
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The CMU Reconfigurable Modular Manipulator System

Donald Schmitz, Pradeep Khosla, and Takeo Kanade

CMU-RI-TR-88-7

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

May 1988

© 1988 Carnegie Mellon University

Table of Contents
Abstract 0
1. Introduction 0
2. Design Philosophy and Implementation 1

2.1. Link and Joint Modules 1
2.2. Joint - Link Interface 3
2.3. Communication Interface 4
2.4. RMMS Computing Environment 5

2.4.1. Real-Time Operating System 7
2.4.2. Real-Time Software Architecture 7
2.4.3. Real-Time Computing Performance 7
2.4.4. Application Control Software 8

3. Automatic Kinematics Generation 9
3.1. Generating the Forward Kinematics 9
3.2. Reverse Kinematics of RMMS 10

3.2.1. Inverse Kinematics of Non-Redundant Manipulators 11
3.3. A Method for Choosing the Scale Factor 12

4. Summary 14

List of Figures
Figure 2-1: Modular Joint Assemblies
Figure 2-2: Photo of CMU RMMS Prototype Pivot Joint
Figure 2-3: Photo of CMU RMMS Prototype Rotate Joint
Figure 2-4: Photo of Prototype Module Interface
Figure 2-5: Manipulator Communication Bus Logic
Figure 2-6: Schematic of RMMS Computing Architecture
Figure 2-7: Control Software Organization
Figure 3-1: Link Module Coordinate Assignment
Figure 3-2: Joint Module Coordinate Assignments
Figure 3-3: Block diagram of iterative inverse kinematics procedure

2
2
3
4
5
6
8

10
10
11

The CMU Reconfigurable Modular Manipulator System

Donald Schmitz, Pradeep Khosla1 and Takeo Kanade

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract
Modular manipulator designs have long been been considered for use as research tools, and as the basis for easily

modified industrial manipulators. In these manipulators the links and joints are discrete and modular components

that can be assembled into a desired manipulator configuration. As hardware advances have made actual modular

manipulators practical, various capabilities of such manipulators have gained interest. Particularly desirable is the

ability to rapidly reconfigure such a manipulator, in order to custom tailor it to specific tasks. This reconfiguration

greatly enhances the capability of a given amount of manipulator hardware. This paper discusses the development of

a prototype modular manipulator and the implementation of a configuration independent manipulator kinematics

algorithm used for path planning in the prototype.

1. Introduction
The major advantage of robotic manipulators over task-specific hardware for automation is their flexibility. In

theory, a robot's task can be changed simply by loading a new program into its controller. However, in practice this

is rarely the case. Each robot has a specific configuration that supports a limited range of capabilities, appropriate

only to the applications for which it was designed. The major factors that define the configurations are the link

lengths, joint actuators, and geometry of joint-link connections. For example, horizontal SCARA-configuration

manipulators, connected with relatively short links, are suitable for delicate table-top assembly operations requiring

accuracy and selective stiffness, but they are not usable for tasks that require a vertically large workspace. On the

other hand, medium-sized, vertical Puma-configuration manipulators with a relatively long reach in all directions, are

suitable for painting, welding and parts handling. Using manipulators with different configurations for each task is

possible when the task requirements are known beforehand. However, in less predictable situations, such as an

outdoor construction site, inside a nuclear facility or aboard a space station, a manipulator system would need a wide

range of capabilities, probably beyond the limitations of a single fixed-configuration manipulator.

We have proposed a manipulator system. The Reconfigurable Modular Manipulator System (RMMS), that

addresses the above mentioned shortcomings. It provides a viable alternative to using fixed configuration

manipulators by extending the existing concept of modular manipulator design. The term modular manipulator

generally refers to a robotic manipulator assembled from discrete mechanical joints and links into one of many

possible manipulator configurations [WURST], Such a manipulator has several advantages over conventional

1 Assistant Professor,, Department of Electrical and Gomptiter Engineering

designs, most notably economy of manufacture, ease of modification and ease of repair. At least one such modular

manipulator is now commercially available [ROBRES].

