time 23, C stores results in the
database, with an indication that they are stored in the coordinate system of time 12.

5.4. Synchronizat ion Primit ives

CODGER provides module synchronization through options specified for each data retrieval request.

Every time a module sends a specification to the LMB to retrieve tokens, it also specifies options that tell

how the LMB should respond with the matching tokens:

• Immediate Request The module requests all tokens currently in the database that match this
specification. The module will block (i.e. the "request" subroutine in the LMB Interface will
not return control) until the LMB has responded. If there are no tokens that match the
specification, the action taken is determined by an option in the module's request:

• Non-Blocking. The LMB will answer that there are no matching tokens, and the module
can then proceed. This would be used for time-critical modules such as vehicle
control. Example: "is there a stop sign?"

• Blocking. The LMB will record this specification and compare it against all incoming
tokens. When a new token matches the specification, it will be sent to the module and
the request will be satisfied. Meanwhile, the module will remain blocked until the LMB
has responded with a token. This is the type of request used for setting up
synchronized sets of communicating modules: each one warts for the results from the
previous module to be posted to the database. Example: "Wake me up when you see
a stop'sign."

• Standing Request. This provides a mechanism for the LMB to generate an interrupt for a
running module. The module gives a specification along with the name of a subroutine. The
module then continues running; the LMB will record the specification and compare it with all
incoming tokens. Whenever a token matches, it will be sent to the module. The LMB
Interface will intercept the token and execute the specified subroutine, passing the token as
an argument. This has the effect of invoking the given subroutine whenever a token appears
in the database that matches the given specification. It can be used at system startup time
for a module programmer to set up "demon1* routines within the module. Example: "Execute
that routine whenever you see a stop sign."

5.5. Archi tecture

Several modules use the CGDGER tools and fit into a higher level architecture. The modules are:
• Pilot: Looks at the map and at current vehicle position to predict road location for Vision.

Plans paths.

• Map Navigator: Maintains a world map, does global path planning, provides long-term
direction to the Pilot. The world map may start out empty, or may include any level of detail
up to exact locations and shapes of objects.

• Color Vision: Waits for a prediction from the Pilot, waits until the vehicle is in the best
position to take an image of that section of the road, returns road location.

• Obstacle Detection: Gets a request from the Pilot to check a part of the road for obstacles.

Returns a list of obstacles on or near that chunk of the road.

• Helm; Gets planned path from Pilot, converts polyline path into smooth arcs, steers vehicle..

• Graphics and Monitor. Draws or prints position of vehicle, obstacles, predicted and

77

perceived road-
There are two other modules in our architecture. These have not yet been implemented:

• Captain: Talks to the user and provides high-level route and mission constraints such as
avoid area A or go by road B.

• Lookout: Looks for landmarks and objects of importance to the mission.

These modules use CODGER to pass information about driving units. A driving unit is a short chunk of
the road or terrain (in our case 4 m long) treated as a unit for perception and path planning. The Pilot
gives driving unit predictions to Color Vision, which returns an updated driving unit location. Obstacle
Detection then sweeps a driving unit for obstacles. The Pilot takes the driving unit and obstacles, plans a
path, and hands the path off to the Helm. The whole process is set up as a pipeline, in which Color
Vision is looking ahead 3 driving units, Obstacle Detection is looking 2 driving units ahead, and path
planning at the next unit. If for any reason some stage slows down, all following stages of the pipeline
must wait. So, for instance, if Color Vision is waiting for the vehicle to come around a bend so it can see
down the road, Obstacle Detection will finish its current unit and will then have to wait for Color Vision to
proceed. In an extreme case, the vehicle may have to come to a halt until everything clears up. All
planned paths include a deceleration to a stop at the end, so if no new path comes along to overwrite the
current path the vehicle will stop before driving into an area that has not been seen or cleared of
obstacles.

In our current system and test area, 3 driving units is too far ahead for Color Vision to look, so both
Color Vision and Obstacle Detection are looking at the same driving unit. Obstacle Detection looks at an
area sufficiently larger than the Pilot's predicted driving unit location to guarantee that the actual road is
covered. Another practical modification is to have Obstacle Detection look at the closest driving unit also,
so a person walking onto the road immediately in front of the vehicle will be noticed. Our system will try to
plan a path around obstacles while remaining on the road. If that is not possible, it will come to a halt and
wait for the obstacle to move before continuing.

6. Conclusions and Future Work
The system described here works. It has successfully driven the Navlab many tens of times,

processing thousands of color and range images without running off the road or hitting any obstacles.
CODGER has proved to be a useful tool, handling many of the details of communications and geometry.
Module developers have been able to build and test their routines in isolation, with relatively little
integration overhead. Yet there are several areas that need much more work.

