
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



t 
DISEMINER: A Distributional-Semantics Inference Maker 

tt 
Sheldon Klein , Stephen L. Lieman and Gary E. Lindstrom 

Carnegie Institute of Technology 
Pittsburgh, Pennsylvania 

June 13, 1966 

This research was supported in part by Public Health Service Grant 
MH 07722 from the National Institute of Mental Health, and in part 
by the Advanced Research Projects Agency under the Department of 
Defense under Contract SD-146 to Carnegie Institute of Technology. 

Now holds a joint appointment in the Linguistics and Computer 
Sciences Departments at the University of Wisconsin, Madison, 
Wisconsin. 



The purpose of the DISEMINER system is to explore the relation be

tween lexical distribution criteria and semantics. It is hoped that the 

By8tern, in its learning mode, will be useful in collecting data for 

deriving semotactic rules in a stratificational gramnjar [1]. The system, 

written in ALGOL 20 and operational on the G-21 computer, is capable of 

learning distribution classes of lexical items through the processing of 

text, and using distributional criteria to answer questions that are 

broader than the context of the text processed. The methodology follows 

a line of research that was considered, but never followed, in early 

work on the SYNTHEX project [2]. Distributional information is stored 

in terms of a dependency structure that differs from the SYNTHEX version 

in that dependency relations among stem types, rather than stem tokens, 

are stored in matrix format. That is, each stem is listed only once, and 

its dependency relations in all text processed by the system are associated 

with a single entry. (In the SYNTHEX system, separate dependencies are 

tabulated for each occurrence of a stem.) The stored relations include 

all possible transitive paths as well as direct ones. Because dependency 

analysis is weakly equivalent to phrase structure analysis [3], it is 

possible to view this data structure as a tabulation of the distributional 

potential of stems with respect to phrase structure criteria rather than 

criteria of linear contiguity. 

2.0 Dependency and stratificational grammar 

Whereas a phrase structure analysis depicts relations among units 

of varying size, in the form of a tree structure, e.g. 



The tall man drives a car 

S 

a dependency analysis indicates relations among units of the same size, 

in the form of a directed graph, e.g. 

An excellent account of dependency theory can be found in the work of 

Hays [4]. 

If one assumes that under certain conditions dependency is transi

tive, it is possible to gain a measure of control over meaning. Several 

systems in the areas of information retrieval and automatic essay writing 

have been built incorporating such a principle [2, 5]. Basically, it 

is assumed that dependency is transitive across forms of the verb 1 to be 1 

and like tokens of the same noun. Thus it is possible to build a network 

connecting all the sentences in a text. The basic rule of semantics is 

that if the vocabulary and dependency relations in one text are included 

in the dependency relations of another, then the meaning of one is 

included in the other. 

car 

a 



Rulon Wells and Zellig Harris provided early discussions of the 

relation of distributional criteria to the phrase structure grammar 

[6, 7, 8]. Harris discussed the relation of distributional criteria to 

meaning. In terms of a stratificational model of language [1], the 

meaning structure of a language is contained on a semantic stratum 

existing above a lexemic one. What meaning relations can be inferred 

from lexical distribution criteria are a reflection of the highly com

plex mapping of sememic structure onto lexemic. In the cases where 

such mappings are one to one, lexotactic criteria may be used as a sub

stitute for semotactic relations. 

In terms of grammatical analysis, the sememic relations can be 

determined by analysis of the lexemic; one assumes a one to one mapping 

between sememic and lexemic strata, except where pertinent data requires 

the positing of more complex mapping rules. 

The DISEMINER system can be used as a tool for just such analysis. 

It can be viewed as a question answering machine that answers questions 

of the type, "Is it poasible that ...? f l, where the answer is one of 

semantic plausibility as determined by inferences made on the assumption 

that the distribution classes are also semantic classes. Each case of a 

positive answer violating an informant's view of the possible is data 

for analysis of sememic entities and relations that do not conform to a 

one to one mapping onto the lexemic stratum. The system also can be 

used to answer Boolean questions and to obtain listings of rather refined 

semantic classes. (At the moment the working program limits such requests 

to queries of the type: n ' 



Inputs to the system may be of three typest text sentences, 

questions, and riddles, the complexity of the sentences must conform 

to limitations of the phrase structure dependency grammar. 