The Reconfigurable Modular Manipulator System extends the concept of modularity throughout the entire

manipulator system to include not only the mechanical hardware, but also the electrical hardware, control algorithms,

and software as well. The RMMS (Reconfigurable Modular Manipulator System) utilizes a stock of interchangeable

link modules of various lengths, and joint modules of various sizes and performance specifications. This modularity

allows a wide range of manipulator architectures to be assembled from a small set of general purpose hardware and

software components.

The concept of an RMMS poses challenging technological and theoretical research issues that must be addressed

before such a system can be used effectively. In this paper we discuss both theoretical and technological issues and

describe our progress in this area. In order to demonstrate our ideas we have built a prototype RMMS in our

laboratory. We describe the design and operation of this prototype RMMS. The prototype includes 6 joint and 6

link modules, and a controller consisting of a Motorola 68020 based computer with real-time capabilities. We have

also implemented an algorithm that automatically generates forward and reverse manipulator kinematics. The

RMMS is presently controlled by independent joint control algorithms. We are now addressing issues such as

mapping task specifications to manipulator configurations, automated generation of the manipulator dynamics

equations, and reconfigurable model-based control algorithms. Interestingly, a recent survey indicates a need for

manipulators with both reconfigurability and extensibility for research in all areas of robotics [Walker]. Our RMMS

design provides practically all of the features discussed in this survey.

2. Design Philosophy and Implementation
An RMMS consists of similar subsystems as those found in conventional manipulators:

• A physical structure of joints and links.

• Servo systems for each joint, consisting of actuators, transmissions, and sensors.

• A computer controller and programming environment.

The major differences between an RMMS and a conventional manipulator are the standardized component interfaces

and configuration independent control algorithms. The interface standardization must include the mechanical mating

of manipulator modules, the format of data communication, the communication protocols between hardware and

software, and between various levels of software. Although adopting such standards impose some restrictions on the

design of the actual components, this disadvantage is offset by the interchangeability of manipulator components and

the capability for rapid reconfiguration. In the following subsections, we present the design, and mechanical and

electronics interface of each major component in the prototype RMMS system that we have developed in our

laboratory.

2.1. Link and Joint Modules

The mechanical modules making up an RMMS are divided into two groups, joints and links. The design of each

module is independent of other modules except fen- the module intafaces which are standardized. One implication of

this modular joint design is that the entire pint actuator must be packaged within the joint module. Each Joint

module must Include a motor (or some type of actuator), a transmission mechanism, a position sensor, and the

necessary power electronics to control the motor. Electrical power is distributed and communication is multiplexed

over a small number of conductors permanently installed in each module. This allows for simple assembly without

custom cabling. Although these design constraints limit the power which can be generated by the joint due to the

limited size of the motor, transmission, and power amplifier, this is not viewed as a major short coming of the

design. By properly selecting the transmission reduction ratio, high torques at low speeds can be obtained,

appropriate for most tasks as long as speed of operation is not critical.

MODULE COUPLINGS

ROTATE JOINT PIVOT JOINT

Figure 2-1: Modular Joint Assemblies

For simplicity and convenience, we have considered and built only the two common types of revolute joint in our

RMMS. These two types are rotate, and pivot, and are distinguished by the orientation of the joints link axes with

the joint axis. Both types of joint are shown schematically in Figure JTS. A rotate type joint has link axes which are

co-linear with each other and with the joint axis. A pivot has link axes which are both perpendicular to the joint axis.

Figure 2-2: Photo of CMU RMMS Prototype Pivot Joint

Our current designs for pivcx and rotate joints are shown in the photographs in Figures CMUPIVOT and

CMUROTAIE. The actuator in each joint consists of a conventional servo motor and linear amplifier driving a

harmonic drive with 200:1 reduction ratio. This design yields a maximum output torque of 200 ft-Mt and maximum

Figure 2-3: Photo of CMU RMMS Prototype Rotate Joint

axis speed of 0.7 radian/second. Also integral with the joint assembly is a brushless resolver mounted coaxially with

the output shaft, providing position feedback with a resolution of 0.0001 radians. A wire windup allows the resolver

(and output shaft) to turn up to 480° before damaging the resolver electrical connections. In our design we have also

allowed for incorporating a tachometer that is directly coupled to the motor shaft The tachometer will provide

output shaft velocity measurements with a resolution of 0.001 radians/second. All of the actuator components are

packaged in a sub-assembly of the joint module, allowing a number of kinematically different types of module to be

manufactured from this common assembly. The total weight of both types of joint is 17 lbs.