Speed. We drive the Navlab at 10 cm/sec, a stow shuffle. Our slow speed is because our test road is
narrow and winding, and because we deliberately concentrate on competence rather than on speed. But
faster motion is always more interesting, so we are pursuing several ways of increasing speed. One
bottleneck is the computing hardware. We are mounting a Warp, Carnegie Melton's experimental high-
speed processor, on the Navlab. The Warp will give us a factor of 100 more processing power than a
Sun for color and range image processing. At the same time, we are looking at improvements in the
software architecture. We need1 a more sophisticated path planner, and we need to process images that
are more closely spaced than the length of a driving unit. Aisof as the vehicle moves more quickly, our
simplifying assumption that steering is instantaneous and that the vehicle moves along circular arcs
becomes more seriously flawed. We are looking at other kinds of smooth arcs, such as ctothoids. yore

78

important, the controller is evolving to handle more of the low-level path smoothing and following.

Map. One reason for the slow speed is that the Pilot assumes straight roads. We need to have a
description that allows for curved roads, with some constraints on maximum curvature. The next steps
will include building maps as we go, so that subsequent runs over the same course can be faster and
easier.

Cross-country travel. Travel on roads is only half the challenge. The Navlab should be able to leave
roads and venture cross-country. Our plans call for a fully integrated on-road/off-road capability.

Intersections. Current vision routines have a built-in assumption that there is one road in the scene.

When the Navlab comes to a fork in the road, vision will report one or the other of the forks as the true

road depending on which looks bigger. It will be important to extend the vision geometry to handle

intersections as well as straight roads. We already have this ability on our sidewalk system and will bring

that over to the Navlab. Vision must also be able to find the road from off road.

Landmarks. Especially as we venture off roads, it will become increasingly important to be able to

update our position based on sighting landmarks. This involves map and perception enhancements, plus

understanding how to share limited resources, such as the camera, between path finding and landmark

searches.

Software Development. Our current blackboard system can manipulate primitive data elements but
has no concept of data structures made up of tokens on the blackboard. We need aggregate data types
for representing complex 3-D geometric* descriptions of objects for recognition. We will also be
implementing a LJsp interface to our blackboard. All current modules are written in C, but we will soon
want to write higher-level modules in Lisp.

Integration with Work from Other Sites. Other universities and research groups cooperating with

Carnegie Mellon through DARPA Strategic Computing Vision program. We plan to incorporate some of

their programs into the Navlab system in the coming years as it evolves into the "new generation vision

system" that is the goal of that program.

Acknowledgments
The Terregator and Navlab were built by William Whittakefs group in the Construction Robotics

Laboratory, and the Warp group is led by H. T. Kung and Jon Webb. The real work gets done by an army
of eight staff, nine graduate students, five visitors, and three part time programmers.

This research was supported by the Strategic Computing Initiative of the Defense Advanced Research

Projects Agency, DoD, through ARPA Order 5351, and monitored by the U.S. Army Engineer

Topographic Laboratories under contract DACA76-85-C-GQ03. Views and conclusions contained in this

document are those of the authors and should not be Interpreted as representing official policies, either

expressed or implied, of the Defense Advanced Research Projects Agency or the United States

Government

79

[Cohen 82]

[Goto 86]

[Hebert 86]

[Rychener 86]

[Shafer 86]

[Singh 86]

[Thorpe 86]

References

Cohen, P., Barr, A., Feigenbaum, E., eds.
The Handbook of Artificial Intelligence.
William Kaufman, 1982.

Goto, Y., Matsuzaki, K., Kweon, I., Obatake, T.
CMU sidewalk navigation system.
In Fall Joint Computer Conference. ACM/IEEE, 1986.
Hebert, M., Kanade, T.
Outdoor scene analysis using range data.
In IEEE International Conference on Robotics and Automation. 1986.
Rychener, M. D., Farinacci, M. L, Hulthage, I., Fox, M. S.
Integration of multiple knowledge sources in Ailadin, an alloy design system.
In AAAI-1986. AAAI, 1986.

Shafer, S., Stentz, A., Thorpe, C.
An architecture for sensor fusion in a mobile robot.
In IEEE International Conference on Robotics and Automation. 1986.
Singh, J.t et al.
NavLab: an autonomous vehicle.
Technical Report, Carnegie Mellon Robotics institute, 1986.
Thorpe, C.
Vision and navigation for the CMU Navlab.
In SPIE. Society of Photo-Optical Instrumentation Engineers, October, 1986.

Section IV

The CMU System for Mobile Robot Navigation

Yoshimasa Goto

Anthony Stentz
The Robotics Institute

Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

This paper describes the current status of the Autonomous Land Vehicle research at Carnegie Mellon
University's Robotics Institute, focusing primarily on the system architecture. We begin with a discussion
of the issues concerning outdoor navigation, then describe the various perception, planning, and control
components of our system that address these issues. We describe the CODGER software system for
integrating these components into a single system, synchronizing the data flow between them in order to
maximize parallelism. Our system is able to drive a robot vehicle continuously with two sensors, a color
camera and a laser rangefinder, on a network of sidewalks, up a bicycle slope, and through a curved road
through an area populated with trees. Finally, we discuss the results of our experiments, as well as
problems uncovered in the process and our plans for addressing them.1

1. Introduction
The goal of the Autonomous Land Vehicle group at Carnegie Mellon University is to create an

autonomous mobile robot system capable of operating in outdoor environments. Because of the
complexity of real-world domains and the requirement for continuous and real-time motion, such a robot
system needs system architectural support for multiple sensors and parallel processing. These
capabilities are not found in simpler robot systems. At CMU, we are studying mobile robot system
architecture and have developed the navigation system working at two test sites and on two experimental
vehicles [2,3,4, 8,10,11]. This paper describes the current status of our system and some problems
uncovered through real experiments.