A special feature of the system is that the dictionary is compiled 

from information supplied with the input text. An as yet unwritten 

routine would permit the optional omission of such data. 

3.1 Data Organization 

DISEMINER, viewed as a primitive information retrieval system, has 

the following tasks: to maintain a stem-type dictionary with provision 

for expansion both of stems and of parts of speech for existing stems, 

and to compile an efficient representation of the dependency network as 

deduced from the input text by the parser. With respect to current in

formation retrieval systems, the objectives were modest, yet some effort 

was made to optimize the system with consideration to the criteria of 

storage allocation efficiency, data expandability, and network search 

time. 

The 8tern-type dictionary is responsible for summarizing and direct

ing the retrieval of stem types and their associated part of speech 

tokens. A stem type entry in. this table is a collection of triples 

< TT, a, t > 

where TT is a part of speech number equal to the serial entry number in 



the alphameric part of speech table; a is the alphameric string represent

ing a word associated with that, and t is a boolean variable set TRUE if 

and only if that stem-part of speech token is designated transitive lit 

the dependency network. The convention is made the the stem itself has 

part of speech zero, so the general format is that of a collection of 

such triples with the stem at the head, followed by subcollections of 

triples for each part of speech number actually occurring for that stem. 

In the interest of storage allocation efficiency, the table is actually 

chain linked, so that the triples for any particular stem are not neces

sarily contiguous but no gaps exist in the table for non-existing stem-

part of speech types. This facilitates updating of the dictionary as 

well, so that DISEMINER can readily pass from input to question mode and 

back to input mode. 

Since the stem dictionary is not linearly packed in memory, the 

accessing of data from it requires either a costly table scan or an access 

table with fixed entry size permitting indexing into the appropriate entry. 

The latter choice was made for DISEMINER, and the serial entry in this 

stem access table is the numerical representation for the stem throughout 

the system. 

The parsing routine, to be described subsequently, provides as output 

from input text a collection of stem links 

< Xj ^ L * 1 y^ > j = 1,...,k 

where the link is tagged t or 1 if the stem-part of speech token for stem 

Xj in the sentence under scan is denoted transitive or intransitive, re

spectively. If the parse is successful for a given input sentence, the 



dependencies are stored in the set of three system dependency matrices 

T, I, and M in the following manner. For all links colored transitive, 

t is set to 1, for all links colored intransitive, i is set 

to 1, and for all links no matter what the tag m is set to 1. At 

the end of the input phase, therefore, the binary matrices T, I, and M 

contain all the dependency paths of length one that are determined to be 

respectively transitive, intransitive, and either transitive or intransi

tive. 

In other dependency-oriented inference systems (such as SYNTHEX [2] 

of SDC), the data structure has been left at this stage (with some addi

tional linkage back to the original text for sentence extraction), i.e., 

a set of binary links between stems. While this makes the sentence in

putting fast, it demands extensive and redundant network searching for 

each question to be answered. DISEMINER1s matrix representation facili

tates the computation of all ultimate links, i.e., all links of the form 

t t t t t or i 

where n ^ 2. 

It is a well-known property of graph matrices that if X is a binary 
k 

matrix representing the immediate connectivity of nodes, then X represents 

the connectivity of nodes by paths of exactly length k. Since all paths 

must be of length less than or equal to the maximum number of nodes, the 
* d lr 

set of all paths is precisely the matrix X = V X , where the V operator, 
k=1 

as usual, denotes element-wise disjunction, and d is the dimension of 



the square matrix X* 

The set of all paths of the form shown in figure (1) may now be 
it 

easily characterised. The transitive closure matrix, T , represents 

all paths of minimal length between two nodes using only transitive 

basic links. The final (optional) intransitive basic link is added 

by multiplying T by I, in intransitive basic link matrix. The final 

representation for the merged matrix M, therefore, is the sum of all 

transitive paths plus all transitive paths with a final intransitive 

link adjoined. That is, 

M = T* I + T* + I (2) 

The straightforward method of calculating M by d matrix multipli-
3 

cations is a slow one, and furthermore increases in time as d . An 
alternative method published in 1962 by Stephen Warshall [9] behaves 

2 

more on the order of d . This algorithm is particularly efficient for 

the dependency matrices in that for a given d its speed increases with 

the sparseness of the matrix, and typically a dependency matrix for 

short text is of low density. 