We tested the joint modules using a fixed gain, PSD feedback control algorithm. The control loop gains and

sampling rate were determined by an experimental procedure [khosla8]. In our experiments, we obtained static

positioning accuracies of ±0.001 radians, and closed-loop stability of the system was demonstrated at sampling rates

as low as 100 Hz. We are currently developing techniques for dynamics identification to evaluate the use of

model-based reconfigurable controllers for the RMMS.

2.2, joint - Link Interface

In order to assemble the joint and link modules into a manipulator, a method of mechanically coupling the

modules is required. This coupling must both align the modules, and lock them together with sufficient strength to

transmit the internal forces generated by the movement of the manipulator. In addition to structurally coupling the

modules together, this Interface must also electrically couple the modules, and be able to sense the coupling

orientation of successive modules.

The current interface design is shown in the photograph in Figure VBAND. The mechanical coupling is

accomplished using commercial V-band clamps. V-band flanges are an integral part of the link and joint modules, as

shown in Figure 2-2 and VBAND. An arrangement of pins and holes in each flange limits the coupling orientation

to four, equally spaced positions that are 90 degrees apart An LED in one flange and four phototransistors in the

other allow the controller to sense which of the four possible orientations is in use. Although rudimentary, this

design provides the necessary functionality for the module interface. We are currently investigating the use of quick

release V-band clamps and more sophisticated designs with locking mechanisms that allow automatic Mpeg-in-holeM

type coupling.

Figure 2-4: Photo of Prototype Module Interface

23. Communication Interface
Each joint houses the power and sensor electronics for the actuator. To control the joint actuators and obtain

sensor feedback, a communication link between the joint modules and a computer controller is required. To allow

standard connections between joint modules, this communication link must be implemented using a fixed number of

conductors while being capable of supporting an arbitrary number of modules. This implies a multiplexed

communication link, similar to a computer bus or Local Area Network (LAN).

Due to the data transmission overhead associated with existing LANs, our prototype utilizes a bus type

implementation, referred to as the armbus. The ambus design is shown schematically in Figure ARMBUS. This

design is based on a conventional 8-bit bi-directional data/address bus, an additional 5 control lines, and a rather

unconventional 4 bit daisy chained node address bus. The daisy chained address bus provides automatic node

address configuration; the first module in the manipulator is node address 1, the second module is node address 2,

and so on. This is accomplished by including a "subtract one" circuit in each module which is in the path of the node

READ/WRITE-

DATA/ADDRESS"

HIBYTE/LOBYTE-

CLOCK-

o oo

J LOCAL WRITE BUS

] LOCAL READ BUS

Figure 2-5: Manipulator Communication Bus Logic

address lines. Each joint can thus detect "address equals zero" as the node address. Due to the low data rate of the

bus (current bus clock is 500 KHz), the propagation delay added by the subtract circuit is negligible.

2.4. RMMS Computing Environment

RMMS software is easily divided into two functional classes: real-time critical control programs and event-driven

application programs. Real-time programs are those which must be executed at a predetermined sampling rate, such

as control law calculation. In contrast, event-driven programs rely on detecting conditions, such as the manipulator

reaching a certain position, to schedule future manipulator actions. In our implementation, we have chosen this

distinction (between real-time and event driven programs) as a natural module boundary for organizing the

manipulator control software.

In the RMMS environment, a CPU is dedicated to each class of software. Real-time control programs execute on

a dedicated comroller CPU, with a hardware interface to the inter-module communication network. This controller

CPU performs the necessary realtime control of the manipulator, and receive commands from a second, master CPU.

This master CPU executes the event-driven application program. In this architecture the manipulator controller

appears as a peripheral device. An interrupt driven communication channel between the two processors provides a

well defined interface between the two software/computing modules.

