
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

GENERALITY AND GPS

George W. Ernst
and

Allen Newell

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

January, 1967

This work was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146) and in
part by the RAND Corporation, Santa Monica, California.

PREFACE

The material of this monograph constitutes the culmination of

work on a single problem solving program, GPS (for General Problem Solver),

that stretches back to 1957. The origination of the program was the joint

work of J. C. Shaw, H. A. Simon, and A. Newell. During the "middle years",

the continuing efforts on reorganization and reprogramming fell to A. Newell;

the attempts to exploit the program and its ideas were pursued jointly with

H. A. Simon. The results of the last several explorations into modified

organizations have never been reported. The final phase, reported here,

consists of two intertwined parts. One is the description of the final organ

ization of GPS (i.e., GPS-2-5). This is covered in Chapter III and part of

Chapter IV. The responsibility for most of the programming details of this

organization must rest with the second author (A. Newell); the first author

the scene much too late to do anything but be frustrated by them

The second part of this research is the attempt to get this program (perhaps

"this thing" expresses our feelings more precisely) to live up to its name

at least marginally Taking GPS and getting it to be general enough to do a

number of different tasks has been the primary responsibility of G Ernst

and constitutes the substance of his doctoral dissertation at Carnegie

Institute of Technology Chapters II part of IV V and VI cover this

research. The writing of the entire document has also been primarily his

responsibility.

We have used the term "final" in several places above. This does not

indicate any feeling that this document marks a terminus to our research on

general problem solvers; quite the contrary is true. However, we do feel

that this particular aggregate of IPL-V code should be laid to rest, as

having done its part in advancing our understanding of the mechanisms of

intelligence.

- ii -

We would like to acknowledge the continued advice, support and

criticism of our colleague, H. A. Simon. Both he and J. C. Shaw were

involved in the first several years of research on GPS, and their

contribution to the present form of the program is pervasive. In

addition, we would like to thank L. W. Gregg and R. W. Floyd who served

on George Ernst's Dissertation Committee.

The research reported here has been supported in part by contract

SD-146 from the Advanced Research Projects Agency to Carnegie Institute

of Technology. It has also been supported by the RAND Corporation, both

in the support of A. Newell, first as an employee and more recently as a

consultant, and through the award by Carnegie to G. Ernst of the RAND

Fellowship in Systems and Communication Sciences.

G. W. Ernst
A. Newell

ABSTRACT

The General Problem Solver (GPS) is a computer program which has

been used for explorations into both general mechanisms involved in

problem solving and the way that humans solve problems. The program has

existed in several versions since its conception in 1957. This report

describes attempts to generalize one version, GPS-2-5; i.e., to have it

solve many different kinds of problems. GPS's performance on eleven

different tasks is discussed.

Several approaches to the construction of a general problem solver

are surveyed in order to place GPS in perspective with other approaches

and to formulate a meaningful problem of generality. A description of the

organization and problem solving techniques of GPS is given, followed by

a description of the representation of tasks.

The initial need for generalizing the representation of GPS-2-5

stems from the inadequacy of its representation for some tasks. However,

the majority of the representational issues investigated in this research

are concerned with the interaction between the problem solving techniques

of GPS and its representation of tasks. The main consideration in generaliz

ing the representation of GPS-2-5 is that problem solving techniques are

applicable only if processes exist that can abstract certain information

from the representation of a task.

TABLE OF CONTENTS

Chapter P age

I. INTRODUCTION 1

II. THE ISSUE OF GENERALITY 4

A. APPROACHES TO GENERALITY 4
B. POSING A PROBLEM OF GENERALITY 37
C. HISTORY OF GPS 43

III. THE PROBLEM SOLVING STRUCTURE OF GPS 46

A. GOALS 46
B. METHOD LANGUAGE 49
C. PROBLEM SOLVING EXECUTIVE 52

D. METHODS 64

IV. THE REPRESENTATION OF TASKS 79

A. OBJECTS 88
B. OPERATORS 93
C. GOALS 101
D. DIFFERENCES 101
E. TABLE-OF-CONNECTIONS 102
F. DIFF-ORDERING 102
G. COMPARE-OBJECTS 102
H. MISCELLANEOUS INFORMATION 103
I. EXTERNAL REPRESENTATION OF GPS 103

V. REPRESENTATION AND GENERALITY 116

A. MODES OF REPRESENTATION 118
B. DESIRED SITUATION 128
C. OPERATORS 134
D. UNORDERED-SCHEMAS 145
E. LARGE OBJECTS 150
F. DIFFERENCES 154
G. CONCLUSION 160

VI. TASKS GIVEN TO GPS 165

A. MISSIONARIES AND CANNIBALS TASK 165
B. INTEGRATION 178
C. TOWER OF HANOI 195
D. PROVING THEOREMS IN THE FIRST-ORDER

PREDICATE CALCULUS 210
E. FATHER AND SONS TASK 229
F. MONKEY TASK 240
G. THREE COINS TASK 247
H. PARSING SENTENCES 254
I. BRIDGES OF KONIGSBERG 267
J. WATER JUG TASK 280
K. LETTER SERIES COMPLETION 294
L. GENERALITY OF GPS'S METHODS 311

7. Typical flow diagram schemas in which A is a specific action
and XO, XI, and X2 are variable actions. (a) is the initial
situation of the task. (b) is produced by substituting a
flow diagram schema for XO in (a). (c) is produced from (b)
by substituting A for XI in (b) 27

8. (a) is a problem in the propositional calculus which GPS
solved. (b) is information which must be given to GPS in
addition to the problem. (c) is the internal representa
tion of an object and (d) is the internal representation of
an operator 31

9. (a) is the state description of a programming task. (b)
and (c) are state descriptions of two previously compiled
routines 35

10. A typical GOAL tree showing the difficulty and the results
of the GOALs 48

II.

12.

The definition of the GENERATE-AND-TEST-METHOD for achieving
a SELECT GOAL whose SET is large 71

The flow chart representation of the GENERATE-AND-TEST-
METHOD

VII. SUMMARY 315

BIBLIOGRAPHY 340

Appendix

A. THE VOCABULARY OF GPS 345

B. THE OPERATORS OF THE LOGIC TASK 351

Figures

1. A simplified prototype of a problem solver 5

2. (b) is the SIR model of the conversation in (a)
between SIR and a human 7

3. (a) is a typical problem for STUDENT. (b) is the set
of equations derived from (a). (cj is assumptions made
by STUDENT in order to solve (a) 9

4. (a) is a threshold element and (b) is a simple pseudo-
neural net 11

5. (a) is a simple problem for Black's program and (b) is a
"conditional statement" which is deduced by the program in
finding a solution to (a) 14

6. A typical object tree defined by a simple heuristic search
problem 20

13. The flow-chart of the PROBLEM-SOLVING-EXECUTIVE 55

14. The discrimination net used for METHOD-SELECT ION 58

15. (b) is the result of filing G5 in the discrimination net, (a) 60

16. The definition of the IDENTITY-MATCH-METHOD which is used
to test the Identity of two data structures 71

17. The definition of the TRANSFORM-METHOD used for achieving
a TRANSFORM GOAL 72

18. Definition of the MATCH-DIFF-METHOD which matches two data
structures for all of the differences between them 72

19. The definition of the REDUCE-METHOD for achieving a
REDUCE GOAL , 73

20. The definition of the FORM-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a FORM-OPERATOR. 73

21. The definition of the FORM-OPERATOR-TO-SET-METHOD for
achieving an APPLY GOAL whose operator is a FORM-OPERATOR
and whose input object is a SET of objects 74

22. The definition of SET-OPERATOR-METHOD for achieving an
APPLY GOAL whose operator is a SET of FORM-OPERATORS 74

23. The definition of the TWO-INPUT-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a FORM-OPERATOR which has
two inputs.

24. The definition of the MOVE-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a MOVE-OPERATOR 76

25. The definition of the TRANSFORM-SET-METHOD for achieving a
TRANSFORM GOAL whose first object is a SET of objects 77

26. The definition of the EXPANDED-TRANSFORM-METHOD for
achieving the TOP-GOAL 77

27. The definition of SELECT-BEST-MEMBERS-METHOD for achieving
a SELECT GOAL whose SET is small 78

28. The heuristic search formulation of the missionaries and
cannibals task 81

29. The heuristic search formulation of the integration task 82

30. The specification for GPS of the missionaries and cannibals
task 83

2
37. The specification for GPS of the task of integrating J t e t dt. 86

32. (a) and (c) are the tree structure representations of the
initial situations of the missionaries and cannibals task
and an integration task, respectively. (b) is the generic
form of an OBJECT-SCHEMA..... 89

33. The flow-chart for the evaluation of a FEATURE of a node
of an OBJECT-SCHEMA 94

34. The operator which moves X missionaries (M), Y cannibals

^ ^ a.L~&d. t\\e ̂^̂3̂ '̂-L' ft̂ n̂ t F̂ ^̂ 3̂^ S t t l ^ i ^ 3 9 7

35« The tree structure r 6 p 1 r e s c n . t 3 . t i o n of a MOVE OPERATOR* 08

36• Processes required by the probl 6 m solving insthods of GPS *»• * 11 7

37• Different representations of the integral9 Jt d t « * » « * « » « * a « « 1 2 0

^3# â. ̂ 1 s ci sce-iwa* Â .cô 1ed. a.5 a. t"res13^\ j-ct" U 1 1^ ^ " b ^ i t t f i f ^ t f t ^ 2 7

39» A summary of several modes of representation.•••**a#«*******129

4 0 ' L r ^ ^ v e r s i o t ^ 129

41. (a) is the tree sturcture representation of an object
in the integration task. (b) is the representation of
(a) as a DESCRIBED-OBJ. (c) is the representation
of the desired situation of the integration task as a
DESCRIBED-OBJ 132

42. The tree defined by a set and a permutation operator,
P ^ P) , that permutes the elements, a and P 147

43. (a) is the OBJECT-SCHEMA that represents the chess board
whose squares are named in (b) 152

44. An informal formulation of solving two simultaneous equa
tion 155

45. Two tree structures which are matched in solving the

task in Fig* 44 • * • * • • • • * » • • • • • • • • . • * a * * « « « * « « « « * « « » * « a * « a * « * « 1 3 9

• XTl̂ l t C S 1 1 C ^£ Q. S It # + # # a B i - a a # a f f a v p a * - a a a # a # # - a a ' a o v a i a a # o a # a . a a f l # . A 0 ^ -3

47m A block puzz 1 6 t » « » t t * t » f * t f * * i * i i * f i t « i t « « * « t 163
48. The specification for GPS of the missionaries and cannibals

task 167

49. The tree structure representation of INITIAL-OBJ 169

50. The performance of GPS on the missionaries and cannibals
task 173

51. The specification for GPS of the task of integrating
J*te t dt 179

52. The tree structure representation of EXPRESSION-1. The
symbols at the nodes are values of the ATTRIBUTE, SYMBOL
of the node 181

http://r6p1rescn.t3.tion

53. The print-name assignment of the FORM-OPERATORs in
DIFFERENTIATE and INTEGRATE 184

2
54. The performance of GPS on the task of integrating Jte* dt...186

55. The performance of GPS on the task of integrating
J(sin (ct) cos(ct) + t)dt 187

56. (a) is the tree structure representation of (u * (v * w))
and (b) is the tree structure representation of (u * v * w).193

57. A "front view" of the initial situation of the Tower of
Hanoi 196

58. The specification for GPS of the Tower of Hanoi 197

59. The tree structure representation of the INITIAL-OBJ in

the Tower of Hanoi 196

60. The performance of GPS on the Tower of Hanoi 204

61 . The specification for GPS of the task of proving a theorem
expressed in the predicate calculus 216

62. Tree structure representation of three predicate

63. Tti6 performance of GPS on the task, in Fig* 61 ••**•****«»•••* 221

65* 'JL'h e tree strixcture representation of lî TTlATi 0B<J# • *•.•••*••<•• 234̂

660 e J3er*f.L"iLLa.n.e f C J ^ ? ^ 5 n tinf^a.tinic QJCI^^ sĉ ns tcisIt+ v . * - 9 . - * # . v . f l * v 2 3

67* The specification for GPS of the monkdy task**•*••••.«•••••.241

68• The perfonnance of GPS on the monkey^ t a s k + + + 245

6 9 * *i"h e s p ec i f ic a t ion. f or G'I'S oil th e th.r e e co IXI z 1 e *. * * * * * * * • # 2 5 0

7 0 * threfcoinf puzzle. ! ! ! ! ? ! ? ? ^ ^ ! ? . ? ! . ! ! ™ " ! ! ! . ^ ! 251

71. The performance of GPS on the three coins puzzle 252

72. phrase structure rules for a simplified form of English 256

73. The specification for GPS of the task of parsing a sentence.260

74. The tree structure representation of INITIAL-OBJ. 262

75. The tree structure representation of the operator Si.......262

- ix -

76. The performance of GPS on the task in Fig. 73 265

77. A schematic of the seven bridges of Konigsberg 268

78. The specification for GPS of the bridges of Konigsberg 269

79. The performance of GPS on the bridges of Konigsberg 274

80. The specification for GPS of a water jug task 282

81. The tree structure representation of INITIAL-OBJ in Fig. 80.286

82. The performance of GPS on the task in Fig. 80 289

83. The specification for GPS of the task of completing a

letter series 298

84. The tree structure representation of INITIAL-OBJ in Fig.83..302

85. The performance of GPS on the task specified in Fig. 83 306
Tables

1. Methods and processes used by GPS in solving the eleven
tasks 312

CHAPTER I: INTRODUCTION

The research reported here is an investigation into the develop

ment of a computer program with general problem solving capabilities.

This investigation involved the construction of one such computer program

called the General Problem Solver (GPS, although more properly GPS-2-6)

which was accomplished by modifying an existing program called GPS-2-5.

Both of these programs are derived from a computer program conceived in

1957 by A. Newell, J. C. Shaw, and H. A. Simon.

The emphasis in this research is on the generality of GPS--on the

variety of problems which GPS can attempt to solve. The quality of the

problem solving exhibited by GPS is only a secondary consideration. Hence,

the kind of problems for which GPS was designed are simple according to

human standards. A typical problem is the missionaries and cannibals task

in which there are three missionaries and three cannibals who want to

cross a river. The only means of conveyance is a small boat with a capa

city of two people, which all six know how to operate. If, at any time,

there are more cannibals than missionaries on either side of the river,

those missionaries will be eaten by the cannibals. How can all six get

across the river without any missionaries being eaten?

Another sample task is that of integrating, symbolically, a simple

integral such as,

; t e t 2 dt.

This problem is apparently quite different from the missionaries and

and cannibals task, but GPS has the generality, as well as the ability,

to solve both of these problems.

Although GPS-2-5 was designed to be general, it, together with

its predecessors, only solved three different kinds of problems due mainly

to inadequate facilities for representing tasks. The central problem

of this research is to generalize GPS-2-5 so that it can attempt a wider

variety of problems. We also demand that the formulation of problems

for GPS requires no knowledge of the internal structure of the program.

Underlying this specific objective is the desire to shed light on some of

the issues involved in designing better representations for problem

solvers.

This research does not endeavor to construct an impressive problem

solver. Difficulties in reworking an existing program, such as GPS-2-5,

make this infeasible. For example, the representation of tasks in GPS is

somewhat ad hoc, having been introduced in several stages. (The repre

sentation of GPS-2-5 is a modification of the representation of a previous

version of the program.) Thus, GPS is an experimental program used to

investigate representational issues. No attempt to redesign the represent

ation of GPS is discussed in this report.

This i-s a brief informal statement of the problem. Chapter II

gives a more precise statement of the problem on which this research focuses.

Chapter III describes the organization of GPS, which is essentially the

same as that of GPS-2-5. The generalized representation of tasks is

described in Chapter IV, while considerations in generalizing GPS-2-5 are

discussed in Chapter V. The formulations for GPS of eleven different tasks

are given in Chapter VI, together with the behavior exhibited by GPS in

attempting to solve these tasks.

The generalization of GPS focused on the properties of a group of

tasks. These tasks were singled out for reasons that are neither arbitrary

nor entirely justified. Some of these tasks were successfully solved by

GPS while others could not be solved by GPS. We shall return to this issue

- 3 -

at the end of Chapter V. Several of the tasks were deliberately selected

because they have been solved by other problem solvers. The reason for

giving such tasks to GPS is not to compare its performance with the per

formance of other problem solvers. Indeed, in all such cases, GPS is the

more inefficient. However, giving these tasks to GPS is instructive

because it helps to reveal the structure of the tasks, and the differences

and similarities between GPS and other problem solvers.

GPS is programmed in IPL-V (Newell, et al [33]), a list processing

language. This document does not require the reader to have an intimate

knowledge of IPL-V. However, the reader should understand the concept of

list processing.

CHAPTER II: THE ISSUE OF GENERALITY

This chapter states more precisely the problem of generality and

the goals of this research. We start by illustrating the various

approaches of current research to the construction of a general problem

solver. With this background we formulate a version of the "problem of

generality" that allows us to outline this research. Finally, we provide

some appropriate historical background.

A. APPROACHES TO GENERALITY

How might one go about creating a general problem solver? Con

sider the simple model of a problem solver in Fig. 1. The problem is

initially expressed in some external representation, which is converted

by a translator into an internal representation—an encoding of the exter

nal representation inside the computer. The internal representation is

processed by a set of problem solving techniques, and the result of this

processing is (hopefully) the solution.

According to this simple view, generality can be limited by the

generality of any of the three parts: the external representation, the

internal representation, or the collection of techniques. Although

eventually all three parts must be dealt with, an approach can start by

emphasizing a single one: To adopt a general external representation that

is similar to the way problems occur in the real world; to adopt a general

Internal representation so that all problems can be homogeneously repre

sented inside of the computer; or to develop a set of problem solving

methods of universal applicability. Each of these approaches focuses on

one of the three parts of the model of a problem solver in Fig. 1 and

considers the other two to be subordinate. To clarify these different

approaches, a discussion of each follows which includes some examples of

- 5 -

External
Representation

Translator

Internal
Representation

Problem
Solving

Techniques

Solution

FIGURE 1 . A simplified prototype of a problem solver.

research efforts that use the approach. This research adopts a variant

(heuristic search) of the third approach. We will discuss it in great

detail—the discussion of the other approaches serving to place matters

in context.

External Representation

Two quite different possibilities seem to be appropriate for a

"natural" representation of problems.

Natural Language Input. Assuming that problems are posed to the

computer by people, a natural language is a good choice for an external

representation of problems. Prior to the actual problem solving, the

meaning must be extracted from sentences (and paragraphs) and encoded in

the internal representation. The earlier work on question answering

programs (SAD SAM in Lindsay [24] and BASEBALL in Green, et al [18])

focussed on this problem and purposely avoided any problem solving on

the internal representation (although they did do sophisticated informa

tion retrieval.) Recently, however, several programs have endeavored to

do problem solving on the meaning extracted from natural language inputs.

The input language has had to be a much cruder approximation to a natural

language than in the earlier question answering programs. A brief dis

cussion of two of these gives some flavor of their structure.

1. SIR. SIR (Semantic ^Information Retriever, Raphael [49]) is a

program which answers questions about a data base which it has accumulated

from interaction with a human. A typical protocol is shown in Fig. 2.a.

SIR answers the first two questions in Fig. 2.a, YES, because it knows

that set-inclusion is both transitive and reflexive.

SIR extracts the semantics of statements and questions by matching

each to a number of standard sentence forms. Associated with each form is

a LISP (McCarthy, et al [29]) routine which stores information in the

(a) MAN: EVERY KEYPUNCH-OPERATOR IS A GIRL

SIR: I UNDERSTAND

MAN: ANY GIRL IS AN EXAMPLE OF A PERSON

SIR: I UNDERSTAND

MAN: IS A KEYPUNCH-OPERATOR A PERSON Q

SIR: YES

MAN: IS A PERSON A PERSON Q

SIR: YES

MAN: IS A PERSON A GIRL Q

SIR: SOMETIMES

MAN: IS A MONKEY A KEYPUNCH-OPERATOR Q

SIR: INSUFFICIENT INFORMATION

(b) | PERSONS]

SUPERSET

pGJRLS

SUBSET

SUPERSET SUBSET

KEYPUNCH
OPERATORS

FIGURE 2. (b) is the SIR model of the conversation in (a) between

SIR and a human.

internal represenation of the environment, or retrieves information from it

as the case may be.

SIR's internal representation is a network in which the nodes

represent nouns of English sentences and the branches between the nodes

represent relationships between nouns. For example, the SIR model of

the conversation in Fig. 2.a is given in Fig. 2.b. The nodes of the

network represent GIRLS, PERSONS, and KEYPUNCH OPERATORS. The branch

between GIRLS and PERSONS, which is labeled SUBSET, represents the fact,

the set of all girls is contained in the set of all persons.

2. STUDENT. A program called STUDENT (Bobrow [5]) attempts to

solve story algebra problems found in a high-school algebra textbook.

While problems are posed to both STUDENT and SIR in a restricted subset

of English, STUDENT unlike SIR is strongly oriented to a particular type

of problem. Fig. 3.a is a typical question which was posed to STUDENT,

together with STUDENT'S answer.

The internal representation of problems in STUDENT is a set of

algebraic equations. For example, Fig. 3.b is the set of equations which

STUDENT arrives at for the problem in Fig. 3.a. Before solving the equa

tion, STUDENT must recognize that the pairs of phrases in Fig. 3.c repre

sent the same entity.

The main emphasis in STUDENT is translating the external representa

tion. Since the internal representation is strongly task oriented, an

algorithm can be used to solve the problem from its internal representation.

Visual Perception. The other "natural" external representation for

many problems is the world itself. This external representation places

large constraints on the problem solver. For example, to percieve the

world it must be capable of accepting parallel inputs. In addition, answers

must be produced quickly in order to solve problems in real time. Models

- 9 -

(a) THE GAS CONSUMPTION OF MY CAR IS 15 MILES PER GALLON . THE
DISTANCE BETWEEN BOSTON AND NEW YORK IS 250 MILES . WHAT IS THE
NUMBER OF GALLONS OF GAS USED ON A TRIP BETWEEN NEW YORK AND
BOSTON Q

(b) 1. (EQUAL (DISTANCE BETWEEN BOSTON AND NEW YORK)
(TIMES (250 (MILES)))

2. (EQUAL XI (NUMBER OF GALLONS OF GAS USED ON TRIP BETWEEN
NEW YORK AND BOSTON)

3. (EQUAL (GAS CONSUMPTION OF MY CAR) (QUOTIENT
(TIMES 15 (MILES)) (TIMES 1 (GALLONS))))

4. (EQUAL (DISTANCE) TIMES (GAS CONSUMPTION)
(NUMBER OF GALLONS OF GAS USED)))

(c) 1. GAS CONSUMPTION = GAS CONSUMPTION OF MY CAR
2. DISTANCE = DISTANCE BETWEEN BOSTON AND NEW YORK
3. NUMBER OF GALLONS OF GAS USED = NUMBER OF GALLONS

OF GAS USED ON A TRIP BETWEEN NEW YORK AND BOSTON

FIGURE 3. (a) is a typical problem for STUDENT, (b) is the set of
equations derived from (a). (c) is assumptions made by STUDENT in
order to solve (a).

of pseudo-neural nets, e.g., perceptions (Rosenblatt [41]) accept paral

lel inputs and produce answers in real time.

The basic element of pseudo-neural nets is, usually, an "adapt

ive threshold element" illustrated in Fig. 4.a. Each of the stimulus

signals, s^.^s^ may have either 1 or 0 as a value. The response

signal, r, is determined by the sum of the stimulus signals times their

corresponding weights, w][, w 2,.. .w^. If

n
P, W i S l > Wn+l>
i=l

then r is 1; otherwise r is 0. A pseudo-neural net is a number of inter

connected adaptive threshold elements such as the one illustrated in

Fig. 4.b.

A problem for such a net takes the form of discriminating between

two sets of stimulus patterns—those for which the correct response is 1

and those for which the correct response is 0. If the net has a large

enough capacity there is likely to exist a set of weights, such that, for

every input stimulus, it will produce the correct response. To find such

a set of weights, stimulus patterns are presented to the neural net and

depending upon the correctness of the response, the weights are adjusted

so as to reinforce the net either positively or negatively.

It has been proven that, if a net has the capability of discrimin

ating between two sets of stimulus patterns, certain reinforcement rules

will eventually lead to a correct assignment of weights. However, the

training sequence required to arrive at a correct assignment of weights may

be arbitrarily long.

Adaptive pseudo-neural nets can be viewed as the type of problem

solver depicted in Fig. 1. The external representation of a problem is the

- n -

two sets of stimulus patterns—those for which the correct response is

0 and those for which the correct response is 1. The internal repre

sentation of the problem is the values assigned to the weights of the

adaptive threshold elements, since the values of these weights determine

the response for any particular stimulus. In general different weights

assignments cause a net to discriminate between different sets of stimulus

patterns. The single problem solving technique employed by the adaptive

net is the reinforcement of weights. Each reinforcement of the weights

changes the internal representation of the problem and hopefully after a

sufficiently large number of reinforcements the weighs will have values

that cause the net to perform the correct discrimination.

Internal Representation

In focusing on internal representation, we look for one that per

mits many different problems to be expressed in it. In addition, the

internal representation should have a simple formal structure so that

problem solving techniques that process the internal representation can

be programmed. The first order predicate calculus is a general, formal

system for expressing problems and, as such, is a good candidate for the

internal represenation of a general problem solver. In many cases, the

formulation of problems in the predicate calculus is somewhat clumsy.

But the structure of this calculus is specific enough so that several

programs which attempt to prove theorems expressed in the predicate calcu

lus have been implemented. (Davis and Putnam [9]; Friedman [14]; Gilmore

[17]; Robinson [50,51]; Wang [62,63]; Wos [67].

It is known that no mechanical proof procedure for the first order

predicate calculus can guarantee an answer in a finite amount of time.

However, the proof procedures have undergone successive reductions and

purifications so that by now they have a simple and definite structure.

The internal representation of some recent theorem provers such as in

Robinson 150], and their proof process is described on pages 201-214,

since GPS used this formulation in proving a theorem in the predicate

calculus.

The predicate calculus can conveniently be viewed as an internal

representation because it does not contain information peculiar to any

particular task. For example, the tasks for the theorem prover described

in Robinson [50] are taken from group theory and number theory and the predicate

calculus contains no information peculiar to either of these mathemati

cal theories. Similarly, the proof process contains no task dependent

information. The theorem prover in Robinson [50] , contains a single rule

of inference that combines two predicate calculus statements to form a

new statement. A theorem is proved by assuming the negation of the theorem

and inferring a contradiction.

Most of the work in theorem proving programs in the predicate calcu

lus has focussed on the problem of attaining proofs. However, there has

been some effort, identified mainly with work on the Advice Taker (McCarthy

[26]) to extend the domain of problems for which the predicate calculus can

be used as a representation. This work has focussed on problems of everyday

reasoning and so far has been limited to toy problems. An example is a

program by Black [4]. Fig. 5 is a simple problem which might be posed to

Black's program.

A problem statement consists of a "corpus", which is a set of

"unconditional statements" and "conditional statements" (statements which

contain a '->'), and a "question" which is an unconditional statement. The

external representation of Black's program is very similar to its internal

representation and the translation from one to the other is simple.

- 14 -

(a) English

CORPUS:

I am at the desk.

The desk is at home.

If x is at y and y is at
z, then x is at z.

QUESTION:

Am I at home?

Internal Representation

AT (I, DESK)

AT(DESK, HOME)

AT(X, Y), AT(Y, Z)-»AT(X, Z)

AT(I, HOME)

(b) English Internal Representation

If desk is at the home, AT(DESK, HOME)~>AT(I, HOME)
I am at home.

FIGURE 5. (a) is a simple problem for Black's program, and (b) is a
"conditional statement" which is deduced by the program in finding a
solution to (a).

Black's program can deduce a new statement from a "conditional

statement" and an "unconditional statement." For example, to solve

the problem in Fig. 5.a, the program would substitute I for X and HOME

for Z in the third statement. From the first and third statement, it

would deduce the statement in Fig. 5.b. The problem would be solved by-

deducing the question from the statement in Fig. 5.b and the second state

ment in Fig. 5.a.

Problem Solving Techniques

As the third alternative, we can focus on the techniques used to

solve problems, ignoring temporarily both what internal representation

will be used and the translation of the original problem into it. There

may be many highly particular techniques; we will consider this case first.

Alternatively, the techniques may be small in number with wide applicabil

ity. We consider an example of this, heuristic search, which forms the

basis of the approach of this research.

Programming Languages. The development of problem oriented program

ming languages has continually eased the task of giving the computer a

program for computing the answer to a problem. Constructing programs can

be viewed as selecting a highly specific problem solving technique by com

bining the problem solving methods incorporated in the programming languages,

e.g., the iteration statement in ALGOL. One can thus view the development

of programming languages, as the creation of more powerful problem solvers.

The Turing Machine (i.e., a system defined as in Davis f 8j) is capable

of solving all problems that can be solved in a finite amount of time;

however, its problem solving methods are extremely fundamental, and

describing problem solving techniques to a Turing Machine is extremely

laborious. To describe a problem solving technique to a modern general

purpose computer is considerably easier than describing it to a Turing

Machine. The problem solving techniques built into the former

lAn interpreter for GPL has been implemented in IPL-V.

(multiplication, random access memory, etc.) are considerably more elabor

ate than those which a Turing Machine possesses.

The problem solving techniques built into a problem oriented

language such as ALGOL are considerably more powerful than the unit actions

of a general purpose computer. Some powerful problem solving techniques

can be easily specified by an ALGOL program. Finally, the problem solving

techniques of ALGOL can be supplemented by a library of standard ALGOL sub

routines, such as analysis of variance routines, linear programming routines,

etc., which themselves are quite general problem solving techniques. Such

a system has powerful problem solving capabilities and many new problem

solving techniques can be specified easily.

ALGOL programs are usually not considered problem solving techniques.

One reason is that most ALGOL programs are deterministic algorithms, whereas

most problem solving programs, such as game playing programs, are heuristic

programs that may or may not produce a solution to the problem. However,

this distinction between deterministic and non-deterministic programs is

more a reflection of the nature of the problem than the approach to solving

the problem. Since ALGOL is designed for numerical problems, it is diffi

cult to see the relationship between ALGOL and problem solving techniques

required for complex non-numerical problems such as playing checkers.

To illustrate more cogently the relation of a programming language

to problem solving techniques, consider the programming language, GFL

(Game Playing Language in Williams [661 1) that was designed for expressing

procedures for playing board games and card games. The specifications of

a game in GPL consists of

r

2 If there is a winning move for the oppon
ent, then block the opponent by making the
move else

3 Make any legal move.

This procedure contains a definition of the legal moves of tic-tac-toe

as well as a simple strategy for playing the game.

GPL was designed so that games can be described in it as briefly

as they are described in a book of Hoyle, such as Morehead and Mott-Smith

[31]. Strategy statements like "make a winning move" can also be specified

briefly in GPL because it has the ability to search a board for a par

ticular pattern as a primitive operation of the language. In the tic-tac-toe

example, a winning pattern is a rank, file, or diagonal that has X's (or

O's as the case may be) on two squares and nothing on the third square.

Thus, the primitives of GPL are general problem solving techniques for card

and board games and they can be readily combined to form a specialized

problem solving technique for a particular game.

DEDUCOM (Slagle [60] is another work which confounds the distinc

tion between programming and problem solving. In many respects, DEDUCOM

is similar to Black's program (discussed on pages 13-15). In part, the

specification of a problem for DEDUCOM is a group of linguistic expressions

that are combined to form new expressions during problem solving. However,

a. data structures that describe the objects
used in playing the game;

b. a procedure for playing the game.

For example, the specification of tic-tac-toe consists of a description

of a tic-tac-toe board which is initially empty and the following proced

ure, expressed in GPL, for playing the game:

1 If there is a winning move then make it
Tlse

the specification of a problem may also contain LISP (McCarthy, et al [29])

expressions (which are programs) freely intermixed with other expressions.

When they occur as subexpressions within a linguistic expression, they are

executed by the standard LISP interpreter. When they contain linguistic

expressions as subparts, interpretation is held up until the linguistic

expressions can be solved. Consequently the problem solving power of DUDECOM

stems in part from the ability of the LISP interpreter; and also from the

freedom never to distinguish whether one is programming or writing down a problem.

Heuristic Search. A final way to focus on the generality of a

problem solving technique is first to find a paradigm of a problem and then

develop methods which are applicable to the paradigm. The generality of the

paradigm determines the generality of the methods which are applicable to

the paradigm. The paradigm need not imply a uniform representation of problems,

but only that all problems which fit the paradigm have some common structure.

One general paradigm, which we shall call heuristic search (Newell

and Ernst [38]), consists of two basic kinds of entities -- operators and

objects. An operator, when applied to an object, produces a new object or

indicates inapplicability. A heuristic search problem is:

Given a. an initial situation represented as an object;
b. a desired situation represented as an object;
c. a set of operators.

Find a sequence of operators that will transform
the initial situation into the desired situation.

The first operator of the solution sequence is applied to the initial

situation, the other operators are applied to the result of the applica

tion of the preceding operator, and the result of the application of the

last operator in the sequence is the desired situation.

The operators are rules for generating objects and thus define a

tree of objects. Each node of the tree represents an object, and each

branch of a node represents the application of an operator to the object

represented by the node. The node to which a branch leads represents

the object produced by the application of the operator. In Fig. 6 for

example, node Al represents the object, Al, and branch X5 from Al repre

sents the application of the operator X5 to Al which produces the object,

A5.

A method for solving a heuristic search problem is searching the

tree defined by the initial situation and the operators for a path from

the initial situation to the desired situation. For example, if a problem

has AO as the initial situation and XI, X2,...as operators, the problem

can be solved by searching the tree in Fig. 6 for a path from the top node

of the tree to the desired situation. If the problem's desired situation

is A5, a solution is (XI, X5). (Others might exist.)

An operator can, in general, only be applied to certain objects;

it is infeasible to apply it to others. Consider the following example

from arithmetic. It is infeasible to apply the operator,

x + y ^ y + x, (1)

in which x and y are variables, to the object,

2 * 5 .

In the extreme case each operator of a task would only be applicable to

a single object. For example, the commutativity of addition could be

represented as the list of expressions,

1 + 2 = 2 + 1 (2)
1 + 3 = 3 + 1 (3)
etc.,

assuming that numbers are bounded. Each expression such as (2) and (3)

is considered a separate operator even though they all perform the same

function. In general, an operator is any function whose domain and range

are objects, provided that the function is represented as a single entity

(e.g., a single routine, a single data structure, etc.). The reason for

this unusual definition of operators is that problem solvers process

single entities. For example, in applying the commutativity of addition

represented as the list, (2), (3), etc., a problem solver must match the

input object to the left side of many different operators in order to find

the feasible member. On the other hand, when the commutativity of addition

is represented as (1), the input object need only be matched to

x + y.

The effectiveness of a heuristic search problem solver is determined

by its rules for selecting operators to be tried (rules for guiding the

search). There are two basic criteria for selecting operators:

a. Desirability—the operator should produce an
object which is similar to the desired situa
tion;

b. Feasibility—the operator should be applicable
to its input object.

The problem solver must face the dilemma that, in general, only one of

these criteria can be satisfied, i.e., operators which are seemingly desir

able are infeasible.

Some problem solvers which use heuristic search insist on the

perfect desirability of operators, i.e., only those operators which produce

the object desired are applied. Such problem solvers do not search the

tree defined by the initial situation and the operator for the desired

situation, but, rather, search the tree defined by the inverse operators

and the desired situation, for the initial situation. (Q* is the inverse

of the operator Q, if Q(A) = A* implies that Q' (A') = A for all A and

a. The initial situation may be more than one
object which can be represented by an object
schema or a list of objects and object
schemas.

b. The desired situation may be more than one
object. It can be represented by an object
schema, a list of objects and object schemas,
by a more complex description, or by a test
ing procedure which can recognize it.

c. The operators may be given by schemas.

d. Some of the operators may have several objects
as an input or may produce several objects
as output.

e. The solution to the problem may be more complex
than the simple sequence of operators described
above. For example, if an operator has several
objects as an output, for each output object, a
sequence of operators which transform it into
the desired situation may be required. In this
case, the solution is a tree of operators.

A 1.) In this case, the problem solver works "backwards" and the desir

ability of the "forward problem" is nothing more than the feasibility

of the backward problem. In general, there can be no gain in such a

formulation because the backward, backward problem is the original for

ward problem. But for many problems working in one direction is consider

ably easier than working in the other direction, i.e., the space to be

searched is considerably smaller.

Many different problems can be formulated in the heuristic search

model of a problem, and this paradigm provides the underlying conceptual

framework of many problem solving programs. All of the early game playing

programs and theorem proving programs use the heuristic search model. We

give below brief discussions of several efforts to give a flavor of how

widespread the paradigm is. To do this we need to generalize the simpli

fied heuristic search paradigm described above. (Schema, in the following,

is an expression containing variables. An instance of the schema can be

obtained by the substitution of constants for variables.)

1. Chess. Playing chess is an example of a problem which can

easily be cast into the heuristic search paradigm. The initial situa

tion is the chess position at the point of play and the operators are

the legal chess moves. The desired situation is a chess position in

which the opponent is checkmated. The move to be made from the initial

position is the first move in the solution sequence.

To find such a move involves exploring the tree of possibilities.

That is, for any move explore the possibilities that are available to

the opponent, and for each of these, explore the possible responses, etc.

This tree is so large for chess that for most chess positions, it is not

possible to find a forced checkmate. However, exploring the tree does

reveal important features hidden in a chess position and is a powerful

method for evaluating a chess position.

Several programs which play chess (Baylor [2]; Bernstein, et al

[3] ; Kister, et al [21]; Kotok [22]; Newell, et al [41]) have been

constructed. All of them use as their basic problem solving technique

searching the tree defined by the initial chess position and the legal

chess moves. These programs do not look for a checkmate but instead look

for good positions. The goodness of a chess position is determined by an

evaluation function which is designed to rate a position according to

standard features, e.g., material advantage, mobility, center control, etc.

Some programs have more elaborate evaluation functions than others and

some use heuristic rules to guide the search. But all of the programs play

chess by generating possible chess positions and using an evaluating func

tion to determine the goodness of the position.

2. Other Games. In addition to chess programs, there exist several

other game playing programs which use heuristic search; one plays checkers

- 24 -

(Samuel [53]); one plays Kahla (McCarthy [28]); one plays three dimen

sional tic-tac-toe (Gilbert [16]); and one plays five-in-a-row

(Weizenbaura [64]). The framework of all of these programs is quite

similar to that of the chess programs. The game positions are the

objects and the legal moves are the operators. The initial situation

is the initial game position and the desired situation is a class of

objects. The desired situation is, in general, too remote and the pro

gram looks for a good move instead. A small part of the tree defined

by the initial situation and the operators is searched and the best

move is determined by using an evaluation function and a minimax proced

ure.

3. Propositional Calculus. LT (Logic Theory Machine in Newell,

et al [3 9]) proves theorems in the sentential calculus of Whitehead and

Russell. The initial situation is a set of objects each of which repre

sents an axiom or a previously proven theorem. Each object is a group of

primitive propositions combined according to the logical connectives,

negation (~), conjunction (V) , disjunction (A), and implication (=>). The

desired situation is an object which represents the theorem to be proven.

The operators are the rules of inference,

a. modus ponens—from A and APB, B can be
inferred

b. syllogism—from A O B and B^C, A3C can be
inferred.

(A, B, C are variables for which propositions can be substituted.)

LT does not work forward but instead searches for a member of the initial

situation in the tree defined by the desired situation and the inverse of

the operators.

4. Geometry. Many of the theorems found in a high school

Euclidian geometry textbook can be proven by the Geometry Machine

(Gelernter [15]), a program which uses heuristic search. The initial

situation is a set of objects each of which represents a premise of

the theorem to be proven, e.g., angle ABC equals angle ABD. The conclus

ion of the theorem to be proven is the desired situation. Those theorems

accepted as already proven are the operators. Theorems are proven by

working backwards. Consider, for example, the desired situation that

triangle ABC and triangle EFG are congruent. The inverse of the operator-

if the three corresponding sides of two triangles are equal, then the

triangles are congruent—could be applied to the desired situation produc

ing three new objects,

a. segment AB equals segment EF
b. segment BC equals segment FG
c. segment CA equals segment GE

Each of these three objects must be inferred from the axioms and the

premises of the theorem, in order for the theorem to be proven.

All the inverse operators have a single object as an input and one

or more objects as an output. In this formulation a proof is not a simple

path from the desired situation to the initial situation. Instead, it is

a tree in which

a. the top node is the desired situation.
b. all of the terminal nodes are objects

which are members of the set of objects
representing the initial situation.

c. the inmediate subnodes of a node represent
the objects produced by the application of
an inverse operator to the object repre
sented by the node.

5. Integration. SAINT (Slagle [59])is a computer program which

integrates expressions symbolically. The initial situation is the express

ion to be integrated and the desired situation is a set of objects, each

of which represents standard integral forms. The operators are "heuristic

transformations" for changing the form of an object. One of the operators,

for example, is the substitution of tan u for x in an object in which x

is the variable of integration. If the initial situation were

f dx
J 2 1+x

the application of this operator to it would result in the new object

J* du .

In applying an operator SAINT automatically performs "algorithm-like trans

formations" such as algebraic simplification and differentiation.

6. Programming. Amarel [1] developed a program which constructs

programs in a highly task oriented programming language. The objects are

flow diagram schemas—flow diagrams in which some of the actions might be

variables. The operators are rules for flow diagram modification—substi

tution of a specific action or an "elementary" flow diagram schema for a

variable action in a flow diagram schema. A typical sequence of objects

generated by Amarel's program is illustrated in Fig. 7.

The program to be constructed is described by listing all of its

inputs along with their corresponding outputs; thus, the desired situation

is an object which, when executed on the inputs, produces the corresponding

outputs. (There are special mechanisms to deal with the facts that some

of the actions may be variables and that there may be a large number of

input, output pairs.)

F

- 27 -

Input Input

XO

Input

XI

X2 X2

Output

(a)

Output

(b)

Output

(c)

FIGURE 7. Typical flow diagram schemas in which A is a specific action
and XO, XI, X2 are variable actions. (a) is the initial situation
of the task. (b) is produced by substituting a flow diagram schema
for XO in (a). (c) is produced from (b) by substituting A for XI
in (b).

7. Everyday Reasoning. Even some of the research efforts focus

ing on internal representation use heuristic search as their basic

problem solving method. Black's program (described on pages 13-15)

treats "unconditional statements" as objects and "conditional statements"

as operators. The desired situation is the "question" and the initial

situation is the set of "unconditional statements" in the "corpus".

Black's program works "backwards". The inverse operators all

have a single object for an input and produce one or more objects as a

result of their application. For this reason, a solution is not a simple

path from the desired situation to the initial situation but a tree which

has the same form as a solution found by the Geometry Machine.

8. Predicate Calculus. The proof process of some contemporary

programs which prove theorems in the first order predicate calculus (e.g.,

the one described on pages 12-13) can be viewed as heuristic search. The

objects are statements and the single rule of inference is the only operator.

The initial situation is the set of statements whose conjunction is the

negation of the theorem to be proven. The desired situation is a contra

dictory statement.

The operator has two objects as an input and produces a single object

as a result. The input objects to the operator must be in the set of

objects representing the initial situation or be the result of a previous

application or the operator.

9. Story Algebra Problems. STUDENT1s only problem solving technique

is an algorithm for solving a set of simultaneous equations symbolically

(see page 8). Thus, STUDENT does not use heuristic search. However,

the problem of solving a set of simultaneous equations can be easily for

mulated as a heuristic search problem by treating the equations as objects •

- 29 -

and algebraic manipulations as operators.2

GPS. All of the programs discussed above use heuristic search

because it is a convenient framework for the particular problem and

not because it is a general paradigm for solving problems. On the

other hand, GPS is an attempt to implement problem solving techniques

that have general applicability to heuristic search problems. GPS uses

the heuristic search paradigm directly; a problem is given to GPS in

terms of objects and operators.

GPS attempts problems by tree search, as in any heuristic search

program. But GPS employs a general technique called means-ends analysis

to guide the search, which involves subdividing a problem into easier

subproblems. Means-ends analysis is accomplished by taking differences

between what is given and what is wanted, e.g., between two objects or

between an object and the class of objects to which an operator can be

applied. A difference designates some feature of an object which is

incorrect. GPS uses the difference to select a desirable operator—one

which is relevant to reducing the difference. For example, in attempting

the original problem, GPS detects a difference, if one exists, between

the initial situation and the desired situation. Assuming that a desirable

operator exists and that it can be applied to the initial situation, GPS

applies the operator to the initial situation which results in a new

object. GPS rephrases the original problem by replacing the initial situa

tion with the new object and then recycles. As usual, the problem is

2This formulation is used in Krulee and Kuck [23].

3Words written with all capital letters correspond directly to IPL symbols
used in the IPL routines that comprise GPS.

solved when an object is generated which is identical to the desired

situation.

If an operator is not applicable to an object, an attempt to apply

it will result in a difference—the reason it is not applicable. If the

difference is not too difficult, GPS will attempt to alleviate the

difference in the same way that it attempts to reduce a difference between

two objects. If the attempt to reduce the difference is successful, a

new object will be produced and, hopefully, the operator can be applied

to the new object.

Previous versions of GPS have solved several tasks. The first

task was a formulation of proving theorems in the propositional calculus

designed by Moore [30], Fig. 8.a shows a typical problem which GPS

solved. In addition to the problem in Fig. 8.a, GPS had to be given the
3

information In Fig. 8.b (called the task environment). The DIFF-ORDERING

orders the differences of this task according to their relative difficulty;

the TABLE-OF-CONNECTIONS associates with each difference those operators

which are relevant to reducing it. The objects and operators are repre

sented by schemas. Fig. 8.c illustrates the internal representation of an

object and Fig. 8.d illustrates the internal representation of an operator.

Another task solved by a previous version of GPS is the missionaries

and cannibals task (described in Chapter I). The objects were
configurations of people on the river banks and were represented by schemas.

•

The operators which moved people across the river could not be completely

- 31 -

(a) Initial Situation: (R z, -P) * (-R o Q)

Desired Situation: -C-Q«P)

(b) Operators:

Rl AVB -> BVA, A-B -> B*A

R2 A=>B -> -B3 -A

R3 AVA -> A, A-A A

R4 AV(BVC) ^ (AVB)VC, A-(B-C) ^ (A.B)*C

R5 AVB -C-A--B)

R6 A O B M -AVB

R7 AV(B-C) ^ (AVB) (AVC) , A* (BVC) (A-B)V(A-C)

R8 A.B ->A, A.B - 4 B

R9 A AVX (X is any expression)

RIO [A, B] A.B (Two expressions input)

Rll [ADB, A] ^ B (Two expressions input)

R12 [AO B, B3C] -*ADC (Two expressions input)

DIFF-ORDERING

Add Variables, Decrease Variables
Increase Number of Variables, Decrease Number of Variables
Change Connective
Change Sign
Change Grouping
Change Position

FIGURE 8. (continued on next page)

- 32 -

TABLE-OF-CONNEC TIONS:

Rl R2 R3 R4 R5 R6 R7 R8 R9 Rl0 Rl1 R12
Add Variables X X X

Decrease
Variables X X X

Increase Number
of Variables X X X X X

Decrease Number
of Variables X X X X

Change
Connective X X X

Change Sign X X X

Change Grouping X X

Change Position X X

(c)

(d)

FIGURE 8 (a) is a problem in the propositional calculus which GPS solved.
(b) is information which must be given to GPS in addition to the problem.
(c) is the internal representation of an object and (d) is the internal repre-
snetation of an operator.

represented by schemas; instead the operators were represented by express

ions together with a special routine which interpreted the semantics of

the expression. For example, the expression

L: MC

represents the operator which moves one missionary, one cannibal, and the

boat from the right bank to the left bank. Given an object and this

expression the special routine created a new object in which one missionary,

one cannibal and the boat were moved across the river. The new object would

only be produced if the boat was originally on the right bank and if no

missionaries could get eaten, etc. One disadvantage of using the special

routine is that its construction requires knowledge of the internal structure

of GPS.

The only other task given to GPS previous to this report is a task

found in a psychological experiment designed to investigate the mathematical

ability of children (approximately age 7) . The problem is to transform one

string of I's and O's into another by

a. adding two I's to the right end of the string;
b. adding two O's to the right end of the string;
c. deleting one I;

d. deleting one 0.

GPS solved the problem of transforming

I0II0I00I
into

I00I000II.

The objects are the strings of I's and O's which were represented by

schemas. The operators are the rules for modifying the strings and were

also represented by schemas.

Several tasks have been formulated for GPS but never carried

through to completion. Proving trigometric identities was proposed

and hand simulated (Newell, et al [42]). The problem of balancing

an assembly line (the task solved by another heuristic program) was

formulated in terms of GPS (Tonge [61]).

A formulation for GPS of the problem of discovering a good set

of differences for a task was proposed in Newell, et al [45].

Two programs have been constructed which have deliberately

adapted the problem solving techniques of GPS to a particular task.

1. Heuristic Compiler. The Heuristic Compiler (Simon [54]) is

a program which constructs programs in IPL-V (Newell [33]). It consists

of three basic parts each of which corresponds to a GPS "task environ

ment" (a type of task for GPS). A description of one, the "State

Description Compiler", is sufficient to illustrate how the problem solv

ing techniques of GPS can be applied to a programming task.

In the state description of a programming task, the initial situa

tion is the list of cells affected by the execution of the program

together with the contents of each cell prior to execution. The desired

situation is the contents of the affected cells after the execution of

the program. For example, Fig. 9.a represents the programming task of

replacing the contents of the SIGNAL-CELL by MINUS. (IPL-V is a list

processing language and PUSHD0WN1 represents the second symbol on the list,

SIGN-CELL.) In Fig. 9.b PUSHD0WN1 and SYMBl represent an arbitrary

symbol. An operator is a previously compiled routine and is represented

by a list of the cells affected by its execution together with the

contents of these cells before and after its execution, e.g., the operator

35

(a) Affected Cells SIGNAL-CELL

Input SYMB1, PUSHDOWN1

Output MINUS, PUSHDOWN1

(b) Affected Cells

Input

Output

ACCUMULATOR

SYMB2, PUSHDOWN1

PUSHDOWN!

CELL1

SYMB1, PUSHDOWN2

SYMB2, PUSHDOWN2

(c) Affected Cells ACCUMULATOR

Input PUSHDOWN1

Output SYMBl

FIGURE 9. (a) is the state description of a programming task. (b) and
(c) are state descriptions of two previously compiled routines.

- 36 -

shown in Fig. 9.b.

In attempting to construct the program represented in Fig. 9.a,

the Heuristic Compiler notices the difference that the contents of the

SIGNAL-CELL is not MINUS. According to its TABLE-OF-CONNECTIONS, the

operator shown in Fig. 9.b is relevant to reducing this difference.

After substituting MINUS for SYMB2, so that the operator will perform a

desirable function, the Heuristic Compiler notices that the operator

cannot be applied because of the difference that the contents of the

ACCUMULATOR is not MINUS. This difference is reduced by applying the opera

tor in Fig. 9,c after substituting MINUS for SYMB1. The operator in

Fig. 9.b can be applied to the resulting object and the task is solved.

2. Binary Choice Experiment. In the binary choice, the subject

is asked to predict which of two events will occur in each of a series

of trials. The subject is told which event occurs after he makes his

prediction. A program which uses GPS's problem solving methods was

constructed to simulate human behavior in the binary choice experiment

(Feldman, et al [12]). The assumption underlying this simulation is

that the subject is entertaining hypotheses about the pattern of events

which have occurred.

The objects of this task are hypotheses about the pattern of

events and the operators are rules for forming hypotheses according to

the actual sequence of events. The differences are features of hypotheses,

which, according to the actual sequence of events, seem to be incorrect.

Thus, GPS's methods are not used to predict events but to form a model of

the environment which is used to predict events.

B. POSING A PROBLEM OF GENERALITY

As we have seen, there are several quite distinct ways to

approach constructing a problem solver with some degree of generality.

Their diversity underscores that the decision to work with GPS entails

selecting a particular approach: one that derives its appeal from

the wide applicability of heuristic search, but that ignores by and

large the way problems are represented externally or internally. The

importance of the internal representation will become evident in what

follows. Nevertheless, the internal representation used in GPS was

chosen ad hoc, within the framework of the problem solving techniques

to be used, and not as the primary consideration in implementing GPS.

It is clear that generality has to do with the size of the domain

of problems that can be handled by a problem solver. Still it is not

enough to specify just the problem domain in evaluating the generality

of a program. It is the purpose of this section to clarify some of the

additional considerations so that we can finally state a meaningful

problem of generality.

Amount of Specification

If we were to take seriously that generality is defined by the

domain of problems which are solvable, then there are many perfectly

general problem solvers: Turing Machines, ALGOL compilers, etc. But

the generality of a Turing Machine (for example) stems from the fact

that the amount of information in the specification of a problem to a

Turing Machine is not limited. For example, the problem of playing

perfect chess could be represented by all possible chess positions

together with the best move for each position. It is theoretically

possible to give this information to a Turing Machine, since the number

of different chess positions is finite. But this specification, being

impractical, does not qualify a Turing Machine as a chess player.

The advantage that ALGOL has over a Turing Machine (or an

assembly language) is that most problems of interest can be specified

more briefly in ALGOL. Consider the problem of evaluating a polynomial.

To describe this problem to a Turing Machine, it would be necessary to

also describe numerical operations (multiplication, addition, etc.).

The problem can be specified in ALGOL by a single declarative statement.

The information in the specification of a problem determines whether the

problem solving is done endogenously or exogenously. In describing the

evaluation of a polynomial to a Turning Machine most of the problem

solving techniques were contained in the specification of the problem.

On the other hand, an ALGOL translator has built into it problem solving

techniques which are sufficient to evaluate polynomials.

Thus, the generality of a problem solver must be defined relative

to the amount of information it takes to specify a problem. An ALGOL

translator would appear to be more general than an assembly language or

a Turing Machine because in ALGOL problems can be described in terms of

more sophisticated concepts such as iteration statements.

Problems are specified in terms of the concepts built into the

problem solver. In constructing a general problem solver, we face the

dilemma that the concepts built into it should be both sophisticated and

general. The sophistication of the concepts allows the problem specifi

cation to be brief while the generality of the concepts allows them to

be useful in specifying more than one problem. Chess programs, for

example, contain the concept of playing chess and the problem of finding

a move for a particular chess position is specified by specifying the

4lt has trouble checkmating a beginner while it will put up a fight
against a good chess player.

chess position. Although the concept of playing chess is a very

sophisticated concept, it is also very specialized. The concept of

playing a game on a chess board is a more general concept; both

chess and checkers could be specified in terms of this concept. However,

the specification of chess in terms of a game on a chess board, would

necessarily include the definition of the legal chess moves as well as

the chess position.

We know of no way to determine, for any particular task, what

information should be built into the problem solver and what informa

tion should be contained in the specification of the task. But clearly

this issue is relevant to the evaluation of a general problem solver.

Quality of Problem Solving

An outstanding property of the various efforts to construct a

general problem solver is that the quality of the problem solving suffers

as generality of the problem solver is increased. For example, the best
4

chess program (Kotok [22]) in existence plays a modest game of chess.

Although GPS can attempt more than one kind of problem, the only kind of

problems that it can solve are considerably easier than chess. The

representation in GPS of the chess board and the legal chess moves would

be cumbersome and GPS's problem solving techniques are not sufficient to

play even poor chess.

The power of a problem solver is determined by the effectiveness

of its problem solving techniques while its generality is determined by

the domain of problems to which the techniques are applicable. Each

technique requires that certain information be abstracted from the

internal representation. The techniques are applicable if processes

can be found which abstract the necessary information from the internal

representation. For example, one of the requirements of the techniques

of GPS is that in attempting to apply an operator to an object, a new

object is produced if the operator is applicable to the object; other

wise, a difference is produced. Thus, there must be a process which,

given an operator and an object expressed in internal representation,

will either produce a difference or an object expressed in the internal

representation, depending on the applicability of the operator to the

object.

The internal representation is pulled in two directions: on

the one hand, it must be general so that problems can be translated into

it, and, on the other hand, it must be specific enough for the problem

solving techniques to be applicable. Thus, there are many different

generality problems, one for each set of problem solving techniques and

the difficulty of a particular generality problem depends on the variety

and complexity of the techniques. If this were not the case, a problem

solver, more general than any in existence, could be constructed by

using a natural language for its internal representation and giving it

no problem solving techniques. Of course, it would never solve a problem,

regardless how trivial, but it would be very general.

More cogently, it would be much easier to achieve generality with

a problem solver that only did forward search by applying the operators

in a fixed order than with GPS. Conversely, it would be more difficult

to achieve the level of generality that we have achieved for a problem

solver that is more adequate than GPS.

Role of Representation

A problem is expressed quite differently for different problem

solvers. For example, a story algebra problem is expressed in English

for STUDENT. A story algebra problem can also be expressed in the

first order predicate calculus or as a heuristic search problem in

terms of objects and operators. Although each of these formulations

represents the same problem in some sense and thus are isomorphic to

each other, are they really the same problem? A human presented with

these formulations would probably exhibit considerably different

behavior in finding a solution for each and would probably not recog

nize they really are the same problem.

Most problems can be formulated several different ways, and each

formulation will demand different kinds of processing. Contrast

the problem of integrating an expression using only elementary integral

forms to the problem of integrating the same expression using an

integral table. Both problems are isomorphic and, in fact, the forms

in the integral table can be derived from the elementary forms assuming

the knowledge of certain trigometric identities and algebraic manipula

tions. However, a problem solver using the integral table must be

capable of processing large amounts of data while the problem solver

which uses only the elementary forms must be considerably more clever

than the other problem solver.

Perhaps it is best to consider different formulations of a problem

to be different problems. Unfortunately, this raises other questions

on comparing the performance of problem solvers that have different

internal representations.

Summary

A meaningful problem of this research can finally be formulated—

to extend the generality of GPS while holding its power at a fixed level.

This involves extending the internal representation of GPS in such a

way that its problem solving methods remain applicable and in a way that

increases the domain of problems that can be translated into its internal

representation. Thus, this research is mainly concerned with representa

tional issues. We would not expect the issues to be the same in general

izing the internal representation of a problem solver which employed

different techniques than GPS. In this respect, this research has the

nature of a case study.

Two representational issues were discussed in this section:

a. the amount of information that is required to
specify a problem;

b. which of several isomorphic representations
is a neutral representation of a problem.

These issues, although important, are only secondary concerns of this

research. The primary concerns are to discover the way in which the

problem solving techniques interact with the internal representation, and

to learn something about the properties of a good internal representation

for the problem solving techniques of GPS.

Let us recapitulate the plan of the research now that the task is

clear. Chapter III describes the problem solving techniques of GPS and

Chapter IV the generalized internal representation. We keep these quite

distinct so that we can essentially hold the techniques constant while

modifying the internal representation to meet the demands of generality.