Briefly, the process is for each stem to form all paths of length two 

passing through the stem, counting paths as formed previously as paths 

of length one* For example, 

i i 
c 

Warshall provides a combinatorial proof that this procedure done once 

for all the stems in any order, forms all possible paths through the 
2 

network, the reason the algorithm approaches behavior as d for sparse 

matrices is that the innermost loop of the process is entered only if 

half the desired path is already know to exist, e.g. in the example above 

it is known that nothing can link from a through d since no link exists 

from a to d. 

One further improvement can be made to decrease run time. Since 

the outermost iteration is through the stems letting all dual paths be 

formed, the process for each stem can be done by two table generations 

and the connections of all cross combinations. 

links into j links out of j 
2 2 2 3 

this represents a time expenditure on the order of d[2d+(md) ] = 2d + m d , 

where m is the density of the final matrix, the non-tabular approach 
3 

described previously and actually used in DISEMINER behaves as d[md*d] = md 

Since m is in the neighborhood of .1 for M, we have a theoretical approximat 



breakeven point for the two methods of 22 stems, meaning the latter 

approach is preferable for dictionaries larger than 22 stems provided 

the table space is available. 

3.2 Brief description of DISEMINER1s routines 

this section presents the major features of the system9s routines. 

1. Initialize 

The dependency grammar and the part of speech table are read in. 

Array bounds are defined and numerical values are assigned to the parts 

of speech. 

2. Input text sentence 

The input sentences assume the following format: 

S ::= A ( 1 ) A ( 2 ) ... A ( N ) 

where ::= word ̂ ^/stem^/part of speech^. 1 = 1 , 2 , ... N . 

E.g. the/the/Art boy/boy/N eats/eat/v fish/fish/N . 

The alphameric representations of each word are stored in a word list 

table. The stems are converted to stem numbers via table look-up in the 

list of current stems. If a stem has already occurred during the run, it 

is assigned its previous value. If a stem is not in the system then it 

is added to the system and given the next highest integer value stem 

number. The stem numbers are stored in a stem list table for future re

ference. The parts of speech are converted to part of speech numbers 

and stored in the integer array Sentence. Illegal parts of speech cause 

sentence aborts and the processing continues after scanning to the end 

of the current sentence. 



3. Parser 

The parser used in DISEMINER is basically that of Klein1s auto

matic essay paraphraser, with a few small modifications [5]. The program 

is a syntax-directed parser that uses part of speech hierarchy classes 

and subscripts within each such class to govern the choice of applicable 

rule. Its parsing stack conveniently embodies the dependencies at the 

end of a successful parse, with the transitivity or intransitivity governed 

by the appropriate marker in the stem-part of speech dictionary. Questions 

to the system are also parsed by this routine, but of course do not have 

their dependency structure outputted to the dependency matrices. Rather, 

a dependency pair list is returned to the calling routine which checks M 

for the presence of all indicated links. Provision is also made for 
uriddle questions11 of the form "What eats, sleeps, and breathes?11, in 

which case a special convention Is used in the output dependency list to 

indicate that a generative search is to be done rather than a simple true-

false conclusion. 

A special case Is provided in the parser for sentences having 

as their principal verb a form of the stem "to be". The dependency parse 

for the sentence "The boy is a big eater." on the basis of the inputted 

grammar would be: I 

This has several unfortunate features, including the linkage to the very 

common verb "to be" that is likely to saturate the dependency structure, 

and also the simply one-way dependency linkage which belies the notion 



of restricted equivalence of subject and object. The modified parse of 

the sentence, therefore, is the following: £ 

This indicates crudely that all boys are likely to be big eaters but not 

all big eater8 are likely to be boys (although some are)• 

In the case of syntactically incorrect sentences the parser performs 

what rewrites it can and then summarizes the parsing stack and deduced 

dependencies, although the sentence is subsequently ignored in the func

tioning of the system. To enhance the power of the system, some means 

of multi-path analysis would be desirable, with perhaps multiple initial 

part of speech tags for the stems as well. 