VME
BUS

SUN MICROSYSTEMS CPU

HOST PROCESSOR

VME BUS
INTERFACE

4 Mbyte
MEMORY

M68881 FPP

JLL

M68020 CPU

ETHERNET
INTERFACE

ETHERNET

TO LOCAL
NETWORK

IRONICS 68020 CPU

SERVO CONTROL PROCESSOR

VME BUS
INTERFACE

1 Mbyte

DUAL PORTED
MEMORY

M68881 FPP

M68O20 CPU

VMX BUS
INTERFACE

VMX TO

ARM BUS

INTERFACE

ARM BUS

TO ADDITIONAL
JOINTS

o o o

JOINT
SENSOR

JOINT
MOTOR

DtoA
CONVERTER

AMPLIFIER

JOINT
SENSOR

»

JOINT
MOTOR

-

DtoA
CONVERTER

1

AMPLIFIER

POWER BUS

Figure 2-6: Schematic of RMMS Computing Architecture

We have implemented this architecture, depicted in Figure IRON, for controlling the RMMS. The controller CPU

is an Ironies single-board computer, based on a Motorola 68020 processor and VME bus, with 1 MByte of dual

ported RAM. The master CPU is a SUN-3 workstation, also based on the Motorola 68020 and VME bus. This basic

architecture (and the support software) can be expanded to include additional Ironies CPUs for greater computational

power. The similarity between the Ironies and SUN's CPU allows us to use the same editor and compiler for both

processors thus simplifying software development and inter-processor communication. Real-time control programs,

at all levels, are written entirely in C programming language. The interface to the manipulator communication

network is via the VMX bus interface included on the Ironies. The VMX bus is a recognized extension to the VME

bus and is intended to be a local 10 bus in multiprocessor systems such as the one we have built for controlling the

RMMS.

2.4.1. Real-Time Operating System

Manipulator control programs executing on the Ironies real-time CPU are linked with a locally developed real-

time operating system or kernel. This kernel provides a number of concurrency and scheduling primitives, allowing

users to write control programs as a series of concurrent processes. It also supports many Unix-like utilities,

particularly memory allocation and access to the SUN file system. These features have two important implications

to the development of manipulator control code:
• Control algorithms are written without regard to the specific hardware and low level software

implementation of the system. At the same time, the programmer is forced to more fully understand the
data flow and timing relationships of the algorithm being coded, to specify those relationships via the
concurrency primitives.

• By providing real-time programming utilities that mimic their Unix counterparts, a large base of existing
Unix/C code is easily ported to real-time applications. Similarly, a large base of existing Unix/C
programming expertise is also readily available.

2.4.2. Real-Time Software Architecture

The current software control architecture is shown in Figure SOFTWARE. In the current design there are four

principal processes executing concurrently:
• The feedback control law which is implemented for each manipulator axis can be executed at sampling

rates of 50-500 Hz. Our current implementation employs a sampling rate of 200 Hz.

• The path planning algorithm updates the control loop inputs to drive the manipulator to a desired
position in a specified manner (eg. straight line, minimum time, etc). This can operate at sampling rates
of 5-30 Hz. We are presently using a sampling rate of 20 Hz.

• A data logging process that records specified values of the manipulator state. This information is
required for off-line analysis and for monitoring manipulator control experiments.

• An interactive command interpreter that implements a low level manipulator control language. This
allows a user or an application program on the SUN-3 to issue commands, to the control package, for
displaying data about the manipulator state.

2.4.3. Real-Time Computing Performance

The Motorola 68020/68881 CPU has been extensively benchmarked for many applications, with typically reported

performances of 2 MIPS and 0.25 MFLOPS [SUNLIT1, MOTOROLA1]. In order to determine the performance of

the actual system executing a typical manipulator control program, the RMMS realtime CPU was benchmarked

performing a single iteration of a PSD position control loop. The control law calculation is given by the following

pseudo-C code. All variables are double precision floating point variables, referenced indirectly by an offset from an

address register (the benchmark thus includes a typical level of addressing overhead). The actual code was written

with no attempt at optimization other than that performed by the compiler.

