
The Driving Pipeline:
A Driving Control Scheme for Mobile Robots

Yoshimasa Goto, Steven A. Shafer, Anthony Stentz

CMU-RI-TR-88-8

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 1988

© 1988 Carnegie Mellon University

This research was sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA order No.
5682 and monitored by the U.S. Army Engineer Topographic Laboratories under contract DACA76-86-C-0G19.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies either expressed or implied, of the Defense Research Projects Agency or of the U»S,
Government

Table of Contents
1. Introduction . 1
2. Processing Steps and Driving Unit 2

2.1. Prediction and the Driving Unit 3
2.2* Perception and Driving Unit 3
23* Environment Modeling and the Driving Unit 4
2.4. Local Path Planning and the Driving Unit 4
2.5. Vehicle Control and the Driving Unit 5

3. Continuous Motion, Adaptive Control, and the Driving Pipeline 5
3.1. Pipelined Execution for Continuous Motion 5
3.2. Execution Intervals of the Driving Pipeline 7
33. Parallelism in the Driving Pipeline 7
3.4. Vehicle Speed and Driving Pipeline 10

4. The Driving Pipeline in Action: Experimental Results 12
4.1. Implementing the Driving Pipeline 12
4.2. Processing Steps and Driving Units 12
4.3. Pipeline Execution and Parallelism 13
4.4. Execution Intervals 13
4.5. Vehicle Speed 14
4.6. Sensor Aiming 15

5. Conclusion 17

" List of Figures
Figure 1-1: Driving Control Scheme
Figure 2-1: Sequence of Driving Units
Figure 2-2: Driving Unit Size for Vehicle Maneuvering
Figure 3-1: Pipelined Execution of the Driving Pipeline
Figure 3-2: Badly-Balanced Execution of the Driving Pipeline
Figure 3-3: Parallel Execution Pattern in the Map Navigation Mode
Figure 3-4: Parallel Execution Pattern in the Map Building Mode
Figure 4-1: Terregator and Navlab
Figure 4-2: Module Structure
Figure 4-3: Processing Steps
Figure 4-4: Timing Diagram of the Processing Steps
Figure 4-5: Driving Unit Intervals
Figure 4-6: Control of the Vehicle Speed
Figure 4-7: Sensor View Frames

1
3
4
6
8
9

10
13
14
15
16
17
18
19

Abstract

Mobile robot vehicles must control the execution of numerous perception and planning processes to navigate
successfully in complex environments. In the past, most mobile robot systems have utilized " stop-and-go" control
schemes that avoid addressing the driving control problem, or have used fixed control schemes that do not allow for
the changing environment and field of view of the vehicle. This paper presents a new architecture for mobile robot
control called the "Driving Pipeline", that integrates multiple perception and planning processes and provides
continuous motion with adaptive control. The Driving Pipeline has been implemented and tested on numerous
versions of two vehicles: the Terregator and the NAVLAB. It has proven to be a flexible and powerful mechanism
for building integrated software for mobile robot perception and planning.

1. Introduction
This paper describes a driving control scheme for a mobile robot that drives the robot vehicle outdoors, avoiding

obstacles, and keeping the vehicle within a navigable area. As illustrated by Figure 1-1, the driving control scheme
takes a high-level navigation plan from planning modules and sensor data from sensors, and generates vehicle
motion commands, performing the necessary computations including perception, environment modeling, path
planning, and vehicle control. We have developed a scheme for the coordination of these tasks, which we call the
Driving Pipeline. This paper describes the Driving Pipeline, the various processes that it coordinates, and the
experiments in which the Driving Pipeline has been successfully used for building mobile robot systems.

High Level Plan

Driving Control Scheme

Perception

Planning

Environment
Modeling

Vehicle •

Control

Motion Comand

\t/

Sensor Data

-cv
Figure 1-1: Driving Control Scheme

Our objective is to build an autonomous mobile robot working in the real world in real-time, so we adopted the
following desigri goals:

• Flexibility: Other systems have been developed that perform a single navigation task well; however,
these systems are not easily extended to handle a broad range of tasks.

• Continuous Vehicle Motion: Continuous motion is more desirable than stop-aad-go motion, because
it produces higher vehicle speeds and smoother control.

• Adaptive Control: Driving control must be adaptive to the environment and to the internal condition
of the robot vehicle. For example, the vehicle should be able to drive faster using less sensor data on a
flat broad ground than on a winding narrow road. The driving control scheme must adjust its

compulation and maintain effective coordination among numerous perception and planning processes.

• Parallel Execution: For reai-time motion, driving control requires a large amount of computation in a
variety of different procedures. For this end, parallel computing is the most practical solution. In
addition to small-grain parallelism such as parallel machines for signal data processing, large-grain
parallelism can be used to coordinate the various tasks involved in driving. Parallel computing can take
advantage of two kinds of parallelism: parallelism in processing steps and parallelism in data to be
processed.