In Chapter V, the interaction between the internal representation and the

techniques is illustrated by examining the nature of modifications necess-

ar-y to get GPS to work on different tasks. Chapter VI describes the

different tasks actually given to GPS; these illustrate the generality of

GPS as well as its power. Finally, Chapter VII provides a summary.

C. "HISTORY OF GPS

Since this report is concerned intensively with GPS, a brief

description of the different versions of GPS is appropriate. (The

following is all of the published material either describing GPS or

discussing its use in the simulation of cognitive processes: Newell

[34,35,36]; Newell, et al [40,42,45]; Newell and Simon [43,44];

Simon and Newell [56,57,58]). GPS grew out of the Logic Theory Machine

(described on pages 24-25), a program for proving theorems in the

sentential calculus of Whitehead and Russell. The first version,

called GPS-1 was coded in IPL-IV for JOHNNIAC, a Princeton class computer

at the RAND Corporation. All of the other versions have been coded in

IPL-V (Newell [33]). The successor of GPS-1, called GPS-2-1, was

similar to GPS-1, functionally, but organizationally was quite different.

The change to GPS-2-2, the next version of GPS, involved smaller organi

zational changes but required a separate designation since, for a short

period, both versions were operational. This version is rather completely

documented (Newell [35]).

GPS-2-3 changed the internal represenation. Objects and operators

were now represented by description lists—attribute-value pairs—instead

of by conventional lists which were used in previous versions. GPS-2-4

was obtained by revising the mechanism for testing the identity of two

data structures. In the predecessors of GPS-2-4, there were several

ad hoc processes for testing if two data structures of a particular type

are identical, e.g., two goals or two objects. In GPS-2-4 these ad hoc

- 44 -

processes were replaced by a general process for testing the identity

of any two data structures regardless if they are goals, objects, or

whatever.5

GPS-2-5 introduced a language for describing problem solving

methods that allowed the application of a method to be monitored by

the problem solving executive. Thus it incorporated both a major change

in internal representation and in problem solving organization over

GPS-2-2.

The version of the program used in this research started with

GPS-2-5. The problem solving structure was not altered but the internal

representation was generalized under the impact of new tasks. Although

this current version should be called GPS-2-6, for expediency it is

called simply GPS.

All the IPL-V versions of GPS (GPS-2-1 to GPS-2-5) were run on

the IBM 7090. The current version has been run on the CDC G21, a machine

with 65K of 32-bit memory (requiring two words per IPL symbol).

GPS was produced by five successive modifications of GPS-2-1 over

a five-year period. Some of the programming conventions have become

confusing and a significant portion of the code Is ad hoc. This makes

description more difficult and muddies somewhat the lessons to be drawn

from generalizing GPS-2-5. In fact, there now seems little further

profit in continuing with this version rather than constructing an entirely

new GPS Drogram.

5This process is described on pages 57-61.

- 45 -

A certain degree of success was guaranteed because the previous

versions of GPS had moderate problem solving capabilities. On the other

hand, serious programming difficulties had already been encountered and

modification could be expected to introduce more. Consequently, no high

expectations were held for the power of the problem solving to be shown

by GPS across many tasks.

One serious limitation on the expected performance of GPS is the

size of the program and the size of its rather elaborate data structure.

The program itself occupies a significant portion of the computer memory

and the generation of new data structures during problem solving quickly

exhausts the remaining memory. Thus, GPS is only designed to solve

modest problems whose representation is not too elaborate. Although

larger computers' memories would alleviate the extravagances of GPS's

use of memory, conceptual difficulties would still remain. For example,

GPS never erases any goals or objects generated during problem solving.

CHAPTER III: THE PROBLEM SOLVING STRUCTURE OF GPS

The simple scheme of Fig. 1 may be used to show the overall

organization of GPS. This chapter describes the problem solving

techniques of GPS. The details of the internal representation are

ignored in this chapter. We assume there is some encoding of objects,

operators, and differences which the problem solving techniques can

process. The internal and external representations of a task are

described in the next chapter.

The problem solving techniques are organized by GOALs 1. That

is, the main function of the problem solving techniques is to achieve

GOALs and in the process other GOALs may be generated to which the

problem solving techniques are also applied. GOALs which are discussed

in the first section of this chapter, are achieved by applying relevant
2 , , , . , , , , , . , methods . The methods are expressed in a special method language, which

is described in the second section. The PROBLEM-SOLVING-EXECUTIVE,

described in the third section of this chapter, selects and applies

methods. In the last section, each method is described individually.

A. GOALS

A GOAL is a data structure which consists of the information that

defines a desired state of affairs plus a history of previous attempts

to achieve the GOAL. A GOAL provides sufficient context for problem

solving activity. That is, in any context GPS can stop what it is doing

and start working on a new GOAL or on a previous GOAL, where it left off.

lAs previously noted, words written with all capital letters have a
direct correspondence to IPL symbols in GPS.

2We have used the word "techniques" rather than "method" in the preced
ing, since the methods in GPS have a highly precise definition.

r

30bject A is derived from object B if it is produced by the application
of an operator to B or some other object derived from B.

!

The statement of a problem must be formulated as a GPS GOAL.

GPS uses only four types of GOALs. (The necessity for others has

not arisen.) The four types of GOALs are:

a. TRANSFORM object A into object B. To achieve
this GOAL a series of objects, which are
derived3 from A, is generated. The final
member of the series is identical to B.

b. REDUCE difference D on object A. To achieve
this GOAL GPS produces a new object A', which
is derived from A. The feature of A to which
D refers is modified in A'.

c. APPLY operator Q to object A. To achieve
this GOAL a new object is generated by apply
ing Q to A or some object derived from A.

d. SELECT the elements of set S which best fulfill
criterion C. To achieve this GOAL an element
of S is selected. C is stated with respect to
an object, e.g., select the element of S most
similar to object A.

A typical example of how GPS subdivides GOALs into simpler GOALs

is represented by the tree of GOALs in Fig. 10. The original GOAL is

Gl. In attempting to achieve this GOAL, GPS notices the difference, D,

between A and B and creates G2. GPS attempts to modify A by creating

G3. The operator Q is not applicable to A, but the difference D' is

detected and G4 is created. (Note that D* is related to applying Q, not

to the original GOAL, Gl.) G4 is achieved by the solution of G5. GPS

then continues working on G3 by creating G6, which uses the result of

G4, A'. The successful application of Q to A* results in the solution

of G3 and G2, both of which use the result of G6, A " , as their results.

In reattempting the original GOAL, G7 is created and Gl will be achieved,

- 43 -

Gl: TRANSFORM A into

|G2: REDUCE D on A
(difficulty = D)
(result = A'')

)G3: APPLY Q to A I
(result = A ")

G4: REDUCE D' on A
(difficulty = D 1)
(result = A 1)

G6: APPLY Q to A*
(result = A ")

G5: APPLY Q' to A
(result = A')

FIGURE 1 0 . A tpyical GOAL tree showing the difficulty and the results
of the GOALs.

4CURRENT-SIGNAL is the name of the IPL cell in which the methods put the
signal that summarizes their execution. However, it may be more convenient
to view CURRENT-SIGNAL as a variable which is assigned a value during the
execution of a method.

if G7 is successful. However, the difference D " between A " and B

is detected, and the process continues.

If GPS finds a sufficiently undesirable situation while attempt

ing G7, the previous GOALs may be retried in hope of finding new

results. But, the basic strategy of GPS is to continue on the current

approach, rather than to do an exhaustive search for results.

B. METHOD LANGUAGE

The methods for achieving GOALs are expressed in a method

language, and the PROBLEM-SOLVING-EXECUTIVE is an interpreter for this

language. A system of signals provides the main means of communication

between the methods and the PROBLEM-SOLVING-EXECUTIVE. A signal is a

single IPL symbol. Each method, when executed, assigns to the variable,

CURRENT-SIGNAL4, a signal which summarizes the result of the method's

execution. The next action of the PROBLEM-SOLVING-EXECUTIVE, following

the execution of a method, depends on the value of the CURRENT-SIGNAL.

In the method language there are four different method structures,

as far as Interpretation is concerned. Three of these correspond to

the primitive term, the unconditional expression, and the conditional

expression, which are incorporated in almost all programming languages.

The fourth, GOAL construction, is somewhat peculiar to problem solving.

An IPL method, which is the primitive term in the method language,

is an IPL subroutine. This type of method is executed by calling the IPL

interpreter to execute it. No further methods occur inside an IPL method.

A SEQUENTIAL method is a list of methods used for unconditional

operation. Such a method is executed by executing, in the order of

their occurrence, all of the methods on the list. The execution of

the sequence may be terminated part way through, but otherwise is uncon

ditional. Both in a SEQUENTIAL method and a SIGNAL-LIST method

(described next) any of the four types of methods can occur; thus full

phrase structure is permitted.

A SIGNAL-LIST method is used for conditional operation. It

consists of a list of pairs, each of which is a signal followed by a

method. A SIGNAL-LIST method is executed by executing the sub-method

which is paired with the same signal as the CURRENT-SIGNAL. If none of

the signals associated with the sub-methods is identical to the CURRENT-

SIGNAL, then no sub-method is executed. Thus, this type of method performs

an arbitrary n-way branch conditional on the CURRENT-SIGNAL.

A GOAL-SCHEMA method is a request for the construction of a GOAL.

This type of method has the form of the GOAL to be constructed, stated

relative to the CURRENT-GOAL context. CURRENT-GOAL is a variable whose

value is the GOAL that GPS is currently attempting. An example of a GOAL-

SCHEMA method is

TRANSFORM the result of the last subgoal into
the second object of the CURRENT-GOAL.

The result of the last subgoal and the second object of the CURRENT-GOAL

depend on the context of the CURRENT-GOAL and, thus, a GOAL constructed

according to this GOAL-SCHEMA depends on the CURRENT-GOAL context. The

PROBLEM-SOLVING-EXECUTIVE executes a GOAL-SCHEMA method by constructing

the GOAL, evaluating it and attempting it, if acceptable.

A SIGNAL-LIST method can be used to perform iterations by recursive

execution of its submethods. However, iterations can be performed more

directly by having the PROBLEM-SOLVING-EXECUTIVE repeatedly execute a

method as long as a certain condition is satisfied. For example, if a

method is marked to repeat on SUCCESS, it will be repeated as long as

the CURRENT-SIGNAL is a signal that indicates SUCCESS. Several different

signals indicate the different degrees of SUCCESS while several other

signals indicate the different kinds of FAILURE. Any type of method

except a GOAL-SCHEMA method can be designated as repeatable. The condi

tions on which repetition can occur are:

a. a change in the CURRENT-SIGNAL;
b. the CURRENT-SIGNAL indicates FAILURE;
c. the CURRENT-SIGNAL indicates SUCCESS;
d. the CURRENT-SIGNAL does not indicate

either SUCCESS or FAILURE.

Normally, whenever the CURRENT-SIGNAL indicates SUCCESS or FAILURE, the

execution of a method is terminated. However, any non-repeatable method,

except a GOAL-SCHEMA method, can be marked to continue on SUCCESS or

FAILURE.

An example of a method is the GENERATE-AND-TEST-METHOD, shown in

Fig. 11, which is used to achieve a SELECT GOAL. Fig. 11 and all of the

other figures that define methods are placed at the end of the chapter to

keep them together. In these figures the sub-methods followed by '(IPL)1

are IPL methods. The 'sub-method1 column of a SIGNAL-LIST method is

divided into two parts: one or several signals appear in the left part;

and a method appears in the right part. The method gets executed whenever

the CURRENT-SIGNAL is any of the signals. For instance, in IS-IT-OK, BEGIN

and TEST-PASSED both lead to executing the IPL method FIND-NEXT-TEST. A

signal can occur as a sub-method of a SEQUENTIAL or SIGNAL-LIST method.

It is processed as if it were the IPL method vhich assigns the signal

to be the value of the CURRENT-SIGNAL. Unless otherwise noted, the

SEQUENTIAL and SIGNAL-LIST sub-methods that occur in the main method

are also defined in the figure.

The GENERATE-AND-TEST-METHOD generates the elements of the SET

one at a time and applies to each a series of tests. The first element

which passes all of them is the element which is selected and marks the

termination of the method.

The equivalent of the GENERATE-AND-TEST-METHOD is given in a

flow chart in Fig. 12 for comparison. SELECT-MEMBERS may result in

FAILURE which terminates the method and RECORD-RESULT will never be

executed. As long as IS-IT-OK fails, select members will be repeated.

However, if FIND-NEXT-MEMBER-OF-SET fails, SELECT-MEMBERS will be terminated

because this type of FAILURE is UNCONDITIONAL-FAILURE. UNCONDITIONAL-

FAILURE will terminate any method, overriding instructions to repeat or

continue on FAILURE. IS-IT-OK will be repeated until a test fails or

until all of the tests are passed. If the next test cannot be found,

FAILURE is not reported. But this condition terminates the method because

the CURRENT-SIGNAL will not change after this condition arises. Both

FIND-NEXT-MEMBER-OF-SET and FIND-NEXT-TEST find the first as well as the

next.

C. PROBLEM SOLVING EXECUTIVE

In addition to interpreting methods, the PROBLEM-SOLVING-EXECUTIVE

performs the following functions:

a. METHOD-SELECTION
b. GOAL-RECOGNITION
c. GOAL-EVALUATION
d. OBJECT-RECOGNITION
e. OBJECT-EVALUATION

- 53 -

r

V TEST-PASSED

Start

|SET-CONTEXT

FIND-NEXT-
MEMBER- OF -

SET

Found

IFIND-NEXT-
TEST

TEST-
FOUND

APPLY-TEST

TEST-
FAILED

Not Found FAILURE

RECORD-
RESULT

SUCCESS

FIGURE 12. The flow chart representation of the GENERATE-AND-TEST-
METHOD (compare with Fig. 1 1) .

f. GOAL-SELECTION
g. RECORD-ATTEMPTS
h. SET-GOAL-CONTEXT

Each of these functions is a box in Fig. 13, a flow chart of the PROBLEM-

SOLVING-EXECUTIVE, and is discussed individually later in this section.

All of the other boxes in Fig. 13 pertain to the interpretation of the

method language.

The PROBLEM-SOLVING-EXECUTIVE is always in the context of a GOAL.

Initially it is in the context of the TOP-GOAL which is the statement of

the problem, given in the specification of a task.

The PROBLEM-SOLVING-EXECUTIVE starts off by trying to select a

method (see Fig. 13). If one is selected, it is attempted by first

discriminating on the type of the method (i.e., their grammatical type).

SEQUENTIAL and SIGNAL-LIST methods are attempted by trying their sub-

methods one at a time. Thus, this processing is purely interpretive. On

the other hand, the PROBLEM-SOLVING-EXECUTIVE constructs a GOAL in order

to attempt a GOAL-SCHEMA method. After constructing the GOAL, the PROBLEM-

SOLVING-EXECUTIVE files it (this process will be described in detail in

GOAL-JRECOGNITION) and recognizes if it is equivalent to a GOAL filed

previously. If the GOAL passes an evaluation, the executive abandons the

CURRENT-GOAL, after recording its status, and initializes the context for

the new GOAL. The new GOAL is then attempted by selecting a method that

is relevant to achieving it.

The executive uses the IPL interpreter to execute an IPL method.

An IPL method might select an old GOAL which the executive will evaluate

to decide if it should be attempted. IPL methods can also produce objects,

which are then evaluated by the executive. An undesirable object will

cause the executive to abandon the GOAL. If the object produced is a new

- 55 -

Start

Y

Finished

METHOD-
SELECTION

Finished Finished

SET-GOAL-
CONTEXT

^ UNCONDITIONAL-FAILURE

V NEW- FLND- ^ .
METHOD METHOD-

TYPE
"

GOAL:
SELECTION,

jRECORD-
lATTEMPTS

V GOAL-

CONTINUE -
OLD-METHOD

IPL EXECUTE-!
PROGRAM I

SCHEMA
CONSTRUCT -j
GOAL |~"̂

V UNCONDITIONAL-FAILURE

V_OLD-GOAL

KNEW;
GOAL

^OLD-OBJECT

GOAL- GOAL-
RECOG EVALUA
NITION TION

V.NEW-
OBJECT

OBJECT- OBJECT-
RE COG- EVALUA
NIT ION TION

VALL-OTHER-CASES

SEQUENTIAL FIND-FIRST-
1 — 1

SUB -METHOD

SIGNAL- FIND-
LIST SUB-METHOD

© 1

©

FIGURE 1 3 . (continued on next page)

56

®

©-
©
yS UB-METHOD-

VDESIRABLE-GOAL,
UNDESIRABLE-OBJECT

NOT-FOUND
YALL- > NORMAL-

nrrum - H N E X T OTHER-
CASES

V SUCCESS 3 (S U C ^ S S T

^NEXT

\ FAILURE [FAILURE -
HNEXT

SUB-METHOD-FOUND
^ J D E S C E N D L -

ALL-
OTHER-
CASES

ALL-
OTHER-
CASES

N

ALL-

CASES

N

ADVANCE-
ON-

SUCCESS

ADVANCE-

FAILURE

REPEAT-
ON-
SIGNAL-
CHANGE

REPEAT^
ON-
QIRR, SUCCESS

REPEATy

NO-SUB- F 0 U ™
METHOD

ON-
FAILURE

J

METHOD-
FOUND

NO-SUB-
METHOD

FIGURE 13. The flow-chart of the PROBLEM-SOLVING-EXECUTIVE.

one, the executive will file and recognize it in the same way that it

recognizes GOALs, before evaluating it.

METHOD-SELECTION

METHOD-SELECTION is done by a discrimination tree, shown in

Fig. 14. The terminal nodes of the tree are methods. The selection is

performed by discriminating at nodes starting with the top node, and

then at the node resulting from the previous discrimination, until

arriving at a terminal node. The method at the terminal node is the one

selected, provided that its status for the CURRENT-GOAL is not EXHAUSTED.

If the discrimination at any node does not yield a new node, or if the

method at the terminal node is EXHAUSTED, all methods are EXHAUSTED and

the selection results in UNCONDITIONAL-FAILURE.

At every node the discrimination is on the feature of the current

context, enclosed in the box representing the node. For example, if a

method is being selected for a new GOAL, the next discrimination will be

on the GOAL-TYPE of the CURRENT-GOAL. If it is a TRANSFORM GOAL whose

given object is a SET of objects, the TRANSFORM-SET-METHOD will be selected.

Some of the discriminations depend on the representation of the

task, e.g., TYPE-OF-OPERATOR. Such discrimination will be clarified in

the next chapter, which discusses the details of the representation of a

task.

GOAL-RECOGNITION

In GPS the philosophy for comparing two data structures that are

not atomic symbols, such as GOALs, is to assign to them canonical names

and compare only their names. The canonization is accomplished by. a

general process, similar to an EPAM net (Feigenbaum [10]) for filing

data structures. Whenever a new data structure (one without a canonical

CURRENT-
SIGNAL

K NEW-
GOAL

^SUCCESSFUL-
SUBGOAL

^EXTERNALLY-
SPECIFIED

VFAILURE

GOAL
TYPE

TRANSFORM

(prior
method)

DEDUCE

(external
method)

ANTECED
ENT-GOAL -
METHOD

VAPPLY

TYPE-OF-
GIVEN- OBJECT- TRANSFORM-
OBJECT ~\ SCHEMA "METHOD

REDUCE- U TRANSFORM-
METHOD SET-METHOD

TYPE-OF- MOVE- MOVE-OPERATOR
OPERATOR ^ OPERATOR METHOD

FORM-
OPERATOR

METHOD S ~ TOP-
GOAL

YES TRY-OLD-
EXHAUSTED

V OLD-

TOP-
GOAL GO ALS-EXHAUSTED

V OLD-

METHOD

TRANSFORM EXPANDED-

EXHAUSTED

V OLD- GOAL
TYPE

METHOD

TRANSFORM EXPANDED-
GOAL

GOAL
TYPE "\ TRANSFORM

VSMALL

^REDUCE REDUCE- SMALL
METHOD

SITUATION
SET-FOR-
INPUT-

VS ELECT SET- LARGE
SIZE

1

GENERATE-AND -
TEST-METHOD

SELECT-BEST-
MEMBERS-
METHOD

.SELECT SET- LARGE
SIZE

VAPPLY TYPE-OF- MOVE-
OPERATOR OPERATOR

GENERATE-AND-
TEST-METHOD

SELECT-BEST-
MEMBERS-METHOD

MOVE-OPERATOR
METHOD

OBJECT

K , ONE-INPUT
OPERATOR

VSET-OF-
OPERATORS

FORM-OPERATOR-
TO-SET
METHOD

FORM-OPERATOR-
METHOD —

SET-OPERATOR-
METHOD

0 0

TWO-INPUT-
OPERATOR-
METHOD

FIGURE 14. The discrimination net used for METHOD-SELECTION.

U J L . . J L J L . . J I J L J I J I... J L . J I J L - J I J T J L . . . J L . L J L J

name) is encountered, it is filed. If the data structure is identical

to one already filed, it is replaced by the filed structure which, by

definition, is the canonical structure; otherwise, it is filed and

becomes a canonical structure.

In GPS data structures are filed in a discrimination tree like

the one shown in Fig. 15.a. The nodes of the tree, except for terminal

nodes, are properties of data structures and the branches represent

values of the properties. The terminal nodes represent filed data

structures. Filing a data structure involves sorting it through the tree

and, if necessary, growing the tree so that it can be filed at a terminal

node.

Consider the example of filing in the net in Fig. 15.a the GOAL

G5: TRANSFORM Al into Bl.

Discrimination on the property at the top node of the tree sorts G5 to

the left most subnode of the top node because G5 is a GOAL. The discrimina

tion on the GOAL-TYPE sorts G5 to the node, Gl. Since Gl is a terminal

node, the tree does not contain sufficient discrimination to distinguish

between Gl and G5. Gl and G5 are matched and if they are identical, Gl is

used as the canonical form of G5. (In this case, G5 is not filed.) On

the other hand, if a difference is detected between Gl and G5, it is used

to grow the tree so that G5 can be filed. The tree shown in Fig. 15.b is

the result of filing G5 in the tree in Fig. 15.a, assuming that Gl is the

GOAL,

Gl: TRANSFORM A2 into B2.

There are two essential properties of this process. First, the

data structure being filed will be matched to at most one other data

- 60 -

(a) Type of Data
Structure

GOAL

GOAL-TYPE

TRANSFORM/

1

]

(b) Type of Data
Structure

GOAL

FIGURE 15. (b) is the result of filing G5 in the discrimination net, (a)

structure. The matching is done by the IDENTITY-MATCH-METHOD in

Fig. 16 described later in this chapter. This keeps the amount of

processing small, since matching is the most expensive part of the

process when the data structure being filed is large. The other

essential property of the filing process is its generality, i.e., the

process can deal with other types of data structures in addition to

GOALs. Both objects and differences are filed in the same tree.

If GOALs were not canonized, every GOAL (except the GOAL that

is the statement of the problem) would have a unique supergoal. However,

since GOALs are canonized, any GOAL may have several supergoals. To

see this suppose that GOAL, Gl is created to simplify GOAL, G2 and that

a previously generated GOAL, G3 is equivalent to Gl. In canonizing Gl,

it is replaced by its equivalent, G3, and consequently, G3 has two super-

goals: G2 and the original supergoal of G3. Thus, the canonization of

GOALs causes the GOAL structure of GPS to be a GOAL network instead of a

GOAL tree.

GOAL-EVALUATION

The basic strategy of GPS is that problem solving proceeds from

difficult GOALs to easy GOALs. This strategy requires that none of the

subgoals of a GOAL, G, are more difficult than G. Consequently, GPS

considers any GOAL undesirable if its supergoal is easier than the GOAL.

The above strategy also requires the antecedent GOAL of a GOAL, G,

to be no easier than G because an antecedent GOAL is the previous step in

problem solving at the level of G. The antecedent GOAL of a GOAL, G, is

defined as the GOAL whose result is used in the statement of G and whose

supergoal is the same as the supergoal of G. (Currently, there is no need

for more than a single antecedent.) In Fig. 10 for example, G2 is the

antecedent GOAL of G7, and G4 is the antecedent GOAL of G6. No other GOAL

in Fig. 10 has an antecedent GOAL.

The difficulty of a GOAL is determined by the difficulty of the

difference associated with the GOAL. Since REDUCE GOALs are the only ~"

type of GOALs which have differences associated with them, they are

the only GOALs which can be evaluated according to their difficulty. _̂

However, other GOALs are considered as difficult as their most difficult J

subgoal. -j

For example, G7 in Fig. 10 does not have a difference associated

with it. But GPS considers it as difficult as G8 because D 1* is the most ~!

difficult difference detected in matching A " and B; hence G8 is the

most difficult subgoal of G7. GPS considers G8 desirable only if D " is _j

not more difficult than D because G2 is the antecedent GOAL of G7.

Similarly, G4 is desirable only if D* is not more difficult than D ~*

because the supergoal of G3 is G2. ~|

OBJECT-RECOGNITION

All newly generated objects are canonized in the same way that _j

GOALs are canonized, using the same discrimination tree and filing n

processes. The main reason for canonizing'objects is to simplify the ^

canonization of GOALs. Since the names of objects appear in GOALs, ~]

matching two GOALs would necessitate matching objects which appear in the

GOALs,-if the canonical names of objects were not used. J

OBJECT-EVALUATION

An object which is considerably larger than any of the objects in

the TOP-GOAL, will be considered undesirable. 1

GOAL-SELECTION

. Only simple GOAL selection is done directly by the problem solving J

executive; more complicated GOAL selection is accomplished by the

- 63 -

execution of a method whose purpose is to select a GOAL. 5

If a new desirable GOAL, G, is generated, the PROBLEM-SOLVING-

EXECUTIVE will abandon the CURRENT-GOAL and work on G. The supergoal

is selected whenever a method for achieving a GOAL is completed (SUCCESS,

NO-PROGRESS, or FAILURE). The PROBLEM-SOLVING-EXECUTIVE has no fixed

search strategy, e.g., breadth first or depth first, built into it.

Instead, GOALs are attempted iteratively by working on one GOAL until

deciding to abandon it in order to work on another GOAL. However, if

only these two rules were used to select GOALs, they would be attempted

in the recursive order in which they are generated.

The only other GOAL selection rule employed directly by the

PROBLEM-SOLVING-EXECUTIVE is that TOP-GOAL is selected whenever a newly

generated GOAL is identical to a previously generated GOAL. This rule

prevents GPS from entering an endless loop.

RECORD-ATTEMPTS

Before abandoning a GOAL, the PROBLEM-SOLVING-EXECUTIVE records

certain information which summarizes the attempt to achieve the GOAL.

For example, the methods that have been tried together with their status—

EXHAUSTED or NOT-EXHAUSTED—are recorded.

SET-GOAL-CONTEXT

After selecting the next GOAL to be attempted, the context of this

GOAL is initialized before selecting a method relevant to achieving the

GOAL.

5The only methods whose purpose is to select GOALs are the TRY-OLD-GOALS-
MBTHOD and ANTECEDENT-GOAL-METHOD.

D. METHODS

Each of GPS's methods, except for the GENERATE-AND-TEST-METHOD

(described on pages 51-2) are described below. The figures that

define the methods are at the end of the chapter. The details of some

of the methods will not be entirely clear because they are dependent

upon the representation of tasks, which is discussed in the next chapter.

TRANSFORM-METHOD

The TRANSFORM-METHOD is used for achieving the GOAL of transform

ing object, A, into object, B, and is defined in Fig. 17. After the

context for the method is initialized, the two objects are matched by

the MATCH-DIFF-METHOD which is defined in Fig. 18. If the two objects

are not identical, MATCH-DIFF-METHOD detects the differences and the most

difficult difference is determined by SELECT-DIFFERENCE. If no differences

are found, SUCCESS is reported by REPORT-SUCCESS, which terminates the

method.

On finding differences, the construction of a GOAL to reduce the

most difficult difference on A is requested. If the GOAL fails, the method

terminates with FAILURE; otherwise, the GOAL results in a new object, C,

and the GOAL of transforming C into B is constructed. The result of this

GOAL is used as the result of the CURRENT-GOAL.

MATCH-DIFF-METHOD

The MATCH-DIFF-METHOD, which is a sub-method of the TRANSFORM-METHOD,

detects all of the differences between two data structures and is defined

in Fig. 18. The strategy of this method is to divide data structures into

parts and then match corresponding parts. On finding a difference, it

tries to alleviate the difference with an immediate operator which is a

simple transformation on objects. (Immediate operators are given as a

parameter to the method and are task dependent.) For example, if the

type of difference—variable versus term—were detected, the immediate

operator of substitution would be applied. The term would be substituted

for the variable, and the difference would vanish.

The first parts of the two data structures are found by FIND-NEXT-

PART, which uses the definition of parts that are given as a parameter

to the method. Another parameter to the methods is the types of differ

ences which should be detected. The parts are matched by checking for

each type of difference, one at a time. When detected, a difference is

reported, provided that the immediate operators cannot alleviate it.

After checking for all the types of differences, the next parts are found

and matched, etc. The method is finished when all of the parts are

matched because CURRENT-SIGNAL does not change after this condition arises.

IDENTITY-MATCH-METHOD

The IDENTITY-MATCH-METHOD, defined in Fig. 16, is very similar to

MATCH-DIFF-METHOD. In fact, the two sub-methods of the IDENTITY-MATCH-

METHOD are also used in the MATCH-DIFF-METHOD. The IDENTITY-MATCH-METHOD

is used by the canonization process to compare the identity of two data

structures (see pages 57-61). It differs from the MATCH-DIFF-METHOD in

two ways: It does not use immediate operators, and it terminates upon

detecting a single difference, whereas the MATCH-DIFF-METHOD detects all

of the differences.

REDUCE-METHOD

The REDUCE-METHOD, defined in Fig. 19, is the only method for

achieving the GOAL of reducing a difference on an object. First, .it

selects a desirable operator by finding the next operator and testing its

desirability. If the operator is undesirable, it finds the next operator,

- 66 -

etc. On finding a desirable operator, the GOAL of applying the opera

tor to the object of the REDUCE GOAL is constructed which, if success

ful, will result in a new object. The new object is used as the

result of the REDUCE GOAL.

Since there may be several desirable operators, all of which

produce different objects, the GOAL may have several results. However,

the method is terminated when an operator is successfully applied. The

other results are found only by retrying the method.

FORM-OPERATOR-METHOD

In general, any operator can only be legally applied to certain

objects. A FORM-OPERATOR can be applied to an object whose form is the

same as the input form of the operator, and which satisfies the pretests

of the operator.

The FORM-OPERATOR-METHOD defined in Fig. 20, is the method for

achieving an APPLY GOAL whose operator is expressed as a FORM-OPERATOR.

After the context is initialized, the applicability of the operator is

tested by EXECUTE-PRETESTS and by matching the object to the input form.

If no differences are detected, the operator is applicable, and its result

which is used as the result of the CURRENT-GOAL is produced. If differ

ences are detected, a GOAL to reduce the most difficult one is constructed.

If the REDUCE GOAL is successful, it results in a new object, and

a GOAL to apply the operator to the new object is constructed. The result

of the latter GOAL if it is successful, becomes the result of the CURRENT-

GOAL. (Fig. 10 illustrates the way in which the result of a GOAL is also

used as the result of its supergoal.)

6The logic operators, RIO, Rll, R12, in Fig. 8 are good examples of
operators which have two objects as input.

FORM-OPERATOR-TO-SET-METHOD

The method for achieving the GOAL of applying a FORM-OPERATOR

to a SET of objects is the FORM-OPERATOR-TO-SET-METHOD which is defined

in Fig. 21. First, the object most similar to the input form of the

operator is selected by a GOAL constructed for that purpose. Then, the

GOAL of applying the operator to the object selected is generated and

its result is also the result of the CURRENT-GOAL.

SET-OPERATOR-METHOD

The SET-OPERATOR-METHOD, defined in Fig. 22, is used to achieve

an APPLY GOAL whose operator is a SET of FORM-OPERATORs. This method

is the same as the FORM-OPERATOR-TO-SET-METHOD except that an operator,

whose input form is similar to the object, is selected instead of the

converse.

TWO-INPUT-OPERATOR-METHOD

Some form operators have two input forms instead of one. Such

operators are applied to a pair of objects, both of which are derived

from the same objects, e.g., both derived from the axioms of a theory.

Each object has the same form as one of the input forms.6

The TWO-INPUT-OPERATOR-METHOD, defined in Fig. 23, is used to

achieve an APPLY GOAL whose operator has two input forms. First, the

operator is applied to the object of the CURRENT-GOAL by selecting one

input form and applying it to the object. In applying the operator to

the object, the operator is modified if it is necessary to substitute

for some of the variables in the operator. The modified operator is the

- 68 -

result of applying the operator to the first input. The other input

object is selected from the SET of objects that are derived from the

same object that the first input object is derived from. After apply

ing the operator to the second input, the new object is produced.

MOVE-OPERATOR-METHOD

The above methods for achieving APPLY GOALs all assume that the

operator is represented as a FORM-OPERATOR. A MOVE-OPERATOR is an

alternative representation for an operator. Unlike a FORM-OPERATOR, a

MOVE-OPERATOR may produce several results, each of which is obtained

from a different specification of the variables in the operator. The

MOVE-OPERATOR-METHOD terminates on finding a single result, but may be

retried.

Fig. 24 is the definition of the MOVE-OPERATOR-METHOD for achiev

ing a GOAL whose operator is a MOVE-OPERATOR. After specifying the

variables in the operator, the feasibility of the operator is tested. If

feasible, i.e., no difference found, the resultant object is produced and

tested for legality by executing the POST-TESTS. If the POST-TESTS fail,

the resultant is rejected; otherwise, it is used as a result of the GOAL.

On the other hand, if a difference is found, a GOAL is set up to

reduce the difference provided that it is not too difficult. If the REDUCE

GOAL is successful, a GOAL is constructed to apply the operator to its

result.

Upon retrying APPLY-FEASIBLE-OPERATOR a different specification of

the variables is used, and the method may be retried as long as a new

specification of variables is found.

TRANSFORM-SET-METHOD

The TRANSFORM-SET-METHOD, defined in Fig. 25, is used to achieve

the GOAL of transforming a SET of objects into an object. It is very

similar to the FORM-OPERATOR-TO-SET-METHOD in that the CURRENT-GOAL is

rephrased by replacing the SET of objects by one of its members.

EXPANDED-TRANSFORM-METHOD

The EXPANDED-TRANSFORM-METHOD, defined in Fig. 26, is a method for

achieving the TOP-GOAL. It replaces the initial situation of the TOP-GOAL

by the SET of objects which were all derived from the initial situation.

The rationale for this method is that the GOAL of transforming one of

these objects into the desired situation might be easier than the TOP-GOAL.

Since all of the objects are derived from the same objects, the solution

of one GOAL is equivalent to the solution of another.

SELECT-BEST-MEMBERS-METHOD

Fig. 27 is the definition of the SELECT-BEST-MEMBERS-METHOD which

is used to achieve a SELECT GOAL whose SET is "small". The SELECT-MEMBERS-

METHOD applies a test to each member of the SET that passed all of the

previous tests. If only one member passes the test, it is the member

selected; if no members pass the test, those members which passed the

previous test are selected; if more than one member passes the test, the

procedure is repeated with the next test.

The SELECT-BEST-MEMBERS-METHOD applies a test to all members of the

SET. Only those members that fail the test are eliminated. On the other

hand, the GENERATE-AND-TEST-METHOD applies tests to one member at a time,

whenever a member is found that passes all of the tests, it is the member

selected. However, there may be several other members which also would

pass all of the tests and one of these members may fulfill the criterion

an antecedent GOAL 7. It is an IPL method that selects the antecedent

GOAL to be retried. The rationale is that the antecedent GOAL might

produce a new result and the CURRENT-GOAL can be rephrased in terms of

the new result. In Fig. 10, for example, if G7 fails, its antecedent

GOAL, G2, would be retried. If it produced the new result, A"* 1, and if

A''' were successfully transformed into B, Gl would be successful, which

is the sole purpose of G7.

TRY-OLD-GOALS-METHOD

TRY-OLD-GOALS-METHOD is an IPL method which is the last resort in
g

findine a solution. When all else fails, it selects a GOAL provided

that the methods for achieving it are not EXHAUSTED. REDUCE GOALs, whose

supergoals are T R A N S F O R M G O A X i s ^ are iretiried before ottieir unfniLSiied G O A L s •

7Antecedent GOAL is defined on pages 61-62.
8The difficulty of a GOAL is defined on pages 61-62.

better than the one selected. The GENERATE-AND-TEST-METHOD is used for

"large" SET because in most cases only several members of the SET need

to be processed.

ANTECEDENT-GOAL-METHOD

The ANTECEDENT-GOAL-METHOD is used to achieve any GOAL that has

r

Name and Kind of Method

GENERATE-AND-TEST METHOD
(SEQUENTIAL)

SELECT-MEMBER
(SEQUENTIAL, repeat on

IS-IT-OK (SIGNAL-
no

71 -

Sub-Methods

SET-CONTEXT(IPL)

SELECT-MEMBER

RECORD-RESULT (IPL)
FIND-NEXT-MEMBER-OF-SET (IPL)

IS-IT-OK

BEGIN,
TEST-PASSED:

TEST-FOUND:

FIND-NEXT-TEST (IPL)

APPLY-TEST (IPL)

FAILURE

FIGURE 11. The definition of the GENERATE-AND-TEST-METHOD for achieving
a SELECT GOAL whose SET is large.

Name and Kind of Method Sub-Methods

ESSEST^?- SEEiESSET" S I S
signal change)

PARTS-FOUND, FIND-DIFFERENCE-
CONTINUE-MATCHING: BETWEEN-PARTS (IPL)

FIGURE 16. The definition of the IDENTITY-MATCH-METHOD which is used to
test the identity of two data structures.

- 72 -
Name and Kind of Method

TRANSFORM-METHOD
(SEQUENTIAL)

REPORT-SUCCESS
(SIGNAL-LIST)

Sub-Methods

SET-CONTEXT (IPL)

MATCH-DIFF-METHOD
SELECT-DIFFERENCE (IPL)
REPORT-SUCCESS
REDUCE the difference selected
on the first object of the
CURRENT-GOAL (GOAL-SCHEMA)

TRANSFORM the result of last

REPORT-RESULT (IPL) NO-DIFFERENCES: SUCCESS

FIGURE 17. The definition of the TRANSFORM-METHOD used for achieving
a TRANSFORM GOAL.

Name and Kind of Method

MATCH-DIFF-METHOD
(SIGNAL-LIST, repeat
signal change)

on

PROCESS-DIFFERENCE
(SEQUENTIAL)

Sub-Metho.ds

DIFFERENCE-FOUND: PROCESS-DIFFERENCE

TRY-IMMEDIATE-OPERATORS (IPL)

RECORD

FIND-DIFFERENCE-
BETWEEN-PARTS (IPL)

RECORD (SIGNAL-LIST) DIFFERENCE-FOUNn: REPORT-DIFFERENCE (IPL)

FIGURE 18. Definition of the MATCH-DIFF-METHOD which matches two data
structures for all of the differences between them.

Name and Kind of Method

REDUCE-METHOD (SEQUENTIAL)

73 -

Sub-Methods

SET-CONTEXT (IPL)

SELECT-OPERATOR
APPLY the operator selected to the
object of the CURRENT-GOAL (GOAL-SCHEMA)

REPORT-RESULT (IPL)

SELECT-OPERATOR
on

FIND-OPERATOR (IPL)

APPLY-DESIRABILITY-FILTER (IPL)

FIGURE 19. The definition of the REDUCE-METHOD for achieving a REDUCE
GOAL.

Name and Kind of Method

FORM-OPERATOR-METHOD
(SEQUENTIAL)

CONTINUE (SIGNAL-LIST)

MODIFY-AND-APPLY
(SEQUENTIAL)

Sub-Methods

SET-CONTEXT (IPL)

EXECUTE-PRETESTS (IPL)

MATCH-DIFF-METHOD

SELECT-DIFFERENCE (IPL)

CONTINUE

NO-DIFFERENCE: PRODUCE-RESULT (IPL)

DIFFERENCE-FOUND: MODIFY-AND-APPLY

REDUCE the difference selected on the
object of the APPLY GOAL (GOAL-SCHEMA)

APPLY the operator of the CURRENT-GOAL
to the result of the previous method
(GOAL-SCHEMA)

REPORT-RESULT (IPL)

FIGURE 20. The definition of the FORM-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a FORM-OPERATOR.

Name and Kind of Method
- 74 -
Sub-Methods

FORM-OPERATOR-TO-SET- SELECT an object from the SET of the
METHOD (SEQUENTIAL) CURRENT-GOAL (GOAL-SCHEMA)

APPLY the operator of the CURRENT-GOAL
to object selected (GOAL-SCHEMA)

REPORT-RESULT (IPL)

FIGURE 21. The definition of the FORM-OPERATOR-TO-SET-METHOD for achiev
ing an APPLY GOAL whose operator is a FORM-OPERATOR and whose input object
is a SET of objects.

Name and Kind of Method Sub-Methods

SET-OPERATOR-METHOD
(SEQUENTIAL)

SELECT an operator whose input form
is similar to the object of the
CURRENT-GOAL (GOAL-SCHEMA)

APPLY the operator selected to the
object of the CURRENT-GOAL (GOAL-SCHEMA)

REPORT-RESULT (IPL)

FIGURE 22. The definition of SET-OPERATOR-METHOD for achieving an APPLY
GOAL whose operator is a SET of FORM-OPERATORs.

75

Name and Kind of Method

TWO-INPUT-OPERATOR-METHOD
(SEQUENTIAL)

Sub-Methods

SELECT the input form which is more
similar to the object of the CURRENT-
GOAL (GOAL-SCHEMA)

APPLY the input form selected to the
object of the CURRENT-GOAL (GOAL-SCHEMA)

REPORT-RESULT (IPL)

FIGURE 23. The definition of the TWO-INPUT-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a FORM-OPERATOR which has two inputs.

76

Name and Kind of Method

MOVE-OPERATOR-METHOD
(SEQUENTIAL)

Sub-Methods

SET-CONTEXT (IPL)

APPLY-FEASIBLE-OPERATOR

APPLY-FEASIBLE-OPERATOR
on

SPECIFY-VARTABLES (IPL)

EXE CUTE-PRETESTS-AND-TE ST-LEGALITY-
OF-MOVES (IPL)

SELECT-DIFFERENCE (IPL)

APPLY-OPERATOR-IF-POSSIBLE

APPLY-OPERATOR-IF-
POSSIBLE (SIGNAL-LIST)

NO-DIFFERENCE:

DIFFERENCE-FOUND:

APPLY-OPERATOR

MODIFY-IF-NOT-TOO-
DIFFICULT

MODIFY-IF-NOT-TOO-
DIFFICULT (SEQUENTIAL)

TEST-DIFFICULTY-OF-DIFFERENCE (IPL)

REDUCE the difference selected on the
object of the CURRENT-GOAL (GOAL-SCHEMA)

APPLY the operator of the CURRENT-GOAL
to the result of the previous method
(GOAL-SCHEMA)

REPORT-RESULT (IPL)

APPLY-OPERATOR
(SEQUENTIAL)

APPLY-MOVES-AND-POST-TESTS (IPL)

RECORD-RESULT (IPL)

FIGURE 24. The definition of the MOVE-OPERATOR-METHOD for achieving
an APPLY GOAL whose operator is a MOVE-OPERATOR.

r

77 -

Name and Kind of Method

TRANSFORM-SET-METHOD
(SEQUENTIAL)

Sub-Methods

SELECT a member of the SET (GOAL-SCHEMA)

TRANSFORM the member selected into the

REPORT-RESULT (IPL)

FIGURE 25. The definition of the TRANSFORM-SET-METHOD for achieving
a TRANSFORM GOAL whose first object is a SET of objects.

Name and Kind of Method Sub-Methods

EXPANDED-TRANSFORM-METHOD TRANSFORM the SET of objects that are
(SEQUENTIAL) derived from the initial situation

into the desired situation (GOAL-SCHEMA)

REPORT-RESULT (IPL)

FIGURE 26. The definition of the EXPANDED-TRANSFORM-METHOD for achiev
ing the TOP-GOAL.

- 78 -

Name and Kind of Method Sub-Methods

SELECT-BEST-MEMBERS-METHOD
(SEQUENTIAL)

SET-CONTEXT (IPL)

SELECT-MEMBERS

SELECT-MEMBERS (SIGNAL-
LIST, repeat on signal

TEST-FOUND:

ONLY-ONE-
MEMBER-PASSED:

FIND-NEXT-TEST (IPL)

APPLY-TEST (IPL)

USE-MEMBER-FOR-
RESULT (IPL)

NO-MEMBERS-
PASSED:

RESULT-IS-PREVIOUSLY-
PASSED-MEMBERS (IPL)

FIGURE 27. The definition of SELECT-BEST-MEMBERS-METHOD for achieving
a SELECT GOAL whose SET is small.

T

CHAPTER IV: THE REPRESENTATION OF TASKS

The purpose of this chapter is to give a straight forward

description of the representation of tasks. As in the last chapter,

no general issues will be discussed. However, in Chapter V we will

come back to the representation of tasks and its interaction with the

problem solving techniques of GPS.

The internal representation of a task consists of several

different kinds of data structures:

a. objects
b. operators
c. GOALs
d. differences
e. TABLE-OF-CONNECTIONS
f. DIFF-ORDERING
g. details for matching objects

0** h. miscellaneous information

Each of these are described individually below. The discussion points

out which of these data structures appear in the specification of a task

and which are generated by the problem solving process.

GPS is encoded in the list processing language, IPL-V (Newell [33]),

and the internal representation of all task structures consists of IPL

symbols, lists, and list structures. For the most part, data structures

are encoded in the description lists of IPL 1. However, the internal

representation will not be described in terms of IPL data structures, but

rather in a higher level language (tree structures, sets, etc.) in such a

lAn IPL description list is a sequence of pairs of IPL symbols. The first
symbol in each pair is an attribute and the second symbol in a pair is the
value of the attribute of the pair. For example, the description list that
represents the GOAL of transforming XI into X2 is GOAL-TYPE TRANSFORM, FIRST-
OBJECT XI, SECOND-OBJECT X2. XI and X2 are not atomic symbols but are list
structures.

- 80 -

way that there is a one-to-one correspondence to the IPL data structures.

To give GPS a task is to provide it, via some external representa

tion, with information contained in the data structure listed above. As

was the case in most previous reports on GPS, often it is useful to

consider the notion of a task environment—that information common to all

tasks of a particular kind, e.g., to all integration tasks. The task

environment consists of operators, differences, TABLE-OF-CONNECTIONS,

DIFF-ORDERING, details for matching objects and miscellaneous information.

The GOALs, the objects and the task environment comprise a particular task.

However, we will not need this distinction here since one or at most two

tasks per task environment were given to GPS.

The last section of this chapter describes the external representa

tion of tasks to aid the reader in understanding the task specifications in

Chapter VI. Since the external representation is very similar to the

internal representation, only the semantics of the internal representation

is described, and the description of external representation deals mainly

with syntax. We note again that those words written with all capital

letters correspond, directly, to IPL symbols in GPS. These words, which

comprise the basic vocabulary of GPS, are given in Appendix A.

To be concrete, the examples used in this chapter will be drawn from

either the missionaries and cannibals task or the integration task.

Fig. 28 and Fig. 29 show the heuristic search formulations of these tasks.

Fig. 30 and Fig. 31 show the specification of these tasks expressed in the ex

ternal representation of GPS. Only a few integration operators are given

in Fig. 29 and Fig. 31. These are typical and are sufficient for the

expression to be integrated.

- 81 -

Generic form of objects: The number of missionaries at each side of the
river, the number of cannibals at each side of
the river, and the position of the boat.

Initial situation: Three missionaries, three cannibals, and the
boat at the left bank of the river; nothing at
the right bank of the river.

Desired situation: Three missionaries, three cannibals, and the
boat at the right bank of the river; nothing at
the left bank of the river.

Operators: Move x missionaries, y cannibals (x and y are
variables) and the boat across the river provided
that

a. 1 £ x+y <: 2 (the boat must not sink and
someone must row.)

b. at both banks of the river in the resultant
object, either the number of missionaries
* the number of cannibals, or the number
of missionaries = 0. (In the resultant
object no missionaries can be eaten.)

FIGURE 28. The heuristic search formulation of the missionaries and canni
bals task.

- 82 -

Generic form of operators; Any expression.

Initial situation: J t e** dt

Desired situation: An expression which does not contain an ' J * ' .

Operators:
n+1

r n J U

a ' J U d u = n+T-
b. J u" 1 du = log u
c. J sin u du = -cos u
d. J cos u du = sin u
e. J u^du = 1/2 u
f. J e du = e
g. J" (f+g) du = J' f du + J" g du
h. sin u du = -d cos u
i. cos u du = d sin u
j. u du = 1/2 d u 2

k u~ ̂ du = d log u

FIGURE 29. The heuristic search formulation of the integration task.

t

R E N A M E I

L E F T ' f ' I P S T

R I G H T * S E C O N D

)

D E C L A R E (

B O A T - A T T R I B U T E

C * A T T R I B U T E

B - L = F E A T U R E

S - R =• K E A T U R E

C - L a S E A T U P E

C - R = K E A T U P S

D E S I R E O - O f l J = O B J E C T - S C H E M A

F R O M - S I D E = L O C - P R O G

F R O K - S I D E - T f S T S = V - T E S T S

I N I T I A L - O B J = D B J E C T - S C H E M A

H « A T T R I B U T E

M - C - Q P & = M O V E - O P E R A T O H

M - L * K E A T U R E

M - R = K E A T U R E

S I D B - S E T » S E T

T O - S I D S = L O C - P R O f i

T O - S I O E - T E S T S = V - T E S T S

X « C O N S T A N T

X + Y « i X P R E S

Y • C O N S T A N T

Q . 1 . 2 - S E T s S C T

l . Z « S E T

Figure 30: The specification for GPS of the missionaries and cannibals task.

>

T A S K - S T R U 8 T U R E S <

T 0 P * G 0 4 L = { T R A N S F O R M T H E I N I T I A L - O B J I N T 3 T H E D E S I R E D . O B J , J

I N I T I A L - O B J « (L E F T (M 3 C 3 B O A T Y E S)

R I G H T < K 0 C 0))

D E S I R E 6 - 0 R J - (L E F T (M 0 C 0)

R I G H T I K 3 C 1 B O A T Y E S))

X + Y a < X * Y)

h i > I 1 2 I

O t l f Z - S E T = (0 1 2)

S I D i - S E T a (L E F T M I G H T)

F R O M - S I D E - T E S T S = I 1 . T H E M O F T H E F R O M . S I D E I S N O T - L E S S - T H A N

T H E C O F T H E F R O M - S I 0 E ,

2 . T H E M O F T H E F R O M - S I D E E Q U A L S 0 .)

T O - S I D E - T E S T S = I 1 . T H E M O F T H E T O - S I D E I S N O T - L E S S - T H A N

T H E C O F T H E T O - S I D E .

2 . T H E M O F T H E T O - S I D E E Q U A L S 0 .)

H - C * O P B = (C R E A T I O N - O P E R A T O R

J M O V E X M I S S I O N A R I E S A N D Y C A N N I B A L S F R O M T H E F R O M - S I D E T O

T H E T O - S I D E S

V A R - D O M A I N

1 . Y I S A C 0 N S T R A I N E D - H E H 9 E R O F T H E 0 . 1 . 2 - S E T ,

T H E C O N S T R A I N T I S X . V I S I N - T H E - S E T 1 , 2 ,

2 • X I S A C O N S T R A I N E D - H E M 3 E R O F T H E 0 . 1 . 2 - S B T ,

T H E C O N S T R A I N T I S X * Y I S I N - T H E - S E T 1 , 2 ,

3 . T H E F R O M - S l O E I S A N E X C L U S I V E - M E M B E R O F T H E S ' I D E - S E T .

4 , T H E T O - S I D E I S A N E x C L J S t V E - M E M B E R O F T H E S I D E - S E T .

M O V E S

1 . M O V E T H E B O A T O F T H E F R O M - S I O E T O T H E B O A T O F T H E T O - S I D E .

8 . D E C R E A S E B Y T H E A M O U N T X T H E M A T T H E F R O H - S I D E A N D A D D

I T T O T H E M A T T H E T 3 - S I D E .

3 . D E C R E A S E B Y T H E A M O U N T Y T H E C A T T H E F R O M - S I D E A N D A D D

I T T O T H E C A T T H E T 3 - S I D E .

P O S T - T E S T S

1 . A R E A N Y Of T H E F R O M - S I D E - T E S T S T R U E .

2 , A R E A N Y O F T H E T O - S I D E - T E S T S T R U E .)

B - L • I B O A T O N T H E L E F T . >

B - R * (B O A T O N T H E R I G H T . >

C - L = I C O N T H E L E F T . J

C - R » (C O N T H E R I G H T .)

M - L • < M O N T H E L E F T .)

M - R M H O N T H E R I G H T . >

D l F F - O B D E R I N S = (t H - H m - l C - R C - L >

(ti-ft B - L >)

T A B L E - B F - C O N N E C T I O N S ' (I C O M M O N - D I F F E R E N C E M - C - O P P))

C O M P A R E - O B J E C T S » < B A S I C - M A T C H |

B A S I C - M A T C H « < C O M P - F E A T - L l S T < M - L C - L B - L »)

O B J - A T T R I B = (M C B O A T)

L I S T - O S - V A R = < F R O M - S 1 D E T O - S I D E X Y >

) E N D

RENAME <

LEFT = FHi>T

RIGHT « SELUNU

)

DECLARE (

COS = JMA-IY-LONNfcGTlVt

Q • UMAflY-LUNNECTlVfc

DESIRtU-030 = HESCRIbEU-OHJ

EXP = N-ARY-CQNNELMIVE

INTEGRAL » UNART.tJOfJNfcCTlVE

L O G = UNA^Y-UDNNfcUTlVe

SIN = UNARY-UONlMEUTIVfc

SYMBOL * AlTHIBUTt

SYM-D1FF = FeATURt

- « U-NARY-CO(MNfc(J T I V e

* • N-ARY-CONNECTIVE

* * N-ARY"LQNNfcCMVfc

)

L I S T I

EXPRESBlCJ-l = (THE INTEGRAL OF I T * (fc EXP I T EXP TWO » > * D T > >

INTEGRATE • I 1. < The INTEGRAL OF ((U EXP N) # D II) Y I S L n S

I (U EXP M * ONE I M (1 N t 0 « E I E X P . ONE J > >

2. < The INTEGRAL OF (I U EXP - ONE) • D U I YIELDS

L U G u » ,

3 . I THe INTEGRAL OF 1 SIN U * U U > YIELDS - COS I)) »

4. (THe INTEGRAL OF (CUS U # J J U 1 YIELDS SIN U I i

5. (IMt INTEGRAL OF (U * D U > YIELDS t I U EXP TWO) *

Figure 31: The specification for GPS of the task of integrating Jte* dt.

- 87

t T H U E X F - I H M E)) I ,

i. I THfc IMltGHAL 0 ' I I E E « P U I • B 0 I YIELDS

(t e x * ' L ') > j

7 , ' I h t INTEGRAL O F I I F * I) I • M I M E L D S (THE INTEGRAL

U F < F * J U) + THE HTfc>HAL O K l U * J U) > > »

DlFFfclfcYTluTt = I 1 . (< SJN (J • U U > YIELDS - li COS U > ,

1. ((UOS J • 0 U I YIELDS ') SIN Li > i

j . (' i> • U U) YIELDS I ' TytU EXP - 0N£) *

u < o e x ^ T H 3) I) i

t . 1 (< U E X P - ONE) • p U » YIELDS U LOG U))

ExPRESSIOM-ii = < T H E INTEGRAL Of ((((SIN I C • T 1 EXP 1HP 1 •

COS (C • t i) * (T t X P - QNE) ; » D t j j

)

TASK-STRUUTUItS <

T 0 P - G 3 H L * ' TR«:-JbFOHM EXPtiESS 1ON-1 I . N T Q THE U J t S i a E H = D J b J . >

D E S I f t t D - 0 3 J = I SUUtXPHRSSION-IESTS

T « E SYMUQL OOtS NJT-EOUAL iNTtURAL . »

SYM-TJU-F i (SYlbUL >

TABLE-OF-;oNNECTiu«S = < i. (SEJ-SIZE DJF^EHE4TIATE I

i. (S J Y M - U I F F iNTtGRATE >)

O I F F - O ^ H E ^ l N b = (1 . S Y M - D I F F

2 . S t T - S I Z f c J

LIST-OK'Oi ' K s I INTEGRATE 0 1 F F e R E I T I A T J f c >

L l S T - D F - V A r = < V G l i N)

)

END

A. OBJECTS

In GPS there are two basic representations for objects which

are described below.

OBJECT-SCHEMAS

An OBJECT-SCHEMA is a tree structure, encoded in IPL description

lists, which represents an object. Each node of the tree structure can

have an arbitrary number of branches leading from it to other nodes. In

addition to branches, each node can have a local description given by

an arbitrary number of attribute-value pairs. The tree structure in

Fig. 32.a, for example, represents the initial situation in the mission

aries and cannibals task. In Fig. 32.a the node to which the LEFT^ branch

leads represents the left bank of the river and the node to which the

RIGHT branch leads represents the right bank of the river. The local

description at the node which the LEFT branch leads to indicates that

there are three missionaries, three cannibals and a boat at that bank of

the river.
3

GPS knows the generic form of OBJECT-SCHEMAS. In particular, it

knows the names of the branches FIRST, SECOND, etc. and thus knows that

all OBJECT-SCHEMAs have the form illustrated in Fig. 32.b. GPS also knows

the form of the local descriptions of the nodes and can generate the

2LEFT is not part of the basic vocabulary of GPS, but it is capitalized
because it is defined in the task specification (Fig. 30).

3We say that GPS knows something when the programmer attached special
significance to it in constructing the code that defines GPS. Hence, GPS
knows the generic form of OBJECT-SCHEMAs because it is a programming
convention of those routines that process OJBECT-SCHEMAs. However, GPS
does not understand the details of a particular task; they are defined in
the task specification in terms of the things that GPS knows, listed in
Appendix A.

r

®

FIGURE 32. (a) and (c) are the tree structure representations of the initial
situations of the missionaries and cannibals task and an integration task,
respectively. (b) is the generic form of an OBJECT-SCHEMA.

- 90 -

attribute-value pairs of a node because ATTRIBUTES are a special

class of symbols. For example, GPS knows that the M, C, and BOAT in

Fig. 32.a are ATTRIBUTES because they are so declared in the task

specification (Fig. 30).

LOC-PROGs (LOCation-PROGrams) are a special class of data

structures used to refer to the nodes of an OBJECT-SCHEMA. They

consist of an ordered list of the branches on the path between two

nodes. The name of a LOC-PROG, which may be used in the specification

of tasks, is the word formed by connecting all of the branches listed

on it with hyphens. LOC-PROGs designate one node of an OBJECT-SCHEMA

relative to another node; i.e., they are functions of one argument—a

node of an OBJECT-SCHEMA. For example, the LOC-PROG, SECOND-FIRST of

the node containing a *+' in Fig. 32.b designates the node containing

a '*'. The name of a LOC-PROG that designates an immediate subnode of

a node is the name of the branch which leads to the node. For example,

the LOC-PROG, SECOND, of the node containing a *+' in Fig. 32.b designates

the node containing a *X'. TOP-NODE is the LOC-PROG that designates the

top most node of an OBJECT-SCHEMA. In Fig. 32.a, LEFT is the new name

assigned to FIRST in the task specification (Fig. 30).