PATH PLANNING
PROCESS

FROM SUN USER/PROGRAM
COMMAND INTERPRETER

PROCESS 4—fc

1

[J INDICATES PROCESS CREATION

\ INDICATES DATA FLOW

SEMAPHORE

GLOBAL VARIABLES

(MANIPULATOR STATE)

TO SUN DISK

TJL
DATA LOGGING

PROCESS

SERVO CONTROL

PROCESS
TO/FROM MANIPULATOR,.

Figure 2-7: Control Software Organization

pos_error = reference_position - position;
vel_error = reference_velocity - velocity;
integral = (integral * alpha) + pos_error;
torque_command = (pos__error * Kp) + (veljerror * Kv)

+ (integral * Ki);
if (torque_command > Tlim) torque^command = Tlim;
else if (torque^command < -Tlim) torque_command = -Tlim;

This computation requires 11 floating point operations (4 multiplies, 5 additions/subtractions, and 2 comparisons).

The actual code is fairly typical of first pass code written by an average C programmer. This segment executes in

0.12 milliseconds, indicating floating point performance of approximately 0.1 MFLOPS. Obviously this is a rough

measurement of system performance, however this is quite good considering the unoptimized nature of the code.

With simple code optimization, it is quite possible that compiled C code could approach the 0.25MFLOP

performance claim.

2.4.4. Application Control Software

Within the RMMS computing environment, application programs are SUN-3 programs, written in a SUN

supported language. Currently, we are using the C programming language for developing application programs.

Access to the manipulator controller is via special Unix devices which implement pipe like communication channels

to the real-time program. This mechanism has been used to build a message passing protocol between the two

processors. This has been done for the existing manipulator control package, allowing a SUN program to call an

appropriate library routine which signals the manipulator control program to execute the desired command.

3. Automatic Kinematics Generation
Specifying a manipulator task typically requires specifying the end effector position (with reference to the

manipulator base) as a function of time and system conditions. This method of task specification is well suited to an

RMMS, as it is completely independent of the manipulator configuration; the manipulator is simply considered a

motion transducer. Since the end effector position is controlled indirectly by controlling each joint's axis position,

the relationship between these two quantities, known as the manipulator forward and reverse kinematics, is required.

Deriving a set of Denavit-Hartenberg parameters (for the forward kinematics) and a closed-form reverse kinematics

solution requires both mathematical manipulation and geometric intuition [PAUL1]. Further, since an arbitrary

manipulator may be created from the RMMS, the forward and reverse kinematics solutions have to be derived for

each configuration of the manipulator.

To alleviate the above difficulty we have proposed algorithms that create the forward and reverse kinematics

solutions automatically from a description of the joint and link modules and the sequence in which they have been

connected. For the reverse kinematics we have adopted a numerical approach that allows for complete generality

and can also accommodate redundant manipulators. A general numerical solution to the reverse kinematics is often

computationally inefficient and mathematically poorly behaved especially close to singularities. To address this

issue, we have developed a robust reverse kinematics solution that is well behaved close to a singularity and can be

computed at real-time rates. In the ensuing paragraphs we present our approach to generating the kinematics of a

RMMS automatically.

3.1. Generating the Forward Kinematics

The forward kinematic equations of a manipulator describe the position and orientation of the end-effector as a

function of the joint variables. The forward kinematic transformation is typically obtained from a set of parameters

known as the Denavit-Hartenberg (D-H) parameters of the manipulator. These parameters are obtained through a

predefined sequence of transformations and are a function of the geometry of the manipulator. The input to our

forward kinematics algorithm is the geometry of each module, the type of each module, and the sequence of

connection of the modules that comprise the manipulator. The output of our forward kinematics algorithm is the set

of D-H parameters of the manipulator.

We use homogeneous transfcwnatkM matrices to specify the geometry of modules. For a link module we use one

homogeneous transformation that relates one end of the link 10 the other as depicted in Figure LINKMOD. In older

to incorporate both the degree-of-freedom of a joint and its shape we use two homogeneous transfomntioos: one

from the lower left connector to Ac origin of the joint ^J^) and another from the arigin to the upper right connector

(°J0). A typk^jpint module a r i The definition of the origin of

the joint module is aAitnuy as long as k is chosen 10 be a point lying along the axis of rotation. Based 00 die above

systematic description, we have implemented an algorithm thai automatically creates the forward kinematics of aa

RMMS. For the sake of brevity we have excluded the details of the algorithm in this papa; they are presented

k [KELMAR1].