In order to achieve these goals, we developed the Driving Pipeline based on two key ideas:
« The Driving Unit: We divide the area in which the vehicle navigates (road, hillside, etc.) into a

sequence of small areas called driving units so that it can process each driving unit separately. Each
processing module for perception and planning will operate successively on each driving unit in turn.

• Execution Pipeline: The Driving Pipeline allocates the primitive processing steps along a pipeline so
each one can work independently, receiving input data from the previous processing step and passing
data to the following processing step.

These two key ideas enable the pipelined execution of the primitive processing steps on the sequence of driving
units, which provides enough throughput to allow continuous vehicle motion. As the vehicle encounters changes in
the road configuration, it can place driving units with different sizes and intervals by adjusting die senses- view
frames* execution intervals, and vehicle speed.

A&bcnigh several mobile robot systems have been built in the past, they did not address driving control scbeooe
very deeply. Stop-and-go motion, although it does incorporate all of the primitive processing steps, deliberately
avoids the problem of continuous motion control [2,4,7,10]. Waxman et al. mentioned the necessity for vehicle
^eed adjustment using knowledge, but didn't show any method for doing so [11]. Brooks developed a kyeei
control stnKto« thai drives a vehicle continuously [1]. However, it does not have the ability to adapt the control to
n»e£ the dimpng needs of perception. Dickmarms and Zapp develped a system for high-speed navigation on the
German Autobahn PI* TMs system tracks simple visual features (e.g., white lines bordering the road) and cannoc bo
easiy cxioicicd to handle more difficult percepfsiai scenarios.

To solve these pottons, we hive developed the concept of the Driving Pipeline and verified it in two
ajxrimettai mobile robot syacms: the Terregator awl the NAVLAB. This paper describes the Driving Pipeline*
including the component concepts of the Driving Unit and the Execution Pipeline, and describes our experiments
wife these vehicles.

2. Processing Steps and Driving Unit
We ivi ic ihe mmpxtMm necessary for driving control into the following primitive processing steps:

• TJ» Prtilctioa step plans the wet that the vehicle wii move into next

• The Perctpttea step detects avigablt mm boundaries and obstacles using sensor data,

• The lUrrlnxuMBt Modeling siep makes a description of the vehicle environment and updates the

estimate of the vehicle position*

• The Local Pith Ranting step pitas the vehicle trajectory*

• The Vthkke Contra! &tp drives the vehicle mechtasm*
Ttics* ite^i must each execute &n uun to process each area of terrain that the vehicle will traverse.

We det'etoped the zmttpi of the driving ana to indicate the area that each primitive step will process ORC« JI

cycle. The vehicle's eaare route is divided into driving units which arc passed, one at t time, © sac ft
it: vc process tug step, la Uus My, planning and perception arc synclbronizeci to provide driving ccw-5

2.1. Prediction and the Driving Unit
The Prediction step works as the manager of the Driving Pipeline. It receives the high-level plan from the map

navigation level of the system, predicts the next chunk of area into which the robot vehicle should move, and
indicates it by defining a new driving unit. Because the driving units are placed in the order that the vehicle travels,
the sequence of driving units forms the vehicle passage, which outlines the planned path of the vehicle (Figure 2-1).

^ —
o

x .-——
- ^ . — ^ 1

Figure 2-1: Sequence of Driving Units

The parameters for placing the driving units are:

• location of the driving unit

• type of the driving unit: such as on-road^ open-terrain.

• size of the driving unit: the width and length of the driving unit

• interval of driving units : the distance between the centers of eonsequtive driving units along the vehicle
trajectory.

The driving unit location is determined based on the high-level plan derived from the navigational map, combined
with the vehicle's current position estimate. The type of driving unit can be road or intersection, depending also on
the map and the vehicle position. The factors that determine the size and the interval area are discussed in the
following sections.

7JL Perception and Driving Unit
The Perception step scans a driving unit with sensors to determine the key objects within it Perception results

will be used by the Environment Modeling step both for determining navigable areas and for updating the vehicle
position estimate.

Two parameters, the driving unit and a scanning position, direct the Perception step. The driving unit, which is
given by the Prediction step, indicates the area that the Perception should see. Because sensor data must cover the
driving unit, the sizes of sensor view frames give the upper limit of the driving unit sizes.

The scanning position is the position at which the Perception step should scan the driving uni t Two factors
determine the scanning position: the required accuracy of the visual measurement, and the need for specific vehicle
position infoimation. The required accuracy of the visual measurement is important because of the reduced
accuracy as distance increases. Thus, the vehicle should be close enough to the driving unit to satisfy the accuracy
needs of the Environmental Modeling step. The need for specific vehicle position information also constrains the
scanning position. The vehicle position 'estimation is updated with both the perceptual results and dead reckoning

from the control system. In general, the perception result gives a more accurate vehicle position estimate. The
vehicle position estimated with the perception result will, of course, be a scanning position. Therefore, when the
mobile robot system needs an accurate vehicle position estimation at a specific position, this position should be the
scanning position.

