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ABSTRACT

This report describes and investigates some of the basic notions

of the Algebraic Theory of Automata, leading to an important
structure theorem of K. B, Krohn and J, L. Rhodes. The relatiocnal
representation of automata and several results and techniques in-
troduced here turn out to be very convenient tools to deal with the

theory of finite automata,
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INTRODUCTION

This report originated in five lectures delivered by the author
in July and August, 1966, at a summer seminar on Automata Theory in
the Computer Science Department of the Pennsylvania State University
at State College, Pennsylvania.*)

Starting with the basic definitions of automata and semiautomata,
the réport proceeds to the description of covering of semliautomata by
direct and cascade.products of semiautomata and culminates with the
proof of an important structure theorem of K, B, Krohn and J. L. Rhodes.
The relational description of automata and some additional neotions and
techniques provide a unified and, as it is hoped, a simpler and short-
er exposition of this part of the theory of finite automata.

A short survey of the contents of the six lectures with indica-
tion of the references follows. In the body of the report references
will usually be omitted.

The first lecture contains the definitions of semiautomata and
automata using the relational approach and applies it to provide short
proofs to some results from the paper of M. 0. Rabin and D. Scott [5].

.Lectures 2 and 3} are based on a joint paper of the author and
M. Yoeli [1].

In the second lecture the notion of covering of one automaton by
another 1is defined, and its connection with homomorphisms of automata
ts studied. Admissible partitions and decompositions are discussed.

It is also. shown that the problem of covering of automata can be re-

duced to covering of semiautomata.

*)

The author wishes to express his sincere thanks to this department
and especially to Professor Preston C. Hammer, the Head of the de-
partment, for the kind invitation to participate in the seminar.




-2a

In the third lecture some simple properties of covering of
semiautomata are summarized and direct and cascade products of
semjiautomata are defined. A construction by M. Yoell {6] 1s used
to obtain a cascade product covering a given semlautomaton with a
given admissible decomposition., The practical application of the
introduced techniques 1s demonstrated by an example,

Lectures 4 and 5 make use of a part of the material in the
last chapter of the recent book by J. Hartmanis and R. E. Stearns
[2]. The notion of covering as compared with the notion of realiza-
tion used in the book and the techniques developed in previous lec=-
tures allow many of the proofs to be shortened and simplified.

In the fourth lecture a proof is given, that every semiéutomaton
can be covered by direct and cascade products of two-state reset semi-
automata and grouplike semiautomata corresponding to simple groups.

In the fifth lecture a modification of the construction of
P. H. Zeiger (7,8] is used to prove a basic structure theorem by
K. B. Krohn and J. L. Rhodes [3,4].

The sixth lecture is devoted to the theorem by K. B, Krohn and
J. L. Rhodes [3,4] showing the necessity of certain components in a

cascade product covering of a semiautomaton.
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Lecture 1,

Semiautomata and Automata

1.1, Let S and ¥ be two finite sets and

: = M
M=Mle UM,
a set of relations over S (every qg is a subset of the Cartesian product

S x $; M, 1is the identity relation I - the set of all pairs (3) seS).

s

The triple A = (S, ©, M) is called a nondeterministic semiautomaton.

The elements of S and ¥ are called, respectively, the states and
inputs of 'A. A is the empty or the identity input.
In the special case, when every %3 is a mapping (of S into S5) A

will be called a deterministic semiautomaton, or simply a semiautomaton.

1.2. T* denotes the free semigroup generated by T, i.e.,the set
(x = 0102"'Uk} G:i e ¥) of all finite strings (words) of symbols from
v with the operation of concatenation. Also the empty word A is includ-
ed in T* and serves as the identity of this semigroup.

G will denote the semigroup of relations

{Mx = Mc] MGZ Mck} U MA

generated by the relations in M with the operation of composition of
relations. G 1is finite because the total number of relations over a
finite set is finite, QA is the identity in G. Clearly,
Mx My = Mxy for any x, y ¢ T*.

The mapping ¢:Z*— G defined by xp = Mx is onto and it is a homo-

morphism. 1Indeed: (xy) o = M= M My = (xp) (wp).

y
G 18 called the semigroup of the semiautomaton.

1.3. The equivalence relation E = ¢¢'1 on I* partitions this set into

disjoint. classes of words having the same image under the mapping .



by

In other wordsa

xEyQMx=My
But, Hx = My = szu = MzMxyu = MzMyMu = szu for every z, u ¢ T©*, hence

xEy # 2xu Ezyu and E is a congruence over T*,

The index of E, i.e. the number of congruence claasses of E, equals
the number of élements of G and thus it is finite,

Conversely, any congruence relation E with a finite index over T*
leads naturally to the following semiautomaton. The congruence classes
wlll form the get S of states and to every generator g ¢ © of L* there
wili correspond the relation qu’ which is in this case a mapping, de-
fined by representatives: if x ¢ T¥ belongs to the class denoted by
s, then sM{I will be the congruence class containing the word xg. The
resulting class will not depend on the choice of x in s, because E is
a congruence; actually this will be ensured also if E is a right
congruence only,

To summarize:

Every nondeterministic semiautomaton A induces 6n T* a congruence
relation with a finite index and, conversely, to every right congruence
relation over ¢* with a finite index there corresponds in a natural
ﬁay a deterministic semiautomaton, the states of which are the congruence

classes and the inputs are the elements of L.

1.4, GCiven a finite semigroup G (with identity) it is easy to find a semi-
automaton A (even a deterministic one), having G as its semigroup. In-
deed, take as states of A the elements of G and as ¥ a set of generators

of G (one can take the entire G). ﬂq will be the right translation of

G corresponding to c,'i.ef for every g ¢ G, & Mb = g g. The semigroup

of A, i.e. the semigroup generated by the mappings M&, will be iso-

morphic to G.
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The A constructed above is not the only semiautomaton having G
as its semigroup. There is no difficulty in finding examples of

distinct semiautomata having isomorphic semigroups.

1.5. The quintuple A= (8, &, M, So’ F), where S, ©, M are as before
and S0 (the initial states) and F (the final states) are two disting-

uished subsets of S is called a nondeterministic automaton. A=(S, §, M)

18 called the semiautomaton of ﬁ.
An automaton ﬁ can be used to classify words in y*., Define: The
word x ¢ ¥* is accepted by A if and only if 5, M N F # 9.
)
o
{(Notice: .So Mx ={s ¢ S_I o 8, € So’ (ﬁ e Mx} ).
Thus ¢* is partitioned into two disjoint subsets: U - the set of words

accepted by & and T* = U - the set of words rejected {(not accepted) by

A,

1.6, Consider the congruence E over v% induced by the semiautomaton

A= (5,3, M) of ﬁ = (8, &, M, So’ F). xEye Mx = My hence

XxEy, xeUm» y ¢ U,i.e.,the words in U form complete congruence classes
of E.

1f, conversely, a (right) congruence E over ¥* with a finite index
is given, one can construct an 2 vhich will accept a set of words U,
provided U is & union of complete congruence classes of E.

To this end a semiautomaton A is constructed as in 1.3 (it is a
deterministic one); Sq is defined to be the state corresponding to the
congruence class containing A (So'has now only one element); F is the
set of states corresponding to all congruence classes consisting of
elements of U. The definition of M ensures that the obtained

A=, z, N, S_, F) will accept the words in U and only them.
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1.7. A nondeterministic automaton in which all M.cr are mappings (i.e.
its semiautomaton 18 deterministic) and in which So is composed of one

element only is called a Rabin-Scott (deterministic) automaton.

A set of words accepted by a Rabin-Scott: automaton is called a
rggular Bet.

Using this terminology, the results of 1.6 can be stated in the
following form:

a. Regular sets are always unions of complete congruence

classes of congruences with finite indexes over.z*.

b. A set of words accepted by a nondeterministic automaton

is a regular set, in other words a nondeterministic auto-
maton cannot do more than a Rabin-Scott automaton.

The flexibility of the nondeterministic device allows one to use
it conveniently to prove theorems and produce procedures, Nevertheless,
for many purposes it is simpler if one can assume that all %U are map-
pings from (possibly a proper subset of) S into S and this will be done

in what follows.

1.8, The above defined automaton can be interpreted as a machine with
two outputé, say 0 and 1. The output depends on the state to which the
device is transformed by the corresponding input: 1f this is a final
state the output 1s 1, otherwise 0.

In the same way one can consider a set @ of outputs and a mapping
N from $ into @, which attaches to some (possibly to all) states of §

outputs from @. The corresponding device is called a Moore machine.

The next step is to make the outputs depend not only on the states
of ﬁ, but also on the inputs, In other words, one obtains a set of
mappings N (g ¢ ©) from S into ® instead of a "constant" (with

o

respect to I) mapping N. This gives the so called Mealy machine
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{(or Mealy automaton) which can be defined as the quintuple
A= (s, £, ® M, N), where S, £, M are as before, @ is a finite set
of outputs and

N = {No_: S "*g}oe):

is a set of mappings from S into 8.

If for every gel, PT, M6= S*) and 2 Nca S (L.e. all M&and %3
are mappings "of"™ 8), the corresponding automaton is said to be a
complete one, otherwise it is incomplete.

It can be shown that all the above mentioned types of automata
are in a certain sense equivalent. We shall deal here with Mealy

machines,

1.9, Let x = 0105 +oe Oy (oiez) be a word in £*, The relations
N ,M N ,...,M M ...M N =M N 1)
9 %91 %2 R 01 ©2 %-1%  %1°°"%-1 %
describe the outputs of A, when x is applied to the automaton, The
actual output word depends on the state in which A 1s at the start of
the experiment, If & 1s in state s and the word x = Cpeeely is applied,
the consecutive outputs will be:
sN ,sM N , ..., 8 M N
o %1 92 G171 %k-1 %K
(1) describes the output words for all starting points and this is one
of the advantages of the relational description of the automaton.
Nx =M M ,,. M N =M N  describes the "last output"
o1 92 k-1 % 9192 %-1 %
when x is applied.

*) If M 18 a relation from S to T, i.e. M < S X T, then pr]M=[s¢S|ﬂteT,
@) . M} and PT, M:{teTlgseS,'(g) e M}.
By definition M | = [(5) | (&) ¢ M}.
Notice: PT4 M= PT, M . To complete: 1if P is a relation from
T toV, then MP = {(¥) | at, (B) ¢ M, (¥) ¢ P}. For s S

- § .
sM=(teT [T s ¢35, (9 en.
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Notice that if & s not complete, some of the relations in (1)

may be empty.

Lecture 2,

Coverings and Homomorphisms of Automata

2.1, An automaton A= (8, £, @, M, N) can be regarded as a trans-
lator from ©* into @%. Actually, it is a set of translators, be-
cause the output word in @* depends not only on the input word from
£%, but also on the state 8 ¢ S in which A is started.

