NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

SIX LeCtures on algebraic theory of automata

BY
A. GINZBURG

On leave from Technion, Israel Institute of Technology, Haifa, Israel.

```
Acknowledgement
    I wish to thank the students in the Automata Theory Seminar
at Carnegie Institute of Technology in Pittsburgh, and especially
Mrs. Carol H. Thompson, for their valuable remarks during the
preparation of this report. Thanks are also due to fellow members
of the Faculty and to Mr. S. Winograd, with whom I had several
fruitful discussions.
```


Table of Contents

Abstract
Introduction 1
Lecture 1. Semiautomata and Automata 3
Lecture 2. Coverings and Homomorphisms of Automata 8
Lecture 3. Covering by Direct and Cascade Products of Semiautomata 15
Lecture 4. Permutation and Reset Semiautomata 24
Lecture 5. The Structure Theorem of Krohn and Rhodes 31
Lecture 6. The Necessity of Certain Components in a Cascade Product Covering of a Semiautomaton 45
Bibliography 57

ABSTRACT

This report describes and investigates some of the basic notions of the Algebraic Theory of Automata, leading to an important structure theorem of K. B. Krohn and J. L. Rhodes. The relational representation of automata and several results and techniques introduced here turn out to be very convenient tools to deal with the theory of finite automata.

[^0]The sixth lecture is devoted to the theorem by K. B. Krohn and J. L. Rhodes [3,4] showing the necessity of certain components in a cascade product covering of a semiautomaton.

	-3-
-	
	Lecture 1.
-	Semiautomata and Automata
-	1.1. Let S and Σ be two finite sets and$M=\left\{M_{\sigma}\right\}_{\sigma \epsilon \Sigma} \cup M_{\Lambda}$
	a set of relations over S (every M_{σ} is a subset of the Cartesian product
-	$S \times S ; M_{\Lambda}$ is the identity relation I_{S} - the set of all pairs (s) $s_{\varepsilon} S$).
	The triple $A=(S, \Sigma, M)$ is called a nondeterministic semiautomaton.
	The elements of S and Σ are called, respectively, the states and
	inputs of A. Λ is the empty or the identity input.
-	In the special case, when every M_{σ} is a mapping (of S into S) A
	will be called a deterministic semiautomaton, or simply a semiautomaton.
-	
	1.2. Σ^{*} denotes the free semigroup generated by Σ, i.e., the set $\left\{x=\sigma_{1} \sigma_{2} \cdots \sigma_{k}\right\}\left(\sigma_{i} \in \Sigma\right)$ of all finite strings (words) of symbols from
-	
-	Σ with the operation of concatenation. Also the empty word Λ is includ-
	ed in Σ^{*} and serves as the identity of this semigroup.
-	G will denote the semigroup of relations
	$\left\{M_{x}=M_{\sigma_{1}} M_{\sigma_{2}} \ldots M_{\sigma_{k}}\right\} \cup M_{\Lambda}$ generated by the relations in M with the operation of composition of
	relations. G is finite because the total number of relations over a
	finite set is finite. M_{Λ} is the identity in G. Clearly,
-	$M_{x} M_{y}=M_{x y}$ for any $x, y \in \Sigma^{\star}$.
	The mapping $\varphi: \Sigma^{*} \rightarrow \mathrm{G}$ defined by $x_{\varphi}=M_{x}$ is onto and it is a homo-
-	morphism. Indeed: ($x y$) $\varphi=M_{x y}=M_{x} M_{y}=(x \varphi)(y \varphi)$.
	G is called the semigroup of the semiautomaton.
	1.3. The equivalence relation $E=\varphi \varphi^{-1}$ on Σ^{*} partitions this set into
-	disjoint classes of words having the same image under the mapping φ.

In other words

$$
x E y \Leftrightarrow M_{x}=M_{y}
$$

But, $M_{x}=M_{y} \Rightarrow M_{z x u}=M_{z} M_{x} M_{u}=M_{z} M_{y} M_{u}=M_{z y u}$ for every $z, u \in \Sigma *$, hence $x E y \Rightarrow z x u$ Ezyu and E is a congruence over Σ^{*}.

The index of E, i.e. the number of congruence classes of E, equals the number of elements of G and thus it is finite.

Conversely, any congruence relation E with a finite index over Σ^{*} leads naturally to the following semiautomaton. The congruence classes will form the set S of states and to every generator $\sigma \in \Sigma$ of Σ^{*} there will correspond the relation M_{σ}, which is in this case a mapping, defined by representatives: if $x \in \Sigma^{*}$ belongs to the class denoted by s, then $s M_{\sigma}$ will be the congruence class containing the word x_{σ}. The resulting class will not depend on the choice of x in s, because E is a congruence; actually this will be ensured also if E is a right congruence only.

To summarize:
Every nondeterministic semiautomaton A induces on Σ^{*} a congruence relation with a finite index and, conversely, to every right congruence relation over Σ^{*} with a finite index there corresponds in a natural way a deterministic semiautomaton, the states of which are the congruence classes and the inputs are the elements of Σ.
1.4. Given a finite semigroup G (with identity) it is easy to find a semiautomaton A (even a deterministic one), having G as its semigroup. Indeed, take as states of A the elements of G and as Σ a set of generators of G (one can take the entire G). M_{σ} will be the right translation of G corresponding to σ, i.e. for every $g \in G, g M_{\sigma}=g \sigma$. The semigroup of $A, i . e$. the semigroup generated by the mappings M_{σ}, will be isomorphic to G.

The A constructed above is not the only semiautomaton having G as its semigroup. There is no difficulty in finding examples of distinct semiautomata having isomorphic semigroups.
1.5. The quintuple $\hat{A}=\left(S, \Sigma, M, S_{o}, F\right)$, where S, Σ, M are as before and S_{0} (the initial states) and F (the final states) are two distinguished subsets of S is called a nondeterministic automaton. $A=(S, \Sigma, M)$ is called the semiautomaton of \hat{A}.

An automaton \hat{A} can be used to classify words in Σ^{*}. Define: The word $x \in \Sigma^{*}$ is accepted by \hat{A} if and only if $S_{0} M_{x} \cap F \neq \phi$. (Notice: $S_{0} M_{x}=\left\{s \in S \mid G s_{0} \in S_{o},\binom{s_{0}}{s^{0}}_{\epsilon} M_{x}\right\}$). Thus Σ^{*} is partitioned into two disjoint subsets: U - the set of words accepted by \hat{A} and $\Sigma^{*}-U$ - the set of words rejected (not accepted) by A.
1.6. Consider the congruence E over Σ^{*} induced by the semiautomaton $A=(S, \Sigma, M)$ of $\hat{A}=\left(S, \Sigma, M, S_{0}, F\right) . \quad x E y \Leftrightarrow M_{x}=M_{y}$ hence $x E y, x \in U \Rightarrow y \in U, i . e .$, the words in U form complete congruence classes of E .

If, conversely, a (right) congruence E over Σ^{*} with a finite index is given, one can construct an \hat{A} which will accept a set of words U, provided U is a union of complete congruence classes of E.

To this end a semiautomaton A is constructed as in 1.3 (it is a deterministic one); S_{Q} is defined to be the state corresponding to the congruence class containing Λ (S_{0} has now only one element); F is the set of states corresponding to all congruence classes consisting of elements of U. The definition of M ensures that the obtained $\hat{A}=\left(S, \Sigma, M, S_{0}, F\right)$ will accept the words in U and only them.
1.7. A nondeterministic automaton in which all M_{σ} are mappings (i.e.
its semiautomaton is deterministic) and in which S_{o} is composed of one
element only is called a Rabin-Scott (deterministic) automaton.

A set of words accepted by a Rabin-Scott automaton is called a regular set.

Using this terminology, the results of 1.6 can be stated in the following form:
a. Regular sets are always unions of complete congruence classes of congruences with finite indexes over Σ^{*}.
b. A set of words accepted by a nondeterministic automaton is a regular set, in other words a nondeterministic automaton cannot do more than a Rabin-Scott automaton.

The flexibility of the nondeterministic device allows one to use it conveniently to prove theorems and produce procedures. Nevertheless, for many purposes it is simpler if one can assume that all M_{σ} are mappings from (possibly a proper subset of) S into S and this will be done in what follows.
1.8. The above defined automaton can be interpreted as a machine with two outputs, say 0 and 1. The output depends on the state to which the device is transformed by the corresponding input: if this is a final state the output is 1 , otherwise 0 .

In the same way one can consider a set Θ of outputs and a mapping N from S into Θ, which attaches to some (possibly to all) states of S outputs from Θ. The corresponding device is called a Moore machine. The next step is to make the outputs depend not only on the states of \hat{A}, but also on the inputs. In other words, one obtains a set of mappings $N_{\sigma}(\sigma \in \Sigma)$ from S into Θ instead of a "constant" (with respect to Σ) mapping N. This gives the so called Mealy machine
-
(or Mealy automaton) which can be defined as the quintuple
$\hat{A}=(S, \Sigma, \oplus, M, N)$, where S, Σ, M are as before, © is a finite set of outputs and

$$
N=\left\{N_{\sigma}: s \rightarrow \Theta\right\}_{\sigma \in \Sigma}
$$

is a set of mappings from S into © .
If for every $\sigma \varepsilon \Sigma$, $\mathrm{pr}_{1} \mathrm{M}_{\sigma}=S^{*}$) and $\mathrm{pr}_{1} \mathrm{~N}_{\sigma}=S$ (i.e. all M_{σ} and N_{σ} are mappings "of" S), the corresponding automaton is said to be a complete one, otherwise it is incomplete.

It can be shown that all the above mentioned types of automata are in a certain sense equivalent. We shall deal here with Mealy machines.
1.9. Let $x=\sigma_{1} \sigma_{2} \cdots \sigma_{k}\left(\sigma_{i} \in \Sigma\right)$ be a word in Σ^{*}. The relations

$$
\begin{equation*}
N_{\sigma_{1}}, M_{\sigma_{1}} N_{\sigma_{2}}, \ldots, M_{\sigma_{1}} M_{\sigma_{2}} \ldots M_{\sigma_{k-1}}{ }^{N} \sigma_{k}=M_{\sigma_{1}} \ldots \sigma_{k-1}{ }^{N}{ }_{\sigma_{k}} \tag{1}
\end{equation*}
$$

describe the outputs of \hat{A}, when x is applied to the automaton. The actual output word depends on the state in which $\hat{\mathrm{A}}$ is at the start of the experiment. If \hat{A} is in state s and the word $x=\sigma_{1} \ldots \sigma_{k}$ is app1ied, the consecutive outputs will be:

$$
s N_{\sigma_{1}}, s M_{\sigma_{1}} N_{\sigma_{2}}, \ldots, s M_{\sigma_{1}} \ldots \sigma_{k-1} N_{\sigma_{k}}^{N}
$$

(1) describes the output words for all starting points and this is one of the advantages of the relational description of the automaton.
$N_{x}=M_{\sigma_{1}} M_{\sigma_{2}} \ldots M_{\sigma_{k-1}} N_{\sigma_{k}}=M_{\sigma_{1} \sigma_{2} \ldots \sigma_{k-1}} N_{\sigma_{k}}$ describes the "last output" when x is applied.
*) If M is a relation from S to T, i.e. $M \subseteq S \times T$, then $\operatorname{pr}_{1} M=\left\{s_{\varepsilon} S \left\lvert\,\left[\begin{array}{l}t_{\epsilon} T \text {, }\end{array}\right.\right.\right.$
 By definition $M^{-1}=\left\{\left(\frac{t}{s}\right) \left\lvert\,\left(\frac{\xi}{(k)} \in M\right\}\right.\right.$.
Notice: $\mathrm{pr}_{1} \mathrm{M}=\mathrm{pr}_{2} \mathrm{M}^{-1}$. To complete: if P is a relation from T to V, then $M P=\left\{\left.\left(\frac{s}{v}\right) \right\rvert\, g t,\left(\frac{s}{f}\right) \in M,\left(\frac{t}{v}\right) \in P\right\}$. For $S_{o} \subseteq S$: $S_{0} M=\left\{t_{\varepsilon} T \mid G s_{0} \in S_{o},\binom{s_{0}}{t} \in M\right\}$.

Notice that if \hat{A} is not complete, some of the relations in (1) may be empty.

Lecture 2.

Coverings and Homomorphisms of Automata

2.1. An automaton $\hat{A}=(S, \Sigma, \Theta, M, N)$ can be regarded as a translator from Σ^{*} into Θ^{*}. Actually, it is a set of translators, because the output word in Θ^{*} depends not only on the input word from Σ^{*}, but also on the state $s \in S$ in which \hat{A} is started.

It is natural to look for a simpler machine than the given \hat{A}; but still capable of performing all tasks done by $\hat{\mathrm{A}}$.

The notion "simpler" is, of course, relative. Simplicity of an automaton can be measured,e.g., by the number of its states. A device consisting of a number of smaller automata or in some sense standard automata interconnected in certain ways may also be considered as simpler than \hat{A}.

The meaning of "being capable of performing the tasks done by \hat{A} " will be made precise by the following:
Definition: The automaton $\hat{B}=\left(S^{B}, \Sigma, \Theta, M^{B}, N^{B}\right)$ is said to cover the automaton $\hat{A}=\left(S^{A}, \Sigma, \oplus, M^{A}, N^{A}\right)$ (notation $\hat{B} \geq \hat{A}$), if there exists a mapping X of S^{A} into S^{B}, such that for every word $x \in \Sigma^{*}$

$$
\begin{equation*}
N_{x}^{A} \subseteq x N_{x}^{B} \tag{2}
\end{equation*}
$$

As can be seen from the notation, it is assumed that both automata have the same inputs and outputs. This limitation can be easily removed by introducing mappings from the input set of one automaton into this of the other and the same for the output sets, if these sets are different. Later such a mapping will be used,
but at this stage the above assumption makes things more convenient, without invalidating the generality of the discussion.

The meaning of (2) is that to every state s^{A} in S^{A} there corresponds at least one state $s_{\varepsilon}{ }_{\varepsilon} S^{B}$, such that when started in s^{B}, \hat{B} performs all translations done by \hat{A} started in s.

The relation of covering is easily seen to be reflexive and transitive, but not symmetric. If for some \hat{A} and $\hat{B}, \hat{B} \geq \hat{A}$ and $\hat{A} \geq \hat{B}$ these automata are said to be equivalent.

If A is complete, N_{x}^{A} is a mapping of S^{A} into Θ; so is χN_{x}^{B} and (2) becomes an equality. Nevertheless even in this case \hat{A} and \hat{B} need not be equivalent; there can be states in S^{B} which do not correspond by x to any state in S^{A} and thus it is possible that \hat{B} can perform translations of which \hat{A} is not capable.

If for every two states $s_{1}^{A}, s_{2}^{A} \in S^{A}$, there exists at least one $x \in \Sigma^{*}$, such that $\phi \neq s_{1}^{A} N_{x}^{A} \neq s_{2}^{A} N_{x}^{A} \neq \phi$, the automaton \hat{A} is called reduced. There are known constructions of reduced automata which cover a given automaton \hat{A}; moreover, in the complete case such a reduced automaton is unique up to renaming of its states.
2.2. The notion of homomorphism can be used in automata theory and it appears to be connected with the notion of covering. First, the following
Definition: Given the automata \hat{A} and \hat{B}, the mapping ζ of S^{A} onto S^{B} is a homomorphism of \hat{A} onto \hat{B} if for every $\sigma \in \Sigma$:
(i) $M_{\sigma}^{A} \zeta \subseteq \zeta M_{\sigma}^{B}$
(ii) $N_{\sigma}^{A} \subseteq \zeta N_{\sigma}^{B}$

Given the automata \hat{A} and \hat{B} and a binary relation ψ with $\mathrm{pr}_{1} \psi=S^{A}$ and $\mathrm{pr}_{2} \psi=\mathrm{S}^{\mathrm{B}}$, the relation ψ is a weak homomorphism of \hat{A} onto \hat{B} if for every $\sigma \in \Sigma$:
(i) $\hbar^{-1} M_{\sigma}^{A} \subseteq M_{\sigma}^{B} \downarrow^{-1}$
(ii) $\psi^{-1} N_{\sigma}^{A} \subseteq N_{\sigma}^{B}$

Notice, that if ψ is a mapping of S^{A} onto S^{B}, conditions (3) and (4) are equivalent, i.e., every homomorphism is also a weak homomorphism and a weak homomorphism in which is a mapping is a homomorphism. Indeed, if ψ is a mapping of s^{A} onto S^{B}, then $\psi^{-1} \rightleftharpoons I_{S^{A}}$ (the identity on S^{A}) and $\psi^{-1}=I^{B}$.
It follows:

$$
\begin{gathered}
M_{\sigma}^{A} \subseteq \psi M_{\sigma}^{B} \Rightarrow \psi_{\sigma}^{-1} M_{\sigma}^{A} \subseteq \psi^{-1} \psi M_{\sigma}^{B} \psi^{-1} \Rightarrow \psi_{\sigma}^{-1} \subseteq M_{\sigma}^{B} \psi^{-1} \\
N_{\sigma}^{A} \subseteq \forall N_{\sigma}^{B} \Rightarrow \psi^{-1} N_{\sigma}^{A} \subseteq \psi^{-1} N_{\sigma}^{B}=N_{\sigma}^{B}
\end{gathered}
$$

i.e. (3) \Rightarrow (4). Conversely, with such a

$$
\psi^{-1} M_{\sigma}^{A} \subseteq M_{\sigma}^{B} \psi^{-1} \Rightarrow \psi \psi_{\sigma}^{-1} M_{\sigma}^{A} \subseteq \psi M_{\sigma}^{B} \psi_{\sigma}^{-1} \nRightarrow M_{\sigma}^{A} \downarrow \not M_{\sigma}^{B}
$$

$$
\psi{ }^{-1} N_{\sigma}^{A} \subseteq N_{\sigma}^{B} \Rightarrow \psi \psi^{-1} N_{\sigma}^{A} \subseteq \psi N_{\sigma}^{B} \Rightarrow N_{\sigma}^{A} \subseteq \psi N_{\sigma}^{B}
$$

$$
\text { i.e. }(4) \Rightarrow(3) \text {. }
$$

It is easy to construct examples of relations for which (3) and (4) are not equivalent.
2.3. The advantage in using weak homomorphism is, that it is of ten possible to find a relation satisfying (4), while there is no mapping doing this, and, nevertheless, the following is true:

Theorem: Let be a weak homomorphism of A onto B . Then $\hat{B} \geq \hat{A}$.

$$
\text { Proof: (4) implies for any word } x=\sigma_{1} \cdots \sigma_{k} \text { : }
$$

$$
\psi^{-1} M_{x}^{A}=\psi_{\sigma_{1}}^{-1} M_{\sigma_{k}}^{A} \ldots M_{\sigma_{k}}^{A} \subseteq M_{\sigma_{1}}^{B} \psi_{\sigma_{2}}^{-1} \ldots M_{\sigma_{k}}^{A} \subseteq M_{\sigma_{1}}^{B} M_{\sigma_{2}}^{B} \ldots M_{\sigma_{k}}^{B} \psi^{-1}=M_{x}^{B} \psi^{-1}
$$

and
$\psi^{-1} N_{x}^{A}=\psi^{-1} M_{\sigma_{1}}^{A} \ldots M_{\sigma_{k-1}}^{A} N_{\sigma_{k}}^{A} \subseteq M_{\sigma_{1}}^{B} \ldots M_{\sigma_{k-1}}^{B}{ }^{-1} N_{\sigma_{k}}^{A} \subseteq M_{\sigma_{1}}^{B} \ldots M_{\sigma_{k-1}}^{B} N_{\sigma_{k}}^{B}=N_{x}^{B}$
$\mathrm{pr}_{1} \psi=\mathrm{S}^{\mathrm{A}}, \mathrm{pr}_{2}=\mathrm{S}^{\mathrm{B}}$ and, clearly, it is always possible to find
a mapping X of S^{A} into S^{B} such that $X \subseteq \not \subset$. For any $x \in \Sigma^{*}$:
$\|^{-1} N_{x}^{A} \subseteq N_{x}^{B} \Rightarrow X^{-1} N_{x}^{A} \subseteq N_{x}^{B} \Rightarrow X X^{-1} N_{x}^{A} \subseteq x N_{x}^{B}$

But $\mathrm{pr}_{1} X=S^{A}$, hence $X X^{-1} \rightleftharpoons I_{S^{A}}$ and one obtains:

$$
N_{x}^{A} \subseteq x N_{x}^{B}
$$

i.e. $\mathrm{B} \geq \hat{\mathrm{A}}$.
of course, $\hat{B} \geq \hat{A}$ does not imply that \hat{B} is a homomorphic or even a weak homomorphic image of $\hat{\mathrm{A}}$.
2.4. The notion of weak homomorphism leads to the following additional concepts. Let ψ be a weak homomorphism of \hat{A} onto \hat{B} and consider the following set of subsets of s^{A} :

$$
\pi=\left\{\mathrm{H}_{\mathbf{i}}=\mathbf{s}_{\mathrm{i}}{ }^{-1}\right\}_{\mathbf{s}_{i} \in S^{B}}
$$

$\operatorname{pr}_{1} \psi=S^{A}$, hence every element of S^{A} belongs to at least one subset of π. π is a decomposition of S^{A} and the H_{i} 's are called the blocks of π. In the special case, when $H_{i} \cap H_{j}=\phi(i \neq j)$ (i.e., the blocks of π are disjoint), π is a partition of S^{A}. Now,

$$
H_{i} M_{\sigma}^{A}=s_{i} \psi^{-1} M_{\sigma}^{A} \subseteq s_{i} M_{\sigma}^{B} \psi^{-1}=s_{j} \psi^{-1}=H_{j},
$$

i.e., for every $\sigma \in \Sigma$ and every block H_{i} of π, there exists in π at least one block H_{j} including the set $H_{i} M_{\sigma}^{A}$. This fact is expressed by saying that π is an admissible decomposition of S^{A}.

Next compute: $H_{i} N_{x}^{A}=s_{i} \psi^{-1} N_{x}^{A} \varsigma s_{i} N_{x}^{B}$. The result shows that all elements in a block of π give the same output (if at all), when the same input word is applied to them $-\pi$ is an output-consistent decomposition.

Hence the
Theorem: A weak homomorphism ψ of \hat{A} onto \hat{B} induces naturally an admissible, output-consistent decomposition π of S^{A} : the blocks of π are the subsets of elements of S^{A} which are in the relation ψ with the same element of S^{B}.
2.5. An admissible and output-consistent decomposition π of S^{A} leads naturally to at least one so called $\boldsymbol{\pi}$-factor of \hat{A} (notation \hat{A} / π). This is an automaton B constructed in the following way:
First, $\quad \Sigma^{B}=\Sigma^{A}$ and $\Theta^{B}=\Theta^{A}$.
The states of \hat{B} will be the blocks of π. The following notation will be used: a block H_{i} of π, i.e., a subset of S^{A}, when considered as an element of S^{B}, will be denoted by \bar{H}_{i}.

For every $\sigma \in \Sigma$ and every H_{i} there exists at least one H_{j} such that $H_{i} M_{\sigma}^{A} \subseteq H_{j}$. Take arbitrarily one of such H_{j} 's and define $\bar{H}_{i} M_{\sigma}^{B}=\bar{H}_{j}$.
N^{B} is defined by: $\bar{H}_{1} N_{\sigma}^{B}=H_{1} N_{\sigma}^{A}$ and the output-consistency of π ensures that the right-hand side consists of one element of Θ or it is empty.

For every such π-factor \hat{B} of \hat{A} the relation with $p_{1} \psi=S^{A}$ and $\mathrm{pr}_{2}{ }^{\psi}=\mathrm{S}^{\mathrm{B}}$ given by:

$$
\left(\frac{s^{A}}{H_{i}}\right) \in \psi \Leftrightarrow s^{A} \in H_{i} \quad\left(s^{A} \in S^{A}\right)
$$

is a weak homomorphism of \hat{A} onto \hat{B}. Indeed, for every $\widetilde{H}_{i}, \in S^{B}$ and every $\sigma \in \Sigma$

$$
\bar{H}_{i} \psi^{-1} M_{\sigma}^{A}=H_{i} M_{\sigma}^{A} \subseteq H_{j}=\bar{H}_{j} \psi^{-1}=\bar{H}_{i} M_{\sigma}^{B} \psi^{-1}
$$

and

$$
\bar{H}_{i}{ }^{-1} N_{\sigma}^{A}=H_{i} N_{\sigma}^{A}=\bar{H}_{i} N_{\sigma}^{B}
$$

i.e., conditions (4) are satisfied.

Altogether one has the following
Theorem: An admissible output-consistent decomposition π of s^{A} determines at least one automaton (a π-factor of \hat{A}), which is
a weakly-homomorphic image of \hat{A}.
In the special case, when Π is an admissible output-consistent partition of $S^{A}, \hat{A} / \pi$ is unique. The above relation ψ becomes in this case a mapping, consequently a homomorphism of \hat{A} onto \hat{A} / π.
and the obtained automaton \hat{B} (having the given B as its semiautomaton) covers the automaton \hat{A}.

For a reduced automaton $\hat{\mathrm{A}}$ the following is also true:

$$
\left.\hat{B} \geq \hat{A} \Rightarrow B \geq A^{*}\right)
$$

Indeed, $\hat{B} \geq \hat{A} \Rightarrow$ g mapping X of S^{A} into S^{B} such that for every $x \in \Sigma^{*} N_{x}^{A} \subseteq X_{x}^{N} N_{x}^{B}$ i.e., for every $s^{A} \in S^{A}$

$$
s^{A} N_{x}^{A} \neq \phi \Rightarrow s^{A} N_{x}^{A}=s^{A} N_{x}^{B}
$$

Hence, $s_{1}^{A} X=s_{2}^{A} X \Rightarrow s_{1}^{A} N_{x}^{A}=s_{2}^{A} N_{x}^{A}$ for every $x \in \Sigma^{*}$, for which both expressions exist, and, as \hat{A} is reduced, this implies $s_{1}^{A}=s_{2}^{A}$.

Thus X is one-to-one, X^{-1} is a mapping of a subset of S^{B} onto S^{A} and

To prove that (5) is satisfied for X^{-1} observe, that for every ${ }_{8}{ }_{\varepsilon}^{B} S^{B}, \sigma \varepsilon \Sigma$ and $x_{\varepsilon} \Sigma^{*}$ such that ${ }_{B} X_{X}^{-1} M_{\sigma} N_{X}^{A} N_{x}^{A} \neq \phi$ one obtains:
 since \hat{A} is reduced. $\quad\left(s^{B} X^{-1} M_{\sigma} A_{X}^{A}=\phi\right.$ for every $x \Rightarrow s^{B} X^{-1} M_{\sigma}^{A}=\phi$, because output-empty states do not appear in a reduced automaton.)

Since for every automaton there exists at least one reduced automaton covering it, the problem of finding covers of automata can always be reduced (having in mind the Theorem of this section) to looking for covers of semiautomata. This will be done in what follows.

[^1]
Lecture 3.

Covering by Direct and Cascade Products of Semiautomata

In the following it will always be assumed (without mentioning this explicitly) that the semiautomata considered are complete, and the maping M_{x}^{A} of S^{A} into S^{A} will be denoted by $x^{A}\left(x \in \Sigma^{\star}\right)$. N_{x}^{A} will not appear, because the discussion is limited to semiautomata only.
3.1. A semiautomaton $A^{\prime}=\left(S^{\prime}, \Sigma, M^{A^{\prime}}\right)$ will be called a subsemiautomaton of a semiautomaton $A=\left(S^{A}, \Sigma, M^{A}\right)$, if $S^{A^{\prime}} \subseteq S^{A}$ and $\sigma^{A^{\prime}} \subseteq \sigma^{A}$ for every $\sigma \in \Sigma$.
(In other words, every subset of S^{A} which is closed under the mappings in M^{A} forms a subsemiautomaton of A).

Notice that $A \geq A^{\prime}$ (take $\eta=I_{S^{\prime}}$, in (5)), and $G_{A^{\prime}}$, (the semigroup of A^{\prime}) is a homomorphic image of G_{A}, because the mappings in $M^{A^{\prime}}$ are restrictions of the corresponding mappings in M^{A} to $S^{A^{\prime}} \subseteq S^{A}$.

The semiautomaton $A=\left(S^{A}, \Sigma, M^{A}\right)$ is a homomorphic image of the semiautomaton $B=\left(S^{B}, \Sigma, M^{B}\right)$, if there exists a mapping ζ of S^{B} onto S^{A}, such that for every $\sigma \in \Sigma$

$$
\begin{equation*}
\sigma^{B} \zeta=\zeta \sigma^{A} \tag{6}
\end{equation*}
$$

(This is condition (3i) in section 2.2 with $=$ instead of \subseteq because only complete semiautomata are considered here.

If ζ is one-to-one, A and B are isomorphic $(A \simeq B)$.
Some properties of the notion of covering of semiautomata follow.
(i) $B \geq A \Leftrightarrow A$ is a homomorphic image of a subsemiautomaton of B. Proof: $\quad B \geq A \Rightarrow$ a mapping η of a subset of S^{B} onto S^{A}, such that $\eta_{\sigma}{ }^{A} \Leftrightarrow \sigma^{B} \eta$ for every $\sigma \in \Sigma$.

The subset $S^{B^{\prime}}=S^{A} \eta^{-1}$ of S^{B} forms a subsemiautomaton of
B. Indeed,
$s^{B} \in s^{A} \eta^{-1} \Rightarrow s^{B} \eta \sigma^{A} \neq \phi \Rightarrow s^{B} \eta \sigma^{A}=s^{B} \sigma^{B} \eta \Rightarrow s^{B} \sigma_{\varepsilon} \in s^{A} \eta^{-1}$,
i.e., $S^{B \prime}$ is closed under the mappings in M^{B}. Moreover, the last equality implies also, that for the restriction $\sigma^{B^{\prime}}$ of σ^{B} to $S^{B^{\prime}}$ one has

$$
\begin{equation*}
\sigma^{B^{\prime}} \eta=\eta \sigma^{A} \tag{7}
\end{equation*}
$$

Comparison with (6) shows that η is a homomorphic mapping of the subsemiautomaton B^{\prime} of B, formed by the states $s^{B^{\prime}}=S^{A} \eta^{-1}$, onto A.

Conversely, if A is a homomorphic image of a subsemiautomaton B^{\prime} of B, there exists a mapping η of $S^{B^{\prime}} \subseteq S^{B}$ onto S^{A}, such that for every $\sigma \in \Sigma$:

$$
\sigma^{B^{\prime}} \eta=\eta \sigma^{A}
$$

But $\sigma^{B^{\prime}} \subseteq \sigma^{B}$, hence $\eta \sigma^{A} \subseteq \sigma^{B} \eta$ and (5) is satisfied, i.e., $B \geq A$.
(ii) $B \geq A \Rightarrow G_{A}$ is a homomorphic image of G_{B}.

Proof: Use the notation of (i). For every $x \in \Sigma^{*}$ one has by (7):

$$
\mathbf{x}^{\mathbf{B}^{\prime}} \eta=\sigma_{1}^{\mathbf{B}^{\prime}} \ldots \sigma_{\mathbf{k}}^{\mathbf{B}^{\prime}} \eta=\eta \sigma_{1}^{\mathbf{A}} \cdots \sigma_{k}^{\mathbf{A}}=\eta \mathbf{x}^{\mathbf{A}}
$$

hence, $\eta^{-1} \mathbf{x}^{B \prime} \eta=\eta^{-1} \eta \mathbf{x}^{\mathbf{A}}=\mathrm{I}_{\mathrm{S}^{A}} \mathbf{x}^{\mathbf{A}}=\mathbf{x}^{\mathrm{A}}$.
Define the relation φ from the homomorphic image G_{B}, of G_{B} into G_{A} by: $x^{B^{\prime}} \varphi=x^{A}$. Since

$$
\mathbf{x}^{B^{\prime}}=\mathbf{y}^{\mathbf{B}^{\prime}} \Rightarrow \eta^{-1} \mathbf{x}^{B^{\prime}} \eta=\eta^{-1} \mathbf{y}^{B^{\prime}} \eta \Rightarrow \mathbf{x}^{\mathbf{A}}=\mathbf{y}^{\mathbf{A}},
$$

φ is a mapping of G_{B}, into G_{A} and, as can be seen, even onto G_{A}. But $\left(x^{B^{\prime}} y^{B^{\prime}}\right) \varphi=(x y)^{B^{\prime}} \varphi=(x y)^{A}=x^{A} y^{A}=\left(x^{B^{\prime}} \varphi\right)\left(y^{B^{\prime}} \varphi\right)$, i.e., φ is a homomorphism; thus G_{A} is a homomorphic image of G_{B},too.
(iii) $\mathrm{B} \geq \mathrm{A}, \mathrm{C} \geq \mathrm{B} \Rightarrow \mathrm{C} \geq \mathrm{A}$

This follows from (i) and also can be proved directly.
(iv) If π is an admissible partition of S^{B} and A is the π-factor of B, then $B \geq A$.

This follows from (1), because here A is a homomorphic image of B .
(v) The case when $\Sigma^{A} \neq \Sigma^{B}$ is taken care by the Definition: The semiautomaton $B=\left(S^{B}, \Sigma^{B}, M^{B}\right)$ covers the semiautomaton $A=\left(S^{A}, \Sigma^{A}, M^{A}\right)$, if there exists a mapping η of a subset of S^{B} onto S^{A}, and a mapping ξ of Σ^{A} into Σ^{B}, such that for every $\sigma \in \Sigma^{A}: \quad \quad \eta \sigma^{A} \varsigma(\sigma \xi)^{B} \eta$ (1. e., to every input in A there corresponds an input in B "doing the same". Notice, that in this case G is, in general, a homomorphic image of a proper subsemigroup of G_{B})

The following are simple, but useful cases of covering:
a. Given an A with $\sigma_{i}^{A}=\sigma_{j}^{A}$ for $\sigma_{i}, \sigma_{j} \in\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subseteq \Sigma^{A}$, the semiautomaton obtained from A by coinciding all these equal inputs covers A. Indeed, as η take the identity on S^{A} and put $\xi=\binom{\sigma_{1} \sigma_{2} \cdots \sigma_{k} \sigma_{k+1} \cdots}{\sigma_{1} \sigma_{1} \cdots \sigma_{1} \sigma_{k+1} \cdots}$
b. Given an A, one can add new inputs to Σ^{A}. The obtained semiautomaton will cover A.
c. Assume that in the above definition η is a one-to-one mapping of S^{B} onto S^{A}, δ is a mapping of Σ^{A} onto Σ^{B}, and for every $\sigma \in \Sigma^{A}$:
$\eta \sigma^{A}=(\sigma \xi)^{B} \eta$
It follows $\sigma^{A}=\eta^{-1}(\sigma \xi)^{B} \eta$, hence inputs in A, having the same image under 5 are equal.