Once the driving unit and the scanning position are determined, the Perception step can calculate the sensor view
frame relative to the vehicle and aim the sensors. This enables Perception to aim the sensors adaptively.

23. Environment Modeling and the Driving Unit

By analyzing the perception results, the Environment Modeling step produces an environment description that
indicates a navigable area from the current vehicle position toward the end of the last scanned driving unit

The Environment Modeling step also updates the vehicle position estimation. Because the vehicle is traveling
continuously and the the scanning positions are discrete, the Modeling step merges the perception result and the
dead reckoning updates to estimate the vehicle positions between the scanning positions and beyond the last
scanning position.

• 2.4. Local Path Planning and the Driving Unit

The Local Path Planning step determines the physical vehicle trajectory within the navigable area determined by
the Modeling step, from the current vehicle position to the end of the last scanned driving unit

As shown in Figure 2-2, the local path plan restricts the minimum size of a driving unit, because the driving unit
must be large enough to allow the vehicle to manuever and avoid obstacles.

Obstacle
Goal of

Path Plan

Figure 2-2: Driving Unit Size for Vehicle Maneuvering

The Driving Pipeline includes two levels of path planning: the driving passage from the Prediction step and the
trajectory from the Local Path Planning step. If the map database is complete, the driving passage can be planned
before navigation by consulting the map data. If not, it is determined gradually basal on perception results fmm tte
previous driving units. This is the reason why we include planning the vehicle passage in the the Driving Pipeline

level of the system rather than in a higher level.

2.5. Vehicle Control and the Driving Unit
The Vehicle Control step drives the physical vehicle. It generates a set of motion commands for the vehicle

mechanism from the trajectory plan given by the Local Path Planning step. Because the trajectory plan ends at the
far edge of the last scanned driving unit, the vehicle never moves into an unscanned area. Also, this step adjusts the
vehicle speed to be optimal unless the Local Path Planning step gives commands on speeds (such as stopping at a
specific place). The details will be described in Section 3.4.

3. Continuous Motion, Adaptive Control, and the Driving Pipeline
The simplest control structure for implementing the Driving Unit concept would be for the vehicle to stop at the

end of each driving unitr process the next one through each of the primitive steps, then drive across the next driving
unit and stop, repeating this cycle over and over. This paradigm is known as the "stop-and-go" model of vehicle
control, and it produces very jerky motion as well as being far below the optimum vehicle speed. To remedy these
problems, we apply the concept of pipelined execution of the primitive steps to form the Driving Pipeline.

3.1. Pipelined Execution for Continuous Motion
In order to drive the robot vehicle continuously, the Vehicle Control step should work on one driving unit after

another without stopping the vehicle. To accomplish this, the Prediction step, the Perception step, the Modeling
step, and the Local Path Planning step must have finished processing the next driving unit before the Vehicle
Control step finishes the current driving unit This is the reason that continuous vehicle morion needs a Driving
Pipeline to process multiple driving units in parallel.

The Driving Pipeline supports continuous vehicle motion by using pipelined execution. As described in Section
2, the processing steps are allocated along the pipeline, and the Driving Pipeline executes the processing steps in
parallel by passing a sequence of the driving units through this pipeline. Figure 3-1 illustrates the pipeline execution
of the Driving Pipeline as follows:

L When the vehicle is on Driving Unit 1, the Prediction step places a new prediction for Driving Unit 4.

2. When the vehicle is on Driving Unit 2, the Perception step works on Driving Unit 4. At the same
time, the Prediction step places the next driving unit, Driving Unit 5.

3. When the vehicle is on Driving Unit 3, the Modeling step determines the vehicle passage and the
Local Path Planning step plans the path to the end of Driving Unit 4. In parallel, the Prediction step
defines Driving Unit 6 and the Perception step works on Driving Unit 5.

4. When the the Vehicle control step drives the vehicle on Driving Unit 4, the Prediction step is defining
Driving Unit 7, Perception is working on Driving Unit 6, and the Modeling and the Local Path
Planning step are working on Driving Unit 5.

Several key feanires of the Driving Pipeline make the pipelined execution possible. First is the concept of the
driving unit, which is critical because it allows the route ahead of the vehicle to be partitioned into individual units
for processing by the successive steps. Because each driving unit specifies an area on which one processing step

works, the Driving Pipeline may assign the different processing steps, to different areas along the vehicle passage.

The second is the constant flow of the driving units through the processing steps in a prearranged sequence. Each
driving unit is created at the Prediction step and is passed through the following steps from one step to the next step
ending with the Vehicle Control Step, thus forming the data flow through the processing steps. This flow is always
one way and in the same direction; no driving unit skips any processing step or goes back to the previous steps.