1.1. The Test Sites and Vehicles
We have two test sites, the Carnegie Mellon campus and an adjoining park, Schenley Park. The CMU

campus test site has a sidewalk network including intersections, stairs and bicycle slopes (figure 1). The
Schenley Park test site has curved sidewalks in an area well populated with trees (figure 2).

Figure 3 shows our two experimental vehicles, the Navigation Laboratory (Navlab) used in the

•This research was supported by the Strategic Computing Initiative of the Defense Advanced Research Projects Agency, DoD,
through ARPA Oder 5351, and monitored by the U.S. Army Engineer Topographic laboratories wider contact DACA7B-85-
C-0003. Views and conclusions contained in this document are those of the authors and should not b© interpreted as representing
ofUcta! poictes, either expressed or implied, of the Defense Advanced Research Projects Agency or the United Slate Government

....J

82

Figure 1 : Map of the CMU Campus Test Site

Figure 2: Map of the Schenley Park Test Site

•t ,\

83

Schenley Park test site, and the Terregator used in the CMU campus test site. Both of them are
equipped with a color TV camera and a laser rangefinder made by ERIM. The Navlab carries four
general purpose computers (SUN-3s) on board. The Terregator is linked to SUN-3s in the laboratory with
radio communication. All of the SUN-3S are interconnected with a EtherNet. Our navigation system works
on both vehicles in each test site.

nrir*

Figure 3: The Navlab and Terregator

1.2. Current System Capabilities
Currently, the system has the capability.

• to execute a prespecified user mission over a mapped network of sidewalks, including
turning at the intersections and driving up the bicycle slope;

• to recognize landmarks, stairs and intersections;

• to drive on unmapped, curved, ill-defined roads using assumptions about local road linearity;

• to detect obstacles and stop until they move away;

• to avoid obstacles; and

• to drive continuously at 200mm/sec.

2. Design of the System Architecture
In this section we describe the goals of our outdoor navigation system and the design principles,

followed by an analysis of the outdoor navigation task itself. We describe our system architecture as it is
shaped by these principles and analyses.

84

2.1 . Design Goals and Principles
The goals of our outdoor navigation system are:

• map-driven mission execution: The system drives the vehicle to reach a given goal

position.

• on- and off-road navigation: Navigation environments include not only roads but also open
terrain.

• landmark recognition: Landmark sightings are essential in order to correct for drift in the
vehicle's dead-reckoning system.

• obstacle avoidance

• continuous motion in real time: Stop and go motion is unacceptable for our purposes.
Perception, planning, and control should be carried out while the vehicle is moving at a
reasonable speed.

In order to satisfy these goals, we have adopted the following design principles.
• sensor fusion: A single sensor is not enough to analyze complex outdoor environments.

Sensors include not only a TV camera and a range sensor but also an inertial navigation
sensor, a wheel rotation counter, etc.

• parallel execution: In order to process data from a number of sensors, make global and
local plans , and drive the vehicle in real-time, parallelism is essential.

• flexibility and extensibility: This principle is essential because the whole system is quite
large, requiring the integration of a wide range of modules.

2.2. Outdoor Navigation Tasks
Outdoor navigation includes several different navigation modes. Figure 4 illustrates several examples.

On-road vs. off-road is just one example. Even in on-road navigation, turning at the intersection requires

more sophisticated driving skill than following the road. In road following, the assumption that the ground

is flat makes perception easier, but driving through the forest does not satisfy this assumption and

requires more complex perception processing.

According to this analysis we decompose outdoor navigation into two navigation levels: global and

local. At the global level, the system tasks are to select the best navigation route to reach the destination

given by a user mission, and to divide the whole route into a sequence of route segments, each

corresponding to a uniform driving mode. The current system supports the following navigation modes:

following the road, turning at the intersection, driving up the slope.

Local navigation involves driving within a single route segment. The navigation mode is uniform and
the system drives the vehicle along the route segment continuously, perceiving objects, planning path
plans, and controlling the vehicle. The important thing is that these tasks, perception, planning, and

control, form a cycle and can be executed concurrently.

2.3. System Architecture

Figure 5 is a block diagram of our system architecture. The archteeture consists of several modules

and a comnunicattons database which links the modules together.