Two system dump procedures are provided, and are called at the end 

of any successfully completed run as well as in the event of any error. 

They are designed to print the dependency table and stem dictionary in 

alphameric form. Since these two tables in a sense comprise the "state11 

of the system at any moment, they are of great aid in debugging. 

4. Compute dependency tables 

the implications of all links in the transitive and intransitive 

dependency matrices are computed and the result is stored in the special 

dependency matrix ,M I. 

5. Dump dependency matrices 

the current status of the transitive, intransitive, and fM l de

pendency matrices is printed, and a listing of system dictionary (lexical 

table) is supplied. 



6. Input question sentence 

This routine is identical to the routine input text sentence. 

The format for questions is also identical to that of text sentences. 

7. All dependencies true 

Two possibilities exist for questions. The first is the normal 

tnode of operation and simply involves a testing of all links that are 

computed during the parse of the question. If all links in the depen

dency pair8 table are found to be true in the fM f dependency matrix then 

the question is answered positively. If at least one of the links has 

not been set in the fM t matrix then a negative answer is given and a 

list of all links not found is provided. The other possibility for 

questions are riddle questions. Formally riddle questions are currently 

df the form: 

who/who/N ^(2) ̂ (3) *** ̂ (k) * 
where X ^ ::= Y/z/v | Y/z/Adj | Y/z/Prep | w/be/v Y/Z/N | w/be/v Y/z/Adj 

| Y/z/Conj . i a 1, 2, ... k 

Y and Z are arbitrary alphameric character strings. W is a form of the 

verb fto be*. V represents •Verb1. N represents ,Noun f. Forms of 
fto be 1 and conjunctions (Conj) are ignored and the intersection of the 

sets Sj • • • is computed where = {T | link from stem(X^) to 

stem (T)3 when X ^ is not a conjunction or a form of the verb fto be 1 

and S t « {T | T Is a stem]if X ^ is a conjunction or a form of the verb 
fto be 1. 

Essentially the riddle answerer provides class membership informa

tion about the nouns in the system. 

If the intersection described above is not empty then a listing 



of the stems in the class is provided. If the intersection is empty then 

the message •intersection empty1 is supplied. 

Flow Chart for DISEMINER 

S 

Initialize 

End text sentences 

Compute dependency tables 

Dump dependency tables 

C End of question sentences 3> 

41 
3L 

End run 

Terminate < — 1 

Input question 
sentence 

Parse and form tables 
of dependency pairs 

Output true 

Input text sentence 

\ t 
Parse and form table 
of dependency pairs 

\ t 
Set dependency links 

All dependencies true > 
Output false and links 

that failed 



3.3 Program performance 

The program was written in ALGOL 20 for the CIT G-21• It was run 

successfully on the 6-21 in 32K mode. The compile time of the entire 

system is approximately 1 minute and 30 seconds. The program proper 

used 8894 machine words of memory, and 15000 words of memory are avail

able for data. Without resorting to disc tape operations, it is possible 

to have approximately 400 stems in the system. This, of course, allows 

a much larger number of words in the system. The time from the beginning 

of input of sentence until the sentence is parsed and the links set in 

the dependency matrices takes approximately 3 l/2 seconds per sentence 

of approximately eight words. Of this time, input takes 1 second, 

parsing 2 l/2 seconds. The closure of the dependency matrices takes 

approximately 50 seconds for 50 stems. 

4.0 Testing the system 

The very simple grammar consisted of the following rules: 

N 3 ^ A r t 0 N 2 
N 2 * Ad J ( )->N 2 

N 1 =» N 1 «-Mod1 

V 2 =* V 1 <-Mod1 

v 2 v1 ^ w 3 
Mod 1 =» P r e P 0 *~ N 3 

S1 * N 3 * ~ V 3 

The small arrows indicate the direction of dependency within each construc

tion. As mentioned earlier, links to nouns were transitive; links to forms 

of the verb 'to be 1 were recomputed as links to the noun governing that verb. 