1 2

t - tl

t = t2

t = t3

1 •

3

13=31

4

Prediction

0

Perception

0

Planning

0 ^

5 6

Prediction

0

Perception Predict

0

t - t 4 Execu t ion P l a n n i n g Percept:;

Figure 3-1: Pipelined Execution of the Driving Pipeline

Therefore, the order of execution of the primitive processing steps can be "hard-wired" into the system without the
need for symbolic reasoning to decide what to do next

The third necessary feature is the independent computation of the processing steps. The computation for driving
control is divided into processing steps in such a way that each processing step performs a different function. Each
step requires as input only the outputs of the previous steps. Therefore, each step can only work on a driving unit
after the previous steps have completed their processing on that driving unit.

The fourth feature is the order of the driving units themselves. Since the driving units are created as the vehicle
travels and are placed along the vehicle passage, the order of their generation is always the same as the order in
which they are processed by the processing steps. Therefore, the Driving Pipeline can feed the driving units to the
processing steps continuously.

Finally, the ability of the sensors to look ahead of the vehicle more than one driving unit's distance is necessary.
This pennits Perception to be working at a distance beyond the next driving unit This ultimately limits the distance
over which pipelining can be effective.

The existence of all of these features allows pipelined execution in both of the necessary aspects, the processing
and the data. The name "Driving Pipeline11 comes from the pipeline of processing steps, the sequence of driving

units, and the pipelined execution. The following sections provide a more detailed examination of the pipelined

execution.

3.2. Execution Intervals of the Driving Pipeline
The "execution interval" of the driving control system refers to how often the mobile robot system executes the

cycle of the primitive processing steps. Adjusting the execution interval to be optimal is essential for an
autonomous mobile robot system, because the necessary execution intervals depend on driving conditions such as
the width, flatness, and curvature of the road. Execution intervals that are too long may cause unstable vehicle
motion, because the vehicle position and the path plan are updated only once in each interval. On the other hand,
execution intervals that are too short consume unnecessary computation and slow down the vehicle speed because
the amount of computation in each interval is roughly constant.

To provide the optimal vehicle speed control, the driving control scheme needs a way to compute and change the
execution intervals. In the Driving Pipeline the sizes of the consecutive driving units determine the execution
intervals, because each execution cycle works on one driving unit and the number of driving units per unit trajectory
length is equal of the number of the execution cycles. Therefore, the Driving Pipeline is able to adjust the execution
intervals by changing the driving unit intervals.

If the vehicle could be controlled to exactly follow the planned path, the driving units could be made as long as
the range of the effective field of view of the sensors. Unfortunately, the actual vehicle trajectory may differ from
the local path plan because of many reasons, particularly the error in the control mechanism and the inaccuracy of
dead reckoning. The cumulative error in the control of vehicle motion and the allowed error tolerance in the vehicle
position are the factors used to determine the driving unit intervals.

The error in the vehicle position and direction, which grows as the vehicle travels, must be canceled by the
execution of the driving pipeline before it surpasses an error tolerance. Therefore, if the accumulated error increases
very rapidly, the intervals of the driving pipeline must be shorter. If the accumulated error increases slowly, they
can be longer. For example, because errors in the vehicle direction can produce a larger accumulated error in the
vehicle position than errors in the vehicle displacement, the interval must be shorter in turning than in moving
straight.

As mentioned in Section 2.4, vehicle maneuverability restricts the minimum size of a driving unit If a driving
unit interval is shorter than a driving unit length, adjacent driving units overlap.

33 . Parallelism in the Driving Pipeline
Although the pipelined execution allows the processing steps to work in parallel, it does not ensure a high degree

of parallelism. Figure 3-2 illustrates an extreme example in which parallel execution is not well maintained. In this
figure, the vehicle speed is too high. This brings the vehicle to the end of the local path plan before the next plan is
produced by the Local Path Planning step. The vehicle then has to stop at the end of the current driving unit to wait
for the new path plan to be completed. In this example, the Prediction step, the Perception step, the Environment
Modeling step, and the Local Path Plan step must work serially without any parallelism. In this section and the next
we discuss the parallelism in the Driving Pipeline and a mechanism for keeping it high. This section discusses
parallel execution among the Prediction, Perception, Environment Modeling, and Local Path Planning steps. The
next section discusses parallelism between these steps and the Vehicle Control st&p.

The Prediction, Perception, Environment Modeling, and Local Path Planning steps generally work on each
driving unit sequentially, with their execution times overlapping each other on consecutive driving units due to the

P r e d i c t i o n I—I

Percep t ion (

Modeling

Local planning

Vehicle control

Figure 3-2: Badly-Balanced Execution of the Driving Pipeline

execution pipeline. However, the parallelism among these steps depends on whether or not there exists a
sufficiently rich map database. When such a map exists, we call this the map navigation mode; if not, the vehicle
drives in the map building mode. The timing of the start of pipelined execution varies in these these two modes. In
the map navigation mode, the map database can offer enough information so that the'Prediction step is able to place
a new driving unit without using the perception results from the preceding driving unit, relying instead on the map
database and the perception results from earlier driving units. Therefore, the Prediction step can work on the next
driving unit before the Perception and the Environment Modeling steps finish the current driving unit This
produces the execution pattern illustrated in Figure 3-3. In this case, since all processing steps are ready to woik on
the next driving unit just after finishing the current one, complete pipelined execution is achieved

In the map building mode, the map database does not have enough information about the unscanned areas, so the
Prediction step netds the perception result on the current driving unit in order to place the next driving unit In this
case, the Prediction step has to wait until the Perception step and the Environment Modeling step finish the current
driving uniL The resulting execution pattern is illustrated in Figure 3-4. Consecutive execution cycles overlap less
in the map building mode than the map navigation mode.