85

Figure 4: Outdoor navigation

2.3.1. Module Structure
In order to support the tasks described in the previous section, we first decomposed the whole system

into the following modules:
• CAPTAIN executes user mission commands and sends the destination and the constraints

of each mission step to the MAP NAVIGATOR one step at a time, and gets the result of each
mission step.

• MAP NAVIGATOR selects the best route by searching the Map Database, decomposes it
into a sequence of mute segments, generates a route segment description which includes
objects from the Map visible from the route segment, and sends it to the PILOT.

• PILOT coordinates the activities of PERCEPTION and the HELM to perform local navigation
continuously within a single route segment.

• PERCEPTION uses sensors to find objects predicted to lie within the vehicle's field of view.
ft estimates the vehicle's position if possible.

• HELM gets the local path plan generated by the PILOT and drives the vehicle.

The PILOT is decomposed into several submodules which run concurrently (figure 6).
• DRIVING MONITOR decomposes the route segment into small pieces called driving units, A

driving unit is the basic unit for perception, planning, and control processing at the local
navigation level. For example, PERCEPTION must be able to process a whole driving unit
with a single image. The DRIVING MONITOR creates a driving unit description , which
describes objects in the driving unit, and sends it to the following submodules.

• DRIVING UNIT FINDER functions as an interface to PERCEPTION, sending the driving unit
description to It and getting the result from it-

86

CAPTAIN

MAP
NAVIGATOR PILOT

PERCEPTION

Figure 5: System architecture

MAP
NAVIGATOR

DRIVING MONITOR

DRIVING UNIT TINDER

POSITION ESTIMATOR

DRIVING UNIT NAVIGATOR

LOCAL PATH PLANNER

PERECEPTION

Figure 6: Submodute structure of the PILOT

87

• POSITION ESTIMATOR estimates the vehicle position using both the result of
PERCEPTION and dead-reckoning.

• DRIVING UNIT NAVIGATOR determines the admissible passage in which to drive the
vehicle.

• LOCAL PATH PLANNER generates the path plan within the driving unit, avoids obstacles
and keeps the vehicle in the admissible passage. The path plan is sent to the HELM.

2.3.2. CODGER
It is important not only to build the modules, but also to connect them into a coherent system. Based

on our design principles, we have created a software system called CODGER (Communications
Database with GEometric Reasoning) which supports parallel asynchronous execution and
communication between the modules. We describe CODGER in detail in the next section.

3. Parallelism

3.1. The CODGER System for Parallel Processing
In order to navigate In real-time, we have employed parallelism in our perception, planning, and control

subsystems. Our computing resources consist of several SUN-3 microcomputers, VAX minicomputers,
and a high-speed, parallel processor known as the WARP interconnected with an BherNet. We have
designed and implemented a software system called CODGER (Communications Database with
GEometric Reasoning) [9J to effectively utilize this parallelism.

The CODGER system consists of a central database (Local Map), a process that manages this
database [Local Map Builder or LMB), and a library of functions for accessing the data (LMB interface)
(see Figure 7). The various perceptual, planning, and control modules in the system are compiled with
the LMB interface and invoke functions to store and retrieve data from the central database. The
CODGER system can be run on any mix of SUN-3s and VAXes and handles data type conversions
automatically. This system permits highly modular development requiring recompilation only for modules
directly affected by a change.

3.1.1. Data Representation
Data in the Local Map is represented in tokens consisting of lists of attribute-value pairs. Tokens can

be used to represent any information including physical objects, hypotheses, plans, commands, and
reports. The token types are defined in a template file which is read by the LMB at system startup time.
Attribute types may be the usual scalars (e.g., floats, integers), sets of scalars, or geometric locations.
Geometric locations consist of a two- dimensional, polygonal shape and a reference coordinate frame.
The CODGER system provides mechanisms for defining coordinate frames and for automatically
converting geometric data from one frame to another, thereby allowing modules to retrieve data from the
database and representing it in a form meaningful to them. Geometric data is the only data interpreted by
the CODGER system; the interpretation of all other data types is delegated to the modules that use them.

88

1MB Interface

S«nsor Module 1

Local Map Database

Local Map Builder (LMB)

LNB Interface

Sensor Module 2

LMB Interface

Navigation Module 2

LM8 Interface

Navigation Module 1

LMB Interface

Module

Figure 7: The CODGER software system

3.1.2. Synchronization
The LMB interface provides functions for storing and retrieving data from the central database. Tokens

can be retrieved using specifications. Specifications are simply boolean expressions evaluated across
token attribute values. A specification may include computations such as mathematical expressions,
boolean relations, and comparisons between attribute values. Geometric indexing is of particular
importance for a mobile robot system. For example, the planner needs to search a database of map
objects to locate suitable landmarks or to find the shortest path to the goal. The CODGER system
provides a host of functions including those for computing the distance and intersection of locations.
These functions can be embedded in specifications and matched to the database.

The CODGER system has a set of primitives to ensure that data transfer between system modules is

synchronized and runs smoothly. The synchronization is implemented in the data retrieval mechanism.