The given object in the integration task in Fig. 29 is represented

by the tree structure in Fig. 3 2.c. In this example, it is assumed that

each node has two ATTRIBUTES—SIGN and SYMBOL—but only their values are

shown in Fig. 32.c. The usual convention that a missing sign signifies a

plus is adopted in this example. Since all of the signs are positive none

appear in Fig. 32.c.

As mentioned in Chapter II, often there is more than one given

$eu du

where u is a free variable, represents a large class of objects. All

members of the class have the same form but different values for u.

Two objects that are members of the class are

and
p sin t , . .

J e d sin t.

GPS assumes that all OBJECT-SCHEMAs may contain variables and is prepared

to process them as a class of objects. GPS can recognize the variables

in OBJECT-SCHEMAs because the task specification indicates which symbols

are variables.

OBJECT-SCHEMAs can only represent those classes of objects whose

members all have the same form. One way to represent classes of objects

whose forms are different is a list of OBJECT-SCHEMAs. In GPS the initial
4

situation, but not the desired situation, can be a list of OBJECT-SCHEMAs .

But either the initial situation or the desired situation, both of which

are given in the task specification, can be an OBJECT-SCHEMA. All of the

objects generated during problem solving are OBJECT-SCHEMAs.

4This restriction, and several others, arises because the methods of GPS
cannot deal with a more general case. Sometimes (although not always)
the restriction could be lifted by the addition of new methods. However,
since we wish to keep the problem solving character of GPS constant, we
will not consider the addition of new methods.

object or one desired object in a problem. The use of variables in

OBJECT-SCHEMAs allowsa class of objects to be represented as a single

structure. For example, the OBJECT-SCHEMA.,

DESCRIBED-OBJs

A DESCRIBED-OBJ is a list of constraints that represents the

class of objects, each of which satisfies all of the constraints. The

desired object in the integration task (Fig. 29) can be represented by

a DESCRIBED-OBJ as the single constraint which must be satisfied at

each node:

The SYMBOL does not equal J \

Each constraint in a DESCRIBED-OBJ is a TEST which is a data

structure consisting of a RELATION, and several arguments (in most

cases, two). A RELATION is a Boolean function of several arguments and

is a special type of symbol. In the previous example, the TEST is:

RELATION is NOT-EQUAL;
first argument is SYMBOL,
second argument is J*.

GPS recognizes NOT-EQUAL as a RELATION and understands the semantics of

all RELATIONS. (GPS currently knows fifteen RELATIONS, whose definitions

are given in Appendix A, and only these can be used, unless new ones are

added.) On the other hand, J* is peculiar to the integration task and GPS

treats it as a symbolic CONSTANT. SYMBOL is also peculiar to integration,

but it is declared in the task specification to be an ATTRIBUTE. Thus,

GPS treats SYMBOL in the integration task in the same way as M (mission

aries) in the missionaries and cannibals task.

An argument of a TEST is either a constant (i.e., not a function

of objects, such as a CONSTANT or SET) or a FEATURE of an object. A

FEATURE, which is a means of referring to a feature of an arbitrary object,

is a function of one argument—a node of an object. A FEATURE is specified

- 93 -

by an ATTRIBUTE and a LOC-PROG; the value of the FEATURE is the value

of the ATTRIBUTE of the node designated by the LOC-PROG. (FEATURES

always have values, but a possible value is UNDEFINED.) For example,

the FEATURE,

M LEFT,

of the OBJECT-SCHEMA in Fig. 32.a has the value, 3. LOC-PROGs and

ATTRIBUTES, like FEATURES, are functions of one argument—a node of an

object. Fig. 33 shows how FEATURES are evaluated.

Since a FEATURE is a function of an implied node of an object,

a TEST is also a function of an implied node of an object because it

may contain a FEATURE. In a DESCRIBED-OBJ, there arc in general two

kinds of TESTs

a. those whose implied node is the TOP-NODE
of the object;

b. those whose implied node is every node of
the object.

Each of the latter set of TESTs is evaluated for each node of the object

as the implied node, and the TEST is true only if it is true for each

evaluation.

Only the desired situation can be represented as a DESCRIBED-OBJ;

the initial situation and the objects generated by the problem solving

process cannot be represented as DESCRIBED-OBJ.

B. OPERATORS

In GPS there are two different types of operators, which are

discussed below.

- 94 -

Input:

Output:

Yes

FEATURE,
(.input node ;

Y

Does the FEATURE
contain a
LOC-PROG?

No
Does the FEATURE
contain a
LOC-PROG?

Yes

X <—
the
the

the 'value of
LOC-PROG of
input node.

X = UNDEFINED?

Does the FEATURE
contain an
ATTRIBUTE?

Yes

X <- the value of
the ATTRIBUTE of X.

s
X

X input node.

FIGURE 33. The flow-chart for the evaluation of a FEATURE of a node
of an OBJECT-SCHEMA.

FORM-OPERATORS

A simple way to express an operator is to state the form of its

input object and the form of its resultant object. For example, the

first operator in Fig. 29 can be expressed as, assuming u as a variable,

input object form: J*undu
i * " + 1

resultant object form: u .
n+1

Such an expression will be called a FORM-OPERATOR. Both forms are

OBJECT-SCHEMAs and thus represent classes of objects. The above FORM-

OPERATOR can be applied to any object in the class of objects represented

by the input OBJECT-SCHEMA. The resultant object is obtained by substitut

ing for u in the resultant OBJECT-SCHEMA, the value used for u in the input

OBJECT-SCHEMA.

All of the operators In the integration task in Fig. 29 can be

expressed as FORM-OPERATORs by expressing the left side of the equation

and the right side of the equation as the input OBJECT-SCHEMA and the

resultant OBJECT-SCHEMA, respectively. However, FORM-OPERATORs are not an

adequate means for expressing the operators of some tasks, e.g., the mission

aries and cannibals task.

MOVE-OPERATORs

A MOVE-OPERATOR represents an operator by a group of TESTs and a

group of TRANSFORMATIONS. The TRANSFORMATIONS describe how the resultant

object differs from the input object, and the TESTs must be satisfied for

the operator to be feasible. In the missionaries and cannibals task, for

example, the operator in Fig. 28 can be stated as a MOVE-OPERATOR. The

TESTs of the operator insure that nothing chaotic happens, such as mission

aries being eaten, and the TRANSFORMATIONS describe how the object changes

when people cross the river in the boat. Before giving a complete

statement of the MOVE-OPERATOR representation of the operator in

Fig. 29, TRANSFORMATIONS are defined.

A TRANSFORMATION is a data structure consisting of an OPERATION

and several arguments. An OPERATION is a special type of symbol and

is a function of several arguments. A typical TRANSFORMATION which

might appear in the missionaries and cannibals task is:

OPERATION is MOVE;
first argument is BOAT LEFT;
second argument is BOAT RIGHT.

The meaning of this TRANSFORMATION is:

a. Find the value of the BOAT at the LEFT
side of the river.

b. Make the value of the BOAT at the RIGHT
side of the river equal to the result
of step a.

c. Remove the BOAT at the LEFT side of the
river.

If the result of a is UNDEFINED, the TRANSFORMATION is not applicable

to the object, and the operator is infeasible.

GPS knows the meaning of MOVE and all other OPERATIONS in the

same way that it understands the RELATIONS. (There are six different

OPERATIONS which are defined in Appendix A.) GPS also recognizes that

the two arguments of the above TRANSFORMATION are FEATURES. Although

both arguments of MOVE must be FEATUREs, in general, only the second

argument of an OPERATION must be a FEATURE.

The TRANSFORMATIONS in Fig. 34.a describe how an object is

modified when X missionaries (M) and Y cannibals (C) go from the FROM-

SIDE of the river to the TO-SIDE of the river. Since X, Y, FROM-SIDE,

r

97

(a) 1. MOVE (BOAT FROM-SIDE , BOAT TO-SIDE)

2. DECREASE (M FROM-SIDE , M TO-SIDE , X)

3. DECREASE (C FROM-SIDE , C TO-SIDE , Y)

(b) 1. One is TRUE :
NOT-GREATER-THAN (C LEFT , M LEFT)
EQUALS (M LEFT , 0)

2. One is TRUE :
NOT-GREATER-THAN (C RIGHT , M RIGHT)
EQUALS (M RIGHT , 0)

(c) 1.

2.

3.

4.

EXCLUSIVE-MEMBER (FROM-SIDE , {LEFT , RIGHTj)

EXCLUSIVE-MEMBER (TO-SIDE , [LEFT , RIGHTj)

CONSTRAINED-MEMBER (X , { 0 , 1 , 2 }
IN-THE-SET (X + Y

CONSTRAINED-MEMBER (Y , {0 , 1 , 2} ,
IN-THE-SET (X + Y

{ 1 , 2 }))

{ 1 , 2 }))

FIGURE 34. The operator which moves X missionaries (M), Y cannibals (C)
and the BOAT from the FROM-SIDE to the TO-SIDE. (a) is the TRANSFORMATIONS
of the operator; (b) is the TESTs which the resultant object of the operator
must satisfy; (c) is the TESTs which constrain the legitimate values of the
variables.

and TO-SIDE are all variables, these three TRANSFORMATIONS represent

all possible ways that missionaries and cannibals can cross the river.

The second TRANSFORMATION in Fig. 34.a means5;

a. Decrement the number of missionaries at the
FROM-SIDE by X.

b. Increment the number of missionaries at the
TO-SIDE by Y.

If the number of missionaries at the FROM-SIDE is less than X, .the

TRANSFORMATION is not applicable and the operator is infeasible.

TRANSFORMATIONS are functions of nodes of objects because they

contain FEATURES which are functions of nodes of objects. But unlike

a TEST, each TRANSFORMATION is a function of two object nodes—a node

of the input object and the corresponding node of the resultant object.

The input object node is used to designate parameters of the TRANSFORMA

TIONS, and the TRANSFORMATIONS are performed relative to the resultant

object node. In the first TRANSFORMATION in Fig. 34.a, for example, the

value of the BOAT at the FROM-SIDE of the input object is found. Then

this value is placed in the resultant object as the value of the BOAT at

the TO-SIDE. Finally, the ATTRIBUTE, BOAT, and its value are removed

from the FROM-SIDE of the resultant object. This action does not involve

the input object. In this particular example, the value has little

significance because the ATTRIBUTE, BOAT, always has the same value—YES.

But, in general, an ATTRIBUTE may have many different values and the

value which is "moved*1 is its value in the input object.

5It would seem that move would be a better name than DECREASE. But MOVE
is a different OPERATION and DECREASE results in a readable statement in
the task specification. See the MOVES in the M-C-OPR in Fig. 30.

6A1though TRUE is a strange name for this RELATION (or would be more
suggestive), it results in a readable statement. See POST-TESTS of the
M-C-OPR in Fig. 3 0.

The constraints in Fig. 34.b represent the class of objects in

which no missionaries can be eaten. The form of these constraints is

the conjunction of two disjunctive sets of TESTs. Normally in a set

of TESTs, which represents a class of objects, the logical connective

of the tests is a conjunction. That is, all objects which are members

of the class, satisfy all of the TESTs. But the set of TESTs can be

divided into disjunctive subsets by using TRUE 6 which GPS recognizes and

understands. TRUE is a RELATION on one argument—a set of TESTs. It is

the only RELATION that has a set of TESTs as an argument and is processed

somewhat differently than other RELATIONS.

All legal missionaries and cannibals objects must satisfy the

constraints in Fig. 34.b; else missionaries would be eaten. Consequently,

both the input object and the resultant object of the operator must satisfy

the constraints in Fig. 34.b. But, if all objects produced by the applica

tion of the operator satisfy the constraints in Fig. 34.b, all of the

input objects to the operator will necessarily satisfy the constraints

because the input object is either the initial situation or a result of a

previous operator application. Thus, the constraints in Fig. 34.b need

only be satisfied by the resultant object. This fact is indicated by a

syntactic device described in the last section of this chapter.

The variables in MOVE-OPERATORS are not universally quantified but

can only take on certain values. The TESTs in Fig. 34.c must be satisfied

if the variables in the TRANSFORMATIONS in Fig. 34.a are to have legitimate

values. The first two TESTs in Fig. 34.c insure that both TO-SIDE and

- 1 0 0 -

FROM-SIDE are either LEFT or RIGHT but that they are different. A TEST

whose RELATION is EXCLUSIVE-MEMBER is true if the first argument is in

the set designated by the second argument, and if no other "exclusive

member" of the set has the same value as the first argument. Thus, the

concept of an exclusive member is an alternate way to state that both

a and B are in a set and a is unequal to 8.

The third and fourth TESTs in Fig. 34.c insure that the number of

people in the boat is legitimate. A TEST whose RELATION is CONSTRAINED-

MEMBER is true, if the third argument, which must be a TEST, is true and

if the first argument is in the set designated by the second argument.

CONSTRAINED-MEMBER and its negation are the only RELATIONS which have a

TEST as an argument. Fig. 34 is the MOVE-OPERATOR representation of the

operator in Fig. 28 without the syntax required by the external representation.

In general, a MOVE-OPERATOR is a set of TRANSFORMATIONS, and three

sets of TESTs. The operator is feasible if and only if all of the TESTs

(with the exception of some in a disjunctive subset) are satisfied and the

TRANSFORMATIONS are applicable. Two of the sets of TESTs are stated

relative to the node of the input object to which the operator is applied.

One of these (indicated syntactically by VAR-DOMAIN) must be satisfied in

order for the variables in the operator to have legitimate values. The

other (indicated syntactically by PRETESTS) constrains the class of input

objects for which the operator is feasible. The third set of TESTs

(POST-TESTS) must be satisfied by the resultant object. Any of these sets

may be empty, in which case it is, by convention, satisfied.

- 101 .

C. GOALS

A GOAL is a data structure consisting of the information necess

ary for problem solving context. For example, a GOAL has, as the values

of attributes, the names of its supergoals, the names of subgoals, its

type, its objects, its operator, its difference, etc. The only GOAL

that appears in the specification of a task is the TOP-GOAL—the statement

of the problem. The TOP-GOAL of all of the tasks in Chapter VI has the

same form: TRANSFORM one object into another. The type and the objects

of the TOP-GOAL are given in the task specification; all of the other

information is generated internally by GPS. Although the TOP-GOAL could

be a different type of GOAL, e.g., REDUCE, this situation has not arisen.

D. DIFFERENCES

A difference, which GPS detects in matching two objects, is a

data structure consisting of a difference type, the value of the differ

ence, and the name of the node where the difference was detected. For

example, in matching the given situation to the desired situation in the

missionaries and cannibals task, GPS would find the following differences:

Difference type is M, LEFT;
difference value is -3;
difference location is TOP.

Difference types are task dependent and must be defined for each task.

But differences are not given in the task specification because they are

generated during problem solving.

Currently, all difference types are FEATURES. Although a richer

representation for difference types would be desirable, FEATURES are

- 102 -

adequate for the tasks discussed in Chapter VI 7.

E. TABLE-OF-CONNECTIONS

TABLE-OF-CONNECTIONS is a data structure that associates with

each type of difference a list of operators. Each operator on a list

has the capability of reducing the difference type with which the list

is associated. Thus, TABLE-OF-CONNECTIONS is a way to give GPS,

exogenously, information about the properties of operators. The opera

tors in the TABLE-OF-C0NNECTIONS can be either FORM-OPERATORs or MOVE-

OPERATORS.

F. DIFF-ORDERING

DIFF-ORDERING is a list of difference types and/or groups of

difference types which are ordered according to difficulty. GPS considers

the difference types at the top of the list to be the most difficult to

alleviate and those at the bottom the easiest. All difference types with

in a group on the list are considered equally difficult. DIFF-ORDERING

is a means to give GPS information about the nature of the difference

types.

G. COMPARE-OBJECTS

The MATCH-DIFF-METHOD (Fig. 18) subdivides a data structure into

parts and detects differences (if any exist) between corresponding parts.

COMPARE-OBJECTS is a data structure that specifies for the MATCH-DIFF-

METHOD how two OBJECT-SCHEMAs should be matched. There are two options

for subdividing OBJECT-SCHEMAs into parts: match each pair of correspond-

7The logic task that was given to previous versions of GPS (see page 30)
required more complex differences such as decrease the number of occurrences
a term.

ing nodes or match the two OBJECT-SCHEMAs in toto. COMPARE-OBJECTS

specifies one of these options as well as the types of differences to

be detected.

If the desired situation is a DESCRIBED-OBJ, COMPARE-OBJECTS

is not a required part of the task representation because the informa

tion is contained implicitly in the process which compares a DESCRIBED-OBJ

to an OBJECT-SCHEMA.

H. MISCELLANEOUS INFORMATION

Besides the foregoing, other information must be represented.

OBJ-ATTRIB is a list of the ATTRIBUTES of the task. LIST-OF-VAR is a

list of the symbols which should be Interpreted as variables. LIST-OF-OPR

is a list of the FORM-OPERATORS of the task.

The task description also contains the type of both symbols and

data structures which are peculiar to a particular task, For example,

in the missionaries and cannibals task the initial situation must be

declared an OBJECT-SCHEMA and BOAT must be declared an ATTRIBUTE. All

symbols and data structures have types associated with them but the type

of some symbols, e.g., LOC-PROGs and RELATIONS are part of GPS's basic

knowledge.

Immediate operators, which are used in the MATCH-DIFF-METHOD

(Fig. 18), and selection criteria, which are associated with SELECT GOALs,

are represented as IPL programs. Although they are task dependent informa

tion, they do not appear in the task specifications because of insufficient

facilities in the external representation.

I. EXTERNAL REPRESENTATION OF GPS

Since the emphasis of the research reported here is on the internal

representation of tasks, it was designed without any consideration of how

it might be expressed in readable language. The external representation

and the translator for it were then designed so that a task expressed

in the external representation would be readable, and so that minor

modifications and extensions of the external representation could easily

be made. Consequently, the external language for specifying tasks and

the translator have no theoretical significance and the language is only

partially readable.

General Structure of the External Representation

A task description in the external representation is a string of

words, and the final word in the string is END. Space is used to delimit

words. A word, then, is any string of characters that does not contain

a space but is preceded and followed by a space.

Comments, which are ignored, can be inserted in the string of

words at any occurrence of a space. $ is used to denote comments. A

comment is a $ followed by any string of characters not containing a $

followed by a $. All comments must be preceded and followed by a space.

A task description contains meta-words and text-words. The meta-

words are instructions to the translator on how to interpret the text-words.

All of the meta-words are listed in Appendix A, section 1, along with

their function.

The most commonly used meta-words are £ and 2 - They serve their

usual function of delimiting a group of words. Throughout the translating

process 2 is matched to the corresponding _(so that they can be nested.

Although the use of parentheses is a very powerful punctuation device,

extensive use of them makes the text unreadable. An attempt was made to

give the text a syntactic structure which limited the occurrences of

parentheses. In addition tc parentheses, periods, and commas are used to

delimit groups of words.

All of the remaining meta-words determine the mode of translation.

Text-words are translated under the current mode of translation and the

current mode can only be changed by the occurrence of certain meta-words,

each of which is discussed below.

RENAME

The text-words in the basic vocabulary of GPS, which are given in

Appendix A, appear in task specifications and are replaced by their

corresponding IPL symbols in translation. For convenience, these words

can be assigned new names in the RENAME mode of translation. The format

of such assignment statements is

Wl = W2.

The word Wl becomes associated with the IPL symbol which was previously

associated with W2. W2 is free to be used for a different purpose. For

example, in the missionaries and cannibals task specification, FIRST is

assigned the new name LEFT.

SKIP WORDS

The basic strategy of the translator is to process key words and

ignore all others. All of the text-words translated in the SKIP-WORDS

mode are designated as words which should be ignored. The words that are

normally ignored are listed in Appendix A, section 3.

DECLARE

All text-words that are not assigned an internal symbol, are not

ignored, and are not in the basic vocabulary (e.g., ATTRIBUTE, OBJECT-

SCHEMA, etc.) are assigned a type. In the DECLARE mode of translation a *

word is assigned a type by a statement of the form,

Wl = W2.

This means that the word W2 is assigned to be the type of the word Wl.

For example, in the missionaries and cannibals task, BOAT is assigned

the type ATTRIBUTE. If a word is not explicitly assigned a type in the

DECLARE mode, it is, by convention, assigned the type CONSTANT.

TASK-STRUCTURES

All of the data structures of a task, e.g., FEATURES, OBJECT-

SCHEMAs, etc., are translated in the TASK-STRUCTURES mode after the words

have been assigned types. The format for data structures is

Wl = (W2 W3...WN).

The data structure's name is Wl and W2...WN are the words which comprise

the structure. The parentheses must be "matching parentheses"; i.e., other

pairs of parentheses can occur in W2.. .Wn.

The name of all structures must be assigned a type prior to trans

lating it as a data structure. Associated with certain types are the forms

of their data structures and the structures are translated according to

these forms. For example, the missionaries and cannibals task (Fig. 30)

contains the data structure

M-L = (THE M AT THE LEFT.)

Prior to the occurrence of this structure, M-L was assigned the type

FEATURE. The form of a FEATURE has two "slots":

One is for an ATTRIBUTE and the other is for a LOC-PROG, and neither "slot"

need be filled. In constructing M-L, the translator copies the form of a

FEATURE and fills the "ATTRIBUTE slot" with M, since it was declared to be

an ATTRIBUTE, and the "LOC-PROG slot" with LEFT, since it is the new name

of FIRST which is a LOC-PROG. (AT and THE are ignored.) It then assigns

this data structure to be M-L.

Most data structures are quite similar to OBJECT-SCHEMAs in that

they are tree structures. Fig. 35 shows a MOVE-OPERATOR in the internal

tree structure form. The tree representation is used for MOVE-OPERATORs

in order to keep the internal representation of data homogeneous. How

ever, it seems more natural to consider MOVE-OPERATORS as groups of TESTs

and TRANSFORMATIONS, rather than as a tree.

The main work of the translator is to convert the linear

text into the hierarchial structures of the internal representation.

This conversion is done by filling slots in the forms, because the forms

have the hierarchial structure built into them. There is a provision for

adding new forms without modifying the translator.

The formal syntax of the language will not be given because it is

rather complicated. An informal description of the syntax will be given

by describing the standard forms of the data structures. However, most

of these standard forms must be modified slightly in certain cases, for

example, TEST usually has two arguments, but when the RELATION is

CONSTRAINED-MEMBER it has a third argument. Thus, there are some syntactic

devices for modifying forms, such as a means for inserting symbols in

standard forms and punctuation, e.g., ^ for terminating structures. Any

exceptions to the standard forms will be noted in the Appendix A, section

2, under the words which are responsible for the modification of the

forms, e.g., the definition of CONSTRAINED-MEMBER designates the fact

that it is a RELATION on three argument.

The notation used for a form is a list of items. Each member of

the list will be assigned a label such as a, b, etc. If the order of

the list is important, it will be designated as an ordered form; other

wise, it is in unordered form. Certain items in the forms may be

- 108 -

KIND-OF-
OPERATOR

CREATION-
OPERATOR

FIRS

7AR-
DOMAD

<set/of
CESTS>

<TEST>

lOVE-OPERATO:

PRETESTS) MOVE

<set of
TESTS>

FIRST^

POST-

Cset of
TRANSFORMATIONS

FIRST!

<set of
TESTS>

FIRST

<TEST> <TRANSF0RMATIO:

ECOND OPERATION/ FIRST

<TEST>

SECOND

<RELATION> <argument> <argument> <OPERATION> <argument> <FEATU

ATTRIBUTE/ LOC-PROG

<ATTRIBUTE> <LOC-PROG>

FIGURE 35. The tree structure representation of a MOVE-OPERATOR.

- 109 -

optional; i.e., they may occur but are not required. Unless otherwise

stated, items are not optional. The meta symbols, *<' and are used

to denote classes, e.g., <ATTRIBUTE> means any word which has been

assigned the type ATTRIBUTE.

TOP-GOAL. TOP-GOAL has the ordered form

a. TRANSFORM
b. <OBJECT-SCHEMA or list of OBJECT-SCHEMAS>
c. <DBJECT-SCHEMA or DESCRIBED-OBJ>.

Both b and c are names and not data structures. For example, b can be

the name of a list of OBJECT-SCHEMAs but not the names of several OBJECT-

SCHEMAs.

FEATURES. A FEATURE has the unordered form

a. <ATTRIBUTE>
b. <LOC-PROG>

Both a and b are optional. M-L in Fig. 30 is an example of a FEATURE.

LEFT is b and M is a. The other words are ignored.

SETS. A SET is an ordered list of words. Although SETs are

ordered the order is usually unimportant. For example, IN-THE-SET does

not depend on the order of the elements of a SET. SIDES in Fig. 30 is

the set of two elements, LEFT and RIGHT.

EXPRES. An EXPRES (EXPRESsion) is a list of numbers or variables

that stand for numbers separated by +. This elementary form of an

arithmetic expression could easily be generalized, but it is sufficient

for the tasks encountered.

TESTs. A TEST has the ordered form

a. <argument>
b. <RELATION>
c. <argument>

Each argument is either a FEATURE, a CONSTANT, a SET, an EXPRES, or a

variable that stands for a CONSTANT. In the first TEST following

VAR-DOMAIN in Fig. 30, a is FROM-SIDE, b is EXCLUSIVE-MEMBER, and c

is SIDES. The other words are ignored.

TRANSFORMATIONS. The ordered form of a TRANSFORMATION is

a. <0FERATION>
b. <argument>
c. <FEATURE>

In general, the argument can be of the same type as the argument of a

TEST, but certain OPERATIONS require that the argument must be a

FEATURE. In the first TRANSFORMATION following MOVES in Fig. 30, a

is MOVE, b is the FEATURE,

FROM-SIDE BOAT

and c is the FEATURE,

TO-SIDE BOAT.

MOVE-OPERATORS. MOVE-OPERATOR has the unordered form

a. <kind of operator>
b. VAR-DOMAIN <list of TESTs>
c. PRETESTS <list of TESTs>
d. MOVES <list of TRANSFORMATIONs>
e. POSTESTS <list of TESTs>

In all of the examples in Chapter VI, a is a CREATION-OPERATOR, because

the resultant object is always to be a new object. An alternative value

for a is MODIFICATION-OPERATOR, which would Indicate that the resultant

- Ill -

object is the input object, modified. MODIFICATION-OPERATORS never

occur because GPS assumes that after an object is generated it does not

get destroyed. Only a and d must exist; b, c, and e are optional.

The first argument of each TEST associated with VAR-DOMAIN is as

sumed to be a variable which stands for itself. Often such a variable

could be a FEATURE as well. For example, in Fig. 30 the first argument

of the first TEST of VAR-DOMAIN is FROM-SIDE. The intent is that the

value of this argument is either LEFT or RIGHT and not a node which

represents the bank of the river in an object.

The TESTs following POSTESTS is stated relative to the resultant

object; the others are stated relative to the input object. M-C-OPR in

Fig. 30 is an example of a MOVE -OPERATOR in which c is missing.

DESCRIBED-OBJs. A DESCRIBED-OBJ has the unordered form,

a. TEX-DESCRIPTION <set of TESTs>
b. SUBEXPRESSION-TESTS <set of TESTs>

Both a and b are optional. DESIRED-OBJ in Fig. 31 is an example of a

DESCRIBED-OBJ. Since there are no TESTs peculiar to the TOP-NODE in it,

a is missing. The TESTs in b must be true of every node of the objects

represented by the DESCRIBED-OBJ.

OBJECT-SCHEMA. An OBJECT-SCHEMA has the recursive unordered form,

a. <LOC-PROG> (OBJECT -SCHEMA.)
b. ATTRIBUTE <Word>

There may be any number of items of the form a or of the form b, including

none. INITIAL-OBJ in Fig. 30 is an example of an OBJECT-SCHEMA.

DIFF-ORDERING. DIFF-ORDERING is a list of FEATURES and groups of

FEATURES. The FEATURES of the same group are enclosed in parentheses.

(See Fig. 30.)

TABLE-OF-CONNECTIONS. TABLE-OF-CONNECTIONS is a list of items

of the form

a. <FEATURE> (<list of operators>)

COMMON-DIFFERENCE stands for all FEATURES. (See Fig. 3 0.)

COMPARE-OBJECTS. COMPARE-OBJECTS has the form

a. (BASIC-MATCH)

where BASIC-MATCH has the ordered form

b. COMP-FEAT-LIST <list of FEATUREs>
c. SUBEXPRESSIONS.

c is optional. In Fig. 30, c is missing which Indicates that differences

are only observed at the TOP-NODE of objects. The FEATURES following

COMP-FEAT-LIST are the type of differences that the match looks for.

Additional Facilities

Any TEST can be universally quantified over one variable. Such a

TEST is treated as an arbitrary number of TESTs—one TEST for each value

of the variable. The test is true, only if it is true for all values of

the variable. Quantification is syntactically indicated by the occurrence,

in a TEST, of FOR-ALL followed by a variable followed by an argument which

designates a SET. In such a TEST, the variable is quantified over all

members of the SET. (The Tower of Hanoi task specification uses this

facility. See pages 201-2.)

A FEATURE can be used to designate a feature of any type of data

structure and not only features of OBJECT-SCHEMAs. However, unless stated

explicitly, FEATURES refer to the implicit object. Whenever PARTICULAR,

followed by the name of a data structure, occurs in a FEATURE, the FEATURE

refers to that data structure. (An example occurs in the Tower of Hanoi

task specification (See page 202.)

The syntax of OBJECT-SCHEMA in the external language is clumsy

for expressing the objects of some tasks. For example,

J' T D T

expressed as an OBJECT-SCHEMA is

(SYMBOL INTEGRAL LEFT (SYMBOL * LEFT (SYMBOL T)
RIGHT (SYMBOL D LEFT (SYMBOL T))))

To alleviate this clumsiness, there are some conversion routines which

allow OBJECT-SCHEMA to be expressed in a language with a different syntax.

In the LIST mode of translation, a string of symbols enclosed by

matching parentheses are loaded as a data structure. In this mode, the

translator does not consider (and) as meta-words even though it does

match the (to). Objects and operators whose statements contain paren

theses can be translated in the LIST mode and converted to internal form

after translation. For example, the operators and initial situation of

integration (Fig. 31) are translated in the LIST mode.

Example

The translation of the missionaries and cannibals task in Fig. 30

illustrates the way in which the text is processed. Starting at the top

of Fig. 30, RENAME designates the mode of translation and the translator

assigns LEFT and RIGHT to be the new names of FIRST and SECOND, respectively.

)_ signifies the end of the scope of RENAME, and DECLARE changes the mode

of translation. BOAT is then assigned the type ATTRIBUTE and the other

declaration statements are processed, similarly. The next ^ indicates the

end of the scope of DECLARE and TASK-STRUCTURES becomes the mode of trans

lation.

TOP-GOAL, whose form is identical in all tasks, is the first

data structure to be translated. TOP-GOAL is defined by the text,

encosed in parentheses, which follows it. The first) following TOP-

GOAL signifies the end of TOP-GOAL. Since the next word is INITIAL-OBJ

the translator considers it to be the name of the next data structure

to be translated. INITIAL-OBJ does not correspond to an IPL symbol in

the basic vocabulary of GPS and is assigned a new IPL symbol for this

task. (The same IPL symbol is also used for the occurrence of INITIAL-OBJ

in TOP-GOAL.) INITIAL-OBJ is translated according to the form of an

OBJECT-SCHEMA because it has been so declared. The) which matches the (

following INITIAL-OBJ indicates the end of its definiton.

After translating DESCRIBED-OBJ in the same way, the EXPRES, X+Y

is translated. X+Y and the three SETs which follow are used in the defini

tion of the M-C-OPR.

FROM-SIDE-TESTS is translated as V-TESTS whose form is a disjunctive

set of TESTs. FROM-SIDE-TESTs consists of the two TESTs, enclosed in the

parentheses that follow it. TO-SIDE-TESTs are translated similarly. Both

FROM-SIDE-TESTs and TO-SIDE-TESTs are used in the definition of the M-C-OPR.

The M-C-OPR, which is translated as a MOVE-OPERATOR, consists of

the text enclosed in the parentheses that follows it. VAR-DOMAIN indicates

that the four TESTs which follow specify the legitimate values of the

variables in the M-C-OPR. MOVES indicates the end of the scope of VAR-DOMAIN

and that the TRANSFORMATIONS of the operator follow. POST-TESTs signifies

that the third TRANSFORMATION is the last and that the following constraints

must be satisfied by any object produced by the M-C-OPR in order for it to

be feasible. The POST-TESTS consist of two disjunctive sets of TESTs, which

is indicated by the occurrences of TRUE.

- 1 1 5 -

After translating the M-C-OPR the types of differences B-L

through M-R are translated. Each of these data structures are trans

lated as FEATURES. They are used during problem solving as difference

types rather than the arguments of TESTs only because their names occur

in DIFF-ORDERING and BASIC-MATCH instead of in TESTs.

DIFF-ORDERING divides the types of differences into two groups

(each enclosed in parentheses). The types of differences in the first

group are considered more difficult than those in the second group.

TABLE-OF-CONNECTIONs consists of a single type of difference

(COMMON-DIFFERENCE, which stands for any type of difference) with which

a list of one operator is associated.

After translating the next four data structures, the translator

notices that the _) matches the { following TASK-STRUCTURES, which

indicates the end of its scope. The meta-word END terminates translation

and control is transferred to the PROBLEM-SOLVING-EXECUTIVE of GPS.

CHAPTER V: REPRESENTATION AND GENERALITY

The interdependence of the power and generality of a problem solver

was discussed in Chapter II. In the construction of a general problem

solver, employing a fixed set of problem solving techniques, the internal

representation is critical: it must be general so that tasks can be

expressed in it; yet its structure must be simple enough for the problem

solving techniques to be applicable. Since the techniques require that

certain information be abstracted from the internal representation, they are

applicable only if processes which abstract the necessary information from

the internal representation are feasible. Thus, the difficulty of construct

ing a general problem solver is determined primarily by the variety and

complexity of its problem solving techniques.

Chapter III described the problem solving techniques of GPS and

Chapter IV described the internal representation of GPS. Thus, this chapter

can now discuss the impact that the problem solving techniques had on the

way in which the internal representation of GPS-2-5 was generalized. To

simplify the following discussion, the demands of the problem solving techni

ques of GPS are summarized in Fig. 36; this is a list of processes that GPS

must perform regardless what internal representation is used. These processes

are given in a simplified form. For example, in some cases objects are not

represented individually, but are represented as classes of objects. In such

cases, object-comparison (Fig. 36) must test if two classes of object have

any common members.

The first section of this chapter describes the properties of several

different modes of representation and illustrates their correspondence to

the types of objects and operators described in Chapter IV. The remainder

of the chapter can then illustrate the interaction between the problem

- 1 1 7 -

1. Object-comparison—test if two objects represent the same situation,
or if two classes of objects have any common members.

2.

5.

6.

Object-difference—find a difference between two objects if they do
not represent the same situation.

3. Operator-application—produce the result of applying an operator to
an object if the operator is feasible.

4. Operator-difference—find a difference between an object and the class
of objects to which an operator can be applied if the operator
is not applicable to the object.

Desirability-selection—select from the set of all operators those
operators which are desirable.

Feasibility-selection—select from a set of operators those operators
~ ~ which are feasible.

7. Canonization--find the canonical name of an uncanonized data structure
<^Tght depend on type of structure).

FIGURE 36. Processes required by the problem solving methods of GPS.

solving techniques of GPS and its internal representation. Each section

discusses some aspect of proposed tasks that prevented them from being

expressed in the internal representation of GPS.2-5 (the version available

at the initiation of this work). For each, the attempts to alleviate the

deficiency in the internal representation are related; some of these

attempts were successful; others could not be adequately carried out within

the existing program.

A. MODES OF REPRESENTATION

Before describing the different modes of representation used in GPS,

we need a framework into which each can be cast. Although not all modes of

representation are describable within the framework introduced below, it is

adequate for the types of representation that are used in GPS. After des

cribing the different modes of representation of objects, we will generalize

them to include the representation of operators.

Framework for the Representation of Objects

The representation of an object is given by a set of information-units.

Each information-unit has the same generic form: A Boolean-function of

several arguments (in most cases two). The arguments can be atomic-constants—

either symbolic or numeric. An argument can also be a feature of an object,

which is a function whose domain is objects and whose range is values. A

FEATURE is a special kind of feature. An example of an information-unit is

"the number of missionaries at the left bank
of the river equals 3."

In this information unit

the Boolean function is "equals";
the feature is "the number of missionaries at the left";
the atomic-constant is "3".

This Information-unit represents the fact that there are three missionaries

at the left bank of the river in the object.

A subexpression is a subset of the information-units which represent

the total object. A subexpression-name is a function whose domain is objects

and whose range is subexpressions. An example of a subexpression-name is,

"left" and its value in the initial situation of the missionaries and canni

bals task is the subexpression consisting of the following three information-

units:

missionaries at left = 3;
cannibals at left = 3;
boat at left = yes.

Models

One mode of representation, which will be called the model, is a set

of information-units all of which have the same form:

Boolean function is =
first argument is a feature
second argument is an atomic-constant.

The set of information-units that comprise a model must be consistent--no

two information-units contain the same feature; and complete—each feature

is contained in one information unit.

For example, a model of the object,

J t dt, (1)

is given in Fig. 37.a, assuming that t is not a free variable and that t

and dt are ordered. Fig. 37.a uses the terminology of the formulation of

integration in Fig. 31. In this example, FEATURES denote features. Many

features do not appear in Fig. 37.a; e.g.,

LEFT-LEFT-LEFT SYMBOL.

(a) SYMBOL = INTEGRAL
LEFT SYMBOL = *
LEFT-LEFT-SYMBOL = T
LEFT-RIGHT-SYMBOL = D
LEFT-RIGHT-LEFT-SYMBOL

(b) INTEGRAL

A

T D

T

(c) a SYMBOL = T
B SYMBOL = D
V SYMBOL = T
SYMBOL = INTEGRAL
LEFT SYMBOL = *

(d) (TEX-DESCRIPTION
1.
2.
3.
4.

THE SYMBOL EQUALS INTEGRAL .
THE LEFT SYMBOL EQUALS * .
THE LEFT-RIGHT SYMBOL EQUALS D .
LEFT-LEFT EQUALS LEFT-RIGHT-LEFT

FIGURE 37. Different representations of the integral, J' t dt :
,ux i s an OBJECT-SCHEMA tree structure; (c) i (a) is a model; (b)

an unordered-schema; (d) is a DESCRIBED-OBJ.

T

)

Nevertheless, Fig. 3 7 .a is "complete" because, by convention, all of

those features that do not appear explicitly equal the special atomic-

constant, UNDEFINED.

The key property of models is that their identity test is a match

provided that the models use the same set of features. That is, two

models are identical if and only if the atomic-constants in each pair of

information-units which contain the same features are identical. The

match must place information-units with the same features into correspondence

which requires search if the information-units do not occur in some canoni

cal order. But there is one and only one correspondence.

Schemas

There are two different kinds of schemas which, for the purpose of

this chapter, will be considered as a single mode of representation. The

simplest kind of schema has the same definition as a model with the exception

that the atomic-constant in an information-unit may be (but not necessarily

is) replaced by a variable whose domain is atomic-constants. We will not

distinguish between those variables that are universally quantified and those

variables whose domain is restricted, even though any restriction on the

domain of variables must be given either explicitly in the encoding of the

objects or by some uniform convention. The interpretation of schemas is

that they represent a class of models each of which can be obtained by the

substitution for variables. Hence, a model is the special kind of schema

in which no variables appear.

The second kind of schema is the same as the one described above with

the exception that some of the information-units may have the form-

Boolean function is equals;

is subexpressions.

For example, Fig. 37.a is a schema representation of (1), assuming t and

dt are ordered. OBJECT-SCHEMAS are schemas and if an OBJECT-SCHEMA

contains no variables, it is a model as well as a schema.

Fig. 37.b is the tree structure representation of the OBJECT-SCHEMA

represented as a schema in Fig. 37.a. Any variables in OBJECT-SCHEMAs

stand for subexpressions. Hence, if T is a free variable, Fig. 37.b repre

sents the class of models whose LEFT-LEFT and LEFT-RIGHT-LEFT subexpressions

can be any subexpression.

The key property of a schema is similar to that of a model: The

identity test for two schemas is a match that incorporates the substitution

for variables.

Unordered-schemas

The unordered-schema mode of representation is the generalization of

schemas in which the features or subexpression-names in the information-units

may (or may not) be replaced by variables whose domains are features or

subexpression-names, respectively. Fig. 37.c is (1) represented as an unordered-

schema, assuming that t and dt are unordered. a, 6, v are variable features.

If o; is LEFT-LEFT SYMBOL, then B must be LEFT-RIGHT SYMBOL and y must be

LEFT-RIGHT-LEFT SYMBOL. On the other hand, if a is LEFT-RIGHT SYMBOL, then

8 must be LEFT-LEFT SYMBOL and y must be LEFT-LEFT-LEFT SYMBOL. The variable

features in Fig. 37.c are not independent and are not universally quantified

but nevertheless are variables.

Considerable complexity is introduced by using variable features and

subexpression-names because there is no unique way to place information-units

in correspondence as there was in schemas. However, the key property of

unordered-schemas is that the identity test is still a match which incorporates

substitution of variables, provided that it substitutes values for variable

features.

Characteristic-lists

In the modes or representation described so far, the only Boolean

function used is equal. The match can be used for an identity.test only

because equality is both transitive and reflexive. That is, two informa

tion-units which contain the same feature are identical only if their

atomic constants are identical. When Boolean functions that are intransi

tive or irreflexive are used, the identity test is more complicated. For

example, the two information-units

a. a is not less than p

b. 01 7̂ B

is equivalent to the single information—unit

0! > 6

(a is a feature and 8 is a number).
A characteristic-list, a mode of representation, consists of a set

of information-units, each of which has the generic form

R(or,p)

where

a. Reft a set of Boolean functions;
b. a is a feature or a subexpression-name;
c. B is a feature, subexpression-name,

subexpression or atomic-constant.

A characteristic-list is not necessarily complete in the sense that a model

must be complete. If none of the information-units in a characteristic-list

contain a particular feature, by convention its value is irrelevant whereas

in a model its value was assumed to be UNDEFINED. Two information-units may

contain the same feature and still be consistant because some of the Boolean

functions may be intransitive or irreflexive and because an information-unit

may be a Boolean function of two features. For example, the two

information-units

a. a > 6
b. B < 5

where a and B are features are certainly not inconsistant.

DESCRIBED-OBJs in GPS are characteristic-1ists. Fig. 37.d is a

DESCRIBED-OBJ which represents (1).

Characteristic-lists have the interesting property that all schemas

can be represented as characteristic-lists even though the latter contain

no explicit variables. (Since unmentioned features in characteristic-lists

can have any value, they have the flavor of a set of independent, universally

quantified variables.) We will not prove that characteristic-lists are as

general as schemas. Instead this fact is demonstrated by expressing in

Appendix B the operators of the logic task1 as both FORM-OPERATORs (which

are schemas) and MOVE-OPERATORs without variables (which are characteristic-

lists). Note that some of the MOVE-OPERATORs in Appendix B can only be

expressed as two FORM-OPERATORs.

Characteristic-list-schemas

The characteristic-list-schema mode of representation is a generaliza

tion of the characteristic-list which is obtained by allowing the use of

variables for either argument of information-units. Thus, characteristic-

lists are those characteristic-lists-schema that do not contain variables.

lExperiments with previous versions of GPS used, extensively, the formula
tion of the task of proving a theorem in the prepositional calculus which
is described on page 3 0. These are the operators from this specifica
tion of logic.

None of the data structures which represent objects in GPS are characteris-

ticlist-schemas which contain variables. DESCRIBED-OBJ s do not contain

any explicit variables, except for those variables associated with FOR-ALL.

However, there are operators, i.e., MOVE-OPERATORs, that contain variables

and hence are characteristic-list-schemas.

Test-process

One way to represent an object is as a program which takes a single

object as its input and provides *yes' or 'no* as its output. Such a program

represents the object, A if its execution, when A is the input, results in

•yes* and if its execution on all other inputs results in 'no1. We will call

such a program a test-process. A test-process can also be used to represent

a class of objects. In this case, the result of the program will be 'yes'

whenever its input is a member of the class and 'no* for all other inputs.

The desired situation in checkers is represented as a test-process in Samuel

[53].

A test-process is the mode of representation consisting of a single

information unit of the form

R (total object).

R is the Boolean function defined by the test-process program. Total object

is the subexpression-name that designates the entire object. For example,

a test-process representation of (1) is a program which checks if the input

contains the information-units in Fig. 37.a. This implies that the test-

process must understand how information-units are encoded in its input and

that the input is expressed in a different mode of representation.

One advantage of a test-process is its generality. Any object

represented in one of the other modes of representation can be represented

as a test-process if the test-process is expressed in a general programming

language, e.g., IPL. Another advantage of a test-process is that its

identity test is the test-process itself. The main disadvantage of test-

processes is that they are unit processes as far as GPS is concerned. It

is not feasible for GPS to analyze the program structure of a test-process

to determine its semantics.

Modes of Representation of Operators

In the following, we will only consider those operators which have

one object (or one class of objects) as an input and one object (or one

class of objects) as an output. This case can be generalized easily to the

several input, several output case. Processing considerations such as

operator-application (Fig. 36) will not be dealt with in this section.

Operators involve statements about two objects: one is the input

object, the other is the output object. This implies the existence of some

device—semantic or syntactic—that permits reference to either. For the

purpose of this discussion, features and subexpression-names preceded by an

asterisk will refer to the output object; other features and subexpression-

names will refer to the input object. (This syntactic device is not used

in GPS.) The modes or representation for operators are obtained from the

modes of representation of objects by allowing any of the features or

subexpression-names to be preceded by an asterisk.

FORM-OPERATORs are the union of the two sets of information-units

which represent the input and output schemas, respectively. The features

and subexpression-name in the latter are preceded by asterisks. Fig. 38.a

is the operator schema of the FORM-OPERATOR in Fig. 38.b.

The TRANSFORMATIONS of MOVE-OPERATORs are basically characteristic-

list-schemas. For example, TRANSFORMATIONS of the form,

MOVE Fl TO F2,

- 127 -
(a) SYMBOL = J

LEFT SYMBOL = D
LEFT-LEFT SYMBOL = U
*TOP-NODE = U

(b) Input: F Output: U

D

U

(c) sum (M FROM-SIDE ,-X, *M *FROM-SIDE)
sum (M TO-SIDE , X , *M *TO-SIDE)
M FROM-SIDE NOT-LESS-THAN X

(d) (MOVES
DECREASE BY THE AMOUNT X THE M AT THE FROM-SIDE
AND ADD IT TO THE M AT THE FROM-SIDE .
POST-TESTS
M AT THE LEFT IS GREATER THAN THE M AT THE TO-SIDE .)

FIGURE 38: (a) is a schema encoded as a tree structure in (b).
(c) is a characteristic-list-schema encoded as a MOVE-OPERATOR in (d).

where Fl and F2 are features, are equivalent to the three information-units

which incorporate the asterisk convention:

DEFINED (Fl)
EQUALS (Fl, *F2)
UNDEFINED (*F1).

Since all TRANSFORMATIONS can be restated as several information-units, MOVE-

OPERATORs are characteristic-list-schemas. Fig. 38.c is the set of informa

tion-units of the MOVE-OPERATOR in Fig. 38.d. In Fig. 38.c, •sum* is a

Boolean function which is true if the sum of the first two arguments equals

the third.

The modes of representation introduced in this section are summarized

in Fig. 39. The remainder of this chapter discusses inadequacies of the

modes of representation used in GPS-2-5 and the extent to which these inade

quacies were alleviated by the introduction of new modes of representation

in GPS. Fig. 40 summarizes the role of the modes of representation in both.

B. DESIRED SITUATION

In many tasks, the desired situation is not a single object, but a

large class of objects. In GPS-2-5, schemas and lists of schemas were the

only means of expressing classes of objects, and they are not an adequate

representation for many classes of objects. In integration, for example,

the desired situation is an expression that does not contain an 'J** and

there are an infinite number of such expressions. A schema cannot represent

this class of objects because a schema implies identity of form. Similarly,

no finite list of schemas is adequate.

A test-process can be used to represent the desired situation in

integration. An example would be a program that generates the symbols of

an object and tests if any of them is «J*« ; if none are 'J', the program

1. Model--a complete and consistent set of information-units of the form—fea
ture equals atomic-constant. A match is an identity test for two models.

2. Schema--a model in which the atomic-constants may be replaced by variables
and some of the information-units may be of the form--subexpression-name
equals variable. A match with substitution for variables is an identity
test for two schemas.

3. Unordered-schema--a schema in which the features and subexpression-names
may be replaced by variables. A match which pairs elements and substi
tutes for variables is an identity-test for two unordered-schemas•

4. Characteristic-list--a set of information-units of the form--Boolean function
(or, B)--where a is a feature or subexpression-name and P is a feature, subex
pression-name, subexpression, or atomic-constant. An identity test for two
characteristic-lists is more complex than a match.

5. Characteristic-list-schema--a characteristic-list in which features, subex
pression-names, subexpressions and atomic-constants may be replaced by
variables. An identity test for two characteristic-list-schemas is more
complex than a match.

6. Test-process--a complex Boolean function defined in a programming language.

A test-process is its own identity test.

FIGURE 39. A summary of several modes of representation.

(a) A summary of the representation of GPS-2-5:
1 Initial situation' schema* list of schemas
2. Desired situation: schema!
3. Operators: schemas.

(b) A summary of the internal representation of the current version of GPS:

1. Initial situation: schema; list of schemas; (unordered-schema in
the integration task).

2. Desired situation: schema; characteristic-list.
3. Operators: schemas ; "chapter is tic-list-schemas .

(c) A list of the types of objects and operators in GPS together with
their mode of representation:

1 . OBJECT-SCHEMA: schema: (unordered-schema in the integration task).
2. DESCRIBED: c h a r a c t e r i s T I C R T I S T
3. FORM-OPERATOR: schema.
4. MOVE-OPERATOR: characteristic-list-schema.

FIGURE 40. A summary of the representation of both GPS-2-5 and the current version
of GPS.

2Throughout this chapter are used the short names of the demands of the
problem solving techniques of GPS introduced in Fig. 36.

signals that the object is a member of the class of objects not requiring

integration.

If we consider how to accomplish the requirements in Fig. 36 when

the desired situation is represented as a test-process, we find that some are
2

easy--object-comparison , whxch is the test-process itself—while others are

formidable--object-difference. Object-difference processes could be imbedded

in the test-processes, if their execution would produce a difference whenever

the input object was not represented by the test-process. This solution

would place a large burden on the person who constructed the test-process

program. The only other way to obtain differences is to analyze the test-

process program to discover the conditions that give rise to the negative

signal. However, such an analysis requires an understanding of the program

ming language and is not feasible.

A characteristic-list—in particular, a DESCRIBED-OBJ—can be used to

represent the desired situation in integration. In GPS the desired situation

can be represented as a DESCRIBED-OBJ. However, a DESCRIBED-OBJ cannot be

used to represent the initial situation or objects derived from it since GPS

cannot apply an operator to a DESCRIBED-OBJ (operator-application) and cannot

produce a DESCRIBED-OBJ as the result of an application of an operator. Thus,
for object-comparison and object-difference, GPS need only compare an OBJECT¬

— 1

SCHEMA and a DESCRIBED-OBJ because the necessity for comparing two DESCRIBED-

OBJ never arises.

In comparing two data structures whose modes of representation are

different, e.g., OBJECT-SCHEMA versus DESCRIBED-OBJ, a match cannot be used

for the comparison process because there is no general way to place the two

structures into correspondence. An OBJECT-SCHEMA and a DESCRIBED-OBJ are

compared by an interpreter that understands the semantics of the RELATIONS

and the format of a DESCRIBED-OBJ. The interpreter evaluates the arguments

of the TESTs in the DESCRIBED-OBJ relative to the OBJECT-SCHEMA and if it

finds all of the TESTs to be true, it signals that the OBJECT-SCHEMA and the

DESCRIBED-OBJ represent the same situation. For example, the OBJECT-SCHEMA

in Fig. 41.a and the DESCRIBED-OBJ in Fig. 41.b represent the same class of

objects, if U is a variable, and the MATCH-DIFF-METHOD can recognize this

fact. (In Fig. 41.a, INTEGRAL, D, and U are values of the ATTRIBUTE, SYMBOL,

and the LOC-PROG, LEFT refer to the left-most branch of the TOP-NODE.)

In comparing Fig. 41.a to Fig. 41.b, the MATCH-DIFF METHOD recognizes EQUALS

and TEX-DESCRIPTION as words which it understands, and recognizes that

THE SYMBOL AT THE LEFT

(in Fig. 41.b) refers to the D in Fig. 41.a, etc.

When an OBJECT-SCHEMA and a DESCRIBED-OBJ do not represent the same

situation, an object-difference process analyzes the TESTs in the DESCRIBED-

OBJ which were not satisfied in order to produce a difference. Although the

differences are implicit in the TESTs, it is important that they need not be

a consideration in formulating the DESCRIBED-OBJ. For example, in matching

OBJECT-SCHEMA in Fig. 41.a to the DESCRIBED-OBJ in Fig. 41.c, GPS would

detect a difference because the TEST in Fig. 41.c is not true of the TOP-NODE.

Only one difference would be detected because the TEST is true at the other

two nodes. In analyzing this condition, GPS would detect the difference,

a. type of difference = the FEATURE, SYMBOL
b. location of difference = TOP-NODE
c. value of difference = a symbol other than INTEGRAL.

- 132 -

(a) INTEGRAL

(b) (TEX-DESCRIPTION
1. THE SYMBOL EQUALS INTEGRAL .
2. THE SYMBOL AT THE LEFT EQUALS D .)

(c) (SUBEXPRESSION-TESTS
1. THE SYMBOL DOES NOT-EQUAL INTEGRAL .)

FIGURE 41. (a) The tree structure representation of an object in the
integration task, (b) is the representation of (a) as a DESCRIBED-OBJ.
(c) is the representation of the "desired situation" of the integration
task as a DESCRIBED-OBJ. In this figure, U is a variable, SYMBOL is
an ATTRIBUTE and LEFT is a LOC-PROG.

In general, GPS produces one difference for each TEST which is

not satisfied. The type of the difference is a FEATURE that is an

argument of the TEST; the location of the difference is the LOC*PROG

which names the node to which the TEST was applied; and the value of the

difference is the value which the FEATURE should have in order for the

difference to be alleviated.

In order for GPS to determine the value of the difference, it must

understand the RELATION of the TEST. For example, GPS must understand

the semantics of NOT-EQUAL in order to determine the value of the difference

in the previous example. GPS understands the semantics of the RELATIONS

only because they are task invariant. On the other hand, GPS cannot under

stand the semantics of the types of differences, because they vary from

task to task. GPS knows only that SYMBOL in the integration task is an

ATTRIBUTE (this fact is given in the task description) and knows to process

it in the same way that it processes, for example, BOAT in the missionaries

and cannibals task.

Allowing the desired situation to be a DESCRIBED-OBJ does not affect

the existing processes for operator-application, operator-difference, feasi

bility-selection, and desirability-selection because operators are never

applied to DESCRIBED-OBJs. A DESCRIBED-OBJ never needs to be canonized

because new ones are not generated during problem solving. However, in any

difference detected between an OBJECT-SCHEMA and a DESCRIBED-OBJ, the type

of difference does not have a canonical name. Canonization of such a type

of difference is accomplished by the same process which canonizes OBJECT-

SCHEMAs because they are all FEATURES which can be matched by the IDENTITY-

MATCH-METHOD. If the types of differences were more complex structures,

such as IPL programs, the canonization process would necessarily be more

complex.

C. OPERATORS

In GPS-2-5, all operators were expressed as schemas. This is a

convenient representation for some operators, particularly those found

in mathematical calculi. However, the operators of other tasks cannot

be expressed, conveniently, if at all, as FORM-OPERATORs; e.g., the

operators of the missionaries and cannibals task. To alleviate this

difficulty, the internal representation of operators was extended to

include MOVE-OPERATORs (characteristic-list-schemas).

The addition of MOVE-OPERATORs to the internal representation does

not affect object-comparison or object-difference because they are con

cerned only with objects. However, the other existing processes listed

in Fig. 36 were not adequate for MOVE-OPERATORs; the modification of each

will be discussed below.

Operator-applteation

A new operator-application process had to be added so that a MOVE-

OPERATOR could be applied to an OBJECT-SCHEMA. MOVE-OPERATORs always

have one OBJECT-SCHEMA as input and produce, if successful, a single OBJECT-

SCHEMA as the result. No attempt was made to apply a MOVE-OPERATOR to a

DESCRIBED-OBJ.

The operator-application process for MOVE-OPERATORs tests an operator's

feasibility (PRETESTS are satisfied, etc.) and, if feasible, produces the

result. This process interprets the semantics of the TRANSFORMATIONS which

involves understanding the semantics of the OPERATIONS. But GPS does not

understand the semantics of task dependent symbols; e.g., all ATTRIBUTES

are processed similarly. The operator-application process for MOVE-OPERATOR

also interprets the semantics of the TESTs in a MOVE-OPERATOR, which is

accomplished by the same apparatus used in the object-comparison process

for an OBJECT-SCHEMA, and a DESCRIBED-OBJ.

Operator-difference

The operator-difference process for a MOVE-OPERATOR is quite similar

to the object-difference process for an OBJECT-SCHEMA and a DESCRIBED-OBJ.

In fact, when one of the TESTs in PRETESTS is not satisfied, the two

processes are identical.

The failure of a TEST in the set of TESTs in VAR-DOMAIN causes the

operator to fail unconditionally and no difference is produced. This

condition indicates that one of the variables has an illegitimate value and

thus, the operator is infeasible, independent of the object to which it is

applied.

The inapplicability of a TRANSFORMATION will result in a difference.

To produce such a difference GPS must understand the semantics of the

OPERATIONS. For example, the TRANSFORMATION,

MOVE THE BOAT AT THE FROM-SIDE TO THE BOAT AT TO-SIDE

with FROM-SIDE equal to LEFT and TO-SIDE equal to RIGHT, is not applicable

to an OBJECT-SCHEMA in which the BOAT is at the RIGHT. An attempt to apply

this TRANSFORMATION will result in the type of .difference,

LEFT BOAT,

because MOVE requires the first argument of the TRANSFORMATION to be DEFINED.

This type of difference is obtained by substituting LEFT for FROM-SIDE in

the first argument of the TRANSFORMATION.