The difference between the map navigation and map building modes explains one reason that a rich map database
is able to produce the higher vehicle speed than the poor map database. In addition, a rich map database allows
perception to potentially be faster and more accurate, thus reducing the processing time and/or allowmg large-
driving units.

In both execution modes, the scanning position is a key factor in maintaining these parallel execution patterns
because Jt regulates the execution patterns. The Environment Modeling step, the Local Path Plan step, and tite

Prediction

Perception

Modeling

Loca l planning

V e h i c l e con t ro l

Hl-

Figure 3-3: Parallel Execution Pattern in the Map Navigation Mode

Vehicle Control step start just after the previous step finishes. The Prediction step starts just after the Perception
step finishes in the map building mode, and may start any time in the map navigation mode. So, all of these steps'
can start at a time independent of the actual vehicle progress. On the other hand, the Perception step can start
working only when the vehicle reaches the desired scanning position. The scanning positions that produce the
highest parallelism, illustrated in Figures 3-3 and 3-4, are given by the following equation:

scanning distance = — -L; n\
where c

Li = driving unit interval

Tp = total job time of Perception, Environment Modeling and Path Planning

Tc » cycle time of Driving Pipeline

In this equation, the "scanning distance" is the distance from the scanning position to the driving unit to be
scanned. The "cycle time" is the time between consecutive execution cycles, which is the time taken for the vehicle
lo travel one driving unit. In the map navigation mode, the cycle time is determined as:

Tc = Tm ' (2)

whereas in the map building mode, the cycle time is:

Tc = Max(Tn,Tt)

where

(3)

10

>o=ol

Prediction

Perception

Modeling

Local planning

Vehicle control

3

f—I
4

f—I

Figure 3-4: Parallel Execution Pattern in the Map Building Mode

Tm =job time of the most time consuming step

Tt = total job time of Prediction, Perception and Environment Modeling

In the map navigation mode, if the most time consuming processing step works in the whole cycle rime," the
execution pattern will be the most condensed and will exhibit the highest degree of parallelism. In this execution
pattern, the Perception, Environment Modeling, and Local Path Planning steps must work after the vehicle passes
the scanning position. That is the derivation of the above equation for the map navigation mode. In the map
building mode, the processing for the sequence of the Prediction, Perception, and Modeling steps can not overlap
w«h the processing of this sequence for consecutive driving units. Therefore, this execution sequence behaves Hcs
one individual processing step. That is the reason for the above equation for the map building mode.

3A Vehicle Speed and Driving Pipeline

The Vehicle Control step must take into account the execution time of aU the processing steps in order to achiew
the optimum vehicle speed. Too high a vehicle speed requires the vehicle to stop at the end of each driving unit, as
described in the previous section. In this section, we discuss the highest possible vehicle speed and the method so
achieve it.

Because the distance that the vehicle moves in one cycle time is equals to the interval of the driving unit, the
highest vehicle speed is described by the following equation:

L,
vehicle speed < — ;i-,

11

The maximum vehicle speed is less than the driving unit interval divided by the cycle time because distance must
be allocated for decelerating the vehicle in the event that some stage of the pipeline requires more time than
expected.

If the scanning position is adjusted as described in Section 3 3 , the cycle time is given by Equations 2 and 3.
Then the above equation can be rewritten as follows:

in the map navigation mode,
Li

vehicle speed = — (5)
m

and in the map building mode,

(6)

vehicle speed =
Max(Tm,Tt)

These equations are based on the highest degree of parallelism among the processing steps and therefore give the
highest achievable vehicle speed.

The vehicle speeds given by these equations are possible only when the scanning position is optimally adjusted.
The scanning position, however, may be determined by other factors as described in Section 2.2. For example, the
scanning distance may be shorter than the distance given by Equation 1 because the Perception step requires a closer
distance for more accurate measurement. If the scanning distance is shorter than the distance given by Equation 1,
the speed of the Driving Pipeline is given by the following equation:

Ds
vehicle speed = — (7)

P

where

Ds = scanning distance

These equations (Equation 4 - 7) describing the vehicle speeds explain the following vehicle behavior patterns,
which demonstrate the adaptive control capabilities of the Driving Pipeline:

• The most time consuming processing step limits the highest vehicle speed. The Driving Pipeline is
capable of adjusting the vehicle speed to be as high as the processing times will allow.