A simpler method of generating the forward kinematics of an RMMS would be to seqiieEtMly multiply all the

module trairfonnations. However, it is dJesxabie (particubriy when the manipulator Jacoblan is also required) to

represent the forward kinematics in terms of the DGMvit-Btrtenbcrg parameters. In the present implementation, *e

10

Figure 3-1: Link Module Coordinate Assignment

wb

T
AGo

V

4c
wx X

M- wa

Figure 3-2: Joint Module Coordinate Assignments

control computer reads the description of the joint and link module descriptions through a database file. However, in

the future each joint and link module will have a ROM which will include the kinematic information pertaining to

that module.

3.2. Reverse Kinematics of RMMS

In order to do any controlled movement it is necessary to have an inverse kinematic model to determine the joint

angles required to achieve a desired position and orientation of the end-effector. Ideally, one derives closed form

equations for the inverse kinematics wtieie each joint variable is expressed in terms erf other known quantities.

However, existence of a closed form inverse kinematics solution depends on the kinematic stricture of the

manipulator [Pieperf Wolovich]. For example, it is known that a closed form solution exists for a manipulator which

11

has three consecutive axes that intersect, such as in a spherical wrist [Pieper]. This solvability condition is not

necessary, but only sufficient. Because an RMMS manipulator can assume any configuration, including one that is

redundant, it may not be possible to find a closed form solution. In order to provide for generality we have adopted a

numerical approach for solving the inverse kinematics of an RMMS. In the ensuing paragraphs we describe a

numerical method to compute the inverse kinematics of non-redundant manipulators [Khosla85]. We also describe

an extension of this method that is applicable for redundant manipulators.

3.2.1. Inverse Kinematics of Non-Redundant Manipulators

A closed-loop method for solving the inverse kinematics equations using the Newton Raphson method is proposed

in [Khosla85] and is depicted in Block diagram form in Figure BLOCK. The iterative method determines the

necessary changes in the joint angles to achieve a differential change in the position and orientation of the end-

effector. The forward kinematics are described in functional form as:

x = f(q). (1)

where x is the vector of Cartesian position and orientation and q is a vector of joint displacements. The

corresponding differential changes dx and dq, in the Cartesian and joint space, respectively, are related through the

manipulator Jacobian as:

dx = J(q)dq. (2)

Desired T,N

Differential
change

matrix

dTN

Differential changes
of joint variables

Updated Joint
variables

Present joint
variables

Figure 3-3: Block diagram of iterative inverse kinematics procedure

Inverting Equation (TR2) to obtain an expression for the differential inverse kinematics we obtain:

where J"1 is the inverse Jacobian. The above equation may be written, in an iterative form, as:

(3)

where the differential change in position and orientation at the k-th iteration is computed from the differentia!

homogeneous transfoiEalicM matrix dTH [paull]. Ttejomtdi^lm^.iiieiitsarccoiiipiitedas:

Equation (TTR4) is solved iteratively, until each term in TN (or comspc»diitgly in dxk) is within a prespecified error

12

tolerance, 8.

We have performed experiments using the above algorithm and have shown it to work well for non-redundant

systems. Including redundancy introduces complications in the computation of the inverse kinematics solution. The

Jacobian, which relates differential changes in the joint variables to differential changes in the Cartesian variables is

of dimension M x N, where M is the number of degrees of freedom of the workspace and N is the number of degrees

of freedom in the manipulator. When M and N are not equal (which is the case for redundant manipulators), the

Jacobian is no longer invertible and we must substitute a generalized inverse to provide an inverse equivalent.

Much of the previous research on inverse kinematics for redundant manipulators has focused on the

pseudoinverse [Baillieul, Chang, Klein]. The pseudoinverse is a generalized inverse which provides the minimum

norm solution [Noble]. Because standard pseudoinverse control has proved to be inadequate in the neighborhood of

singularities, many methods have been developed which augment the pseudoinverse so as to use the kinematic

redundancy to optimize an objective function [Baillieul, Baill2, Klein].