The semiautomaton, obtained from A by coinciding the inputs in every such class of equal inputs, is, clearly, isomorphic to B.
3.2. In the sequel the following construction will be useful. Given a semiautomaton $A=\left(S^{A}, \Sigma^{A}, M^{A}\right)$, an admissible decomposition π of S^{A}, and $a \pi$-factor $A / \pi=B$, a new semiautomaton $A^{*}=\left(S^{A^{*}}, \Sigma^{A^{*}}, M^{A^{*}}\right)$ is constructed as follows:

$$
\Sigma^{A^{*}}=\Sigma^{\mathrm{A}}=\Sigma^{\mathrm{B}} .
$$

$S^{A^{*}}=\left\{\left(s^{A}, \bar{H}_{i}\right)\right\}, s^{A} \in s^{A}$ and $\underline{s}_{\varepsilon}^{A} H_{i} \in \pi$.
$\left(s^{A}, \bar{H}_{i}\right) \sigma^{A^{*}}=\left(s_{\sigma}^{A}, \bar{H}_{i} \sigma^{B}\right)$ for every $\sigma \in \Sigma$.
Notice that the obtained pair is necessarily an element of $\mathrm{S}^{A^{*}}$ because, by the construction of $A / \pi=B, s_{\varepsilon}^{A} H_{i} \Rightarrow s^{A} \sigma_{\varepsilon}^{A} H_{j}$ where $\bar{H}_{j}=\bar{H}_{i} \sigma^{B}$.

The following two observations are important.
(i) Define a partition π^{*} of $\mathrm{S}^{\mathrm{A}^{*}}$ such that the partition blocks consist of all pairs having the same second component. π^{\star} is admissible because the mappings $\sigma^{A^{*}}$ act independently on the components of $\mathrm{s}^{\mathrm{A}^{*}}, \mathrm{~A}^{*} / \pi^{*}$ is isomorphic to $\mathrm{A} / \pi=\mathrm{B}$. Indeed, the blocks of π^{*} are in one-to-one correspondence with the elements of B, and the mappings in A^{*} / π^{*} originate from the mappings in B.
(ii) The mapping η of $s^{A *}$ onto S^{A} defined by (s^{A}, \bar{H}_{i}) $\eta=s^{A}$ satisfies $\eta \sigma^{A}=\sigma^{A *} \eta$ for every σ because ($\left.s^{A}, \bar{H}_{i}\right) \prod_{\sigma}^{A}=s_{\sigma}^{A}$ and $\left(s^{A}, \bar{H}_{i}\right) \sigma^{A^{*}} \eta=\left(s_{\sigma}^{A}, \bar{H}_{i} \sigma^{B}\right) \eta=s^{A} \sigma^{A}$ for all $\left(s^{A}, \vec{H}_{i}\right) \varepsilon S^{A^{*}}$. Hence $A^{*} \geq \mathrm{A}$.

Usually it is more convenient to work with partitions than with decompositions, and this is the reason for introducing A^{*}, which can be interpreted as the given A with states, belonging to more than one block of π, appropriately "duplicated".
3.3. Two semiautomata can be combined as in the following

Definition: The direct product of the semiautomata $A=\left(S^{A}, \Sigma, M^{A}\right)$ and $B=\left(S^{B}, \Sigma, M^{B}\right)$ is the semiautomaton $A \times B=\left(S^{A \times B}, \Sigma, M^{A \times B}\right)$ with $S^{A X B}=S^{A} \times S^{B}$ and $M^{A X B}$ defined as follows: for every $\sigma \in \Sigma$ and every $s^{A} \in S^{A}, s^{B} \in S^{B}$

$$
\left(s^{A}, s^{B}\right) \sigma^{A \times B}=\left(s^{A} \sigma^{A}, s^{B} \sigma^{B}\right)
$$

Theorem: Let π and τ be two admissible partitions of S^{C} in a semiautomaton C, such that their intersection ${ }^{*}$) is the identity partition of S^{C}. Then $C / \pi \times C / \tau \geq C$.

Proof: Let $A=C / \pi, B=C / \tau$.
Let $T^{A \times B} \subseteq S^{A \times B}$ be the set of all pairs
$\left\{\left(\bar{H}_{i}, \bar{K}_{j}\right) \mid \bar{H}_{i} \in S^{A}, \bar{K}_{j} \in S^{B}, H_{i} \cap K_{j} \neq \emptyset\right\}$
The mapping $\eta: T^{A \times B} \rightarrow S^{C}$ is defined by $\left(\bar{H}_{i}, \bar{K}_{j}\right) \eta=H_{i} \cap K_{j}$
It follows from $\pi \cap \tau=\pi_{i d e n}$. of S^{C} that η is a one-to-one mapping of $T^{A \times B}$ onto S^{C}.

Let φ_{π} and φ_{τ} denote the natural mappings of S^{C} onto the blocks of π and τ, respectively, i.e., $s^{C} \varphi_{\pi}=H_{i} \Leftrightarrow s^{C} \varepsilon H_{i}$ and $s^{C} \varphi_{T}=K_{j} \Leftrightarrow s^{C} \in K_{j}$.

Now, for every $\left(\bar{H}_{i}, \bar{K}_{j}\right) \in T^{A \times B}:$ $\left(\bar{H}_{i}, \bar{K}_{j}\right) \eta \sigma^{C}=\left(H_{i} \cap K_{j}\right) \sigma^{C}=H_{i} \sigma^{C} \cap K_{j} \sigma^{C}=H_{i} \sigma^{C} \varphi_{\pi} \cap K_{j} \sigma^{C} \varphi_{T}=$ $\left.=\overline{\left(\mathrm{H}_{i} \sigma^{C} \varphi_{\Pi}\right.}, \overline{\mathrm{K}_{\mathrm{j}} \sigma^{\mathrm{C}} \varphi_{\mathrm{T}}}\right) \eta=\left(\overline{\mathrm{H}}_{i} \sigma^{\mathrm{A}}, \overline{\mathrm{K}}_{\mathrm{j}} \sigma^{\mathrm{B}}\right) \eta=\left(\overline{\mathrm{H}}_{i}, \dot{\overline{\mathrm{~K}}}_{\mathrm{j}}\right) \sigma^{\mathrm{A} \times \mathrm{B}} \eta$, and consequently $A \times B \geq C$.

[^2]3.4. Two semiautomata can be connected as in the following

Definition: Let $A=\left(S^{A}, \Sigma^{A}, M^{A}\right)$ and $B=\left(S^{B}, \Sigma^{B}, M^{B}\right)$ be two semiautomata and ω a mapping of $S^{A} \times \Sigma^{A}$ into Σ^{B}. The cascade product of A and B with the mapping ω is the semiautomaton $A_{0}^{O} B=\left(S^{A_{\omega}^{O} B}, \Sigma^{A_{0}^{O} B}, M^{A^{i} \omega^{B}}\right)$ with $S^{A_{i}^{O} B}=S^{A} \times S^{B}, \Sigma^{A_{i j}^{O} B}=\Sigma^{A}$ and $M^{A_{i}^{\circ} B}$ defined by $\left(s^{A}, s^{B}\right) \sigma^{A_{0}^{\circ} B}=\left(s_{\sigma}^{A} A^{A}, s^{B}\left(\left(s^{A}, \sigma\right) \omega\right)^{B}\right),\left(s^{A} \in s^{A}, s^{B} \varepsilon s^{B}, \sigma \in \Sigma^{A}\right)$. The case, when $S^{A} \times \Sigma^{A} \subseteq \Sigma^{B}$ and ω is the identity on $S^{A} \times \Sigma^{A}$ will be the usual one in what follows. The corresponding cascade produc.t of A and B will be denoted by $A^{\circ} B$ and $\left(s^{A}, s^{B}\right) \sigma^{A O B}=\left(s_{\sigma}^{A}, s^{B}\left(s^{A}, \sigma\right)^{B}\right)$. In the sequel the following notation will be used: $|S|$ - the number of elements in the finite set S. $m(\pi)$ - the maximal number of elements in a block of a decomposition

$$
\pi \text { of a finite set } S
$$

φ_{π} - the natural mapping of S onto the blocks of a partition π of S : $s \varphi_{\pi}=H_{i} \Leftrightarrow s \in H_{i}$ (as introduced in 3.3).
Theorem: Given a semiautomaton $A=\left(S^{A}, \Sigma, M^{A}\right)$ and an admissible partition $\pi=\left\{H_{1}\right\}$ of S^{A}, there exists a semiautomaton $D=\left(S^{D}, \Sigma^{D}, M^{D}\right)$ such that $\left|S^{D}\right|=m(\pi)$, and $\operatorname{COD} \geq A$, where $C=A / \pi$.
Proof: Obviously, one can find a partition $\tau=\left\{K_{j}\right\}$ of S^{A}, such that $\pi \cap \tau=\Pi_{\text {iden }}$. of S^{A} and $|\tau|=m(\pi) . \quad(|\tau|$ is the number of blocks in the partition τ).

$$
\text { Let: } \begin{align*}
& s^{D}=\left\{\bar{K}_{j}\right\} \\
& \Sigma^{D}=s^{C} \times \Sigma=\left\{\bar{H}_{i}\right\} \times \Sigma \quad \text { and } \\
& \bar{K}_{j}\left(\bar{H}_{i}, \sigma\right)^{D}=\overline{\left(K_{j} \cap H_{i}\right) \sigma^{A} \varphi_{\tau}} \tag{8}
\end{align*}
$$

Notice, that the right-hand side in the last equality may be empty (this will happen when $\mathrm{K}_{\mathrm{j}} \cap \mathrm{H}_{\mathrm{i}}=\phi$). In these cases $\bar{K}_{j}\left(H_{i}, \sigma\right)^{D}$ can be chosen arbitrarily. Denote by $T^{C O D} \subseteq S^{C O D}$ the set of all pairs $\left.\overline{(H}_{i}, \bar{K}_{j}\right)$ such that $H_{i} \cap K_{j} \neq \phi$.

$$
\left(\bar{H}_{i}, \bar{K}_{j}\right) \cdot \eta_{1}=H_{i} \cap K_{j}
$$

Now, for every element of $\mathrm{T}^{\mathrm{COD}}$:

$$
\begin{aligned}
& \left(\bar{H}_{i}, \overline{\mathrm{~K}}_{j}\right) \eta \sigma^{A}=\left(\mathrm{H}_{i} \cap \mathrm{~K}_{j}\right) \sigma^{A}=H_{i} \sigma^{A} \varphi_{\pi} \cap\left(H_{i} \cap K_{j}\right) \sigma^{A} \varphi_{T}= \\
& \left.=\overline{\left(H_{i} \sigma^{A} \varphi_{\pi}\right.}, \overline{\left(H_{i} \cap K_{j}\right) \sigma^{A} \varphi_{\tau}}\right) \eta=\left(\bar{H}_{i} \sigma^{C}, \bar{K}_{j}\left(\bar{H}_{i}, \sigma\right)^{D}\right) \eta= \\
& =\left(\bar{H}_{i}, \bar{K}_{j}\right) \sigma^{C o D} \eta .
\end{aligned}
$$

This proves that $C O D \geq A$.

If τ is an admissible partition of S^{A}, then the mappings $\left(\bar{H}_{i}, \sigma\right)$ do not depend on \bar{H}_{i}, because all elements of K_{j} are mapped by σ^{A} into the same block of τ. All inputs in Σ^{D} with the same σ are equal, and after coinciding them, the cascade product $C^{\circ} D$ reduces to the direct product $C \times D$. Thus, the direct product can always be considered as a particular case of the cascade product.
3.5. The construction in 3.2. allows the last result to be extended to the following important

Theorem: Let $A=\left(S^{A}, \Sigma, M^{A}\right)$ be a semiautomaton, π an admissible decomposition of S^{A} and B a π-factor A / π of A. Then there exist semiautomata C and D, such that $C \simeq B$ (C is isomorphic to B), $\left|S^{D}\right|=m(\pi)$, and $C^{\circ} D \geq A$.

Proof: Using π and the given B, the semiautomaton A^{*} is constructed. π^{*} is an admissible partition of A^{*}, hence as in the last theorem there exists a D such that $C^{\circ} D \geq A^{*}$, where $C=A^{*} / \pi^{*}$ and $\left|S^{D}\right|=m\left(\pi^{*}\right)$. But $A^{*} \geq A, A^{*} / \pi^{*} \simeq A / \pi$, and $m\left(\pi^{*}\right)=m(\pi)$ (cf. the definition of π^{*}). The theorem follows.
3.6. Example
$A=\left(\{1,2,3,4,5,6\},\{\quad\},\left\{\sigma_{0}^{A}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 1 & 3 & 5\end{array}\right), \sigma_{1}^{A}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 3 & 3 & 3\end{array}\right)\right\}\right)$

A can be conveniently defined using the table

A	1	2	3	4	5	6
σ_{0}	3	1	2	1	3	5
σ_{1}	4	5	3	3	3	3

and this form of description will also be used here for other semiautomata.
$\pi=\left\{H_{1}=\{1,2,3\}, H_{2}=\{3,4,5\}, H_{3}=\{5,6\}\right\}$
is an admissible decomposition of S^{A}. The following table defines a π-factor of $A: A / \pi=B$

B	\bar{H}_{1}	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{3}$
σ_{0}	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{2}$
σ_{1}	H_{2}	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$

Notice, that $\bar{H}_{2} \sigma_{1}^{B}$ and $\bar{H}_{3} \sigma$ can be defined both as \bar{H}_{1} or \bar{H}_{2}; the particular choice is arbitrary.

The semiautomaton $A^{*}\left(1 \bar{H}_{1}\right.$ will be written instead of $\left(1, \bar{H}_{1}\right)$, etc. $)$:

A^{*}	$1 \overline{\mathrm{H}}_{1}$	$2 \overline{\mathrm{H}}_{1}$	$3 \overline{\mathrm{H}}_{1}$	$3 \overline{\mathrm{H}}_{2}$	$4 \overline{\mathrm{H}}_{2}$	$5 \overrightarrow{\mathrm{H}}_{2}$	$5 \overline{\mathrm{H}}_{3}$	$6 \overline{\mathrm{H}}_{3}$
σ_{0}	$3 \overline{\mathrm{H}}_{1}$	$1 \overline{\mathrm{H}}_{1}$	$2 \overline{\mathrm{H}}_{1}$	$2 \overline{\mathrm{H}}_{1}$	$1 \overline{\mathrm{H}}_{1}$	$3 \overline{\mathrm{H}}_{1}$	$3 \overline{\mathrm{H}}_{2}$	$5 \overline{\mathrm{H}}_{2}$
σ_{1}	$4 \overline{\mathrm{H}}_{2}$	$5 \overline{\mathrm{H}}_{2}$	$3 \overline{\mathrm{H}}_{2}$	$3 \overline{\mathrm{H}}_{1}$				

The partition π^{*} :
$\pi^{\star}=\left\{\mathrm{H}_{1}^{\star}=\left\{1 \overline{\mathrm{H}}_{1}, 2 \overline{\mathrm{H}}_{1}, 3 \overline{\mathrm{H}}_{1}\right\}, \mathrm{H}_{2}^{*}=\left\{3 \overline{\mathrm{H}}_{2}, 4 \overline{\mathrm{H}}_{2}, 5 \overline{\mathrm{H}}_{2}\right\}, \mathrm{H}_{3}^{\star}=\left\{5 \overline{\mathrm{H}}_{3}, 6 \overline{\mathrm{H}}_{3}\right\}\right\}$
The semiautomaton $C=A^{*} / \pi^{*}$:

C is isomorphic to B.
A partition τ of $S^{A^{*}}$ has to be found such that $\pi^{*} \cap \tau=\pi_{i d e n}$. of $S^{A^{*}}$. τ must have at least three blocks $\left(m\left(\pi^{*}\right)=3\right)$. One possibility is:
$\tau=\left\{\mathrm{K}_{1}=\left\{1 \overline{\mathrm{H}}_{1}, 3 \overline{\mathrm{H}}_{2}, 5 \overline{\mathrm{H}}_{3}\right\}, \mathrm{K}_{2}=\left\{2 \overline{\mathrm{H}}_{1}, 4 \overrightarrow{\mathrm{H}}_{2}, 6 \overline{\mathrm{H}}_{3}\right\}, \mathrm{K}_{3}=\left\{3 \overline{\mathrm{H}}_{1}, 5 \overline{\mathrm{H}}_{2}\right\}\right\}$
The semiautomaton D :

$$
\begin{array}{c|lll}
\mathrm{D} & \overline{\mathrm{~K}}_{1} & \overline{\mathrm{~K}}_{2} & \overline{\mathrm{~K}}_{3} \\
\hline\left(\overline{\mathrm{H}}_{1}^{*}, \sigma_{\mathrm{o}}\right) & \overline{\mathrm{K}}_{3} & \overline{\mathrm{~K}}_{1} & \overline{\mathrm{~K}}_{2} \\
\left(\overline{\mathrm{H}}_{1}^{*}, \sigma_{1}\right) & \overline{\mathrm{K}}_{2} & \overline{\mathrm{~K}}_{3} & \overline{\mathrm{~K}}_{1} \\
\left(\overline{\mathrm{H}}_{2}^{*}, \sigma_{o}\right) & \overline{\mathrm{K}}_{2} & \overline{\mathrm{~K}}_{1} & \overline{\mathrm{~K}}_{3} \\
\left(\overline{\mathrm{H}}_{2}^{*}, \sigma_{1}\right) & \overline{\mathrm{K}}_{3} & \overline{\mathrm{~K}}_{3} & \overline{\mathrm{~K}}_{3} \\
\left(\overline{\mathrm{H}}_{3}^{*}, \sigma_{\mathrm{o}}\right) & \overline{\mathrm{K}}_{1} & \overline{\mathrm{~K}}_{3} & \overline{\mathrm{~K}}_{3} \\
\left(\overline{\mathrm{H}}_{3}^{*}, \sigma_{1}\right) & \overline{\mathrm{K}}_{3} & \overline{\mathrm{~K}}_{3} & \overline{\mathrm{~K}}_{3}
\end{array} \quad \begin{aligned}
& \text { arbitrarily }
\end{aligned}
$$