• Longer driving unit intervals produce a higher vehicle speed. If the robot vehicle drives in easy driving
conditions such as a broad, flat, straight road, then the Prediction step may define driving units with
large intervals. The vehicle speed will then be adjusted to be higher.

• Likewise, shorter scanning distances produces a slower vehicle speed. If the Perception step has to look
at objects from a closer distance, the vehicle slows down. This behavior is similar to a human driver
looking around carefully.

These behaviors need not be explicitly programmed into the system. They arise naturally as a result of the operation
of the Driving Pipeline and the calculation of each driving unit interval based on the geometry of the road, the
vehicle, and the sensor field of view.

Although Equations 4- 7 assume that each processing step always requires a constant execution time, the actual
requirements may vary from time to time and place to place. In such a case, the Driving Pipeline calculates the

12

vehicle speed with the following equation, which is a modified version of Equation 7:

Dr

vehicle speed = — (8)
Tr

Dr» remaining distance of iacai path plan

Tr 9 remaining job time

In this equation* D is the distance from the current vehicle position to the end of the path plan in the current

driving unit, and Tr is an estimate of the total remaining execution time for the Prediction, Perception, Modeling,

and Local Path Planning steps working on the next driving unit The initial value of Tr is a predicted execution time

for these processing sseps. Whenever these processing steps finish processing a driving unit, Tr and Df are

recalculated and the vehicle speed is updated. This allows the vehicle speed to adaptively respond to the changing

requirements for its own computation time.

4. The Driving Pipeline in Action: Experimental Results

4.1. Implementing the Driving Pipeline
We have developed and tested the Driving Pipeline through building several experimental mobile robot system*

called Sidewalk System 2, Sidewalk System 3, and the Park System, [5] [6] [9]. The Sidewalk 2 and the Sidewalk 3

systems -drive an experimental vehicle called the Teiregator on the network of sidewalks on the campus of Canwgfe

J4elto University. Hw Park fyssera drives the NAVLAB, a computer-controlled van, on a road in Scfaentey Rat

adjacent to Cantegie Mellon. Figure 4-1 shows these vehicles, which are both equipped with color TV cameras and

a kstf rmgt scaacr made by ERIM. WMk the Tenegator is linked to several SUN-3 workstations is te

iabofai&xy with iBdto communicatiofi and cables, the NAVLAB carries four SUN-3s on board- In the remainder of

MM chapter, we will dtacrite prim«iiy SkJewalk System 3 because it demonstrates the Driving Pipeline matt

ckariy.

4-2 s t iwi ifae module s&uctve of Sidewalk System 3. The processing steps axe implemented «

individual j r a j p u s and m Uakad ffrosfii l ie C O I X J E R distributed database, a system-boilding tool w r t o i m

Cmmgm M d l a to support torgc-pwii pmBdism fior n»b l c rdx>t navigation [8]. CODGER m a l ^ it nbtinty

any m teald te Dilwqi Pipeline; tea^ of its a ^ i i i ^ to aipjxw parallel processing among multiple compatts.

At! of tte lynems memtoned above ina CODGER in this way.

42, Processing Steps and Driving Units

Fq^it 4-3 ihc*$ i dsagasn cf ftc primUive pocttsfeg acps woMng on one driving unit in appraehiftg M

.r^rsKi&n. Figure 4-3-.1,- >̂ C"*s sis driving » t t placed by t ic Prediction step. In Figure 4-3<b)» Ac tnpezttil il

tte senior vie^ &ar-s ^ r ^ : b> ±t Pcitcpwi ^p so COTOT the driving unit. Figure 4-3(c) shows the nMck

^ by tfce '•' .. , ..;p, The Vcbkk Council soep tove the vehicle as iHustrated in Figwe 4-3{#^

13

Figure 4-1: Terregator and Navlab

43 . Pipeline Execution and Parallelism
Figure 4-4 is a recorded timing diagram of the processing steps. The bars in the figure indicate the time during

which each step is processing a driving unit. The driving unit number appears next to the bar. Because Sidewalk
System 3 has a complete pre-stored map database, the Prediction step does not need to wait for the Perception step
for placing a new driving unit and the consecutive pipeline executions overlap completely. This is the "map
navigation" mode described above. Because the scanning position and the vehicle speed were adjusted as described
in Section 3.3, the most time consuming step (Perception) was the limiting factor in the cycle time of the system.

4 A Execution Intervals
Because turning at intersections requires more accurate vehicle position estimation than following sidewalks, and

because the Tenregator vehicle makes larger dead reckoning errors in turning than in straight motion, the Prediction
step uses a shorter 'driving unit interval while the vehicle is turning. Figure 4-5 shows the driving unit intervals
around the intersection and the straight sidewalks. On the other hand, Sidewalk System 2 used constant driving unit
intervals and had unstable turning because of the large dead reckoning error. Sidewalk System 3, however, did not
have such unstable motion thanks to the adjustment of the driving unit intervals.