This example illustrates the important fact that types of differences

are not atomic symbols, but rather, data structures (FEATUREs), whose

generic form is known by GPS. Since some of the FEATURES in the TRANSFORMA-

TIONs of MOVE-OPERATORs contain variables, it is not possible to preassign

each individual type of difference to be an atomic symbol (as was true in

GPS-2-5). In a particular application, such variables will have values;

a FEATURE which contains specified variables may be produced as a type of

difference. If the variables were specified differently, the FEATURE would

be equivalent to another type of difference. For example, the application

of the TRANSFORMATION above with FROM-SIDE equal to RIGHT and TO-SIDE equal

to LEFT, might result in the difference,

RIGHT BOAT.

In the previous example, the same argument of the same TRANSFORMATION

resulted in a different type of difference because the value of FROM-SIDE

was different.

The current operator-difference process does not produce a difference

upon the failure of a TEST in POST-TESTs. Instead, this condition results

in unconditional infeasibility. POST-TESTS are stated relative to the result

ant object instead of the input object. Hence, the FEATURE that is incorrect

and causes the failure probably was modified in applying the TRANSFORMATIONS.

The current process for producing a difference is not sophisticated enough to

state the difference relative to the input object. Such a restatement is

required because GPS assumes that all differences are stated relative to the

input object.

Desirability-selection

The REDUCE-METHOD does not select operators randomly but selects

desirable operators—those which modify in a desirable way that feature of an

object to which the difference of the REDUCE goal pertains. TABLE-OF-

CONNECTIONS is a means of providing information about the desirability of

operators. Associated with each type of difference is a list of the operators

that have the capability of reducing the type of difference. Although

the information in TABLE-OF-CONNECTIONS should be discovered by GPS;

normally, GPS-2-5 was given the TABLE-OF-CONNECTIONS exogenously. However,

one attempt was made to construct the TABLE-OF-CONNECTIONS for a set of

FORM-OPERATORS (Newell [36]). To determine the differences for which a

FORM-OPERATOR was relevant, its input form was matched to its output form.

This was possible, since both were OBJECT-SCHEMAs. The differences that

were produced as a result of the match were those which the FORM-OPERATOR

had the capability of reducing.

For example, one of the FORM-OPERATORs used in the logic task is

(A=B) YIELDS (-AVB)

where A and B are variables. Matching the left hand expression to the right

hand expression results in the types of differences:

a. logical connective
b. sign of the first operand

Thus, this operator was considered desirable to changing either the logical
,3

connective or the sign of the first operand . This example is interesting

because it demonstrates the dependence of processing on the representation.

For example, it is not feasible to construct the TABLE-OF-CONNECTIONS if

the operators are represented as test-processes.

Although the TABLE-OF-CONNECTIONS is adequate for expressing the

desirability of schema operator, it is not adequate for characteristic-list-

3The actual process described in Newell [36] was somewhat more complex but
the basic idea is the same. A method in a predecessor of GPS-2-5 used a
similar process, dynamically, to determine desirability.

schemas. Even after selection, characteristic-list-schemas operators may

contain variables whose values may determine the desirability of the

operator. In the extreme case, illustrated by missionaries and cannibals,

only one operator appears in the TABLE-OF-CONNECTIONS, which results in no

selectivity at all. Since MOVE-OPERATORS are not schemas, the technique

used to discover the desirability of FORM-OPERATORs in GPS-2-5 is not

applicable. Thus, a new desirability-selection mechanism had to be added

to GPS for determining the desirability of MOVE-OPERATORs and the desirable

values for pertinent variables in MOVE-OPERATORs.

The desirability-selection process for MOVE-OPERATORs can best be

described by an example. Suppose that in attempting the missionaries and

cannibals task, an operator was wanted for reducing the difference,

the BOAT at the LEFT is UNDEFINED.

The M-C-OPR would be selected from the TABLE-OF-CONNECTIONS (see Fig. 30).

The desirability-selection process attempts to make the functions of the

TRANSFORMATIONS desirable by substitution for variables. The functions of

the second and third TRANSFORMATIONS are not relevant to reducing the

difference because they do not affect the value of the BOAT at the LEFT.

But the first TRANSFORMATION, since its OPERATION is MOVE, is desirable

provided that its second argument is identical to the type of difference,

the BOAT at the LEFT.

The desirability of this TRANSFORMATION is determined by matching its

second argument to the type of difference (both are FEATURES). Since they

are identical when TO-SIDE equals LEFT, the desirability-selection process

reports that the M-C-OPR with TO-SIDE equal to LEFT is a desirable operator.-

Although there is a special match routine for FEATUREs in the

desirability-selection process, ideally the MATCH-DIFF-METHOD would be

used by the desirability-selection process to match two FEATURES. However,

a special match was used because of the following peculiarities: Variables

are bound only if the two FEATURES can be made identical, whereas, in

matching two OBJECT-SCHEMAs, variables are bound regardless of whether

they can be made identical. In addition, the match incorporated in

desirability-selection only substitutes those values for the variables which

satisfy VAR-DOMAIN.

The desirability-selection process depends on the homogeneous repre

sentation of types of differences and the arguments of TRANSFORMATIONS.

In matching them, the task dependent detail of the FEATURES cancels out.

In the missionaries and cannibals task, for example, the match recognizes

that two FEATURES, both of which have BOAT and LEFT as their ATTRIBUTE and

LOC-PROG, respectively, are identical. The match recognizes that the

ATTRIBUTE in both FEATURES is the same symbol and thus does not need to

understand the semantics of BOAT. If their modes of representation were

different, the comparison process would be more complicated than a match.

Desirability-selection is, in many respects, similar to operator-

difference. In both cases, GPS must understand the semantics of the

OPERATIONS which are the task invariant symbols in TRANSFORMATIONS. Note

that GPS only understands the generic form of the arguments of the

TRANSFORMATIONS, i.e., GPS knows that they are FEATURES, CONSTANTS, etc.,

but does not attach any further significance to the task variant symbols

in the TRANSFORMATIONS. A crucial property on which both desirability-

selection and operator-difference depend is that FEATUREs are not atomic

symbols but data structures in which variables may occur. (See pages

135-6.)

The use of variables in MOVE-OPERATORs allows many operators to

be represented as a single data structure that is only marginally larger

than the representation of any one of the operators. Not only does this

make the representation more concise, but it allows many operators to be

simultaneously analyzed in order to determine their desirability.

Feasibility-selection

Due to the way an operator is processed in GPS, it has been defined

as a function represented as a single entity, whose domain and range are

both sets of objects. A model of an operator is a degenerate case because

both its domain and range are single objects. However, a model of an

operator is still an operator according to the definition, because it is a

single entity. Although models of operators are unparsimonious in both

their memory and processing requirements, they will be used below to illus

trate some properties of better modes of representation.

Schemas. A schema operator represents a class of model operators as

a single entity. Before a schema operator can be applied to an object, the

variables in the schema must be specified. Since a schema that contains

no variables is a model, the specification of variables in a schema operator

is equivalent to selecting a member from the class of model operators

represented by the schema. Feasibility-selection requires that the model

operator selected (variable specification) must be feasible if one exists.

If an infeasible model operator were selected, GPS might still try to apply

it by attempting to reduce a difference on the object. This would be a waste

of effort if the schema contained a feasible model operator.

Feasibility-selection for FORM-OPERATORs is accomplished by matching-

the input form of the operator to the object to which the operator is being

applied and by making the necessary substitutions for variables (MATCH-

DIFF-METHOD) . However, the match can be used only because the modes of

representation of the input form and the object are the same (both are

always OBJECT-SCHEMAs).

Characteristic-lists. Characteristic-list operators like schema

operators, represent a class of model operators as a single entity. In

fact, every schema operator can be represented by a characteristic-list

operator as demonstrated in APPENDIX B. Characteristic-list operators in

GPS are MOVE-OPERATORs which do not contain variables. Since these

operators are applied to OBJECT-SCHEMAs, the match cannot be used for

feasibility-selection because their modes or representation are different.

Moreover, since there are no variables in characteristic-lists, feasibility-

selection for characteristic-list operators is of a different nature than

that for schemas.

MOVE-OPERATORs describe how the output object of the operator differs

from its input. By convention, any FEATURES of the output object that are

not specified explicitly by the TRANSFORMATIONS have the same values as

their correspondents in the input object. Hence, the input object specifies

degrees of freedom in a MOVE-OPERATOR just as the input object specifies

degrees of freedom (the values of the variables) in a FORM-OPERATOR.

Although the feasibility-selection (specification of degrees of freedom) for

MOVE-OPERATORs that do not contain variables is free, there is a correspond

ing expense in that the operator-application process for MOVE-OPERATORs is

considerably more complex than the substitution for variables in a form.

One advantage of MOVE-OPERATORs that do not contain variables is

their ability to express classes of operators as a single entity which can

only be expressed as several FORM-OPERATORs. An example is the MOVE-

OPERATOR, Rl: a,h, in Appendix B . In applying this MOVE-OPERATOR, the

feasible model operator, if one exists, will be selected. But, if

represented by the two corresponding FORM-OPERATORs, the REDUCE-METHOD

must select one to be applied. If the wrong one is selected (i.e., the

other one contains a feasible model operator) GPS may waste considerable

effort by attempting to reduce differences between the object and the

operator selected.

Characteristic-list-schemas. The use of variables in MOVE-OPERATORs

allows many MOVE-OPERATORs which do not contain variables to be expressed

as a single MOVE-OPERATOR. From the previous example, it would appear

that the use of MOVE-OPERATORs that contain variables would lead to more

efficient problem-solving because feasibility-selection can be applied to

larger classes of model operators. Unfortunately, the current feasibility-

selection process does not capitalize on the compactness of MOVE-OPERATORs

that contain variables. GPS applies a MOVE-OPERATOR by first generating

legal variable specifications (those for which the set of TESTs in VAR-DOMAIN

of the MOVE-OPERATOR are satisfied) until it finds a set of values for which

the operator is feasible or for which the difference between the operator

and the object is not too difficult. This method for applying a MOVE-OPERATOR

has two major disadvantages. First, the operator selected may not be the

easiest operator. An infeasible model operator may be selected even though

a different variable specification might have lead to the selection of a

4From this example, it might seem that the use of variables with restricted
domains in FORM-OPERATORs would yield the generality of MOVE-OPERATORs.
However, this generalization of FORM-OPERATORs would not help in the state
ment of the distributive law in Appendix B. That is, four of these general
ized FORM-OPERATORs would be required to express R7.

feasible model operator. Since all variable specifications seem to be

equally desirable (else further selections for desirability would have

occurred), a better strategy would be to apply the easiest operator first.

The other disadvantage is that the number of different variable

specifications may be large. Any specification of variables by the REDUCE-

METHOD in order to insure the desirability of the operator considerably

decreases the number of legitimate variable specifications that can be

generated in attempting to apply the operator. In the tasks discussed in

the next chapter, no case which had more than five different legitimate

variable specifications was encountered and, in most cases, only one or two

legitimate variable specifications could be generated. However, the number

of variable specifications could conceivably be much larger for other tasks.

In the best of all worlds, the variable in a MOVE-OPERATOR would be

assigned feasible values one at a time as they turned up in trying to apply

the MOVE-OPERATOR. This is the main function of the match routine in apply

ing a FORM-OPERATOR. But considerable complexity is introduced by unspecified

variables in MOVE-OPERATORs. It is difficult to determine which values of

the variables in MOVE-OPERATORs make the operator feasible. In the M-C-OPR

in Fig. 30, for example, the POST-TESTS constrain the feasible value of X

and Y even though X and Y do not appear explicitly in the POST-TESTs. In

addition, TESTs, such as

THE M AT THE LEFT is NOT-LESS THAN THE C AT THE LEFT

constrain the feasible values of both X and Y simultaneously.

Another difficulty with specifying the variables in MOVE-OPERATORs

as they turn up is the possibility of several feasible values. When variables

do not have unique values that make the operator feasible, the application of

the operator will have different results. That is, the resultant class of

objects cannot be represented by a single OBJECT-SCHEMA. In such cases, GPS

must decide which member it will work with, since it can only do one thing

at a time.

For example, in the missionaries and cannibals task when GPS attempts

the goal of applying the M-C-OPR in Fig. 30 with TO-SIDE equal to LEFT,

several different results can be produced depending on the values assigned

to the variables, X and Y. When applied to the object,

(LEFT (M 1 C 1) RIGHT (M 2 C 2 BOAT YES))

the result can be either

(LEFT (M 3 C 1 BOAT YES) RIGHT (M 0 C 2))

or

(LEFT (M 2 C 2 BOAT YES) RIGHT (M 1 C 1)).

If the only reason for applying the operator was to move the BOAT to the

LEFT bank of the river, both results would seem equally desirable, and X

and Y would have two equally desirable and feasible values.

Canonization. MOVE-OPERATORS never need to be canonized because

new MOVE-OPERATORs are never created. But, if desirability-selection

specifies several variables in a MOVE-OPERATOR, then the goal of applying

a MOVE-OPERATOR is created. A partially specified MOVE-OPERATOR is repre

sented by a data structure consisting of a variable specification and the

name of a MOVE-OPERATOR. Since new partially specified MOVE-OPERATORs are

generated during problem solving, their canonization is required. All

partially specified MOVE-OPERATORs are represented homogeneously, and the

IDENTITY-MATCH-METHOD can match them by testing if the MOVE-OPERATOR and

the values assigned to the variables are the same. Thus, the canonization

process of OBJECT-SCHEMAs can be used.

The only other data structures which must be canonized as a

result of the addition of MOVE-OPERATORS are differences generated when

a MOVE-OPERATOR is inapplicable. These differences are canonized in

precisely the same way that the differences produced as a result of

comparing an OBJECT-SCHEMA and a DESCRIBED-OBJ are canonized.

D. UNORDERED-SCHEMAS

An example of a task which can use unordered-schemas beneficially

is integration. If multiplication and addition are represented as ordered

binary functions, their associativity and commutativity must be expressed

as operators. On the other hand, multiplication and addition can be

represented as functions of an unordered set of arguments. Then the

commutativity and associativity of multiplication and addition is expressed

implicitly in the representation (provided that none of the arguments of

multiplication was the multiplication of a set of arguments and none of

the arguments of addition was the addition of a set of arguments). This

representation has problem solving implications. For example, the

J ' T E D T

and

J e ^ t dt

would appear identical if the arguments of multiplication were unordered.

But to make

J t * ^ * dt)

and

J e * (t*dt)

identical would require the application of three operators.

To illustrate the problem solving efficiency that can be obtained

by using unordered-schemas to represent unordered sets, consider the

alternate representation of an unordered set: an ordered set, represented

as a schema, and a permutation operator which permutes any two elements.

To test the identity of two unordered sets represented as schemas, the

permutation operator must be applied in an attempt to make the two schemas

identical (to within a substitution for variables). Successive application

of the permutation operator corresponds to searching the tree in Fig. 42.

This search is unnecessary if unordered-schemas are used instead of schemas

provided that the match routine can take into consideration their unordered

property. Such a match routine might have to do some search in comparing

two unordered-schemas. But if the match for unordered-schemas is only

marginally more expensive than the match for schemas, the savings will be

great because moving the permutation operator inside of the match compresses

the tree defined by the initial situation and the operators.

Testing the identity of two unordered-schemas would be rather straight

forward if they contained no variables. However, incorporating the substitu

tion for variables in a process for matching two unordered-schemas introduce

considerable complexity. To demonstrate this, consider matching the two

unordered sets,

{e U, u, v}

and

{b,c,eC}

- 147 -

FIGURE 42. The tree defined by a set and a permutation operator, P^.B),
that permutes the elements,,* and B.

- 148 -

In which u and v are variables5. Substituting b for u might seem desirable,

since it makes a pair of elements of the sets identical. But this substitu

tion would make the two sets different. The match must be sophisticated

enough to substitute c for u (and b for v) in order to recognize that the

two sets can be made identical.

Object-difference and operator-difference for unordered-schemas are

difficult because there may be several pairings of the elements of the two

sets which seem equally good. Consider the example of applying the operator,

J"eudu = e u (2)

in which u is a variable, to the object,

J t e ^ dt (3)

The operator is applied by matching the left-hand side of the equation to

the object and, if identical, using the right-hand side of the equation as

the result. Obviously, the two sets of factors cannot be made identical

because they have a different number of elements. But either the substitu-
2 „

tion of t for u or the substitution of t for u will make one pair of

elements identical. The latter is the correct substitution, but only

because the operator,
t dt = 1/2 d t 2

can be applied to (3) in order to make (2) applicable. This cannot be

easily known at the time of matching the left-hand side of (2) to (3).

5This example also demonstrates that pairing elements lexicographically
is not sufficient for expressions which contain variables.

Before GPS was given the integration task, the MATCH-DIFF-METHOD and

the IDENTITY-MATCH-METHOD were modified so that they could match unordered

sets. The modification consisted of several rules for pairing elements

before matching them. First, an attempt is made to match elements that do

not contain variables. An error in correspondence cannot be made pairing

identical elements which do not contain variables, and such a pairing might

prevent an unnecessary substitution for a variable. This modified match

requires a list of properties which is used to rank elements according to

their respective importance. This information, which is task dependent, is

given to GPS exogenously as an IPL structure because it cannot be expressed

in the external representation. After matching constant elements, other

elements are selected in the order of their importance, to be matched allowing

substitution for variables. However, if two elements in the same set are

equally important (have the same property), these elements will be matched

later. The strategy is to find a correspondence between unique, important

elements of the two sets so that the substitution for variables is made

correctly.

Finally, the remaining elements of the two sets are matched. The

differences between the two sets are the unmatched elements. The match

works strictly forward and cannot try two different substitutions for the

same variable. Consequently, in some cases, the match will not recognize

that two unordered-schemas can be made identical; but for the integration

task, this match appears to be sufficient.

In applying the operator (2) to the object (3), for example, first

the two exponential elements are matched because they are considered the most
2 ,_ , ,

important. Upon substitution of t for u they become identical. None of

the other elements can be matched, and the difference reported is that the

- 150 -

number of elements in the set

I T , dt]

is too large (SET-SIZE).

Object-comparison, operator-application, feasibility-selection,

and canonization for unordered-schemas are all satisfied by generalizing

the match, because the match is incorporated in all of them. With the

list of properties for ranking elements according to their importance, the

generalized match can draw good correspondences between the elements of two

sets even if the two sets are not identical. This together with the

addition of a few set differences, (e.g., set is too small, set is too large)

satisfies object-difference and operator-difference. The existing

desirability-selection process is applicable for unordered-schema.

E. LARGE OBJECTS

The result of an application of an operator in GPS is always a new

data structure, provided that it is not identical to some data structure

created previously. GPS is only designed to handle simple problems (i.e.,

problems that require a limited amount of search) because it is not prepared

to erase these data structures. Hence, the size of the data structures

which represent objects is important; if too large, memory will be exhausted

before even simple problems can be solved. For many tasks, this difficulty

is critical because in GPS objects represent total situations and the total

situations of some tasks are large. (There is no facility for processing

object fragments as independent data structures.)

An example of a task in which the representation of objects is too

- 151 -

large is chess or any other task which uses a chess board6, because each

object must represent an entire board situation. By slightly generalizing

the tree structure representation of OBJECT-SCHEMAs to allow any node to

have more than one super node, a chess board could be represented as an

OBJECT-SCHEMA. The TOP-NODE of an OBJECT-SCHEMA that represents a chess

board has sixty-four branches- the nodes to which these branches lead

represent the sixty-four squares of the chess board. For example, the

branch labeled SI in Fig. 43.a leads to the node which represents the square

SI in Fig. 43.b. Each square has eight branches, except for the border

squares which have fewer than eight, leading from it to the eight neighboring

squares. For example, the branch labeled FORWARD leading from the node,

which represents SI, to the node, which represents S8, in Fig. 43.a, indicates

that the square S8 is in the FORWARD direction from the square SI in Fig.

43.b. The position of the pieces on the chess board would be given by the

local description of the squares (nodes) along with any other information

peculiar to a square, such as its color.

Although the representation in Fig. 43.a is convenient for processing7,

a single chess position is very large due to the elaborate system of branches

between nodes. There are 484 branches between the nodes of Fig. 43.a. Since

the internal representation of each branch requires at least two IPL-V words,

6An example of a non-game task that uses a chess board is the problem of
placing eight queens on a chess board so that no queen can capture another
queen.

7This representation is almost identical to the one used in Baylor [2].

- 152 -

FIGURE 43. (a) is the OBJECT-SCHEMA that represents the chess board
whose squares are named in (b).

the internal representation of a single chess position would require more

than 1,000 IPL words.•

Obviously, the information represented by the system of branches

in Fig. 43.a must be expressed to the problem solver somewhere in the

specification of the task of playing chess. But since this information

does not vary from chess position to chess position, it should be represented

only once and not in the representation of every chess position generated during

problem solving. One way to avoid this duplication of information is to

represent chess positions independently of the chess board- e.g., as a list

of pairs in which one member of a pair is a square and the other member is a

piece on the square. This representation contains no information about which

pieces are on adjacent squares, etc. Before considering a particular posi

tion, GPS would put the pieces on a board such as the one in Fig. 43.a and,

after it had finished processing the position, it would remove the pieces

from the board. This scheme would require the addition of a mechanism for

"setting up" and "tearing down" chess positions.

An alternate representation for chess positions is to express the

relationships between the squares of the chess board implicitly in the names

of the squares instead of explicitly in the structure of each object. For

example, the name SI in Fig. 43.a could contain the information that the

square at the RIGHT was S2 and the square in the FORWARD direction was S8, etc.

That is, SI would be a data structure as well as the name of a square and

information peculiar to SI, e.g., S2 is at the RIGHT of SI, would be encoded

in the data structure, SI, in some convenient form. This representation

cannot be used in the current version of GPS because LOC-PROGs must be built into

the structure of all objects. Since RIGHT, FORWARD, etc., are LOC-PROG—

they correspond to the branches of tree structures—they must be in the

structure of objects regardless if the relationships between squares are

expressed in the names of squares.

F. DIFFERENCES

In GPS, all types of differences are FEATURES and a particular

difference indicates that the value of the FEATURE is incorrect. If the

value of the FEATURE is a number, the difference designates the amount by

which the number should be increased or decreased in order to alleviate

the difference; if the value of the FEATURE is a symbolic constant, the

difference designates the correct value of the FEATURE. These elementary

differences are not an adequate representation for the differences of some

tasks. That is, for some tasks, GPS's problem solving would appear aimless

because these elementary differences are not sufficient to guide the search.

We can illustrate the inadequacies of the types of differences that

are represented as FEATURES by a detailed example of how GPS should solve

simultaneous equations. Fig. 44 is an informal formulation for GPS of the

task of solving two simultaneous equations. The initial situation is the

set of the two OBJECT-SCHEMAs in Fig.44.a. The desired situation expressed

as the DESCRIBED-OBJ in Fig. 44.c represents an expression of the form Y

equals an expression which does not contain a Z. (Y and Z are considered

the independent variables of the equations.)

The operators, given in Fig. 44.b can all be represented as FORM-

OPERATORs. The «-» indicates that the form on either side can be used as the

input form and -» indicates that the form to the left is the input form. We

will assume that GPS can do algebraic simplification implicitly and that it

understands that multiplication and addition are commutative and associative.

- 155 -

(a) Initial Situation:

1. A * Y + B * Z = Y + E
2. C * Z + Y = D * Z

(b) Operators:

1. (U + V = W) ^ (U r W • V)
2. (U - V = W)«-» (U = W + v)
3. (U * V = W)<-> (U = W / v)

— 4. (U / V = W)*-» (U = W * V)
5. (U = V) -» (U - V = 0)
6. (U , U = V) -> V
7. (U * (V + W))<-» (U * V + U * W)

(c) Desired situation:

(TEX-DESCRIPTION
1. THE SYMBOL AT THE LEFT EQUALS Y .
2. THE SYMBOL EQUALS = .
3. THE SYMBOL AT X DOES NOT-EQUAL Y

X IN THE RIGHT-SUBEXPRESSION ,
SUBEXPRESSION-TESTS
THE SYMBOL DOES NOT-EQUAL Z .)

FOR-ALL

FIGURE 44. An informal formulation of solving two simultaneous equations.

Thus, GPS does not need to create GOALs to simplify expressions or to

commute two factors.

Since the initial situation is a set of objects, GPS would select

one and attempt to transform it into the desired situation. Suppose that

the first equation in Fig. 44.a were selected. The current version of GPS

would detect that the Y's and the Z in the object should be replaced by

different SYMBOLS, e.g., one of the differences detected would be

RIGHT SYMBOL should not be a Y.

According to such differences, all of the operators would appear desirable,

because they all replace SYMBOLS with other SYMBOLS. Thus, for this task,

GPS must detect types of differences which are more global than the elemen

tary types of differences which can be represented as FEATURES. Suppose

that GPS could detect differences that summarize what is wrong with the

entire object or a subexpression of the object. GPS would recognize the

difference that the first equation in Fig. 44.a contained one Z instead of

none. The only operator capable of reducing this difference is the sixth

operator in Fig. 44.b and V must stand for a subexpression which does not

contain a Z if the operator is to reduce the difference.

GPS would attempt to apply this operator by setting U equal to Z in

order to supply the first input and would look for the second input to the

operator--an OBJECT-SCHEMA of the form

- Z = V,

where V stands for some expression which does not contain a Z. To modify

the second equation in Fig. 44.a so that it could be used as the second

input to the operator, GPS would attempt to reduce the difference that the

expression to the right of*=' contains a Z.

The first six operators in Fig. 44.b are all relevant to reducing

the difference but only the fifth is applicable and GPS would produce the

new object

(C * Z) + Y - (D * Z) = 0.

Since this object has two Zs to the left of '=» instead of one, the seventh

operator would be applied to it to produce

Z * (C - D) + Y = 0,

which is still not of the form

Z = V.

The difference that the subexpression to the left of *=• is too large is

not an adequate summary of this state of affairs, because the first operator

in Fig. 44.b would seem very desirable since it can be applied to produce

Y = - Z * (C - D) .

A better difference is that the Z is in the wrong position; it should

be higher in the subexpression to the left of=1 Using this difference, GPS

would select and apply the first operator in Fig. 44.c producing

Z * (C - D) = - Y .

Detecting the same difference again, GPS would select and apply the third

operator in Fig. 44.c to produce

Z - -Y/(C - D).

The Z in the first equation in Fig. 44.a can now be replaced yielding

A * Y - B * Y / (C - D) = Y + E .

This example illustrates that GPS must have a good set of differences

to guide its search. Two types of differences were introduced that cannot

be represented in the current version of GPS: Tree structure types of

differences referred to the global properties of tree structures or subtree

structures, e.g., a tree structure contains too many occurrences of a

particular symbol. The position type of difference which cannot be

represented as a FEATURE refers to the position of a particular symbol.

Such a difference denotes where a symbol should be, relative to where it is.

In GPS-2-5, the match could detect tree structure differences between

two OBJECT-SCHEMAs, e.g.,

'•the number of Z's occurring in a tree structure
should be decreased by one."

This facility could easily be added to GPS. However, to detect these types

of differences between an OBJECT-SCHEMA and a DESCRIBED-OBJ is considerably

more complex, because their modes of representation are different, and the

desirability-selection process for MOVE-OPERATORS assumes that the types of

differences are FEATURES. By making some of the routines in GPS more

sophisticated, tree structure types of differences could be added to GPS

although there probably are some unforseen difficulties.

On the other hand, position types of differences cannot be added to

GPS without extensive modifications. The reason is that the match places

the nodes in the tree structures of the two OBJECT-SCHEMAs into correspondence.

The resulting differences which are detected are all of the form:

At a particular position in the tree structure,
certain features should have certain values.

In order to find position differences, the match must place symbols into

correspondence and compare their positions in the tree structures. For

example, in the two tree structures in Fig. 45, the match must piace the

Z's in correspondence to detect that the Z in Fig. 45.a is to the LEFT of

the LEFT of the Z in Fig. 45.b. Thus, both tree structure differences

and position differences cannot be used because of shortcomings in the

object-difference, operator-difference and desirability-selection.

G. CONCLUSION

The initial motivation for this research comes from the tasks them

selves; they could not be expressed in the internal representation of

GPS-2-5. But the majority of this research focuses on the processing

implication of several modes of representation.

In generalizing GPS, the trend appears to be toward richer representa

tions whose structures are simple enough for GPS to understand. The

structure of test-processes is too complex for GPS to understand and thus,

GPS's problem solving techniques cannot be applied to this mode of repre

sentation.

On the other hand, GPS can sufficiently understand unordered-schema

and characteristic-lists-schemas to apply its problem solving techniques to

them. There are difficulties. In going to characteristic-lists-schemas, the

types of differences were limited to FEATURES; GPS can no longer detect the

"tree structure" types of differences that GPS-2-5 detected in the logic task.

In matching two unordered-schemas, GPS cannot guarantee that they cannot be

made identical if it fails to find a match. However, GPS can sufficiently

process these modes of representation to solve the tasks in the next chapter.

Both unordered-schemas and characteristic-list-schemas are more general

representations than the schemas which were used exclusively In GPS-2-5.

Either can be used to represent classes of schemas and any schema can be

represented by an unordered-schema or a characteristic-list-schema. However,

schemas still play an important role in the internal representation of GPS.

A DESIRED-OBJ can only be compared to an OBJECT-SCHEMA and not to another

DESIRED-OBJ. Similarly a MOVE-OPERATOR can only be applied to an OBJECT-

SCHEMA and can only produce an OBJECT-SCHEMA. The reason for this dichotomy

is that the values of FEATURES are given explicitly in OBJECT-SCHEMAs,

whereas the values of FEATURES in DESCRIBED-OBJ may be given by several

constraints. Consequently, the process for evaluating a FEATURE can only

find the values of the FEATURES of OBJECT-SCHEMAs.

In moving to richer representations, GPS's basic knowledge had to be

enlarged by increasing the variety and complexity of its basic processes.

This seems to imply larger and more inefficient programs; but there is

considerable evidence to the contrary. With the addition of one complex

process, others may come practically free. The object-difference process

for DESIRED-OBJ and the operator-difference process for MOVE-OPERATORs use

much of the same apparatus. Although the operator-application process for

MOVE-OPERATORs is complex, the feasibility-selection is free. All data

structures are canonized by the same basic canonization process and the

canonization of a new type of" data structure, e.g., FEATURES and partially

specified MOVE-OPERATORs, is a trivial addition to GPS.

The processing required for richer representation may be more effi

cient. By using MOVE-OPERATORS without variables feasibility-selection can

be applied at no additional expense to larger classes of model operators

than was possible when FORM-OPERATORs were used. Similarly, the use of

variables in MOVE-OPERATORs allows the desirability-selection to be applied

to a much larger class of model operators than is possible when operators

are represented as characteristic-lists or schemas. Although the match for

unordered-schemas is considerably more expensive than the match for schemas,

the space which must be searched by GPS is exponentially smaller.

The generalization of GPS has focused on a particular group of

tasks. If other tasks had been chosen, the generalization might have

followed a quite different course. The tasks dealt with in this research

were not chosen arbitrarily. Some categories of tasks, e.g., many optimi

zation tasks, were deliberately avoided because we knew of no obvious

heuristic search formulation for them. Other categories of tasks were

avoided because of deficiencies in GPS's problem solving methods. For

example, games were avoided because GPS does not have a method for consider

ing the opponent's moves and interests in addition to its own.

The organization of GPS is particularly suitable for the addition

of new mechanisms. Its problem solving techniques are segmented into a

number of special purpose methods and general processes common to the

application of all methods. A method for working backwards (applying the

inverse operators to the desired situation and objects derived from it)

could easily be added when the desired situation is an OBJECT-SCHEMA. How

ever, it would be difficult to make this method general enough to be

applicable when the desired situation is a DESCRIBED-OBJ, since operators

are only applied to OBJECT-SCHEMAs. This example again illustrates that the

addition of new methods increases the problem solving demands, which in turn

limit the modes or representation that can be used. Hence, to keep GPS's

problem solving demands constant its methods were not augmented.

Of the tasks dealt with in this research, GPS can solve some, typified

by the tasks in the next chapter. However, others were not given to GPS

because of inadequacies in its representation. Examples of such tasks are

board puzzles, in particular, the match-stick task in Fig. 46 and the block

puzzle in Fig. 47. One difficulty, already discussed, is that the objects,

which are board situations, are too large for GPS's limited memory. However,

- 163 -

Generic form of objects: A configuration of match-sticks on a table.

Initial situation: *,

Desired situation: A configuration containing four squares that can be
obtained by moving precisely three match-sticks.

Operator: Move a match-stick from one place to another.

FIGURE 46. A match- stick task.

Generic form of objects: A configuration of the nine blocks in the box.

Initial situation:
1 2

3
4 5

3

6 7

y / V /

/ a

/••*//
8 9

Desired situation: A configuration in which block #3 is in the lower left corner.

Operator: Move any block into an adjacent vacancy; e.g.,move block #8 into the
vacancy at its left.

FIGURE 47. A block puzzle.

- 164 -

the main difficulty is that the types of differences (FEATURES) of GPS are

not adequate to guide GPS's search effectively, for most board puzzles.

The elementary types of differences used in GPS also prevent GPS

from solving other tasks such as proving trigonometric identities, proving

logic theorems, and solving simultaneous equations. Although GPS was given

a logic task using the MOVE-OPERATORs in Appendix B, it could not solve the

task because of its inadequate representation of differences. This task had

previously been solved by GPS-2-5.

This concludes the discussion of GPS. Chapter VI demonstrates GPS's

generality and ability via concrete tasks. Clearly, these tasks are a

representative, and not an exhaustive, example.

CHAPTER VI: TASKS GIVEN TO GPS

This chapter discusses eleven different tasks which were given to

GPS. The discussion of each task consists of four parts: a description

of the task; a description of the specification of the task for GPS; a

description of the way in which GPS attempts to find a solution for the

task; and a discussion of the important aspects of giving the task to GPS.

All of the tasks in this chapter were run on the CDC, G21 computer.

The IPL-V system on this machine has an "available space" of about 20K IPL

locations. On the average, 76K IPL instructions were spent on processing

a GOAL. This amounts to approximately 76 seconds per GOAL on the G21 or in

more common terms (since the G21 is a rare machine), about 17 seconds per

GOAL on an IBM 7090.

A. MISSIONARIES AND CANNIBALS TASK

The missionaries and cannibals task (described on page 1) has been

solved by GPS-2-21.

GPS Formulation

The missionaries and cannibals task has already been discussed exten

sively^, and only the details are given here. The task is formulated for

GPS in Fig. 48. TOP-GOAL is a statement of the problem. INITIAL-OBJ, shown

in tree structure form in Fig. 49, represents the situation when all of the

missionaries, all of the cannibals and the BOAT are on the LEFT bank of the

lSee pages 92 to 96 in Newell [35].

2The formulation of the M-C-OPR is described on pages 93-100;
the translation of Fig. 1 is described on pages 113-5.

R E N A M E (

L E F T = F I R S T

R I G H T * S E C O N D

)

D t C L A R E (

B O A T • A T T R I B U T E

C » A T T R I B U T E

9 - L * K E A T U R E

B - R = F E A T U R E

C - L = K F . A T U P E

C - R * . E A T U P E

D E S I R E D - O B J = O B J E C T - S C H E M A

F R O M - S I D E ' L 1 C - P R O G

F R O M - S I D E - T E S T S * V - T E S T S

I N I T I A L - - D B J * O B J E C T - S C H E M A

M « A T T R I B U T E

M - C - O P B = M O V E - O P E R A T O R

M - L » K E A T U R E

M - R a K E A T U R E

S I D E - S E T * S 6 T

T O - S I D S = L O C - P R O G

T O - S I D E - T E S T S = V - T E S T S

X * C O N S T A N T

X + Y - i X P R E S

Y • C O N S T A N T

0 . 1 , 2 - S E T * S = T

1 . 2 = S E T

Figure 48: The specification for GPS of the missionaries and cannibals task.

i

T A S K - S T R U f i T U R E S <

T O P - G O A L * (T R A N S F O R M T H E I N I T I A L - O B J I N T O T H E D E S I R E D . O B J ; >

1 N I T 1 A U - O B J * ' L E F T < M 3 C 3 B O A T Y = S)

R I G H T I H 0 C 0))

D E S I R E B - O B J - (L E F T I M 0 C 0 >

R I G H T (M 3 C 3 B O A T Y E S))

X * Y • I X * Y)

1 . 2 * I 1 2 >

0 . 1 . 2 - S E T » (0 1 2)

S I D B - S E T a (L E F T R I G H T)

F R O M - S I D E - T E S T S = (1 . T H E H O F T H E F R O M - S I D E I S N O T - L E S S - T H A N

T H E C O F T H E F R O M - S I D E .

2 . T H E M O F T H E F R O M - S I D E E Q U A L S 0 .)

T O - S I D E - T E S T S » I 1 . T H E M O F T H E T O - S I D E I S N O T - L E S S - T H A N

T H E C O F T H E T O - S I D E .

2 . T H E M O F T H E T O - S I D E E Q U A L S D .)

M - C - O P R = (G R E A T I O N - O P E R A T O R

S M O V E X M I S S I O N A R I E S A N D Y C A N N I B A L S F R O M T H E F R O M - S I D E T O

T H E T O - S I D E i

V A R - D O M A I N

1 . Y I S A C O N S T R A I N E D - H E M 9 E R O F T H E 0 . 1 . 2 - S E T ,

T H E C O N S T R A I N T I S X + Y I S I N - T H E - S E T 1 , 2 ,

2 • X I S A C O N S T R A I N E D - M E H 3 E R O F T H E 0 . 1 . 2 - S E T ,

T H E C O N S T R A I N T I S X + Y I S I N - T H E - S E T 1 , 2 ,

3 . T H E F H O M - S I D E I S A N E X C L U S I V E - M E M B E R O F T H E S I D E - S E T .

4 . T H E T O - S I D E t S A N E X C L J S I V E - M E M B E R O F T H E S I D B - S E T ,

M O V E S

1 . M O V E T H E B O A T O F T H E F R O M - S J D E T O T H E B O A T O F T H E T O - S I D E ,

2 . D E C R E A S E B Y T H E A M O U N T X T H E M A T T H E F R O M - S I D E A N D A D D

I T T O T H E M A T T H E T 3 - S I D E .

3. D E C R E A S E B Y T H E A M O U N T Y T H E C A T T H E F R O M - S I D E A N D A D D

I T T O T H E C A T T H E T 3 - S I D E .

P O S T - T E S T S

1 . A R E A N Y O F T H E F R O M - S I D E - T E S T S T R U E .

2 . A R E A N Y O F T H E T O - S I O E - T E S T S T R U E .)

B - L = < B O A T O N T H E L E F T . >

B - R s I 8 0 A T O N T H E R I G H T . >

C - L = I C O N T H E L E F T , >

C - H » < C O N T H E R I G H T , 1

M - L • I M O N T H E L E F T . i

M - R ' i M O N T H E R I G H T .)

D I F F - O R D E R I N G = ((M - R M - L C - R C - L 1

(B - R B - L))

T A B L E - 3 F - C O N N E C T I O N S = I < C O M M O N - D I F F E R E N C E M - C - O P R) >

C O M P A R E - O B J E C T S = < B A S I C - M A T C H |

B A S I C - H A T C H = (C O M P - F E A T - L I S T (M - L C - L B - L > >

O B J - A T T R I B = (M C 9 0 A T)

L 1 S T - O E - V A R = I F R O M - S I D E T O - S I D E X Y)

) E N D

- 169 -

FIGURE 49. The tree structure representation of INITIAL-OBJ.

river. M is the ATTRIBUTE whose value is the number of missionaries, and

C is the ATTRIBUTE whose value is the number of cannibals. The value, YES,

of the ATTRIBUTE, BOAT, signifies the presence of the BOAT, while the _

absence of the BOAT is indicated by the absence of a value of BOAT.

DESIRED-OBJ is the OBJECT-SCHEMA, that represents the situation when

all of the missionaries, all of the cannibals, and the BOAT are at the RIGHT

bank of the river.

The only operator in this formulation is the M-C-OPR whose application _

has the effect of moving X missionaries, Y cannibals and the BOAT from the _

FROM-SIDE to the TO-SIDE. The first two TESTs in VAR-DOMAIN require that •

both X and Y are either 0, 1, or 2 and that their sum is either 1 or 2. The ~

sum of X and Y, which represents the number of people in the BOAT, cannot "

be less than 1 because there must be someone operating the BOAT. Since the

capacity of the BOAT is two, the sum of X + Y must be no greater than two. _j

The third and fourth TESTs in VAR-DOMAIN designate that FROM-SIDE and

TO-SIDE stand for different banks of the river. The three TRANSFORMATIONS

have the effect of moving across the river the BOAT, X missionaries, and Y ']

cannibals, respectively.

The formulation assunes that in all existing objects no missionaries J

are eaten and checks this constraint before producing a new object. If

POST-TESTS are satisfied, no missionaries will be eaten in the resultant —'

OBJECT-SCHEMA, because they cannot be eaten in the BOAT, due to its limited ^

capacity. Since GPS does not understand the concept of "eating", it must be

told, explicitly, that a missionary must be present before he can be eaten J

(the second TEST in both FROM-SIDE-TESTS and TO-SIDE-TESTS). _

COMPARE-OBJECTS and BASIC-MATCH indicate that all differences are ->

observed at the TOP-NODE, and that only the ATTRIBUTES of the node at the ~1

J

LEFT are matched. Since the formulation prevents the missionaries from

being eaten, everything which is not at LEFT must be at RIGHT. If the

values of corresponding ATTRIBUTES of the RIGHT are also matched, the

differences detected would cause the same operators to be selected.

DIFF-ORDERING designates that types of differences that pertain to

the BOAT are easier than those that pertain to the missionaries or cannibals.

TABLE-OF-CONNECTIONS signifies that the M-C-OPR is relevant to reducing all

differences and does not contain any information about the desirability of

operators to reducing particular types of differences. OBJ-ATTRIB lists

the ATTRIBUTES of this task and LIST-OF-VAR lists the variables that appear

in Fig. 49.

NEW-OBJ is a criterion for selecting OBJECT-SCHEMAs from a SET of

OBJECT-SCHEMAs and does not appear in Fig. 48, because it was given to GPS

as an IPL-V structure. This criterion is used in conjunction with the

TRANSFORM-SET-METHOD (see Fig. 25). The first submethod is a SELECT GOAL-

SCHEMA whose selection criterion is NEW-OBJ in this task as well as in several

other tasks (water jug task, father and sons task). However, a different

criterion may be used. For example, the predicate calculus task uses SMALLEST

(see page 220) as the criterion.

Any OBJECT-SCHEMA that has never appeared in the statement of a

TRANSFORM GOAL fulfills the NEW-OBJ criterion. GPS attempts to generate new

GOALs (EXPANDED-TRANSFORM-METHOD) whenever it runs into trouble; e.g., enters

a loop by generating a GOAL equivalent to an old GOAL. Transforming an

OBJECT-SCHEMA that fulfills NEW-OBJ into the desired object is a new GOAL and

attempting it might yield new results.

The TRANSFORM-METHOD has been slightly generalized for this task (and

this generalized version is also used in the Bridges of Konigsberg). whenever

the MATCH-DIFF-METHOD detects more than one difference with the same

difficulty according to DIFF-ORDERING, GPS has the capability of generating

more than one REDUCE GOAL. The rationale is that since GPS has no reason

for selecting any difference in particular, it considers them all, if necess

ary. The TRANSFORM-METHOD (shown in Fig. 17) terminates on the FAILURE of

the REDUCE GOAL-SCHEMA method (fifth submethod). In the generalized version

of this method, FAILURE of the REDUCE GOAL-SCHEMA method causes GPS to

attempt to construct another REDUCE GOAL.

Behavior of GPS

Fig. 50 shows the behavior of GPS in solving the task in Fig. 48. In

attempting TOP-GOAL GPS detects that there are too many missionaries and

cannibals at the LEFT and that the BOAT should not be at the LEFT. GOAL 2 is

created in an attempt to reduce the number of cannibals at the LEFT and the

M-C-OPR with Y equal to 2 and FROM-SIDE equal to LEFT is considered relevant

to reducing this difference. GOAL 3 results in OBJECT 5, and GPS attempts

to transform the new object into the DESIRED-OBJ (GOAL 4).

Since there are still too many cannibals at the LEFT (GOAL 5), GPS

attempts to move the remaining cannibal to the RIGHT (GOAL 6). In an attempt

to bring the BOAT back to the LEFT (GOAL 7), GPS applies the M-C-OPR with

the TO-SIDE equal to LEFT (GOAL 8) and OBJECT 6 is produced. GPS moves one

cannibal across the river (GOAL 9); it does not realize that bringing the BOAT

back to the LEFT also brought a cannibal with it. Since transforming the

result of GOAL 9, which is an old object, into the DESIRED-OBJ is an old

GOAL, GPS does not attempt it but looks for something else to do.

GOAL 11 is created in an attempt to transform all of the OBJECT-SCHEMAs,

which are derived from the INITIAL-OBJ, into the DESIRED-OBJ. (OBJECT 4,

- 173 -

1 T 0 P - 1 3 » L T R A N S F O R M J N 1 T I 4 L - O B J I M T O D E S 1 R e " D - O B J (S U B G O A L OF NONE)

2 G O A . 2 R E D J C ? 1 - L O N M I T I A L - 0 3 J (S U R G O A L OF T O P - G O A L)

J 3 A « L Y M - C - O P R WITH ¥ = 3 . F R O M - s I D E • L E F T , TO I N I T I A L - O B J (S U B G O A L O F 2)
SET: X =• 0 , TO-SIDE » R I G H T

O B J E C T 51 (L E F T (M 3 C i) R I G H T (M ft C 2 B O A T YES))

2 G H L 4 T R A N S F O R M 5 I M T O D E S I R E D . 3 B J (S U B G O A L O F T O P - G O A L >

3 3 0 A L 5 R E D U C E C - L O N 5 (S U B S O A L O F 4)

4 3 0 * L ft A P P L Y M - C - O ^ R WITH Y • 1, F R O M - S I D F » LEFT, TO 5 (S U B G O A L OF 5)
SET! X = e. T O - S I D E s R I G H T

5 304L ? R F D U C E B-L O N 5 (SUBGOAl OF A)

* GOAL 9 APPLY M - C - O P R W I T H T O - S I D F » L E F T , T O 5 (S U B G O A L OF 7)
SET: T = 1 , X = 0 , F R 0 * I - S I D E * R I G H T
O B J E C T «l < L E F T (M 3 C ? BnAT Y E S > R I G H T (M n C 1)>

•j 3 0 A L 9 A P P L Y M - C - D P R W I T H Y = 1 , F R O M - S I D E T L E F T , TO 6 (S U B G O A L OF 6)
S E T : K = r, T O - S I O E » R I G H T

O B J E C T 51 (L E F T (H 3 C 1> R l G H T (M 0 C 2 B O A T YES>)

3 3 3 A L IP S E L E C T F F - C J M 4 A / C N E W - O B J O F DEsIRED-OSj (S U 3 G 0 A L OF 1 1 1

A S E L E : T E D

3 31A L 13 T R A N S F O R M * I N T O D E S I R E D - Q P J (S U B G O A L O F 11)

4 1 0 » L 14 S E D U C E C - L O N A (S U B G O A L O F 1 3)

•5 *3"<L 15 A P P L Y M - D - O P R W I T H Y • 2 . F R O M - S I D E » L E F T , T O FT (S U B G O A L (I F 14)

• J E T : < a 0 , TO-SIDE « R I G H T

O B J E C T 7t (L E F T (H 3 C 0 1 R I G H T I M 0 C 3 B O A T YES))

1 G D A L 1 4 T R A N S F O R M 7 I N T O DESlRED-OBj (S U B G O A L OF 1 3)

5 30AL 17 R E O U C E M - L O N 7 (S U B G O A L O F 1 6)

Figure 50: The performance of GPS on the missionaries and cannibals task.

•> 3D4L 1R APPLY M-C-OPR WITH X = 2'. FROM-SIDE * L E F T , TO 7 (SUBGOAL OF 17)
SET! r a n , TO-SIDE = RIGHT

7 -50AL 19 FEDU3E B-L ON 7 . Si IBGOAL OF 18)

1 GOAL ?F AP = LY M-C-OPR WITH TO-SIDE a LEFT, TO 7 (SUBGOAL OF 1.9)
SET! Y * 1, X = FL. FROM-SIDE * RIGHT
OBJECT 81 (LEFT(M 3 C 1 BOAT YES) R I Q H T (M ft C 2>>

7 304L 21 APPLY M.c-OPR WITH X = ?, FRO*-SIO£ » L E F T . TO 6 (SUBGOAL OF 18)
SET: Y = 0. TO-SIDE = RIGHT

•> j O A L 21, REDUCE C-L ON 9 (SUBGOAL OF 2?)

7 33AL 24 APPLY H-C-OPR WITH Y = 1, FROM-SIDE - LEFT, TO 9 (SUBGOAL OF 23)
SET! * = n. TO-SIDE = RIGHT

3 GOAL 25 REDUCE B - L ON 9 (SUBGOAL OF 24)

9 GOSL 2b APPLY M-C-OPR WITH TO-SIDE = LEFT; TO 9 (SUBGOAL OF 25)
SET I Y • 1. X • 1. FROM-SIDE = RIGHT
09JECT 1ft: (LEFT(M 2 C 2 BOAT YES) RIGHTfM I C 1>>

9 50»L 27 APPLY M-C-OPR WITH Y = 1, FROH-SIDE = LEFT, TO 10 (SUBGOAL OF 24)
SET! X • 1- T O - S I D E = RIGHT
OBJECT 9! (LEFT(M 1 C 1> RIGHT(M 2 C 2 BOAT YES)>

i *?3Ai, 1? SELECT FROM 4 A/C Npu-OBJ OF DEsIRED-06J (SUBGOAL OF 11)
10 SELECTED

& 3TA. 29 TRANSFORM 1 INTO DESIRED-OBJ (SUBGOAL OF 11)

* 30*L 30 RE1UCE C-L ON P. (SUBGOAL OF ?9)

5 :-0*L 31 A PPL Y M-;-OPR WITH Y * 1, FROM-SIDE « LEFT. TO A (SUBGOAL OF. 30)
SET! X = (I, TO-SIDE . RIGHT
OBJECT 7! (LEFT(M 3 C C> RIGHT<M O C 3 BOAT YES))

S ~DAL 1? ^tLETT FROM 4 A/C NFW-OBJ OF DESIRED-OBJ (SUBGOAL OF 11)
10 SELECTED

5 3DA.. 31 TRANSFORM 10 INTO OESIRED-06J (SUBGOAL OF 11)

- 175 -

i iO' L PEnUCE C-L ON 1 0 (SUBGOAL OF 33)

•> :-iO*L 3"> APPLY M-;-OP» WITH V = ?. FfiOM-SIDE » LEFT. TO 10
SET: K = ?, TO-SIDE « SIGHT

(SUBGOAL OF 34)

• iO'L 3S REnLirE M-L ON 10 (SUBGOAL OF 33)

5 "OAL 37 APPLY M-C-OPR WJTH * A P. FROM-SIDE * LEFT, TO 10
SET: r = fi, T3-SIDE = RIGHT

1 R J E C T 1 1 : (LPFTIM 0 C 2) R I G H T I M 3 C 1 R O A T VPS)1

G'AL 3? TRANSFORM 11 INTO DESIRED-OqJ (SUBGOAL OF 33)

5 -;OfL J' REnijrt C-L DM H (SUBGOAL OF 38)

(SUBGOAL OF 36)

f 1 0 4 L 41 APPLY M - C - p P R WITH Y = 2'. FROM-SIDE = LFFT. TO 11
SET! X = 0 , TO-SIDE = RIGHT

(SUBGOAL OF 39)

7 U J L 41 PEDUJE B-L ON 11 (SUBGOAL OF 40)

1 GOAL 4? A P 3 L Y M-C-OPR WITH To-SIOE - L E F T , TO 11
SET: Y = 1, X = 0, FROM-SIDE = RIGHT
OBJECT 1 2 ! (LEFT < M 0 C 3 ROAT YES) RIGHTtM 3 C 0)1

(SUBGOAL OF 41)

7 "0 A _ 4} APPLY M-C-OPR WITH Y • 2. FROM-SIDE - LFFT. TO 12
SET: X s I) , TO-SIDE - RIGHT

OBJECT 1 3 : (LEFT(M 0 C 1) RIGHT(M 3 C ? BOAT YES))

•j GTAL 4< TRANSFORM 13 INTO DESIRED-OBJ (SUBGOAL OF 38)

•i 1 0 4 ^ 45 REDUCE C-L ON 1.3 (SUBGOAL OF 44)

(SUBGOAL OF 40>

1 4<, APPLY M-C-Oe* WITH Y = 1, FROM.SIDE « LFFT, TO 13
SET! x = 0, TO-SIOE = RIGHT

(SUBGOAL OF 45)

* GOAL 47 REDUCE B-L ON 13 (SUBGOAL OF 461

<3 GOAL 46 APPLY M.C-OPR WITH TO-SIDE I LEFT I TO 13
SEl! Y = 1. Y = 0, FROM-SIDE = RIGHT
OBJECT 1 4 : (LFFT<H 0 C 2 ROAT YES 1 R[GHT(M 3 C 1)1

(SUBGOAL OF 47)

5 PIOAL <\<r A P S L Y W-C-OPP WITH Y = 1. FROM-SIDE = LEFT, TO 14 (SUBGOAL OF 46)

- 176 -

SET: x = p, TO-SIDE = RIGHT
OBJECT 1 3 : (LEFT t M 0 C 1) PIGHT(M 3 C ? ROtT YFS>)

3 "0*L 1? SELECT FFOM 4 A/C Ngu-OBJ OF DEsIRED-08J (SUBGOAL OF 11)
14 SELECTED

1 31AL 5 1 TR A N SFC PM 12 [MTO DESIRED-OBJ (SURGOAL OF 11)

1 j O * l 5? REnUCE C-L O N 12 (SUBGOAL OF 51>

3 SOIL 13 S = L E C T FPOM 4 A/C N E W - O B J OF DEsIRED-OBJ (SUBGOAL OF 11)
14 SELECTED

•'1 31A. 51 TRANSFORM 14 INTO DESIRED-OBJ (SUBGOAL OF 11)

* 30* L 5 5 F1E1UOE C-L ON 54 (SUBGOAl OF 54)

5 30tL 5 * A P P L Y M---OPP WITH Y = ?, FROM-SIDE * L E F T , TO 14 (SUBGOAL OF 5 5)

SET: X = fl, TO-SIDE = RIGHT

OBJECT 15! (L E F T (M D C 0> R I G H T (H 3 C 3 BOAT YFS >)

1 G3AL 5 7 TRANSFORM 15 INTO PESIPED-ORJ (SUBGOAL OF 54)
SUCCESS

which is the SET of all OBJECT-SCHEMAs derived from the INITIAL-OBJ, is

generated internally by GPS). GOAL 13 is created because OBJECT 6 has

never appeared in a TRANSFORM GOAL. Since there are too many cannibals

at the LEFT in OBJECT 6 (GOAL 14), two are moved across the river (GOAL

15, OBJECT 7).

Everything goes smoothly until GOAL 27, which results in an old

object, at which point GPS generates a GOAL identical to GOAL 22. GPS

does not reattempt GOAL 22 but generates a new GOAL (GOAL 29) by selecting

a NEW-OBJ (OBJECT 8). Attempting GOAL 29 quickly leads to the old object,

OBJECT 7 (GOAL 31) and the old GOAL, GOAL 16.

GOAL 33 is generated by selecting another NEW-OBJ and GPS does not

run into tiouble until GOAL 49 which results in an old object. Again a new

GOAL is generated by selecting a NEW-OBJ. GOAL 52 is abandoned because

attempting it creates a GOAL identical to GOAL 43. The generation of GOAL 54

quickly leads to success.

Discussion

It is instructive to compare the specification of the missionaries
3

and cannibals task in Fig. 48 with its specification for GPS-2-2 . The

latter contains information about the nature of operators which the current

GPS discovers for itself. GPS-2-2 was given ten operators: Move one

missionary from left to right; move two missionaries from left to right; move

one missionary and one cannibal from left to right, etc. The desirability

of these operators for reducing the various types of differences was given

to GPS-2-2 exogenously in the TABLE-OF-CONNECTIONS. In Fig. 48 there is

only a single operator. In applying this operator, GPS specifies the variables

so that the operator performs a desirable function.

3See pages 92 to 96 in Newell [35].

GPS-2-2 was given a desirability filter for operators. This filter

prevented GPS-2-2 from attempting to move more missionaries and cannibals

across the river than there were on the side from which they were being

moved. Such a separate filter is unnecessary in GPS because GPS never

considers applying such an operator. Each operator in the GPS-2-2 formula

tion consisted of an IPL routine with its parameters (described on pages

30-3). The operator filter was also encoded in IPL. Not only is it tedious

to construct IPL routines but the construction of these routines required

some knowledge of the internal structure of GPS. The M-C-OPR in Fig. 48

contains no information about the internal structure of GPS.

B. INTEGRATION

This task is analogous to that faced by an engineer who wants to

integrate an expression symbolically. If the expression is at all complex,

the engineer will probably use an integration table; otherwise, he will use

an elementary integral form which he has memorized. Although all of these

forms can be derived either by limiting procedures or from previously

derived forms, it is impractical for the engineer or GPS to do so.

GPS Formulation

Only the details of integration are described here because this task

has already been discussed extensively. Fig. 51 is the GPS formulation of

the task of integrating EXPRESSION-1, shown in tree structure form in Fig. 52,

which represents the integral,

•• t 2

TWO is used instead of *2* because TWO is a symbolic CONSTANT and not a

number (IPL data term). By convention a value of SYMBOL cannot be a number.

R E N A M E (

LEFT = FIRST

RIGHT « SELUNS

)

D E C L A R E (

C O S = JMA^Y-LDNNfetTlVt

D • UVART-LUNVECT1Y6

DESIfttjJ-OSj = DeSCRIbEU-OBJ

E X P a N-ART-CONNEC1IVfc

INTEGRAL = UNARY.CONNECT!WE

L O G * uNA*Y-COS*NfcLT)YE

S I N « UNASY-LIONrtECTIVfc

S Y M B O L = A T T R I B U T E

S Y M - D I F F i FbATURt

- * UNARY-CONNECTIVE

• • N-ARY-COhNfcLTIVE

+ • N-ARY-LONNcCriVfc

)

L I S T (

ExPRESSIOV-1 * < THE INTEGRAL OF I T • (fc~ E X P < T E X P T W O)) • 0 T))

INTEGRATE • I 1 . I The I N T E G R A L O f I I U E X P N) • D I I) Y I E L O S

((U EXP < N + ONE)) • ((N • O N E) EXP - O N E >)) ,

2. I 1Mb INTEGRAL OF ((U E X P - ONE) • D U > Y I E L D S

LOG U > ,

3. (THfc INTEGRAL Of I S I N U t I) I) I YIELDS • C O S U) >

A. I THe INTEGRAL OF I CUS U • 0 U > YIELDS S I N U) •

5. I THh INTEGRAL OF (U • D U) YIELDS ((<J E X P T W O) •

2
Figure 51: The specification for GPS of the task of integrating Jte* dt.

< ThU EX^ - ONE) I) »

6. t Tht INltGHAL 0-" I I E EKP U I • 0 U I YIELDS

(E CXP ij) I ,

7 . < lHe INltGHAL OF ((F . (5) » H U I YIELDS (THE INTEGRAL

OF < F • 0 U > + THE 1'JTElifiAL OK (l> * ii U 1 1) 1

DlFFfcRfHIlATt • l 1, (I SIN J * 0 U > YIELDS - J COS U > ,

I (COS J » 0 U I YIELDS U SIN U) .