While methods cited above are configuration dependent, computationally intensive, or both, the method we

propose for RMMS achieves singularity avoidance while requiring negligibly more computations than the standard

pseudoinverse. It is called the singularity robust inverse [Nakamura]. The pseudoinverse solution is problematic in

the neighborhood of a singularity. In an effort to converge to an exact solution, the pseudoinverse may generate an

infeasible solution. That is, it may generate a solution for which one, or more, of the dq values is so large that it

cannot be physically realized. The singularity robust inverse method circumvents this problem by providing

continuous and feasible solutions even at, or in the neighborhood of, singular points.

The singularity robust inverse is based upon an evaluation index,

«• - (* d<,jdq>

which simultaneously considers the exactness of the solution, as measured by the top term, and the feasibility of the

solution, as measured by the bottom term. When solving the inverse kinematics problem one must find the minimum

weighted Euclidean norm of the evaluation index. The weighting of the terms in the evaluation index manifests itself

with the scale factor X. The singularity robust inverse, J* becomes:

H)-1. (6)

In the next section we discuss a technique for choosing the the parameter 3L

3.3. A Method for Choosing the Scale Factor

In order to employ the singularity robust inverse for RMMS, we must develop a method to automatically generate

an appropriate scale factor for any manipulator. The scale factor, X, must have a large value in the neighborhood of

singular points and must be small value, or zero, far from singular points. This is achieved by computing X

as [Nakamura]:

X = {*ott " $ if ax^b (7)
otherwise

13

where co = ^determinantQ-i1) is a manipulatability measure for the manipulator [Yoshikawa], Xg is the magnitude

of the scale factor at singular points, and coo is a threshold which represents the neighborhood of singular points.

Equation (7) automatically adjusts X according to the manipulator's distance from a singular point.

To experimentally implement the above method it is necessary to choose values for the parameters XQ and coo.

Further, the choice of these parameters must be configuration independent and work without a priori knowledge of

the location of manipulator's singularities or kinematic parameters. While the value of co approaches zero as the

manipulator approaches a singular point, it's absolute magnitude is dependent on the the dimensions and the units of

measure of the links and joints of the manipulator. For example, an co of 102 may imply that one manipulator is near

a singular point, but another manipulator, which has much smaller dimensions, may be far from one. In order to

remove the dependency of co on the units of measure and the absolute values of the kinematic lengths, we have

introduced the idea of a scaling a manipulator. Scaling is accomplished by dividing all the kinematic lengths by the

largest length of a manipulator. This forces all the kinematic lengths to lie between zero and one thus diminishing

the disparity in the magnitudes of co between different manipulators. However, different scaled manipulators may

still generate vastly different co values.

The singularity robust inverse chooses an absolute threshold value to specify co0. As mentioned before this choice

is manipulator dependent. In order to alleviate this difficulty, we propose checking for a sudden drop in the value of

co between iterations. This is motivated by the observation that as a manipulator approaches singular configuration

the value of co decreases dramatically. We detect the neighborhood of a singularity when the ratio -J^i falls below a

threshold \L That is, we examine the ratio of o> between the k?h and the k+lth iterations of the Newton-Raphson

algorithm.

Based upon the above discussion, the equation for computing the scale factor X (for a scaled manipulator) is:

0 otherwise

Our experiments with the above technique suggest p.« 0.1 to be reasonable value.

We choose XQ based on the tradeoff that is the premise for the singularity robust inverse method. Namely, by

adding a larger scale factor we make the solution less exact, but more feasible or robust In order to generate a less

exact solution we must increase £. (Recall e is the convergence error tolerance for the Newton-Raphson algorithm.)

While increased error tolerance is acceptable for many applications, we cannot assume so for the general case.

Alternatively, we maintain the enor tolerance and increase the number of iterations of the Newton-Raphson

algorithm until the error is less than e.

Before choosing a value for X® we must determine bow large X can be before the system fails to converge. In

order fey the Newtoci-Rapfison iteration to converge, the residual error must be less than the error tolerance £.