14

Prediction Perception

CODGER

i

Environment
Modeling

Local Path Planning

Figure 4-2: Module Structure

4.5. Vehicle Speed
Figure 4-6 shows a recorded vehicle speed that was adjusted according to Equation g. The vehicle speed was

recalculated whenever the processlag steps were dorm* The vehicle slowed down around the Intersection where the
driving null Intervals were shorter and went tack to a high speed on *c suaight road where the driving unit intervals
were longer. Because of the hardware limitations of the Tcucgaior vehicle, the vehicle speed could not be changed
frequently; this is the reason that the recorded vehicle speed is not smooth.

15

(a) (b)

(c) (d)

Figure 4-3; Processing Steps

4.6. Sensor Aiming
Our experiments on the Camegie Mellon campus test site showed the necessity for adaptive sensor aiming. The

fixed sensor view frame citated a problem in tumiBg at the intersections, because the vehicle had to torn through a
large angle and the fixed sensor view frame could not cover the destination sidewalk while the vehicle was turning.
To remedy this problem* the sensor ^w frame has to b© aimed so that it covers the vehicle's destination. In
addition, the scanning distance must be different in following straight sidewalks an! in turning through
intersections. In taming through an intersection, the vehicle position estimation must be accurate in both the

16

Map Navigator

H* H H

Driving Monitor
20 22 22 23

H H H H
24 25 26 27

H i l l

Perception
18 19 20 21
11 11 II 1

22 23 24 25 26
—ih

27

Local Path Planner
17 18 19 20

i H H H
21 22 23 24 25 26 27

! H • H H H

Helm
17 18 19

1 1 1 H
20 21 22 23 24 25 2S 27

1 1 f J i }

I f T t f t T f f f f \ I I 1 t I I I 1 1 \ I I t I 1 T I T f \ f f t f I t 1 f T11116

X 10 s e c

Figure 4-4: Timing Diagram of the Processing Steps

vehicle's healing direction and the direction perpendicular to the vehicle's heading. Therefore, the scanning
distance must be short During straight navel, however, the vehicle position estimation along the vehicle's heading
direction does not need to be so accurate and the scanning distance may be longer.

Figure 4-7 shows the sensor view frames and the scanning positions. The scanning positions were calculated
using Equation I and the local path plan that was produced in the previous execution cycle. The scanning distance
varied at the intersection and on the sidewalks.

To aim the TV camera into the predicted driving units, pan and tilt medmnisms are needed This can present a
very challenging timing problem if mechanical pan and tilt mechanisms arc used* To avoid this, the Terregator
vehicle was equipped with two cameras and1 switched between them instead of using a mechanical pan. The TV
cameras had wide angle lenses and covered broad areas. The Perception step processed the desired rows of the
image in place of a mechanical tilt This **so£twaxe pan/tilt* is very fast and simple to program, as opposed to a
mechanical pan/tilt which is relatively slow and difficult to control optimally. However, the software pan/tilt

17

I n t e r v a l

Figure 4-5: Driving Unit Intervals

requires duplicated sensor hardware.

5. Conclusion
This paper has described the Driving Pipeline, a driving control scheme to control a robot vehicle maneuvering in

the physical world. By organizing and managing the primitive processing steps, the Driving Pipeline provides the
following capabilities:

• Continuous Vehicle Motion: The Driving Pipeline drives the vehicle continuously by adjusting the
vehicle speed and executing the Vehicle Control step in parallel with other processing steps.

• Parallel Execution: The Driving Pipeline executes the primitive processing steps in parallel and
maintains a high degree of parallelism. Thmks to the pipelined execution, the Driving Pipeline
achieves the highest possible vehicle speed.

• Adaptive Control: The Driving Pipeline is capable of adapting sensor aiming, vehicle speed, and
execution intervals to the driving conditions.

These capabilities o€ the Driving Pipeline are made possible by the two key ideas of ifae Driving Pipeline, the
.driving unit and Che pipelined execution of the processing sieps. By using driving units, the data to be processed is
divided kilo a sequence of driving unite thai can be processed separately by the processing steps- The sieps
themselves am designed to work in a fixed order on each driving unit Because of the pipelined execution, the
computation for these processing steps can be overlapped on successive driving units. These pipelines in both the

18

VehicleSpeeds

Time
6900 7000 710 0 7200

l I

VehicleSpeeds

Time
7300 7400 7500 7600

Figure 4-6: Control of the Vehicle Speed

processing steps and the data enable the pipelined execution, giving rise to parallel computation and continuous
vehicle motion. The driving units also enable adaptive control. By adjusting the location, size, and interval of each
driving unit, the Driving Pipeline adapts the processing to the driving situation. The pipeline execution thus enables
the adaptive control in the continuous vehicle motion.