J, (< o * U U) YIELDS < (Twg EXP - QN£ I •

U (U E X ' TWO) > > •

4, ((('j tXP - UNfc) * D U > YIELDS li LOG li I)

E x P R E S S l O W i < THE INTEGRAL Of I (I I SIN (C * T] EXP TWO > *

COS (C • T I) * (T EXP - QNE > > • D T) 1

)

TASK-STRUCTU^fcB (

TOP-GOaL * i TRA:-j5F0km EXPRESS 1ON-1 INTO THE UkSIHED-QUJ . 1

DESIHti)-03J = < SUbtXPRESSION-lESTS

Tit bYHBDL DQfcS NJl"EQUAL 1 NTtGSAL . i

SYH-UlfF « < SYMBOL)

TABLt-OF-:uMN = (JTIUNS = (i . (SEJ.-S.Ue DlELEBiaT-lAIE i

i. (SYM-JIFF INTEGRATE) >

DlFF-Or^OEMl^i* = (1. SYK-OIFF

2. btT-SJZfc)

LIST-OI--OPH = I INTEGRATE 0 IFf CRE MT I Alls >

LIST-Df-VA* = (h S U N)

)

END

- 181 -

FIGURE 52. The tree structure representation of EXPRESSION-1. The symbols
at the nodes are values of the ATTRIBUTE, SYMBOL of the node.

The only numbers used are integers. Fractions are represented by the use of

EXP. For instance, 2/3 is represented asTWO * (THREE EXP - ONE). EXPRESSION-1

and the operators of this task are translated as a linear list of symbols

(LIST mode) after translation. The DESIRED-OBJ represents an expression

which does not contain an 'J 1, i.e., at every node the value of the ATTRIBUTE,

SYMBOL, is not INTEGRAL. TOP-GOAL is the statement that the problem is to

remove all occurrences of INTEGRAL from EXPRESSION-1.

In this task there are only two operators--INTEGRATE and DIFFERENTIATE-¬

both of which are a SET of FORM-OPERATORs separated by commas. INTEGRATE

represents an integral table, since each of the FORM-OPERATORs which it

contains is a standard integral form. For example, the first FORM-OPERATOR

in INTEGRATE represents the integral form,

r- n j n+1 u du = u
n+1

Similarly, DIFFERENTIATE represents a table of standard derivatives.

In addition to these two explicit operators, there are several opera

tors given to GPS as IPL structures which will be discussed in detail later.

These operators, listed below, can be applied implicitly; i.e., without

creating special GOALs to apply them:

a. commutativity and associativity of addition
b. commutativity and associativity of multiplication
c. J c f (u) du = c J f (u) du
d. d (c f(u)) = c d (f(u))
e. d (c + f(u)) = d (f(u))
f. u = v implies that wu = wv
g. numeric simplification: u * 0 = 0 , u * 1 = u,

u + 0 = 0, u EXP 0 = 1 , and integer arithmetic.

There are two types of differences in this task—SYM-DIFF and SET-SIZE.

SYM-DIFF indicates that the value of SYMBOL of the node where the difference

was detected is incorrect. Since this type of difference is detected when

an OBJECT-SCHEMA containing the SYMBOL, INTEGRAL, is compared to DESIRED-OBJ,

the TABLE-OF-CONNECTIONS indicates that INTEGRATE should be used to reduce

SYM-DIFF. SYM-DIFF could arise in other situations in which INTEGRATE would

not be a good operator to apply; however, this formulation is sufficient for

the integration tasks considered.

The other type of difference, SET-SIZE, is not a FEATURE and its role

will be discussed later. For the tasks considered, DIFFERENTIATE should be

applied when SET-SIZE is detected. DIFF-ORDERING designates that SYM-DIFF

is the more difficult type of difference, because the main GOAL of integration

is to remove all occurrences of INTEGRAL in an OBJECT-SCHEMA.

LIST-OF-OPR is a list of those operators which must be converted into

their internal representation after translation. This conversion process

assigns print names to each FORM-OPERATOR in INTEGRATE and DIFFERENTIATE.

Fig. 53 gives names which were assigned. For example, the top-most integral

form in Fig. 53 was assigned the name

SIMILARITY, which was given to GPS as an IPL structure, is a selection

criterion used in SELECT type of GOALs and is a definition of the similarity

of two OBJECT-SCHEMAs. It is a list of properties, ranked in order of their

importance, that an OBJECT-SCHEMA might contain. All of the properties are

properties of a SET of factors which contain a derivative, e.g., D T. In

the order of their importance the properties are:

a. contains a factor whose SYMBOL is +;
b. contains a factor whose SYMBOL is LOG;
c. contains a factor whose SYMBOL is EXP and

whose first argument is the same as its
correspondent in the criterion OBJECT-SCHEMA,
and whose second argument is a function of
the variable of integration.

IS DERIVATION LIST D-H (EXPRESSION-1)

I U N T E S T A L U U E X 3 HI • D III YIELDS ((L' EXP IN • ONE!) * U N * ONE) EXP -ONE)))

? (IN TEG^AL((J E X S O N E) » D U > YIELDS L03 J>

3 (IN TE31AL(S1N J • D U) YIELDS -COS J)

4 I IN TE39AL(COS J • D U) YIELDS SIN U>

5 <IN TEG9AL <U * D U) YIELDS C(U EXP TWO) » (TWO EXP -ONE)))

<, < INTEGRAL)(E EX» U) « D U> YIELDS (e EXP J*)

7 U N T E G ^ A L U F • 3) » D u> YIELDS (IN FEGRAL (F * D U) • I NTEGRAL(S • D U)>>

4 ((SIN J • D U) YIE.DS -D COS U)

13 ((COS J • D J) YIELDS 0 SIN U>

II ((J > D ill YIELDS K T W O EX? -ONE) • D(J =XP TWO) I)

12 (((U stxP -ONE) • D O) YIELDS D LOG U>

335426

349B38

356730

362479

366046

377697

385537

397877

403310

408546

417861

424422

Figure 53: The print-name assignment Of the FORM-OPERATORs in
DIFFERENTIATE and INTEGRATE.

J

d. contains a factor whose SYMBOL is EXP and
whose second argument is the same as its
correspondent in the criterion OBJECT-SCHEMA,
and whose second argument is a function of
the variable of integration.

e. contains a factor whose SYMBOL is SIN;
f. contains a factor whose SYMBOL is COS;
g. contains none of the preceding properties.

4

Although this definition of similarity might seem rather strange , its

usefulness is clarified by Fig. 54 and Fig. 55.

Behavior of GPS

Fig. 54 shows the behavior exhibited by GPS in integrating EXPRESSION-1

as formulated in Fig. 51. In attempting TOP-GOAL GPS notices that the SYMBOL

at the TOP-NODE of EXPRESSION-1 is INTEGRAL and it creates GOAL 2 to change
the value of SYMBOL, According to TABLE-OF-CONNECTIONS, INTEGRATE is a

desirable operator and GOAL 3 is created.

Since INTEGRATE is a SET of FORM-OPERATORs, GOAL 4 is created to select

one whose input form is similar to EXPRESSION-1. GPS selected OPERATOR 6

(see Fig. 53) because it, like EXPRESSION-1, contains an E raised to a power

which is a function of the variable of integration. In applying OPERATOR 6

(GOAL 5) GPS substitutes T EXP TWO for U, which changes OPERATOR 6 to
2 2
dt = e ,

and notices that it cannot be applied directly to EXPRESSION-1 because there

are too many factors in the SET of factors which is the argument of INTEGRAL

in EXPRESSION 1. Since T and D T are unmatched factors (have no correspondents

in OPERATOR 6), GPS creates OBJECT 17 and attempts to reduce the number of

4Analogous to SIMILARITY is the classification of integral forms in an
integral table, e.g., logarithmic forms, exponential forms, etc.

- 186 -

1 T 0 P - G 3 U TRANSFORM EXPRESSION-l INTO DtSlRED-OBJ (SUBG3A. OF NONE>

2 GO<>l- 2 REDJCE SYM-DIFF ON E X P R E S S I O N - 1 (SUBGOAL OF TOP-GOAL'

3 33*L -5 AOpLY INTEGRATE TO E X P R b S S l O N - 1 (SUBGOAL OF ?>

« j Q A L 4 SELECT FrtOM INTEGRATE A/C SIMILARITY OF E X P R E S S l O N - 1 (SUdGOAL OF 3>
4 SELECTED

A JQ*L 5 APPLY 6 TO E X P R E S S I O N - 1 (SUBGOAL OF 31

•> GOAL 6 REDUCE S E T - S R E ON LEFT E X P R E S S I O N - 1 (SuSGOAL OF 5)
OBJECT 17J (T # D T)

6 GOAL 7 APPLY DIFFERENTIATE TO 1 7 (SUBGOAL OF 6>

7 UOAL B SELECT FRO* DI Ff ERENTI ATE &./Z SIMILARITY Of 1 7 (SUBGOAL OF 7)
tl SELECTED

7 3 0 A L 9 APPLY 1 1 TO 1 7 (SUBGOAL OF 7)
OBJECT 1 9 . ((TWO EXP -ONE) » D(T EXP TWO))
OBJECT 2 0 ! 1 N T E G R A L H E EXP (T EXP TWO)) • D < T EXP TWO))

•5 GOAL 1 1) APPLY 6 TO 2 0 (SUBGOAL OF 5)
OBJECT 2 1 ! ((E EXP (T EXP TWO)) * (TWO EXP -ONE))

2 GiAL 1 1 TRANSFORM 2 1 INTO UESIRED-OBJ (SUBGOAL OF TOP-GOAL>

SUCCESS

Figure 54: The performance of GPS on the task of integrating Jte*

- 187 -

1 T 0 P - G 3 * L TRANSFORM E X i - k E Ss> ION-P INTO O t S M E D - D B J (SUBGOA. O F NONE'

2 ' S O * . I 3 R = DJCE S Y H - l M F h ON t- XFRE S S I O N - 2 (SUBGOAL OF TOP-GOAL>

3 3 JA L A A D P L Y INTtGHATe TO t: XPRESS I O N - 2 (SUBGOAL OF 3>

4 GOAL 5 SELFCT FROM M T E biR ATE A/C SIMILARITY OF EXPRESSION-P (SUBGOAL OF 4)
7 bcLtCTfcD

4 C-.0AL 6 A P P L Y I T O SXPRESSION-2 (SU3G0AL OF 4)
OBJECT 2 0 ! 11NTEGRAL((SIN(C • T) EXP TWO! » D T * COStC • T > > • I N T E S H A L K T EXP

-ONE) • I) T))

2 GO M 7 TRANSFORM go INTO DfcSIRED-OdJ (SjBGOAL OF T0P-3DAL>

3 3 j A L 3 REDUCE S Y M - D l F h QN LEFT 20 (5U9G0AL OF 7)

4 G O A . 9 APPLY INTEGRATE TD LEFT 20 (SUBGOAL OF B)

5 GOAL in SELECT FROM INTEGRATE A/C SIMILARITY OF LEFT 20 (SUBGQAL OF 9)
7 StLECItD

5 G3AL 11 A P P L Y 1 TU LfcFT 20 (SUB304L OF 9)

b SOAL 1? REDUCE sET-SIZE O N LEFT LEFT 20 (SUB30AL OF 11)
OojtCT 2 1 : iCOSIC t T) • D T)

7 30AL 13 APPLY DIFFERENTIATE TJ 21 (SUBGOAL 0" 12) .

3 1 1 0 4 1 1A SELECT FROM DIFFERENTIATE A/C SIMILARITY OF 21 (SUBGOAL DF 13)
13 SELECTED

1 GOAL 15 APPLY 1C TO 21 (SU3G0AL OF 13)
OrfJeCT i i i ID SINtC * T) • (C EXP -ONE))
OdJeUf 2 4 : 1 INTEGRAL!(SIN(C * T) EXP TWO) • D SIN(C • T) * (C EXP -ONE)) + INTEGRAL

(if Exp - O N E) • D T))

Figure 55: The performance of GPS on the task of integrating
/(sin 2 (ct) cos(ct) + t"1) dt.

http://6bL.EC

6 30AL 16 APPLY 1 TO LEFT a* (SJ830AL OF 11)
OBJECT 25i U N T E G R A L U T EXP O N E) • D T > + ((SIN(C • T) E X P THREE) # (THREE EXP

•ONE) • IC EXP O N E)) I

3 jCJAL 17 TRANSFORM 25 INTO OESlRED-OBJ (SUBGOAL OF 7)

4 SQA. 13 REDUCE SYM-UIFF ON LEFT 25 (SUBGOAL OF 17)

5 GOAL 19 APPLY INTEGRATE TO LtFT 25 (SUBGOAL UF 18)

6 30AL 2n SELECT FROM INTEGRATE A/C SIMILARITY OF LEFT 25 (SUBGOAL OF 19)
2 SELECTED

ft 30AL 21 APPLY 2 To LEFT 25 (SJB30AL OF 19)
OBJECT 26: (LOG T * ((SIN(C * T) ExP THREE) » (THREE EXP -ONE) * (C EXP -ONE))

)

A 30«L 22 TRANSFORM 2b INTO DfcSIRtD-OBJ (SUBGOAL OF 17)

SUCCESS

factors in OBJECT 17.

Since DIFFERENTIATE has the capability of reducing the number of

factors in a SET of factors, GOAL 7 is created. GPS does not attempt to

reduce the number of factors in EXPRESSION-1, because the exponential factor

might be eliminated. The result of GOAL 8 is OPERATOR 11 (see Fig. 3),

because the input forms of each of the other FORM-OPERATORs in DIFFERENTIATE

are more complex than OBJECT 17. That is, they contain a factor which is

a function of the variable of integration; e.g., cos u, in OPERATOR 10 or

u" 1 in OPERATOR 12. Operator 11 is successfully applied to OBJECT 17

(GOAL 11), which results in OBJECT 19. OBJECT 19 is substituted for 'T * DT'

in EXPRESSION-1 (OBJECT 20) because OBJECT 19 is derived from OBJECT 17.

In reattempting GOAL 5, OBJECT 21 is produced by applying 6 to

OBJECT 20 (GOAL 10). GOAL 11 and, thus, TOP-GOAL are successful because

there is no INTEGRAL in OBJECT 21.

Fig. 55 is the behavior of GPS when given the task of integrating

EXPRESSION-2:

j*(sin2(ct) cos (ct) + t"1) dt

Fig. 51 is the formulation of the task for GPS except that EXPRESSION-1 is

replaced by EXFRESSION-2 in TOP-GOAL. The assignment of names in Fig. 53

is the same for this task.

Discussion

It might seem that most of the problem solving in this task is done

by implicit application of the operators, listed on page 182, rather than

by the explicit application of DIFFERENTIATE and INTEGRATE. Indeed, to

integrate

J' 4* (cos (2*t) * dt)

requires the implicit application of at least five operators in addition to

the explicit application

J'cos u * du = sin u

in order to produce the expression

2*sin(2*t).

If all of the operators were used explicitly, a tree would have to be searched

to a depth of six in order to find the solution to this simple problem.

GPS's formulation of integration is quite similar to the one used by

SAINT (Slagle [59]), a program which is rather proficient at symbolic integra

tion. SAINT can apply "algorithmlike transformations" whenever necessary

without creating special goals for applying them. These "algorithmlike trans

formations" include all of the operators used implicitly by GPS plus many

others such as OPERATOR 9 in Fig. 53. Hence, both SAINT and GPS would integrate

J'4* (cos (2*t) * dt)

in a single step by recognizing that it is a substitution instance of

J cos u * du = sin u.

In addition to the "algorithmlike transformations", SAINT can apply

"heuristic transformations" which it uses in much the same way that GPS uses

the operators, DIFFERENTIATE and INTEGRATE. Consider the example of integrat

ing EXPRESSION-1 in Fig. 51. SAINT notices that integral is not of "standard

form" and selects a "heuristic transformation" relevant to reducing this

difficulty. The particular "heuristic transformation" selected is: Let u

equal a nonconstant, nonlinear subexpression of the integrand. Although

Slagle thought that, using this "heuristic transformation", SAINT would

substitute u = t2, SAINT actually makes the substitution u = et . Either of

these substitutions reduces the integral to "standard form" and the task is

solved.
2

The substitution, u = t , performs the same function performed by

applying OPERATOR 11 in Fig. 53 since both reduce EXPRESSION-1 to the standard

integral form, j'e11 du. However, the "heuristic transformations" of SAINT are

more general than the operators of GPS because each "heuristic-transformation"

corresponds to many operators. This is a non-trivial difference in the two

formulations,

The operators that GPS uses implicitly have two outstanding qualities:

They are relatively simple compared with the operators in Fig. 53 and it is

obvious when they should be applied. For example, in GOAL 15 in Fig. 55, it

is obvious that
d(c t) = cdt

must be used after C * T has been substituted for U.

The associativity and commutativity of addition and multiplication

is implicit in the representation. (See section D of Chapter V.) Multipli

cation and addition are represented as a function of an arbitrary number of

arguments, and are represented as an unordered set. In matching two

unordered sets, GPS pairs the elements so that the difference between the

two sets will be small. Even though in Fig. 54 and in Fig. 55 the elements

in unordered sets always appear in the correct order, GPS pairs the elements

without any consideration to their order5.

5In listing the elements of a set, they must be listed in some order. But
the set can be considered unordered if no significance is attached to the
order in which the elements are listed.

The commutative match, used in this task, pairs elements according to

their "importance" (see pages 145-50). The most important element is the

one which best fulfills the criterion, SIMIIARITY (see pages 183-5). How

ever, a SELECT GOAL is not constructed to select the most important element;

the commutative match uses this criterion in a special way.

All newly generated OBJECT-SCHEMAs are processed by an IPL-V routine

that does numeric simplification and removes unnecessary parentheses.

Fig. 56.a is an example of an OBJECT-SCHEMA with unnecessary parentheses,

which are removed in the equivalent OBJECT-SCHEMA in Fig. 56.b.

In some cases, two SETs that contain a different number of elements

are matched. This fact is recognized by the match and a difference whose

type is SET-SIZE is reported. (This is the only type of difference which

is not a FEATURE and it is task independent.) The value of the difference

is the unmatched elements of the SETs. Hence, it is necessary to consider

only a subset of a SET. An example is GOAL 6 in Fig. 54. Consequently,

the REDUCE-METHOD was generalized so that it could create a new object that

consisted of a subset of a SET. When a difference is reduced on such an

object, the REDUCE-METHOD substitutes the result for the subset in the SET.

For example, in Fig. 54 OBJECT 17 is a subset of the set of factors in

EXPRESSION-1. OBJECT 19 is derived from OBJECT 17 in an attempt to achieve

GOAL 6 and is substituted in EXPRESSION-1, which results in OBJECT 20.

All of the other operators that are applied implicitly are given to

GPS as inmediate operators and are applied by the MATCH-DIFF-METHOD. Each

of these is an IPL-V routine.

An alternative representation of the operators of this task is to

represent them individually, instead of grouping them into two SETs of

operators. Using such a representation, GPS would not select one whose input

- 1 9 3 -

FIGURE 56. (a) is the tree structure representation of (u * (v * w)) and
(b) is the tree structure representation of (u * v * w) .

- 194 -

form was similar to an object but would try them in the order in which they

appeared in the TABLE-OF-CONNECTIONS. This, of course, gives GPS less

selectivity than the formulation in Fig. 51, particularly if the number of

operators were increased.

It seems reasonable to group all integral forms together since they

have the common function of removing an 'J 1. And since there are a consider

able number of integral forms and many more could be added, it seems reason

able to attempt to apply them in the order in which they are most likely to

be applicable. Selecting the operators whose input forms are most similar

to the object to which they are applied is synonomous with selecting the

operator which seems to be most feasible to apply. Currently, the REDUCE-

METHOD only selects desirable operators and does not evaluate them according

to their feasibility. Perhaps the reduce method should also select operators

which seem to be feasible as well as desirable6.

Certain algebraic operators, such as

u*u = u 2

are not included in this formulation of integration. These would certainly

be included in a more complete formulation. Some of the operators in Fig. 53

are equivalent. For example, OPERATOR 3 is the integral form of OPERATOR 8.

Some operators are special cases of others, e.g., OPERATOR 5 is a special

case of OPERATOR 1. A better formulation of the task would not have such

redundancies.

6This is also proposed on page 181 in Newell, et al [29].

C. TOWER OF HANOI

In the Tower of Hanoi, which is a classical puzzle, there are three

pegs and a number of disks, each of whose diameter is different from all

of the others. Initially, all of the disks are stacked on the first peg

in order of descending size, as illustrated in Fig. 57. The problem is to

discover a sequence of moves which will transfer all of the disks to the

third peg. Each move consists of removing the top disk on any peg and

placing it on top of the disks on another peg, but never placing a disk on

top of one smaller than itself.

GPS Formulation

A presentation of the four disk version of the Tower of Hanoi to GPS

is given in Fig. 58. TOP-GOAL is the statement that the problem is to

produce the DESIRED-OBJ from the INITIAL-OBJ, which represents the situation

when all of the disks are on the first peg (PEG-1). (is ignored by the

translator.) INITIAL-OBJ is an OBJECT-SCHEMA and is illustrated as a tree

structure in Fig. 59. The only node with a local description is PEG-1.

(All of the ATTRIBUTES of the other nodes are UNDEFINED.) The presence of

a disk on a peg is indicated by the value, YES, of the disk (which is an

ATTRIBUTE) at the node which represents the peg. The absence of a disk on a

peg is indicated by the ATTRIBUTE corresponding to the disk being UNDEFINED

at the node which represents the peg. Disks are the only ATTRIBUTES in this

task (OBJ-ATTRIB). The DESIRED-OBJ is an OBJECT-SCHEMA that represents the

situation when all of the disks are on PEG-3.

The only operator in this task is MOVE-DISK which moves a disk from

one peg to another peg, provided that it is legitimate. The operator, MOVE-

DISK, contains four free variables:

-196 -

FIGURE 57. A "front view" of the initial situation of the Tower of Hanoi.

DISK-2 YES
DISK-3 YES
DISK-4 YES

FIGURE 59. The tree structure representation of the INITIAL-OBJ in the
Tower of Hanoi.

RENAME <

PEG-1 » FIHST

PEG-2 a SECOND

PES-3 • THIRL

)

DECLARE <

DISK = ATTHlbJTE

_ DISKS = SEl

DISK-1 i ATTHlflUTt

DlSK-2 = ATTHlBOTt

DISK-3 = ATTH1 UUTt

D1SK-4 = ATTHlBUTt

Dl.l = FEATUHE

Dl.2 = FEATURE

D1.3 = FEATURE

r~ D2.1 » FEA1UHE

D?•2 = FEAIUhE

D2.3 * FEATUHE

D3.1 = FEAIUhE

D3.2 * FEATUHE

^ _ D3.3 * FEAIUHE

D4.1 i FEATURE

D4.2 - FEATUHE

D4.3 = FEATUHE

DESIREU-03J « QdJtCT-SCHfcMA

FROM-PEG •= LUC-PRUG

INITIAL-09J = OdJfcCT-SCHEMA

Figure 58: The specification for GPS of the Tower of Hanoi.

- 198 -

MOVt-iUSK = MOVE-OPEKA I Uhi

NONt' = SET

OTHER-rEG = uOi,-p*ji>

PEGS ; S t I

SMALLtn = ATMlrH. l t

THt-K 1 . (5 1 = a : f

THE-K IhS l-i - ZKT

THfc-r lwSl -3 = acT

m - P t j * _ u . . ;

X i A I I RI i u T t

)

TASK-STNJ^rj^tS (

T O P - G j a l = < MArsFOrti THE I N I N A . - O t f j Ihlu Thfc UtSIHfc'J-UBJ I

IMTIAL-D3J = i K t b - i (OISK-1 YE3 CiSK-2 Y E S l M S K - J v t S DISK.* YES >

pta-<e < >

r-fc3-S ())

O B J - A I M I i = (UjaK-1 J I S i \ - 2 UISK-3 i)IbK-4)

D E S I P s u - 0 3 d - I P t B - 1 <)

r - t n - i t)

P t a - i (DISK-1 YES O U H - 2 T ES DIS- \ -3 vbS QI S K - 4 YES > t

MOVt-JiiK - <. CHtfT IiH-)PtHATJH

1 . THE TU-Ptli l a AN ExClUSlVc-Mtn- i t* Of THE PEGS .

2 . TMc f KOM-PEG IS AM ExCl.u-3 J Vt-.-ltiidsR Of THE PEGS .

J . Irifc UfriER-Pta 13 M t^CLJSlvt-MEMdtR OK THE PEGS .

4 , THE U13K IS IN-THt-SEl Ljf iMSnS .

PPeIcSTa

http://ATMlrH.lt

- 199 -

1. X OM THE oTHEK-PEli IS USFlNbl) FON-ALL X S^ALLEB

M M M e f*rtTI3ULAH •IIAR. ,

~'J V IT S

1 . "UYt THt J 1 S * JN THt F*U«-PbJ TU THfc U!SK ON THE TO-PEG ,

DISKS a (L i l S K - a 1JISK-J O I i H - 4)

fESS • < J t u - 1 P & I W t ' e f j-J)

DISK-l = I frit S m » L L e H UNtS N 3 « e)

[MSK-2 3 < T h e S r- iALLEH UNfc IS IHb-KlrfSl >

DISK-i = < Trtt ShALLk* UNSS A«t T H f c - F I « 5 T ,

DTSK-4 = (THt ShALLt* ONES AHfc THfc-FlKST-3)

WONfc" = < J

THE-flriST = « UlS*-i >

T H E - U K S T - c = 4 uiSK-l UtSK-2)

THE-F l-iST-3 = 4 UlSK-i 01SK-2 U[S«-d)

D1SK-1 O N Ptii-1 , I

OlSK-1 0 « Pfc^-2 .)

Ol SK-X 01 Pfc'i-3 .)

OiSlt-i ON Hbii-l . I

DlSft-a PtU-g .)

DISK-* UK .)

JlSK-J ON Pfcii-1 .)

O I S K - J u n p t i i - a .)

0 1 3 (1 - 3 O n Pfcii-J .)

0 1 3 K - 4 U i v P e » - 1 .)

u n P e i i - a .)

3 l S f t - 4 UN Ptti-3 . . 1

C0HPAKb-Q3JEClS = C BASIC-MAT-H)

Dl.l = (

DL.S = I

01.I = (

D 2 . 1 • (

D 2 . 2 = (

D2.3 = (

D3.1 = (

D3.2 = <

D3.3 = (

D 4 . 1 = t

1)4.2 = (

D4.3 = (

http://D2.fr

BASIC-i-iAKh = (rQMP-FfcAT-UST (Dl.l Dl.2 D1.3 02,1 02,2 02,3 D3.1 03,2

U3.3 U4.1 04.2 L/4.J))

DrFF-OkOERiNb = i 1. (U4.1 D*.2 D 4 . i)

2. < 03.1 IJ-i.2 te.i)

J. (D2.1 ill.2 02.3)

4. (Dl.l D1.2 01.3 >)

TABLE-UP-IiiMNSuTlONS = (t CQIMON-DiFFEHENCE MOVe-DISK))

LTST-0K-Y4H = I FrIOM-PEG ;JTHzH-Pfcl- TO-PEli X I

)

END

a. FROM-FEG is the peg from which the disk is
moved;

b. TO-PEG is the peg to which the disk is moved;
c. OTHER-PEG is neither the FROM-PEG nor the

TO-PEG;
d. DISK is the disk vhich is moved.

The first three TESTS following VAR-DOMAIN insure that FROM-PEG, TO-PEG,

and OTHER-PEG all stand for pegs and that no two of them stand for the

same peg. The fourth TEST following VAR-DOMAIN is the statement that DISK

stands for one of the four disks.

The formulation of MOVE-DISK is based on the fact that the top disk

on a peg is also the smallest disk on the peg. Since this is true of the

INITIAL OBJ, it is true of all other objects because a disk is never placed

on a smaller disk. Thus, in order to move the DISK, it must be the smallest

disk on the FROM-FEG as well as smaller than any disk on TO-PEG. Due to

the conservation of disks, these two constraints can be restated as: All of

the disks which are smaller than DISK must be on the OTHER-PEG. This is the

meaning of the TEST following PRETESTS. If the disk, X, at the node, OTHER-

PEG, is DEFINED (i.e., X is an ATTRIBUTE of the node that OTHER-PEG stands

for), X is on the OTHER-PEG. The TEST following PRETESTS is true only if any

disk, X, which is smaller than DISK is on the OTHER-PEG.

FOR-ALL is used as a replicator. That is, the TESTs following PRETESTS

is actually several TESTs (the conjunction thereof). Each of these TESTs has

the form,

X ON THE OTHER PEG is DEFINED,

and each has a different value for X, which is indicated, syntactically, by

the fact that X follows FOR-ALL. The domain of X is the SET designated by

the phrase (whose semantics are discussed below)

SMALLER THAN THE PARTICULAR DISK.

Under MOVES there is only one TRANSFORMATION, which has the effect -

of moving the DISK (which must be on the FROM-PEG) from the FROM-PEG to the "~

TO-PEG.

DISKS is the SET of disks and PEGS is the SET of pegs both of which

are used in the stating of the TESTs in VAR-DOMAIN in MOVE-DISK. _

Although each disk is an ATTRIBUTE, (e.g., DISK-3), it is also a

data structure. With each disk is associated one attribute-value pair:

SMALLER is the ATTRIBUTE and its value is the SET of those disks which are

smaller than the disk. For example, in DISK-3, the value of SMALLER is

THE-FIRST-2 which is the set of two disks, DISK-1, DISK-2. This information,

which defines the size of a disk relative to the other disks, is used in the J

TEST following PRETESTS in MOVE-DISK. When DISK has the value DISK-3, the —

phrase

SMALLER THAN THE PARTICULAR DISK _j

designates the value of the ATTRIBUTE, SMALLER, of DISK-3, which is THE-FIRST-2. ~)

SMALLER in this example is a FEATURE. PARTICULAR DISK indicates that this ~

FEATURE does not refer to the input object of the operator but to the data \

structure whose name is the value of the variable DISK. ^

Dl.l through D4.3 in Fig. 58 are the types of differences in this task. J

Each is a FEATURE. COMPARE-OBJECTS indicates that the match should check -;

for the type of differences listed after COMP-FEAT-LIST in BASIC-MATCH. The

match only checks for differences at the TOP-NODE of objects. j

DIFF-ORDERING is the statement that the larger the disk, the more _̂

difficult the difference. In DIFF-ORDERING, the difference types are divided J

into four categories. All of the difference types in a category pertain to —

a paticular disk and are considered equally difficult. The ~*
1 — " I

categories are arranged according to the difficulty of their difference

types which is determined by the size of the disk to which they pertain.

The TABLE-OF-CONNECTIONS indicates that MOVE-DISK is to be used to

reduce any type of difference. This means that no selection power comes

directly from the TABLE-OF-CONNECTIONS; instead it must come from the

desirability-selection process for MOVE-OPERATORS.

LIST-OF-VAR is a list of symbols in Fig. 58 which are variables.

Behavior of GPS

The way that GPS arrives at the solution to the Tower of Hanoi is

shown in Fig. 60. In attempting TOP-GOAL, GPS notices that DISK-4 should

be on PEG-3 (i.e., the ATTRIBUTE, DISK-4 of the node named FEG-3 should have

the value, YES) and creates GOAL 2 to reduce this difference. GPS also

notices that the other three disks should be on PEG-3, but selects the

difference whose type is D4.3 because it is the most difficult difference

detected.

By referring to TABLE-OF-CONNECTIONS, GPS selects MOVE-DISK to be

applied to INITIAL-OBJ. The desirability-selection process finds that MOVE-

DISK performs a desirable function if the variables, TO-PEG and DISK, have

the respective values PEG-3 and DISK-4. The application of MOVE-DISK with

these two variables so specified is attempted by creating GOAL 3. After

specifying the remaining variables, FROM-PEG and OTHER-PEG, to be PEG-1 and

PEG-2 respectively, GPS detects that the operator is infeasible because

DISK-1, DISK-2, and DISK-3 are not on PEG-2. GOAL 4 is created to reduce

the difference that DISK-3 is not on PEG-2 which is the most difficult

difference detected in attempting to apply the operator. However, it is less

difficult than the difference for which GOAL 2 was created; otherwise GOAL 4

would have been considered undesirable. The only other legitimate variable

1 T0P-GDA1. TRANSFORM INITIAL-OEM INTO DES1RED-0BJ (SUBGOAL OF NONE)

2 COAi. 2 REDJCE D4.3 ON INlTlAL-OBJ (SUB30AL OF TOP-GOAL'

3 GOAL J APPLY MOVE-DISK w1TH TO-PEG « P E S - 3 . DISK * DISK-*. TO INITIAL-OBJ (SUBGOAL OF 2>
SETl FHOH-PEG = P E G - 1 , OTHER-PEG n PEG-2

4 G 0 A L 4 REDUCE 03.2 ON INITIAL-OBJ < SjBGOAL OF 3)

5 GDAL 5 APPLY MOVE-DISK WITH TO-PEG * P E 3 - 2 , DISK • DISK-3. TO INITIAL-OBJ (SUBGOAL OF 4)
SET! FROM-PEG * P E G - 1 . OTHER-PEG a PEG-3

6 GOAL 6 REDUCE 02.3 ON INITIAL-03J (SUBGOAL OF 5)

7 GOAL 7 APPLY MOVE-DISK WITH T0-PE3 r PEG-3, DISK i D I S K - S , TO INITIAL-OBJ (SUBGOAL OF 6)
SET I FROM-PEG * P E G - 1 , OTHER-PEG t PEG-2

8 GOAL 8 REDUCE D1.2 ON INITIAL-03J (SUBGOAL OF 7>

9 GOAL 9 APPLY MOVE-DISK WITH TO-PEG * P E G - 2 , DISK • O I S K - 1 , TO INITIAL-OBJ (SUBGOAL OF 6)
SET I FROM-PEG - P E G - 1 , OTHER-PEG » PEG-3
OBJECT 51 (P E G - K D I S K - 2 YES DISK-3 YES DISK-4 YES) PEG-2(DISK-1 YES) P E G - 3 < — —

))

3 GOAL 10 APPLY MOVE-DISK WITH TO-PEG . P E G - 3 , DISK » D I S K - 2 , To 5 (SUBGOAL OF 7)
SET I FROM-PtG - P E G - 1 , OTHER-PEG = PEG-2
OBJECT 61 (P E G - H D I S K - 3 YEP DISK-4 YES) PES-2<D1SK.1 YES) PEG-3(DISK-2 YES))

6 GOAL 11 APPLY MOVE-DISK WITH TO-PEG « P E G - 2 , DISK • D I S K - 3 , TO 6 (SUBGOAL OF 5)
SETJ FHOM-PEG » P E G - 1 , OTHER-PEG » PEG-3

7 GOAL 12 REDUCE D1.3 ON 6 (SU3GDAL OF 11)

a GOAL 13 APPLY MOVE-DISK WITH TO-PEG « P E G - 3 , DISK • D I S K - 1 , To 6 (SUBGOAL OF 12)
SETl FHOM-PEG « P E G - 2 , OTHER-PEG • PEG-1
OBJfcCT ?! (P E G - K D I S K - 3 YES DISK-4 YES) PES-8(> PEG-3(0lSK-l YES DISK-2 YES

))

7 SOAL 14 APPLY MOVE-DISK WITH TO-PEG * P E G - 2 , DISK • D I S K - 3 . TO 7 (SUBGOAL OF 11)
SET t FROM-PEG = P E G - 1 , OTHER-PEG » PEG-3
OBJECT 81 (P E G - K D 1 S K - 4 YES) =-EG-2<D1SK-3 YES) PEG-3<DISK-1 YES DISK-2 YES>)

Figure 60: The performance of GPS on the Tower of Hanoi.

205

4 (i o * L 15 APPLY MOVE-DISK WITH TO-PEG s P E G . 3 , DISK = D I S K - 4 , T O 8 (SUBGOAL OF 3>
SET: F R O M - P f c G b P E G - 1 , OTHER.PEG x PEG-2

5 GOAL 16 REDUCE D2.2 ON 8 (SUBGOAL OF 15>

* GOAL 17 APPLY MUVE-UISK WITH TO-PEG = P E G - ? , DISK • D I S K - 2 , TO 8 (SUBGOAL OF 16>
SET I FROM-PEG = P E G - 3 , OTHER-PEG = PEG-1

7 GOAL 18 REDUCE Dl.l ON S (SUBGOAL OF 17)

8 GOAL 19 APPLY MOVE-DISK WITH TO-PEG « P E G - 1 , DISK » DISK-1. T o 8 <SUBGOAL O F 18)
SETI FROM-PEG = P E G - 3 , OTHER-PEG -= PEG-2
OHJfcCT 91 (P t a - K D I S K - 1 YES D1SK-4 YESI PEG-2(01SK-3 YES) P E G - 3 (D I S K - 2 YES))

7 GOAL 20 APPLY MOVE-DISK WITH TO-PEG = P E G - 2 , DISK » D I S K - 2 . TO 9 (SUBGOAL OF 17)
SETS FROM-PEG « P E G - 3 , OTHER-PEG = PEG-1
OBJECT ID! (P E G - K D l S K - 1 YES DISK-4 YES) PE3-2IDISK-2 YES DISK-3 YES) PE3-3(

))

5 GOAL 21 APPLY MQVt-DISK WITH TO-PEG = P E G - 3 , DISK * D I S K - 4 . TO ID (SUBGOAL OF 15)
SET! FROM-PEG * P E G - 1 , OTHER-PEG = PEG-2

6 GOAL 27 REDUCE U1.2 ON lg (SUBGOAL OF 21)

7 GOAL 23 APPLY MQVt-DISK WITH TO-PEG = P E G - 2 , DISK * D I S K - 1 , TO 10 (SUBGOAL OF 22)
SET! FHOM-PfcG • P E G - 1 , OTHER-PEG = PEG-3
OttJfcCT 1 1 ! I P E G - K D I S K - 4 YES) P£G-2(DISK-1 YES DISK-2 YES DISK-3 YES) PEG-3(

) >

6 GDAL 24 APPLY MOVE-UlS* WITH TO-PEG « P E G - 3 , DISK . O I S K - 4 , T o 11 (SUBGOAL OF 21)
SET! FROM-PEG * P E G - 1 , OTHER.PEG =, PEG-2
OBJECT 12S (P E G - H) PE3-2I0ISK-1 YES DISK-2 YES OISK-3 YES) PEG-3(D1SK-4 YES

) >

2 GfiAL 25 TRANSFORM 12 INTO UESIRtD-OHJ (SUBGOAL OF TOP-GOAL)

3 G3AL 26 REDUCE D3.3 ON 1? (SUBGOAL DF 25)

< i»OAL 27 APPLY MOVE-DISK WITH TO-PEG = P e G - 3 , DISK * DIS < - 3 , TO 12 (SUBGOAL OF 261
SET s FROM-PfcG » P E G - 2 , OTHER-PEG = PEG-1

5 GOAL 28 REDUCE D2.1 ON 12 (SJBGOAL OF 27)

* GOAL 29 APPLY MOVf-UISK W[TH TO-PEG = P E G - 1 , DISK r DISK-2, TO 12 (SUBGOAL OF 28)

- 206 -

Sb"T(FHOM-PEG = P E G - 2 , OTHER-PEG = PEG-3

7 GOAL 31 KfcDUCt m , 3 O N 12 (SJB30AL OF 29>

fl GOAL 31 AP=LY MUVE-OlSK WITH TO-PEG = PEG-3, DISK • D I S K - 1 , T o 12 (SUBGOAL OF 30)
SETl F H Q M - P E G = P E G - 2 , OTHER-PEG = PEG-1
OBJECT 13: (PEG-1() PE3-s<DISK-2 YES DISK-3 YES) PEG-3<DISK-1 YES DtSK-4 YES

))

7 GOAL 35 APPLY MOVE-DISK WITH TO-PEG = P E G - 1 , DISK " D I S K - 2 , TO 13 (SUBGOAL OF 29)
SETl FROM-PEG - P E G - 2 , OTHER-PEG = PEG-3
OBJECT 1 4 ! l P E G - H D I S K - 2 YE3) P E G - 5 (D I S K - 3 YES) PEG-3CDISK-1 YES DISK-4 YES))

b H3AL 33 APPLY MOVE-DISK WITH TO-PEG = P E G - 3 , DISK « D I S K - 3 . TO 14 (SUBGOAL OF 27)
SET: FKOM-PES = P E G - 2 , DTHER-PEQ = PEG-1

h GOAL 34 REDUCE 1)1,1 ON 1" (SUB30AL OF 33)

7 SOAL 35 APPLY Moufc-DISK WITH TO-PEG = P E G - 1 , DISK » D I S K - 1 , TO 14 (SUBGOAL OF 34)
SET: FHOM-PEG * P E G - 3 , OTHER-PEG = PEG-2
OBJtCT 1 5 ! I P E G - K D I S K - 1 YES DISK-2 YES) PE3-2(DlSK-3 YES) oEG-3(DISK-4 YES))

* fiOML 3V, APPLY MOVE-DlS* HITH TO-PEG = P E G - 3 , DISK * D I S K - 3 . TO I S (S u B G O A L O F 33)
SET! FROM-PEG - P E G - 2 , OTHER-PEG = PEG-1
OSJECT 161 (PEG-1(DISK-1 YES DISK-2 YES> PEG-2(> P E G - 3 (U I s K - 3 YES DISK-4 YES

) >

3 30 AL 37 TRANSFORM 16 INTO DESI RED-OBJ (SUBGOAL OF 2S)

a f iQAL 38 REDUCE 02.3 ON 16 (iUBGOAL OF 37)

•> G3AL 39 APPLY MQVfc-DlSK WITH TO-PEG * P = G - 3 , DISK « D I S K - 2 . T O 16 (SUBGOAL OF 38)
SEl : FHOM-PEG * P E G - 1 , OTHER-PEG • PEG-2

6 GOAL 41 REDUCE HI,? ON 16 (SUB 30 AL OF 39)

7 30AL 41 APPLY MOVE-DISK WITH TO-PEG = P E G - 2 , DISK • D I S K - 1 , T O 16 CSUfcGOAL OF 40)
SfcT« FROM-PEG « P E G - 1 , OTHER-PEG = PEG-3
Ofcu'fcCT 17S IPEG-l(DiSK-2 YES) PEG-2(DISK-1 TES) PEG-3(DIS«-3 YES DISK-4 YES))

h GOAL 4 5 Afl-LY MOVE-DISK WITH TO-PEG = P E G - 3 , DISK • D I S K - 2 , T o 17 (SUBGOAL DF 39)
SEl: FHOM-PEG = P E G - 1 , OTHER-PEG i PEG-2
ObJfcCl 18t I P E G - M) PE3-JIDISK-1 YES) »EG-3(DISK-2 YES DISK-3 YES DISK-4 YES

) >

i GOAL 43 TftANSfUhM 18 INTO D E s I R P » - O B J (SUBGOAL Of 37)

- 207 -

5 GOAL 44 REDUCE Dl.3 ON 18 (SUBGOAL OF 43)

6 GOAL 45 APPLY MOVE-IMS* WITH TO-PEG > P E G - 3 , DISK » D I S K - 1 , TO 18 (SUBGOAL OF 44)
SET! FROM-PEG • P E G - 2 , OTHER-PEG = PEG-1
OBJECT 191 (PEG-1() PE3-?() PEG-3(DISK-1 YES OISK-2 YES DISK-3 YES DISK-4

YES))

5 GOAL 46 TRANSFORM 19 INTO DESIRED-OBJ (SUBGOAL OF 43)
SUCCESS

specification for FROM-PEG and TO-PEG is PEG-2 and PEG-1, respectively,

which would give rise to the difference that DISK-4 is not on PEG-2.

Since this difference is as difficult as the difference for which GOAL 2

was created, GPS considers this variable specification to be undesirable.

GPS attempts to achieve GOAL 4 by moving DISK-3 to PEG-2 for which

GOAL 5 was created. Since DISK-2 is not on PEG-3 (GOAL 6), GOAL 7 is

created in an attempt to move DISK-2 to PEG-3. In order to achieve GOAL 7,

DISK-1 is moved to PEG-2 (GOAL 8 and GOAL 9) which results in the new

object, OBJECT 5. DISK-2 was moved to PEG-3 in OBJECT 5 (GOAL 10) and

OBJECT 6 is produced.

In reattempting GOAL 4, GOAL 11 is created to move DISK-3 to PEG-2

in OBJECT 6. After moving DISK-1 from PEG-2 to PEG-3, (GOAL 12 and GOAL 13)

DISK-3 is moved to PEG-2 (GOAL 14) and GOAL 4 is achieved. The first four

teen goals are typical of the behavior of GPS on this task, and success is

achieved at GOAL 46.

Discussion

In moving a disk, two constraints, which are usually stated somewhat

independently, must be satisfied. Only the top disk on a peg can be moved

and it must be smaller than the top disk on the peg to which it is being

moved. In MOVE-DISK these two constraints are replaced by the single TEST

of PRETESTS. Combining the two constraints significantly changes the problem

formulation even though both formulations are isomorphic.

The more usual formulation of MOVE-DISK would have the following

PRETESTS:

1. X ON THE TO-PEG IS UNDEFINED FOR-ALL X
SMALLER THAN THE-PARTICULAR DISK.

2. X ON THE FROM-PEG IS UNDEFINED FOR-ALL X
SMALLER THAN THE-PARTICULAR DISK.

With this formulation, GPS would find the task considerably more difficult7.

Suppose, for example, that GPS wanted to move DISK-2 to PEG-3 and that

DISK-1 and DISK-2 were on PEG-1 (GOAL 7 in Fig. 60). PEG-1 would be used

for FROM-PEG and GPS would only find one difference,

DISK-1 should not be on PEG-1.

This difference contains no information about where DISK-1 should be moved,

and it might be moved to PEG-3 in an attempt to reduce the difference. How

ever, using the formulation in Fig. 58, GPS detects the difference,

DISK-1 should be on PEG-2,

(GOAL 8) because OTHER-PEG must equal PEG-2 in order for GPS to consider the

variable specification desirable. In reducing this difference, GPS considers

it desirable to move DISK-1 to PEG-3 (GOAL 9) but undesirable to move DISK-1

to PEG-2.

An outstanding feature of GPS's behavior on the Tower of Hanoi is that

GPS never makes a mistake. That is, GPS always chooses to reduce a difference

which leads to the selection of the best operator. As noted above, this is

not the case when the PRETESTS in MOVE-DISK consists of two separate con

straints. Thus, formulating the PRETESTS as a single constraint is necessary

for GPS to always select the correct operator. Another factor which allows

GPS to select the correct operators is that the types of differences that GPS

7In attempting the four disk version of the Tower of Hanoi, GPS would
exhaust memory before finding a solution. GPS could probably find the
solution to the three disk version.

detects and their relative difficulty are in some sense optimal. For

many tasks a good set of differences and a good DIFF-ORDERING are diffi

cult to obtain.

Gaku [9], another problem solver which solved the Tower of Hanoi,

approaches the task quite differently than GPS. First, Gaku solves the

"three disk" Tower of Hanoi by trial and error. Then, the solution to the

four disk task is obtained by generalizing the solution to the three disk

task; the five disk solution is obtained by generalizing the four disk

solution, etc. Hence, Gaku solves this task by searching for a solution in

a space of solutions whereas GPS searches for the searches for the desired

situation in a space of situations.

D. PROVING THEOREMS EXPRESSED IN THE FIRST-ORDER PREDICATE CALCULUS

The first-order predicate calculus, sometimes called the first-order

predicate logic or quantification theory, is a formal language system that

has received much attention in attempts to construct theorem proving programs.

(For a representative sample, see Davis and Putnam [9]; Friedman [14];

Gilmore [17]; Robinson [50,51]; Wang [62,63]; Wos, et al [67].)

The primitive symbols of this logic are:

a. parentheses—(,)
b. logical connectives—3, &,V ,= ,
c. predicate letters—P, Q, R, ...
d. individual names—a, b, c, ...
e. variables—u, v, w, ...
f. quantifiers-^3, y .

Parentheses serve their normal purpose of delimiting groups of symbols. The

logical connectives stand for negation, conjunction, disjunction, implication,

and equivalence, respectively. An atomic formula is a predicate letter

followed by a (, followed by a string of several individual names or

variables separated by commas, followed by a The intent of the quantifiers

can best be given by example: u) P(u) is true if and only if there

exists some individual name, cv, such that Pi» is true. (V'u) P(u) is true if

and only if for every possible individual name, or, P(cv) is true.

Formulae F p F 2, F3,... of the calculus can be recursively defined

as one of the following (where F ± and F^ are arbitrarily formulae):

a. an atomic formula
b. F.

1

c (F, & F.)
d . (F. V F.)
e. (F.3 F j)
f. (F. = F.)
g. a quantified formula such as (Vu) F. or CM F.

A formula may be either true or false depending on the interpretations

given to the predicate letters and individual names that occur in it. For

example, (3u) (P(b,u) & Q(u)) is true when P(b,u) is understood as *b is the

brother of u', Q(u) is understood as 'u is tall', and 'b* is the name of

someone within the scope of u with a tall brother.

If a ground formula is defined as either an atomic formula or the

negation of an atomic formula, then an interpretation can be defined as a set,

I, of ground formulae with the following properties:

a. No atomic formula and its negation are members of
I (I is consistent).

b. For every possible atomic formula that can be formed
from the individual names and predicate letters
occurring in the formula in I, either the atomic
formula or its negation is a member of I (I is
complete).

A formula is satisfiable if there exists an interpretation for which it is

true; otherwise, it is ungatisfiable. A formula is valid, if it is true for

all possible interpretations. A formula is a theorem if an only if the

formula is valid. It follows that the negation, of a theorem must necessarily

be unsatisfiable.

Predicate Calculus Theorem Provers

Although several different approaches have been taken in constructing

theorem proving programs, we will only consider the one which has received

the most attention. The theoretical justification of this approach can be

found in Davis and Putnam [9]; Gilmore [17]; Robinson [51]. These theorem

provers do not process formulae in the calculus directly, but first reduce

the statement of the theorem to a cannonical form in order to simplify the

theorem proving process. In this cannonical form, an atomic formula can have

functions, f, g, h,...of variables within the scope of a predicate,--e.g.,

P(f(a))--as well as individual names and variables. (The intent of these

functions will be discussed later.) A literal is defined as an atomic

formula or the negation of an atomic formula. The disjunction of a finite

set of literals is called a clause, and the empty clause is denoted by •

The cannonical form of a theorem is the conjunction of a finite set of clauses.

Instead of proving that a theorem is valid, the theorem provers prove that

the negation of the theorem is unsatisfiable; i.e., a contradiction can be

obtained.

Neither the logical connectives 3, =, nor the quantifiers, yand 3,

appear in the cannonical form. However, there is no loss of generality in the

use of this cannonical form because any formula (theorem) in the calculus

can be reduced to this cannonical form. Implication and equivalence can be

defined in terms of conjunction, negation, and disjunction, and can be

removed by repeated application of these definitions. V d o e s not appear in

the cannonical form, because by convention all variables are universally

quantified. All occurrences of 3 are removed by replacing all of the

variables quantified by 3 with functions of the universally quantified

variables on which they depend. For example, the cannonical form of the

formula (yu) <3v) <Vw) P(u,v,w), is P(u,f(u),w). The variables u and w are

universally quantified by convention. In order for the formula to be true,

there must exist a value of v which will make the formula true for every

possible value of w. But this value of v does not have to be the same for

every possible value of u. It can be a function of u; hence, v can be

replaced by a function of u, i.e., f(u). On the other hand, in the formula,

C3v) tVu) <Vw) P(u, v, w), whose cannonical form is P(u,f,w), the value of

v must be independent of both u and w; i.e., f must be a constant.

These theorem provers use only a single inference principle called

the resolution principle Robinson [51]; Wos [67]). From any two clauses, C

and D, a resolvent of C and D can (possibly) be inferred, which has the

following properties:

a. L is a literal in C and M is a literal in D.
b. The resolvent is a new clause consisting of

all of the literals in C and D with the
exception of L and M.

c. Either L or M but not both contain a ~.
d. Except for the ~, L and M are* identical or can

be made identical by substituting for variables,
functions, individual names, or other variables.

e. Any substitutions which must be made in L and M
in order to make them identical are also made
in the resolvent.

If there are no L and M which fulfill the above conditions, C and D will

have no resolvents; and if L and M are not uniquely specified by the

above conditions, C and D will have more than one resolvent.

If S is any set of clauses, the nth resolution of S, denoted by

3in(S), is defined as:

a. SR^S) is all members of S together with all
resolvents of all pairs of members of S.

b. For n ^ 1, rf* 1 (S) = Dt (9tn(S))

Then the resolution principle is

Resolution Theorem: If S is any finite set of clauses,
then S is unsatisfiable if and only if K n (S) contains
•, for some n ^ 1 .

Theorem provers based on the Resolution Theorem attempt to prove

the unsatisfiability of a set of clauses by inferring • . The proof of

the unsatisfiability of a set, S, of clauses (proof of a theorem) consists

of a sequence of clauses, each of which is either a member of S or the

resolvent of two earlier clauses in the sequence. The final member of the

sequence is • . No such theorem prover can guarantee that it can either

prove or disprove an arbitrary theorem in a finite amount of time (and

computer memory) because the proof sequence can be, according to the Resolu

tion Theorem, arbitrarily long.

A simple example of the canonical form of a theorem is the conjunc

tion of the three clauses,

Q(b) (1)
~Q(u) V P(f(u)) (2)

a n d ~P(v) (3)

This theorem can be proved by first inferring the resolvent,

P(f(b)), (4)

of (1) and (2). In forming this resolvent, the two literals containing a

Q cancel out by substituting b for u. Then, • , which is a resolvent of

(3) and (4) can be inferred.

GPS Formulation

GPS can prove theorems expressed in the cannonical form of the first-

order predicate calculus, described above. Its proof techniques are very

similar to the theorem provers we have just discussed in that it searches for

D by producing the resolvents of clauses.

Fig. 61 is the formulation for GPS of the task of proving the first-

order predicate calculus theorem8,

<3u)(3y)C</z)(<P(u,y) (P(y,z) & P(z,z))) &
((P(u,y) & Q(u,y)) (Q(u,z) & Q(z,z)))).

This theorem has a long history as a sample problem for theorem provers

(Davis and Putnam [9]; Gilmore [17]; Robinson [50]). The early theorem

provers found it very difficult, whereas it is trivial for the most recent

programs.

TOP-GOAL in Fig. 61 is a statement of the problem. The INITIAL-OBJ

is the statement of the theorem in cannonical form. The negation of the

theorem, after removing the quantifiers and implication, is

~((~P(u,y)V(P(y,f(u,y)) & P(f(u,y), f(u,y)))) &
MP(u.y) & Q(u,y)) V (Q(u,f(u,y)) & Q(f(u,y), f(u,y))))).

The INITIAL-OBJ is this expression written as a conjunction of the clauses,

STATEMENT-1, STATEMENT-2, and STATEMENT-3. In the clauses in Fig. 61, all

lower case letters are replaced by capital letters; ~^is replaced by -. There

must be a space between all symbols in the clauses in Fig. 61 because "space"

is the delimiter of words in the external representation of GPS.

Each clause is an OBJECT-SCHEMA, expressed as a linear string of

symbols (translated in the LIST mode), and is converted into a tree structure,

internally. This conversion routine, designed to process the objects and

8The source of this formula is #5 on page 265 in Church [7]. The notation
used by Church is different than the notation used here. •

R E N A M E I

AND = f

)

DECLARE (

F « UNARY-LUNNfcCT1 V E

MAIN = FEAlllht:

P * UNiRY-LONNbClIvb

0 n USkRV-LONNbCllYE.

V s N-ARY-LONNSCTIVt

V... = N-ApY-CQNNfcCIIvt

, • N-*.RY-CONNbCT 1 Vb

- « . U M A P Y - L O i m N E C T I V E

)

LIST I

INITIAL-03J = I SlAlfcMtNT-1 AND S T ATfcMENT-2 AND STATEMENT-3)

STATEMfcNT-1 = (P t 0 t Y) >

STATEMtNT-2 = l - P < Y , F < U , Y > > V - P (F (U » Y > , F (U » Y > >

V Q i U . Y) I

STATE Mb NT-3 = l - P l Y » F < U , Y)) V - P (F < U i Y) , F < U » Y >)

v - U (U , F (U > Y)) V - y (F (U . Y » , F < U ,

Y > > i

D-ESIRSU-03J s < FALSE)

OPR-1 * (t b A N U - b) YIELDS F A l S E)

OPR-2 a (((a V . - . >'•) AND - S J YlfcLUS C J

OPR-3 » < < t b V . . . C) AND < - 3 V,.. D >) YIELDS f C V b))

)

TASK-STRJCTURtS <

Figure 61: The specification for GPS of the task of proving a
theorem expressed in the predicate calculus.

'OP-GDAL = (TRAMSFOHM TMfe INITIAL-Q8J INTU TH6 UeSIHFLI-OBJ ,)

MAIN * I 3Y MdQL >

BASlC-nAT-h - I C O M P - F t A T - L I S r (I A I N))

C O M P - J B J E : I S = (bAblC-MATCH)

D I F F - D N D E ' I M f c s (M A I N >

TABLE-UF-JurtUStTJiJSiJi * ((M A I N O P R - 1 O P R - * O P R - J) >

U S T - J K - O 3 * = (QHft - 1 U P « - 2 U f H - 3)

LIST-Qf-VAK = t d C V 1 U)

>

E N D

the operators of mathematical tasks, assumes that each node of OBJECT-SCHEMAs

has two ATTRIBUTES—SIGN and SYMBOL. Fig. 62 shows the tree structure

representation of STATEMENT-1 and STATEMENT-3. The ATTRIBUTES of the nodes

are implied.

INITIAL-OBJ is a SET of OBJECT-SCHEMAs. (AND is the new name for ̂_

in this task; see RENAME.) GPS considers it to be the source of derivation

of STATEMENT-1, STATEMENT-2, and STATEMENT-3 and all objects derived from

them will also have INITIAL-OBJ as their source of derivation. Thus, INITIAL-

OBJ is a set which grows as new objects are generated during problem-solving.

The DESIRED-OBJ, which represents • , consists of a single node which

has the value NULL for the ATTRIBUTE, SYMBOL.

This task has three operators, OPR-1, OPR-2, and OPR-3. Each operator

has as an input two OBJECT-SCHEMAs separated by AND in Fig. 61. For example,

the input to OPR-2 is two OBJECT-SCHEMAs; one has the form

B V... C,

and the form of the other is

-B,

where B and C are variables.

The OBJECT-SCHEMA,

B V... C,

represents a clause which is the disjunction of the literal, B, and other

literals. C represents the disjunction of all of the literals in the OBJECT-

SCHEMA except B. The reason for this representation will be discussed below.