The semfautomaton COD

Checking of the fact that $C^{\circ} D \geq A$:
$\operatorname{COD} \geq A^{*}$ by the mapping (the elements of $S^{C O D}$ are redenoted as in the
above table):

Notice: $\mathrm{T}^{\mathrm{COD}}=\mathrm{s}^{\mathrm{COD}}-\left\{\left(\overline{\mathrm{H}}_{3}^{*}, \overline{\mathrm{~K}}_{3}\right)\right\}$.
A* $\geq \mathrm{A}$ by the mapping
$\eta_{2}=\left(\begin{array}{cccccccc}1 \overline{\mathrm{H}}_{1} & 2 \overline{\mathrm{H}}_{1} & 3 \overline{\mathrm{H}}_{1} & 3 \overline{\mathrm{H}}_{2} & 4 \overline{\mathrm{H}}_{2} & 5 \overline{\mathrm{H}}_{2} & 5 \overline{\mathrm{H}}_{3} & 6 \overline{\mathrm{H}}_{3} \\ 1 & 2 & 3 & 3 & 4 & 5 & 5 & 6\end{array}\right)$
Hence $C O D \geq A$ by the mapping
$\eta_{1}=\eta_{1} \eta_{2}=\left(\begin{array}{cccccccc}a & b & c & d & e & f & g & h \\ 1 & 2 & 3 & 3 & 4 & 5 & 5 & 6\end{array}\right)$
Indeed, for σ_{0} one has:
$\eta \sigma_{0}^{A}=\left(\begin{array}{llllllll}a & b & c & d & e & f & g & h \\ 3 & 1 & 2 & 2 & 1 & 3 & 3 & 5\end{array}\right)=\sigma_{0}^{C^{\circ} D} \eta$
and for σ_{1} :
$T \sigma_{1}^{A}=\left(\begin{array}{llllllll}a & b & c & d & e & f & g & h \\ 4 & 5 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\right)=\sigma_{1}{ }^{\mathbf{C O} D} \eta$.

Lecture 4.

Permutation and Reset Semiautomata

4.1. Consider the semiautomaton $A=\left(S^{A}, \Sigma, M^{A}\right)$ with $\left|S^{A}\right|=n$, and let π be the decomposition of S^{A}, the blocks of which are all subsets of S^{A} having exactly $n-1$ elements. For every $S \in S^{A}$ and every $\sigma \in \Sigma$, $\left|S \sigma^{A}\right| \leq|S|$, hence π is an admissible decomposition. It can be used to construct a π-factor $A / \pi=B$ of a very special nature.

Suppose $\left|S_{\sigma}^{A}\right|<n$, then there exists an $H_{i} \in \pi$ such that $S_{\sigma}^{A} \subseteq H_{i}$, consequently for every $H_{j} \in \pi$:

$$
\mathrm{H}_{j} \sigma^{\mathrm{A}} \subseteq \mathrm{~S}^{\mathrm{A}} \sigma^{\mathrm{A}} \subseteq \mathrm{H}_{i}
$$

Define $\bar{H}_{j} \sigma^{B}=\bar{H}_{i}$ for all j, i.e., σ^{B} maps all elements of S^{B} onto one element (i.e. $\left|\operatorname{pr}_{2} \sigma^{B}\right|=1$). An input having this property will be. called a reset input.

If $\left|S^{A} \sigma^{A}\right|=n, \sigma^{A}$ is a permutation of S^{A}. Then for every H_{i} there exists exactly one H_{j} such that $H_{i} \sigma^{A} \subseteq H_{j}$, actually $H_{i} \sigma^{A}=H_{j}$. In this case $H_{i} \neq H_{j} \Rightarrow H_{i} \sigma^{A} \neq H_{j} \sigma^{A}$ is also true, i.e., σ^{A} permutes not only the elements of S^{A} but also the blocks of π and σ^{B} necessarily will be a permutation of S^{B}. An input in a semiautomaton which permutes its states is called a permutation input.

All inputs in the π-factor B constructed as above are either reset or permutation inputs - a semiautomaton with this property - is called a permutation-reset semiautomaton.

A cascade (and also a direct) product of more than two semiautomata can be constructed in an obvious way, provided that the condi-
tion on the inputs from the definition in 3.4 is satisfied. $O b-$ viously, if COD $\geq A$ and $E O F \geq$, then $C O$ (E O F) $=C^{\circ} \mathrm{E}$ O $\mathrm{F} \geq \mathrm{A}$. This fact together with the theorem in 3.5 and the above construction give the

Theorem: Every semiautomaton with $n \geq 2$ states can be covered by a cascade product of at most $n-1$ permutation-reset semiautomata.

The number $n-1$ in the theorem results from the observation that every two-state semiautomaton is necessarily a permutation-reset one.

4.2. Definition: A permutation semiautomaton A is a semiautomaton

 in which σ^{A} is a permutation of S^{A}, for every $\sigma \in \Sigma^{A}$.A reset semiautomaton A is a semiautomaton in which $\sigma^{A}\left(\sigma \in \Sigma^{A}\right)$ is either an identity on S^{A} or $\left|S^{A} A^{A}\right|=1$.

The following will now be proved:
Theorem: Every permutation-reset semiautomaton A can be covered by a cascade product $C O$ of a permutation semiautomaton C and a reset semiautomaton D.

Proof: $\Sigma^{A}=\Sigma$ can be divided into two disjoint subsets:
$\Sigma=\Sigma_{p} \cup \Sigma_{r}\left(\Sigma_{p} \cap \Sigma_{r}=\phi\right)$, where $\Sigma_{p}=\left\{\sigma_{p}\right\}$ is the set of all permutation inputs of A, and $\Sigma_{r}=\left\{\sigma_{r}\right\}$ is the set of all reset inputs of A. Let \bar{G}_{A} be the subgroup of G_{A} (i.e. of the semigroup of A) generated by the permutations $\left\{\sigma_{p}^{A}\right\}_{\sigma_{p} \sum_{p}}$. The elements of \bar{G}_{A}, i.e., the distinct permutations X_{p}, where $x_{p} \varepsilon \Sigma_{p}^{*}$, will form the states of C, and in this role they will be denoted by \bar{x}_{p}.
$\Sigma^{C}=\Sigma$ and M^{C} is defined as follows: $\overline{x_{p}^{A}} \sigma_{p}^{C}=\overline{x_{p}^{A} \sigma_{p}^{A}}=\overline{(x \sigma)_{p}^{A}}, \overline{x_{p}^{A}} \sigma_{r}^{C}=\overline{x_{p}^{A}}$.

Thus C is a permutation semiautomaton.
Let $S^{D}=\left\{\bar{s}^{A}\right\}_{s} A_{\varepsilon} S^{A}, \quad \Sigma^{D}=S^{C} \times \Sigma$ and $\overline{s^{A}}\left(\overline{x_{p}^{A}}, \sigma_{p}\right){ }^{D}=\overline{s^{A}}, \overline{s^{A}}\left(\overline{x_{p}^{A}}, \sigma_{r}\right){ }^{D}=\overline{\left(s^{A} \sigma_{r}^{A}\right)\left(x_{p}^{A}\right)^{-1}}$.
$s^{A} \sigma_{r}$ is the same for all s^{A}, hence D is a reset semiautomaton.
$C O D \geq A$. Indeed let $\eta: S^{C O D} \rightarrow S^{A}$ be defined by $\left(\overline{x_{p}^{A}}, s^{A}\right) \eta_{=} s^{A} x_{p}^{A}$, and as x_{p}^{A} is a permutation of S^{A}, η is a mapping of $S^{C O D}$ onto S^{A}.
Now $\left(\overline{x_{p}^{A}}, \overline{s^{A}}\right) \eta_{p} \sigma_{p}^{A}=s^{A} x_{p} A_{p} \sigma_{p}=s^{A}\left(x_{\sigma}\right)_{p}^{A}=$
$\left.\left.=\left(\overline{\left(x_{\sigma}\right)_{p}^{A}}, \overline{s^{A}}\right) \eta=\overline{\left(x_{p}^{A} \sigma_{p}\right.}, \overline{s^{A}}\left(\overline{x_{p}^{A}}, \sigma_{p}\right)^{D}\right) \eta=\overline{\left(x_{p}^{A}\right.}, \overline{s^{A}}\right) \sigma_{p}^{C^{0}} \eta$
and
$\left(\overline{x_{p}^{A}}, \overline{s^{A}}\right) \eta \sigma_{r}^{A}=s^{A} X_{p}^{A} \sigma_{r}^{A}=s^{A} \sigma_{r}^{A}=\left(s^{A} \sigma_{r}^{A}\right)\left(x_{p}^{A}\right)^{-1} x_{p}^{A}=$
$\left.=\left(\overline{x_{p}^{A}}, \overline{\left(s^{A} \sigma_{r}^{A}\right)\left(x_{p}^{A}\right)^{-1}}\right) \eta=\overline{\left(x_{p}^{A}\right.} \sigma_{r}, \overline{s^{A}}\left(\overline{x^{A}}, \sigma_{r}\right)^{D}\right) \eta=$
$=\left(\overline{x_{p}^{A}}, \overline{s^{A}}\right) \sigma_{r}^{C O D} \eta$.
4.3. In a reset semiautomaton A every partition of S^{A} is admissible, because σ^{A} is either the identity, or maps S^{A} onto a singleton. Hence A (with $\left|S^{A}\right| \geqslant 2$) can be always covered by a direct product $B \times C$, where $\left|S^{B}\right|=2$ and $\left|S^{C}\right|<\left|S^{A}\right|$. Indeed, take any partition π of S^{A} having two blocks: obviously $m(\pi)<\left|S^{A}\right|$, and the above follows immediately.

By applying the same procedure to C, and observing the obvious fact that
$B \times C \geq A, D \times E \geq C \Rightarrow B \times(D \times E)=B \times D \times E \geq A$
one obtains the
Theorem: Every reset semiautomaton can be covered by a direct
product of two-state reset semiautomata.
4.4. Consider the permutation semiautomaton C from 4.2. The states of C are the elements of a group \bar{G}_{A} (henceforth in this lecture denoted by G) of permutations of S^{A}. Every mapping of the states of C due to an input is a right translation (i.e., multiplying from right) by one of these permutations (i.e., by an element of G. E.g., for
the reset inputs this is the identity element). It follows, that if a semiautomaton $G=\left(S^{G}, \Sigma^{G}, M^{G}\right)$ is defined with:

$$
S^{G}=G, \Sigma^{G}=G \text { and } g_{1} g_{2}^{G}=g_{1} g_{2}\left(g_{1}, g_{2} \in G\right)
$$

then $G \geq C$. (Indeed, in 3.1 (v) put for η the identity mapping of $S^{G}=G$ onto $S^{C}=G$ and for $\xi: \Sigma^{C} \rightarrow \Sigma^{G}=G$ the mapping taking every $\sigma \in \Sigma^{C}$ onto that element of G, which performs the same right translation as σ.)

A semiautomaton having the structure of $G=\left(G, G, M^{G}\right)$ will be called a grouplike semiautomaton, and the above can be expressed by saying that the semiautomaton C from 4.2. can be covered by a grouplike semiautomaton G. Moreover, and this observation will be useful in the next lecture, the group G is isomorphic to the group \bar{G}_{A} generated by the permutation inputs of the permutation-reset semiautomaton A, which is covered by $C^{\circ} D$ in 4.2 .
4.5. Given a grouplike semiautomaton G, assume that the group G has a subgroup $H=\left\{e, h_{2}, \ldots, h_{t}\right\}$ (e is the identity of G). Let π be the partition of G into right cosets of H :

$$
\pi=\left\{H, H k_{2}, \mathrm{Hk}_{3}, \ldots, H k_{\mathbf{u}}\right\},
$$

where $K=\left\{e, k_{2}, k_{3}, \ldots, k_{u}\right\}$ is a set of representatives of the distinct cosets of H. (Notice: $t u=|G|$). π is obviously an admissible partition of G. The union of the subsets of G in

$$
T=\left\{K, h_{2} K, \ldots, h_{t} K\right\}
$$

has at most $|G|$ distinct elements, but as
$K \cup h_{2} K \cup \ldots \cup h_{t} K=H K=H \cup H k_{2} \cup \ldots \cup H k_{u}=G$, it has exactly $|G|$ distinct elements. Every subset in τ has at most u distinct elements, there are t such subsets, $u t=|G|$,hence, τ is a partition of G. Next observe that $\pi \cap \tau=\pi_{\text {iden }}$ of G. Indeed, $H k_{i} \cap h_{j} K \ni h_{j} k_{i}$ and only this element, because otherwise there
will be a $k_{m} \neq k_{i}$ such that $H k_{m} \cap H k_{i} \neq \phi$, which is impossible (the k 's are representatives of distinct cosets). At the same time every $g \in G$ can be written in the form $h_{j} k_{i}$, and so the above assertion is verified.

The theorem from 3.4 can be applied (using π and τ) to cover G by $G / \pi \circ$ D. Especially interesting is the fact, that after coinciding equal inputs in D one obtains a semiautomaton isomorphic to the grouplike semiautomaton

$$
H=\left(H, H, M^{H}\right)
$$

To this end, let η be the mapping $\eta: H \rightarrow S^{D}$ defined by $h_{i} \eta=\overline{h_{i} K}$. This is a one-to-one mapping of H onto S^{D}.

For every $k_{j} \in K$ and every $g \in G$ the product $k_{j} g$ belongs exactly to one block of T, i.e., to some $h_{n} K$. In other words, there is a unique $k_{m} \in K$ and a unique h_{n} such that $k_{j} g=h_{n} k_{m}$. Define $\xi: \Sigma^{D} \rightarrow \Sigma^{H}=H$ by ($\overline{H k}, g$) $\xi=h_{n}$, where h_{n} is as defined above. ξ is, clearly, a mapping onto H because by changing g and k_{j} all blocks of T can be obtained.

Now it will be proved that $\eta(\overline{\mathrm{Hk}}, \mathrm{g})^{\mathrm{D}}=\left((\overline{\mathrm{Hk}}, \mathrm{g}, \mathrm{g})^{\mathrm{H}} \eta_{\mathrm{j}}\right.$. Indeed, for every $h_{i} \in H$:
$h_{i} \eta\left(\overline{H k_{j}}, g\right)^{D}=\overline{h_{i} K}\left(\overline{H k_{j}}, g\right)^{D}=\left(h_{i} K \cap H k_{j}\right) \cdot g \varphi_{T}=$
$=\overline{\left(h_{i} k_{j}\right) g \varphi_{T}}=\overline{\left(h_{i} k_{j} g\right) \varphi_{T}}=\left(\overline{\left.h_{i} h_{n} k_{m}\right) \varphi_{\tau}}=\right.$
$=\overline{\mathbf{h}_{i} h_{n}}=\left(\mathbf{h}_{i} h_{n}\right) \eta=h_{i}\left(\left(\overline{H k_{j}}, g\right) \xi\right)^{H} \eta$.
Everything here is exactly as in 3.1 (v.c), consequently, coinciding the equal inputs in D will result in a semiautomaton D_{1} isomorphic to the grouplike semiautomaton H. If the above $\bar{\xi}$ is taken as ω one obtains

Theorem: Let G be a grouplike semiautomaton and H a subgroup of G. G can be covered by a cascade product $C \stackrel{\circ}{\infty} D_{1}$ such that the semiautomaton D_{1} is also a grouplike semiautomaton isomorphic to H.
4.6. If H is a normal subgroup of G, and g_{1} and g_{2} belong to the same coset of H in G, then in the $\pi-$ factor $B=G / \pi$ (π is the partition of G into cosets of H) g_{1}^{B} and g_{2}^{B} will be equal. It follows that after merging equal inputs in B a grouplike semiautomaton G/H (G/H denotes the factor group of G over H) will be obtained.

This observation together with the theorem from 4.5 result in the Theorem: Let G be a grouplike semiautomaton and $G=H_{o}, H_{1}, \ldots$, $H_{k}=\{e\}$ a composition series of G (i.e., every H_{i} is a normal subgroup of H_{i-1} and H_{i-1} / H_{i} is a simple group. e is the identity in G). Then G can be covered by a cascade product of grouplike semiautomata isomorphic to the factors H_{i-1} / H_{i} of the given series.