Specifications are sent to the LMB as either one-shot or standing requests. For one-shot specs, the

calling module blocks while the LMB matches the spec to the tokens. Tokens that match are retrieved

ami the module resumes execution. If no tokens match, either the module stays blocked until a matching

token appears in the database or an error is returned and the module resumes execution, depending on

an option specified in the request. For example, the PATH PLANNER may use a one-shot to find

obstacles stored in the database before it can plan a path. In contrast, the HELM, which controls the

veiilcie, uses a standing spec to retrieve tokens supplying steering commands wheneverthey appear.

89

3.2. Parallel Asynchronous Execution of Modules
Thus far we have run our scenarios with four SUN-3S interconnected with an EtherNet. The CAPTAIN,

MAP NAVIGATOR, PILOT, and HELM are separate modules in the system, and PERCEPTION is two
modules (range and camera image processing). All of the modules run in parallel; they synchronize
themselves through the LMB database.

3.2.1. Global and Local Navigation
A good example of parallelism in the system is the interaction between the CAPTAIN, MAP

NAVIGATOR, and PILOT. The CAPTAIN and MAP NAVIGATOR search the map database to plan a
global path for the vehicle in accordance with the mission specification. The PILOT coordinates
PERCEPTION, PATH PLANNING, and control through the HELM to navigate locally. The global and
local navigation operations run in parallel. The MAP NAVIGATOR monitors the progress of the PILOT to
ensure that the PILOT'S transition from one route segment to the next occurs smoothly.

3.2.2. Driving Pipeline
Another good example of parallelism is within the PILOT itself. As described earlier, the PILOT

monitors local navigation. For each driving unit, the PILOT performs four operations in the following
order: predict it, recognize with the camera and scan it for obstacles with the rangefinder, establish driving
constraints and plan a path through it, and oversee the vehicle's execution of it. In the PILOT, these four
operations are separate modules linked together in a pipeline (see Figure 8). While in steady state, the
PILOT is predicting a driving unit 12 to 16 meters in front of the vehicle, recognizing a driving unit and
scanning it for obstacles (in parallel) 8 to 12 meters in front, planning a path 4 to 8 meters in front, and
driving to a point 4 meters in front. The stages of the pipeline synchronize themselves through the
CODGER database.

The processing times for each stage vary as a function of the navigation task. In navigation on
uncluttered roads, the vision subsystem requires about 10 seconds of real-time per image, the range
subsystem requires about 6 seconds, and the local path planner requires less than a second. In this
case, the stage time of the pipeline is that of the vision subsystem: 10 seconds. In cluttered
environments, the local path planner may require 10 to 20 seconds or more, thereby becoming the
bottleneck. In either case, the vehicle is not permitted to drive on to a driving unit until it has propagated
through all stages of the pipeline (i.e., all operations have been performed on it). For example, when
driving around the corner of a building, the vision stage must wait until the vehicle reaches the corner in
order to see the next driving unit. Once the vehicle reaches the corner, it must stop while waiting for the
vision, scanning, and planning stages to process the driving unit before driving again.

4. Sensor Fusion

4*1. Types of Sensor Fusion
The Navtab and Terregator vehicles are equipped with a host of sensors including cotor cameras, a

laser rangeflnder, awl motion sensors such as a gyro, and shaft-encoder counter In order to obtain a
single, consistent interpretation of the vehicle's environment, the results of these sensors must be fused.
We have identified three types of sensor fusion [8J:

• Competitive: Sensors provide data that either agrees or conflicts. This case arises when

90

h
Predict

h
Recognize/Scan

* •

Plan

Figure 8: Driving pipeline

sensors provide data of the same modality. In the CMU systems, the task of determining the
vehicle's position best characterizes this type of fusion. Readings from the vehicle's dead-
reckoning system as well as landmark sightings provide estimates of the vehicle's position.

»Complementary: Sensors provide data of different modalities. The task of recognizing
three-dimensional objects illustrates this kind of fusion. In the CMU systems, a set of stairs is
recognized using a color camera and laser rangefinder. The color camera provides image
information {e.g., color and texture) while the laser rangefinder provides three-dimensional
information.

> Independent: A single sensor is used for each task. An example of a task requiring a single
sensor is distant landmark recognition. In this case, only the camera is used for landmarks
beyond the range of the laser rangefinder.

42. Examples of Sensor Fusion Tasks

4.2.1. Vehicle Position Estimation

in our road following scenarios, vehicle position estimation has been the most important sensor fusion
task. By vehicle position, we mean the position and orientatton of the vehicle in the ground plane (3
degrees of freedom) relative to the world coordinate frame. In the current system, there are two sources
of position information. First, dead-reckoning provides vehicle-based positron information. The CODGER
system maintains a history of the steering commands issued to the vehicle, effectively recording the
trajectory of the vehicle from i s starting point.