COMP-OBJECTS and BASIC-MATCH indicate that the only type of difference

to be detected in matching two OBJECT-SCHEMAs is MAIN and that it should only

be checked for at the TOP-NODE of the OBJECT-SCHEMAs. This simple match is

FIGURE 62. Tree structure representation of three predicate calculus
objects. Only the values of the ATTRIBUTES are shown.

sufficient for this task because matching two OBJECT-SCHEMAs is only done

in the TRANSFORM-METHOD and DESIRED-OBJ is always one of the two. NULL

only appears in an object representing • . Thus only the value of the

ATTRIBUTE, SYMBOL, of the TOP-NODE is checked; the rest of the OBJECT-SCHEMAs

is ignored.

DIFF-ORDERING is only a formality for this task because there is only

one type of difference. TABLE-OF-CONNECTIONS is also a formality for this

task. It provides no information about the desirability of the operators

because, according to it, all of the operators have the capability of reducing

the only type of difference--MAIN.

LIST-OF-OPR indicates that the three operators need to be converted

into their internal representation after being translated. The variables

used in this task are given in LIST-OF-VAR.

Included in the presentation of this task are three criteria for

selecting members from a SET of OBJECT-SCHEMAs. Since there is no provision

in the external representation for expressing these criteria, which are used

in SELECT GOALs, they are given to GPS as IPL structures and do not appear

in Fig. 61. SMALLEST is a criterion (e.g., GOAL 2 in Fig. 63) which assigns

the highest priority to those OBJECT-SCHEMAs (clauses) with the smallest

number of literals. LIT-SIGN, which is another selection criterion, is

satisfied only by those OBJECT-SCHEMAs which contain a literal whose SIGN

and predicate letter are the same as the SIGN and predicate letter of the

first literal in the criterion object. In addition, if the criterion object

only contains a single literal, then LIT-SIGN requires that the OBJECT-SCHEMAs

selected must not contain more than one literal. An OBJECT-SCHEMA selected

according to the NO-LIT criterion must be a single literal if the criterion

1 TOP-GOAL TRANSF3RM INITIAL-OBJ INTO DESIRE0-03J (SUBGOAL OF NONE)

2 GO* I J SELECT FROM 1NITIAL-09J A/C SMALLEST OF DESIRED-OBJ (SUBGOAL OF U r . G O A L)
STATEMENT-1 SELECTED

2 Gn*L 3 T1ANSF3RM S T A T E M E N T - ! INTO DES1HED-03J (SUBGOAL OF TOP-GOAL)

J G 3* L 4 RiouCc MAIV ON S T A T E M E N T - ! (SJB30AL OF 3)

1 :iOA_: 5 APPLY O P R - i TO STATEMENT-1 (SjBGOAL OF 4)

-> GOAL 6 SELECT FROM CONDITION OPR-1 A/C N O . - L I T ^ F STATEMENT-1 (SUBGOAL OF LEFT CONDITION 5)
CONDITION RIGHT SELECTED

=5 GOAL 7 APPLY LE-'T CONDfTlON OPR-1 TO STATEMENT-1 (SUBGOAL OF 5)
0=ERAT3R tO I (<P(J. Y) AND -'Hi. Y>) YIELDS NULL)

5 GOAL 9 SS-.ECT FROM [NITlAl-OiJ A/C LIT-3ISN OF RIGHT CONDITION 10 (SUBGOAL OF 5)
NONE SELECTED

a G0A _ 9 A P = L Y OPR-2 TO S T A T E M E N T - 1 (SJBGOAL OF 4)

5 GOAL 1 (1 SELECT FROM CONDITION QPR-2 A/3 NO.-LIT OF STATEMENT-1 (SUBGOAL OF RIGHT CONDITION 9)
CONDITION RIGHT SELECTED

•5 GOAL It A°PLY RIGHT CONDITION OPR-2 T3 STATEHENT-1 (SUBGOAL OF 9)
OPcH AT 3R 111 (((-=(U. Y) V . . . C) AND P(Ur Y>) YIELDS C)

5 G3AL 12 SELECT F^OM INITIAL-OBJ A/C LIT-SIGN OF LEFT CONDITION 11 (SUBGOAL OF 9)
S T A T E M E N T S SELECTED

•5 G3AL 13 A = P L Y LEFT CONDITION 11 TO STATEMENT-2 (S U B G O A L : O F 9)
OaJtCT 121 (-P(F<U. Y) . F(u. Y)) V . . . Q(U. Y>)

J 30AL 14 TRANSFORM 12 INTO O S S H E D - 0 3 J (SUBGOAL OF 3)

« GOAL' 15 REDUCE M A H ON 12 (SUB30AL 0" 14)

5 GOAL 16 APP^Y 0P1-1 TO 12 (SJBGOAL OF 15)

6 GOAL 17 SELECT FROM CONDITION OPR-1 A/C NO.-LIT OF 12 (SUBGOAL OF 16)
NONE SELECTED

Figure 63: The performance of GPS on the task in Fig. 61.

http://SEi.EC

5 GOAL I S IPPLI O P l - a TO 12 (S J B G O ' L OF 15)

* GOAL 19 SELECT FROM CONDITION OPR-2 A/C NO,-LIT OF 12 (SUBGOAL o f LEFT CONDITION 1B>
CONDITION LEFT SELECTED

6 904L 2S »?PLY' LEFT CONDITION JPR-2 TO 12 (SUBGOAL OF 18)
OPERATOR 13(<(<-P<F<U. Y) » ?KU. Y)) V.,; 0(U, Y)) AND P(F(U, Y) • F(U, Y))) YIELDS

-3(U, Y))

6 GOAL 21 SELECT FROM INITlAL-OBJ A/C LIT-SIGN OF RIGHT CONDITION 13 (SUBGOAL OF 18)
STA T E M E N T . ! SELECTED

* GOAL 22 APPLY RlSHT CONDITION 13 TO STATEMENT-1 (SUBGOAL OF lfl)
OBJECT lit Q(U. Y)

4 • j 0 A t» 2 3 TRAMsFQR^ 1 4 INTO D E S I R E D ™ 0 B J (S U B G O A L 0 ^ 1 4)

5 S D A |_ 2 4 R E 0 J ̂ E MftlN ON 1 4 (SJBGOAL OF 2 3 ^

6 G 0 A L 2 5 APP^Y fi * 1 TQ \4 (S U B j O A L OF 2 4)

7 3QAL St SELE:T FROM CONDITION OPR-l A/C NO.-LIT OF 14 (SUBGOAL OF LEFT CONDITION 25)
CONDITION RIGHT SELECTED

7 30AL 27 APPLY LEFT CONDITION OPR-l TO 14 (SUBGOAL OF 25)
OPERATOR 15t (<0(J. Y) AND -3(U, Y D YIELDS N U L L)

7 30AL 29 S E L E ; T FROM n i T I A L - 0 3 1 A/C LIT-SIGN OF RIGHT CONDITION 15 (SUBGOAL OF 25)
NONE SELECTED

* GOAL 29 APPLY OPR. 2 TO 14 (SUB30AL OF 24)

7 30AL 311 SELEOT FROM CONDITION OPR-2 A/C NO.-LIT OF 14 (SUBGOAL OF RIGHT CONDITION 29)
CONDITION RIGHT SELECTED

7 30AL 31 APPLY RIGHT CONDITION OPR-2 TO 14 (SUBGOAL OF 29)
OPERATOR 161 <(<-0(U. 1) V... C) AND 0(U. Y)) YIELDS C)

7 30AL 32 SELEOT FROM INlTIAL-OSJ A/C LIT-SIGN OF LEFT CONDITION 1* (SUBGOAL OF 29)
STATEMENT.3 SELECTED

7 30AL 33 APPLT LEFT CONDITIO* 16 TO STATEMENT-3 (SUBGOAL OF 29)
OBJECT 171 (-P(F«U. Y) . F(U, Y)> V... -Pit'. F(U. Y)) V -Q(F(U. Yl, F(U. Y)))

9 j 0 A « ' 3 4 T̂ AVJSFDRM 1 . 7 I ^ J T O OESlRcD^OBj (SUBGOAL O F 2 3)

A GOAL 3 5 R 1 0 U C E H A | N ON 1 7 tSUB^jOAL, OF 3 4)

7 33AL 3 * APPLY O P S - 1 TO 1 7 (SJB30AL OF 3 5)

3 G 3 A L 3 ? SE.ECT FROM C OND I Tl ON 3 P ^ - 1 A/C NO.-LIT OF 1 7 (SU8G0AL OF 3 6)
NONE SELECTED

7 3 0 A L 3 8 ASPLr O P R - 2 TO 1 7 (SJB30AL OF 3 5)

9 GOAL 3 9 SE.ECJ FROM CONDITION O P R - 2 A / C NO.-LIT OF 1 7 (SUBGOAL OF LEFT CONDITION 3 8)
CONDITION LEFT SELECTED

9 GOAL 4 0 AP=LY. LEFT CONDITION O P ^ - 2 TO 1 7 (SUBGOAL OF 3 8)
8 - > E R A T 3 R I P I (((--»(F<U> Y) • -(U, Y)> V . . . " - P (Y . F(U. Y D V - Q (F < U . Y) , F(U. Y

))) A N D P(F(U. Y) , F(U. Y)) J YIELDS (- P (Y . F(Ut Y) > V - Q (F (U . Y)
, F(J, Y)))>

9 GOAL 4 1 SE.ECT FROM INITIAL-OBJ A / C LIT-SIGN O F RIGHT CONDITION IB (SUBGOAL OF 3 8)
STATEHENT.l SELECTED

9 GOAL 4 2 A P = L Y RIGHT CONDITION 1 3 TO S T A T E M E N T - 1 (SUBGOAL OF 3 8)
OBJECT 1 9 1 (- P (Y . F (U . Y)) V . . . -0(F(U. Y) , Flu, Y >) >

ft G 3 A L 4 3 TRANSFORM 1 9 INTO DESIRED-03J (SUBGOAL OF 3 4)

7 30A. 4 4 REDU:E M A] \l ON 1 9 (SJB30AL OF 4 3)

9 GOAL 4 5 APPLY D P R - 1 To 1 9 (SjBGOAL OF 4 4)

9 GOAL 4 6 SELECT FROM CONDITION O P R - 1 A / C N O . - l ' I T OF 1 9 (SUBGOAL OF 4 5 >
NONE SELECTED

9 GOAL 4 7 A P ^ L Y O P R - 2 TO 1 9 (SJBGOAL OF 4 4)

9 GOAL 4 8 SELECT FROM CONDITION O P R - 2 A/C NOT-t.1T OF 1 9 (SUBGOAL OF LEFT CONDITION 4 7)
CONDITION LEFT SELECTED

9 GOAL 49 APPLY LEFT CONDITION O P R - 2 TO 1 9 (SUBGOAL OF 4 7)
OPERATOR 2 0 : (((-s(Y, r"(U, Y)) V . . . -Q(F<U. Y>, F(J. Y)>) AND P (y , F<u, Y>>> YIELDS

-0(F(U. Y>. F(U, Y)))

9 G OA - ?H SELECT FROM INITIAL-03J A/C LlT-SlGN OF RIGHT CONDITION 2 0 (SUBGOAL OF 4 7)
STATEMENT-1 SELECTED

9 flOAL 5 1 APPLY RIGHT CONDITION 2 0 TO S T A T E M F N T - 1 (SUBGOAL OF 4 7)
03JECT 2 1 1 - 3 (F (U , Y>, r(U, Y))

7 3 0 A L 5 2 T R 4 N S F O R M 2 1 INTO DtSIRED-OBJ (SUB30AL OF 4 3)

9 G O A L 5 3 REDUCE MAIN D N 2 1 (SJBGOAL OF 5 2)

http://NOT-t.1T

9 GOAL 54 APPLY OPR-1 TO 21 (SUBGOAL OF 53)

10 33AL 55 SELECT FROM CONDITION OPR-1 A/C NO,-LIT OF 21 (SUBGOAL OF LEFT CONDITION 54)
CONDITION RIG4T SELECTED

10 30AL 56 APPLY LEFT CONDITION OPR-1 TO 21 (SUBGOAL OF 54)
OPERATOR 2?l <(-Q(F(U, Y) , F(U. Y>) AND Q(F<U. Y) , FtU. Y))) YIELDS NULL)

10 30AL 57 SELECT FROM INITIAL-OBJ A/C LIT-SI3N OF RIGHT CONDITION 22 (SUBGOAL OF 54)
14 StLiCTEO

10 5fl APPLY RIGHT CONDITION 22 TO 14 (SUBGOAL OF 54)
03JECT 231 NULL

9 30AL 5 ? TRANSFORM 23 INTO DESlRED-OBJ (SJBGOAL OF 52)
SJCCHSS

OBJECT-SCHEMA, is a single literal; otherwise, it must contain more than one

literal. The purpose of these criteria will become clear in the discussion

of the behavior of GPS on this task.

Like the selection criterion, the immediate operators of this task

are given to GPS as IFL structures and do not appear in Fig. 61. The main

function of the immediate operators is to permute the literals in a clause

when necessary.

Behavior of GPS

Fig. 63 is the behavior of GPS in solving the task in Fig. 61. To

achieve TOP-GOAL, GPS recognizes that INITIAL-OBJ is a SET of OBJECT-SCHEMAs

and generates GOAL 2 to find the member of the set which appears to be

most easily transformed into DESIRED-OBJ. STATEMENT-1 is selected because

it contains the fewest number of literals, and GOAL 3 is created in an

attempt to achieve GOAL 1. GPS notices that the value of the ATTRIBUTE,

SYMBOL, at the TOP-NODE of the two OBJECT-SCHEMAs in GOAL 3 are different

and creates GOAL 4 to reduce this difference. According to TABLE-OF-CONNEC

TIONS, OPR-1 has the capability of reducing the difference and thus GOAL 5

is created.

In attempting GOAL 5 GPS notices that OPR-1 has two OBJECT-SCHEMAs

as an input and the TWO-INPUT-OPERATOR-METHOD is selected for achieving

GOAL 5. The first step in this method is to decide which of the input forms

(-B or B) corresponds to STATEMENT-1; GOAL 6 is created for this purpose.

Since both input forms and STATEMENT-1 are clauses which contain only one

literal, GPS decides that either input form can be used and selects the input

form, -B. The next step in the TWO-INPUT-OPERATOR-METHOD matches the input

form selected to STATEMENT-1 (GOAL 7) to determine if they can be made

identical through the substitution of variables. The result of GOAL 7

(OPERATOR 10) is OPR-1 after STATEMENT-1 has been matched to the input

form, i.e., after P(U,Y) is substituted for"B. At this point, GPS knows

that the input form of OPERATOR 10, P(U,Y) has already been supplied, even

though Fig. 63 does not indicate this, and that the resultant object can

be produced by supplying the other input. The other input can be any

OBJECT-SCHEMA derived from INITIAL-OBJ; thus, the next step in the TWO-INPUT-

OPERATOR-METHOD is GOAL 8, whose purpose is to select the OBJECT-SCHEMA to

which OPERATOR 10 can most easily be applied. No OBJECT-SCHEMA in INITIAL-

OBJ contains only a single literal whose SIGN is - and predicate letter is

P and thus GOAL 8 as well as GOAL 5 fails.

In retrying GOAL 4, GPS generates GOAL 9 because OPR-2 may reduce the

difference. GPS, by the result of GOAL 10, decides that STATEMENT-1 should

be matched to the input form -B because-it, like STATEMENT-1, contains only

a single literal. GOAL 11 is successful and its result is the partially

applied OPERATOR 11.

To find the other input for OPERATOR 11, GPS creates GOAL 12. STATE-

MENT-3 is selected because it contains more than one literal and one of them

has - for its SIGN and P for its predicate letter. OPERATOR 11 is applied

(GOAL 13) and produces OBJECT 12.

GPS tries to transform OBJECT 12 into the DESIRED-OBJ (GOAL 14).

Since they are different, GOAL 15 is created, which GPS attempts to achieve

by applying OFR-1. to OBJECT 12 (GOAL 16). GOAL 17 is created in order to

decide which input form should be matched to OBJECT 12. Both input forms in

OFR-1 contain only one literal and OBJECT 12 has two; hence GPS considers

the application of OPR-1 infeasible. In attempting GOAL 15 again, GOAL 18

is created.

GPS continues in similar fashion until • is finally produced as

a result of GOAL 59 and the success of GOAL 60 indicates that the TOP-GOAL

has been achieved.

Discussion

The formulation of this task for GPS is somewhat clumsy. To express

the resolution principle, which is used as a single rule of inference by

the predicate calculus theorem provers, three distinct operators are

required. This clumsiness results from a lack of any notation for sets and

any operations on sets in the representation of GPS; there is no convenient

way to represent the union of two sets or the set formed by deleting a member

from a set.

OBJECT-SCHEMA* are not represented by the disjunction of a set of

literals. Rather disjunction is treated as a binary logical connective.

Fig. 62.b illustrates that in this representation, the arguments of V are

either literals or a disjunction of literals. Fig. 62.a is the representation

of a clause comprised of a single literal. Such a clause is represented by

the literal itself and thus contains no V.

The operators must distinguish between OBJECT-SCHEMAs which contain

only a single literal and those which contain more than one literal. In the

one case, the literal which is "deleted" is at the TOP-NODE and, in the

other case, it is at the LEFT node. The three operators are required to take

care of the three situations,

a. when both input clauses contain a single literal;
b. when only one input clause contains a single

literal;
c. when neither input clause contains just one

literal.

OPR-2 (used in situation b) can have the single literal either as its first

input or its second input.

It is noteworthy that representing the resolution principle as three

operators instead of one has a considerable effect on the problem solving. -

Often GPS tries the wrong operator first, e.g., GOAL 5, and does not "~

realize the mistake until several GOALs have been generated. If the three ~"

operators were combined into one, the wrong operator could not possibly be

selected. In solving the task in Fig. 61, 14 GOALs (a quarter of the GOALs)

are generated in attempting to apply inapplicable operators. _

On the other hand, the fact that there are three operators instead of

one, is used beneficially by GPS. GPS attempts to apply OPR-1 and OPR-2 ~"

before applying OPR-3 because of their order in the TABLE-OF-CONNECTIONS.

Since one of the inputs to both OPR-1 and OPR-2 contain only a single literal,

the result of applying either has fewer literals than one of the inputs. ^

Reducing the number of literals in a clause is desirable because the main -

objective of the task is to reduce the number of literals in a clause to zero;

i.e., to produce • . Applying OPR-1 and OPR-2 before applying OPR-3 is

equivalent to the unit preference strategy used in Wos, et al [67].

The commutativity and associativity of V is implicitly taken into ^

consideration in applying an operator. Whenever the match detects a V...

versus V, an immediate operator juggles the order of the literals in an —'

object until the SIGN and predicate letter of the first literal are the same ~]

in the object and input form of the operator.

For example, in GOAL 33 J

-Q(U,Y) V... C 1

is matched to Fig. 62.b. After detecting the V...versus V, an immediate

operator rewrites Fig. 62.b as Fig. 62.c and replaces the V... with a V.

Since Fig. 62.c can be made to match the input form by substituting for

variables, OBJECT 17 can be produced.

It is very important that the problem formulation takes advantage

of the commutativity of the literals in a clause implicitly, instead of

stating it explicitly, as an operator. Otherwise, the problem tree would

be considerably larger and the problem solver would spend a large portion

of its time commuting literals in a clause.

Perhaps the most instructive part of this example is the light it cast

upon the evolution of problem solving programs. In LT, a theorem proving

program for the prepositional calculus which is the predecessor of GPS, it

was noted that the match routine was the source of most of the power of the

program over a brute force search. (GPS may be considered as an attempt to

generalize the match routine, based on that experience.) The first predicate

calculus theorem prover did in fact use brute force search, Gilmore [17].

From an efficiency point of view the main effect of the resolution principle

was to reintroduce the possibility of matching (gaining, thereby, a vast

increase in power). And it is this feature that allows GPS to use the

resolution principle in a natural way.

E. FATHER AND SONS TASK 9

A father and his two sons want to cross a river. The only means of

conveyance is a small boat whose capacity is 200 pounds. Each son weighs

100 pounds while the father weighs 200 pounds. Assuming that the father

9The source of this task is private communication from Paul Newell.

and either son can operate the boat, how can they all reach the other side

of the river? Of course, there is no way to cross the river except by boat.

GPS Formulation

Fig. 64 gives a formulation of this task for GPS. TOP-GOAL is a

statement of the problem. INITIAL-OBJ, whose tree structure is shown in

Fig. 65, represents the situation in which the father, both of his sons,

and the boat are on the LEFT bank of the river. The presence of the BOAT

is designated the value, BOAT, of the ATTRIBUTE, BOAT; its absence is

indicated by the absence of a value of the ATTRIBUTE, BOAT.

DESIRED-OBJ is the OBJECT-SCHEMA that represents the situation in

which the father, his two sons, and the boat are on the RIGHT bank of the

river.

In this task, the only operator is SAIL whose application has the

effect of moving X fathers, Y sons, and the boat from the FROM-SIDE to the

TO-SIDE. The first two TESTs in VAR-DOMAIN of SAIL indicate that FROM-SIDE

and TO-SIDE stand for different banks of the river.

The third and fourth TESTS require that someone must be in the boat

to operate it, and that the capacity of the boat must not be exceeded.

WEIGHT is the EXFRES whose value is the number of hundred pounds in the boat.

Thus, if the value of WEIGHT is greater than 0, someone must be in the boat

and, if the value of WEIGHT is not greater than two, the capacity of the boat

is not exceeded. Negative values for X and Y do not make sense.

The three TRANSFORMATIONS in SAIL move the BOAT, the FATHER, and the

SONS, respectively, across the river. The four SETs, SIDES, 0-1, 0-1-2, and

1-2 are used in the specification of SAIL.

The six types of differences, F-L, F-R, S-L, S-R, D-L (dock at left),

- 231 -

DECLARE (

BOAT * AfTHlWUTE

D-L « FEATURE

D-H * FEATURE

FATHERS * ATTRIBUTE

FINAL-U3J • OBJECT-SCHEMA

FROM-SIDE • LOC-PHOG

f-L « KEATURE

F-H • FEATURE

INITIAL-03J = OBJECT-SCHEMA

SAIL - MOVE-OPERATOR

SONS ' ATTRIBUTE

SIDES • S=T

S-L - FEATURE

S-R - FEATURE

TO-SIDE • LOC-PROG

WEIGHT 3 EXPRES

0-1 « SET

0-1-2 • S=T

1-2 • SET

>

TASK-STRUCTURES (

TOP-GOAL * < TRANSFORM THE INlTIAt-OBJ INTO THE F I N A L - 0 8 J .)

INITIAL-OSJ • (LEFT < SONS 2 FATHERS 1 BOAT BOAT)

RIGHT (SONS 0 FATHERS 0))

FINAL-OBJ « (LEFT t SONS 3 FA I HERS 0 >

RIGHT (FATHERS 1 SONS Z BOAT BOAT))

Figure 64: The specification for GPS of the father and sons task.

- 232 -

WEIGHT i (X + X + Y)

SAIL * i SAIL IKE tiOAT F R O M T H E F ^ U M - S I D E 10 T H E T O - S t U E WITH X FATHERS

A N D Y SONS I N I T . J

I CkcATIDN-UHERATQR

V A R - D O " A I N

1. T H E F R U M - S I D f c I S A N E X C L U S I V E - M E M B E R O F T H E S I D E S .

2. THE T O - S I D E IS A N E X C L U S I V E - M E M B E R O F THE SIDES .

3. Y I S A CUNSTRAMED-MfcMBEK O F 0-1 . THE CONSTRAINT IS T H A T

THE WEIGHT I S l N - T H c - S E T 1-2 .

4• X I S A CONSTRAlMtD-MEMBER D F 0-1-2 , THE C O N S T R A I N T I S T H A T

THE WEIGHT IS I N - T H = - S E T 1-2 .

MOVES

1 . M O V E T H E B O A T A \ T H E F R O N - S I U E T O T H E B O A T A T T H E T O - S L O E .

2. D E C R E A S E B Y T H E A M O U N T X T H E F A T H E R S A T T H E F R Q M - S I D E A N D

A D D I T T O T H E F A T H E R S A T T H E T O - S I D E .

3 . DECREASE B Y THE AMOJNT Y THE S D N S AT THE fKOM-SIDE AND ADD

I T T O THE SONS A T THE T O - S I D C .)

SIDES m < LEF f RIGHT)

0-1 « t 1) 1)

0-1-2 n (0 1 2) .—;

1-2 ' (1 2)
—J

S-L - (THE SONS AT THE LEFT >

S-R * (THE SONS AT THE RIGHT) 1

F-L • (THE FATHERS AT THE LEFT) —
F-R • (THE M T H E H S AT THE RIliHT)

D-L * < THE HOAT AT THE LEFT '

D-R * < THE BOAT AT THE RIGHT)
—<

]

233

BASlC-MAT;h = < COMP-FtAT-LlSI (r-N S-K D-R > >

COMP-OdJE:TS = (d A S K - M A T C H)

DIFF-OPDE-llHb * (1 . < F-L F-H)

2 . (S-L. S-N I

3. (D-L D-*) >

TABLE-OF-;0iMNiC;T!ONS = t I CONMON-D[FFfcRENU£ SAIL))

LIST-Or-VAR = (FROM-SIDE TO-SIDE X Y)

O B J - A T f R H = (FATHfcHS SONS d JAT)

r - END

FIGURE 65. The tree structure representation of INITIAL-OBJ.

and D-R are all stated relative to the TOP-NODE of an OBJECT-SCHEMA.. The

types of differences which pertain to the FATHERS are most difficult

according to DIFF-ORDERING, while the easiest types of differences are

those which pertain to the BOAT.

BASIC-MATCH and COMPARE-OBJECTS indicate that the only types of

differences detected by the match are those that pertain to the RIGHT bank

of the river. These types of differences are sufficient because what is

not at the RIGHT must be at the LEFT.

TABLE-OF-CONNECTIONS designates SAIL to be relevant to reducing all

types of differences and thus gives GPS no selectivity. OBJ-ATTRIB is a

list of the ATTRIBUTES of this task and LIST-OF-VAR lists the variables

which appear in Fig. 64.

NEW-OBJ is a selection criterion which was given to GPS as an IPL

structure. It is used in several tasks and is described on page 171.

Behavior of GPS

Fig. 66 shows the behavior of GPS in solving the task in Fig. 1. In

attempting TOP-GOAL, GPS notices that neither the father, his sons, nor the

boat is at the RIGHT bank of the river. GOAL 2 is generated because, accord

ing to DIFF-ORDERING, F-R is more difficult than either D-R or S-R. To

reduce this difference, SAIL, with X equal to 1, and TO-SIDE equal to LEFT,

is applied to the INITIAL-OBJ (GOAL 3, OBJECT 5).

Since there are not enough SONS at the RIGHT in OBJECT 5, (GOAL 4,

GOAL 5), GPS attempts to move two of them to the RIGHT (GOAL 6). GPS

notices that before it can apply this operator, the BOAT, must be brought

back to the LEFT (GOAL 7). Although bringing the BOAT back to the LEFT

results in the INITIAL-OBJ (GOAL 8), it allows the two SONS to be moved to

the RIGHT (GOAL 9, OBJECT 6).

1 TOP-GOAL TRANSFORM 1 N [T I A L - Q B J INTO FINAL-OBJ (SUBGOAL 0?! NONE)

2 GO*.- 2 REDUCE F - R ON INITIAL-OBJ (SUBGOAL O F TOP-GOAL)

3 GOAL 3 APPLY SAIL WITH X • 1 . TO-SIDE ' RI GMT, T O I N I T I A L - O B J (SUBGOAL O F 2)
SET t FROw-SIDE • LEFT, Y * 0
O B J E C T 5t (L E F T t F A T H E R S O S O N S 2) R I G H T (F A T H E R S I S O N S O B O A T B O A T))

2 GOAL 4 TRANSFORM 5 I N T O FINAL-OBJ (SUBGOAL O F TOP-GOAL)

3 GOAL 5 REDUCE S-fi ON 5 (SUBGOAL OF 4)

« GOAL 6 APPLY SAIL WITH Y « 2. TO-SIDE * RIGHT, TO 5 <SUBGOAL O T 5)
SETl FROM-SIDE • LEFT, X = 0

5 GOAL 7 REDUCfc D.L ON 5 (SUBGOAL OF 6)

6 GOAL 8 APPLY SAIL WITH T O - S I D E * LEFT, T O 5 (SJ8G0AL O F 7)
SETt FROM-SIDE - RIGHT, X *< 1, Y • 0
OBJECT INITIAL-OBjt (L E F T (F A T HERS 1 SONS 2 30AT BOAT) R IGHT(FATHERS 0 SONS 0>>

5 GOAL 9 APPLY SAIL «ITH Y • 2, T O - S I D E . RIGHT, TO INITIAL-OBJ (SUBGOAL O F 6)
SET 1 FROM-SIDE = L E F T , X = 0

OBJECT 6> (LEFT(FATHERS 1 SONS 0> RISHT(FATHERS 0 SONS 2 BOAT BOAT))

3 GOAL 10 TRANSFORM 6 INTO FINAL-OBJ (SJBGOAL OF 4)

4 GOAL 11 REDUCE F-R ON 6 (SUBGOAL OF 10)

5 GOAL 12 APPLY SAIL HUH X * 1, TO-SIDE * RIGHT, TO 6 (SUBGOAL O F 11)
SET I FROM-SIDE • LEFT, Y * 0

6 GOAL 13 REDUCE D-L O N 6 (SJBGOAL O F 12)

7 GOAL 14 APPLY SAIL WITH TO-SIDE = L E F T , TO 6 (SUBGOAL OF 13)
SET > FROM-SIDE = RIGHT, X » 0. Y = 1
OBJECT 7t (LEFT(FATHERS 1 SONS 1 BOAT BOAT) RIGHT(FATHERS 0 SONS 1))

6 GOAL 15 APPLY SAIL WITH X * 1, TO-SIDE - RIGHT, TO 7 (SUBGOAL OF 36)
SETl FROM-SIDE • L&FT, Y = 0
OBJECT 8* (LEFT(FATHERS 0 SDNS 1) RIGHT(FATHERS 1 SONS 1 BOAT BOAT))

Figure 66: The performance of GPS on the father and sons task.

- 237 -

4 G O A L 1 6 T R A N S F O R M B I N T O F 1 N A L ' O B J (S U B G O A L O F 1 0 >

5 G O A L 1 7 R E D U C E S - R O N 8 (S U B G O A L O F 1 6)

6 G O A L 1 8 A P P L Y S A I L W I T H Y * 1 , T O - S I D E - R I G H T , T O B (S U B G O A L O F 1 7 >
S E T I F R O M - S I D E • L E F T , X * 0

7 G O A L 1 9 R E D U C E D - L O N 8 (S U B G O A L O F I B)

8 G O A L 2 0 A P P L Y S A I L W I T H T O - S I D E » L E F T , T O 8 (S U B G O A L O F 1 9 >
S E T t F R O M - S I D E • R I G H T . Y • 1 , X = 0
O B J E C T 9 1 (L E F T < F * T H E R S 0 S O N S 2 B O A T B O A T) R I G H T (F A T H E R S 1 S O N S 0 > >

7 G O A L 2 1 A P P L Y S A I L W I T H T • 1 . T O - S I D E . R I G H T , T O 9 (S U B G O A L O F I B)
S E T l F R O M - S I D E - L E F T , X ' 0 ^

5 G O A L 2 3 T R A N S F O R M 4 I N T O F I N A L - O S J (S U B G O A L O F T O P - G O A L)

6 G O A L 2 4 S E L E C T F R O M 4 A / C N E W - O B J O F F B N A L - O B J (S U B G O A L O F 2 3)
9 S E L E C T E D

6 G O A L 2 5 T H A N S F O R M 7 I N T O F J N A L - O B J (S U B G O A L O F 2 3)

7 G O A L 2 6 R E D U C E F - R O N 7 (S U B G O A L O F 2 5)

6 G O A L 1 5 A P P L Y S A I L W I T H X « 1 , T O - S I D E • R I G H T , T O 7 (S U B G O A L O F 2 6)
S E T l F R O M - S I D E • L E F T , Y • 0

O B G y fl! (I ^ . E F T t ^ ' A T ^ E ' R S 0 SONS 1) R l Q H T i F A T H E R S 1 SO^S 1 BOAT 9 0 A T J J

•4 QOAIgi 16 T R A N S f Q R M fl I N T O F*-INAL" Q B J (S l J B G Q A ^ O f ID)

4 G O A L 1 1 R E D U C E F - R O N 6 (S U B G O A L O F 1 0)

S G O A L 2 3 T R A N S F O R M 4 I N T O F I N A L - O S J (S U B G O A L O F T O P - G O A L >

6 G O A L 2 4 S E L E C T F R O M 4 A / C N E w - Q U J O F F i l N A L - O B J (S U B G O A L O F 2 3)
9 S E L E C T E D

6 G O A L 3 D T R A N S F O R M 9 J N T O F I N A L - 0 8 J (S U B G O A L O F 2 3)

- 238 -

7 G O A L 3 1 H E J J y C E S - R O N 9 (S U B B O A L O F 3 d)

S G O A L 3 2 A P P L Y S A I L W I T H Y • 2 , T O - S I D E - R I G H T , T O 9 (S U B G O A L O F 3 1 >
S E T I F R O M - S I D E > L E F T , X « 0

OBijJE^T ^ 21 ^ L E F T (F A T H E R S 0 S O ^ l S D) ^ J - f i W T f F A T H E R S 1 SONS 2 B O A T 0 0 A T) J

7 G O A L 3 3 T R A N S F Q R M 1 2 I N T O F l N A L ™ O B J 4 S U B G O A I * O F 3 0)
S U C C E S S

- 239 -

After one of the SONS brings the BOAT to LEFT, GPS moves the father

to the RIGHT (GOAL 15). GPS attempts to move the remaining son at the

LEFT across the river by bringing the BOAT back to the LEFT (GOAL 20).

Since GPS does not realize that the other son was brought to the LEFT with

the BOAT, only one son is moved to the RIGHT (GOAL 21) which causes GOAL 16

to be regenerated.

At this point, GPS realizes that it is in trouble and looks for some

thing new to do. GOAL 25 is created because OBJECT 7 has never been trans

formed into the FINAL-OBJ and because it is derived from INITIAL-OBJ.

(OBJECT 4 in GOAL 23 is the SET of all objects derived from INITIAL-OBJ. It

is generated internally by GPS.)

Since GOAL 25 does not lead to any new results, GOAL 30 is generated

in an attempt to generate a new GOAL. After moving two sons across the

river in OBJECT 9, GPS notices that it is successful (GOAL 33).

Discussion

This task is very similar to the missionaries and cannibals task.

Both tasks involve moving two different kinds of people across a river in a

small boat. But their formulations for GPS are quite different, in that

none of the operators, objects, or differences are the same. The father and

sons task cannot be given to GPS in terms of the missionaries and cannibals

task, e.g., the father and sons task is the same as the missionaries and

cannibals task except that nobody can be eaten and there is only one father,

etc. On the other hand, after giving the task of integrating an expression

to GPS, only TOP-GOAL had to be changed in order for GPS to integrate a

different expression.

F. MONKEY TASK

This task was invented by McCarthy [27] as a typical problem for

the Advice Taker program, McCarthy [26]. In a room is a monkey, a box,

and some bananas hanging from the ceiling. The monkey wants to eat the

bananas, but he cannot reach them unless he is standing on the box when

it is sitting under the bananas. How can the monkey get the bananas? The

answer is that the monkey must move the box under the bananas and climb

on the box before he can reach the bananas. The problem originates in the

study of the problem solving ability of primates. Its interest lies not in

its difficulty, but in its being an example of a problem subject to common

sense reasoning.

GPS Formulation

In the formulation of this task shown in Fig. 67, INITIAL-OBJ repre

sents the monkey in the room. INITIAL-OBJ is an OBJECT-SCHEMA consisting

of only a single node with the three ATTRIBUTES listed in OBJ-ATTRIB. There

are four operators which represent the various acts that the monkey can per

form. CLIMB is the operator whose application corresponds to the monkey

climbing on the box. An application of WALK corresponds to the monkey walking

to the place, X, which must on on the floor of the room; i.e., in the set

PLACES. MOVE-BOX represents the fact that the monkey can move the box to any

place on the floor of the room and GET-BANANAS is the statement that the

monkey can get the bananas provided that the box is under the bananas and

that he is standing on the box.

The three types of differences, Dl, D2, D3, of this task correspond

to an incorrect value of one of the three ATTRIBUTES (OBJ-ATTRIB) of this

task: Dl to MONKEY'S-PLACE, D2 to BOX'S-PLACE, and D3 to CONTENTS-OF-MONKEY1S-

DECLARE <

BOX'S-»lACE "» ATTRIBUTt

CLIMB = f*0>>E-OPERATOH

CONTENTS = C F - M f) N K E Y ' S - H A N D * ATTRIBUTE

DESIREB-ORJ = DESCRISEU-03J

01 = FEATURE

U2 = F E A T U R E

D3 ' FEATURE

GET-BAHArjAS » MOVE-OPEHATOK

I*I1T1A^-QBJ => OBJECT-SCHEMA

MONKEY'S=PLACE = ATTRIBUTE

MOVE-BOX = POVE-OPERATOR

PLACES = SET

W A L K = M O V E - O P E R A T U R

)

TASK-STRU3TURES (

T O P - G O A L = (TRANSFORM THE INITIAL-OBJ INTO THE D6STRED-0BJ .)

INlTIAi.-QBJ » » MONKEY'S-PLACE PLACE-1 BOX'S-PLACE F L A C E - 2

C O N T E N T S - O F - M O N K E Y ' S - H A N U EMPTY >

0BJ-ATTR1B = I MONKEY'S-PLACE BOX ' S-P'.ACE C 0 N T E N T S - O F - M O N K E Y T S - H A N D

DESIREB-ORJ * (TEX-DESCRIPI I ON

THE CONTENTS-OF-MONKEY'S-HAND EOjA-LS BANANAS ,)

PLACES = (P L A C E - 1 PLACE-2 UNDER-BANANAS .)

CLIMB 5 I SPEATION-OP6HAT0R

PRETESTS

1. THE MONKEY'S-PLACE EOUALS THE BOX'S-PLACE .

MOVES

1. ",QPy ON-BOX AT THE M O N K E Y ' S - P L A C E .)

WALK = (CP.FAT1CIN-OPERATOR

VAP-I50MAIN

X IS IN-THE-SET OF PLACES .

MOVES

COPY X AT THE M U N n t y < s - P L A C E .)

MQVE-B3X = (CHEATION-UPEPATOR

WAR-DOMAIN

1.. X IS iN-THb-SET OF PLACES .

PRETESTS

1 . T H E MONKEY'S-PLACE IS IN-THE-SET OF PLACES .

?, THt MON«EY'b-PLACE EQJALS THE BOX'S-PLACE .

MOVES

1. COPY X AT THfc MONKEY'S-PLACE .

•>, COPY X AT THb BOX'S-P.ACE ,)

GET-BAHANAS = < CREAT I UN-OPERATOR

PRETESTS

1. THE BOX'S-PLACE EQJALS JNDER-BANANAS .

2. THE MONKby'S-PLACE EQUALS ON-BOX .

MOVES

1. COPY BANANAS AT THE CONTENTS-OF-MONKEY' S-HA ND . >

Dl * < MQNKEY'S-PLACb 1

D2 = (BOX'S-PLACE)

03 a (CONTENTS-OF-MONKEY'S-HAND)

DIFF-08PERING = (D3 D2 Dl >

TABLE-3F.CONNECTIONS = ((LQMMON-DIFTERENCE HALK CLIMB MOVE-BOX

GET-BANANAS I)

- 243 -

LIST-OS-vAR » (x)

)
E N D

HAND. DIFF-ORDERING indicates that it is most difficult to change the

contents of the monkey's hand while the monkey can easily change his

position. TABLE-OF-CONNECTIONS contains no information about the desir- _

ability of operators, except that operators are desirable to reducing ^

differences. LIST-OF-VAR indicates that X is the only variable in Fig. 67.

Behavior of GPS ~

Fig. 68 shows how GPS solved the problem in Fig. 67. The monkey ~"

cannot reach the bananas in initial configuration of the room (GOAL 1,

GOAL 2, GOAL 3) because the box is not under the bananas (and because the J

monkey is not on the box, which is less important). In order to move the -

box under the bananas (GOAL 4, GOAL 5), the monkey must be standing beside -

the box; consequently, the monkey walks to the box (GOAL 6, GOAL 7) which ~"

results in the new configuration of the room—OBJECT 4. After the monkey

moves the box under the bananas (GOAL 8, OBJECT 5), he still cannot reach J

the bananas (GOAL 9) because he is not standing on the box. So, the monkey _

climbs on the box (GOAL 10, GOAL 11, OBJECT 6) and finally plucks the —

bananas from the ceiling (GOAL 11, GOAL 12, OBJECT 7). ~*

Discussion

INITIAL-OBJ and all OBJECT-SCHEMAs derived from INITIAL-OBJ are models

of the various configurations of the room. They are not complete models of —

the room, e.g., none of them contain any information about things hanging — 1

from the ceiling. But they contain sufficient detail of the room for this ~"

simple problem.

The representation of the problem in an Advice Taker problem solver; e.g., ^

the program developed by Black [4] is quite different. There, the initial

configuration of the room is not a single entity that models the situation,.

as in GPS's representation, but a group of independent linguistic expressions

1 TOP-GOAL TRANSFORM INITIAL-OBJ I N T O DESIRED-03J (SUBGOAL O F N O N E)

2 GOA „ A RfcUJCE 0 3 - O N INITIAL-OBJ (SJBGOAL O F T O P - G O A L)

J G O A L 3 A A P L T G E T - B A N A N A S T O I N I T I A L - O B J (S U B G O A L O F 2)

« G Q * L 4 R E D U C E U 2 O N I N I I I A L - O B J (S J B G O A L O F 3)

5 G O A L 5 A D P L T M O V E - B O X " 1 T H X * U N D E R - B A M A N A S , T O I N I T I A L - O B J (SUB&OAL O F 4)

6 G O A L 6 R E J U C E Dl ON I N I T I A L - O B J (S U B G O A L O F 5)

7 G O A L 7 APPLY W A L K W I T H x » P L A C E - 2 , T O I N I T I A L - O B J (S U B G O A L O F 6)
QtlJECT 4! (M U N K E Y ' S - P L A C E PLACE-2 BOX'S-PLACE P L A C E - 2 C O N T E N T S - O F - M O N K E Y ' S - H A N D

EMPTY)

f> GOAL B APPLY M O V E - B O X WITH X • JNDER-3ANANAS, T O 4 (SUBGQAL O F 5)
OBJECT t>l (M O N K E Y ' S - P L A C E UNO E R - B A N A N A S B O x ' S - P L A C E U N D E R - B A N A N A S C O N T E N T S - O F - M O N K E Y ' S - H A N D

EMPTY)

A G O A L 9 A P P L Y Gtl-oANANAS TO 5 (S U B G O A L O F 3)

S GOAL 1 0 REOULE Dl O N 5 (SUBGOAL O F 9)

a GOAL 1 1 APPLY CLIMB T O 5 (S U B G O A L O F 10)
O B J E C T b t (M O N K E Y • S - P L A C E O N - 3 0 X B O X ' S - P L A C E U N D E R - B A N A N A S C O N T E N T S - O F - M O N K E Y ' S - H A N D

EMPTY)

5 GOAL 1 2 APPLY GET-BANANAS TO 6 (S U 3 G 0 A L O F 9)
UBJtCT /» (M O N K E Y ' S - P L A C E O N - 3 0 X B O X ' S - P L A C E U N D E R - B A N A N A S C O N T E N T S - U F - M O N K E Y • S - H A N D

B A N A N A S)

2 G O A L U T R A N S F O R M / I N T O D E S I R E P - O B J I S J B G O A L O F T O P - G O A L)

SUCCESS

- 246 -

that describe the situation. In solving this task, the program deduces

new linguistic expressions and not new room configurations. For example, _

in solving this task, Black's program deduces the linguistic expressions, -

a. The monkey can move the box under the
bananas.

b. The monkey can stand on the box when
it is under the bananas.

These linguistic expressions only describe part of a possible room configura- _.

tion in much the same way the DESIRED-OBJ only describes part of a room _

configuration. —

Both representations have advantages. Linguistic expressions are

good for representing imperfect information which is difficult to represent ~

in a model, e.g.,

The monkey is in one of two places. ~~

On the other hand, models contain implicit information which need not be

stated explicitly; e.g., -

the monkey can only be in one place at a time,

or —»

two squares are adjacent on a chess board.

Which of these two representations is better probably depends upon the task —

and for some tasks, such as the monkey task, they are probably equally good. ^

This issue is discussed in Newell and Ernst [16]. ~~

G. THREE COINS PUZZLE

In this task, Filipiak [13], there are three coins setting on a

table. Both the first and third coins show tails, while the second coin

shows heads. The problem is to make all three coins the sarae--either

heads or tails—in precisely three moves. Each move consists of "turning

over" any two of the three coins. For example, if the first move consisted

of turning over the first and third coins, all of the coins would be heads

in the resulting situation. But the task is not solved because only one

move was taken instead of the required three.

GPS Formulation

In Fig. 69 which gives the GPS formulation of the task, INITIAL-OBJ

represents the situation in which the first and third coins are tails and

the second coin is heads. The tree structure representation of INITIAL-OBJ

is given in Fig. 70. Each node, except the TOP-NODE, represents a coin

and has two ATTRIBUTES, BOTTOM and TOP. The values of these ATTRIBUTES are

the side of the coin facing the table and the side of the coin showing,

respectively. The ATTRIBUTES of the TOP-NODE—MOVES-TAKEN and MOVES-

REMAINING- -keep track of the number of moves which are involved in producing

the OBJECT-SCHEMA.

The DESIRED-OBJ represents the OBJECT-SCHEMAs in which the TOP of all

three coins are the same and the MOVES-REMAINING is 0 (precisely three moves

were involved in producing the OBJECT-SCHEMA). TOP-GOAL is the statement of

the problem.

The only operator in this task is FLIP-COINS which "turns over" any

two of the three coins. FLIP-COINS also increments by 1 the value of the

MOVES-TAKEN and decrements by 1 the value of the MOVES-REMAINING.

RENAME I

COIN-1 = FIRST

C01N-2 = SECOND

COIN-3 = THIRB

)

DECLARE <

BOTTOM x ATTRIBUTE

CO I MS = SET

DESI RE i - O B J = DESCRIBEU-OBJ

Dl => FEATURE

02 » FEATURE

D3 i FEATURF

Dl = FEATURE

FLIP-C8IMS * MOVE-OPERATOR

INITIAL-OBJ * OBJECT-SCHEMA

MOVES-REMAINING = ATTRIBUTE

MOVES-TAKEN » ATTRIBUTE

TOP - ATTRIBUTE

X » LOB-PROG

Y = LOB-PROG

)

TASK-STRUSTURES (

TOP.GOAL = (TRANSFORM THE INITIAL-OBJ INTO THE DESI RED-OBJ t)

INITIAU-OBJ = 1 MOVES-REMAINING 3 MOV=S-TA*EN n

COIN-1 (BOTTOM HEADS TOP TAILS)

C0IN-2 I BOTTOM TAILS TOP HEADS)

COIN-3 < BOTTOM HEADS TOP TAILS))

DESIREB-QBJ « I TEX-DESCRIPTION

1. THE TOP OF COIN-2 EQUALS THE TOP OF COIN-3 .

2. THE TOP UF COIN-3 EQUALS THE TOP OF COIN-1 .

3. THE M0VES-REMAININ3 EQUALS D . >

COINS 5 < COIN-1 COIN-2 COIN-3 >

FLIP-C9INS = (% TURN COINS X AND Y OVER I CREATION-OPERATOR

VAR-DOMAIN

1. X IS AN EXCLUSIVE-MEMBER OF THE C H N S .

2 , Y IS AN EXCLUSIVE-MEMBER OF THE COINS .

PRETESTS

1. THE MOVES-REMAINING IS GREATER-THAN 0 .

MOVES

1. OECRtASE dy THE AMOJNT 1 THE MOVES-REMAINING AND

ADD IT TO THE MOVES-TAKEN .

2. MOVE THE BOTTOM OF X TO THE TOP OF X .

3. MOVE T H E dOTTOM OF Y TO THE TOP OF Y .

4. MOVE THE T Q P OF X TO THE BOTTOM OF X ,

5. MOVE THE TOP OF y TO THE BOTTOM OF Y ,

Dl a (TOP OF COIN-1 i

OS = (TOP OF COIN-2 t

D3 * < TOP OF COIN-3)

U4 s (MOVES-REMAINING)

DIFF-08UERIKG = I t Dl D2 UJ D4 I)

TABLE-8F.C0NNPCT10NS * C t COMMON-DIF-ERENCE FLIP-COINS >)

LIST-OJ-VAR = (X Y)

OBJ.ATTRIB = (TOP BOTTOM MUyES-REMAINING MOVES-TAKEN)

)

- 250 -

E N D

T

- 251 -

MOVES-TAKEN
MOVES-REMAINING

0
3

COIN-1 /COIN-2

TOP TAILS
BOTTOM HEADS

TOP HEADS
BOTTOM TAILS

MIN - 3

TOP TAILS
BOTTOM HEADS

FIGURE 70. The tree structure representation of INITIAL-OBJ in the three
coins puzzle.

The types of differences of this task are Dl, D2, D3, (the TOPs

of the various coins) and D4 (MOVE-REMAINING). Others, such as BOTTOM-OF-

COIN-1 were not included because they could never be detected. DIFF-

ORDERING signifies that all of the types of differences are equally diffi

cult to reduce. TABLE-OF-CONNECTIONS indicates that FLIP-COINS is desirable

to reducing any type of difference.

LIST-OF-VAR designates X and Y to be variables and the ATTRIBUTES of

this task are listed in OBJ-ATTRIB.

Behavior of GPS

Fig. 71 is the behavior of GPS in finding a solution to the task in

Fig. 69. GPS notices that COIN-2 is not the same as COIN-3 (TOP-GOAL) and,

in an attempt to reduce this difference (GOAL 2), GOAL 3 is created.

OBJECT 4 is produced by "turning over" the first and second coins.

Since in OBJECT 4, COIN-3 is not the same as COIN-1 (GOAL 4, GOAL 5),

GPS turns over the first and third coins (GOAL 6) to produce OBJECT 5. Again,

COIN-2 is not the same as COIN-3 and the first and second coins are turned

over (GOAL 7, GOAL 8, GOAL 9). In attempting GOAL 10, GPS notices that it

has solved the problem.

Discussion

In the DESIRED-OBJ, the order of the arguments (for expedience) is

such that GPS does not make a mistake. GPS would make a mistake if the TESTs

in the DESIRED-OBJ were

1. THE TOP OF COIN-1 EQUALS THE TOP OF COIN-2.
2. THE TOP OF COIN-2 EQUALS THE TOP OF COIN-3.

Using this DESIRED-OBJ, the TOPs of the coins would not all be the same in

the result of the ninth GOAL. FLIP-COINS could not be applied to this object

- 253 -

1 TOP-GOAL TRANSFORM I N I T I A L - O B J INTO D E S I R E D - O B J (SUBGOAL OF NONE >

2 GOAL! 2 REDUCE 02 ON I N I T I A L - 0 6 J (SUBGOAL OF T O P - G O A L)

3 GOAL 3 APPLY FLIP-COINS WITH X • C 0 I N - 2 . TO INlTIAL-OBj (SUBGOAL OF 2>
SET! Y • C0IN-1
OBJECT 4 1 (MOVES-REMAINING 2 MOVES-TAKEN 1 C O I N - K T O P HEADS BOTTOM TAILS) C0IN-2

(TOP TAILS BOTTOM HEADS) COIN-3(TOP TAILS BOTTOM HEADS))

2 GOAL 4 TRANSFORM 4 INTO D E S I R E D - O B J ISUBGOAL OF T O P - G O A L)

3 GOAL 5 REDUCE 03 ON 4 (SUBGOAL OF 4)

4 GOAL 6 APPLY FLIP-COINS WITH X * C O I N - 3 , TO 4 (SUBGOAL OF 5>
SETl Y * C0IN-1
OBJECT 5 < (MOVES-REMAINING 1 MOVES-TAKEN 2 C O I N - K T O P TAILS BOTTOM HEADS) COIN-2

(TOP TAILS BOTTOM HEADS) C0IN-3(T0P HEADS BOTTOM TAILS))

3 30AL 7 TRANSFORM 5 INTO D E S I R E Q - O B J (SUBGOAL OF 4)

4 GOAL B REDUCE 02 ON 5 (SUBGOAL OF 7>

s G O A L 9 A P P L Y F L I P - C O I N S W I T H X > C O I N - 2 , T O 5 (S U B G O A L O F a >

SET! Y * C0IN-1
OBJECT 6 1 (MOVES-REMAINING 0 MOVES-TAKEN 3 C O I N - K T O P H E A D S BOTTOM TAILS) COIN-2

(T O P HEADS B O T T O M TAILS) C O I N - 3 (T 0 P H E A D S BOTTOM T*IL5>>

4 GOAL 10 TRANSFORM 6 INTO DESIRED-OBJ (SUBGOAL OF 7)

SUCCESS

because the MOVES-REMAINING is 0. (DECREASE requires its first argument

to be greater than 0.) Consequently, TRY-OLD-GOALS-METHOD would be evoked

which would cause a different feasible variable specification in applying

an operator. This new result of an old APPLY-GOAL, shortly would lead to

a solution.

The two ATTRIBUTES, TOP and BOTTOM, could be replaced by a single

ATTRIBUTE, ORIENTATION, whose value would be either HEADS or TAILS. In

this formulation, the second and third TRANSFORMATIONS of FLIP-COINS would

be replaced by the single TRANSFORMATION,

MOVE-FUNCTION OF THE ORIENTATION OF X TO THE
ORIENTATION OF X, THE FUNCTION IS Fl.

Fl is the function whose value is TAILS when its argument is HEADS and vice-

versa.

The most interesting aspect of this task is that its solution is

constrained to a fixed number of operator applications. Many other tasks

have this same property 1 0. This property can be represented by associating

with each object a counter which indicates the number of operator applica

tions involved in producing the object.

H. PARSING SENTENCES

Generative grammars of certain languages can be defined by a set of

phase structure rules, Chomsky [6] . Words in the language are divided into

classes called parts of speech. If a word can be used as the part of speech,

oi, it is a member of the class, a. In general, a word is a member of

lOThe match-stick problems used in Katona [20] is another kind of task which
has this property.

several parts of speech classes. In Fig. 72, the part of speech class a

is indicated by <&>. The meaning, for example, of rule 3 is that an

adjective phrase (AP), followed by a word that can be used as the part of

speech, adjective, is an adjective phrase according to the grammar.

Parsing sentences can be accomplished by using these rules as

replacement rules, i.e., any occurrence of the right side of a rule can be

replaced by the left side of a rule. Consider the example of parsing, accord

ing to the grammar in Fig. 72, the sentence,

Free variables cause confusion.

Assuming that 'free' can be used as an adjective, an application of rule 4

produces

NP cause confusion.

The use of rules 6 and 8 (assuming that 'cause* is a verb and 'confusion'

is a noun) yields

NP VP NP.

which is a sentence according to rule 1.

GPS Formulation

Fig. 73 is the GPS formulation of the task of parsing, according to

the grammar in Fig. 72, the sentence,

Free variables cause confusion.

INITIAL-OBJ represents the sentence to be parsed. After translation, it is

converted by a special routine for this task to the tree structure representa

tion in Fig. 74.

- 256 -

1. S <-NP VP NP .

2. S <-NP VBP AP .

3 . AP AP <ad jective>

4. AP <- <adjective>

5. NP <h- AP <noun>

6. NP «- <noun>

7. VP <-<adverb> <verb>

8. VP *- <verb>

9. VBP «- <adverb> <verb-be>

10. VBP *-<verb-be>

Definition of Symbols in the Above:

S sentence
NP--noun phrase
AP--adjective phrase
VP--verb phrase

FIGURE 72. Phase structure rules for a simplified form of English.

- 257 -

RENAME I

NEXT = F H a T

N E X T - > - N E X T = • I H a T - H R S T

)

DECLARE (

FREE = SET

VARIABLES « Stl

C A U S E a

CnNFbSlON • SET

PS a ' T T K I H J I z

HORD = ATTHlbJTt

OJ « FsATJHe

Al » 1uVE-UPtrt«TUK

A2 » 1JVe-uPfcH*TUK

N • M3VE-0KEKATUR

Nl - .1ui/t-uPEH«1urt

VI • MuVE-OPtrtATuH

V2 • MUVE-UPtHATQW

V-Bl * nUVfc-UPeMAlOrt

V-B2 • HUVt-OPcRnlUH

)

LIST (

D E S l R t u - u 3 j = I SbNTtUCE >

INITIAL-Uij * I tHkk VAR1«HLES CAJSe ClhJf Lib J (jr. PtrilUU J

51 * < (N O U N - p H K ^ S e V t P H - P H H A 3 6 M U U N - P H H A S . E PeWlUU J YIcLUS SENTCNCt >

52 m { (M U J N - P H K A S i t V t W R - S £ - P H K A 3 f c Hi) JfcL li V E-PHHAfiE CtHidL I YIELDS

BtMTENCt)

TASK-STRUCTURES I

TOP-GQAL • < THAiJiFCIHn THt I N 1 U A . - 0 8 J 1NTU THE UESI HfU-UB J .)

0BJ-Arr«I3 = t P S W U H U >

FREE = (MUUN AjJfcCTlvt VbHb)•

VARIABLES s I MJUU »

CAUSfc" < I NOUN Vt-NB)

CONFUSION a (I M O U N)

N • < i MUJ-PHhASt NUUN i CHtAHUN-UPfcRAIOH

PRETfcSl b

1. NUJN [!> lu-THE-SET UF THt NbXT WORD .

2 . AUJfcCTlVfc-PrtHASfc EJUALS THt PS .

MOVeS

1. COPT NUuN-PHKAbt Al THt PS .

2 . *UVe T H T MtXT-UF-NEXT TU THt NEXT .)

Al » I »AUJ-PHfl«iis huj» CRE»TI0N-OPb«ATOK

P^tTtSTS

1. ALiJeCTlVfc lb 1N-THE-SET UF THE PiEXT WUSD .

2 . THt P S fc'JUALS *\OJEi;TIV = -PHKASE ,

hOVeb

1. MGVfc THE MfcXT-UF-N=XT TU THfc NEXT .

2. COPY AUJECIIVE-PHHAbE AT THfc PS .)

A? • (1ADJS C h E d T I U N - O P E R A I U H

PRbTeSTS

1. AiJJtCTlVE IS IH-THE-SE1 UF 1 Hfc *OHU .

fOViS

1. RtHUVfc THt H O R J .

- 259 -

2. COPY nUJEtrIVE-PHHASE AT Tut PS .

Nl • C * NUUfc £ UHfcAl i U N - U P f c H * 1 0 H

PntTEbTS

1. N O U N IS J N - T M c - S t r OF 1 M b nilHO .

MuVES

l . HEMOVt THE »UMU .