Also, where text sentences involved constructions beyond the scope of 

the grammar, grammar codes were assigned to force the sentence to fit 

the grammar, e.g. in 'The man is mortal 1, 'mortal* was tagged as a 

noun. The subscripts determine the order of applicability of the rules 

in parsing. A complete description of the program that uses rules of 

this format to perform, simultaneously, a phrase structure and depen

dency analysis is to be found in the work of Klein [5]. 

Input text was supplied to the system in two parts. The first 

test consisted of the following sentences: 

See page 17 



Input Text I 

1. The is A. 

2. A is the. 

3. The girl is a woman. 

4. The woman lives in a city. 

5. The woman sat on a chair in the house. 

6. The girl ate potatoes. 

7. The girl owned a dog. 

8. LA is a city in California 

9. The girl saw an airplane in the air. 

10. The woman wrote a letter at a table. 

11. The airplane flew to LA. 

12. The girl flies to Paris. 

13. The man on the ground saw the flying bird. 

14. John is a man. 

15. John writes a book. 

16. John eats dinner at a restaurant. 

17. The restaurant near the car is good. 

18. The book near completion is bad. 

19. The horse eats hay in a stable. 

20. The man rides about the park on his horse. 

21. The man thinks about the horse. 

22. The girl thinks about the man. 

Sentences 1 and 2 are added solely as a device to permit the treat
ment of 'the1 and 'a1 as equivalents. This information might have been 
supplied, alternatively, by classifying 'a' as belonging to the stem 'the 1. 
This last device can permit the addition of synonyms to the system. 



The table of transitive and intransitive links before merger and closure 

is contained in appendices 1 and 2, respectively* Plausibility questions 

based on the first 22 input sentences consisted of a repeat of the input 

text as questions (for validation only and not presented here) and the 

following: 

Plausibility Questions on Basis of Input Sentences 1-22 

1. LA flew to the airplane? 

NOT POSSIBLE: ffly f not dependent on 'LA1 

•airplane1 not dependent on 'to1 

2. The chair is in LA? 

NOT POSSIBLE: fLA f not dependent on 'In1 

3. The restaurant is near the girl? 

NOT POSSIBLE: •girl1 not dependent on fnear f 

4. The girl lives in a city? 

POSSIBLE 

5. The girl sits? 

POSSIBLE 

6* The woman flies to LA? 

POSSIBLE 

7. The restaurant near completion is good? 

POSSIBLE 

8. The book near the car is bad? 

POSSIBLE 

9. The man thought about the man? 

POSSIBLE 

10. The woman thinks about parks? 

POSSIBLE 



After answering these questions, the DISEMINER system processed an addi

tional 10 sentences of text. The transitive and intransitive links were 

added to those already tabulated and a new closure was computed. Appen

dix 3 contains the merged links after closure as computed from the 

entire 32 input sentences. The additional text consisted of the 

following: 

Input Text 2 

23. The boy is near the girl. 

24. The woman in the park sings songs. 

25. The large man in the house smiles at the boy. 

26. Men are animals. 

27. The girl threw the ball at the wall. 

28. John saw sites in LA. 

29. Horses are animals. 

30. Horses are mortal. 

31. The man ate with a fork. 

32. The woman eats with a spoon. 

Additional plausibility questions were posed to the system after the 

addition of new text. Note that questions 11 and 18 are repeats of 

questions posed earlier. At the first query, the system declared them 

"NOT POSSIBLE". Sentences 23 and 28 of the second input text provided 

sufficient new information to permit answers of "POSSIBLE" during the 

second answering period. The new questions consisted of the following: 



Plauslbility Questions and Answers on the Basis of Sentences 1-32 

11(3). The restaurant is near the girl? 

POSSIBLE 

12. The girl in the park sat on the horse? 

POSSIBLE 

13. The animal smiled at the wall? 

POSSIBLE 

14. The smiling man eats dinner? 

POSSIBLE 

15. The ball threw the girl? 

NOT POSSIBLE: 1 throw1 not dependent on 'ball1 

•girl1 not dependent on 'throw1 

16. Walls smile? 

NOT POSSIBLE: 'smile1 not dependent on fwalls' 

17. Chairs fly? 

NOT POSSIBLE: •fly1 not dependent on •chair1 

18(2). The chair is in LA? 