Second, tetimarfc sightings directly pinpoint the position of the vehide with respect to the world at a
point In time, in the campys test site, the system has access to a complete topographical map of the

91

sidewalks and intersections on which it drives. The system uses a color camera to sight the intersections
and sidewalks and uses these sightings to correct the estimate of the vehicle's position. The intersections
are of rank three, meaning that the position and orientation of the vehicle with respect to the intersection
can be determined fully (to three degrees of freedom) from the sighting. Our tests have shown that such
landmark sightings are far more accurate but less reliable than the current dead-reckoning system, that is,
landmark sightings provide more accurate vehicle position estimates; however, the sightings occasionally
fail. If the vehicle position estimates from the sighting and dead-reckoning disagree drastically, the
conflict is settled in favor of the dead-reckoning system; otherwise, the result from the landmark sighting
is used. In this case, the CODGER system adjusts its record of the- vehicle's trajectory so that it agrees
with the most recent landmark sighting, and discards all previous sightings.

The CODGER system is able to handle landmark sightings of rank less than three. The most common
"landmark" in our scenarios is the sidewalk on which the vehicle drives. Since a sidewalk sighting
provides only the orientation and perpendicular distance of the vehicle with respect to the sidewalk, the
correction is of rank two. Therefore, the position of the vehicle is constrained to lie on a straight line. The
CODGER system projects the position of the vehicle from dead-reckoning onto this line and uses the
projected point as a full (rank three) correction. Since most of the error in the vehicle's motion is lateral
drift from the road, this approximation works well.

4.2.2. Pilot Control
Complementary fusion is grounded in the Pilot's control functions. The Pilot ensures that the vehicle

travels only where it is permitted and where it can. For example, the color camera is used to segment
road from nonroad surfaces. The laser rangefinder scans the area in front of the vehicle for obstacles or
unnavigable (i.e., rough or steep) terrain. The road surface is fused with the free space and is passed to
the local path planner Since the two sensor operations do not necessarily occur at the same time, the
vehicle's dead-reckoning system also comes into play.

4.2.3. Colored Range Image
Another example of complementary fusion of camera and range data is the colored range image. A

colored range image is created by "painting" a color image onto the depth map of a range image. The
resultant image is used in our systems to recognize complicated three dimensional objects such as a set
of stairs. In order to avoid the relatively large error in the vehicle's dead-reckoning system, the vehicle
remains motionless while digitizing a corresponding pair of camera and range images [2].

4.3. Problems and Future Work
We have plans for improving our sensor fusion mechanisms. Currently, the CODGER system handles

competing sensor data by retaining the most recent measurement and discarding all others. This is
undesirable for the following reasons. First, a single bad measurement (e.g., landmark sighting) can
easily throw the vehicle off trade. Second, measurements can reinforce each other. By discarding ok!
measurements, useful information is tost. A weighting scheme is needed for combining competing sensor
data. In many cases, it Is useful to model error in sensor data as gaussian noise. For example, error in
dead-reckoning may arise from random error in the wheel velocities. Likewise* quantization error in range
and camera images can be modeled as gaussian noise. A number of schemes exist for fusing such data
ranging from simple Kalman filtering techniques to futi-bfown Bayesian observation networks [1] [7J,

92

5. Local Control
In this section we discuss some of the control problems in local navigation.

5 .1 . Adaptive Driving Units and Sensor View Frames
Management of driving units and sensor view frames is essential in local control. As described in

section 2, the driving unit is a minimum control unit, a unit to perceive objects, generate a path plan, and

drive the vehicle. The PERCEPTION module-digitizes an image in each driving unit, and the vehicle's

position is estimated and its trajectory is planned once in each driving unit. Therefore, an appropriate

driving unit size is essential for stable control. For example, the sensor view frame cannot cover a very

large driving unit. Conversely, small driving units place rigid constraints on the LOCAL PATH PLANNER,

because of the short distance between the starting point and the goal point. The aiming of the sensor

view frame determines the point at which to digitize an image and to update the vehicle position and path

plan.

In the current system, the sensor view frame is always fixed with respect to the vehicle. The size of the

driving unit is fixed for driving on roads (4-6 meters length), and is changed for turning at intersections so

that the entire intersection can be see in a single image and to increase driving stability (see Figure 9).

This method works well in almost all situations in our current test site.

Figure 9: Intersection driving unft

For intersections requiring sharp turns (about 135 degrees), the current method does not suffice.

Because there is only one driving unit at the intersection, the system digitizes an image, estimates the

vehicle's position, awl generates a path plan only orce for a large turn. Furthermore, since the camera's

field of view is fixed straight ahead, the system cannot see the driving unft after the intersection until the

vehicle has turned through the intersection,
potentially unstable.

93-

Though the actual path generated is not so bad, it is

This experimental result indicates that the system should scan for an admissible passage, and update
vehicle position estimation and local path plan more frequently when the vehicle changes its course
faster. We plan to improve our method for managing driving units. Our new idea is:

• length of the driving unit: The length of the driving unit is bounded at the low end by the
LOCAL PATH PLANNER'S requirements for generating a reasonable path plan, and at the
high end by the view frame required by PERCEPTION for recognizing a given object.