Thus a grouplike semiautomaton can be covered by a cascade product of simple grouplike semiautomata - i.e.ones which correspond to simple groups. (A simple group is a group which has no proper normal subgroups.)
4.7. Given $A \circ B$ and $C \geq B$, it is obviously true that $A{ }^{\circ} C$ is defined and $A \circ C \geq A \circ B$. But also the following is needed Theorem: Given A O B with $\Sigma^{B}=\left\{\left(s^{A}, \sigma\right)\right\}\left(s^{A} \in S^{A}, \sigma \in \Sigma^{A}\right)$ and $C \geq A$, there exists a semiautomaton B_{1} such that:
a) $\mathrm{S}^{\mathrm{B} 1}=\mathrm{S}^{\mathrm{B}}$
b) for every $\sigma_{1} \in \Sigma^{B 1}$ there exists a $\sigma_{2} \in \Sigma^{B}$ such that $\sigma_{1}^{B 1}=\sigma_{2}^{B}$, and, vice versa, for every $\sigma_{3} \in \Sigma^{B}$ there exists a $\sigma_{4} \in \Sigma^{B_{1}}$ such that $\sigma_{3}^{B}=\sigma_{4}^{B 1}$
c) $\mathrm{CO} \mathrm{B}_{1} \geq \mathrm{AO} \mathrm{B}$.

Remark: After coinciding the equal inputs in B_{1} and those in B, isomorphic semiautomata will be obtained. Notice that B_{1} and B have isomorphic semigroups. It follows, also, that a mapping ω of $S^{C} \times \Sigma^{C}$ into Σ^{B} can be found such that $\mathrm{C}_{\mathrm{O}}^{\mathrm{O}} \mathrm{B} \geq \mathrm{A} \circ \mathrm{B}$.

Proof: $\quad C \geq A \Rightarrow$ a mapping η of a subset of S^{C} onto S^{A}, such that for every ${ }^{\mathrm{C}} \in \mathrm{pr}_{1} \eta \cdot \mathrm{~s}^{\mathrm{C}} \eta \sigma^{\mathrm{A}}=\mathrm{s}^{\mathrm{C}} \mathrm{\sigma}^{\mathrm{C}} \eta\left(\sigma \in \Sigma^{\mathrm{A}}\right.$, which is assumed, for simplicity, to be equal to Σ^{C}).
${ }^{B_{1}}$ will be defined as follows:
$S^{B} 1=S^{B}$ and s^{B} will denote an element of either of these sets,
depending on the context.
$\Sigma^{B_{1}}=\left\{\left(s^{C}, \sigma\right)\right\}\left(s^{C} \in S^{C}, \sigma \in \Sigma^{C}=\Sigma^{A}\right)$
For $s^{C} \in \operatorname{pr}_{1} \eta:\left(s^{C}, \sigma\right)^{B_{1}}=\left(s^{C} \eta, \sigma\right)^{B}$
For $s^{C} \& \operatorname{pr}_{1} \eta: \quad\left(s^{C}, \sigma\right)^{B_{1}}=$ an arbitrary $\left(s^{A}, \sigma\right)^{B}$.
Thus a) and b) are satisfied (η is onto S^{A}).
To prove c) define a mapping $\bar{\eta}$ of the subset of $s^{C^{C O} 1}$, consisting of all pairs $\left(s^{C}, s^{B}\right)$, such that $s^{C} \in \operatorname{pr}_{1} \eta$, onto $S^{A O B}$ by:

$$
\left(\mathrm{s}^{\mathrm{C}}, \mathrm{~s}^{\mathrm{B}}\right) \bar{\eta}=\left(\mathrm{s}^{\mathrm{C}} \eta, \mathrm{~s}^{\mathrm{B}}\right) .
$$

($\bar{\eta}$ is onto, since η is onto.)
For every $\sigma \in \Sigma^{A}$ (Notice: $\Sigma^{A O B}=\Sigma^{A}=\Sigma^{C}=\Sigma^{\mathrm{COB}_{1}}$):
$\left(s^{C}, s^{B}\right) \bar{\eta} \sigma^{A O B}=\left(s^{C} \eta, s^{B}\right) \sigma^{A O B}=\left(s^{C} \eta \sigma^{A}, s^{B}\left(s^{C} \eta, \sigma\right)^{B}\right)=$
$=\left(s^{C} \sigma^{C} \eta, s^{B}\left(s^{C} \eta, \sigma\right)^{B}\right)=\left(s^{C} \sigma^{C}, s^{B}\left(s^{C} \eta, \sigma\right)^{B}\right) \bar{\eta}=$
$=\left(s^{C} \sigma^{C}, s^{B}\left(s^{C}, \sigma\right)^{B 1}\right) \bar{\eta}=\left(s^{C}, s^{B}\right) \sigma^{C^{\circ} B_{1}} \bar{\eta}$
and this proves c).
The theorem can, obviously, be generalized to the case, when Σ^{B} includes $\left\{\left(s^{A}, \sigma\right)\right\}$ properly.

4.8. The distinct constructions done in this lecture can be

 combined to give the followingTheorem: Every semiautomaton A can be covered by direct and cascade products of semiautomata of two kinds:
a) simple grouplike semiautomata,
b) two-state reset semiautomata.

This theorem is a part of the theorem of Krohn and Rhodes which will be presented in the next lecture.

Lecture 5.

The Structure Theorem of Krohn and Rhodes

5.1. The following main Theorem belongs to K. B. Krohn and J. L. Rhodes:

Theorem: Every semiautomaton A can be covered by direct and cascade products of semiautomata of two kinds:
a) simple grouplike semiautomata with simple groups which are homomorphic images of subgroups of the semigroup G_{A} of A.
b) two-state reset semiautomata.

Everything but the result about the possibility of allowing simple groups from a certain "origin" only was proved in the previous lecture. Here a modification of the construction of P.H. Zeiger will be used to complete the proof.

```
5.2. The grouplike semiautomata used to cover A were obtained in three steps:
```

a) A was covered by a cascade product of permutation-reset semiautomata.
b) Every such permutation-reset semiautomaton was covered by a cascade product of a permutation semiautomaton and a reset semiautomaton.
c) The obtained permutation semiautomaton was covered by a cascade product of simple grouplike semiautomata.

The simple groups appearing in c) are homomorphic images of subgroups of the group of the permutation semiautomaton obtained in b). This group is the group generated by the permutation inputs of the corresponding permutation-reset semiautomaton obtained in a).

Thus, the crucial step is the first one, and the theorem will be proved, if it is shown that every semiautomaton A can be covered by a cascade product of permutation-reset semiautomata such that the subgroups of their semigroups, generated by their permutation inputs, are homomorphic images of subgroups of G_{A}. This will be achieved by constructing series of admissible decompositions of S^{A} having special properties.
5.3. Let π be an admissible decomposition of S^{A} and assume $m(\pi)>1$.

Let $A / \pi=B$ be a π-factor of A.
Among the blocks of π, having $m(\pi)$ elements (i.e., the largest blocks of π), it is always possible to find a subset say $\pi_{m}=\left\{H_{1}, \ldots, H_{m}\right\}$, such that

$$
H_{i}, H_{j} \in \pi_{m} \Rightarrow x_{1}, x_{2} \in \Sigma *, H_{i} x_{j}^{A}=H_{j}, H_{j} x_{2}^{A}=H_{i}\left(\Sigma=\Sigma^{A}\right)
$$

and no x^{A} maps a block not in Π_{m} onto a block in Π_{m}.
The existence of at least one such subset π_{m} follows easily from the fact, that the identity mapping \wedge^{A} maps every block onto itself, and the above relation between blocks is transitive (since if $H_{i} X^{A}=H_{j}$ and $H_{j} y^{A}=H_{k}$, then $H_{i}(x y)^{A}=H_{k}$).
5.4. For a set of $\operatorname{sets}\left\{u_{j}\right\}, \max \left(\left\{u_{j}\right\}\right)$ will denote the set of all distinct sets in $\left\{u_{j}\right\}$ maximal under inclusion.

$$
\begin{align*}
& \text { Consider the following set of subsets of } S^{A} \text { : } \tag{9}
\end{align*}
$$

where $\pi_{1}^{\prime}=\{H\}_{H_{\varepsilon \pi-\pi_{m}}}$, and π_{2}^{\prime} is the expression in the brackets. *)

[^3]π^{\prime} is a decomposition of S^{A}, because all elements of S^{A} which are not in blocks of π_{m} appear in some other blocks of π, and the elements of S^{A} in the blocks of π_{m} are, obviously, taken care by the blocks of π_{2}^{\prime}.
π^{\prime} is properly finer than π (i.e. $\pi^{\prime}<\pi$), because the blocks in π_{m} of π are "replaced" in π ' by smaller ones.

Finally, π^{\prime} is an admissible decomposition of S^{A}. Indeed, for every block H^{\prime} of π^{\prime} and every $\sigma \varepsilon \Sigma, H^{\prime} \sigma^{A}$ is included either in a block of $\pi-\pi_{m}$, or in some subset of a block in π_{m}, which will, clearly, be included in a block of π_{2}^{\prime}. Notice, that $H_{i} \in \pi_{m}$ can be an image (onto) of a block $H_{j} \in \pi_{m}$ only, but all these blocks are deleted.
5.5. The blocks of π_{2}^{\prime} included in $H_{i} \in \pi_{m}$ will be denoted by

$$
\mathrm{H}_{11}, \mathrm{H}_{12}, \ldots, \mathrm{H}_{\mathrm{i}_{1}}
$$

For every $H_{i} \in \pi_{m}$ there exists a $y_{i} \epsilon \Sigma^{*}$, such that $H_{i} y_{i}=H_{1}$. (In this and the next section the mappings x^{A} will be denoted, simply, by x - all mappings here refer to the semiautomaton A.)

There exists, also, at least one $x_{1} \in \Sigma^{*}$ such that $H_{1} X_{i}=H_{i}$. Hence $H_{1} x_{i} y_{i}=H_{1}$, i.e., $x_{i} y_{i}$ is a permutation of the elements in H_{1}, and for some n the permutation $\left(x_{i} y_{i}\right)^{n}$ will be the identity on H_{1}. $\left(x_{i} y_{i}\right)^{n-1} x_{i}$ maps H_{1} onto H_{i}, hence the block $H_{p_{p}}$ into, say, $H_{i q}$ (notice, that π_{2}^{\prime} is an admissible decomposition of the set of elements of S^{A} in π_{m}, with respect to all maps taking blocks of π_{m} into such blocks). Now:

$$
H_{1_{p}}=H_{1_{p}}\left(x_{i} y_{i}\right)^{n}=H_{1_{p}}\left(x_{i} y_{i}\right)^{n-1} x_{i} y_{i} \subseteq H_{i q} y_{i}
$$

and, as y_{i} maps H_{i} onto H_{1}, there exists an $H_{1 r}$ such that $H_{i q} y_{i} \subseteq H_{1 r}$.
The maximality of the blocks of π_{2}^{\prime} included in H_{j}, implies that
$H_{1 p}=H_{1 r}=H_{i q} y_{i}$, y_{i} is a one-to-one mapping, hence $\left|H_{1 p}\right|=\left|H_{i q}\right|$, and since also $\left(x_{i} y_{i}\right)^{n-1} x_{i}$ is one-to-one, $H_{1 p}\left(x_{i} y_{i}\right)^{n-1} x_{i}=H_{i q}$.

For $H_{1_{p_{1}}} \neq H_{1 p}$ the same reasoning gives $H_{1 p_{1}}\left(x_{i} y_{i}\right)^{n-1} x_{i}=H_{i q}$ with $\mathrm{H}_{\mathrm{iq}}^{1} 10 \mathrm{H}_{\mathrm{iq}}$, because otherwise the mapping $\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{\mathrm{n}-1} \cdot \mathrm{x}_{\mathrm{i}}$ would take ${ }^{H_{1}}{ }_{1_{p}} U^{H_{1}} 1_{p_{1}}$ onto $H_{1 q}$, while $\left|H_{1_{p}} \cup H_{1_{p}}\right|>\left|H_{1_{p}}\right|=\left|H_{i q}\right|$.

Altogether, $\left(x_{i} y_{i}\right)^{n-1} x_{i}$ maps distinct blocks of π_{2}^{\prime} in H_{1} onto distinct blocks of π_{2}^{\prime} in H_{i}. The roles of H_{1} and H_{1} can be interchanged, hence the conclusion: all H_{i} in π_{m} have the same number of blocks of π_{2}^{\prime}, i.e., $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{m}=\alpha$.

Enumerate arbitrarily the blocks of π_{2}^{\prime} in H_{1}, and then enumerate the blocks of π_{2}^{\prime} in every $H_{i}(i=2, \ldots, m)$, so that the above mapping $\left(x_{i} y_{i}\right)^{n-1} x_{i}$ will map $H_{1_{p}}$ onto $H_{i p}$, hence also $H_{i p} y_{i}=H_{1_{p}}{ }^{*}$)
5.6. Assume that for some $\sigma \in \Sigma$ there exist H_{i} and H_{j} in π_{m}, such that $H_{i} \sigma=H_{j}$. Analogous to y_{i} in 5.5 , this σ must map distinct blocks $H_{i 1}, \ldots, H_{i \alpha}$ onto distinct blocks $H_{j 1}, \ldots, H_{j \alpha}$. This mapping can be described as a permutation $\gamma_{\sigma}^{i j}$ of the (second) indices $1,2, \ldots, \alpha$.

$$
\text { If } p \gamma_{\sigma}^{i j}=q \text { (i.e., } H_{i p} \sigma=H_{j q} \text {) one obtains (with } x_{i}, y_{i} \text { from } 5.5
$$ and an analogous y_{j})

$$
H_{1_{p}}\left(x_{i} y_{i}\right)^{n-1} x_{i} \sigma y_{j}=H_{i p} \sigma y_{j}=H_{j q} y_{j}=H_{1_{q}}
$$

Consequently, the mapping $\left(x_{i} y_{i}\right)^{n-1} x_{i} \sigma y_{j}$ (which depends only on $1, j$ and σ, but not on p and q) permutes the blocks $H_{11}, \ldots, H_{1_{\alpha}}$ exactly

[^4]as $\gamma_{\sigma}^{i j}$ permutes the indices $1,2, \ldots, \alpha$. This observation will be of great importance in the sequel.
5.7. Arrange the blocks of π^{\prime} in the following array:

	L_{1}	L_{2}	-	L_{α}
K_{1}	\bar{H}_{11}	\bar{H}_{12}	-•	$\bar{H}_{1 \alpha}$
${ }_{\text {K }}^{2}$	\bar{H}_{21}	\bar{H}_{22}		$\overline{\mathrm{H}}_{2 \alpha}$
K_{m}	$\bar{H}_{m 1}$	$\bar{H}_{m 2}$	-••	$\bar{H}_{m \alpha}$
$\mathrm{K}_{\mathrm{m}+1}$	\bar{H}_{m+1}			
$\dot{\mathrm{k}}_{\mathrm{t}}$	$\dot{\bar{H}}_{t}$			

The $H_{i j}$'s are defined in 5.5 and H_{m+1}, \ldots, H_{t} are the blocks in π_{i}^{\prime}. The bars indicate, that all blocks are considered now as elements of the set of states S^{F} of a π^{\prime} - factor of A, F, which will be defined as follows:
First, $\Sigma^{F}=\Sigma^{A}$. Now, to define M^{F} notice that the set of elements of S^{A} in all blocks of π^{\prime} appearing in the row i of the array is exactly H_{i}. If $H_{i} \sigma^{A} \ell \pi_{m}$, one consults the π - factor $B=A / \pi$, and finds there $\bar{H}_{i} \sigma^{B}=\bar{H}_{j}$. This means that $H_{i} \sigma^{A} \subseteq H_{j}$, and by the construction of (9) there necessarily exists a block of π^{\prime} in the row j including $H_{i} \sigma^{A}$. The corresponding element of S^{F} (it is in K_{j}, of course) will be defined as the image under σ^{F} of all elements of S^{F} in K_{i}.

Now consider the case, where $H_{i} \sigma^{A}=H_{j} \in \pi_{m}$. This is possible only if $H_{i} \in \pi_{m}$, also. Since there may be blocks in π included one in the other, and, in particular, equal blocks, there may be several blocks in π_{m} equal to $H_{i} \sigma^{A}$; then take for H_{j} that one for
which $\bar{H}_{i} \sigma^{B}=\bar{H}_{j}$ in $B \cdot \sigma^{F}$ is defined to map the elements of K_{i} onto those of K_{j}, exactly as σ^{A} maps the corresponding blocks of π_{2} in H_{1} onto the blocks of π_{2}^{\prime} in H_{j}, according to 5.5 and 5.6 .

Let ρ denote the partition of S^{F} into the subsets $K_{1}, K_{2}, \ldots, K_{t}$. The above definition of M^{F} ensures that ρ is an admissible partition of S^{F}, and, moreover, $C=F / \rho$ is isomorphic to $B=A / \pi$.
5.8. The partition of S^{F} into the subsets $L_{1}, L_{2}, \ldots, L_{\alpha}$ (the columns of the array in 5.7) will be denoted by τ. Evidently $\rho \Pi_{T}=\pi_{\text {iden }}$. of S^{F}. As in 3.4, a semiautomaton D with states which are the blocks of T will be constructed, and $C O D \geq F$.