It is natural to look for a simpler machine than the given ﬁ;

a.

bﬁt still capable of performing all tasks done By

The notion "simpler" is, of course, relative. Simplicity of
an automaton can be measured,e.g,,by the number of its states. A
device consisting of alnumber of smaller automata or in some sense
standard automata interconnected in certain ways may also be con-
sidered as simpler than ﬁ.

The meaning of "being capable of performing the tasks dome by A
will be made precise by the following:
Definition: The automaton B = (SB, T, 9, MB, NB) 18 said to cover
the automaton A= (SA, T, 8, HA, NA) {notation ﬁ - Q), if there ex-
ists a mapping y of SA into SE_such that for every word x ¢ T*

Ni =3 Nz (2)

As can be seen from the notation, it is assumed that both
automata have the same inputs and outputs. This limitation can be
easily removed by introducing mappings from the input set of one

automaton into this of the other and the same for the output sets,

1f these sets are different. Later such a mapping will be used,
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but at this stage the above assumption makes things more convenient,
without invalidating)the generality of the discussion.

‘The meaning of (2) is that to every state sA in SA there cor-

B _B B %
responds at least one state s ¢ 5, such that when started in s,
performs all translations done by A started in sA.

The relation of covering is easily seen to be reflexive and
transitive, but not symmetric. If for some ﬁ and ﬁ, 8> ﬁ and & > 8
these automata are said to be equivalent.

if A is complete, Ni is a mapping of s% tnto @3 so is xNi and (2)
becomes an equality, Nevertheless even in this case v and B need not

: B
be equivalent; there can be states in S which do not correspond by y
to any state in SA and thus it is possible that % can perform trans-
lations of which A is not capable.
A A A
If for every two states 8128, € S, there exists at least one

A A A
X ¢ T*,such that § # 8 Ni # 8, N # ¢, the automaton A 1s called
reduced, There are known constructions of reduced automata which
cover a given automaton ﬁ; moreover, in the complete case such a

reduced automaton is unique up to renaming of its states.

2,2, The notion of homomorphism can be used in automata theory and
it appears to be connected with the notion of covering. First, the
following

A A A B
Definition: Given the automata A and B, the mapping { of § onto S
is a homomorphism of & onto B if for every g ¢ &:

W weegw

(11) N e ¢ N°
g o)

3)

Given the automata ﬁ and % and a binary relation § with PT ¢ = SA

B
and pr2¢ = 8§, the relation § is a weak homomorphism of A onto B if

for every g e L
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(1) g"MA:MBf‘
c o
-1 A _ B (4)
(1i) ¥y N_c<N
o] o
A
Notice,that 1f y is a mapping of S onto SB, conditions (3) and
(4) are equivalent, i.e.,every homomorphism is also a weak homomorph-
ism and a weak homomorphism in which § is a mapping is a homomorphism,
Indeed, if § is a mapping of SA onto SB, then *ﬁ’l =2 ISA (the identity
A -1
on §7) and § =Igg.
It follows:
MA ‘ B =1A 1 -1,_B , -1 -1 B -1
S yM = M pod . M <
Sy ey Moy sy 4T ey sy
-1 A B

-1 B
N < N =N
g * t0’ [¢2

B
o
Noe gl ey
i.e. (3) = (4). Conversely, with such a y
-1 B -1 -1 B =~ B
- S ¢M
¥ rﬁ]NAMU*B =H1:°A#C;M°NI ¢=BM;‘* W™
$ON SN o gy N SN = NS N
t.e. (4) = (3).
It is easy to construct examples of relations § for which (3) and (4)

are not equivalent,

2.3. The advantage in using weak homomorphism is, that it is often
possible to find a relation satisfying (4), while there is no map-
ping doing this,and,nevertheless,the following is true:

Theorem: Let § be a weak homomorphism of ﬂ onto ﬁ. Then
B2 A,

Proof: (4) implies for any word x = Oy =ev O

$-]H:=t"]MA...MA c P *'1MA...MA s LW *-1=MB*-1
9 % 9 Iy X

%% o 92 9k
and
*'INA=¢“1MA R ol =R PP ' vy;]NA's:MB...MB N° = P
x o Ok-1 %k 1% %-1 %% 91 Ok-1 % *

Pryy = SA, pr2$ = SB and, clearly, it is always possible to f£ind
a mapping y of SA into SB such that ¥ < ¢. For any x ¢ T*:

-1 A B =1 B =1 B
¥ NxCNxﬁx Ni;Nxsxx Ningx
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A -1
But pr,y = S , hence xx =2 ISA and one obtains:

B
M £ x
i,e. 1 ﬁ.
0f course, 8 > & does not imply that $ 15 a homomorphic or even

a weak homomorphic image of ﬁ.

2.4, The notion of weak homomorphism leads to the following addi-
tional concepts. Let § be a weak homomorphism of 8 onto B and con-
sider the following set of subsets of SA:

m={# =5 *-l}si e sB
prl¢ = SA, hence every element of SA belongs to at least one subset
of wm. m 15 a decomposition of SA and the H,'s are called the blocks

i
of m. In the special case, when H,N Hj = ¢ (L £ i) (i.e,,the blocks

of  are disjoint), m is a partition of SA. Now,
-1 B -1 -1
Hngz Si!k Mgg siM0'¢ = Sj'¢ =Hj,

i.e., for every o ¢ Z and every block Hi of m, there exists in 1 at

least one block H, including the set Hiug. This fact is expressed

i
by. saying that 7t is an admissible decomposition of SA.
A -1 A B
Next compute: Hi Nx = 8, ¥ Nx e g Nx .

The result shows that all elements in a block of 11 give the same out-
put (if at all), when the same input word is applied to them —1 is

an output-consistent decomposition.

Hence the

Theorem: A weak homomorphism y§ of ﬁ onto # induces naturally

an admissible, output-consistent decomposition 1t of SA: the

blocks of m are the subsets of elements of SA which are in the rela-

tion § with the same element of SB.
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2.5. An admissible and output-consistent decomposition v of SA
leads naturally to at least one so called y-factor of A (notation

ﬁ/ﬂ). This is an automaton ﬁ constructed in the following way:

First, P = ¢* and 0® = 0%

The states of ﬁ will be the blocks of nn. The following notation
will be used: a block H1 of n, 1.e, ,a subset of SA, when considered
as an element of SE will be denoted by Ei'

For every g ¢ ¥ and every Hi there exists at least one Hj such

that Hi M: cH Take arbitrarily one of such H

- B =
H M =H,.
ic j
B = B NA
N~ is defined by: Hi No = H1 a and the output-consistency of

's and define

3 3

m ensures that the right-hand side consists of one element of ® or

it is empty.

For every such m-factor 8 of A the relation ¢ with pr.y = SA
and pr2¢ K SB given by:

(%i) eV e SAe H, (s* € SA)
is a weak homomorphism of & onto %. Indeed, for every ﬁi~e SB and
every g ¢

oy M enpdcn =ﬁj¢'1=ﬁMB¢"]

and il *‘1 Eg = BN = H N
i.e., conditions (4) are satisfied.

Altogether one has the following

Theorem: An admissible output-consistent decomposition m of SA

determines at least ome automaton (a m-factor of ﬁ), which 1s

a weakly-homomorphic image of ﬁ.

In the special case, when 7 is an admissible output-consistent

partition of SA, ﬁ/n is unique. %he above relation ¢ becomes in this

case a mapping, consequently a homomorphism of ﬁ onto ﬁ/ﬂ.
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2.6, The problem of finding an automaton Q, having some desired
properties and covering a given ﬁ,is often convenient to scolve in
two steps: a) to construct an appropriate semiautomaton B; b) to
supply B with outputs so that the obtained ﬁ will cover A.

To this end covering of semiautomata will be defined.
Definition: The semlautomaton B = (SB, z, MB) covers the semi-
automaton A = (SA, T, MA) (B = A) if there exists a mapping 1 of a
subset of SB onto SA such that for every g ¢ %:

H@C@ﬂ (5)

Notice, that no one of the two relations B = A and A4 (where
B and A are the semiautomata of 3 and A respectively) implies the
other,

Nevertheleas, the two-step construction mentioned above is
possible because of the following

Theorem: Let A be an automaton and B a semiautomaton covering

the semiautomaton A of ﬁ. Then there exists an automaton B

with B as its semiautomaton, such that > ﬁ.

Proof: By assumption there exists a mapping 7T of a subset of

sB onto SA, satisfying (5). Define

q? = 1 qg (c e

In general, this defines the N:'s only on subsets of SB; for the

remaining elements of SB they can be chosen arbitrarily.

There exists,obviously,a mapping y of SA into S% such that

-1 -
¥ & 'q (Notice: Pr,T=pr T ]=SA). For any x = Tqee-0y € Th:

X NGﬂNA nw m v oe® L g e
1B kgl Ok 1 O-1 9
;MB... N = N.
k.1 %k
Hence

-1 A B
N;::xx N-:CXNX:



file:///rtiere

. F/.

and the obtained automaton ﬁ (having the given B as its semi-

automaton) covers the automaton A.

For a reduced automaton ﬁ

ﬁ 2 Q.: B2 A*)

Indeed, Q S d a mapping y of S into SB such that for every

A
X e T Nx = XNE’ i.,e., for every sA ¢ SA

s%: 4= aANf: = SAXN:.

A A A A
Hence, S}X = 32X = S?Nx = sng for every x ¢ L*, for which both

A
2.

the following is also true:

expressions exist,and, as ﬁ‘is reduced, this implies s? = 8
Thus x 18 one-to-one, X-1 is a mapping of a subset of

SB onto SA and

sBx-1Ni # 4 ={HsAéSA such that s* = sBxf = 3 -]NA ANA A B sN 2.

To prove that (5) is satisfied for y - observe, that for every

sBeSB, oel and xeT* such that sBX-]MANA # § one obtaims:

-]MANA -1 gx _ BNB = B B B BMB INA ie. ,SBX 1M:_SBMB -1
since A is reduced. -]MANA ’ for every x = s X, ]MA @ because
output-empty states do not appear in a reduced automaton.)

Since for every automaton there exists at least one reduced automaton
covering it, the problem of finding covers of automata can always be

reduced (having in mind the Theorem of this section) to looking for

covers of semiautomata, This will be done in what follows.

*)For complete automata this result was proved by Mrs. Rina Cohen in
her Master Thesis: '"Cascade Decomposition of Automata™, Technion,
Israel Institute of Technology, Haifa, Israel, June 1966 (in Hebrew).
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Lecture 3.

Covering by Direct and Caseade Products of Semiautomata

‘In the following it will always be assumed (without mentiohing this
explicitly) that the semiautomata considered are complete,and the map-
A
ing Mi of SA into SA will be denoted by x (x ¢ T*). Ni will not appear,

because the discussion is limited to semiautomata only.