J, C3PY N U U i k - P h k a s b M ' Tit Pi .)

VI • I lAUVtPo VeHS* ORE A T 1 J N-U-'EHATUH

PRtTtiTS

1. VERB IB I N - T H E - S E T UF THE NEXT WORU .

Z. AuVcHH IS I N - T H t - S s T Or THE WOHU ,

MOVES

1, HeMOVt i H e MOkU .

i . CU-'Y VcKa-PHHAS't Al The PS .

i . MOVE THE H e X T - U F - N S X T TO THE NEXT .)

V 2 a < iVtaRot LhCATiUN-UPEPAlOW

P R e T t s r s

1 . Vtrte- is Iii-IHE-SET UF IHfc WUHD .

M 3 V e ! >

I t HtMLiVc Trie WOHU

2 . OUPY VtKH-HMHAbt Al T H e PS .)

V-Bl •= t S * D V E f c 3 vE«ti-BEI CrtiATI JN-OPfcHATUft

P R c T t S T i

1 . Vfc*rJ-t>e la IN - 1 'HE-SET O F THE NEAT «OHLl

2 . AllVtHf IS 1 N - 1 M E - S = 1 Or THE WOHU .

MOVcb

1. r!t<)OVe I me WORD ,

UUPr vcHH-et-PHHaic AT THe PS .

3. M0V£ TH£ NfcXT-UF-NeUT TO TMb NEXT .)

V-B2 * (JVERa-at* URfcATiON-UPERATUR

PStTeSIb

1, VtRb-3E IS IN-THE-SET JT THE WOftD .

nUVES

1 . Rt'iOVb THE NURJ .

2. COfY vtHd-HE-PHHASc A T THt KS . >

Dl " I i

COMPAflb-OSjECTS • 1 b A S l O H A T C H)

BASIC-MATOH = (CUMP-F tAT-Ll ST (Ul J SsUbfeXPRbSSJONS >

DlKF-UHDERINb i i Ul J

TABLE*O r-0U^I4&C T j UN a = ((Ul 51 i2 VI V2 V-tjl V-32 Al A2 W HI I)

CI5T-U>-UPn 5 (SI Si)

END

is an OBJECT-SCHEMA, consisting of a single node which has SENTENCE as the

value of the ATTRIBUTE, PS. PS stands for part of speech (which is a poor

name for the ATTRIBUTE; grammatical type would be better). TOP-GOAL is

the statement that the problem is to show that INITIAL-OBJ is a SENTENCE.

There are only two ATTRIBUTES (OBJ-ATTRIB) in this formulation: The

value of WORD is always an ENGLISH word and the value of PS is always a

grammatical type defined by one of the rules of the grammar, i.e., the

correspondent to the left side of one of the ten rules in Fig. 72. Each

node of an OBJECT-SCHEMA represents either a part of speech (PS) or an

English word. Thus, precisely one of the two ATTRIBUTES, WORD and PS, has

a value at every node of every OBJECT-SCHEMA. This convention is implicit

in the formulation of the operators of this task.

There are ten operators, one corresponding to each of the ten rules

in Fig. 72. The function of each of these operators is to replace an

occurrence of the left side of the rule with the right side of the rule. SI

in Fig. 73 corresponds to the first rule in Fig. 72. It is a FORM-OPERATOR,

which is converted (by the same special routine which converts INITIAL-OBJ,

DESIRED-OBJ, and S2) to the tree structure in Fig. 75. Similarly, S2

corresponds to the second rule in Fig. 72.

Each WORD in INITIAL-OBJ is the SET of the parts of speech for which

the WORD can be used. (Since PERIOD cannot be used as any part of speech, it

is not a SET but a CONSTANT.) For example, CAUSE is the SET of two elements,

NOUN and VERB, because CAUSE can be used as either a noun or a verb. The

first TEST in the PRETESTS of N, which is the MOVE-OPERATOR representation

of rule 6 in Fig. 72, is satisfied if the NEXT WORD can be used as a NOUN;

thus, the TEST is satisfied if the NEXT WORD is CAUSE.

FIGURE 74. The tree structure representation of INITIAL-OBJ. The words at
the nodes are values of the ATTRIBUTE, WORD.

Input form: |NOUN-PHRASE

NEXT/

I VERB-PHRASEl

NEXT/

NOUN-PHRASE

NEXT/

f P E R I Q D l

Output form: I S E N T E N C E I

FIGURE 75. The tree structure representation of the operator, SI. The words
at the nodes are values of the ATTRIBUTE, PS except for PERIOD which is a
value of WORD.

The first TRANSFORMATION in N changes the PS to be NOUN PHRASE.

(According to the second TEST in PRETESTS, PS has the value, ADJECTIVE-

PHRASE.) The second TRANSFORMATION of N has the effect of deleting the

NEXT WORD from the string of WORDs and PSs represented by the OBJECT-SCHEMA.

The only type of difference used in this task is Dl which pertains

to the value of the ATTRIBUTE, PS. The type of difference that refers to

the value of WORD, is not used because the value of this ATTRIBUTE cannot

be changed. (Some of the operators REMOVE the value of WORD from a node

but none replace it with a different value.)

COMPARE-OBJECTS and BASIC-MATCH indicate that the match tests if the

values of PS at all corresponding nodes of two OBJECT-SCHEMAs are identical.

DIFF-ORDERING is a formality for this task because Dl is the only type of

difference, and TABLE-OF-CONNECTIONS signifies that all of the operators are

relevant to reducing Dl. LIST-OF-OPR indicates that SI and S2 must be

processed by the conversion routine after they have been translated.

Due to the lack of selectivity provided by the TABLE-OF-CONNECTIONS,

a desirability filter for FORM-0PERATORs was added to the REDUCE-METHOD

before giving this task to GPS. To test the desirability of a FORM-OPERATOR,

the FEATURE, which is the type of difference, is evaluated in the output form

of the FORM-OPERATOR. If this value is the same as the value of the differ

ence, the operator is considered desirable. The significance of this filter

is discussed later.

Behavior of GPS

Fig. 76 illustrates how GPS solved the task in Fig. 73. In Order to

achieve TOP-GOAL, GPS attempts to reduce Dl on the TOP-NODE of INITIAL-OBJ*

(GOAL 2). GOAL 3 is created because SI is considered desirable, i.e., the

OBJECT-SCHEMA produced by an application of SI has SENTENCE as the value of

1 TOP-G0*l TRANSFORM INITIAL-Ob-J INTO DESIRED-OBJ (SUBGOAL O F N O N E)

2 G O A L i RtOjCE Dl ON INITIAL-OBJ (SJBGOAL OF TOP-GOAL)

i GOAL 3 APPLY SI TO INITIAL-OBJ (SUBGOA.'OF 2)

4 iiOAL 4 REDUCE Dl ON INITIAL-OBJ (SJB30AL OF 3)

•> GOAL 5 APPLY N TO INITIAL-OBJ (S J 8 3 0 A L OF 4)

6 GOAL 6 REuuCE Dl ON INITIAL-OBJ (SUBGOAL OF 5)

7 GOAL 7 APPLY Al TU I N I T I A L - O B J (S U B G O A L OF «)

7 GOAL ft APPLY *2 TO INITIAL-ORJ (SUBGOAL OF A)
OBJECT / • (ADJECT IVE-PHRASE VARIABLES C A U S E C O N F U S I O N P E R I O D)

6 GOAL 9 APPLY N TO 7 (SUBGOAL OF 5)
OBJECT B< (NOUN-PHRASE CAUSr CONFUSION PERIOD)

A tiQA^ I r) APPLY Si TO 6 (S u B ^ O A L OF 3)

6 GOAL, i * ? APPLY VI TO NEXT B (SJBJOAL OF 1 1)

4 GOAL 13 ^ ^ / ^ (N O U N - P H R A S E V C H B ^ P ^ R 1 S E ° C O N F U S I O N P E R I O D)

S GOAL 14 APPLY Si TO 9 (SUBGOAL OF 10)

5 GOAL 15 REDUCE Dl O N NEXT NEXT 9 (SUBGOAL O F 14)

7 GOAL 16 APPLY N TO NEXT NEXT 9 (SUBGOAL O F 15)

7 GOAL 17 APPLY Nl TO NEXT NEXT 9 (S U B G O A L 0 ? 15)
O H J t C J 1 0 J tNOUN^PHHASE V E H B " " t * H R A S E N O U N — P H R A S E P E R I O D)

- 265 -

* GOAL 1* APPLY SI TO 10 (SU9G0AL OF 14)
DbJbCT 1 1 1 iSENTENCE)

2 GOAL 19 TRANSFORM 11 INTO USSIRED-OBJ ISUBGOAL OF TOP-GOAL*

SUCCESS

the FEATURE, Dl. Since the value of PS at the TOP-NODE of INITIAL-OBJ is

not NOUN-PHRASE (GOAL 4), GOAL 5 is created because N has the capability

of alleviating this difference.

GPS attempts to apply Al to INITIAL-OBJ (GOAL 6, GOAL 7), because

the value of PS must be ADJECTIVE-PHRASE in order for N to be applicable.

GPS notices that GOAL 7 is impossible because VARIABLES cannot be used as

an ADJECTIVE. GOAL 8 is created in reattempting GOAL 6, and OBJECT 7 to

which N can be applied is produced (GOAL 9, OBJECT 8). (This task uses a

special routine for printing OBJECT-SCHEMAs in order to make them more legible.

Only the values of ATTRIBUTES are printed; LOC-PROGs and ATTRIBUTES are not

printed.)

SI cannot be applied to OBJECT 8 (GOAL 10), because the value of PS

of the NEXT is not VERB-PHRASE. An attempt to apply VI to the NEXT of

OBJECT 8 (GOAL 11, GOAL 12) fails because CAUSE cannot be used as an ADVERB.

But the application of V2 to the NEXT of OBJECT 8 produces OBJECT 9 (GOAL 13).

Finally, noticing that CONFUSION can be used as a NOUN-PHRASE (OBJECT 10),

SI is applied and, since its result (OBJECT 11) is identical to the DESIRED-

OBJ, the task is solved.

Discussion

All of the operators of this task modify the value of PS at some node

and thus are desirable to reducing the type of difference, Dl. However, for

a particular difference, at most two operators are desirable. For example,

only SI and S2 can alleviate the difference,

PS should be SENTENCE.

Only information about the types of differences and not about the values of

differences can be put into the TABLE-OF-CONNECTIONS. Consequently, the

TABLE-OF-CONNECTIONS in Fig. 73 does not contain sufficient selectivity

and an additional desirability filter for FORM-OFERATORs had to be given

to GPS. On the other hand, the desirability-selection process for MOVE-

OPERATORs gives GPS sufficient selectivity. If SI and S2 (the only FORM-

OFERATORs in Fig. 73) were expressed as MOVE-OPERATORs, the desirability

filter would not need to be added. However, SI and S2 were expressed as

FORM-OPERATORs to demonstrate that the two different TYPEs of operators

can be used in the specification of a single task.

A great deal of effort has been devoted to the construction of effi

cient parsing algorithms for simple phase structure grammars, Oettinger [47].

The point of this example is not GPS's proficiency as a parser, but to

illustrate the kinship between heuristic search and syntactic analysis.

I. BRIDGES OF KONIGSBERG

In the German town of Ko'nigsberg ran the river Pregel. In the river

were two islands connected with the mainland and with each other by seven

bridges as shown in Fig. 77. Is it possible for a person to walk from some

point in the town and return to the same point after crossing each of the

seven bridges once and only once?

In 1736 Euler proved that this task is impossible, and his proof stands

as one of the early efforts in topology, Northrop [46]. However, we can give

GPS the task of finding a path which starts at point E in Fig. 77, crosses

all of the bridges precisely once and ends at point E, even though we know

a priori that a solution does not exist.

GPS Formulation

FIGURE 77. A schematic of the seven bridges of KSnigsberg. The numbers,
1, 2, 7, are labels for the bridges, and the letters, B, C, D, E, are
labels for the different sectors of town.

1

- 269 -

DECLARE

BRIDGES * SET

8RIDGE-1 " ATTRIBUTE

BRIDGE-Z i ATTRIBUTE

BR IDGE-3 * ATTRIBUTE

BRIDGE-4 » ATTRIBUTE

BRIDGE-S i ATTRIBUTE

BRIDGE-6 * ATTRIBUTE

BRIDGE-? • A T f RI BUTE

CROSS • MOVE-OPERATOH

CURRENT-POINT » ATTRIBUTE

DESIRED-03J * DESCHIBED-OfcJJ

Dl • FfcATJhE

D2 FEATURE

D3 FEATURE

DA • FEATURE

05 FEATJRE

Ob • FEATURE

D7 • FfcATJRE

DS FEATJRE

ED • SET

EB a SET

CB 9 SET

CD * SET

DB • SET

ENDS ' ATTRIBUTE

1NITIAL-03J = OBJECT-SCHEMA

X • AdfUSUTfc

)

TASK-STHUCTURES <

QBJ-ATTRI3 => I 8RlDGe-l BR 1DGt-2 dHIDGE-3 BRlUGE-4 BRIDGE-5

BRiDGE-6 BHIDGc-7 CURRENT-POINT I

TOP-GOAL m < TRANSFORM THE IN1TIAL-03J INTO THE DESIHEO-OBJ . >

IN1T1AL-03J •= < CURRENT-POINT fc)

DESIRtU-03J = < TtX-UESCRlPTIUN

1. X fcUUALS CHOSF'iO , FOR-ALL X 1N THE BRIDGES .

J , THt CUHRENI-POINT fcUUALS E . >

BRIDGES « (BR1DGE-1 BHIDGt-2 BRIDGE-3 BRIDGE-4 BRIDGE-3 BR1DGE-6 BRlDGE-7)

CROSS • < CREATION-OPERATOR

VAR-DOMAIN

1. OTHER-END IS AN tXCLJSIVt-MEMBER OF THE ENDS OF THE

PARTICULAR X .

2. NtXT-POINT IS AN E X C L U S I V E - M t N B E R OF THE ENDS OF THE

PARTICULAR X .

3. X IS 1N-THE-SET UF BRIDGES .

PRETESTS

1. CURRfcNT-PQI NT EQUALS THE OTHEK-ENO .

2, X IS UNDEFINED .

MOVES

1 , COPY CROSSED AT X .

8. COPY NEXT-POINT AT THE CURRENT-POINT . J

BRIDGE-1 « (ENDS ED 1

BRIDGE-2 « (ENDS EB)

BRI0GE-3 * (ENDS ES)

BRIDGE*-* * < ENDS CB)

BR IDGE-5 • ENDS CB >

BRIDGE-6 • < ENDS CO)

BRIDGE-7 3 (ENDS DB >

ED • (E 0)

EB > (E 3 >

c e • < C 3

CD * t C D >

DB > (D 3

Dl • < 3RIDGE-1)

D2 - (3RIDGE-2)

03 - (9RIUGE-3)

D4 • (BRIDGE-*)

D5 « (9HIDG6-5)

D6 * (BRIDGE-6)

D7 - I 3R1DGE-7 ")

D8 - I CURRENT-POINT (

DIFF-ORDERING * (1. < Dl D? D3 D4 D5 D6 0/ >

2. DB >

TABLE-OF-CONNECTIONS « (< COMMON-DIFFERENCE CROSS > >

LIST-OF-vAR * (X NEXT-POINT OTHER-END)

>

END

up to eight ATTRIBUTES (OBJ-ATTRIB). The value of CURRENT-POINT is either

B, C, D, or E corresponding to where GPS would be standing in Fig. 77. The

values of the other ATTRIBUTES indicate which bridges have been crossed.

(BRIDGE-1 corresponds to the bridge labeled 1 in Fig. 77; BRIDGE-2 corresponds

to the bridge labeled 2; etc.) For example, BRIDGE-1 has been crossed if

the value of the ATTRIBUTE, BRIDGE-1, is CROSSED; otherwise, BRIDGE-1 has not

been crossed.

TOP-GOAL is the statement of the task. INITIAL-OBJ represents the

situation when GPS is standing at point E and has not crossed any bridges.

The DESIRED-OBJ is a DESCRIBED-OBJ which represents the situation when

all of the bridges have been CROSSED and GPS is standing at point E. The

first TEST in the DESIRED-OBJ requires that all of the ATTRIBUTES in the SET,

BRIDGES, have the value CROSSED. And the second TEST is satisfied if CURRENT-

POINT has the value E.

The only operator in this task is CROSS whose application corresponds

to walking from the point, OTHER-END, across the bridge, X, to the point,

NEXT-POINT. The third TEST in VAR-DOMAIN requires that X is in the SET,

BRIDGES. Each member of BRIDGES is not an atomic symbol, but a data structure

that is an encoding of the two points connected by the bridge, e.g., BRIDGE-1

connects E and D. The first two TESTs in VAR-DOMAIN signify that OTHER-END

and NEXT-POINT stand for the two points connected by the bridge, X.

The PRETESTS indicate that in order to cross the bridge, X, GPS must

be standing at one end of X and that GPS has not previously crossed X. The

MOVES designate that in the resultant object X is CROSSED and the value of

CURRENT-POINT is NEXT-POINT. (According to the PRETESTS, the CURRENT-POINT

must be OTHER-END in the object to which CROSS is applied.)

In the formulation in Fig. 78 of this task, there are eight differ

ences, D1...D8, each referring to the value of one of the eight ATTRIBUTES.

DIFF-ORDERING indicates that these differences that refer to the status of

a bridge, D1...D7, are more difficult than D8 which refers to the point

where GPS would be standing in Fig. 77. TABLE-OF-CONNECTIONS designates

that CROSS is relevant to reducing any type of difference and LIST-OF-VAR

lists the variables which appear in Fig. 78.

GPS often detects several of the types of differences, Dl, D2,...D7,

between two objects. Since they are all equally difficult, GPS must arbi

trarily select one and attempt to reduce it. For this reason, the TRANSFORM-

METHOD was slightly generalized for this task. If an attempt to reduce a

difference, which is detected by the TRANSFORM-METHOD, fails, the method

does not necessarily fail. Instead, another equally difficult difference

will be selected and the GOAL of reducing this difference will be generated.

This modified TRANSFORM-METHOD was also used in the missionaries and canni

bals task and is discussed in more detail on pages 171-2.

Behavior of GPS

Fig. 79 illustrates how GPS attempted to solve the task in Fig. 78.

In attempting TOP-GOAL, GPS detects the dif ferences—Dl. . .D7—and since they

are all equally difficult, GPS selects one, D?\ to REDUCE (GOAL 2). GPS

attempts to apply CROSS with X equal to BRIDGE-7 because it is relevant to

reducing D7 on INITIAL-OBJ. GPS could CROSS BRIDGE-7 by walking from B to D,

if CURRENT-POINT had the value B instead of E (GOAL 4). After crossing

BRIDGE-2 (GOAL 5, OBJECT 4), BRIDGE-7 is CROSSED (GOAL 6, OBJECT 5).

Since BRIDGE-6 is not CROSSED in OBJECT 5 (GOAL 7, GOAL 8), GPS

crosses it (GOAL 9, OBJECT 6). GPS attempts to CROSS BRIDGE-5 from B to C

1 T O P - G O A L 1 T R A N S F O R M I N I T I A L - O B J J N T O D E S J R E D - O B J (S U B G O A L O F N O N E)

2 9 0 A . I 2 R E D U C E 0 7 O N I N I T I A L - O B J (S U B G O A L O F T O P - G O A L)

3 G O A L 3 A P P L Y C R O S S W I T H X • B R I D G E - 7 , T O I N I T I A L - O B J (S U B G O A L l O F 2)
S E T I O T H E R - E N D • St N E X T - P O I N T • D

4 G O A L 4 R E D U C E 0 8 O N I N I T I A L - O B J (S J B G O A L O F 3)

5 G O A L 5 A P P L Y C R O S S W I T H N E X T - P O I N T • 9, T O I N l T I A L - O S J (S U B O O A L O F 4)
S E T l O T H E R - E N D • E , X • B R I D S E - 2
O B J E C T 4 1 (B R I D S E - 2 C R O S S E D C U R R E N T - P O I N T B)

4 G O A L 6 A P P L Y C R O S S W I T H X • B R I D G E - 7 , T O 4 (S U B G O A L l O F 3)
S E T I O T H E R - E N D * B , N E X T - P O I N T * D

O B J E C T 5 1 (B R I D G E . 2 C R O S S E D B R I D G E - 7 C R O S S E D C U R R E N T - P O I N T 0*

2 G O t L 7 T R A N S F O R M 5 I N T O D E S I R E D - O B J (S U B G O A L O F T O P - G O A L)

3 G O A L 8 R E D U C E D 6 O N 5 (S U B G O A L O F 7)

4 G O A L 9 A P P L Y C R O S S W I T H X • B R I D G E . 6 , T O i 5 I S O B S O A U O F 6 1
S E T I O T H E R - E N D • D , N E X T - P Q] N T • C

O B J E C T 6 1 (B R I D G E . 2 C R O S S E D B R I D G E - 6 C R O S S E D B R l O O E - 7 C R O S S E D C U R R E N T - P O I N T C)

3 3 0 A L 1 0 T R A N S F O R M 6 J N T O D E S I R E D - O B J (S U B G O A L O F 7)

4 G O A L 1 1 R E D U C E 0 5 O N 6 (S U B G O A L O F 1 0)

5 G O A L 1 2 A P P L Y C R O S S W I T H X • B R I D G E - 5 . T O 6 (S U B S O A L O F 1 1)
S E T I O T H E R - E N D • B , N E X T - P O I N T « C

6 G O A L 1 3 R E D U C E U 8 O N 6 (S U B G O A L ! O F 1 2)

7 G O A L 1 4 A P P L Y C R O S S W I T H N E X T - P O I N T « B , T O 6 (S U B G O A L O F 1 3)
S E T l O T H E R - E N D • C , X • B R I D 3 E - 4
O B J E C T 7 < (B R I D G E . 2 C R O S S E D B R l D G E - 4 C R O S S E D B R I D G E - 6 C R O S S E D B R I D G E . 7 C R O S S E D

C U R R E N T - P O I N T B)

6 G O A L 15 A P P L Y C R O S S W I T H X " B R I D G E - 5 , T O 7 (S J B G O A L O F 1 2)
S E T I O T H E R - E N D • B , N E X T - P O I N T - C

- 275 -

OBJECT Bt (BRIDGE-2 CROSSED BRIDGE-4 CROSSED BRIDGE-S CROSSED BRIDGE-6 CROSSED
BRIDGE-7 CROSSED CURRENT-POINT CJ

4 GOAL 16 TRANSFORM S INTO DESIRED-OBJ (SUBGOAL OF 10)

5 GOAL 17 REDUCE D3 ON S (SUBGOAL OF 16)

6 GOAL 13 APPLY CROSS WITH X • B R I D G E - 3 . TO 6 (SJBGOAL OF 17)
SETI OTHER-END • B. NEXT-POINT • E

7 GOAL 19 REDUCE D8 ON 8 (SUBGOAL Of lB)

3 GOAL 2D APPLY CROSS WITH NEXT-POINT • B, TO S (SUBGOAL OF 19)
SET 1 OTHER-END • B» X « BRID3E-7

5 GOAL 21 REDUCE Dl ON S (SUBGOAL OF 16)

6 GOAL 22 APPLY CROSS WITH X * B R I D G E - 1 , TO 6 (SJBGOAL OF 2 1 .
SET I OTHER-END • 0. NEXT-POINT • E

7 GOAL 23 HEDUCE DB ON B (SUBGOAL OF 2 2 >

9 GOAL 24 APPLY CROSS WITH NEXT-POINT • 0. TO 8
SETt OTHER-END • B, X * BRIDGE-?

(SUBGOAL OF 23)

4 GOAL ll R E D U C E U5 O N 6

4 G O A L 25 R E D U C E D4 O N 6

(SJBGOAL OF 10)

(SUBGOAL OF 10)

5 GOAL 26 APPLY CROSS WITH X * B R I D G E - 4 , TO 6
S E T I OTHER-END - B, NEXT-POINT « C

(SUB30AL OF 25)

6 GOAL 27 REDUCE DB ON 6 (SUBGOAL OF 26)

4 GOAL 29 REDUCE U3 ON 6 (SUBGOAL OF 10}

5 GOAL 30 APPLY CROSS WITH X • BRIDGE-3. TO 6
SETI OTHER-END « B. NEXT-POINT « E

(SUB30AL OF 29)

6 GOAL 31 R E D U C E DB ON 6 (SUBGOAL OF 3 0)

4 G O * . 33 REDUCE Dl ON 6 (SUBGOAL OF 10)

5 GJAL 34 APPLY CROSS ulTH X m BRlBSE-i, TO 6 (SUBGOAL OF 33)
SETI OTHER-END • [>. NEXT-POINT » E

6 GOAL J5 REDUCE DB ON 6 (SUBGOAL OF 34)

7 GOAL 36 APPLY CROSS WITH NEXT-POINT = D, TO 6 (SUBGOAL OF 35)
SET! OTHER-END * 5, X = BRID5E-7

3 G3AL 3 REDUCE D6 ON 5 (SUBGOAL OF 7)

3 G3»L J7 REDUCE Db O N i> (SUBGOAL OF 7)

4 SQA*. 39 APPLY CROSS WITH x * BRIDGE-5. TO 5 (SUBGOAL OF 37)
SET I OTHER-END « 3, NEXT-POINT • C

5 GOAL 39 REDUCE DH ON 5 (SUBGOAL OF 3B)

6 GOAL 4n APPLY CROSS WITH NEXT-POINT * 6, TO 5 (SUBGOAL OF 39)
SET I OTHER-END > B . X > BRID36-7

3 G:*L «1 REDUCE U4 O N 5 (SUBGUAL O F 7)

4 GOAL 4? APPLY CROSS WITH X = B R I D G E - 4 , TO 5 (SUBGOAL OF 41)
SET J OTHER-END « B, NEXT-POINT a C

5 GOAL 43 REDUCE OB O N 5 (SUBGOAL OF 4J>

3 G DAL 45 REDUCE D3 ON 5 (SUBGOAL OF 7)

4 GOAL 46 APPLY C H O S S «ITH x = 8 R 1 D G E - 3 . TO 5 (SUBGOAL OF 45)
SETI OTHER-END = S , NEXT-POINT - E

5 GOAL 47 REDUCE D8 O N » (SUBGOAL OF 46)

3 GD«L 49 REOUCE Dl UN 5 (SUBGOAL OF 7)

- 277 -

4 GOAL 50 APPLY CROSS WITH X » 8 R I U S E - 1 , TO 5 (SUBGOAL OF 491
SETl OTHER-END • 0, NEXT-POINT » E

3 SOAL 51 TRANSFORM 9 INTO DESIREO-OBJ (SUBGOAL OF 7)

4 GOAL 52 REDUCE D6 ON 9 (SUBGOAL OF 51)

5 GOAL 53 APPLY CROSS WITH X a 8 R I D 3 E - 6 , TO 9 (SUBSOAL OF 52)
SET i OTHER-END » 0, NEXT-POINT • C

6 GOAL 54 REDUCE U8 ON 9 (SUBGOAL OF 53)

7 SOAL 55 APPLY CROSS WITH NEXT-POINT = D, TO 9 (SUBGOAL OF 54)
SET I OTHER-END • 9> X • 8RID3E-7

4 GOAk. 56 REDUCE U5 ON 9 (SUBGOAL OF 51)

5 GOAL 57 APPLY CROSS UlTH X • U R I D G E - 5 , TO 9 (SUB30AL OF 56)
SETl OTHER-END « 9 , NEXT-POINT * C

6 GOAL 5S REDUCE D8 ON 9 (SUBGOA t OF 57)

SOAL 59 APPLY CROSS WITH NEXT-POINT * B,
SfcTl OTHER-END • E, X i BRID3E-3
OBJECT lOt (BRIDGE-1 CROSSED 3RIDG

TO 9 (SUBGOAL OF 5B>

OBJECT lOt (BRIDGE-1 CROSSED 3RIDGE-2 CROSSED BRIDGE-3 CROSSED BRIDGE-7 CROSSED
CURRENT-POINT 8)

6 SOAL 60 APPLY CROSS WITH X • B R I D G E - 5 , TO 10 (SUBGOAL OF 57)
SETl OTHER-END * St NEXT-POINT > C
OBJECT 1 1 ! (BRIDGE-1 CROSSED 3RIDGE-2 CROSSiD BRIDGE-3 CROSSED BRIDGE-5 CROSSED

BRIDGE-7 CROSSED CJRRENT-POI NT O

4 SOAL 61 TRANSFORM 11 INTO DESI R E D - O B J (SUBGOAL OF 51)

5 GOAL 62 REDUCE D6 ON 11 (SUBGOAL OF 61)

6 GOAL 63 APPLY CROSS WITH X « B R I D G E - 6 , TO 11 (SUBGOAL OF 62)
SET I OTHER-END « D, NEXT-POINT • C

7 GOAL 64.REDUCE DA ON 11 (SUBSOAL OF 63)

7

<i GOAL 6b APPLY CROSS WITH NEXT-POINT » D. TO 11
SET• OTHER-END * C, X • BRID3E-6

(SUBGOAL OF 641

OBJECT 1 2 : (WRIDGE-1 CROSSED 9RIDGE-2 CROSSED BR IDGE-3 CROSSED B R I D G E - ; CROSSED
BPIDGE-6 CROSSED BRIDGE-7 CROSSED CURRENT-POINT D>

7 3QAL 6* APPLY CROSS WITH X * 3RID3E-6. TO 12
SETI OTHER-END » D, NEXT-POINT • D

(SUBGOAL OF 6J)

7 30AL 64 HfcDUCE DB ON 11 (SUB30AL OF 63)

5 GOAL 67 REDUCE D4 UN 11 (SUBGOAL OF 61)

6 GOAL 6* APPLY CROSS WITH X » B R I D G E - 4 , TO 11
SET! OTHER-END " B, NEXT-POINT * C

(SUBGOAL OF 67)

7 GOAL 69 HeDuCE DB ON 11 (SUBGOAL OF 681

9 GOAL 70 APPLY CROSS WITH N E X T - P O H T « B, TO 11 (SUBGOAL OF 69)
SETI OTHER-END • C, X • BRID3E-4
OBJECT 13: (BR IDGE-1 CROSSED 3RIDGE-2 CROSSED BRIDGE-3 CROSSED BRIDGE-4 CROSSED

WRIDGE-5 CROSSED BRIDGE-7 CROSSED CURRENT-POINT 8>

7 GOAL 71 APPLY CROSS WITH X • B R I D 3 E - 4 , TO 13 (SUBGOAL OF 68)

(GOAL 10, GOAL 11, GOAL 12) but cannot because the CURRENT-POINT in

OBJECT 6 is C instead of B. Each bridge can be CROSSED in two directions

but GPS does not realize that BRIDGE-5 can be CROSSED in the other direction.

To make the CURRENT-POINT B (GOAL 13) BRIDGE-4 is CROSSED (GOAL 14, OBJECT-7).

BRIDGE-5 can be CROSSED in OBJECT-7 (GOAL 15) which produces OBJECT-8.

Since none of the bridges can be CROSSED in OBJECT-8, the attempts to

CROSS BRIDGE-3 (GOAL 18) and BRIDGE-1 (GOAL 22) both fail. GPS reattempts

GOAL 11 to no avail because all of the desirable operators have been tried.

Another attempt to achieve GOAL 10 generates GOAL 25 because D4 is as

difficult as D5. But attempting GOAL 25 eventually leads to the generation

of a GOAL, identical to GOAL 14, which does not get retried. (This is the

reason GOAL 27 is abandoned.) All other attempts to achieve GOAL 10 fail,

because GPS fails to reduce D3 on OBJECT 6 (GOAL 29) and fails to reduce Dl

on OBJECT 6 (GOAL 33).

In reattempting GOAL 7, GPS eventually produces OBJECT 9 (GOAL 50).

GPS manages to cross six of the seven bridges twice (OBJECT 12, OBJECT 13)

but shortly thereafter exhausts its memory.

Discussion

Although GPS was given the problem of starting from and returning to

point E, by slightly reformulating INITIAL-OBJ and DESIRED-OBJ, Fig. 78

would specify the problem of starting from and returning to an arbitrary

point. The revised INITIAL-OBJ would be

(CURRENT-POINT X STARTING-POINT X)

and the DESIRED-OBJ would check if the CURRENT-POINT EQUALS the STARTING-

POINT instead of point E. X would be bound by applying an operator to the

INITIAL-OBJ.

Eventually, GPS would give up on this task, because it would run

out of things to do. But GPS would have tried all possibilities before

it ran out of things to do, even though GPS would not realize it had

disproved the problem by exhaustion. In attempting a TRANSFORM-GOAL, a

difference is generated for each bridge which is not CROSSED. The modified

TRANSFORM-METHOD will generate a REDUCE-GOAL for each such difference and

GPS will attempt to apply an operator that crosses the bridge to which the

difference pertains.

In attempting most impossible tasks, GPS would not attempt to search

the entire problem space because some parts of the space would appear undesir

able. However, in this task, most GOALs appear equally desirable because

the difference types, Dl, ...D7 are all equally difficult according to DIFF-

ORDERING. A better DIFF-ORDERING and a better set of difference types would

increase GPS's selectivity. But even if GPS could use more sophisticated

types of differences (than the FEATURES used currently), it is not clear what

types of differences should be used to increase GPS's selectivity.

The impossibility of this problem lies in the topological properties

of the city and by studying these properties, Euler discovered the problem to

be impossible. GPS cannot see the impossibility because it sets out to CROSS

bridges instead of discovering topological properties of the city. Such

limitations in problem solving programs are discussed in detail in Newell [37].

J. WATER JUG TASK

Given a five gallon jug and an eight gallon jug, how can precisely

two gallons be put into the five gallon jug? Since there is a sink nearby,

a jug can be filled from the tap and can be emptied by pouring its contents

down the drain. Water can be poured from one jug into another, but no

measuring devices are available other than the jugs themselves11.

This is only a particular water jug task. In others, the number

of jugs, the size of the jugs, and the amount of water desired may be

different, but the general problem is the same. Sometimes, as an additional

constraint, none of the water can be poured down the drain1'*. This task

has been used extensively in psychological experiments designed to investi

gate certain aspects of human behavior, Luchins [25],

GPS Formulation

Fig. 80 is the formulation of the task for GPS. INITIAL-OBJ, an

OBJECT-SCHEMA whose tree structure representation is shown in Fig. 81, is

the situation when both the five gallon jug and the eight gallon jug are

empty. A jug is represented by a node which has three ATTRIBUTES, listed

in OBJ-ATTRIB:

MAXIMUM whose value is the size of the jug;
CONTENTS whose value is the amount of water in
the jug;

SPACE whose value is the size of the jug minus
the amount of water in the jug.

SPACE is clearly superfluous, but it makes the statement of the operators

simpler.

FINAL-OBJ consists of a single TEST to be applied at the TOP-NODE of

an OBJECT-SCHEMA. FINAL-OBJ represents the situation when there are two

gallons in the five gallon jug and TOP-GOAL is the statement of the problem.

HThe source of this problem is #19 in Mott-Smith [32].

12Given a three liter jug and a five liter jug, both of which are empty, and
given an eight liter jug full of ale, how can two men split the ale? In this
task, a jug cannot be filled from the tap and, of course, none of the ale can
be poured down the drain.

SKIP-wOKUa *

SALLUia

)

RENAMb i

JUCi-1 - F INST

u u i w = S J C J N U

I

DECi-ARE <

FINAL-D3J = L) = S C H l dbU-OHJ

INITJAL-USJ = J i j e C T - s X H f e H A

EMPTY-JUli = MUVt-UPfcKATUH

FILL-JuS = MUVb-UPERKfUR

CHEAT t-WA r & H = MUvb-UPfcRAlOR

DESTftClT-wATEH = MOVE-OPERATOH

« FEA7Uris

Dl-Z » FtATUHs

DJ>-1 » PcATUH=

D2-2 * FbAfUH*

CONTbMIS « ATTRIBUTE

MAXIMUM = ATTRidUIE

SPACE « ATTRl^JTs

JUGS = SET

NUMBERS) = SE1

X » LOC-PRU3

Y « L O u - p ? u a

I

TASK-STHJUTURfcS (

- 283 -

I N l U A L - U a J * < J U G - 1 (CONTENTS IS U SPACE IS 5 GALLONS

MAXIMUM lb S GALLONS)

~ ~ JU3-ii (iJONTsNTS IS I) SPACE IS 8 GALLONS

MAXIMUM IS 8 GALLONS J)

OBJ-AfrSIS • (CONTENTS SPACE MAXIMUM 1

FINAL-J3J » < THjf TEX-UESCRIPIION IS THE CUNTENTS OF" JUG-1 EQUALS i

G A L L U P • >

~ > TOP-GUAL * (TRANSFGrtrt THE INlTIAL-OHJ INTO THE FINAL-UUJ ,)

CREATi-HAjbR « < i FILL JUG X WITH WATER F ROM THE TAP %

CHEAf I Q . J - O P e H A T O H

' VArt-JOHrt1N

X lb A CQNSIKAlNfcU-MfcMBfcK OF THE JUGS , THE CONSTRAINT

_ IS THAT THE CONrtNTs OF X DUES NOT-b'UUAL THE MAXIMUM OF

X .

MUJbS

* ~ 1. COPY fHE MAXIMUM UF X AT THE CONTENTS OF X .

4 . CUPY ,1 Al TH= SPACE I fl X .)

DESTROf-WATSK = I i KJilR *WAY ALL UK THE rfAjEK IN JUG X i

CHt^riO.J-OPcHATJM

VAH-OOMMN

— X la A CijNSIHAlNbU-HbNdbri OF THE JUGS , THE CONSTRAINT

IS 1'riA T THE CONTENTS UF X DUES NOT-EUUAL (1

M O V e S

1. COPY THE MAXIMUM uF X AT THb SPACE IN X ,

i , UJPY 1 Al THz CON I EN TS OF X ,)

E M P T Y - J U G « * EHPfY ALL OF J U J X 1*TU JUG T %

(CHtATl UJ<l-OPcrtATJrt

V A H I - i J U . i A I N

1. A is A.* cXCLJS'IVs-MsMbfcH UF M s JUGS .

2 . Y la' A N cxCi_Ja! V:-Mfc.lBcr* UF Mb" Julia .

j . z: is I N - M E - s e T jr NunaeHS ,

P*e I taTS

1 . I He GJNTc:jTa OF X EUJALS / .

MGVcS

1 , UELtfb M b sMJJNT I HHOB 1Hb SPACE IN Y ANt

AJU If T'J THe CUNTtNTa UF Y ,

2. C O P Y >j A r T « = C O N S E N T S O F X .

J, COPY M t MAXIMUM Or X AT I HE SPACE IN X . I

FILL-JU8 * i cMPj f PMri C OF JUa X INTO JUG Y i

(J r l e A I lOrt-UPE^ATO-*

V A H - U U M A 1 N

•1. X IS AN EXULUsWe-MtMdfcH Or THb JUGS .

2 . Y 1 3 art fcXCLUSlVE-rlfcrlBtH Ur THE J U 8 S ,

i . 2 IS IN-Trte-StT OF NUMbEHS .

CritTtSTS

1 . Tub SPACE IN Y EJJALS I .

N J Y e S

1 . ufcLbft THE AMJUNT I FKOM TMg CONTENTS O F X

m n j *UU IT TO THE SPACE IN X .

2 . COPY M E MAXIMUM JF Y AT THE CONTENTS UF Y .

J. CUPY U AT THE SPACfc IN Y . I

NUMBERS » l i 2 J t »)

JUGS = (JUli-l JUii - 2 >

01-1 a (THE CONTENTS OF JUG-1 .)

D i - 2 « (THE SPACb I.N JUG-i . >

- 285 -

Dj-i = < T H E C O N T E N T S O F J U G - . ; , J

u ? » 2 x < THE BPACt IN JJtt-2 .)

OlFF-UHDE^iNli = (I jJl-i Ul-<! U2-1 U2-2) I

T*ttLb-uF-:ONNtCTlUNS = < (CO 1MQN-UI ft fcHENCE M U - J U l i tMPTY-JUG

L)£STROT-MATbR C R 6 A T E - X ATEfl) I

LlST-iJK-VAN = (X T L)

>

MAXIMUM 5
CONTENTS 0

SPACE 5

MAXIMUM 8'
CONTENTS 0

SPACE 8

FIGURE 81. The tree structure representation of INITIAL-OBJ in Fig. 80.

J

There are four operators in this task. CREATE-WATER corresponds

to filling a jug, X, from the tap. VAR-DOMAIN of CREATE-WATER requires

that X is a jug which is not full. DESTROY-WATER corresponds to pouring

the contents of jug, X, down the drain. According to its VAR-DOMAIN, X

must be a jug which is not empty.

EMPTY-JUG and FILL-JUG are the operators for pouring Z gallons^ of

water from jug X into jug Y. Z must be in the SET, NUMBERS, i.e., an

integer between 1 and 5 inclusively. Since the five gallon jug is always

one of the jugs, Z cannot be more than 5 and it is never a fractional part

of a gallon. An application of EMPTY-JUG corresponds to pouring all of the

contents of jug X into jug Y. In order to do this the contents of jug X (Z)

must fit into jug Y. If this is not the case, the first TRANSFORMATION, which

adds the water to jug Y, will fail. The other two TRANSFORMATIONS have the

effect of removing the water from jug X.

FILL-JUG is used to fill jug Y with water from the contents of jug X.

The first TRANSFORMATION removes the water from jug X and will not be

applicable unless there is more water in X than there is SPACE in Y. The

other two TRANSFORMATIONS add the water to jug Y.

The types of differences for this task, Dl-1, Dl-2, Dl-3, and Dl-4,

refer to the CONTENTS and SPACE of the two jugs. DIFF-ORDERING and TABLE-OF-

CONNECTIONS are a mere formality for this task because, for lack of something

better, all differences are considered equally difficult and all of the

operators are considered desirable to reducing all types of differences. Thus,

these data structures contain no information about the nature of the problem.

13Z, which stands for an amount of water, should not be confused with X and Y
which stand for jugs instead of an amount of water.

LIST-OF-VAR indicates that X, Y, and Z are variables.

NEW-OBJ is a selection criterion given to GPS as an IPL-V structure

and hence does not appear in Fig. 80. It is used to select from a SET of

OBJECT-SCHEMAs those members which do not appear in the statement of any of

the TRANSFORM GOALs generated thus far. This task and several others use

this criterion in the TRANSFORM-SET-METHOD (see page 171 for a detailed discuss

ion). The rationale is that a new GOAL can be created by transforming an

object that fulfills this criterion into the desired situation.

Behavior of GPS

Fig. 82 shows how GPS solved the task in Fig. 80. The only difference

between INITIAL-OBJ and FINAL-OBJ (TOP-GOAL) which GPS found is that the

amount of water in the five gallon jug should be increased by two gallons.

To reduce this difference (GOAL 2), GPS tries to apply FILL-JUG with Y being

the five gallon jug (GOAL 3). This operator is considered desirable because

it has the effect of increasing the amount of water in the five gallon jug

even though, if successful, it would increase the amount of water by five

gallons instead of two gallons. GOAL 3 is abandoned by GPS because, before

the operator could be applied, the amount of water in the eight gallon jug

must be increased by at least five gallons, which is as difficult as increas

ing the amount of water in the five gallon jug.

In reattempting GOAL 2, GPS tries to pour precisely two gallons of

water into the five gallon jug from the eight gallon jug (GOAL 4). In order

to do this, the eight gallon jug must contain precisely two gallons, and

GOAL 4 is abandoned. GOAL 5 is created in another attempt to achieve GOAL 2

because CREATE-WATER with X equal to the five gallon jug has the desirable

effect of increasing the amount of water in the five gallon jug.

- 289 -

1 TOP-GOAL TRANSFORM INITIAL-OBJ INTO FINAL-OBJ (SUBGOAL OF NONE)

2 GOAL' 2 REDUCE D l - 1 ON INIylAL-OBJ (SUBGOAL OF TOP-GOAL)

3 GOAL 3 APPLY FILL-JuG WIT" Y « J U G - 1 . TO INITIAL-OBJ (SUBGOAL OF 21
SET! X = J U G - 2 , 2 * 5

3 GOAL 4 APPLY EMPTY-JUG WITH Z 1 Z# Y • J U G - 1 , TO INITIAL-OBJ (SUBGOAL OF 2)
SETI X » JUG-2

3 GOAL 5 APPLY CREATE-WATER WITH X * J U G - 1 , Tj 1N|TIAL-0BJ (SUBGOAL OF 2)
OBJECT 41 (J U G - K S P A C E 0 CONTENTS 5 MAXIMUM 5) J U G - 2 (S P A C E S CONTENTS 0 MAXIMUM

H >)

2 GOAL 6 TRANSFORM A INTO F1NAL-OBJ (SUBGDAL OF TOP-GOALl

3 GOAL 7 REDUCE D l - 1 ON A (SUBGOAL OF 6)

4 G Q A L : 8 APPLY FILL-JUG WITH Z « 3 , X = J J G - 1 , TO A (SUBGOAL OF 7)
SETS Y • JUG-2

A LiOAL 9 APPLY EMPTY-JUG WITH X = J U G - 1 , TO A (SUBGOAL OF 7)
SET I Y = J U G - 2 . Z = 5
OBJECT 5 1 (J U G - K S P A C E 5 CONTENTS 0 MAXIMUM 5) J U G - 2 (S P A C E 3 CONTENTS 5 MAXIMUM

6))

3 GOAL 1 0 TRANSFORM 5 INTO FINAL-OBJ (SJBGOAL OF 6)

4 viQAL 1 1 REDUCE D l - 1 ON 5 (SUBGOAL OF 1 0)

5 GOAL 12 APPLY FILL-JUG WITH f = J J G - 1 , TO 5 (SUBGOAL OF 11)
SElt X * J U G - 2 , 2 * 5
OBJECT 4 1 (J U G - 1 (S P A C E 0 CONTENTS 5 MAXIMUM 5) J U G - 2 (S P A C E 3 CONTENTS (1 MAXIMUM

B))

3 3JAL 14 TRANSFORM 3 INTO FINAL-OHJ (SJBGOAL OF TOP-30AL)

4 G Q A L 1 5 SELECT FROM 3 A/C NEW-OBJ OF F I N A L - O B J (SU3G0AL OF 1 4)

NDNfc SELECTED

2 Q O A ^ , 2 REDjCE Di*l £] N I N I T [£ £ _ ~ O B J (S U B G O A L O F T O P - G O A L)

3 J ' 1 A L 1 ^ T R A N S F O R M 3 I N T D F I N A L ™ 0 I ^ J (SjB-GOAL, O F T O P * J O A L)

2 S Q A L 2 RtiD• JC£ O J L ^ J I Ô i [iV[jIAL - " " O B J (S U & U O A L O F TOp^GOAL)

3 G 3 * L ? R E O ' J C E D 1 " 1 O N 4 (S U 9 G 0 A L , O F 4)

4 ^ O a L 17 APPLY LESTROY-WATER WITH X = J U 3 - 1 , TO 4 (SUBGOAL OF" 7)
OBJECT INITJAL-DBJ! (J U G - K 3 P 4 C E 5 CONTENTS 0 MAXIMUM 5) JU3-2(SPACE H CONTENTS

0 MAXIMUM 8))

1 TOP—GOAL TRANSFORM INITIAL—QBJ INTO FINAL-OBJ (SUBGOAL OF NONE)

3 GOAL 7 REDUCE 01 — 1 ON 4 (SuBGDAL OF S)

•—J

2 GOA^ 2 REDjCE Dl-1 UN INlTlAL-OBJ (SUBSOAL OF TOP-GOAL)

3 GOAL 7 REDUCE Dl—1 ON 4 (SUBGOAL OF J)

2 GOAL. 2 REDJLE 01—1 ON INITIAL—08J (SUBGOAL OF TOP—GOAL)

4 SQAL IX REDUCE Ul-1 ON 5 (SUBGOAL OF 10)

5 GOAL 19 APPLY EMPTY-JUG WITH Z * 2, Y e J U G - 1 , TO 5 (SUBSOAL OF 11)

SET t X = JUG-2 _j

5 GOAL 20 APPLY CREATE-WATER WITH X = J J G - 1 , TO 5 (SUBGOAL OF 11)
OBJECT 61 (J U G - K S P A C E -0 CONTENTS 5 MAXIMUM 5) JUG-2 < SPACE 3 CONTENTS 5 MAXIMUM

8) >
4 GOAL 21 TRANSFORM 6 I M O FINAL-OBJ (SUBGOAL OF ltl)

5 GOAL 22 REDUCE Dl-1 ON 6 (SUBGOAL OF 21) I

6 GOAL 23 APPLY FILL-JUG WITH Z = 3, X = J U G - 1 , TO 6 (SUBGOAL OF 22)
SETl Y » JUG-2
OBJECT 7 1 (J U G - K S P A C E 3 CONTENTS 2 MAXIMUM 3) JUG-2<SPACE 0 CONTENTS a MAXIMUM

B I I

1

J

291

5 GOAL 24 TRANSFORM 7 INTO FINAL-03J (SUBGOAL OF 21)

SUCCESS

In OBJECT-4, the five gallon jug contains too much water (GOAL 6,

GOAL 7) and GOAL 8 is generated in an attempt to pour three gallons out

of the five gallon jug. OBJECT 5 (the result of GOAL 9) does not contain

enough water (GOAL 10, GOAL 11) and the water in the eight gallon jug is

poured into the five gallon jug (GOAL 12) which results in the previously

generated OBJECT 4. Since the GOAL of transforming OBJECT 4 into FINAL-OBJ

is not a new GOAL, GPS does not try to attempt it, but looks for something

else to do.

GOAL 14 is created in an attempt to generate a new GOAL. OBJECT 3,

which is generated internally, is the SET of all OBJECT-SCHEMAs derived

from the INITIAL-OBJ. GOAL 15 and thus GOAL 14 fail because all of the

OBJECT-SCHEMA in OBJECT 3 have been used in a TRANSFORM GOAL.

As a last resort, GPS tries previously generated GOALs in an attempt

to produce new results. In reattempting GOAL 2, GPS finds that it has

already tried all of the desirable operators. GOAL 14 and GOAL 2 are aban

doned because all of the methods for achieving these GOALs have been

exhausted14.

In reattempting GOAL 7, GPS creates GOAL 17 because DESTROY-WATER

with X equal to the five gallon jug decreases the contents of the five gallon

jug. Unfortunately, GOAL 17 leads to an old object, INITIAL-OBJ, and an

old GOAL, TOP-GOAL, and again GPS retries unfinished goals.

After fumbling a bit, GPS decides to retry GOAL 11. GOAL 19 is

considered infeasible and GOAL 20 results in OBJECT 6 which has five gallons

14A11 GOALs which were selected to be tried get printed. Some of these GOALs
never really get attempted because all of the methods have been tried to
exhaustion.

in both jugs. After filling the eight gallon jug with the five gallon jug,

(GOAL 23) GPS notices that it has solved the problem (GOAL 24).

Discussion

Often the jug which is to contain the desired quantity of water is

not given. The task of producing two gallons in either jug can be specified

by reformulating the FINAL-OBJ in Fig. 81 as

ONE OF THE TWO-GALLON-TESTS is TRUE.

And the TWO-GALLON-TESTS is

1. THE CONTENTS OF JUG-1 EQUALS 2.
2. THE CONTENTS OF JUG-2 EQUALS 2.

However, the current object-difference process is not sophisticated enough

to produce a difference when a disjunctive set of TESTs (indicated by TRUE)

is not satisfied

The use of differences in this task seems to be a rather ineffective

means of guiding the problem solving. None of the APPLY GOALs generate

subgoals. If a difference is detected in applying an operator, it is always

as difficult as the difference which the application of the operator is

supposed to reduce, because all of the types of differences are considered

equally difficult (see DIFF-ORDERING). In such cases, GPS rejects the

variable specification produced by the feasibility-selection process for MOVE-

OPERATORs.

A better set of types of differences- and a better ordering on them

15There is no conceptual difficulty in generalizing the object-difference
process. But the difference produced should be the easiest difference,—
because satisfying any TEST will do.

might improve GPS's performance on this task. However, even if GPS could

use more sophisticated types of differences (than FEATURE), it is unclear

what types of differences would improve the problem solving. GPS might _

need some additional problem solving mechanisms, e.g., planning, in order —

to be more proficient at this task. ~

K. LETTER SERIES COMPLETION

This task, which is found in aptitude tests,, is to add the next few

letters to a series of letters. Several computer programs for solving this _

task (and similar tasks) have been constructed (Pivar and Finkelstein [48]; —

Simon and Kotovsky [55]; Williams [65]). A simple example of this task is ~"

given below:

B C B D B E —

The two blanks ('_') indicate that the next two letters of the series must "

be supplied. The answer to this task is that the next two letters are B and

F respectively. This answer is based on the hypothesis that all odd letters _

of the series are B's and the even letters of the series are in the order of _

their occurrence in the English alphabet.

The next few letters of the series are derived from some general ^

description of the series, as in the example above. In general, there are

many different series whose first several letters are those given in the task. _

For example, another continuation of the above sequence is: _

B C B D B E B C B D B E B C ...

But the correct answer is based on the "simplest" description of the series _

where simplest description, for lack of a better definition, is defined as the -J

description that most people would use to describe the series. ~^

Williams' Formulation of the Task

Donald Williams has constructed a program (Williams [65]) that

does aptitude test problems among which is the letter series completion

task. The formulation of this task for GPS was adapted from his formula

tion. Williams' program is to do over thirty different types of aptitude

test problems; however, we will only describe how it handles the letter

series completion task.

Williams' program knows certain relations among the letters of an

alphabet. Listed in the order of their simplicity the relations used by

the program are (the examples are taken from the English alphabet):

a. same -- B is the "same" as B
b. next C is the "next" letter after B
c. next after next -- D is the "next after next"

letter after B
d. predecessor — A is the "predecessor" of B.

A relationship is a relation with its pair of operands. In an attempt to

find a description of a letter series, the program assigns relations between

pairs of letters in the series.

The simplicity of a relationship is determined mainly by the

simplicity of its relation. If two relationships have identical relations,

the simpler one is the one whose operands are separated by fewer letters in

the series. For example, in the series above, the relationship—the first

letter is the same as the third letter--is simpler than the relationship--

the first letter is the same as the fifth letter. But the latter is simpler

than the relationship--the next letter of the alphabet follows the first

letter.

The program assigns a relationship by scanning the series from left

to right. It always attempts to find a relationship between the current letter,

and a letter to the right of the current letter. The current letter is

initially the first letter in the series and upon assigning a relationship

between the current letter and another letter, the other letter becomes _

the new current letter. Thus the scan does not necessarily move uniformly ^

through the series, but jumps ahead as it. successfully establishes relation- -

ships of letters which are not adjacent in the series. "

The remainder of the techniques used by Williams' program on this

task will be illustrated by an example rather than described generally. In

attempting to solve our example sequence (using the English alphabet), the _

program begins by looking for the simplest relationship between the current —

letter (first letter) and some other letter. According to the program's ~

definition of simplicity, it assigns the relationship—the first letter is

the same as the third letter and looks for the simplest relationship

between the new current letter (third letter) and some letter to the right

Df it then assigns the relationship the third letter is the same as the

fifth letter. —'

At this point, it notices that both relationships assigned are equiva- "

lent; i.e., the relation is same in both and there is one letter between both

first and third and third and fifth. Consequently, it checks to see if the

fifth letter, which is the current letter, is the same as the seventh letter. _

Since the seventh letter is a blank, it assigns 'B* to be the seventh letter —

and assigns the relationship—the seventh is the same as the fifth. ^

In checking if the ninth letter is the same as the seventh, it notices ~"

that there is no ninth letter and assigns the second letter to be the new

current letter because it is the first letter not previously used in a _̂

relationship. The simplest relationship—the fourth letter in the series is ^

the next of the alphabet after the second letter in the series—is assigned -!

and the current letter becomes the fourth letter. Again the simplest

relationship--the sixth letter is next after the fourth letter--is assigned.

Since the last two relationships are the same, the program checks to see if

the eighth letter is the next after the sixth. Since the eighth letter is

a blank, *F' is assigned to be the eighth letter of the series and the

problem is solved.

The way Williams' program approaches this problem might seem strange

because it assigns relationships until it stumbles across the answer 1 6.

Never does it obtain a description of the entire series, e.g., the odd letters

are B's, etc., and check to see if the description correctly describes the

letters given 1 7. Nevertheless, Williams' program is quite proficient at the

letter series completion task.

GPS Formulation

The transcription of the task,

B C B D B E ,

into the external representation of GPS given in Fig. 83, is considerably

less direct than the other tasks we have discussed. The main reason is that

the objects are not different letter series, but are partial descriptions of

letter series. That is, an object is a series together with relationships

on the various letters in the series.

Each node of an OBJECT-SCHEMA represents a position in a series. The

TOP-NODE represents the first position of the series; the node, ONE (the new

16It does not always assign the correct relationships, and in such cases finds
it necessary to go back and try different relationships.

17This technique is used in Simon and Kotovsky [55],

- 298 -

RENAME (

ONE * FIRST

TWO = FIRST-FIRST

THREE = FIRST.F[RST-FIHST

)

DECLARE t

DESIRED-OBJ • DESCRIBED-OBJ

APPLY-CURRENTnRELATION » MOVE-OPERATOR

APPLY-LAST = MOVE-OPERATOR

APPLY-SELATI ON " MOVE-OPERATOR

CURRENT-RELATION = ATTKIBUTt

INTERVAL b ATTRIBUTE

LETTER • ATTRIBUTE

RELATION • ATTRIBUTE

Dl « FEATURE

D2 = FEATURE

QUOTE-Y • FEATURE

INTERVALS c SET

RELATIONS • SET

)

LIST t

"INITIAL-OBJ " (B C B D B E - -)

J

TASK-STRUETURES (

TOP-GOAL « < TRANSFORM THE INITIAL-OBJ INTO THE DESIRED-OBJ ;)

DESIREB-OBJ * (SUBEXPRESSION-TESTS

1 . A RELATION IS DEFINED -,

- 299 -

2 , T H E C U R R t N T - R E L A T I O N I S U N D E F I N E D .)

A P P L Y - H E L A T I O N » (C R E A T I O N - O P E R A T O R

V A R - D O M A I N

1 . Y I S i N - T H E - S E T O F I N T E R V A L S ,

2 . X I S I N - T H E - S E T O F R E L A T I O N S ,

P R E T E S T S

l , T H E L E T T E R O F Y E Q U A L S T H E F U N C T I O N X O F T H E L E T T E R ,

M O V E S

1 . C O P Y X A T T H E R E L A T I O N .

3. C O P Y X A T T H E C U R R E N T - R E L A T I O N O F Y ,

3 . COPY O U O T E - Y I " * T H E INTERVAL O F Y .

4 . C O P Y Q U O T E - Y I N T H E I N T E R V A L .

)

A P P L Y - C U R R E N T - R E L A T I O N • I C R E A T I O N - D P E R A T O h

V A H - D O M A I N

1 . X E Q U A L S T H E C U R R E N T - R E L A T I O N .