The Driving Pipeline clearly describes the driving control scheme in four aspects: primitive processing steps,
organization of these processing steps, execution scheduling, and control parameters. In (be case of stop-and-go
motion, the last three aspects of the driving control scheme are impicit and do not need to be well defined.
However, to achieve our goals - continuous motion, parallel execution, and adaptive control - we have developed
the Driving Pipeline based on an explicit understanding of all of these aspects. This is why the Driving Pipeline is
capable of controlling both geometry, such as the sensor view frames, and time, such as execution timing. Adjusting
the vehicle speeds demonstrates these capabilities of the Driving Pipeline,

Although the Driving Pipeline suppom contmaous vehicle motion, the primitive processing steps involved in the

19

Figure 4-7: Sensor View Frames

Driving Pipeline employ only static algorithms. The Perception step, for example, analyzes the sensor data without
taking into account the vehicle motion. Similarly, the Local Path Planning step determines the trajectory path plan
as if the vehicle were not moving while the Local Path Planning step m processing. By introducing the driving units,
the Driving Pipeline converts dynamic problems into a set of static problems for each driving unit By employing
the pipelined execution, the Driving Pipeline overlaps the static processing steps to perform dynamic vehicle
motion. This feature of the Driving Pipeline gives two advantages. First, the Driving Pipeline makes it easier to
build mobile robot systems by integrating relatively well developed processing algorithms for perception and path
planning. Second, the Driving Pipeline provides a test bed for studying these primitive algorithms using real mobile
robot systems.

We envision two major directions for future research in this topic The first is, the further development of the

20

Driving Pipeline. This includes the following topics:
• Multiple sensor view frames in one driving unit When the Perception uses multiple sensors and

their view frame sizes are largely different, the sensor with smaller view frame may need to scan more
than twice on one driving unit In this situation, we may have to expand the concept of the driving unit.

• Uncertainty in the map database. In Section 3.3, we have discussed how a richer map database can
produce higher parallelism among the processing steps and the length of the driving unit intervals. It
seems plausible for humans that the greater accuracy in the map database, such as more accurate road
shapes, allows a faster vehicle speed. We would like to build the theory and demonstration to account
for this intuition.

• Cross-country traveL The same concept of the Driving Pipeline can be used for cross-country travel,
with a different version of the Prediction, Perception, and Environment Modeling steps. By selecting
the appropriate versions of these processing algorithms for each driving unit, cross-country travel may
be incorporated with road-following travel in a single Driving Pipeline, producing a system that can
combine on-road and off-road navigation. Cross-country travel may include greater uncertainty in
vehicle motion control and more occlusions in the sensor data, thus reducing the vehicle speed through
the same natural mechanisms described above for roadway travel.

The other major topic for further research is the development of a dynamic driving control scheme. The faster
vehicle speed and the quicker vehicle response may need dynamic aigorithms for perception, planning, and vehicle
control. For this end, we need new approaches both in the algorithms for the individual processing steps and the
scheme to organize and coordinate them.

21

References

[1] R. A. Brooks.
A Robot Layered Control System For A Mobile Robot.
IEEE J. Robotics and Automation RA-2:14-23, March, 1986.

[2] J. L. Crowley.
Navigation for an Intelligent Mobile Robot.
IEEE J. Robotics and Automation RA-1:31-41, March, 1985.

[3] E.D. Dickmanns, A. Zapp.
A Curvature-based Scheme for Improving Road Vehicle Guidance by Computer Vision.
In SPIE Symposium on Optical and Optoelectronic Engineering. October, 1986.

[4] Georges Giralt, Raja Chatila, and Marc Vaisset.
An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots.
In The First International Symposium on Robotics Research, pages 191-214.

[5] Y.Goto, etc. .
CMU Sidewalk Navigation System .
In Proc. of Fall Joint Computer Conference, pages 105-113. Nov, 1986.

[6] Y. Goto, A. Stentz.
The CMU System for Mobile Robot Navigation.
In Proc. of IEEE International Conference onRobotics and Automation, pages 99-105. March, 1987.

[7] . H.P.Moravec.
The Stanford Cart and the CMU Rover.
Proc. of the IEEE 71:872-884, July, 1983.

[8] S. Shafer, AJStcatz, C. Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proc. of IEEE International Conference on Robotics and Automation, pages 2002-201L April, 1986.

[9] C. Thorpe, S.Shafer, T.Kanade.
Vision and Navigation for the Carnegie Mellon Navlab.
In Proc. of Image-Understanding Workshop, pages 143-152. Defense Advanced Research Project Agency

Information Science and Technology Office, February, 1987 .

[10] S. TsujL
Monitoring of a building environment by a mobile robot.
In Robotics Research 2, pages . , 1985 .

[11] A. M. Waxman, J J. LeMoigne, L.S. Davis, T.Siddalingalah.
A Visual Navigation System for Autonomous Land Vehicle.
IEEE J. Robotics and Automation RA-3:124-141, April, 1987.