Al ]
3.1. A semiautomaton A' = (8 , ¥, MA ) will be called a subsemiauto-
] '
maton of a semiautomaton A = (SA, z, MA),if SA c SA and cA o oA
for everyg e L.
A '
(In other words, every subset of S5 which is closed under the mappings in
forms a subsemiautomaton of A).
Notice that A 2 A' (take T} = ISA' in (5)),and'GA, (the semigroup of A')
: t
because the mappings in MA are restric-

A 1
tions of the corresponding mappings in M to SA = SA.

is a homomorphic imdge of GA’

A .
The semiautomaton A = (SA, T, M ) is a homomorphic image of the

semiautomaton B = (SB, T, MB),if there exists a mapping [ of SB onto
SA;such that for everyo ¢ &
ot = ot (6)
(This is condition {(3i) in section 2.2 with = instead of € because
only complete semiautomata are considered here.
If ¢ is one-to-one, A and B are isomorphic (A ~ B).

Some properties of the notion of covering of semiautomata follow.

(i) B>Ao A is a homomorphic image of a subsemiautomaton of B,
‘Proof: B 2 A= d a mapping T of a subset of SB onto SA.such

that TbA < cB’n for every g e T.

' -
The subset SB = SAn 1 of SB forms a subsemiautomaton of

B, Indeed,

B A-1 B A B, A BB B B -1
se ST =sno#¢=snc=80‘n=’soesAﬂ ,
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]
1.e.,SB is closed under the mappings in Mp. Moreover,

the last equality implies also, that for the restriction

) [}
o of gB to SB one has

B' A
o NM="No )
Comparison with (6) shows that T is a homomorphic map-

ping of the subsemiautomaton B' of B, formed by the states

! -
SB = SAn 1, onto A.

Conversely, if A is a homomorphic image of a subsemi-
[}
automaton B' of B, there exists a mapping T of SB - SB onto

SA, such that for every g ¢ %!

B' A
o T‘ = T' g .
' B A B |
But g <o , hence o € g 1 and (5) is satisfied, i.e.,

B = A,

(ii) B = A :-GA is a homomorphic image of GB'

Proof: Use the notation of (i). For every x ¢ T* one has

by (7):
B! B' A A A
1 ...O‘k'ﬂ=ﬂ0’].'—r.0k='nx

- ' -
hence, T }xB M=T1 ]ﬂ xA = Iga xA = xA.

f
xBT]=g-

Define the relation ¢ from the homomorphic image GB,of GBinto GA
]
xB P = xA. Since

B* B' ,-1B' -1 B’ A A
x =y =M x =Ty N=2x =y ,

by:

¢ 1s a mapping of GB,into GAand, as can be seen, even onto GA' But
' B! B! A A A B' B'
a2y ) p=(xy) o=(xy) =xy =& @ ¢, L.e.,

¢ is a homomorphism; thus GA is a homomorphic image of GB,too.

(i1ii)B 2 A, C2B=C =z A

This follows from (i) and also can be proved directly.
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(iv) If 1 is an admissible partition of SB and A is the

v)

Definition: The semiautomaton B = (S

m-factor of B, then'B = A,
This follows from (1), because here A is a homomorphic

image of B.

A
The case when T # EB is taken care by the

B, EB, MB) covers the

semiautomaton A = (SA, EA, MA),if there exists a mappihg T
of a subset of SB onto SA,and a mapping £ of $A into EB,
éuch_that for every g e EA: M UA = tc §)B il

(1. e., to every input in A there corresponds an input in
B "doing the same". Notice, that in this case G

A is, in

general, a homomorphic image of a proper subsemigroup of GB.)

The following are simple, but useful cases of covering:
A A A
a. Given an A with o; = Uj for oy cj e{c],...,ok] <Z,
the semiautomaton obtained from A by coinciding all
these equal inputs covers A. Indeed, as 7| take the
0109+ 040y 47" )

identity on SA and put § =
U]O]'. !U]O‘k+].O.

b, Given an A, one can add new inputs to EA. The ob-

tained semiautomaton will cover A,

c. Assume that in the above definition 7} is a2 one-to-one
B A A
mapping of 8 onto S, £ is a mapping of & onto
EB,and for every g ¢ EA:

n _o‘A (cg)B'ﬂ

It follows gA = ﬂ-](gg)Bn, hence inputs in A, hav-
ing the same image under £ are equal,

The semiautomaton, obtained from A by coincid-
ing the inputs in every such class of equal inputs,

is, clearly, isomorphic to B.
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3.2. In the sequel the following construction will be useful.
a semiautomaton A = (SA

* * *
and a n-factor A/n = B, A new semiautomaton A% = (SA s EA . MA )

is constructed as follows:

T =X =1Z
Ax A - A A A
5 =1(, Hi)}’ 8¢ 5 and 8 ¢ Hi €M,
A = A¥x A =
(s, Hi) o = (sAb » Hy oB) for every ¢ ¢ E.

*
Notice that the obtained palr 1is necessarily an element of SA

cause ,by the construction of A/n = B, sAe H

1 b i

The following two observations are important.

*
(1) Define a partition m* of s* such that the partition blocks

consist of all pairas having the same second component,

= sAoAb H, vhere H.= ﬁi

Given

be-

w*

*
is admissible because the mappings gA act independently

*
on the components of sA . Ax/g* is isomorphic to A/m = B.

Indeed, the blocks of m* are in one-to-one correspondence

with the elements of B,and the mappings in A*/n* originate

from the mapplongs in B,

- A

_ ' *
(11) The mapping 1) of s onto SA defined by (sA, H) N=8

A
s L HA), an admissible decomposition v of SA,

[+ N

A AA

* A —
satisfies 1 oA = cA T for every ¢ because (s, Hi)ﬂ g =8 O

AA

and (BA; ﬁi) UA*ﬂ =(s¢g, ﬁfun) n= sA

Hence A* = A,

Usually it is more convenient to work with partitions than

with decompositions, and this is the reason for introducing A%,

which can be interpreted as the given A with states, belonging to

more than one block of m, appropriately "duplicated".

P for all (sA,ﬁi) eS

Ax
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3.3, Two semiautomata can be combined as in the following

Definition: The direct product of the semlautomata A = (SA, z, HA)

and B = (SB, o, MB) is the semlautomaton A x B = (SAXB, z, MAXB)

with SAXB= SA X SB and MAXB defined as follows: for every g e¢ T

and every sA e SA, sB e SB

A B, AxB A A B B
(s", s) g X = (s g, s a).

Theorem: Letmw and T be two admissible partitions of SC in a
*)

semiautomaton C,such that their intersection is the identity

partition of SC. Then C/m X ¢/t = C.
Proof: Let A =Cfn, B=C/t

Ay B c «&xB

Let T S

{@,,

The mapping Tz TAXB —aSC is defined by

be the set of all pairs

=5 A= B
Kj)|Hie 7, K, e 87, By 0K, # 91

(Hi’ Kj) n = Hiﬂ Kj

It follows frommw N ¢ =1 of s° that T is a one-to-one map-

iden
ping of TAXB onto SC.
Let P and P, denote the natural mappings of SC onto the
blocks of m and T, respectively, i.e., qun= Hia sc € Hi and
c c
8 =K. a3 K,.
AL ] ©

Now, for every (H

Ej) ¢ 'IAXB:

i,
—_ = C C C C C C
CP Kj) Mo'= (N Kj) o=H o N Kj c=Hoo N ch P.=
C C = A = B = AxB
= H; o wn’_Kj o) = Hga, Kyo) M= @y, Kj) N,

and consequently A x B = C.

*
)The intersection of the partitions n] and "2’ denoted n1 N Ty is
the partition having as blocks all non-empty intersections of the
blocks of w, and 71,. The identity partition m

1 2 iden
the partition in which every block is a single element of this

of a set is

set,
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3.4. Two semiautomata can be connected as in the following
A
Definition: Let A = (S, ZA, MA) and B = (SB, EB, MB) be two semiauto-

mata and w a mapping of SA ® EA into_EB. The cascade product of A and

' o] o
B with the mapping @ 1s the semiautomaton Ang(SAwB,ZAmB,MAwB) with

0
SAmB SAx S? EAmB_ EAand MAmB defined by

(R, 6%) B = (sh? (st 0) P, (s% sh, oP o SP, oext).

The case, when SA X E < z and y 1is the identity on SA X EA will be

the usual one in what follows. The corresponding cascade product of

AOB AA B,LA
—(SO':S (8 ’0'))

A and B will be denoted by ACB and (sA,sBj o
In the sequel‘the_following notation will be uged:
ISI = the number of elements in the finite set S,
m(n) - the maximal number of elements in a block of a decomposition
m of a finite set S.
9 " the natural mapping of S onto the blocks of a partition m of S:
se_= Hi © B ¢ Hi {as introduced in 3.3).
Theorem: Given a semiautomaton A = (SA, T, MA) and an admissible
partition 1t = {Hi] of SA, there exists a semiautomaton

D

D=(5,%

D, MD) such that |SD| =m (), and CoD > A, where
C = A/‘|T.
Proof:  Obviously, one can find a partition 1= {Kj] of SA, such

that t 11 =7 of SA and ITI =m (). (|T| is the number

iden
of blocks in the partition 7).
Let: S° = %}
ED = SC XL = {ﬁi} X T and
- = D A
Kj (Hi’ g) = (Kj n Hi) o Q. (8)

Notice, that the right-hand side in the last equality may be

empty (this will happen when Kj n H = ¢). In these cases

—

oD
K,H,, o) can be chosen arbitrarily. Denote by 1€°D ¢ gCOD pe

i
set of all pairs (Hi‘ Kj) such that Hy n Kj # 9.
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. Cc°D A
T, is the one-to-one mapping of T onto S

My, K =H 0K,
cop
‘Now, for every element of T

i’ i

— — A A A A
(Hi’ Kj) Mo = (Hi N Kj) c =H o 9 N (Hi N Kj) o @ =

LY = G0 = = D
= (H o, @ N Kj) o o)M= @ o, Kj Hy, 0Y) M=

— = cop
=, Kj) o n .

This proves that COD = A,

1f 17 is an'admissible partition of SA, then the mappings (ﬁi’ o)D do
not depend on ﬁi’ because all elements of Kj are mapped by oA into
the same block of T. All inputs in.ED with the same g are equal,
and after coinciding them, the cascade product C®D reduces to the
direct product € x D. Thus, the direct product can always be cdn-

sidered as a particular case of the cascade product,

3.5. The construction in 3.2. allows the last result to be extended to
the following important
A A

Theorem: Let A = (8§, ©, M) be a semiautomaton, -w an admissible

decomposition of SA and B a n-factor Afm of A, Then there exist

semiautomata C and D, such that C ~ B (C is isomorphic to B),

D
[s7| = m(w),and C°D = A,
Proof: Using w and the given B, the semiautomaton A* is construct-

ed. mn* is an admissible partition of A*, hence as in the last

theorem there exists a D such that COD = A*, where C = A*/r*
and [SD| = m{m*). But A* > A, A*/n* ::A/u,and m{m*) = m(m)
(cf. the definition of w*). The theorem follows,
3.6, Example
A (123456 123456)
A= ({1,2,3,4,5,6}, { b {og =<$ 12135/)% =\4s53333/
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A can be conveniently defined using the table

and this form of description will also be used here for other semi-
automata.

w = {H ={1,2,3], H, = {3,4,5}, H, = {5,6}}

1s an admissible decomposition of SA. The following table defines a
n-factor of A: Afm = B

B hii 2 Hy

6 1 1 2

=
|

q
=

==t
=1

2
=i
=

2 1

Notice, that ﬁzo? and ﬁgc? can be defined both as ﬁ} or ﬁz; the particu-

lar choice is arbitrary.