POSSIBLE 

19. The man eats with a spoon? 

POSSIBLE 

20. The woman ate with a fork? 

POSSIBLE 

21. Men are horses? 

NOT POSSIBLE: •horse1 not dependent on ,man t 

22. Horses are men? 

NOT POSSIBLE: 'man1 not dependent on •horse' 



Plausibility Questions and Answers on the Basis of Sentences 1-31 (cont'd) 

23. Animals are mortal? 

POSSIBLE 

24. Men are mortal? 

NOT POSSIBLE: •mortal1 not dependent on 'man1 

25. The horse eats hay in a city? 

POSSIBLE 

26. The book eats dinner? 

NOT POSSIBLE: 'eat1 not dependent on fbook f 

27. Dinner ate John? 

NOT POSSIBLE: feat f not dependent on 'dinner1 

'John' not dependent on 'eat' 

28. John eats California? 

NOT POSSIBLE: 'California' not dependent on 'eat' 

29. John eats dinner at a dog? 

NOT POSSIBLE.: fdog' not dependent on 'at' 

The system was then asked a series of riddles. The parser was not 

used in analyzing the queries — rather a program mechanically tabulated 

the intersection of the noun dependencies of the vocabulary items follow-

inf 'Who' and 'What' ('and' and 'is' excepted). Thus, in riddle three, 

the system computed the intersection of the lists associated with 'eats', 

'potatoes1 and 'chairs' as indicated in appendix 3, the table of merged 

and closed dependency links. The query capability can readily be 

expanded to cover a wide range of Boolean questions including those 



Involving negation. The currently existing limitations were necessary 

because of a time limit placed on the completion of this pilot version 

of the DISEMINER system. The riddles, based on text sentences 1 to 32 

were the following: 

Riddles Based on Text Sentences 1-32 

1. What flies? 

girl woman 

2. Who flies and writes? 

girl woman 

3. Who eats potatoes and chairs? 

INTERSECTION EMPTY 

4* Who eats and is man? 

man John 

5. Who sees and flies? 

girl woman 

6. Who lives and flies and eats? 

girl woman 

7. Who thinks and sings and owns? 

girl woman 

8. Who thinks rides eats and sees? 

man John 

9. Who is an animal and thinks? 

man John 

airplane bird 

animal 

animal 

animal 



5.0 Discussion 

In one respect, the use of the DISEMINER system to compute semantic 

classes in terms of dependency criteria that are weakly equivalent to 

phrase structure criteria involves circular logic. Theoretically, the 

validity of phrase structure grammar rests upon a hypothetical distribu

tional analysis of all n-tuples of units in terms of concurrence with 

all other n-tuples [6, 7]. Such an analysis would contain the informal 

tion one might hope to collect with DISEMINER, and would raise the issue 

of whether or not ultra refined syntactic classes are not also semantic 

classes. In reality, no one has ever performed a complete distributional 

analysis, no* produced a complete phrase structure grammar for any 

language, nor is It likely that such analysis is possible. The DISEMINER 

system can be used to collect data for extending the scope of an existing 

phrase structure grammar. If one wishes to work without a semantic 

stratum, one may indeed describe the special semantic classes as syntactic 

classes; or if one would work with a stratified system, collect data for 

semantic units that map onto another level or stratum. It is because of 

the absence of a complete phrase structure grairanar that the methodology 

of DISEMINER does not in involve circularity. 

5.1 Semantic classes and saturation 

An examination of the merged and closed links table (appendix 3) 

indicates that the dependency links of function words (prepositions, 

articles, etc.) will quickly become saturated, that is, as more and 

more text is analyzed, these lists will come to include nearly the entire 

vocabulary of the language. On the other hand, the link lists pertaining 



to nouns and verba appear to be the most likely to yield interesting 

semantic classes. Boolean queries of the type used in the riddles (as 

well as more powerful types) can be expected to obtain semantic classes 

at any level of refinement, including, at the extreme, classes consisting 

of one element each* 

3.2 Refinements and extensions of the DISEMINER system 

1. The English grammar used in the testing of the system was ex

tremely limited. Grammars of vastly increased complexity are essential 

to a full scale use of the system* Hie parser used with the system did 

not handle ambiguity; rather, it produced a unique analysis for each 

sentence. The program design readily permits the substitution of other 

parsers. Interestingly, the introduction of multiple analyses of 

sentences need not interfere with the computation of distribution classes 

It would seem a legitimate course to plot the dependencies implied 

by all valid analyses. 