Now it will be shown that D can be made a permutation-reset semiautomaton. The inputs of D are of the form $\left(\bar{K}_{1}, \sigma\right)$ and as in 3.4

$$
\bar{L}_{k}\left(\bar{K}_{i}, \sigma\right)^{D}=\overline{\left(L_{k} \cap K_{i}\right) \sigma^{F} \varphi_{T}}
$$

If i is one of the numbers $m+1, m+2, \ldots, t$ on $1 y L_{1} \cap K_{i} \neq \phi$;and for all $k=1,2, \ldots, \alpha$ define

$$
\bar{L}_{k}\left(\bar{K}_{i}, \sigma\right)^{D}=\bar{L}_{1}\left(\bar{K}_{i}, \sigma\right)^{D}, \text { i.e. },\left(\bar{K}_{i}, \sigma\right) \text { is a reset input }
$$

in D.
If $i_{\in}\{1,2, \ldots, m\}$ and $H_{i} \sigma^{A} \phi \pi_{m}$, then by the construction of F in 5.7, all elements of K_{i} will have the same image in F under σ^{F}, i.e., $\bar{L}_{k}\left(\bar{K}_{i}, \sigma\right){ }^{D}$ will not depend on k, and $\left(\bar{K}_{i}, \sigma\right)$ is once more a reset input.

The last possibility is that $i_{\varepsilon}\{1,2, \ldots, m\}$ and $H_{i} \sigma^{A}=H_{j} \in \pi_{m}$. Then, by definition of σ, one obtains:
$\bar{L}_{k}\left(\bar{K}_{i}, \sigma\right)^{D}=\overline{\left(L_{k} \cap K_{i}\right) \sigma \varphi_{T}}=\overline{\bar{H}_{i k} \sigma \varphi_{T}}=\overline{\bar{H}_{j, k \gamma}{ }_{\sigma} \varphi_{\tau}}=\overline{L_{k \gamma} i j}$, i.e., $\left(\bar{K}_{i}, \sigma\right)$ permutes the states of $D\left(i . e ., \bar{L}_{1}, \ldots, \bar{L}_{\alpha}\right)$ exactly in the same way, as $\gamma_{\sigma}{ }_{\sigma} j_{\text {permutes }}$ the indices $1,2, \ldots, \alpha$. Thus (\bar{K}_{i}, σ) is a permutation input, and D is a permutation-reset semiautomaton.
5.9. It follows from 5.8 and 5.6 , that to every permutation input of D, there corresponds an input in A, which permutes $H_{11}, H_{12}, \ldots, H_{1 \alpha}$ exactly in the same way, as the above input permutes the states of D: $\bar{L}_{1}, \bar{L}_{2}, \ldots, \bar{L}_{\alpha}$. Hence, the subgroup of G_{D}, generated by all permutation inputs of D, is isomorphic to the group of permutations of the subsets of $\mathrm{S}^{\mathrm{A}} \mathrm{H}_{11}, \ldots, \mathrm{H}_{1 \alpha}$, generated by the corresponding inputs in A, when restricted to the above subsets and considered as permutations of these subsets. In order to prove that this group is a homomorphic image of a subgroup of G_{A}, the following lemma will be used: Let G be a semigroup of transformations of a finite set S, and assume that there is a subset S_{0} of S, such that some elements of G, when restricted to S_{0} are permutations. Then there exists in G a subgroup G_{1} such that the permutation group G_{0}, generated by the above mentioned permutations of S_{0}, is a homomorphic image of G_{1}.

Proof: Denote by T the subset of G composed of all transformations, such that their restriction to S_{o} is a permutation. Clear$1 y, T$ is a subsemigroup of G. e will denote an idempotent in T with a minimal $\left|\mathrm{pr}_{2} \mathrm{e}\right|$ over the, necessarily non-empty, set of idempotents in T. Denote by G_{1} the subsemigroup $e T e$ of T. Every ete ($\mathrm{t} \boldsymbol{\mathrm { C }} \mathrm{T}$) has $\mathrm{pr}_{2}(\mathrm{ete})=\mathrm{pr}_{2} \mathrm{e}$ (because if $\mathrm{pr}_{2}(\mathrm{ete}) \subset \mathrm{pr}_{2} \mathrm{e}$ properly, then for some k, (ete) ${ }^{k}$ will be an idempotent in T with $\left|\mathrm{pr}_{2}(\mathrm{ete})^{\mathrm{k}}\right|<\left|\mathrm{pr}_{2} \mathrm{e}\right|$). $\mathrm{S}=\mathrm{pr}_{1}$ (ete) is partitioned into classes of elements having the same image under ete, and this partitioning is the same for all elements of G_{1} (because every such class in e belongs to an entire class in ete, and two distinct classes in e cannot be merged in ete, since $\left.\mathrm{pr}_{2}(\mathrm{ete})=\mathrm{pr}_{2} \mathrm{e}\right)$.

Naming these classes and calling every element of pr_{2} (ete) by the name of the class to which it belongs, converts every
> element of G_{1} into a permutation of the above "names". (Notice that distinct elements of pr_{2} (ete) must belong to distinct classes). Hence G_{1} is a group - a subgroup of T, hence, also of G.*)

Denote by G_{2} the subgroup of G_{1}, generated by those elements of G_{1}, which, when restricted to S_{0}, are permutations appearing in $G_{0} . G_{2}$ is a subgroup of G_{1}, hence also of G; the mapping $\varphi: G_{2} \rightarrow G_{0}$, such that for every $g_{2} \in G_{2}, g_{2} \varphi$ is the element of G_{o} performing the same permutation of S_{o} as g_{2} does, is, clearly, a homomorphism of G_{2} onto G_{o}. This concludes the proof of the lemma.

This result cannot be applied directly to the situation discussed before, because permutations of, in general, overlapping subsets of S^{A} appeared there instead of elements of S^{A}. To handle this case, consider the set $S=S^{A} \cup S^{0}$, where $S^{0}=\left\{H_{11}, \ldots, H_{1 \alpha}\right\}$. To every $z^{A}\left(z_{\varepsilon} \Sigma^{*}\right)$, which permutes the above subsets, put in correspondence a mapping \bar{z} of S into S, which coincides with z^{A} on S^{A}, and permutes the elements of S^{0} exactly in the same way, as z^{A} permutes the subsets with the same names. Clearly, $z_{1}^{A}=z_{2}^{A} \Leftrightarrow \bar{z}_{1}=\bar{z}_{2}$, i.e., the subsemigroup G_{A}^{\prime} of G_{A} generated by the $z^{A} ' s$ is isomorphic to the semigroup $\overline{\mathrm{G}}$ generated by the $\overline{\mathrm{z}}$'s. Now the above lemma can be applied to obtain that the group generated by the said permutations of the elements S^{0} of S is a homomorphic image of a subgroup of $\overline{\mathrm{G}}$. It follows that the group of permutations of $\left\{\mathrm{H}_{11}, \ldots, \mathrm{H}_{1 \alpha}\right\}$, generated by the $z^{A^{\prime}} s$, restricted to $H_{1} \subseteq S^{A}$, is a homomorphic image of a sub-

[^5]group of G_{A}^{\prime}, hence, of a subgroup of G_{A}.
5.10. The results of the previous sections can be summarized as follows:

Abstract

Theorem: Given a semiautomaton A and an admissible decomposition π of S^{A} with a π-factor $B=A / \pi$, one can find a properly finer decomposition π^{\prime} of S^{A} and a π^{\prime}-factor $F=A / \pi^{\prime}$, such that F can be covered by a cascade product $C O D$, where $C \simeq B$, D is a permutation-reset semiautomaton, and the group generated by the permutation inputs in D is a homomorphic image of a subgroup of the semigroup G_{A} of A.

5.11. To prove the Theorem by Krohn and Rhodes (section 5.1) start with the trivial decomposition π, where all elements of S^{A} form one block. $D_{o}=A / \pi$ is a one-state semiautomaton and so it is, clearly,a reset one. Find as above $\pi^{\prime}<\pi$, and obtain $A / \pi^{\prime} \leq D_{0}{ }^{\circ} D_{1}$, with D_{1} having the properties mentioned in 5.10. Next, find by the same procedure $\pi^{\prime \prime}<\pi^{\prime}$, and obtain $A / \pi^{\prime \prime} \leq A / \pi^{\prime} O D_{2}$, with D_{2} as in 5.10. Now use the Theorem in 4.7 and obtain $A / \pi^{\prime \prime} \leq\left(D_{0}{ }^{\circ} D_{j}\right)^{\rho_{2}^{\prime}}$ where D_{2}^{\prime} is a semiautomaton, which,after coinciding equal inputs reduces to D_{2}, and has a semigroup isomorphic to this of D_{2} (cf. the remark in 4.7).

This procedure is continued, and, since at every step the number of maximal blocks is reduced, after a finite number of steps, a decomposition $\pi^{(k)}$ of S^{A} will be obtained in which every block is a singleton. (It is possible, of course, that distinct blocks will actually be the same singleton).

Thus, the semiautomaton $E=A / \pi^{(k)}$ is covered by a cascade product of permutation-reset semiautomata, such that the subgroups of their semigroups, generated by their permutation inputs, are homo-
morphic images of subgroups of the semigroup G_{A}. The proof will
be completed if it is shown that $E \geq A$. To this end, define $\eta: S^{E} \rightarrow S^{A}$ such that every element of S^{E}, i.e. every block of $\pi^{(k)}$, will be mapped by η onto the corresponding element of s^{A}. (The blocks of $\pi^{(k)}$ are singletons!). Clearly η is onto, and for every $\sigma \in \Sigma^{A}=\Sigma^{E} \quad \eta_{\sigma}^{A}=\sigma^{E} \eta$. Indeed, $E=A / \pi^{(k)}$, where $\pi^{(k)}$ is an admis. sible decomposition of S^{A}, hence, if for some s^{E} and $\sigma, s_{\sigma}^{E}=s_{1}^{E}$, then the singleton s^{A}, in the block of $\pi^{(k)}$ corresponding to $s^{E}\left(s^{A}=s^{B} \eta\right)$, must be transformed by σ^{A} onto the singleton s_{1}^{A}, which forms the block corresponding to $s_{1}^{E}\left(s_{1}^{A}=s_{1}^{E} \eta\right)$. Thus $s^{A} \sigma^{A}=s_{1}^{A}$, and $s^{E_{\eta}} \sigma^{A}=s^{A} \sigma^{A}=s_{1}^{A}=s_{1}^{E} \eta=s^{E} \sigma^{E} \eta$.
5.12. Example. The above construction is applied to the semiautomaton

$$
\begin{array}{l|llllll}
A & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \sigma_{0} & 3 & 1 & 2 & 1 & 3 & 5 \\
\sigma_{1} & 4 & 5 & 3 & 3 & 3 & 3
\end{array}
$$

from 3.6.
a) Let $\pi=\left\{H_{1}=\{123456\}\right\}$ be the trivial decomposition of S^{A} and $B=A / \pi$ the π-factor

B	\bar{H}_{1}
σ_{0}	\bar{H}_{1}
σ_{1}	\bar{H}_{1}

$$
\begin{aligned}
& \pi_{1}=\left\{\mathrm{H}_{1}\right\} \text { will serve as the } \pi_{m} \text { from } 5.3 \text {. } \\
& \text { Using }(9) \quad \pi^{\prime}=\left\{\mathrm{H}_{11}=\{1235\}, H_{12}=\{345\}, H_{13}=\{6\}\right\} \text { is }
\end{aligned}
$$ constructed. As in 5.7 one arranges the blocks of π^{\prime} :

K_{1}

| L_{1} | $\mathrm{~L}_{2}$ | $\mathrm{~L}_{3}$ |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{H}}_{11}$ | $\overline{\mathrm{H}}_{12}$ | $\overline{\mathrm{H}}_{13}$ |

They form the set of states $S^{F 1}$ of a π^{\prime}-factor of A, $A / \pi^{\prime}=F_{1}$, which, according to 5.7 , is defined by:

F_{1}	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{12}$	$\overline{\mathrm{H}}_{13}$
σ_{0}	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{11}$
σ_{1}	$\overline{\mathrm{H}}_{12}$	$\overline{\mathrm{H}}_{12}$	$\overline{\mathrm{H}}_{12}$

As in 5.7 and 5.8 the semiautomata

c_{1}	$\overline{\mathrm{~K}}_{1}$
σ_{0}	$\overline{\mathrm{~K}}_{1}$
σ_{1}	$\overline{\mathrm{~K}}_{1}$

D_{1}	$\overline{\mathrm{~L}}_{1}$	$\overline{\mathrm{~L}}_{2}$	$\overline{\mathrm{~L}}_{3}$
$\left(\overline{\mathrm{~K}}_{1}, \sigma_{0}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$	$\overline{\mathrm{~L}}_{1}$
$\left(\overline{\mathrm{~K}}_{1}, \sigma_{1}\right)$	$\overline{\mathrm{L}}_{2}$	$\overline{\mathrm{~L}}_{2}$	$\overline{\mathrm{~L}}_{2}$

are constructed. C_{1} is isomorphic to $B=A / \pi, D_{1}$ is a
reset semiautomaton and $\mathrm{C}_{1} \mathrm{OD}_{1} \geq \mathrm{F}_{1}$.
b) Now, one starts with the decomposition

$$
\pi^{\prime}=\left\{H_{1}=\{1235\}, H_{2}=\{345\}, H_{3}=\{6\}\right\}
$$

(the blocks are renamed for convenience) and with $F_{1}=A / \pi^{\prime}$:

F_{1}	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{3}$
σ_{0}	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$
σ_{1}	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$

Here $\pi_{m}=\pi_{1}=\left\{H_{1}=\{1235\}\right\}$ and by (9):
$\pi^{\prime \prime}=\left\{H_{2}=\{345\}, H_{3}=\{6\}, H_{11}=\{123\}, H_{12}=\{5\}\right\}$.
The blocks

form the set of states S^{F} of a $\pi^{\prime \prime}$-factor of $A, A / \pi^{\prime \prime}=F_{2}$, which is given by:
-42-

F_{2}	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{12}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{3}$
σ_{0}	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{11}$	$\overline{\mathrm{H}}_{12}$
σ_{1}	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$

The semiautomata C_{2} and D_{2} are constructed:

C_{2}	$\overline{\mathrm{~K}}_{1}$	$\overline{\mathrm{~K}}_{2}$	$\overline{\mathrm{~K}}_{3}$
σ_{0}	$\overline{\mathrm{~K}}_{1}$	$\overline{\mathrm{~K}}_{1}$	$\overline{\mathrm{~K}}_{1}$
σ_{1}	$\overline{\mathrm{~K}}_{2}$	$\overline{\mathrm{~K}}_{2}$	$\overline{\mathrm{~K}}_{2}$

D_{2}	$\overline{\mathrm{~L}}_{1}$	$\overline{\mathrm{~L}}_{2}$
$\left(\overline{\mathrm{~K}}_{1}, \sigma_{0}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$
$\left(\overline{\mathrm{~K}}_{1}, \sigma_{1}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$
$\left(\overline{\mathrm{~K}}_{2}, \sigma_{0}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$
$\left(\overline{\mathrm{~K}}_{2}, \sigma_{1}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$
$\left(\overline{\mathrm{~K}}_{3}, \sigma_{0}\right)$	$\overline{\mathrm{L}}_{2}$	$\overline{\mathrm{~L}}_{2}$
$\left(\overline{\mathrm{~K}}_{3}, \sigma_{1}\right)$	$\overline{\mathrm{L}}_{1}$	$\overline{\mathrm{~L}}_{1}$

C_{2} is isomorphic to F_{1}, D_{2} is a two-state reset semiautomaton and $\mathrm{C}_{2}{ }^{\mathrm{O}} \mathrm{D}_{2} \geq \mathrm{F}_{2}$.
c) $\pi^{\prime \prime}=\left\{H_{1}=\{123\}, H_{2}=\{345\}, H_{3}=\{5\}, H_{4}=\{6\}\right\}$.

$F_{2}=A / \pi^{\prime \prime}$	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{3}$	$\overline{\mathrm{H}}_{4}$
σ_{0}	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{1}$	$\overline{\mathrm{H}}_{3}$
σ_{1}	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$	$\overline{\mathrm{H}}_{2}$

$$
\begin{aligned}
& \pi_{m}=\pi_{2}=\left\{H_{1}=\{123\}, H_{2}=\{345\}\right\} . \\
& \pi^{\prime \prime \prime}=\left\{H_{3}=\{5\}, H_{4}=\{6\}, H_{11}=\{1\}, H_{12}=\{2\}, H_{13}=\{3\}, H_{21}=\{4\},\right. \\
& \left.H_{22}=\{3\}, H_{23}=\{5\}\right\} .
\end{aligned}
$$

The subsets of H_{1} are ordered arbitrarily, those of H_{2} according to 5.5 with $\mathrm{x}_{2}=\sigma_{1}, \mathrm{y}_{2}=\sigma_{0}$. Then $\sigma_{1} \sigma_{0}=\binom{123456}{132222},\left(\sigma_{1} \sigma_{0}\right)^{2}$ is the identity on H_{1} and $\sigma_{1} \sigma_{0} \sigma_{1}=\binom{23456}{435555}$ defines the order of the subsets of H_{2}.

d) A11 blocks in $\pi^{\prime \prime}$ are singletons and the construction is finished.
F_{3} covers A by the mapping

$$
\eta=\left(\begin{array}{llllllll}
\mathrm{H}_{11} & \overline{\mathrm{H}}_{12} & \overline{\mathrm{H}}_{13} & \overline{\mathrm{H}}_{21} & \overline{\mathrm{H}}_{22} & \overline{\mathrm{H}}_{23} & \overline{\mathrm{H}}_{3} & \overline{\mathrm{H}}_{4} \\
1 & 2 & 3 & 4 & 3 & 5 & 5 & 6
\end{array}\right)
$$

 $\eta_{\sigma_{1}}^{A}=\left(\begin{array}{lllllll}\bar{H}_{11} & \bar{H}_{12} & \bar{H}_{13} & \bar{H}_{21} & \overline{\mathrm{H}}_{22} & \overline{\mathrm{H}}_{23} & \overline{\mathrm{H}}_{3} \\ 4 & 5 & 3 & 3 & \bar{H}_{4} \\ 3 & 3 & 3 & 3\end{array}\right)=\sigma_{1}{ }_{3}{ }_{3} \eta$

But, $\quad A \leq F_{3} \leq C_{3} \circ D_{3} \simeq F_{2} \circ D_{3} \leq\left(C_{1} \circ D_{2}\right) \circ D_{3}^{\prime} \simeq$
$\simeq\left(F_{1} \circ D_{2}\right) \circ D_{3}^{\prime} \leq\left(\left(D_{0} \circ D_{1}\right) \circ D_{2}^{\prime}\right) \circ D_{3}^{\prime \prime}$.
Here $\mathrm{D}_{0}=\mathrm{C}_{0}$, and $\mathrm{D}_{3}^{\prime}, \mathrm{D}_{2}^{\prime}, \mathrm{D}_{3}^{\prime \prime}$ are obtained from $\mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{3}^{\prime}$, respectively, as in 4.7 (of course, the cascade product with mappings w can be used instead).
$D_{0}, D_{1}, D_{2}^{\prime}, D_{3}^{\prime \prime}$ are all permutation-reset semiautomata, and the groups generated by their permutation inputs are homomorphic images of subgroups of G_{A}. The methods of Lecture 4 can be now applied to obtain a covering of A by direct and cascade products of two-state reset semiautomata and simple grouplike semiautomata with simple groups, which are homomorphic images of subgroups of G_{A}.