The semiautomaton A* (1H, will be written instead of (l,ﬁ1),etc.):

1

Ax | 1H M 3H 30 4ﬁ2 5H 5H 6H,

1 ] 1 2 2 3 3
o, |38, T, &, M I 3H 3H, si,
oy |48, SH, OH, 3W, 3H, O 3E, 3A

The partition e
m = {BX = {1H, 20, 3H}, By = {30

The semiautomaton C = A%/rr*:

C [H¥ H% H*

a4 H% H% H*
C is isomorphic to B.

A : A
A partition v of §° has to be found such that ¥ N T = T den of § .

T must have at least three blocks (m{(n*) = 3)., One possibility is:
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v = {Ky= [T, 3H,, 5H,}, K= {20, &H,, 6H,], Ky= {3H,, 5H,}]

The semiauvtomaton D:

D K] K2 K3

(B¥,0 ) [K; K K
(E,Z‘:Go) -IZ E K
@,0) | K; K
(ﬁ’i‘,oo) E] .iz

—— 3 arbitrarily
(ﬁ-‘;,c]) K, K

The semiautomaton COD

a b c d e f g h k
H*. K H%x X H* X H*x X T* X Hx X B* X ‘H* K He K,
0% K H* X % K H*x K % K Hx X . X H* K Hx K
m—— - g - — -— — --* — — — — - e — -

Checking of the fact that C9D = A:
CoD
COD = A* by the mapping (the elements of S are redenoted as in the

above table):

hnef2 2 ¢ 4 e £ g h)

1 Gn] M3, O, 4, SH, SH, 6,
0 —_— -

Notice: 170 = 87 - { @,K)].

A* = A by the mapping

, :CH] 2H, 3Hy 3H, 4, S5H, SH, 6H3)
1 2 3 3 4 5 5 6

Hence COD > A by the mapping
abecdefgh

ﬂ~T\1T12=(] 2334556

Indeed, for g one has:

o]
A fabcdefgh\_ _ CO
Tb_(31221335)—00 M
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and for o]:
A _ (a b

Lecture 4,

Permutation and Reset Semlautomata

4.1, Consider the semlautomaton A = (SA, z, MA) with ISA] = n,and
let m be the decomposition of Sé, the blocks of which are all subsets
of SA having exactly n-1 elements. For every S & SA and every g ¢ %,
IS UA] < ISI, hence 7w 1s an admissible decomposition. It can be used
to construct a r-factor A/n=B of a very special nature,

‘ A
Suppose IS%J ] < n, then there exists an Hi ¢ 1t such that

SAbA = Hi’ consequently for every Hj e m:
A A A
- B = B B
Define Hj g = H1 for all j, i.e., ¢ maps all elements of S onto one

B .
element (i.e.,lprzc |=l). An input having this property will be. called

a reset input.

A A A
If IS Pl ] = N, ¢ 18 a permutation of SA. Then for every Hi

there exists'exactly one H, such that Hi oA S H actually H 0A= H..

3 h 1 i

In this case H # Hj = H oA # Hj UA is also true, i.e., cA permutes

i

A
not only the elements of S but also the blocks of w and'cB'necessara
ily will be a permutation of SB. An input in a semiautomaton which

permutes its states is called a permutation input.

All inputs in the m-factor B constructed as above are either
reset or permutation inputs - a semlautomaton with this property

-i8 called a permutation-reset semiautomaton.

A cascade (and also a direct) product of more than two semiauto-

mata can be constructed in an obvious way, provided that the condi-
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tion on the inputs from the definition in 3.4 is satisfied. Ob-
viously, if COD = A and EOF >.D, then C © (E O F) = COE O F 3 A,
This fact together with the theorem in 3.5 and the above construc-
tion give the

Theorem: Every semlautomaton with n 2 2 states can be covered by

a cascade product of at most n-1 permutation-reset semiautomata.

The number n-1 in the theorem results from the observation that

every two-state semiautomaton is necessarily a permutation-reset one.

4.2, Definition: A permutation semiautomaton A i3 a semiautomaton

in which cA is a permutation of SA, for every o ¢ SA.

A reset semiautomaton A 1Is a semiautomaton in which gA (g ¢ ZA)

is either an identity on gh or |SA6A] =1,
The following will now be proved:
Theorem: Every permutation-reset semiautomaton A can be covered
by a cascade product C © D of a permutation semiautomaton C and
a reset semiautomaton D.
Proof: EAE Z can be divided into two disjoint subsets:
T = EP U ‘Er (Ep N z, = ¢),where Ep = {cp} is the set of all
permutation inputs of A,and T _ = {cr} is the set of all reset
inputs of A, Let EA be the subgroup of G, (1.e. of the semi-

group of A) generated by the permutations {os}c .+ The elements

_ o

of GA’ i.e., the distinct permutations xﬁ, where xpez;’ will form
the states of C, and in this role they will be denoted by xﬁ

EF =% and Mp i3 defined as follows:

;; cc = XA UA = (HU)A KA UC = ;K
3 P p p’ pr Tp

Thus C 1s a permutation semiautomaton,

A A

D . A D .C A, A D A A A D AA AT
Let 8" = {8 }sAe gA? T =S xiand s (xp,cp) =8, 8 (xp,cr) =(s or)(Xﬁ) .

sAai is the same for all sA, hence D is a reset semiautomaton,

1
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cop A A A
COD=A., Indeed let T2 S — S be defined by (x ,s )ﬂ_s x ,
P
and as xg is a permutation of SA TN is a mapping of SC D onto
SA.
A A A AAA A, A
Now (x 8 =8 X = 8 =
D(pa )1]0‘ pO'P (xO')p
—% A . _Ac AX x A o
((xo),s)'n-(xc, 0,0 )" N = 65, 8 oF U
PP p P
and
A A A_AAA_ A A A A AT A
(x » 8) Mo, = 8x, 0, =8 0 = (s qr)(xp) X, =
A =i ""K oC A A
= (x ’ (5 oy )( ) )M = p oL (xp' o) )ﬂ
CcoD

-] b-

=(x93)0r T\-

4.3. In a reset semiautomaton A every partition of SA is admissible,
because gA is either the identity, or maps SA ontoc a singletbn. Hence
A (with ’S | > 2) can be always covered by a direct product B x C,
- where [S | = 2 and |S | <] s | Indeed, take any partition w of st
having two blocks: obviously m(y) < ]SAI, and the above follows im-
mediately.
By applying the same procedure to C, and observing the obvious
fact that
BxC=2A, DxE2C=>Bx DXxE)=BXxXDXEzA
one cbtains the
Theorem: Every reset semiautomaton can be covered by a direct

product of two-state reset semiautomata.

4.4, Consider the permutation semiautomaton C from 4.2. The states
of C are the elements of a group'EA tenceforth in this lecture denoted
by G) of permutations of SA. Every mapping of the states of C due

to an input is a right translation (i.e., multiplying from right)

by one of these permutations (i.e., by an element of G, E.g., for
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the reset inputs this is the identity element), It follows, that

if a semiautomaton G = (SG, EG, MG) 1s defined with:

G G G .
§ =6,%T =Gandg g =8 8, (8, 8,¢ G

then G 2 C. (Indeed, in 3.1 (v) put for T the identity mapping of

SG = G onto SC = G and for E£: EC —9SG = G the mapping taking every
o6 EC onto that element of G,which performs the same right transla-
tion as ac.)

A semiautomaton having the structure of G = (G, G, MG) will be

called a grouplike semiautomaton,and the above can be expressed by

saying that the semiautomaton C from 4.2. can be covered by a group-
like semiautomaton G. . Moreover, and this observation will be use-
ful in the next lecture, the group G is isomorphic to the group EA
generated by the permutation inputs of the permutation-reset semiauto-

maton A, which is covered by C © D in 4.2,

4.5, Given a grouplike semiautomaton G, assume that the group G has
a subgroup H = {e, hyy ens ht] (e is the identity of G), Let 1 be
the partition of G into right cosets of H:

m= {H, Hk Hka’ LS | Hkuj’

2!

Koy ooey kuj is a set of representatives of the

2* 7y
distinct cosets of H, (Notice: tu = |G|). m is obviously an admis-

where K = {e, k

sible partition of G. The union of the subsets of G in

v = (X, bk, ..., hK]
has at most |G| distinct elements, but as
KthKU,..UhtK=HK=HUHk2 Ueool H ku"_"G ’
it has exactly ’Gl distinet elements. Every subset in 7 has at most
u distinct elements, there are t such subsets, ut = |G|,hence, T is

a partition of G, Next observe thatm Nt =1 of G, Indeed,

iden
Hki N hj K 3 hj k1 and only this element, because otherwise there
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will be a k_ # ki such that Hkm NHk # §, which 1s impossible (the
k's are representatives of distirct cosets). At the same time every

E ¢ G can be written in the form h ki’ and so the above assertion is

i
verified.

The theorem from 3.4 can be applied (using w and T) to cover G
by G/n 0 D, Especially interesting ia the fact, that after coinciding
equal inputs in D one obtains a semiautomaton isomorphic to the group-
like semiautomaton

H= (H, H, Mﬂ).

To this end, let T) be the mapping N: H -»S° defined by h 7 = b K.

This is a one-to-one mapping of H onto SD.

For every k., ¢ K and every g ¢ G the product k g belongs exactly

i 3

to one block of v, i.e., to some hnK. In other words, there is a

D H
unique km ¢ K and a unique hn such that k.g = hnkm. Defing E: L »% =H

J
by dﬁ;;, g) € = h , where hn is as defined above, E is, clearly, a

mapping onto H because by changing g and k, all blocks of 7 can be

]

obtained.
Now it will be proved that ﬂ(ij, g)D = ((ij, g) gjﬁ M- - Indeed,

for every h, ¢ H:

i
—_— D s e D G

G
(hikj )8 q)T:'-' (hikjgh'r= (hihnkm)cp'r =

wsr—— et H
hh K = (hihn) M = hi((HkJ, s)g.) M-

Everything here is exactly as in 3.1 (v.c), consequently, coincid-
ing the equal inputs in D will result in a semiautomaton D1 isomorphic to
the grouplike semiautomaton H, If the above E is taken as g one obtains

Theorem: Let G be a grouplike semiautomaton and H a subgroup<of

G. G can be covered by a cascade product C b D, such that the

semiautomaton D]is algo a grouplike semiautomaton isomorphic to H.
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4.6, If H is a normal subgroup of G,and £ and 8y belong to the
same coset of H in G, then in the m-factor B=G/m (m is the parti-
tion of G into cosets of H) g? and gg will be equal., It follows
that after merging equal inputs in B a grguplike semliautomaton
G/H (G/H denotes the factor group of G over ﬂ) will be obtained.
This observation together with the theorem from 4.5 result in the
Theorem: Let G be a grouplike semiautomaton and G = Ho’ Hl""’
H = {e] a composition series of G (i.e., every H; is a normal
subgroup of H, . and Hi;1/Hi is a simple group. e is the identity
in G}, Then G can be covered by a cascade product of grouplike
semiautomata isomorphic to the factors Hi-l/Hi of the given
series.
Thus a grouplike semiautomaton can be covered by a cascade product

of simple grouplike semiautomata - 1.e.,ones which correspond to simple

groups. (A simple group is a group which has no proper normal subgroups.)