2. It is worth mentioning that the plausibility question answering 

mechanism can also be used as a two-level parsing system that checks 

first for syntactic, then semantic well-formedness. 

3. As a general information retrieval system in its own right, 

DISEMINER is not suitable because of saturation. It is conceivable 

that a DISEMINER might be useful for retrieval of information in a highly 

specialized subject area. A system containing a family of DISEMINERS, 

each storing a semantic map of a particular subject area, might avoid 

the problem of saturation and, as a whole, function with a broad data base. 

4. The testing of the system provides evidence for the hypothesis 



th At dependency notation, although weakly equivalent to phrase structure 

notation, is perhaps a more powerful device for computation purposes. 

Graph theory is a well developed mathematical area and the theorems of 

that field are available for any computation in linguistics Involving 

dependency networks. In building models with directed graphs, one is 

not limited just to the relations of 'transitive9 and 'intransitive1. 

One may label links with any number of relations deemed pertinent to 

an analysis. The use of such descriptions (which can also be called 

directed graphs with colored edges — 1 transitive1 and 'intransitive* 

would be two such colors) might greatly facilitate the formalization 

of the relevant linguistic theory. This remark is intended to apply 

to transformational grammars as well as other kinds. 

5. The testing of the DISEMINER system has been extremely limited. 

All conclusions pertaining to its usefulness as a research tool are 

tentative. Nevertheless, the results that have been obtained do suggest 

that further testing and improvement of the system is warranted. 



REFBRENCBS 

[1] Lamb, S., The Sememic Approach to Structural Semantics* In Kimbel 
A. Romney and Roy DfAndrede (Eds.), Transcultural Studies in Cogni
tion . American Anthropologist, 1964, 66(3), Part 2* 

[2] Simmon8, R. F., Klein, S M and McConlogue, K., Indexing and Depen
dency Logic for Answering English Questions. American Documenta 
tion* Vol. 14, No. 3, July 1964. 

[3] Galfman, H., Dependency Systems and Phrase Structure Systems. Memo
randum P-2315, The RAND Corporation, Santa Monica, California, 1961. 

[4] Hay8, D. 6.., Dependency Theory: A formalism and some observations. 
Language* 1964, 40(4), 511-525. 

[5] Klein, S., Automatic Paraphrasing in Essay Format* Mechanical Trans-
lation, Vol. 8, Issues 3 & 4 combined, August-December, 1965. 

[6] Wells, R. S., Immediate Constituents. Language * 23, 1947, 81-117. 

[7] Harris, Z. S., Methods in Structural Linguistics* University of 
Chicago Press, Chicago, 1951* 

[8] Harris, 2* S., Distributional Structure. Word* Vol. 10, No. 2-3, 
August-December, 1954. 146-162. 

[9] Warshall, S., A Theorem on Boolean Matrices. Journal of the ACM* 
Vol. 9, No. 1, January 1962, 11-12. 



Translative Links Before Merger and Closure After Sentence 1-22 

1. the a girl woman house - airplane air man ground 

bird book restaurant car 

2. be 

3. a the woman city chair 

dog airplane letter table 

4. what 

man book restaurant stable 

5. who 

- 6. 

7. woman girl 

8. live woman 

9. in city chair airplane hay 

10. £i£Z LA 

11. sit woman 

12. on man park 

13. 

14. 

chair 

house 

15. eat girl John horse 

— 16. 

17. 

potato 

own girl 

— 18. 