• Driving unit interval: The driving unit interval is the distance between the centers of
adjacent driving units. Adjacent driving units can be overlapped, that is, they can be placed
such that their interval is shorter than their length. Figure 10 illustrates this situation.

L : dxxving unit length

I : driving unit interval

Figure 10: Adaptive Driving Units

• Adjusting size and interval of driving unit: If the passage is simple, the length and
interval of the driving unit is long. If the passage is complex, for example, in the case of
highly curved roads or intersections, or in the presence of obstacles, the length and interval
of driving unit are shorter. And if the required driving unit interval must be shorter than the
length of driving unit, the driving units are overlapped. Therefore, the vehicle's position is
estimated and a local path is planned more frequently so that the vehicle drives stably (figure
10).

• Adjusting sensor vtew tmmm The sensor view frame with respect to the vehicle, the
distance and the direction to the driving unit from the vehicle, is adjusted using the pan and
mechanism of the sensor. In most cases, a longer distance to the next driving unit allows
a higher vehicle speed If the processing time of the PERCEPTION and the PILOT is
constant the longer "distance means a higher vehicle speed. But the longer distance
produces less accuracy In perception and vehicle position estimation. Therefore, the
distance is determined for the required accuracy, which depends on the complexity of

94

passage. Using the pan and tilt mechanism, PERCEPTION can digitize an image at the best
distance from the driving unit, since the sensor's view frame is less rigidly tied to the
orientation and position of the vehicle.

5.2. Vehicle Speed
It is an important capability of an autonomous mobile robot to adjust the vehicle's speed automatically

so that the vehicle drives safely at the highest possible speed. The current system slows the vehicle
down in turning to reduce driving error.

The delay in processing in the LOCAL PATH PLANNER and in communication between the HELM and
the actual vehicle mechanism gives rise to errors in vehicle position estimation. For example, because of
oontinuous motion and non-zero processing time, the vehicle position used by the LOCAL PATH
PLANNER as a starting point differs slightly from the vehicle position when the vehicle starts executing
the plan. Because the smaller turning radii give rise to larger errors in the vehicle's heading, which are
more serious than displacement errors, the HELM slows the vehicle for turns with smaller radii. This
method is useful for making the vehicle motion stable.

We will add to the system the capability for adjusting the vehicle speed to the highest possible value

automatically. Our idea is the following:
• schedule token: The modules and the submodules working at the local navigation level

store their predicted processing times in a schedule token in each cycle. PERCEPTION is
the most time consuming module, and its processing time varies drastically from task to task.

• adjusting vehicle speed: Using the path plan and the predicted processing time stored in
the schedule token, the HELM calculates and adjusts vehicle speed so that the speed is
maximum and the modules can finish processing the driving unit before the vehicle reaches
the end of the current planned trajectory.

5.3. Local Path Planning and Obstacle Avoidance
Local path planning is the task of finding a trajectory for the vehicle through admissible space to a goal

point. In our system, the vehicle is constrained to move in the ground plane around obstacles
(represented by polygons) while remaining within the driving unit (also a polygon). We have employed a
configuration space approach [5] [6]. This algorithm, however, assumes that the vehicle is
omnldsrectionaL Since our vehicles are not, we smooth the resultant path to ensure that the vehicle can
execute it. The smoothed path is not guaranteed to miss obstacles. We plan to overcome this problem
by developing a path planner that reasons about constraints on the vehicle's motion.

6, Navigation Map
Some information about the vehicle's environment roust be supplied to the system a priori, even if it is

Incomplete* and even I it Is nothing more than a data format lor storing explored terrain. The user
mission, for example, "turn at the second cross Intersection and stop in front of the three oak trees" does
not make sense to the system without a description of the environment The Navigation Map is a data
base to store the environment description needed for navigation.

95

6.1. Map Structure
The navigation map is a set of descriptions of physical objects in the navigation world. It is composed

of two parts, the geographical map and the object data base. The geographical map stores object
locations with their contour polylines. The object data base stores object geometrical shapes and other
attributes, for example, the navigation cost of objects. Though, in the current system, all objects are
described with both the geographical map and the object data base, in general, either of them can be
unused. For example, the location of stairs A is known, but its shape is unknown.

The shape description is composed of two layers. The first layer stores shape attributes. For example,
the width*of the road, the length of the road, the height of the stairs , the number of steps, etc. The
second layer stores actual geometrical shapes represented by the surface description, ft is easy to
describe incomplete shape information with only the first layer.

6.2. Data retrieval
The map data is stored in the CODGER data base as a set of tokens forming a tree structure. In order

to retrieve map data, parent tokens have indexes to child tokens. Because the current CODGER system
provides modules with a token retrieval mechanism that can pick up only one token at a time, retrieving
large portions of the map is cumbersome. We plan to extend CODGER so that it can match and retrieve
larger structures, possibly combined with an inheritance mechanism.