4,7, Given A © B and C = B, it is obviously true that A © C is de-
fined and A © C = A © B, But also the following is needed
| Theorem: Given A © B with,EB = {(sA, c)}(SA € SA, o ; EA)
.and C 2 A, there exists a semiautomaton B, such that:
a) SB1 = SB

b) for evefy o€ 231 there exists a a,e EB such that

B
011 = gg, and, vice versa, for every o3 € SB there
exists a.cr4 € 231 such that gg = 021
c)COB, =A0B,

1
Remark: After coinciding the equal inputs in B1and those in B, isomorphic

semiautomata will be obtained. Notice that B]and B have isomorphic

semigroups. It follows, also, that a mapping w of SC X Ec into ZB can

be found such that C(BB = A © B,
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Proof: C 2 A= ¥ a mapping 1| of a subset of SC onto SA, such
C C A

that for every s ¢ Pry M 8 Mo = s © CFC M le EA, which

is assumed, for simplicity, to be equal to zc).

B1 will be defined as follows:

Bq

B B
87" = 8§ and s will denote an element of either of these sets,

depending on the context,

B
B =, o)) (€ esC o6t =1t

C C :
For 8 ¢ pry T (s, G)B1 = (acn, o)B
C C B
For s J'Pr'ﬂz (s, a) ! = an arbitrary (BAy G)B.

Thus a) and b) are satisfied (N is onto SA).

1

- o
To prove c) define a mapping 7| of the subset of SC B » consisting

of all pairs (sC, sB), such that sc e pry T, onto SAOB by:

(SC; aB) ﬁ_: (scn, SB).

(M is onto, since 7| is onto.)

A o
For every g ¢ & (Notice: ZA B

s, &By7 JAoB _ (sc,n’ By A% _ (scn iy SB(BCT\’ B -
= (%, 82Cn, )B) = (8%°C, B, B T =
C

C
=gt = £° = %Py,

= (%%, PiC, P M= ¢, ¥ "B

and this proves c).

The theorem can, obviously, be generalized to the case, when EB

A
includes { (s , o)} properly.

4.8. The distinct constructions done in this lecture can be
combined to give the following
Theorem: Every semiautomaton.A can be covered by direct and
cascade.products of semiautomata of two kinds:
a) simple grouplike semiautomata;
b) two-state reset semiautomata,
This theorem is a part of the theorem of Krohn and Rhodes which

will be presented in the next lecture.
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Lecture 5.

The Structure Theorem of Krohn and Rhodes

5.1, The folleowing main Theqrem'belongs to K. B. Krohn and J. L. Rhodes:
Theorem: Every semiautomaton A can be covered by direct and
cascade products of semiautomata of two kinds:

a) simple grouplike semiautomata with simple groups which
are homomorphic images of subgroups of the semigroup
GA of A,
b) two-state reset semiautomata,
Everything but the result about the possibility of allowing
simple groups from a certain "origin" only was proved in the
previous lecture. Here a modification of the construction of P.H. Zeiger

will be used to complete the proof.

5.2. The grouplike semiautomata used to cover A were obtained in
three steps:
a) A was covered by a cascade product of permutation-reset
semiautomata,
b) Every such permutation-reset semiautomaton was covered by
a cascade product of a permutation semiautomaton and a reset
semiautomaton.
c) The obtained permutation semiautomaton was covered by a cas-
cade product of simple grouplike semiautomata.
The simple groups appearing in c) are homomorphic images of sub-
groups of the group of the permﬁtation semiautomaton obtained in b).
This group is the group generated by the permutation inputs of the

corresponding permutation-reset semiautomaton obtained in a).
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Thus, the crucial step is the first one, and the theorem will
be proved, if it is shown that every semiautomaton A can be
covered by a cascade product of permutation-reset semiautomata such
that the subgroups of their semigroups, generated by their permuta-
tion inputs, are homomorphic images of subgroups of GA' This will
be achieved by constructing series of admissible decompositions of

SA having special properties,

5.3. Let w be an admigsible decomposition of SA and assume m(ir) > 1.
- Let A/n =B bé a ﬁ-factor of A.

Among the blocks of 1, having m(r) elements (i.e., the largest
blocks of 11), it is always possible to find a subset say m, = (H],...,Hm},

such that

A

A A
* = - =
Hi’ H, ¢ "ﬁlz'ﬂ Xy X, € n*, Hix] = Hj’ Hsz = Hi(ﬁ =5)

3

and no xA maps & block not in T onto a block in T
The existence of at least one such subset T follows easily from
the fact, that the identity mapping AA maps every block onto itself,

and the above relation between blocks is transitive (since if
A

A A
H1 X = Hj and ij = Hk’ then Hi(xy) = Hk).

5.4. For a set of sets {uj], max({uj])will denote the set of all

distinct sets in {uj} maximal under inclusion.

Consider the following set of subsets of SA:

U $ 4
n o= [H}Hﬁ-ﬁm U l;f:? max([H?‘ 22;;* U[S SASHi = {Hi}) = TI'] U 11'2: (9)

HxAd-Ii

' ' . .
where o= {H}Heﬂ-ﬂh’ and Ty is the expression in the brackets,

*)

*
) In Zeiger's construction, used also in [2], only decompositions
in which there are no blocks included in others are used. This
leads to difficulties, which will be pointed out later (see the

~ footnote on p. 34). :
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n' is a decomposition of SA, because all elements of SA which
are not in blocks of ™ appear in some other blocks of 1, and the
elements of SA in the blocks of T are,_obviously, taken care by the
blocks of “é'

' is properly finer than ¢ (i.e. w' < w), because the blocks
in n_ of m are "replaced" in 11’ by smaller ones.

Finally, nt' is an admissible decomposition of SA. Indeed, for
every block H' of nt' and every geX, H'oA is included either in a
block of m - m » or in some subset of a block in g , which will,

clearly, be included in a block of "i' Notice, that H em, can be an

i

image (onte) of a block H ey only, but all these blocks are deleted,

j

5.5. The blocks of né included in Hiem will be denoted by

Hypo Hypoeeos Hiai

For every Hie“m there exists a yiez*, such that H = H (In

o M
this and the next section the mappings xA will be denoted, simply,

by x - all mappings here refer to the semiautomaton A.)

There exists,also, at least one xiez* such that H =H

L i’

Hence H.l X ¥y = Hl’ il.e., x is a permutation of the elements in

1Y

H,, and for some n the permutation (x

)n-1 x

iyi)“ will be the identity on H,.
(x ; maps H1 onto Hi’ hence the block H]p into, say, Hiq

(notice, that "é is an admissible decomposition of the set of elements

of SA in T with respect to all maps taking blocks of s into such

173

blocks). Now:
' ' n ' n-1
By, = By Gy ) =By Gy )™ xyy, S H Y,

and,as y; maps H, onto H,, there exists an H. such that Hiqyi < H

i 1° 1r 1r*
The maximality of the blocks of ni included in H;, implies that
H]p = le = Hiqyi' Yy is a one~to-one mapping, hence 'Hlpl = IHin,
n-1 n-1
d - - =
and since also (xiyi) X; is one-to-~one, H]p(xiyi) Xy Hiq'
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For H H.  th nely -
or lp] # 1p e same reasoning gives H1p] (xiyi) X, = Hiq]
with Hiq1 # Hiq’ because otherwise the mapping (xiyi)n-]-xi would

take Hy U H]p] onto H, , while |H]p U H1pi| >|H1p| = ]Hiq[.

-1
Altogether, (xiyi)n x, maps distinct blocks of ! in H, onto

i 2 1
distinct blocks of “é in Hi' The roles of H] and Hi can be inter-
changed, hence the conclusion: all Hi in T have the same number of
blocks of né, i,e., ¥y = Ag=e..=o = O

Enumerate arbitrarily the blocks of ! in H_, and then enumerate

2 1°
the blocks of ﬂé in every Hi(i=2,...,m), so that the above mapping
n-1 *)
(xiyi) X, will map H]p onto Hip’ hence also Hipyi = H]p.

5.6. Assume that for some gel. there exist Hi and Hj in L such that
= Hj.Analogousto Y in 5.5, this g must map distinct blocks

Hio'

Hi]""’ Hia onto distinct blocks Hj],...,Hja. This mapping can be

described as a permutation V;J of the (second) indices 1,2,...,0.

g=H from 5.5

1]
If PY,” = 9 (i.e., H q) one cobtains (with X.s¥y

ip i

and an analogous yj)
-1

n
Hip(xiyi) X,0 .

=H .,=H =H
j ipoy y

i a9’ g
Consequently, the mapping (xiyi)n-]xicyj (which depends only on 1, j

and g, but not on p and q) permutes the blocks H}],...,H1a exactly

*)The above is also claimed in [2], see p. 202, But if one uses de-
compositions in which no block is included in another, this is not

the case, Take, e.g., the semiautomaton A described by |1 2 3 4 5.
c|4 5412

m={12,13,45} is an admissible decomposition of SA. The blocks

12 and 45 can be taken as m_. The set of all images of blocks inm
and all singletons is 12, 1?, 45, 1, 2, 3, 4, 5. Delete from this
n (i.e. 12, 45) and perform the max operation. The result is the
admissible decomposition 13, 2, 4, 5. The block 45 of w, is divided
intc two blocks 4 and 5, (45)g=12, but 4g = 1 does not appear as a
block in the new decomposition, because it is included in 13..
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as y;j permutes the indices 1, 2,...,a. This observation will be of

great importance in the sequel.