19. 

dog 

LA 



20. California 

21. see girl 

22* airplane 

23. air 

24. write woman 

25. letter 

26. at letter 

27. table 

28. f ix girl 

29. to 

30. Paris 

31. man John 

32. ground 

33. bird 

34. John 

35. book 

36. dinner 

37. restaurant 

38. near book 

39. car 

40. good restaurant 

41 • complete 

42. bad book 

43. horse 

44. hay 

45. stable 
46. ride man 

man 

John 

dinner 

airplane bird 

restaurant 



47. about 

48. park 

49. his horse 

50. think girl man 



Intransitive Links Before Merger and Closure After Sentences 1 

1. the a 

2. be 

3. a the 

4. what 

5. who 

6. girl woman 

7. woman 

8. live 

9. in live 

10. city in 

11. sit 

12. on sit 

13. chair on 

14. house in 

15. eat 

16. potato eat 

17. own 

18. dog own 

19. LA city 

20. California in 

21. see 

22. airplane see 

23. air in 



24. write 

25. letter 

26. at 

27. table 

28. £l£ 

29. to 

30. Pari8 

31• man 

32. ground 

33. bird 

34. John 

35. book 

36. dinner 

37. restaurant 

38. near 

39. car 

40. good 

41. complete 

42. bad 

43. horse 

44. hay 

45. stable 

46. ride 

47. about 

48. park 

49. his 

50. think 

write 

at 

fly 

to 

about 

on 

see 

man 

write bad 

eat 

at good 

near 

near 

on about 

eat 

in 

ride think 

about 



Merged Links with Closure after Sentences 1-32 

the a girl woman 

In city on chair 

house own dog LA 

see airplane air write 

letter at table to 

man ground bird John 

book restaurant near car 

good bad horse stable 

about park boy animal 

throw ball wall mortal 

with fork spoon 

the a girl woman 

in city on chair 

house own dog LA 

see airplane air write 

letter at table to 

man ground bird John 

book restaurant near car 

good bad horse stable 

about park boy animal 

throw ball wall mortal 

with fork spoon 



4. what 

5. who 

6. girl 

7. woman 

8. live 

9. In 

10. city 

11. sit 

12. on 

13. chair 

14. house 

15. eat 

16. potato 

17. own 

18. do£ 

19. LA 

20. California 

21. see 

woman 

girl 

girl 

girl 

city 

LA 

man 

about 

in 

girl 

in 

about 

on 

girl 

John 

animal 

eat 

girl 

own 

In 

in 

girl 

near 

near 

woman 

woman 

woman 

on 

see 

John 

animal 

city 

woman 

sit 

park 

woman 

near 

mortal 

woman 

city 

woman 

about 

near 

near 

live 

chair 

airplane 

near 

site 

LA 

near 

man 

animal 

on 

horse 

near 

to 

man 

animal 

in 

eat 

to 

hay 

to 

John 

man 

about 

John 

22. airplane see 



23. Sir 

24. write 

25- letter 

26. at 

27. table 

28. fix 

29. t£ 

30. Paris 

31. man 

32. ground 

33. bird 

34. John 

35. book 

36. dinner 

37. restaurant 

38. near 

39. car 

40. good 

41. complete 

42. bad 

43. horse 

44. hay 

45. stable 

in 

girl 

near 

write 

eat 

smile 

at 

girl 

bird 

fly 

to 

man 

on 

see 

write 

eat 

at 

write 

near 

near 

at 

near 

write 

on 

eat 

in 

woman 

write 

throw 

woman 

near 

John 

bad 

good 

at 

good 

man 

letter 

ball 

see 

about 

book 

bad 

restaurant good 

book 

about 

bad 

animal 

John 

dinner 

airplane 

animal 

restaurant 

boy 

mortal 



46. ride 

47. about 

48. park 

49. his 

50. think 

51. box 

52. sing, 

53. soitR 

54. large 

55. smile 

56. animal 

57. 

58. 

59. 

60. 

61. 

throw 

ball 

wall 

site 

mortal 

62. with 

63. fork 

64. spoon 

65. walls 

66. and 

man 

ride 

in 

pn 

mortal 

girl 

near 

at 

girl 

sing 

man 

man 

on 

about 

girl 

throw 

at 

see 

on 

mortal 

eat 

with 

with 

John 

think 

about 

horse 

woman 

about 

near 

woman 

John 

John 

man 

animal 

woman 

about animal 

horse 

about 

man 

animal 

near 

about 

about 

John 

mortal 

near 

about 

animal 

John 

animal 

animal 

horse 

animal 