Lecture 6.

The Necessity of Certain Components

In a Cascade Product Covering of a Semiautomaton

6.1. It was proved in Lecture 4 that every semiautomaton can be covered by cascade and direct (which can be considered as particular cases of cascade) products of simple grouplike semiautomata and twostate reset semiautomata.

In the Theorem in 4.5 H need not be a normal subgroup of G , hence one can cover a simple grouplike semiautomaton A, in which G_{A} has a nontrivial subgroup H by a cascade product $C O D$ of smaller semiautomata.

On the other hand, it will follow from the discussion in this lecture that in the above case G_{C} or G_{D} has a subgroup such that G_{A} is a homomorphic image of it, i.e., the obtained semiautomata have less states, but at least one of their semigroups is not less complicated than that of A. Because of this, only the simple grouplike and two-state reset semiautomata will be considered as basic building blocks (in what follows, used as a technical term) for cascade products covering a given semiautomaton.

A two-state reset semiautomaton is isomorphic (after coinciding its equal inputs) to one of the following four basic forms:

	σ_{0}
s_{1}	s_{1}
s_{2}	s_{2}

	$\sigma_{0} \sigma_{1}$
s_{1}	$s_{1} s_{1}$
s_{2}	$s_{2} s_{1}$

$$
\begin{array}{l|l}
& \sigma_{1} \sigma_{2} \\
\hline s_{1} & s_{1} s_{2} \\
s_{2} & s_{1} s_{2}
\end{array}
$$

A2	$\sigma_{0} \sigma_{1} \sigma_{2}$
s_{1}	$s_{1} s_{1} s_{2}$
s_{2}	$s_{2} s_{1} s_{2}$

The semigroups of these semiautomata are, respectively:

$$
\begin{aligned}
& \sigma _ { 0 } \longdiv { \sigma _ { 0 } } \\
& \begin{array}{c}
\\
\sigma_{0} \\
\sigma_{1} \\
\sigma_{0} \\
\sigma_{0} \\
\sigma_{1} \\
\sigma_{1} \\
\sigma_{1}
\end{array}
\end{aligned}
$$

\wedge was introduced in the third case, because G_{A} includes the identity by definition. In the other cases σ_{0} is the identity. The first semigroup is the group of order 1; a semigroup isomorphic to the second one will be denoted by R_{j}; the third and fourth are isomorphic and R will denote a semigroup isomorphic to them. All of the above two-state reset semiautomata can be covered by the fourth one, A2, and for uniqueness A2 will be referred to as the two-state reset semiautomaton in cascade product coverings using basic building blocks.
K. B. Krohn and J. L. Rhodes introduced the

Definition: A semigroup H is said to divide a semigroup G, if H is a homomorphic image of a subsemigroup of G.

They also proved the following important
Theorem: a) If a simple group H divides the semigroup G_{A} of a semiautomaton A, then in every covering of A by a cascade product (in particular by a cascade product of basic building blocks) the semigroup of at least one of the factors is divisible by H.
b) If R or R_{1} divides G_{A}, then in every covering of A by a cascade product of basic building blocks at least one factor is A2.

The proof of this Theorem follows.
6.2. Lemma A: For every homomorphism φ of a finite semigroup P onto a group G, there exists a subgroup K of P such that $K_{\varphi}=G$.

Proof: The congruence class $U=1 \varphi^{-1}$ in P (1 is the identity of G) contains the set E of all idempotents in P. Choose $e_{\varepsilon} E$ such that $P e$ has the smallest possible number of elements. $K=e P e$ is a subsemigroup of P with e as a two-sided identity. Let

$e=e e_{\varepsilon} P e=P f \Rightarrow e=p_{2} f$. Hence, $e=p_{2} f=p_{2} f f=e f=e p_{1} e=e p_{1} e=f$,
1.e., e is the unique idempotent in K.

For every epec K there exists an n such that (epe) ${ }^{n}$ is an idempotent, i.e., e. Hence, (epe) (epe) ${ }^{\mathrm{n}-1}=(\text { epe })^{\mathrm{n}-1}$ (epe) $=$ e, i.e., (epe) ${ }^{n-1}$ serves as an inverse of epe with respect to e. Thus, K is a group. The lemma follows immediately because $K_{\varphi}=(e P e) \varphi=e_{\varphi} \mathrm{P}_{\varphi} e_{\varphi}=1 G 1=G$.

The next four lemmas deal with simple facts from the theory of groups.

Lemma B: Let K be a group and φ a homomorphism of K onto a simple group H. If K_{1} is a normal subgroup of K, then $K_{1} \varphi=1$ (the identity of H) or $K_{1} \varphi=H$.

Proof: Let $K_{1} \varphi=H_{1}, H_{1}$ is a subgroup of H. For every $h_{6} H$ take a $k_{\varepsilon} h_{\varphi}{ }^{-1}$ and notice that $k^{-1} K_{1} k=K_{1}$. Hence, $k^{-1} \varphi K_{1} \varphi k \varphi=K_{1} \varphi$, i.e., $h^{-1} H_{1} h=H_{1}$. Thus, H_{1} is normal in H, consequently H_{1} is 1 or H.

Lemma C: With the same assumptions as in Lemma B, H is a homomorphic image of K_{1} or of K / K_{1}.

Proof: $\quad K_{1} \varphi=1 \Rightarrow K_{1}$ is a normal subgroup of the kernel K_{2} of φ and $H \simeq K / K_{2} \simeq K / K_{1} / K_{2} / K_{1}$, i.e., H is a homomorphic image of K / K_{1}.

Lemma D: Let F and G be groups and K a subgroup of their direct product $F \times G$. Then K is an extension of a group isomorphic to a subgroup A of F by a group isomorphic to a subgroup B of G.

Proof: K is called an extension of A_{K} by B_{K} if A_{K} is a normal subgroup of K and $B_{K} \simeq K / A_{K}$. Let $A_{K}=\left\{\left(f, 1_{G}\right)\right\}$, where $f_{e} F$ and $\left(f, \mathcal{l}_{G}\right) \in K$. A_{K} is a normal subgroup of K isomorphic to a subgroup A of F.
$\left(f_{1}, g_{1}\right) \in A_{K}\left(f_{2}, g_{2}\right) \Leftrightarrow g_{1} g_{2}{ }^{-1}=1_{G}$, i.e., $g_{1}=g_{2}$.

Hence, every coset of A_{K} in K is characterized by the unique second component of its elements and $B_{K}=K / A_{K}$ is necessarily isomorphic to a subgroup B of G.

Lemma E: Let K be a subgroup of the direct product $F \times G$ of two groups and let φ be a homomorphism of K onto a simple group H.

Then H is a homomorphic image of a subgroup of F or of a subgroup of G.

Proof: App1y Lemma D and then Lemma C.

The last lema in this section deals with subgroups of semigroups of transformations.

Lemma F: Let G be a semigroup of transformations of a finite set S and let K be a subgroup of G. Then there exists a subset S_{0} of S such that the restrictions of the elements of K to S_{0} are permutations forming a group isomorphic to K.

Proof: Set $S_{0}=S 1$, where 1 is the identity in K.
$\left.11=1 \Rightarrow\binom{a}{b} \in 1 \Rightarrow\binom{b}{b} \in 1\right)$, thus, 1 restricted to S_{o} is the identity on S_{0}.
If $a_{\varepsilon} S_{0}$ and $\binom{a}{b} \in x \in K$, then $x x^{-1}=1$, and since 1 must inciude $\binom{a}{a}$, $\binom{b}{a} \in x^{-1}$. But then $1=x^{-1} x$ includes $\binom{b}{b}$ and thus $b_{\varepsilon} S_{o}$.
Hence, $x_{\epsilon} K \Rightarrow S_{0} x \subseteq S_{0}$. But $a, b \varepsilon_{S_{0}}, x_{\varepsilon} K$ and $\binom{a b}{c c}_{\epsilon} x \Rightarrow d y_{\epsilon} K$ such that $x y=1$.

This proves that $S_{0} x=S_{0}$, i.e., the restriction x_{0} of x to S_{0} is a permutation of the elements of S_{0}.
$x=y \Rightarrow x_{0}=y_{0}$, but also, $x_{0}=y_{0} \Rightarrow x=y$ because
$x=1 x=1 x_{0}=1 y_{0}=1 y=y$ (notice, $1 x=1 x_{0}$, because $p r_{2} 1=S_{0}$).
Finally, $x y=z \Rightarrow x_{0} y_{0} \subseteq z$, but $x_{0} y_{0}$ is a permutation of S_{0},
hence $x_{0} y_{0}=z_{0}$. Thus, the lemma is proved.
6.3. Theorem: Let A, C and D be semiautomata and assume that $C O D \geq A$. For every simple group H, which divides G_{A}, the semigroup G_{C} or G_{D} must be divisible by H.

Proof: $\quad B=C O D \geq A \Rightarrow G_{A}$ is a homomorphic image of a subsemigroup of G_{B}. By the transitivity of homomorphism H is also a homomorphic image of a subsemigroup of G_{B}, hence, by Lemma A, of a subgroup K of G_{B}

The elements of G_{B} are mappings $x^{B}=\sigma_{1}^{B} \sigma_{2}^{B} \cdots \sigma_{k}^{B}\left(\sigma_{1} \in \Sigma^{B}=\Sigma^{C}\right)$ of the set $S^{C} \times S^{D}$ into itself, defined as follows:
$c_{\epsilon} S^{C}, d_{\epsilon} S^{D}: \quad(c, d) x^{B}=(c, d) \sigma_{1}^{B} \sigma_{2}^{B} \ldots \sigma_{k}^{B}=$
$=\left(\sigma_{1}^{C}, d\left(c, \sigma_{1}\right)^{D}\right) \sigma_{2}^{B} \cdots \sigma_{k}^{B}=\left(c_{\sigma_{1} \sigma_{2}}^{C}, d\left(c, \sigma_{1}\right)^{D}\left(c_{\sigma_{1}, \sigma_{2}}^{C}\right)^{D}\right) \sigma_{3}^{B} \ldots \sigma_{k}^{B}=$ $=\left(c x^{C}, d\left(c, \sigma_{1}\right)^{D} \ldots\left(c \sigma_{1}^{C} \ldots \sigma_{k-1}^{C}, \sigma_{k}\right)^{D}\right)$.
Notice, that on the first component of a pair (c, d) the transformation X^{B} acts exactly as X^{C} in C.

By Lemma F there exists a subset W of $S^{C} \times S^{D}$, such that all transformations in K when restricted to W are permutations, and these permutations form a group isomorphic to K. Denote by W^{C} the projection of W on S^{C}, i.e., the set of all elements of S^{C} appearing in the pairs of W. Let K_{1} consist of all $x^{B}{ }_{6} K$ such that X^{C} is an identity on W^{C}, K_{1} is not empty, because the identity of K belongs to it. Moreover, K_{1} is a subgroup of K, even a normal one, because for every $X^{B}{ }_{\varepsilon K}$

$$
\left(x^{B}\right)^{-1} K_{1} x^{B} \subseteq K_{1}
$$

x^{B} and y^{B} belong to the same coset of K_{1} in K if and only if $x^{B}\left(y^{B}\right)^{-1}{ }_{\epsilon K}$, hence, $x^{C}\left(y^{C}\right)^{-1}$ restricted to W^{C} is the identity, i.e., x^{C} and y^{C}, when restricted to W^{C}, are equal permutations.

Thus, to each coset of K_{1} in K there corresponds a distinct permutation of W^{C}, and the product of two such permutations cor-
responds to the product of the respective cosets in K / K_{1}. Hence these permutations form a group isomorphic to K / K_{1}, and since they are restrictions of elements of G_{C} to a subset of S^{C}, this group, i.e., also $K / K_{\text {, }}$ is, by the lemma in 5.9, a homomorphic image of a subgroup of G_{C}.

Now the group K_{1} will be investigated. For $c_{8} W^{C}$ let $\left\{\left(c, d_{1}\right),\left(c, d_{2}\right), \ldots,\left(c, d_{t}\right)\right\}$ be the set of all pairs in W with c as the first component. Let $x^{B}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right)^{B}{ }_{\varepsilon} K_{1}$ and denote $\left(c, \sigma_{1}\right)^{D}\left(c_{\sigma_{1}}^{C}, \sigma_{2}\right)^{D} \ldots\left(c_{\sigma_{1}}^{C} \ldots \sigma_{k-1}^{C}, \sigma_{k}\right)^{D}=x_{c}^{D} \quad x_{c}^{D}$ is an element of G_{D}.
x^{B} permutes the elements of W and, since $x^{B}{ }_{6} K_{1}$ implies $c x^{C}=c$, x^{B} permutes the elements of the $\operatorname{set}\left\{\left(c, d_{1}\right), \ldots,\left(c, d_{t}\right)\right\}$. But $\left(c, d_{i}\right) x^{B}=\left(c x^{C}, d_{i} x_{c}^{D}\right)=\left(c, d_{i} x_{c}^{D}\right)$, hence X_{c}^{D}, when restricted to the set $\left\{d_{1}, d_{2}, \ldots, d_{t}\right\} \subseteq S^{D}$, permutes its elements.

The restrictions of the elements of K_{1} to the set $\left\{\left(c, d_{1}\right), \ldots,\left(c, d_{t}\right)\right\}$ form a group K_{c} of permutations of this set, and it follows from the above that K_{c} is isomorphic to the group of permutations of $\left\{d_{1}, \ldots, d_{t}\right\}$ formed by the restrictions of the elements $\left\{x_{c}\right\}_{x^{B}} K_{1}$ of G_{D} to $\left\{d_{1}, \ldots, d_{t}\right\}$. Hence, by the lemma in 5.9, K_{c} is a homomorphic image of a subgroup of G_{D}. The same holds for every element of $W^{C}=\left\{c_{1}, c_{2}, \ldots c_{v}\right\}, W$ can be divided into v disjoint subsets

$$
\begin{aligned}
& \left(c_{1}, d_{11}\right),\left(c_{1}, d_{12}\right), \ldots,\left(c_{1}, d_{1 t_{1}}\right) \\
& \left(c_{2}, d_{21}\right),\left(c_{2}, d_{22}\right), \ldots,\left(c_{2}, d_{2 t_{2}}\right) \\
& \left(c_{v}, d_{v 1}\right),\left(c_{v}, d_{v 2}\right), \ldots,\left(c_{v}, d_{v t_{v}}\right),
\end{aligned}
$$

and every $X^{B} \in K_{1}$, when restricted to W, permutes the pairs in every one of the above subsets independently. $K_{c_{1}}, K_{c_{2}}, \ldots, K_{c}$ are the corresponding groups of permutations of the subsets discussed above, and so the restriction of every $X_{e}{ }_{e} K_{f}$ to W can be considered as an element of
the direct product $K_{c_{1}} \times K_{c_{2}} \times \ldots \times K_{c_{v}}$. The restrictions of the elements of K_{1} to W form-a group isomorphic to K_{1} (cf. Lemma F), hence K_{1} is isomorphic to a subgroup of the direct product $K_{c_{1}} \times K_{c_{2}} \times \ldots \times K_{c}$. To finish the proof notice that by Lemma C the simple group H being a homomorphic image of K, must be a homomorphic image of K / K_{1} or of K_{1}. In the first case it divides G_{C} because K / K_{1} divides G_{C}. In the second case, by Lemma E which, clearly, can be expanded to any finite number of factors, H divides one of the $K_{c_{i}}{ }^{\prime} s$, and since every $K_{C_{i}}$ is a homomorphic image of a subgroup of G_{D}, H divides G_{D}.
6.4. Assume that A is covered by a cascade product of n semiautomata
A_{1}, \ldots, A_{n}, l.e., $\left.A \leq\left(\left(A_{1} O A_{2}\right) \circ \ldots\right){ }^{\circ} A_{A_{-1}}\right) \circ A_{n}$. If a simple group H divides G_{A} then, by the Theorem in 6.3 , H necessarily divides $G_{A_{n}}$ or G_{B}, where $E=\left(\left(A_{1} O_{2}\right) O^{\prime} \ldots O_{A_{-1}}\right.$. In the last case H necessarily divides $G_{A_{n-1}}$ or G_{F}, where $F=\left(\left(A_{1}{ }^{\circ} A_{2}\right) \circ \ldots\right) \circ^{\circ} A_{n-2}$ and so on. Part a of the Theorem in 6.1 is thus proved.