5.7. Arrange the blocks of w' in the following array:

L L N L

j] 2 o
K, Hiy Hiy « .o Hyy
K, Hyy Hyo . By
Km Hm1 HmZ Hma
LT
Kt Ht

The H, ,'s are defined in 5.5 and H

13 m+1""’Ht are the blocks in

L]
]I
The bars indicate, that all blocks are considered now as elements of
the set of states SF of a n' - factor of A, F, which will be defined
as follows:

F A MF
First, ¥ =% , Now, to define notice that the set of elements of
SA in all blocks of 7' appearing in the row i of the array is exactly

Hi' If “19A¥“h’ one consults the ;1 - factor B = A/n, and finds there
ﬁioB = ﬁj' This means that HigA c Hj’ and by the construction of (9)
A

there necessarily exists a block of ' in the row j including Hf’ .
The corresponding elément of SF (it is in Kj’ of course) will be de-

fined as the image under oF of all elements of SF in Ki'

Now consider the case, where HiqA = Hjenm. This is possible

only if H e also. Since there may be blocks in w included one

i

in the other, ard, in particular, equal blocks, there may be sever-

al blocks in T equal to HicA; then take for H, that one for

i




which ﬁigB = ﬁj in B. gF i3 defined to map the elements of Ki

onto those of Kj’ exactly as UA maps the corresponding blocks of ni

in Hi onto the blocks of ﬂé

Let p denote the partition of SF into the subsets Kl’ K2’°"'Kt'

in Hj’ according to 5.5 and 5.6,

The above definition of M ensures that p is an admissible partition

F
of 8§, and, moreover, C = F/p is isomorphic to B = Afm.

5.8. The partition of SF into the subsets L1, LZ""’ La (the columns
of the array in 5.7) will be denoted by 1. Evidently p (7 = ™ den.
of SF . As in 3.4, a semiautomaton D with states which are the
blocks of 7 will be constructed, and COD = F,

Now it will be shown that D can be made a permutation-reset semi-

automaton. The inputs of D are of the form (Ei, o) and as in 3.4

- = D F

Lk(Ki’G) = (Lk n Ki)c L
If 1 i8 one of the numbers m+l, m+2,...,t only L] n Ki # Q;and for
all k = 1,2,...,o0 define

- - D = - D -

Lk(Ki,c) = L1(Ki’c) . i.e.,(Ki,o) is a reset input
in D,

If i¢{1,2,...,m} and HigAﬁnm, then by the construction of F in

5.7, all elements of K, will have the same image in F under UF, i.e.,

i
fk(fi,o)n will not depend on k, and (Ei,c) is once more a reset input.

UA =H

The last possibility is that 1g¢{1,2,...,m} and H

jSTTm-

F
Then, by definition of ¢, one obtains:

- = D F =  F =
L Ko = WKy o'ey = Hyoer = Hy 13 @ = Tygyiy »

i.e., (Ei,c) permutes the states of D (i.e.,-f],...,ig) exactly in
the same way, as Y;Jpermutes the indices 1,2,...,y¢. Thus (fi,c) is

a permutation input, and D 1s a permutation-reset semiautomaton.
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5.9. It follows from 5.8 and 5.6, that to every permutation input

of D, there corresponds an input in A, which permutes H]], H12""’Hla

exactly in the same way, as the above input permutes the states of

2,...,Hx. Hence, the subgroup of GD’ generated by all permuta-

tion inputs of D, is isomorphic to the group of permutations of the

D: f?,f

subsets of SA H H1a’ generated by the corresponding inputs in

TERREE
A, when restricted to the above subsets and considered as permuta-
tions of these subsets., In order to prove that this group is a homo-
morphic image of a'subgroup of GA’ the following lemma will be used:
Let G be a semigroup of transformations of a finite set S, and
assume that there is a subset So of §, such that some elements of G,
when restricted to So are permutations. Then there exists in G a
subgroup G1 such that the permutation group Go, generated by the
above mentioned permutations of So’ is a homomorphic image of G1.
Proof: Denote by T the subset of G composed of all transforma-
tions, such that their restriction to So is a permutation. Clear-
ly, T is a subsemigroup of G. e will denote an idempotent in
T with a minimal |pr2e| over the, necessarily non-empty, set
of idempotents in T. Denote by G1 the subsemigroup eTe of T.

Every ete (t¢T) has prz(ete)gprze(because if prz(ete) < pr.e

2
properly, then for some k, (ete)k will be an idempotent in T
with Iprz(ete)kl < Iprzel). S = prl(ete) is partitioned into
classes of elements having the same image under ete, and this
partitioning is the same for all elements of G1 (because every
such class in e belongs to an entire class in ete, and two
distinct classes in e cannot be merged in ete, since
prz(ete) = prze).

Naming these classes and calling every element of prz(ete)

by the name of the class to which it belongs, converts every
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element of G] into a permutation of the above "names", (Notice
that distinct elements of prz(ete) must belong to distinct
classes), Hence G1 is a group - a subgroup of T, hence,also

*)
of G.

Denote by G2 the subgroup of G1, generated by those ele-

ments of G,; which, when restricted to So’ are permutations

15
appearing in Go. Gz is a subgroup of G], hence alsc of G;-

the mapping ¢p: G2 —aGo, such that for every gzeGZ, 8,9 is the
element of Go performing the same permutation of So as g, does,

is, clearly, a homomorphism of G2 onto Go' This concludes the

proof of the lemma,

This result cannot be applied directly to the situation dis-
cussed before, because permutations of, in general, overlapping sub-
sets of SAappeared there instead of elements of SA. To handle this
case, consider the set S = gt U So, vhere S0 = [H11""’H1a3' ‘To
every zA(zez*), which permutes the above subsets, put in correspond-
ence a mapping‘; of 8§ into S, which coincides with zA on SA, and
permutes the elements of S0 exactly in the same way, as zA permutes

A A =
the subsets with the same .names, Clearly, z1 = z2 @ zy o= z2,
A

i.e., the subsemigroup GA of GA generated by the z 's is isomorphic

to the semigroup G generated by the z's, Now the above lemma can be
applied to obtain that the group generated by the said permutations
of the eleuents SO of § is a homomorphic image of a subgroup of G.

It follows that the group of permutations of {Hll""’HIQJ’ generated

by the zA's, restricted to H.l = SA, is a homomorphic image of a sub-

*
) The fact that eTe is a group follows also from a theorem by Green.
(cf. A. W. Clifford and G, B. Preston, The Algebraic Theory of
Semigroups, Vol. I, AMS, 1961, p. 59).




-39

group of G,, hence, of a subgroup of GA'

5.10. The results of the previous sections can be summarized as
follows:
Theorem: Given a semiautomaton A and an admissible decomposi-
tion 1 of SA with a n-factor B = A/m, one can find a properly
finer decomposition ' of SA and a n'-factor F = A/n', such
that F can be covered by a cascade product COD, where C ~ B,
D is a permutation-reset semiautomaton, and the group generated
by the permutation inputs in D is a homomorphic image of a sub-

group of the semigroup GA of A,

5.11. To prove the Theorem by Krohn and Rhodes (section 5,1) start
with the trivial decomposition 1, where all elements of SA form one
block.Do = Afnr 1s a one-state semiautomaton and so it is,clearly,a

reset one, Find as above ' < 1, and obtain A/n' < D0°D1, with D]

having the properties mentioned in 5.10. Next, find by the same

procedure v'' < w', and obtain A/m'' < A/n'oDZ, with D, as in

5,10. Now use the Theorem in 4.7 and obtain A/m'' <(_°D,PD;

vwhere Di is a semlautomaton, which,after coinciding equal inputs

reduces to D,, and has a semigroup isomorphic to this of D2 (cf. the

23

remark in 4.7),
This procedure is continued, and, since at every step the number of

maximal blocks is reduced, after a finite number of steps, a decompo-

(k)

sition m of SA will be obtained in which every block is a singleée-.

ton, (It is possible, of course, that distinct blocks will actually
be the same singleton).

(k)

Thus, the semiautomaton E = A/n i1s covered by a cascade pro-
duct of permutation-reset semlautomata, such that the subgroups of

their semigroups, generated by their permutation inputs, are homo-
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morphic images of subgroups of the semigroup G The proof will

A.
be completed 1if it is shown that E 2 A, To this end,define

A
T|:SE -+ 8§ such that every element of SE, i.e. every block of ﬂ(k),

will be mapped by T onto the corresponding element of SA. (The
blocks of ﬁ(k) are singletons!). Clearly T isonto,and for every

A
geld = 2E ngA =_0En. Indeed,E = A/n(k), where n(k) is an admis~

E.

sible decomposition of SA, hence, if for aome sE and c,sEgE = By»

k
then the singleton sA, in the block of n( ) corresponding to

A
sE (BA = sEn), must be transformed by g onto the singleton s?,
which forms the block corresponding to s? (s? = s? m). Thus
SAUA = 8?, and SETl o-A = SA o-A = S? = B? M= BEUE M.

5.12, Example. The above construction is applied to the semiautomaton

Al123456
o 13127135
c‘]’ 453333

from 3.6.
a) Lettw = {H] = {123456}} be the trivial decomposition of

SA and B = A/n the m-factor

B H]
co E]
0'.l H.I

T, o= [H]} will serve as the m_ from 5.3.
Using (9) n'= {Hn= {1235}, H,,= {345}, H o= (6]} 1s

 comstructed., As in 5.7 one arranges the blocks of m':
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F
They form the set of states S Vofa n'-factor of A,

Afm' = F,, which, according to 5.7, is defined by:
M B Byg
% [P By By
H

o1 [Byz Hy2 Hyy
As in 5.7 and 5.B the semiautomata

1 {1 Ly I

Kpon) by Ly L
Kyop) Ly L, Ly

[l
[

D

=l
= el

are constructed, C, is isomorphic to B = Afn, D, is a

reset semiautomaton and C]OD1 = F1.

b) Now, one starts with the decomposition
m'= (1= (1235}, Hy= (345}, H,= {6}]

(the blocks are renamed for convenience) and with F.= Afmt

P |H1 Hy, H,
°% B K
o, H, H, H,

Herxe Tt'm = T'I"l = [H.l= []235}} and by (9}:
m't = {H,= {345}, Hy= {6}, H .= (123}, H = {5}}.

The blocks

2
form the set of states 5 = of a r''-factor of A, A/n''= Foy

which is given by:
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Fo [y Wy Hy Hy
% |Hnn Hyy By Hyy
9 |#, H, H, H,

The semiautomata C_, and D, are constructed:

2

=1

c, |%,

K? q
i XK
9, 1K Ky Ky

2

o
and C2 D2 z F2'

C, is isomorphic to F], D

o, [, T,
(E] ’OD) £1 I-'-}
Ko ) by Iy
(CORCIOY P
®yo) B, L
Kyso9) by 1y

is a two-state reset semiautomatoL

n'! = {H-|= {]23}- H2= {345}3 H3= {5}’ H4= [6'}]"

Tt a o o T

F = Afn H, H, H ¥,
% |2 B B R

o, |, Hy Hy H

= 1'\‘2 = {H.l = []23}, H2= [345}}.

| n'll= {H3= {s1, H4= {G}s H-”": []}s H]2= [2}, H-|3.= [3}7! H2]={4]’

Hy,= {3}, Hyp= (511,

The subsets of H]

2
{12345
T19."\13222

23456

are ordered arbitrarily, those of

H,, according to 5.5 with Xy= Oys Yo= O Then

2
g) R (0100)' is the identity on H1 and

= bset f H,.
919,97 (13555;) defines the order of the subsets o 2

_

[

t

L)

J

[ P

b

L d

)

.