7. Other Tasks of the System
Navigation is just one goal of a mobile robot system. Generally speaking, however, navigation itself is

not an end, but actually a means to achieve the final goals of the autonomous mobile robot system, such
as carrying baggage, exploration, or refueling. Therefore, the system architecture must be able to
accommodate tasks other than navigation.

Figure 11 illustrates one example of an extended system architecture which loads, carries and unloads
baggage. The whole system is comprised of four layers, mission control, vehicle resource management,
signal processing, and physical hardware. The CAPTAIN, only one module in the mission control layer,
stores the user mission steps, sends them to the vehicle resource management layer one by one, and
oversees their execution.

In the vehicle resource management layer, there are different modules working for different tasks.
Although their tasks are different, they all work in a symbolic domain and do not handle the physical world
directly. These modules oversee mission execution, generate plans, and pass information to modules in
the signal processing layer. Through CODGER, they can communicate with each other, if necessary.
The MAP NAVIGATOR and the PILOT, parts of the navigation system, are included in the vehicle
resource management layer. The MANIPULATOR makes a plan (e.g., how to load and unload baggage
with the arm) and sends it to the ARM CONTROLLER.

The modules in the signal processing layer interact with the physical world using senors and actuators.
For exainple, PERCEPTION processes signals from sensors, the HELM drives the physical vehicle, and
the ARM CONTROLLER operates the robot arm. The bottom level contains the real hardware, even if ft
includes some primitive controller. The sensors, the physical vehicle, and the robot arm are Included in
this layer.

96

Mission Control

Phyaical Hardware

Figure 11: Extended system architecture

Because our current system architecture is built on the CODGER system it will be easy to expand to
include these additional capabilities.

8. Conclusions
In this paper, we have described the CMU architecture for autonomous outdoor navigation. The

system is highly modular and includes components for both global and local navigation. Global
navigation is earned out by a route planner that searches a map database to find the best path satisfying
a mission and oversees its execution. Local navigation is carried out by modules that use a color camera
and a laser range!Mer to recognize roads ami landmarks, scan for obstacles, reason about geometry to
plan paths, ami oversee the vehicle's execution of a planned trajectory.

Tha perception, planning, and control components are Integrated Mo a single system through the
CODGER software system- CODGER provides a common data representation scheme for alt modules in
the system with special attention paid to geometry. CODGER also provides primitives for synchronizing
the modules in a way that maximizes parallelism art both the local and global levels.

We have demonstrated our system's afalfty to drive around a network of sidewalks and along a curved
road* recognize complicated landmarks, and avoid obstacles. Future work will foots on improving
CODGER for handing mom difioit sensor fusion problems. We wil also work on better schemes for
local navigation and wil strive to reduce oyr dependence on map data.

97

9. Acknowledgements
The design of our architecture was shaped by contributions from the entire Autonomous Land Vehicle

group at CMU. We extend special thanks to Sieve Shafer, Chuck Thorpe* and Takeo Kanade.

98

References

[1] Durrant-Whyte, H.
Integration, Coordination and Control of Multi-Sensor Robot Systems.
PhD thesis, University of Pennsylvania, 1986.

[2] Goto, Y., Matsuzaki, K., Kweon, I., Obatake, T.
CMU Sidewalk Navigation System.
In FJCC-86. 1986.

[3] Hebert, M. and Kanade, T.
Outdoor Scene Analysis Using Range Data.
In Proc. 1986 IEEE Conference on Robotics and Automation. April, 1986.

[4] Kanade, T., Thorpe, C., and Whittaker, W.
Autonomous Land Vehicle Project at CMU.
In Proc, 1986 ACM Computer Conference. Cincinnati, February, 1986.

[5] Lozano-Perez, T., Wesley, M. A.
An Algorithm for Planning Collison-Free Paths Among Polyhedral Obstacles.
Communications of the ACM 22(10), October, 1979.

[6] Lozano-Perez, T.
Spatial Planning: A Configuration Space Approach.
IEEE Transactions on Computers C-32(2), February, 1983.

£7] Mikhail, E. M., Ackerman, F.
Observations and Least Squares.
University Press of America, 1976.

P I Shafer, SM Stentz, A., Thorpe, C.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proa IEEE International Conference on Robotics and Automation. April, 1986.

[9] Stentz, A., Shafer, S.
Module Programmer's Guide to Local Map Builder for NAVLAB.
1986.
In Preparation.

f1§l Wallace, FL, Stentz, A., Thorpe, C , Moravec, H.f Whittaker, W.f Kanade, T.
First Results in Robot Road-Following.
In Proc. UCAI-85. August, 1985.

[11J Wallace, R., Matsuzaki, K., Goto, Y., Webb, J., Crisman, J., Kanade, T.
Progress in Robot Road Following.
In Proc. IEEE International Conference on Robotics and Automation. April, 1986.