Therefore, X must be also be less than £, Rather than defining an absolute value for XQ, we propose setting XQ equal

to one order of magnitude smaller than e (XQ = 0;.le). This choice is based upon our experimental results with p. =

0.1.

14

4. Summary

In this paper we have describe the design of an RMMS. The feasibility of such a system has been demonstrated
through the construction of a prototype RMMS built using readily available commercial components. A powerful
computer control system with both real-time scheduUng and Unix compatibiUty has also been built, and used to
control the current RMMS manipulator.

As part of the effort to develop reconfigurable control programs, an algorithm for automatic forward and reverse

kinematics generation has been implemented and tested. The algorithm is implemented as a computer program,

which can find the Denavit-Hartenberg parameters for an arbitrary configuration manipulator, and then perform an

iterative inverse kinematics solution. The inverse kinematics algorithm has been extended to work for redundant

manipulators. The extended algorithm generates manipulator solutions which avoid singular positions. Both

algorithms have been optimized for computational efficiency and robustness, and have been implemented on an

Motorla 68020/68881 based single board computer, at rates on the order of 20 Hz.

15

References

[I] J. Baillieul, J. HoUerbach, R- Brockett.
Programming aid Control of Kinematically Redundant Manipulators.
Proc. 23rd Conference on Decision and Control :76S-774, December, 1984.

[2] J. Baillieul.
Kinematic Programming Alternatives for Redundant Manipulators.
IEEE International Conference on Robotics and Automation 1:722-728, March, 1985.

[3] P.H. Chang.
A Closed-form Solution for the Control of Manipulators with Kinematic Redundancy.
IEEE International Conference onRobotics and Automation 1:9-14, April, 1986.

[4] L. Kelmar and P. Khosla.
Automatic Generation of Kinematics for a Reconfigurable Modular Manipulator System.
In IEEE Conference on Robotics and Automation. IEEE, April, 1988.

[5] P.K. Khosla, C.P. Neuman, and F.B. Prinz.
An Algorithm for Seam Tracking Applications.
The InternadonalJournal of Robotics Research 4(1):27-41, Spring, 1985.

[61 Khosia, P. K.
Real-Time Control and Identification of Direct-Drive Manipulators.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie-Mellon University, August, 1986.

17] C. A. Klein and C-H Huang.
Review of Pseudoinverse Control for Use with Kinemiatically Redundant Manipulators.
IEEE Trans, on Systems, Man, and Cybernetics SMC-13(3):245-250, March/April, 1983.

[8] Beims, Bob.
The Floating-Point Performance Standard Gets Even Faster!
In (editor), WESCON1986 Professional Program Papers, Session 35/1. Electronic Conventions, 1986.

[9] Y. Nakamura and H. Hanafiisa.
Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control.
Journal of Dynamic Systems, Measurement, and Control 108:163-171, September, 1986.

[10] B. Noble and J.W. Daniel
Applied Linear Algebra.
Prentice Hal, MX, 1977.
Second Edition.

[II] Raul, R. P.
Robot Manipulators: Mathematics, Programming and Control.
MIT Pness, Cambridge, MA, 1981.

[12 J Keper.D.L.
Tim Kinematics afMaripidators under Computer Control.
PhD thesis. Department erf OmpMa Science, Stanford University, 1968.

f 13! Anon.
Technical Brochure an Modular Arms
Robotics Rcsearcli lm^ OWos 1987.

114] Anon*
The 5MV-J Family: An Owrmew
SUN Mtoosystcois Inc., CMifoiik, 1986.

115] Walker, ML
A Smwy qf Research M^bois*
Technical Report, Uii ¥«stty of Mklipn, Ann Arbor, 1987.

16

[16] W.A. Wolovich.
Robotics: Basic Analysis and Design.
Holt, Rinehart and Winston, New York, 1987.

[17] Wurst, K. H.
The Conception and Construction of a Modular Robot System.
In Proceedings of the 16-th International Symposium on Industrial Robotics, pages 37-44. ISIR, 1986.

[18] Yoshikawa,T.
Manipulability of Robotic Mechanisms.
In Proceedings of the Second International Symposium on Robotics Research, MTT, Kyoto, Japan, August

20-23,1985.