L) ©




Ly Ly 1
{8 B2 By,
Kalf21r Haz2 Hpa
K, |®
Kully
e o kTl o o o o ) g
Afn'''sFy |Hyy Ry, Hyy Hy Hy, H, H §
% His By By Hyp Hy By By By
oy Hyy Hyz Hyy Hyy Hyy Hyy Hyy Hyy
¢, |X, %, & ¥, b, I, T, I,
o X KKK KoLy Ly 1,
o, |k, X, K, K, Koy Ly Ly
Kpso Ly Ly Iy
Kpsoyd Ly Ly Ly
(53:0'0) £3 }-3 ;-['-3
Kyso XLy Ly Ly
Ko Iy Ly Iy
Koo Ly L, L

C3 is isomorphic to A/m''=F, D3 is a permutation-reset

o
semiautomaton and C3 D3 2 F3.

The group generated by the permutation inputs (E1,go),
(E1,01) and (Ez,oo) of D3 is the symmetric group 53 (the
group of all permutations of three elements), and it is a

homomorphic (actually an isomorphic) image of the subgroup

of GA composed of the elements:




d)

.7/

All blocks in n''' are singletons and the construction is
finished,

F3 covers A by the mapping
Hiy Hyp Hyg Hyy Hyy Hyg Hy H
T=\1 2 3 4 3 5 5 6

Indeed, 5 fHyy Hyp Hyz Hyy Hyp Hyy Hy By 3
Mo, = 1 2 1 2 3 =g, 1

)= 013 1

o ~F. © o °©p! .
But, A< Fy <Gy Dy ~F, %D < (C°D,)°D}~

|
x|
x|

W
W
(¥}

11 Byg Ny Hyy Byp Hog
5 3 3 3 3

A

3
Ll 9 =

w
w

~ =

r
~ onn! Ty
~ (F1° DZ) o D3 < ((DOO D1) DZ) o D3 .
2* 73
respectively, as in 4,7 (of course, the cascade product with

Here D_ = Co, and D!, D!, D!' are obtained from D3, D2' D;,

mappings ¢ can be used instead).

Do, D1, Di, DS' are all permutation-reset semiautomata,
and the groups generated by their permutation inputs are
homomorphic images of subgroups of GA' The methods of Lecture &
can be now applied to obtain a covering of A by direct and
cascade products of two-state reset semiautomata and simple

grouplike semiautomata with simple groups, which are homomor-

phic images of subgroups of Gye

(]

[__]

o




-45-

Lecture 6.

The Necessity of Certain Components

in & Cascade Product Covering of a Semiautomaton

6.1. 1t was proved in Lecture 4 that every semiautomaton can be
covered by cascade and direct (which can be considered as particular
cases of cascade) products of simple grouplike semiautomata and two-
state reset semiautomata,

In the Theorem in 4.5 H need not be a normal subgroup of G,
hence one can cover a simple grouplike semiautomaton A, in which GA
has a nontrivial subgroup H by a cascade product C°D of smaller semi-
automata,

On the other hand, it will follow from the discussion in this
lecture that in the Abbve case G, or GD has a subgroup such that G

Y

is a homomorphic image of it, i.e., the obtalned semiautomata have

A

less states, but at least one of their semigroups is not less compli-
cated than that of A, Because of this, only the simple grouplike and

two-state reset semlautomata will be considered as basic building

blocks (in what follows, used as a technical term) for cascade products
covering a given semiautomaton,

A two-state reset semiautomaton 1s isomorphic (after coinciding

its equal inputs) to one of the following four basic forms:

A2 |croU]ch

B.IS.ISZ

)
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A was introduced in the third case, because GA

by definition. In the other cases O is the identity, The first

includes the identity

semigroup is the group of order 1; a semigroup isomorphic to the
gsecond one will be denoted by R]; the third and fourth are isomorphic
and R will denote a semigroup isomorphic to éhem. All of the above
two-state reset semiautomata can be covered by the fourth one, A2,
and for uniqueness A2 will be referred to as the two-state reset
semiautomaton in cascade product coverings using basic bullding blocks,
K. B, Krohn and J. L. Rhodes introduced the
Definition: A semigroup H is said to divide a.semigroup G, 1f H 18 a
homomorphic image of a subsemigroup of G, |
They also prbved the following important
Theorem: a) If a simple gfoup H divides the semigroup GA of a
semiautomaton A, then in every covering of A by a cascade product
(in particular by a cascade product of basic building blocks) the
gsemigroup of at least one of the factors is divisible by H.
b) If R or R1 divides G,, then in every covering of A
by a cascade product of basic building blocks at least one factor

is A2,

The proof of this Theorem follows.

6.2, Lemma A: For every homomorphism ¢ of 2 finite semigroup P onto
a group G, there exists a subgroup K of P such that Kp = G.

Proof: The congruence class U = 1¢"1

in P (1 1ig the identity of
G) contains the set E of all idempotents in P. Choose e¢E such
that Pe has the smallest possible number of elements. K = ePe

is a subsemigroup of P with e as a two-aided identity. Let

fcK N E. Then £ = ep,e (p]eP) and Pf = Pep,e < Pe = Pf = Pe,

e = eegPe = Pf > e = pzf. Hence, e = pzf = psz = ef = eepje = epe = £,
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i.e,, e i8 the unique idempotent in K.

For every epecK there exists an n such that (epe)n is an idem-
potent, i.e., e. Hence, (epe)(epe)n-]= (epe)n-T(epe) = e, L.e,.,
(epe)n-1 serves as an inverse of epe with respect to e. Thus,

K is a group. The lemma follows immédiately because

Kw = (EPE)¢ = em RP ap = ]G] = G.

The next four lemmas deal with simple facts from the theory of

groups,

Lemma B: Let K be a group and ¢ a homomorphism of K onto a simple

group H, If K1 is a normal subgroup of K, then K1¢ = 1 (the identity

of H) or K1¢ = H.

Proof: Let K1¢ H

1 H] is a subgroup of H., For every hegH

-1 ' -1 -1
take a keho and notice that k K]k = K]. Hence, k ‘¢ K]qm¢ = K1¢,
il.e., h—1H h=H is normal in H, consequently H, is

1 1° Thus, H 1

i
1 or H.
Lemma C: With the same assumptions as in Lemma B, H is a homomorphic

image of K] or of K/K].

Proof: K1¢ = 1= K, is a normal subgroup of the kernel K, of ¢

K/K}1 2
and H ~ K/K2 ~ /KZ/KI’ i.e., H is a homomorphic image of K/K] .

Lemma D: Let F and G be groups and K a subgroup of their direct
product F X G, Then K is an extension of a group isomorphic to a

subgroup A of F by a group isomorphic to a subgroup B of G.

Proof: K is called an extension of AK by BK if AK is a normal
subgroup of K and BK :fK/AK' Let AK = {(f,]G)}, where feF and
(f,]G) cK. AK is a normal subgroup of K isomorphic to a sub-

group A of F.

-1_ _
(f1,31) € AK(fzsgz) A 8182 = IG, i.e., g]_ gz.
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Hence, every coset of Al( in K is characterized by the unique
second component of its elements and BK = K/AK is necessarily

isomorphic to a subgroup B of G.

Lemma E: Let K be a subgroup of the direct product F x G of two
groups and let ¢ be a homomorphism of K onto a simple group H.
Then H is a homomorphic image of a subgroup of F or of a subgroup

of G.
Proof: Apply Lemma D and then Lemma C.

The last lemma in this section deals with subgroups of semigroups

of transformations,

Lemma F: Let G be a semigroup of transformations of a finite set §
and let K be a subgroup of G. Then there exists a subset S0 of S
such' that the restrictions of the elements of K to So are permutations

forming a group iscmorphic to K.

Proof: Set So = 81, where 1 is the identity in K,
a b
11 =1 ﬂ((b) el =>(b) 61), thus, 1 restricted to So is the
identity on So.
a -1 o a\

If aeso and(b) ¢ x ¢K, then xx = 1, and since 7 must include (a) ,
by -1 -1 b

(a) ¢X . But then 1 = x x includes (b) and thus ngo.

ab

Hence, xeK = S0 xVG So' But a, b GSO, x¢ K and(;c)ex.a d yeK
such that xy = 1,
This proves that Sox = So’ i.e,, the restriction X of x to So
is a permutation of the elements of So‘
X=y=>x =Y, but also,'xo =y, =X = y because
x=1x = lxo = lyo = ly=y (nqtice{ ix = 1x0, because pr21 = So).

Finally, xy = z = XY, <% but x ¥ is a permutation of So’

hence xoyo =2 . Thus, the lemma is proved.
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6.3, Theorem: Let A, C and D be semiautomata and assume that
C°D > A. For every simple group H, which divides GA’ the semigroup

GC or GD must be divisible by H.

Proof: B=CD =z A= G, is a homomorphic image of a subsemigroup
of GB' By the transitivity of homomorphism H is alsco a homomorphic
image of a subsemigroup of GB’ hence,by Lemma A,0f a subgroup K
of GB.

The elements of GB are mappings xB= c?bg...gi (UiezBﬁgc)

of the set SC X SD into itself, defined as follows:

B
ngD: (c, d)xB= (c,d) c]og...oi =

= (', dle,ap)” )02 ..oﬁ = (cayoy, dlc,a;)” (co,,oz) ) oerech =
= (ch, d(c,c1 ...(00]-..ck 1° ck) ).
Notice, that on the first component of a pair (c,d) the transforma-
tion xB acts exactly as xc in C.

By Lemma F there exists a subset W of Sc X SD, such that all
transformations in K when restricted to W are permutations, and
these permutations form a group isomorphic to K. Denote by WC
the projection of W on SC, i.e,, the set of all elements of SC
appearing in the pairs of W. Let K] consist of all ngK such
that xc is an identity on WC. K] is not empty, because the
identity of K belongs to it, Moreover, K1 is a subgroup of K, even
a normal one, becamse for every xBeK

(xB)-1K1xB c K].
xB and yB belong to the same coset of K] in K if and only if
xB(yB)'TeK], hence, :':C(yc)"1 restricted to WC is the identity,
i.e., xC and yC, when restricted to WC, are equal permutations.

Thus, to each coset of K] in K there corresponds a distinct

C
permutation of W, and the product of two such permutations cor-
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responds to the product of the respective cosets in K/Kl' Hence
these permutations form a group isomorphic to K/K1, and since

they are restrictions of elements of G, to a subset of SC, this

C
group, i.e., also K/Kl 18,by the lemma in 5.9, a homomorphic
image of a subgroup of GC'
Now the group K] will be investigated, For t'.'.eWc let
{(c,d ),(c,dz),...,(c,dt)} be the set of all pairs in W with ¢

as the first component. Let xB= 03102...gk)BeK1 and denote

D C D c C D D D
(C,c]) (cc1 ,02) ...(ca1...ok_1,ok) = x_. x_1s an element of G.
xB permutes the elements of W and, since xBeK implies Cxc= c,

1
2 permutes the elements of the set {(c,d]),...,(c,dt)}. But

(c,di) xB = (cxp, dixg) = (c,d xg), hence xg, when restricted to
the set {d1,d2,...;dt] = SD, permutes its elements.