Remark: The Theorem in 6.3 and its consequent also hold for $C_{0}^{O} D \geq A$ with an arbitrary ω. Indeed, for every $\sigma \varepsilon \Sigma^{D}$ such that $\sigma \epsilon p r_{2} \omega$, find $\sigma \omega^{-1} \subseteq S^{C} \times \Sigma^{C}$ and add to $\Sigma^{D}\left|\sigma \omega^{-1}\right|-1$ new inputs equal to σ. The obtained semiautomaton D_{1} with $S^{D_{1}}=S^{D}$ and $\Sigma^{D_{1}}$ equal to $\Sigma^{D} U\{$ the added inputs $\}$ clearly has G_{D} isomorphic to G_{D}. After an appropriate renaming of the elements of $\Sigma^{D_{1}^{1}}$ the cascade product $C^{\circ} D_{1}$ will be well defined and

$$
C_{\omega}^{O} D \geq A \Rightarrow C^{\circ} D_{1} \geq A
$$

Now, if a simple group H divides G_{A}, it necessarily divides G_{C} or $G_{D_{1}}$, i.e., G_{C} or G_{D}.
6.5. A simple nontrivial H cannot divide the semigroup R of a twostate reset semiautomaton appearing as a basic building block in a cascade product covering of a semiautomaton A. Thus, if H divides G_{A} it must divide some G_{B}, where B is a simple grouplike semiautomaton in the above covering. Such a G_{B} is a simple group, but it may have subgroups which are not simple. So it is possible that among the basic building blocks, one having the structure of H will not appear. However, suppose that in the set $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathbf{r}}\right\}$ of all simple groups which divide G_{A}, say, H_{1} does not divide any of the other groups in this set (this is true, for example, if all these groups are abelian, hence cyclic groups of prime order). In every covering of A by a cascade product of basic building blocks in which the simple grouplike components have only groups which divide G_{A}, there exists at least one simple grouplike semiautomaton B having the structure of H_{1}.
6.6. Lemma: If the semigroup R from 6.1 is a homomorphic image of a finite semigroup T, then T has a subsemigroup isomorphic to R. Proof: Let φ be the homomorphism of T onto R. $\sigma_{0} \varphi^{-1}$ is a subsemigroup of T and by finiteness there necessarily exists an idempotent e in it. $T_{1}=e T e$ is a subsemigroup of T with e as a twosided identity, and the restriction φ_{1} of φ to T_{1} is a homomorphism of T_{1} onto R because

$$
T_{1} \varphi_{1}=T_{1} \varphi=(e T e) \varphi=\left(e_{\varphi}\right)\left(T_{\varphi}\right)\left(e_{\varphi}\right)=\sigma_{0} R \sigma_{0}=R
$$

The elements $\left\{\sigma_{1}, \sigma_{2}\right\}$ form a subsemigroup of R, hence $T_{2}=\sigma_{1} \varphi_{1}^{-1} \cup^{-1} \sigma_{2} \varphi_{1}^{-1}$ is a subsemigroup of T_{1}. Let T_{3} be the smallest subsemigroup of T_{2} such that $T_{3} \varphi_{1}=\left\{\sigma_{1}, \sigma_{2}\right\}$. For any $x_{\in} T_{3}$ the set $x T_{3}$ is a subsemigroup of $T_{3}\left(x t_{3}^{\prime}, x t_{3}^{\prime \prime}=x\left(t_{3}^{\prime} x t_{3}^{\prime \prime}\right) \in x T_{3}\right)$, and since $\left(\mathrm{xT}_{3}\right) \varphi_{1}=\mathrm{x}_{1} \cdot \mathrm{~T}_{3} \varphi_{1}=\mathrm{x} \varphi_{1} \cdot\left\{\sigma_{1}, \sigma_{2}\right\}=\left\{\sigma_{1}, \sigma_{2}\right\}$, the minimality of T_{3} implies $\mathrm{xT}_{3}=\mathrm{T}_{3}$.

> Now, $\sigma_{1} \varphi_{1}^{-1} \cap T_{3}$ and $\sigma_{2} \varphi_{1}^{-1} \cap T_{3}$ are nonempty disjoint subsemigroups of T_{3} and each has an idempotent, say, y and z, respectively. But $y T_{3}=T_{3} \Rightarrow$ Guc $T_{3}, y u=z \Rightarrow y z=y y u=y u=z$. Similarly, zy=y and since e is a two-sided identity for y and z, the triple $\{e, y, z\}$ forms a subsemigroup of T_{1}, hence also of T, isomorphic to R.

Remark: This lemma also holds when R is replaced by R_{1}. In this case, like above, T_{1} and φ_{1} exist such that $T_{1} \varphi_{1}=R_{1}$. One proceeds:

The element σ_{1} forms a subsemigroup of R_{1}, hence, $T_{2}=\sigma_{1} \varphi_{1}^{-1}$ is a subsemigroup of T_{1}. There exists an idempotent $y \in T_{2}$ and since e is a two-sided identity for y, the pair $\{e, y\}$ forms a subsemigroup of T_{1}, hence also of T, isomorphic to R_{1}.
6.7. Theorem: Let A, C and D be semiautomata and assume that $C O D \geq A$. If the semigroup R divides G_{A}, then G_{C} or G_{D} must be divisible by R.

Proof: $B=C O D \geq A \Rightarrow G_{A}$ is a homomorphic image of a subsemigroup of G_{B}. Hence, R is also a homomorphic image of a subsemigroup of G_{B}. By the lemma in 6.6, there exist in this subsemigroup, hence in G_{B}, three elements, z^{B}, x^{B}, y^{B}, which form a semigroup isomorphic to R. If z^{B} is the two-sided identity in this semigroup, then $\left\{1, x^{B}, y^{B}\right\}$ also form a semigroup isomorphic to R (1 is the identity of G_{B}).
$x^{B} \neq y^{B} \Rightarrow q(c, d) \in S^{B}$ such that $\left(c_{1}, d_{1}\right)=(c, d) x^{B} \neq(c, d) y^{B}=\left(c_{2}, d_{2}\right)$. Now $x^{B} x^{B}=x^{B}, x^{B} y^{B}=y^{B}, y^{B} x^{B}=x^{B}, y^{B} y^{B}=y^{B}$ imply:

$$
\left(c_{1}, d_{1}\right) x^{B}=(c, d) x^{B} x^{B}=(c, d) x^{B}=\left(c_{1}, d_{1}\right)
$$

$$
\left(c_{1}, d_{1}\right) y^{B}=(c, d) x^{B} y^{B}=(c, d) y^{B}=\left(c_{2}, d_{2}\right)
$$

$$
\left(c_{2}, d_{2}\right) x^{B}=(c, d) y^{B} x^{B}=(c, d) x^{B}=\left(c_{1}, d_{1}\right)
$$

$$
\left(c_{2}, d_{2}\right) y^{B}=(c, d) y^{B} y^{B}=(c, d) y^{B}=\left(c_{2}, d_{2}\right)
$$

If $c_{1} \neq c_{2}$ then $c_{1} x^{c}=c_{1}, c_{1} y^{c}=c_{2}$, hence $x^{C} \neq y^{c}$ and the set $\left\{1, x^{C}, y^{C}\right\} \subseteq G_{C}$ forms a subsemigroup isomorphic to R.
(Notice: $x^{B} y^{B}=y^{B} \Rightarrow x^{C} y^{C}=y^{C}$, etc.)
If $c_{1}=c_{2}$, then necessarily $d_{1} \neq d_{2}$. Using the notation introduced in 6.3 one obtains:
$\left(c_{1}, d_{1}\right)=\left(c_{1}, d_{1}\right) x^{B}=\left(c_{1} x^{C}, d_{1} x_{c_{1}}^{D}\right)$, i.e., $d_{1} x_{c_{1}}^{D}=d_{1}$.
Similarly:

$$
\begin{aligned}
& \left(c_{1}, d_{1}\right) y^{B}=\left(c_{1}, d_{2}\right) \Rightarrow d_{1} y_{c}{ }_{c}^{D}=d_{2} \\
& \left(c_{1} ; d_{2}\right) x^{B}=\left(c_{1}, d_{1}\right) \Rightarrow d_{2} x_{c}^{D}=d_{1} \\
& \left(c_{1}, d_{2}\right) y^{B}=\left(c_{1}, d_{2}\right) \Rightarrow d_{2} y_{c}{ }_{c}=d_{2}
\end{aligned}
$$

Consequently, the restrictions of the identity and of the mappings $x_{c_{1}}^{D}$ and $y_{c_{1}}^{D}$ of G_{D} to the elements $d_{1}, d_{2} \in S^{D}$ are

$$
\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{1} & d_{2}
\end{array}\right),\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{1} & d_{1}
\end{array}\right) \text { and }\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{2} & d_{2}
\end{array}\right)
$$

respectively. These three mappings form a semigroup isomorphic to R. On the other hand, this semigroup is a homomorphic image of the subsemigroup of G_{D} generated by the identity, $x_{c_{1}}^{D}$ and $y_{c_{1}}^{D}$. Thus, the theorem also holds in the case $c_{1}=c_{2}$.

Remark: The theorem also holds when R is replaced by R_{1}.
Indeed, let $\left\{1, x^{B}\right\}$ form a subsemigroup of G^{B} isomorphic to R_{1} (it exists by the Remark in 6.6).
$x^{B} \neq 1 \Rightarrow G(c, d) \in S^{B}$ such that $(c, d) x^{B}=\left(c_{1}, d_{1}\right) \neq(c, d)$.
$\left(c_{1}, d_{1}\right) x^{B}=(c, d) x^{B} x^{B}=(c, d) x^{B}=\left(c_{1}, d_{1}\right)$, because $x^{B} x^{B}=x^{B}$.
If $c_{1} \neq c$ then $1_{G_{C}} \neq X^{C}\left(c 1_{G_{C}}=c\right.$, but $\left.c x=c_{1}\right)$ and $\left\{1_{G_{C}},{ }_{C}^{C}\right\}$ is a subsemigroup of G_{C} isomorphic to R_{1}.

If $c_{1}=c$, then necessarily $d_{1} \neq d$.
$\left(c_{1}, d_{1}\right)=\left(c_{1}, d_{1}\right) x^{B}=\left(c_{1} x^{C}, d_{1} x_{c_{1}}^{D}\right)$, i.e., $d_{1} x_{c_{1}}^{D}=d_{1}$. Consequentiy, the restrictions of the identity and of $X_{c_{1}}^{D}$ in G_{D} to the elements
$d, d_{1} \in S^{D}$ are $\left(\begin{array}{ll}d & d_{1} \\ d & d_{1}\end{array}\right)$ and $\left(\begin{array}{ll}d & d_{1} \\ d_{1} & d_{1}\end{array}\right)$, respectively. These two mappings form a semigroup isomorphic to R_{1}, and the conclusion follows as before.
6.8. Part b of the Theorem in 6.1 can now be obtained by the same reasoning as in 6.4 , using the Theorem in 6.7 , and using the fact that neither R nor R_{1} can be a homomorphic image of a group. Also, the remark in 6.4 applies to the present case, and the Theorem in 6.1 is true for cascade products using arbitrary $w^{\prime \prime} s$. Notice that the mappings ω in the cascade products, were only used in this report when the merging of equal inputs was necessary. They were introduced to preserve the usual definition of a grouplike semiautomaton, requiring that the set of inputs be identical to the set of states (both are the elements of the corresponding group).
6.9. The Theorem in 5.1 shows that for a given semiautomaton A, simple grouplike semiautomata with groups dividing G_{A} and two-state reset semiautomata are sufficient to construct a cascade product covering of A. If only these semiautomata are considered, as basic building blocks for cascade product coverings of the above A, then the Theorem in 6.1 provides information about the necessity of some of them. The following two examples indicate cases where this information is not complete.
i) The single grouplike semiautomaton A with the group A_{5} (the group of all even permutations of 5 elements) is covered by one basic building block of the above kind, A itself. There are nontrivial simple groups dividing $A_{5}\left(A_{4}\right.$ is a subgroup of A_{5} and it is not simple), which do not appear in the above covering.
ii) The semigroup G_{A} of the two-state reset semiautomaton

A	σ_{0}
$\mathrm{~s}_{1}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{2}$

is the one element group G_{1}, and the only semigroups dividing it are G, again. Nevertheless, it is impossible to construct a cascade product of grouplike semiautomata having the structure of G_{1}, such that it will cover A. Indeed, every cascade product of one-state semiautomata has one state, and it cannot be mapped onto the two states in S^{A}. One can cover A using the two-state reset semiautomaton A2, although neither R nor R_{1} divides G_{A}. The simple grouplike semiautomaton with the simple group Z_{2} of order two covers A, also, but it is excluded, because Z_{2} does not divide \mathbf{G}_{A}.

Finally, notice that the above theory does not indicate how many of any particular basic building blocks are needed to construct a cascade product covering of a given semiautomaton.

Bibliography

1. Ginzburg, A. and M. Yoeli, Products of Automata and the Problem of Covering; Trans.Am.Math.Soc., 116, 1965, pp. 253-266.
2. Hartmanis, J. and R. E. Stearns, Algebraic Structure Theory of Sequential Machines; Prentice-Hal1, Inc., Englewood Cliffs, N.J., 1966.
3. Krohn, K. B. and J. L. Rhodes, Algebraic Theory of Machines, Proc. of the Symp. on Math. Theory of Automata, Polytechnic Institute of Brooklyn, 1962, pp. 341-384.
4. Krohn, K. B. and J. L. Rhodes, Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite Semigroups and Machines; Trans.Am.Math.Soc., 116, 1965, PP. 450-464.
5. Rabin, M. O. and D. Scott, Finite Automata and Their Decision Problems, IBM J. of Res. and Dev., 3, 1959, 114-125.
6. Yoeli, M., Decomposition of Finite Automata, Tech. Rep. No. 10, U. S. Office of Naval Research, Information Systems Branch, Hebrew University, Jerusalem, Israel, 1963.
7. Zeiger, H. P., Loop-Free Synthesis of Finite State Machines, M.I.T. Ph.D. Thesis, Elect. Eng. Department, 1964.
8. Zeiger, H. P., Cascade Synthesis of Finite-State Machines, 6th Annual Symposium on Switching Circuit Theory and Logical Design, Ann Arbor, Michigan, October, 1965, pp. 45-51.

[^0]: In the third lecture some simple properties of covering of semiautomata are summarized and direct and cascade products of semiautomata are defined. A construction by M. Yoeli [6] is used to obtain a cascade product covering a given semiautomaton with a given admissible decomposition. The practical application of the introduced techniques is demonstrated by an example.

 Lectures 4 and 5 make use of a part of the material in the last chapter of the recent book by J. Hartmanis and R. E. Stearns [2]. The notion of covering as compared with the notion of realization used in the book and the techniques developed in previous lectures allow many of the proofs to be shortened and simplified.

 In the fourth lecture a proof is given, that every semiautomaton can be covered by direct and cascade products of two-state reset semiautomata and grouplike semiautomata corresponding to simple groups.

 In the fifth lecture a modification of the construction of P. H. Zeiger $[7,8]$ is used to prove a basic structure theorem by K. B. Krohn and J. L. Rhodes [3,4].

[^1]: *) For complete automata this result was proved by Mrs. Rina Cohen in her Master Thesis: "Cascade Decomposition of Automata", Technion, Israel Institute of Technology, Haifa, Israel, June 1966 (in Hebrew).

[^2]: ${ }^{*)}$ The intersection of the partitions π_{1} and π_{2}, denoted $\pi_{1} \cap \pi_{2}$ is the partition having as blocks all non-empty intersections of the blocks of π_{1} and π_{2}. The identity partition $\pi_{i d e n . ~ o f ~ a ~ s e t ~ i s ~}^{\text {. }}$ the partition in which every block is a single element of this set.

[^3]: *) In Zeiger's construction, used also in [2], only decompositions in which there are no blocks included in others are used. This leads to difficulties, which will be pointed out later (see the footnote on P. 34).

[^4]: ${ }^{*}$) The above is also claimed in [2], see p. 202. But if one uses decompositions in which no block is included in another, this is not the case. Take, e.g., the semiautomaton A described by $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$. $\pi=\{12,13,45\}$ is an admissible decomposition of S^{A}. The blocks 12 and 45 can be taken as π. The set of all images of blocks in π and all singletons is $12,13,45,1,2,3,4,5$. Delete from this π_{m} (i.e. 12,45) and perform the max operation. The result is the admissible decomposition $13,2,4,5$. The block 45 of π_{m} is divided into two blocks 4 and 5, (45) $\sigma=12$, but $4 \sigma=1$ does not appear as a block in the new decomposition, because it is included in 13.

[^5]: *) The fact that eTe is a group follows also from a theorem by Green. (cf. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vo1. I, AMS, 1961, p. 59).