The restrictions of the elements of K to the set

1
{(eydi)seney (c,dt)} form a group K of permutations of this set,

and it follows from the above that K, is isomorphic to the group

of permutations of {d .,dt} formed by the restrictions of the

1’..
elements {xg}xBeK1 of GD to {d1"°"dt}' Hence, by the lemma in

5.9, K, is a homomorphic image of a subgroup of GD' The same holds
for every element of WC = [c1,c2,..,cv}.w can be divided into v
disjoint subsets

(c1’d11)’ (cl’dlz)’..-’(c]’d1t])

(°2’d21)’ (cz,dzz),...,(cz,dth)

)’.(cvldvz)"“,(cv!dvtv),
and every stK1, when restricted to W, permutes the palrs in every

one of lhe above subsets independently. Kb ,Kc ,...,Kc are the
1 2 v

coxresponding groups of permutations of the subsets discussed above,and

go the restrictlon of every xBeK1to W can be considered as an element of
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the direct product Kc>LKc KeweX Kc . The restrictions of the
1 2 v

elements of K, to W form-a group isomorphic to K](cf. Lemma F),

1

hence K] is isomorphic to a aubgroup of the direct product

K x\K x-oox K .
€1 ©2 v |
To finish the proof notice that by Lemma C the simple group H

being a homomorphic image of K, must be a homomorphic image of

l(/l(.l or of K In the first case it divides G because K/Kl

1
divides GC. In the second case, by Lemma E which, clearly, can
be expanded to any finite number of factors, H divides one of

the Kc 's, and since every Kc is a homomorphic image of a sub-

i i

group of GD’ H divides GD'

6,4, Assume that A is covered by a cascade product of n semiautomata
Ajseres A, fee,, Ax (((A10A2) ©...)°%A, ) °A . Ifa simple
group H divides GA then, by the Theorem in 6.3, H necessarily divides

GAn or Gp, where E = ((A1°A2)°...)°An_]. In thg last case H necessarily
= o 0 o

divides GAn : or G, where F = ((A] AZ) ces) An-2

of the Theorem in 6,1 is thus proved.

and so on, Part a

Remark: The Theorem in 6.3 and its consequent also hold for aoD = A

with an arbitrary w. Indeed, for every ceED such that OEePr 0, find

ow™! ¢ s% ¢ and add to P Igw_1] -1 new inputs equal to o. The obtained

semiautomaton D1 with SDI = SD and ZD1 equal to ED U {the added inputs}

clearly has GD isomorphic to GD' After an appropriate renaming of the
: ;
elements of 2D1 the cascade product C°D

] will be well defined and

CoD = A = oD, = A.

Now, if a simple group H divides G it necessarily divides GC or GD s

?
A 1
or GD'

i.g., GC
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6.5. A simple nontrivial H cannot divide the semigroup R of a two-
state reset semiautomaton appearing as a basic building block in
a cascade product covering of a semiautomaton A. Thus, if H divides

G, it must divide some G

A B’ where B 18 a simple grouplike semiautomaton

in the above covering. Such a GB is a simple group, but it may have
subgroups which are not simple., So it is possible that among the‘
basic building blocks, one having the structure of H will not appear.
However, suppose that in the set {H1, Hyy oeey Hr} of all simple groups
which divide GA’ say, 1-11 does not divide any of the other groups in
this set (this is true, for example, if all these groups are abelian,
hence cyclic groups of prime order). In every covering of A by a
cascade product of basic building blocks in which the simple grouplike

components have only groups which divide GA’ there exists at least one

simple grouplike semiautomaton B having the structure of H1.

6,6, Lemma: If the semigroup R from 6.1 is a homomorphic image of a

finite semigroup T, then T has a subsemigroup isomorphic to R.

Proof: Let ¢ be the homomorphism of T onto R. oo¢_1 is a sub-
semigroup of T and by finiteness there necessarily exists an idem-
potent e in it, T1 = eTe 18 a subsemigroup of T with e as a two-
sided identity, and the restriction P of ¢ to T1 is a homomorph-

ism of T.| onto R because

T,lcp.l = T.Icp = (eTe)p = (eq;) (Tq)) (ecp) = o‘oRco = R,
The elements {01,02} form a subsemigroup of R, hence

-1 -1
Tz =o®, Uog, is a subsemigroup of T,. Let T, be the smallest

subsemigroup of T2 such that T3¢]§ {c],az}. For any xeT3 the set

xT3 is a subsemigroup of T3 (xti.xté': x(téxti') exT3), and since

(XxT,) @= xp;.Typy= nyl.[o1,02} = {01,52], the minimality of T,

implies xT3=T3.
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Now, 01¢;] n T3 and 02¢;1 n T3 are nonempty disjoint sub-
semigroups of T3 and each has an idempotent, say, y and z,
~respectively. But yT3=15 = ﬁugT3,yu=2== yZ=yyu=yu=z, Similarly,
zy=y and since e 18 a two-sided identity for y and z, the triple
{e,y,2} forms a subsemigroup of Tl’ ﬁenée also of T, isomorphic

to R.

Remark: This lemma also holds when R is replaced by R, - In this case,

1 and ¢1'exist such that T1¢]=R1. One proceeds:

The element d] forms a subsemigroup of R], hence, T2=c]¢;1 is

like above, T

" a subsemigroup of T]. There exists an idempotent yeT2 and since e is
a two-sided identity for y, the pair {e,y} forms a subsemigroup of T],

hence also of T, isomorphic to R].

6.7. Theorem: Let A, C and D be semiautomata and assume that COD = A,

If the semigroup R divides G,, then G, or GD must be divisible

A’ C
by R.

Proof: B =C0D 2 A= GA 1s a homomorphic image of a subsemigroup

of GB. Hence, R 1s also & homomorphic image of a subsemigroup of

G By the lemma in 6.6, there exist in this subsemigroup, hence

in GB’ three elements, zB, xB, yB, vhich form a semigroup iso-

Bo

morphic to R, If zB 1s the two-sided identity in this semigroup,
then {l,xB,yB] also form a semigroup isomorphic to R (1 is the
identity of GB).

xB# yB = g(c,d) ¢ s® such that (e,4,)=(c,d) xB# (c,d) yB=(c2,d2)-

BB B BB B BB B BB B
Now x x'=x", X'y=y , yx=x, yy=y imply:

B

(cprd) xB= (c,d) xPxP = (c,d) x° = (c,»d))
(ey,4dy) yB= (c,d) xByB = (c,d) yB = (c,,4,)
(cp0dy) x= (c,d) YPx° = (e,d) x® = (c,4,)
(cp0dy) o= (c,d) y*y® = (c,d) ¥® = (c,ud,)
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C c
If <, # c2 then CiX mey, &Y = Cgs hence xc # yc and the

set {l,x?yc} = GC forms a subsemigroup isomorphic to R..

(Kotice: xByB = yB = xcyc = yc; etc.)

If € = €y

introduced in 6.3 one obtains:

then necessarily-d] # dz. Using the notation

C
D
(c], 1) (c],d ) x = (c;x ,d x ) , L.e., d1x°1= d,.

Similarly:
D
(c1,4,) 5" = (e1,d,) » 450 = d,
1
D
(c],dz) xB = (cl,d,) = dzxc1= d1
' D
(c],dz) Yy = (cl,dz) = dzyc1= d2 |
Consequently, the restrictions of the identity and of the mappings

xg and y of G to the elements d d2 e SD are

DD = @9

respectively, These three mappings form a BemigroupAisomorphic to
R. On the other hand, this semigroup is a homomorphic image of

the subasemigroup of GD generated by the identity, xg and yg
1 1
Thus, the theorem also holds in the case €= €ye

Remark: The theorem also holds when R is replaced by R1.
Indeed, let [1,xB] form a subsemigroup of GB isomorphic to R1

(it exists by the Remark in 6.6)}.

x® # 12 8(c,d) ¢ S° such that (c,d) x> = (c;,d,) # (c,d).
(c1,dl) xB = (c,d) xBxB = (c,d) xB = (c1, ]), because xBxB = xB.

If c; # ¢ then | # X (c? = ¢, but ex’= cl) and [1G2xc] is a
subsemigroup of GC isomorphic tocR1

1f ¢=c, then necessarily d} # d.

B Cc D D
= = =d
(cl’dl) = (c1,d1) X = (c1x ,d1xc]), i.e., d.lxcl 1 Consequently,
the restrictions of the identity and of xg in GD to the elements
1
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1
mappings form a semigroup isomorphic to R1, and the conclusion

d, d. ¢ SD are d d] and d d1 s respectively. These two
' d d1 d1 d

follows as before.

6.8. Part b of the Theorem in 6.1 can now be obtained by the same
reasoning as in 6,4, using the Theorem in 6.7, and using the fact

that neither R nor R1 can be a homomorphic image of a group. Also,
the remark in 6.4 applies to the present case, and the Theorem in

6.1 is true for cascade products using arbitrary w‘sf Notice that

the mappinés w, in the cascade products, were only used in this report
when the merging of equal inputs was necessary. They were introduced
to preserve the usual definition of a grouplike semiautomaton, requir-
ing.that the set of inputs be identical to the set of states (both

are the elements of thé corresponding group).

6.9, The Theorem in 5.1 shows that for a given semiautomaton A,

simple grouplike semiautomata with groups dividing GA and two-state
reset semlautomata are sufficient to construct a cascade product cover-
ing of A, If only these semiautomata are considered, as basic build-
ing blocks for cascade product coverings of the above A, then the
Theorem in 6.1 provides information about the necessity of some of them.
The following two examples indicate cases where this information is not
complete.

i) The single grouplike semiautomaton A with the group AS (the
group of all even permutations of 5 elements) is covered by
one basic building block of the above kind, A itself, There
are nontrivial simple groups dividing A5 (A4 is a subgroup
of Ay and it is not simple), which do not appear in the

above covering.
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ii) The semigroup GA of the two-state reset semiautomaton

A UO

1
2
is the one element group G,, and the only semigroups divid-

ing it are ¢, again, Nevertheless, it is impossible to con-

struct a caséade product of grouplike semiautomata having
the structure of G],_such that it will cover A, Indeed,
every cascade product of one-state semisutomata has one state,
and it cannot be mﬂppe& onto the two states {n SA.

One can cover ‘A-using the two-state reset semiautomaton
A2 , although neither R nor R] divides G,. The simple group-
like semiautomaton with the simple group 22 of order two
covers A, élso, but it is excluded, because z2 d&es not divide
GA'
Finally, notice that the above theory does not indicate how many of

any particular basic building blocks are needed to construct a cascade

product covering of a given semiautomaton.
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