2 . Y E Q U A L S T H E I N T E R V A L .

P R E T E S T S

1 . T H E L E T T E S O F Y E Q U A L S T H E F U N C T I O N X O F T H E

L E T T E R ,

M O V E S

1 . C O P Y T H E C U R R E N T - R E L A T I O N A T T H E R E L A T I O N .

2 . M O V E T H E C U R R E N T - R E L A T I O N T O T H E

C U R R E N T - R E L A T I O N O F Y .

3 . C O P Y Q U O T E - Y I N T H E I N T E R V A L OF Y .

)

A P P L Y - L A S T - 1 C R E A T I D N - O P f c H A T Q R

VAR-DOMAIN

1. V EQUALS THE INTERVAL .

PRETESTS

1. THE LETTER OF Y IS JNDEFI.NED ,

MOVES

1, REMOVE THb CURRENT-RELATION .

2. COPY LAST AT THE RELATION .)

INTERVALS « I ONE TWO THREE)

RELATIONS « I SAME NEXT)

DIFF-ORDERINS a (Dl 02 i

Dl * (CURRENT-RELATION)

02 = (RELATION)

TABLE-BF-CONNECTIONS « (1. (Dl APPLY-CURSENT-RELAT I ON APPLY-LAST I

2. (02 APPLY-REL AT I ON))

NEXT = < B C C D D E E F >

SAME = (B B C C D D E E F r)

QUOTE-Y > t QUOTE Y)

OBJ-ATTRIB - < LETTER CURRENT-RELATION RELATION INTERVAL)

LIST-OF-VAR - < X Y I

)

END

name of FIRST) from the TOP-NODE, represents the second position in the

series; the node TWO from the TOP-NODE represents the third position in

series, etc. Each node, except the last one, has precisely one branch

leading from it to the node representing the following position in the series.

The value of the ATTRIBUTE, LETTER, of a node is the letter in the position

of the series represented by the node. Fig. 84 illustrates the tree

structure representation of the INITIAL-OBJ—the series to be completed. In

Fig. 84, a and B are variables, created by a special routine which converts

INITIAL-OBJ in Fig. 83 into the tree structure in Fig. 84. Each blank must

be replaced by a distinct variable, else GPS would consider that they all

stand for the same letter.

A relationship on a pair of letters in a series is represented by the

ATTRIBUTE, RELATION1**, at the node representing the left most letter of the

pair. The relation (e.g., same) is the value of RELATION and the other

letter of the relation is designated by the value of the ATTRIBUTE, INTERVAL.

For example, the respective values, SAME and TWO, of the ATTRIBUTES, RELATION

and INTERVAL, at a node represent the relationship that the LETTER at the

node is the SAME as the LETTER at the second position to the right.

TOP-GOAL is the statement of the problem. As in Williams' formulation,

GPS does not set out to fill in the blanks. Rather, it attempts to assign

relationships to the series filling in the blanks (substituting for the

variables) whenever necessary. DESIRED-OBJ requires that all nodes have a

value of the ATTRIBUTE, RELATION. Since noneof the relationships can involve

18RELATION is used as an ATTRIBUTE in this task and should not be confused
with the RELATIONS of GPS, e.g., EQUALS andCONSTRAINED-MEMBER.

FIGURE 84. The tree structure representation of INITIAL-OBJ in Fig. 83 (a
and P are variables).

a blank, this insures that all of the blanks have been filled.

The ATTRIBUTE, CURRENT-RELATION, of a node indicates that the node

represents the current letter of the series. The second TEST in DESIRED-

OBJ gives rise to a difference detected at a node that has a value of

CURRENT-RELATION. In order to reduce this difference, a RELATION must be

added to this node. The use of CURRENT-RELATION in this formulation corres

ponds to the fact that the current-letter is always a member of the pair of

letters in a relationship assigned by Williams* program.

There are three operators, each of which assigns a relationship.

APPLY-RELATION is used to assign the simplest relationship. It assumes that

the current letter is the point of application. X is the relation of the

relationship being assigned. Y is the distance between the letters of the

relationship. For example, if Y is ONE, the two letters are adjacent; if Y

is TWO, one letter separates them, etc.

PRETESTS of APPLY-RELATION requires that the pair of letters satisfy

the relation X. For example, if X is SAME and Y is TWO, PRETESTS will be

satisfied in applying APPLY-RELATION to the TOP-NODE of INITIAL-OBJ because

the first and third letters of the series are both B's.

The first and fourth TRANSFORMATIONS of APPLY-RELATION assign a

relationship to an OBJECT-SCHEMA. They add the attribute-value pairs-¬

RELATION X, INTERVAL Y--to the node at which APPLY-RELATION is applied.

The other two TRANSFORMATIONS serve the purpose of marking the new

current letter and noting the relationship assigned by the operator at the

new current letter.

APPLY-CURRENT-RELATION applies the previously assigned relationship

at the current letter marked by the ATTRIBUTE, CURRENT-RELATION. This

operator is the same as APPLY-RELATION except that the legitimate values of

the variables are more restricted, and that the node to which it is applied

must have a value of the ATTRIBUTE, CURRENT-RELATION. X and Y must have

the values of the ATTRIBUTES, CURRENT-RELATION and INTERVAL, respectively.

APPLY-LAST is used to handle the case when the letter, a distance,

Y, from the current letter, does not exist, e.g., the ninth letter in

INITIAL-OBJ. LAST is copied at the RELATION of the current letter to

indicate that it has been considered. CURRENT-RELATION is removed so that

the node at which the operator is being applied will no longer be considered

the current letter.

DIFF-ORDERING ranks Dl, which refers to the value of CURRENT-RELATION,

as the more important type of difference, because it is detected only at a

node that has a value of CURRENT-RELATION. Since such a node corresponds

to Williams' current letter, the next operator must be applied at that node.

TABLE-OF-CONNECTIONS lists APPLY-CURRENT-RELATION and APPLY-LAST as

desirable for reducing Dl, because they affect CURRENT-RELATION. Even

though they also affect RELATION, they are not considered desirable for reduc

ing D2, which pertains to RELATION, because a GOAL of reducing D2 only is

generated when the OBJECT-SCHEMA does not contain a CURRENT-RELATION.

NEXT is a list of pairs of letters. The first letter of each pair is

a letter of the alphabet and the second letter of the pair is the following

letter of the alphabet. It is used in the PRETESTS of APPLY-RELATION and

APPLY-CURRENT-RELATION (a possible value of X) as a FUNCTION of one argument.

For a particular value, at, of the argument, the value of the function is the

second letter of the pair whose first letter is a. For example, NEXT of C

is D.

SAME has the same role as NEXT. It is a list of pairs of letters and

both letters in each pair are the same.

In some of the TRANSFORMATIONs of the operators, QUOTE-Y is an

argument of an OPERATION. The value of the QUOTE-Y is always 'Y*,e.g.,

ONE or TWO. Since Y is used as a LOC-PROG, normally the value of the

argument, Y, is the node of an OBJECT-SCHEMA to which Y refers. Thus,

QUOTE-Y had to be used instead of Y.

OBJ-ATTRIB is a list of all the ATTRIBUTES for this task and LIST-

OF-VAR is a list of the variables which appear in Fig. 83.

Behavior of GPS

Fig. 85 shows the behavior of GPS on the task in Fig. 83. In attempt

ing TOP-GOAL, GPS notices that none of the nodes of INITIAL-OBJ has a

RELATION and creates GOAL 2 to reduce this difference at the TOP-NODE (which

corresponds to the left-most letter). To achieve GOAL 2, GPS attempts to

apply APPLY-RELATION with none of its variables specified (GOAL 3) because,

regardless of their values the operator is considered to be desirable.

GOAL 3 results in OBJECT 4 which has been assigned the relationship—

the first letter is the same as the third letter. There is a special print

routine for the OBJECT-SCHEMAs of this task. The positions in the series

(nodes in the OBJECT-SCHEMAs) are separated by commas and no LOC-PROGs appear

in the print-out of an OBJECT-SCHEMA. The TOP-NODE (left-most position of

the series) of OBJECT 4 has three attribute-value pairs,

a. LETTER B
b. RELATION SAME
c. INTERVAL TWO.

The relationship that the second letter to the right is also a B corresponds

to b and c. Henceforth,, nodes of OBJECT-SCHEMAs will be referred to by their

corresponding position in the series.

In OBJECT 4 the third position of the series, which is the only other

position having an ATTRIBUTE other than LETTER, has the attribute-value pairs:

- 306 -

1 TOP-GOAL TRANSFORM INITIAL-OBJ INTO DESlReD-Q8J (SUBGOAL OF NONE*

2 G 0 A J 2 REDUCE D2 3N INITIAL-OBJ (SJBGOAL OF TOP-GOAL)

3 GOAL 3 A 3 P L Y APPLY-fiELATI ON TO IN1TIA--0BJ (SUBGOAL OF 2)
SETl T * TWO, X = SAME
OSJECT 41 (LETTER B RELATION SAME INTERVAL TWO, LETTER C, LETTER B CURRENT-RELATION

SAME 1NTEHVAL TWO, LETTER D, LETTER B, LETTER 6, LETTER -. LETTER ->

2 GOAL 4 TRANSFORM 4 INTO DESIRED-OBJ (SU3G0AL OF TOP-GOAL)

3 GOAL 5 R t D U C E Dl ON ONE ONE 4 (SUBGOAL OF 4)

4 GOAu 6 APPLY APPLY.CURRENT-RELATION TO ONE ONE 4 (SUBGOAL OF 5)
SETl X = SAME, Y = TWO
OBJECT St tLETTER S RELATION SAME INTERVAL TWO, LETTER C, LETTER B RELATION SAME

INTERVAL TWO, LETTER D, LETTER B CURRENT-RELATION SAME INTERVAL T W O ,
LETTER E, LET I E R LEiTER -1

3 30AL 7 TRANSFORM 5 INTO DESIRED-OBJ (SUBGOAL OF 4)

4 GOAL 6 REDUCE 01 ONI O N E ONE ONE ONE 5 (SUBGOAL OF 7)

5 GOAL 9 APPLY APP.fT-CURRENT-RELATI O N TO ONE ONE ONE ONE 5 (SUBGOAL OF 8)
SET I X - SAME, Y < TWO
OBJECT 61 (LETTER 3 RELATION SAME INTERVAL TWO. LETTER C . LETTER B RELATION SANE

INTERVAL TWO, LETTER D, LETTER B RELATION SAME INTERVAL T W O , LETTER E
, LETTER B CURRENT-RELATION SAME INTERVAL TWO. LETTER ->

4 GOAL 10 TRANSFORM 6 INTO DESIRED-OBJ (SUBGOAL OF 7>

5 GOAL 11 REDUCE D L ON O N E ONE ONE O N E ONE ONE' 6 (SUBGOAL OF 10>

6 GOAL 12 APPuT I P P L Y - C U R R E N T - R E L A T I ON T O ONE ONE ONE ONE ONE ONE 6 (SUBGOAL OF 11)
SET l t * SAME, Y * TWO

6 GOAL 13 APPLY APPLY-LAST TO ONE ONE ONE ONE ONEi ONE 6 (SUBGOAL OF 11)
SETl Y » TWO
OBJECT 7t (LETTER B RELATION SAME INTERVAL TWO. LETTER C, LETTER E RELATION SAME

INTERVAL TWO, LETTER D, LETTER B RELATION SAME INTERVAL TWO, LETTER i
, LETTER B RELATION LAST INTERVAL TWO, LETTER -)

Figure 85: The performance of GPS on the task specified in Fig. 83.

5 30All 14 TRANSFORM 7 INTO DESJRED-OBJ (SUBGOAL 0^1 10)

6 GOAL 15 REDUCE D2 ON ONE 7 (SJBSOAL OF 14>

7 J O a L 16 APPLY APPLY-RELATION TO ONE 7 (SUBGOAL OF 151
9tTl Y - TWO, X « NEXT
OBJECT 81 (LETTEM 8 RELATION SAME INTERVAL TWO, LETTER C RELATION NEXT INTERVAL

TWO, LETTER B RELATION SANE INTERVAL TWO, LETTER 0 CURRENT-RELATION NEXT
INTERVAL TWO, LETTER B RELATION SAME INTERVAL TwO, LETTER E, LETTER 8
RELATION LAST INTERVAL TWO, LETTER -)

6 GOAL 17 TRANSFORM B INTO DESIRED-OBJ (SUBGOAL OF 14)

7 30AL 18 REDUCE Dl ON ONE ONE ONE ft (SUBGOAL OF 17)

S GOAL H APPLY APPLY-CuRRENT-RELATI ON TO ONE ONE ONE B (SUBGOAL OF 1 8)
SEIt X • NEXT, Y « TWO
OBJECT 91 (LETTER B RELATION SAME INTERVAL TWO, LETTER C RELATION NEXT INTERVAL

TWO, LETTER B RELATION SAME INTERVAL TWO, LETTER 0 RELATION NEXT INTERVAL
TWO, LETTER B RELATION SAME INTERVAL TWO, LETTER E CURRENT-RELATION NEXT
INTERVAL TWO, LETTER B RELATION LAST INTERVAL TwO, LETTER -)

7 GOAL 20 TRANSFORM 9 INTO DESIRED-OBJ (SUBGOAL 1 OF 17)

9 GOAL 21 REDUCE Dl DN ONE ONE ONE ONE ONE 9 (SUBGOAL OF 20)

9 GOAL 22 APPLY APPLIf-CURRENT-RELAUON TO ONE ONE ONE ONE ONE 9 (SUBGOAL OF 21)
SETI X • NEXT, Y * TWO
OBJECT 101 (LETTER B REuHTI ON SAME INTERVAL TWO, LETTER C RELATION NEXT INTERVAL

TWO, LETTER B RELATION SAME INTERVAL TWO, LETTER D RELATION NEXT INTERVAL
TWO, LETTER tf RELATION SAME INTERVAL TWO, LETTER E RELATION NEXT INTERVAL
TWO, LETTER B RELATION LAST INTERVAL TWO. LETTER F CURRENT-RELATION
NEXT INTERVAL TWO)

3 GOAL 23 TRANSFORM 10 INTO DESIRED-OBJ (SuBGOAL OF 20)

9 GOAL 24 REDUCE Dl ON ONE ONE ONE ONE ONE ONE ONE 10 <SUBGOAL OF 23)

10 GOAL 25 APPLY A P P L Y - C U - R R E N T - R b L A T I O N TO ONE ONE ONE ONE ONE ONE ONE 10 (SUBGOAL OF 24
)

SETI X » NEXT, Y = TWO

10 GOAL 26 APPLY APPLY-LAST TO ONE ONE ONE ONE ONE ONE ONE 10 (SUBGOAL OF 24)
SET I 1 • TWO
OBJECT 11((LETTER B RELATION SAME INTERVAL TWO, LETTER C RELATION NEXT INTERVAL

TWO, LETTER B RELATION SAME INTERVAL TWO, LETTER D RELATION NEXT INTERVAL

TWO, LETTER 3 RELATION SAME INTERVAL TWO, LETTER E RELATION NEXT INTERVAL
TWO, LETTER 3 RELATION LAST INTERVAL TWO. LETTER F RELATION LAST INTERVAL
TWO)

9 GOAL 27 TRANSFORM 11 INTJ DESIRED-OBJ (SUBGOAL OF 23»
SUCCESS

a. LETTER B
b. CURRENT-RELATION SAME
c. INTERVAL TWO.

This indicates that the third position in OBJECT 4 corresponds to the

current letter and that the previously assigned relationship is the current

letter is the same as the second letter to the right of it.

In attempting GOAL 4, GPS notices that SAME is the CURRENT-RELATION

of the third position. To remove this attribute-value pair (GOAL 5), APPLY-

CURRENT-RELATION is applied to the third position in OBJECT 4 (GOAL 6).

Note that ONE indicates one place to the right, e.g., 'ONE ONE 4* in GOAL 5

and GOAL 6 refers to two places to the right of the first position which is

the third position. OBJECT 5 is produced by assigning the relationship--the

third letter is the same as the fifth letter.

B is substituted for the first blank in order to achieve GOAL 9 and

F is substituted for the second blank in achieveing GOAL 22. The result of

GOAL 26 is a complete description of the series and the success of GOAL 27

indicates that TOP-GOAL is successful.

Discussion

The formulation of the task in Fig. 83 has several peculiarities.

The definition of simplicity of a relationship is buried in the VAR-DOMAIN

of APPLY-RELATION. Since the MOVE-OPERATOR-METHOD tries legitimate variable

specifications in the order in which they turn up, they must turn up in the

correct order if the simplest relationship is to be assigned first. Thus,

if the order of the two TESTS in VAR-DOMAIN were changed, the simplest relation

ship wouldjiot necessarily be assigned by an application of APPLY-RELATION.

For example, GOAL 3 would assign the relationship—the second letter is the

NEXT after the first letter

- 310 -

The communication between operators seems rather strange. An

application of APPLY-RELATION in some sense designates to which position

GPS will attempt to apply the next operator and that it will be either

APPLY-CURRENT-RELATION or APPLY-LAST. These peculiarities are both

derived from making GPS find the simplest description of the series. DESIRED-

OBJ indicates that any complete description of the series is sufficient,

and the simplicity of the description results from the order in which

operators are applied.

Another peculiarity is replacing the GOAL of filling in the blank

with the GOAL of finding a complete description of the series. Since there

must be some restrictions on how the series is completed (else any answer

would be correct), the latter GOAL seems to be a reasonable way of stating

the problem.

The purpose of posing this task to GPS is not basically to illustrate

how the letter series completion task can be formalized. This has been done

more elegantly and efficiently in the work already cited. However, the

performance of GPS in Fig. 85 does illustrate how this task can be approached

by searching for a suitable description of the series in a space of descrip

tions. In this respect, the formulation of this task is similar to the formu

lation of the binary choice task in Feldman et al [12] (discussed on page 36).

L. GENERALITY OF GPS'S METHODS

In Chapter II we discussed two variants of the approach to the

construction of a general problem solver that focusses on the problem

solving techniques: One involves the construction of many specialized,

but highly efficient, problem solving techniques, e.g., a library of

ALGOL subroutines. The other involves the construction of a few prob

lem solving techniques of wide applicability, e.g., heuristic search.

In this respect, the extent to which the methods of GPS are applicable

across tasks is important.

Table 1 illustrates which methods and basic processes were used in

solving the eleven tasks discussed in this chapter. We chose to digitize

the processing at the method level for two reasons: 1) A detailed de

scription of each method is given in Chapter III. 2) Each task uses

some of the methods but not all of them; on the average each task uses

about half of the methods. There are also disadvantages to this way

of displaying the activity. Some of the methods employ much of the

same code. For example, both the MOVE-OPERATOR-METHOD and the MATCH-

DIFF-METHOD use a large subroutine which applies a TEST to an OBJECT-

SCHEMA. In addition, considerable detail disappears at the method

level. This may be important. For instance, not all of the subparts

of a method may be used in a given task.

In Table 1 the methods are categorized according to the basic

processes (described in Fig. 36) that they perform. There are other

basic processes which GPS performs which are not discussed in this

report because they were not a consideration for generalizing the

representation. The basic process for selecting a member from a SET

(the methods for achieving a SELECT GOAL) are independent of the repr.-

B a s i c
P r o c e s s e s

\ S

M e t h o d s X.

M
is

si
o

n
a

ri
es

&

 C
a
n

n
ib

a
ls

In
te

g
ra

ti
o

n

T
ow

er

o
f

H
an

oi

P
re

d
ic

a
te

C

a
lc

u
lu

s

F
a

th
er

&

 S
on

s

M
on

ke
y

T
h

re
e

C
oi

n
s

W
at

er
 J

u
g

B
ri

d
g

es

o
f

K
on

ig
sb

er
g

P
a

rs
in

g

L
et

te
r

S
e
r
ie

s

f TRANSFORM-
1 METHOD X X X X X X X X X X X

| MATCH-DIFF-
[_ METHOD

X X X X X X X X X X X

" MATCH-DIFF-
METHOD X Y X

MOVE-OPERATOR-
METHOD X X X X Y X X X Y

FORM-OPERATOR-
METHOD X Y X

FORM-OPERATOR-
TO-SET-METHOD
TWO-INPUT-
OPERATOR -METHOD

Y

SET-OPERATOR-
w METHOD X

f REDUCE
-METHOD

X X X X X X X X X X X

/ IDENTITY-
\MATCH-METHOD X X X X X X X X X X X

~ TRANSFORM-
SET-METHOD

X X X X

SELECT-BEST-
MEMBERS -METHOD

X X X X X

GENERATE-AND-
TEST-METHOD
EXPANDED-
TRANSFORM-METHOD

X X X

ANTECEDENT-
GOAL-METHOD

X X X X X X

TRY-OLD-
^ GOALS-METHOD

X

O b . l e c t -
C o m p a r i s o n .
O b . j e c t -
D i f f e r e n c e

O p e r a t o r -
A p p l i c a t i o n ,
O p e r a t o r -
D i f f e r e n c e ,
F e a s i b i l i t y -
S e l e c t i o n

S e l e c t i o n

O t h e r
P r o c e s s e s

X d e n o t e s t h a t t h e method and b a s i c p r o c e s s (e s)
w e r e u s e d i n s o l v i n g t h e t a s k

Y d e n o t e s t h a t t h e method and b a s i c p r o c e s s (e s) ,
e x c e p t f o r o p e r a t o r - d i f f e r e n c e w e r e u s e d i n
s o l v i n g t h e t a s k

TABLE 1. M e t h o d s and p r o c e s s e s u s e d by GPS i n s o l v i n g t h e e l e v e n t a s k s .

file:///match-method

- 313 -

sentatlon because the selection criterion is given to GPS as an IPL

routine which may be as specialized as necessary. Other basic pro

cesses depend only on the GOAL structure of GPS. For example, GPS has

processes for generating new things to do when it gets into trouble,

such as generating an old GOAL.

Since the X's and Y's in Table 1 are scattered somewhat randomly,

the methods do not appear to be task specialized. However, much of

the code in GPS is specialized for a particular kind of representation.

This can be seen in Table 1 by noting wnat methods for applying an

operator are used by the various tasks. In fact, two methods—FORM-

OPERATOR-TO-SET-METHOD and GENERATE-AND-TEST-METHQD—are not used by

any of the tasks, because they are specialized to a particular aspect

of the representation that does not arise in solving the tasks. (They

were used for logic in GPS-2-5.) However, specialization by kind of

representation is not necessary, as is demonstrated by the parsing

task, which uses both the FORM-OPERATOR-METHOD and the MOVE-OPERATOR-

METHOD.

All of the basic processes (described in Fig. 36), with the

exception of operator-difference, are used in attempting each of the

eleven tasks, which indicates that means-ends analysis is applicable

to all of the tasks. Operator-difference does not occur in those

tasks that were so simple that GPS finds a solution before attempting

to apply an operator that is inapplicable. Similarly, the TRY-OLD-

- 314 -

GOALS-METHOD is used only in solving the water jug task because it is

the only task for which GPS becomes hardpressed for something to do.

CHAPTER VII: SUMMARY

The presentation of the material is now complete. In Chapter II

we formulated a problem of generality for problem solving programs,

such that we could investigate it by getting GPS to perform a large

number of different tasks. In Chapters III and IV we gave a detailed

description of GPS, both its program structure and its representations

of components of the task. In Chapter V we analysed the problems of

extending GPS, revealing thereby a number of ways in which the repre

sentation is a critical aspect. Finally, in Chapter VI we described

the several tasks we used, and drew a number of smaller lessons. We

ended by observing that GPS was in fact a single problem solver working

on a collection of tasks, and not simply a collection of mechanisms

separately specialized for each task.

This presentation has involved a great deal of detail.

Undoubtedly, we have told many readers more than they wish to know.

Consequently, the purpose of this summary is to provide a brief,

but complete, recapitulation of the total story.

A. THE APPROACH

Heuristic Search

This research approaches the construction of a general problem

solver by first adopting a general paradigm of a problem, heuristic

search (Newell and Ernst [38]). In a simplified form of the heuristic

search paradigm, there are objects and operators, such that an operator

can be applied to an object to produce either a new object or a signal

which indicates inapplicability. A heuristic search problem is:

Given: a. an initial situation represented as an object,

b. a desired situation represented as an object,

"" 316 ~

c. a set of operators.

Find:

a sequence of operators that will transform
the initial situation into the desired
situation.

The first operator of the solution sequence is applied to

the initial situation, the other operators are applied to

the result of the application of the preceding operator,

and the result of the application of the last operator in

the sequence is the desired situation.

The operators are rules for generating objects and

thus define a tree of objects. Each node of the tree

represents an object, and each branch of a node represents

the application of an operator to the object represented

by the node. The node to which a branch leads represents

the object produced by the application of the operator.

A method for solving a heuristic search problem is

searching the tree, defined by the initial situation and

the operators, for a path to the desired situation.

For many problems we know of no obvious heuristic

search formulation. Thus, in some sense adopting heuristic

search limits the generality that can be achieved. However,

heuristic search derives its appeal from its generality,

demonstrated by its wide use in other research efforts

into problem solving (discussed in Chapter II).

The Problem of Generality

The power of a problem solver is indicated by the

effectiveness of its problem solving techniques while its

generality is indicated by the domain of problems that it

can deal with. The generality and the power of a problem

solver are not independent because both depend strongly

upon the internal representation. The internal represent

ation is pulled in two directions: on the one hand, it must

be general enough so that problems can be translated into

it, and, on the other hand it must be specific enough so

that the problem solving techniques can be applied.

To illustrate the interdependence of the power and

the generality of a problem solver consider a heuristic

search problem solver whose only technique is to generate

objects by applying the operators in a fixed order and test

ing if any of the generated objects are identical to the

desired situation. It would be easy to construct such a

problem solver with a relatively high degree of generality

even though it could only solve the most elementary problems.

On the other hand, it would be difficult today to achieve

even a slight degree of generality wj,th a problem solver

chat discovered the terms in an evaluation function for

determining the likelihood of tie existence of a path from

any object to the desired situation. Thus, there are many

different problems of generality, one for each set of

problem solving techniques, and the difficulty of achieving

generality depends upon the variety and complexity of the

techniques.

This research investigates a particular problem of

generality—the problem of extending the generality of GPS

while holding its power at a fixed level. This involves

extending the internal representation of GPS in such a way

that its problem solving methods remain applicable and in

a way that increases the domain of problems that can be

translated into its internal representation. Thus, this

research is mainly concerned with representational issues.

We would not expect the issues to be the same in general

izing the internal representation of a problem solver

which employed markedly different techniques than GPS.

In this respect, this research has the nature of a case study.

B. GPS

GPS attempts problems by tree search, as in any

heuristic search program. But to guide the search GPS

employs a general technique called means-ends analysis

which involves subdividing a problem into easier sub-problems.

Means-ends analysis is accomplished by taking differences

between what is given and what is wanted, e.g., between

two objects or between an object and the class of objects

to which an operator can be applied. A difference desig

nates some feature of an object which is undesirable. GPS

- 319 -

uses the difference to select a desirable operator—one which is

relevant to reducing the difference. For example, in attempting

the original problem, GPS detects a difference, if one exists,

between the initial situation and the desired situation. Assu

ming that a desirable operator exists and that it can be

applied to the initial situation, GPS applies it and produces a new

object. GPS rephrases the original problem by replacing the

initial situation with the new object and then recycles. The

problem is solved when an object is generated that is identical

to the desired situation.

The problem solving techniques of GPS consist of a set

of methods, which are applied by a problem solving executive.

To solve a problem, the problem solving executive selects

a relevant method and applies it. Subproblems (GOALs)

may be generated by the method in an attempt to simplify the

problem. In such cases the main problem may be temporarily

abandoned by the problem solving executive for the purpose

of solving the subproblem. Subproblems are attempted in the

same way that the main problem is attempted—by selecting and

applying a relevant method.

Chapter III gives a complete description of the

problem solving executive and the methods. For the purpose

of this chapter we need only summarize the demands that

the problem solving methods of GPS place on the internal repre-

sentation. Each of these demands requires that GPS

employ a process for abstracting certain information from

the internal representation. These processes may be

different for different representations, but the information

abstracted does not depend on the representation.

Ob.iect-comparison. GPS must be able to compare two

objects to determine if they represent the same situation.

Object-difference. If two objects do not represent

the same situation, GPS must be able to detect differences

between them that summarize their dissimilarity.

Operator-application. GPS must be able to apply an

operator to an object. The result of this process is either

an object or a signal that the application is not feasible.

Operator-difference. If it is infeasible to apply an

operator to an object, GPS must be able to produce differences

that summarize why the application is infeasible.

Desirability-selection. For any difference GPS must be

able to select from all operators of a task those operators

that are relevant to reducing the difference. (Of course,

this selection will not in general be perfect.)

Feasibility-selection. For any object GPS must be able

to select from all the operators those that will be applicable

to the object. This is meant to cover the case where the

- 321 -

internal representation permits several operators of limited

range to be combined in a single operator of wider range,

such that the application of the unified operator does not

decompose simply to the sequential application of the two

suboperators. (Again, feasibility-selection need not be

perfect.)

Canonization. GPS must be able to find the canonical

name of certain types of data structures. Canonization

arises from GPS's strategy for comparing two data structures.

If they have canonical names, they are equivalent only if

they have the same name. On the other hand, if two data

structures do not have canonical names, they are equivalent

only if all of their structure is equivalent.

C. INTERNAL REPRESENTATION OF GPS-2-5

The current version of GPS was developed through the

modification of an existing version, called GPS-2-5.

GPS-2-5, together with its predecessors, solved only three

different kinds of problems. This was due mainly to in

adequate facilities for representing tasks. The internal

representation of GPS-2-5 will be described to clarify how

the generalizations of the representation incorporated in

GPS (described later) alleviated inadequacies in its repre

sentation.

- 322 -

The internal representation of a task for GPS (any

version) consists of several different kinds of data struc

tures:
a. objects
b. operators
c. differences
d. GOALs
e. TABLE-OF-CONNECTIONS
f. DIFF-ORDERING
g. details for matching objects

h. miscellaneous information.

Chapter IV gives a complete description of the above types of

data structures and also points out which are given in the

specification of a problem. Here, we will only describe the

representation of objects and operators, which provide the

main representational issues. Other than objects and opera

tors, differences are the only other type of data structure

whose representation in GPS is not the same as its representa

tion in GPS-2-5. Their representation depends to a large

extent on the representation of objects and operators. This

will be discussed in more detail later.

Objects. In GPS-2-5 objects are represented by tree

structures encoded in IPL description lists. Each node of

the tree structure can have an arbitrary number of branches

leading from it to other nodes. In addition to branches, each

node can have a local description given by an arbitrary number

of attribute-value pairs. The tree structure in Fig. 86

- 323 -

for example, represents the initial situation in the mission

aries and cannibals task. In Fig. 86 the node to which the

LEFT branch leads represents the left bank of the river and

the node to which the RIGHT branch leads represents the right

bank of the river. The local description at the node which the

LEFT branch leads to indicates that there are three mission

aries, three cannibals, and the boat at that bank of the river.

The use of variables in the tree structures described

above allows a class of objects to be represented as a single

data structure. For example, Fig. 87 is the tree structure

representation of Je Udu. If u is a variable, this tree struct

ure represents a large class of objects. All members of the

class have the same form but different values for u. GPS

assumes that all tree structures may contain variables and it

is prepared to process them as classes of objects.

Operators. In GPS-2-5 all operators were represented by

representing the form of both the input and resultant objects.

Assuming that u is a variable, Fig. 87 is the tree structure

representation of the input of the operator, J"eUdu = e u, and

Fig. 88 is the tree structure of the output. Such an operator

can only be applied to a member of the class of objects

represented by the input form.

- 324 -

LEFT

M 0

C 0

FIGURE 8b. The tree structure representation of the

initial situation in the missionaries and cannibal task.

EXP D

E U U

FIGURE 87. Thp tree structure representation of J e Udu.

EXP

/ \
E \

FIGURE 88. The tree structure representation of e X

D. REPRESENTATIONAL ISSUES

The representational issues that were investigated

arose from various properties of tasks that could not

adequately be dealt with by the existing program. Each

of these Issues will be discussed below. For some the

representation was generalized, and the difficulty was

removed. Other issues could not be dealt with within

the framework of the existing program. However, attempting

to alleviate these difficulties did clarify important aspects

of the issues.

Desired Situation.

In many tasks the desired situation is a class of

objects that could not be represented in GPS-2-5. In

integration, for example, the desired situation is any

expression that does not contain ' J" '. A tree structure

cannot represent this class of objects because all of the

members do not have the same form. For this reason the

representation of the desired situation had to be generalized.

In introducing a new representation for the desired

situation, GPS must be given several new processes for

abstracting information from the new representation: a

new object-comparison process so that GPS can compare an

object to the desired situation; and a new object-difference

process so that GPS can detect differences between an

object and the desired situation. Object-comparison and

object-difference are the only demands (listed on pages 320-1)

of GPS's problem solving method that are affected by the

introduction of a new representation for desired situation.

The generalization of the desired situation allowed it

to be represented as a set of constraints called a DESCRIBED-

OBJ. A set of constraints represents a class of objects,

each of which satisfies all of the constraints. The desired

object in the integration task can be represented by the single

constraint:

No symbol in the expression is an 'J*

Each constraint in a DESCRIBED-OBJ is a data structure,

called a TEST, that consists of a RELATION, and several argu

ments (in most cases, two). In the previous example,

the RELATION is NOT-EQUAL;

the first argument is a symbol;

the second argument is ' J* '.

This constraint is quantified "for all" symbols. GPS can

recognize NOT-EQUAL as a RELATION which it understands.

(Currently GPS understands fifteen RELATIONS.) On the other

hand, GPS only understands the generic form of the arguments,

which are task dependent.

Using constraints to represent objects is convenient

because each constraint is a simple data structure. Both the

object-comparison process and the object-difference process

analyze the structure of the constraints. The structure

of many representations is too complex to permit such an

analysis. For example, an alternate representation for

the desired situation is a program whose input is an object

and whose output is a signal indicating whether the object

is a member of the class of objects that the program

represents. The object-difference process for this repre

sentation would be extremely complex because it would require

an analysis of the program.

Operators

The operators of many tasks, particularly mathematical

calculi could be represented conveniently in GPS-2-5. How

ever, the operators of other tasks could not, e.g., the

operator of missionaries and cannibals. To alleviate this

difficulty In GPS, an operator can be represented as a data

structure, called a MOVE-OPERATOR, that consists of a group

of TESTs and a group of TRANSFORMATIONS. The TESTs, which

are the same as the TESTs in a DESCRIBED-OBJ, must be

satisfied in order for the operator to be applicable and

the TRANSFORMATIONS indicate how the resultant object differs

from the input object.

A TRANSFORMATION is a data structure that consists of

an OPERATION and several arguments. GPS knows the semantics

of the OPERATIONS, but as in TESTs, only knows the generic

form of the arguments, which are task dependent. Currently,

GPS understands six OPERATIONS. A typical TRANSFORMATION

{from the missionaries and cannibals operator that moves X

missionaries, Y cannibals and the BOAT from LEFT to RIGHT) is:

DECREASE the number of missionaries at the
LEFT by X and increase the number of mission
aries at the RIGHT by X.

In this TRANSFORMATION the OPERATION is DECREASE and the

arguments are X, the number of missionaries at the LEFT and

the number of missionaries at the RIGHT.

Fig. 89 illustrates how the operator which moves X

missionaries and Y cannibals from LEFT to RIGHT can be re

presented as a MOVE-OPERATOR. The first two TESTs indicate

that X and Y must be greater than 0. The third TEST insures

that at least one person is in the BOAT to operate it and

that the capacity of the BOAT is not exceeded. The remaining

TESTs prevent missionaries from being eaten.

The three TRANSFORMATIONS indicate how the application

of the operator affects the number of missionaries, the num

ber of cannibals and the BOAT, respectively. The BOAT must

be at the LEFT in order for the third TRANSFORMATION to be

applicable.

The introduction of MOVE-OPERATORs in GPS required the

addition of new processes so that the problem solving methods

could be applied to this new representation. New processes

were needed operator-application, operator-difference.

desirability-selection and feasibility-selection. Hence, the

MOVE-OPERATOR representation was designed so as to make these

- 329 -

TESTs:

1. X (0, 1, 2}

2. Y [0, 1 , 2}

3. X + Y < 2

U. Either

a. the number of missionaries at the LEFT > the
number of cannibals at the LEFT,

or

b. the number of missionaries at the LEFT = 0.

5. Either

a. the number of missionaries at the RIGHT > the
number of cannibals at the RIGHT,

or

b. the number of missionaries at the RIGHT = 0.

TRANSFORMATIONS:

1. DECREASE the number of missionaries at the LEFT by X
and increase the number of missionaries at the RIGHT
by X.

2'. DECREASE the number of cannibals at the LEFT by Y
and increase the number of cannibals at the RIGHT by
Y.

3. MOVE the BOAT from the LEFT to the RIGHT.

FIGURE 89. The MOVE-OPERATOR representation of the operator

that moves X missionaries, Y cannibals and the BOAT from the

LEFT to the RIGHT.

- 330 -

processes simple. For many representations one or more of these

processes would be too complex to implement.

A key feature of the MOVE-OPERATOR representation is its

transparent structure. Each of the new processes does an

analysis of this structure in order to abstract the necessary

information. Another good property of MOVE-OPERATORs is its

structural similarity to DESCRIBED-OBJ. This similarity causes

the MOVE-OPERATOR processes to be similar to the DESCRIBED-OBJ

processes, and thus all of these processes use the same basic

subroutines. For example, the operator-difference process for

MOVE-OPERATORs and the object-difference process for DESCRIBED-

OBJ are nearly identical.

Unordered Sets

The representation of some tasks requires representation

of an unordered set. Multiplication, for example, can be

represented as an n,-ary function of a set of arguments whose

order is unimportant. Such an unordered set can be represented

in GPS-2-5 as an object, representing an ordered set, and an

operator for permuting the elements of the set. This repre

sentation has the drawback that discovering the identity of

two sets requires several applications of the permutation

operators. The permutation operator would be unnecessary if

the identity test could implicitly take into consideration the

unordered property of the two sets.

The objects of GPS-2-5 can be used to implicitly

represent unordered sets, provided that the nodes can be

tagged either ordered or unordered. These tags designate

the branches of a node to be either ordered or unordered.

Although a seemingly simple generalisation, it consider

ably complicates the object-comparison, object-difference,

the operator-application, the operator-difference, and the

canonization process. These processes were generalized

for the integration task so that the nodes of objects and

operators could be unordered. Although the generalized

processes were more complex and did more processing, there

was a savings due to an overall reduction in the problem

space.

The main feature of unordered sets that complicates

the processes is the fact that in matching two unordered

sets corresponding elements must be paired. A variable

can be made identical to any element via substitution

and thus can be paired with any element. However, to see

the identity of two unordered sets may require that a

particular variable be paired with a particular element.

Chapter V discusses this issue in more detail and describes

how the generalized processes (object-comparison, etc.)

deal with this issue.

Large Objects

GPS can only solve simple problems before its memory is

- 332 -

exhausted. However, for some tasks the objects are so large

that not even simple problems can be solved before its memory

is exhausted. For example, the representation of a chess board

in GPS requires 1,000 memory locations and thus only several

objects can be stored in memory.

There are two distinct difficulties with GPS's use of

memory: 1) GPS saves in memory all objects generated during

problem solving and 2) each object is a total situation, i.e.,

there is no provision for dealing with fragments of situations.

These difficulties could not be dealt with in this research

because they are too closely connected with the problem solving

methods of GPS, which were held fixed.

Differences

In generalizing GPS, the representation of differences

was degenerated. Each difference in GPS can only pertain to

the value of an attribute of a node of an object. More

global differences, such as the number of occurances of a

symbol which could be represented in GPS-2-5, cannot be

represented because they would introduce considerable com

plexity in the operator-difference, the object-difference,

and the desirability-selection processes. Thus, the

generalization of these processes for MOVE-OPERATORs and

DESCRIBED-OBJs was based on this simplified representation of

differences.

- 333 -

Differences, although not part of the general heuristic

search paradigm, are central to means-ends analysis, which

is the main technique of GPS.

Many tasks were not given to GPS, because the simple

differences would not adequately guide GPS's search for a

solution. For example, many of the logic tasks solved by GPS-2-5

cannot be solved by GPS due to the lack of direction provided by

the degenerate differences. However, the representation of

differences is adequate for the eleven tasks that were given

to GPS.

E. TASKS

One of the instructive aspects of this research is

the light shed upon the structure of the problems given

to GPS. It Is for this reason that GPS was given rather

elaborate input-output facilities. It is hoped that the

reader, if he desires, can decipher the input and output

for any of the eleven tasks discussed in Chapter VI after

reading a description of the input and output. If this is

the case, the reader can determine precisely what Information

is given to GPS in the task specification and see how GPS uses

this information in solving the task.

Each task is discussed in detail in Chapter VI. Here

we will only summarize the important aspects of each.

Missionaries and Cannibals

GPS and one of its predecessors, called GPS-2-2, both

solved the missionaries and cannibals task. The represent

ation of the task in GPS was quite different from that used by

GPS-2-2. The latter contains information about the nature

of operators which the current GPS discovers for itself.

GPS-2-2 was given ten operators: Move one missionary from

left to right; move two missionaries from left to right:

move one missionary and one cannibal from left to right, etc.

The desirability of these operators for reducing the various

types of differences was given to GPS-2-2^exogenously. GPS is

only given a single operator which moves X missionaries and Y

cannibals across the river. In applying this operator GPS

specifies the variables (X, Y, and the direction of the boat)

so that the operator performs a desirable function.

GPS-2-2 was given a desirability filter for operators.

This filter prevented GPS-2-2 from attempting to move more

missionaries and cannibals across the river than there were

on the side from which they were being moved. Such a sep

arate filter is unnecessary in GPS because GPS never con

siders applying such an operator. Each operator in the

GPS-2-2 formulation consisted of an IPL routine with its

parameters (described on pages 30-3). The operator filter

was also encoded in IPL. Not only is it tedious to construct

IPL routines but the construction of these routines required

some knowledge of the internal structure of GPS-2-2. The

construction of the single operators given to GPS is much less

- 335 -

tedious and requires no knowledge of the internal structure of GPS.

Integration

In the integration, multiplication and addition are

represented as n-ary functions whose arguments are repre

sented as an unordered set. Thus the commutativity and

associativity of multiplication and addition are expressed

implicitly instead of representing them explicitly as opera

tors. If they were explicitly given to GPS as operators,

there would be an overall increase in the problem space which

would prevent GPS from solving some trivial integrals.

SAINT [59], a program that is quite proficient at

symbolic integration, also represents the commutativity and

associativity of multiplication and addition implicitly.

Other similarities and some dissimilarities between SAINT

and GPS are discussed in Chapter VI.

Tower of Hanoi

The Tower of Hanoi is an example of a task for which

means-end analysis is very effective. GPS never makes a

mistake on this task, mainly because the differences and the

DIFF-ORDERING are in some sense optimal. For many tasks, it

is difficult to find good differences and a good DIFF-

ORDERING.

Proving Theorem in the Predicate Calculus

GPS proved a simple theorem in the first order predicate

calculus. The formulation of this problem is basically the

- 336 -

same as the one in Robinson [51]. Perhaps the most instructive

part of this example is the light it cast upon the evolution

of problem solving programs. In LT (Newell, et al [39]), a

theorem proving program for the propositional calculus, which

is the predecessor of GPS, it was noted that the match routine

was the source of most of the power of the program over a

brute force search. GPS may be considered as an attempt to

generalize the match routine, based on that experience. The

first predicate calculus theorem prover did in fact use brute

force search, Gilmore [17], From an efficiency point of

view t^e main effect of the resolution principle was to

reintroduce the possibility of matching (gaining, thereby, a

vast increase in power). And it is this feature that allows

GPS to use the resolution principle in a natural way.

Father and Sons

This task is very similar to the missionaries and cannibals

task. Both tasks involve moving two different kinds of people

across a river in a small boat. But their formulations for

GPS are quite different, in that none of the operators, objects,

or differences are the same. Many of the earlier publications

on GPS (e.g., Newell, et al, [42] and Newell, et al [45]) make

the distinction between a task and a task environment — the

common part of a group of similar tasks. The father and sons

task and the missionaries and cannibals task muddles this

- 337 -

distinction. On the one hand, they should both have the same

task environment because of their similarity. In fact they

have different task environments because none of their objects,

operators and differences are the same.

Monkey Task

The monkey task was created by McCarthy [27] as a typical

problem for the Advice Taker [26]. It is interesting to

compare GPS's formulation of this task to the formulation for

a typical Advice Taker program (Black [4]). In GPS the

objects are models of room configurations whereas the objects

in Black [4] are linguistic expressions that describe certain

aspects of the room configurations. Both representations

have advantages. For example, linguistic expressions are

useful for representing imperfect information such as the

monkey is in one of two places. However, models can represent

implicit information that has to be represented explicitly

when linguistic expressions are used, e.g., the monkey can

only be in one place at a time.

Three Coins

The peculiarity of the three coins task is in the solution

being constrained to a fixed number of operator applications.

This constraint was handled in GPS by expanding the represen

tation of objects to include a counter that indicates the

number of operator applications involved in producing the

objects. In the desired situation the counter must have a

particular value.

Parsing Sentences

A great deal of effort has been devoted to the construct

ion of efficient parsing algorithms for simple phase structure

grammars. The point of this example is not GPS's proficiency

as a parser, but to illustrate the kinship between heuristic

search and syntactic analysis.

Bridges of Konigsberg

This is the only impossible task that was given to GPS.

Although GPS's behavior is not aimless (it crosses six

bridges in two different ways), GPS cannot see the impossibility

because it lies in the topological properties of the bridges.

GPS only attempts to cross bridges and has no way of viewing

the problem as a whole.

Water Jug

For the water 'jug task, means-ends analysis seems to be

a rather ineffective heuristic as demonstrated by the fact

that GPS stumbled onto the solution. There are some better

differences although complex (involving modular arithmetic,

naturally).

Letter Series Completion

The letter series completion task is the only task whose

solution requires inductive reasoning. The formulation is

quite clumsy, but this example demonstrates how the problem

can be approached by searching for a suitable description

in a space of descriptions. The binary choice task, another

- 339 -

task requiring inductive reasoning, was formulated in a similar

way by Feldman, et al [12],

With these eleven tasks in hand one can examine the extent

to which GPS uses common mechanisms to solve its problems, rather

than (in essence) consisting of a big switch to separate sub

routines that are specialized to each task. A tabulation of

methods versus tasks (Table I, page 312) indicate that GPS is an

integrated system, each method being used in an average of half

the tasks. The comparison is not perfect, however, since on the

one hand the methods have common subparts, and on the other the

use of a method does not indicate use of all its subparts.

BIBLIOGRAPHY

1. Amarel, S., "On the Automatic Formation of a Computer Program which
Represents a Theory," Self-Organizing Systems, Yovits, M.C., Jacobi,
G., and Goldstein, G. (eds.), Spartan Books, Washington, D.C., 1962.

2. Baylor, G. W., Report on a Mating Combinations Program, Master's
Thesis, Department of Psychology, Carnegie Institute of Technology,

3.

4.

5.

7.

10.

1 1 .

12.

Pittsburgh! Pa., 1965.

Bernstein, A., Bernstein, A., et al., "A Chess-Playing Program for the IBM 704,"
Proceedings of the 1958 Western Joint Computer Conference, (May 1958),
157-159.

Black, Fischer, A Deductive Question Answering System, Doctoral Disserta
tion, Division of Engineering and Applied Physics, Harvard University,
Cambridge, Mass., 1964.

Bobrow, D. G., Natural Language Input for a Computer Problem Solving
System, Doctoral Dissertation, Mathematics Dept., Massachusetts Institute
of Technology, Cambridge, Mass., 1964.

6. Chomsky, A. N., Syntactic Structures, Mouton and Co., The Hague, The
Netherlands, 195T

Church, A., Introduction to Mathematical Logic, Princeton University
Press, Princeton, N. J., 1956.

8. Davis, M., Computability and Unsolvability, McGraw-Hill, New York, 1958.

9. Davis, M., and Putnam, H., "A Computing Procedure for Qualification,"
J. ACM, 7, (July 1960), 201-215:

Feigenbaum, E., "An Information Processing Theory of Verbal Learning,"
Doctoral Dissertation, Graduate School of Industrial Administration,
Carnegie Institute of Technology, Pittsburgh, Pa., 1959.

Feigenbaum, E. A. and Feldman, J. (eds.), Computers and Thought, McGraw-
Hill, New York, 1963.

Feldman, J., Tonge, F. and Kanter, H., "Emperical Explorations of a

tSntModels!eHoggottdA' c! j ^ l t o . ^ (e d s T s o u S - W e s t e r n ^ "
Publishing Co., Cincinnati, Ohio, 1963, 55-100.

13. Filipiak, A.S., 100 Puzzles: How to Make and How to Solve Them, A. S.
Barnes & Co., New York, 1942, 20-21.

14. Friedman, J., "A Semi-decision Procedure for the Functional Calculus,"
J. ACM, 10, (Jan. 1963), 1-24.

Gelernter, H., "Realization of a Geometry-Theorem Proving Machine,"
Proceedings of an International Conference on Information Processing,
UNESCO House, Paris, 1959, 273-282; reprinted in Feigenbaum and Feldman
[11].

16. Gilbert, W. L., Private communication.

17. Gilmore, P. C., "A Proof Method for Quantification Theory," IBM J.
Res. Develop., 4, (Jan. 1960), 28-35.

18. Green, B. B., Wolf, A. K., Chomsky, C , and Laughery, K., "BASEBALL:
An Automatic Question Answerer," Proceedings of the Western Joint Computer
Conference, 1961, 219-224; reprinted in Feigenbaum and Feldman [11].

Hormann, Aiko, "Gaku: An Artificial Student," Behav. Sci., 10, (Jan. 1965),
88-107.

19.

S s V j ^ ; I - f i S ^57ri74^, a n d ^ ^ 2 1 " in SChess,"J.

22. Kotok, A., A Chess Playing Program for the IBM 7090, Bachelor's Thesis,
Massachusetts Institute of Technology, Cambridge, Mass., 1962.

23. Krulee, G. K., and Kuck, D. J., "A Problem Solver with Formal Descriptive
Inputs," Computer and Information Sciences, Tou, J. T. and Wilcox, R. H.
(eds.), Spartan Books, Washington, D. C., 1964, 344-374.

24. Lindsay, R. K., "Inferential Memory as the Basis of Machines which
Understand Natural Language,11 Computers and Thought, Feigenbaum, E. A.
and Feldman,

25. Luchins, A. S. and Luchins, E. H., Rigidity and Behavior: A Variational
Approach to the Effect of Einstellung, University of Oregon Books, Eugene,
Oregon, 1959.

26. McCarthy, J., "Programs with Common Sense," Proc. Symposium on Mech. of
Thought Processes, Her Majesty's Stationery Office, London, 1959, 75-84.

27. McCarthy, J., Situations, Actions, and Cau.sal Laws, Stanford Artificial
Intelligence Project Memo No. 2, July, 1963.

28. McCarthy, J., Private communication.

29. McCarthy, J., et al., LISP 1.5 Programmers Manual, MIT Press, Cambridge,
Mass., 1963.

31. Morehead, A. H., and Mott-Smith, G., Hoyle's Rules of Games, New American
Library of World Literature, New York, 1963.

3 2. Mott-Smith, G., Mathematical Puzzles for Beginners and Enthusiasts, Dover
Publications, 1954.

33. Newell, A. (ed.), Information Processing Language-V Manual, second edition,
Prentice Hall, Englewood Cliffs, N. J., 1961

34. Newell, A., "Some Problems of Basic Organization in Problem-Solving
Programs," Self-Organizing Systems, Yovits, M. C., Jacobi, G. T., and
GolSstein, G. D. (eds.), gpartan Books, Washington, D. C , 1962, 393-425.

35. Newell, A., A Guide to the General Problem-solver Program GPS-2-2, RAND
Corporation, Santa Monica, Calif., RM-3337-PR, 1963.

36. Newell, A., "Learning, Generality and Problem-Solving," Proceedings of
IFIP Congress 62, No?th Holland Publishing, Amsterdam^ Holland, 1962.

37. Newell, A., "Limitations of the Current Stock of Ideas about Problem
Solving," Electronic Information Handling, Kent, A. and Taulbee, U.
(eds.), Spartan Books, Washington, D. C , 1965.

40.

42.

45.

Newell, A., and Ernst, G., "The Search for Generality," Proc. of IFIP
Congress 65, Kalenich W. A. (ed.), Spartan Books, Washington, D. C ,

1Qfcg OA
39. Newell, A., Shaw, J. C , and Simon, H., "Empirical Explorations with

the Logic Theory Machine," Proceedings c-f the Western Joint Computer
Conference, 1957, 218-239; reprinted in Feigenbaum and Feldman [11].

Newell, A., Shaw, J. C. and Simon, H. A., "Preliminary Description of
General Problem-Solving Program-i (GPS-i)," CIP Working Paper No. 7,
Graduate School of Industrial Administration, Carnegie Institute of
Technology, Pittsburgh, Pa., Dec. 1957.

Newell, A., Shaw, J. C , and Simon, H., "Chess Playing Programs and the
Problem of Complexity," IBM Journal of Research and Development, October,
1958, 3 20-335; reprinted in Feigenbaum and Feldman [11].

Newell, A., Shaw, J. C , and Simon, H. A., "Report on a General Problem-
Solving Program for a Computer," Information Processing: Proceedings of the
International Conference on Information Processing, 256-264, UNESCO, Paris,
1960; reprinted in Computers and Automation, July, 1959.

43. Newell, A., and Simon, H. A., "Computer Simulation of Human Thought,"
2011-2017.

Newell, A., and Simon, H. A., "Computer
Science, 134, December, 196l! 2011-2017.

44. Newell, A., and Simon, H., "GPS, a Program that Simulates Human Thought,"
Lernende Automaten, Munich, Germany, 1961; reprinted in Feigenbaum and reprinted in Feigenbaum and
Feldman [11].

Newell, A., Simon, H. A., and Shaw, J. C , "A Variety of Intelligent
Learning in a General Problem-Solver," Self-Organizing Systems, Yovits, M.
C , and Cameron S. (eds.), Pergamon Press, New York, i960, 153-189.

46. Northrop, E. P., Riddles in Mathematics: A Book of Paradoxes, D. VanNostrand
Co., New York, 1944, 65-66.

47. Oettinger, A. G., "Automatic Processing of Natural and Formal Languages,"
Proc. of IFIP Congress 65, Kalenich, W. A. (ed.), Spartan Books, Washington,
D. C , 1965, 9-16.

48.

49.

50.

51.

54.

57.

58.

Pivar, M. and Finkelstein, M., "Automation, Using LISP, of Inductive

Raphael, B., SIR: A Computer Program for Semantic Information Retrieval,
Doctoral Dissertation, Mathematics Dept., Massachusetts Institute of
Technology, Cambridge, Mass., 1964.

Robinson, J. A., "Theorem-proving on the Computer," J. ACM, 10, (Apr. 1963),
163-174.

Robinson, J. A., "A Machine-Oriented Logic Based on the Resolution
Principle," J. ACM, 12, (Jan. 1965), 23-41.

52. Rosenblatt, F., Principles of Neurodynamics, Spartan Books, Washington,
D. C , 1962.

53. Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers,"
IBM Journal of Research and Development^, (July 1959), 211-229; reprinted Research and Development^, (July 1959), 211-229; reprinted
in Feigenbaum and Feldman [11].

Simon, H. A., "Experiments with a Heuristic Compiler," J. ACM, 10, (Oct.
1963), 493-506. "~

55. Simon, H. A. and Kotovsky, K., "Human Acquisition of Concepts for Sequential
Patterns," Psychological Review, 70, (June 1963), 534-546.

56. Simon, H. A. and Newell, A.. "The Simon, H. A. and Newell, A., "The Simulation of Human Thought," Current
Trends in Psychological Theory, University of Pittsburgh Press, Pittsburgh,

Simon, H. A. and Newell, A., "Computer Simulation of Human Thinking and
Problem Solving," Management and the Computer of the Future, Greenberger,
M. (ed.), John Wiley and Sons, New York, 1962; Computers and Automation,
April, 1961, 18-19, 22-24, 26; Datamation, June, 1961, 18-20; and July,

Simon, H. A., Newell, A., and Shaw, J., "The Processes of Creative Thinking,
Contemporary Approaches to Creative Thinking, Gruber, H. E., Terell, G. and
Wertheimer, M. (eds.), Atherton Press, New York, 1962, 63-119.

59. Slagle, J. R., "A Heuristic Program that Solves Symbolic Integration Problem
in Freshman Calculus," J. ACM, 10, (Oct. 1963), 335-337; reprinted in
Feigenbaum and Feldman [11].

Slagle, J. R., "Experiments with a Deductive Question-Answering Program,"
Comm. ACM, 8, (Dec. 1965), 792-798.

61. Tonge, F., "Balancing Assembly Lines Using the General Problem Solver,'
Symposium on Simulation Models, Hoggott, A. C , and Balderston, F. E.
(eds.), Southwestern Publishing Co., Cincinnati, Ohio, 1963, 139-151.

62. Wang, Hao, "Proving Theorems by Pattern Recognition, I," Comm. ACM. 3,

63. Wang, Hao, "Proving Theorems by Pattern Recognition, II," Bell System
Tech. J., 40, (1961), 1-41.

64. Weizenbaum, J., "How to Make A Computer Appear Intelligent," Datamation,
(February 1962), 24-26.

65. Williams, D., Unpublished research.

66. Williams, T. G., Some Studies in Game Playing with a Digital Computer,
Doctoral Dissertation, Department of Electrical Engineering, Carnegie
Institute of Technology, Pittsburgh, Pa., 1965.

67. Wos, L., Carson, D., and Robinson, G., "The Unit Preference Startegy in
Theorem Proving," AFIPS Conference Proceedings 26, Spartan Books,
Washington, D. C , 1964, 615-621.

J

APPENDIX A: THE VOCABULARY OF GPS

1. Meta-words

The following words are instructions to the process that translates

the external representation into the internal representation on how to

interpret the text:

DECLARE -- sets the mode of the translator to DECLARE so that it will
designate words to be a particular type of symbol or data structure.

END -- signifies the end of a task description.

LIST — sets the mode of translation to LIST so that the words following
it are translated as data structures consisting of strings of symbols
to be converted into the internal representation after translation.

RENAME -- sets the mode of the translator to RENAME so that it can assign
new names to the words in the basic vocabulary of GPS.

SKIP-WORDS — sets the mode of the translator to SKIP-WORDS so that it
will designate the words following it to be ignored.

TASK-STRUCTURES — sets the mode of translator so that it will interpret
the words following it as data structures.

, -- in the LIST mode of translation is a text-word. In the other modes,
it marks the end of a group of words.

. -- marks the end of a group of words.

(— marks the beginning of a group of words.

) — marks the end of a group of words.

2. Text words

The following words comprise that part of the basic vocabulary of

GPS used in the representation of tasks. GPS understands each of these

words, i.e., each corresponds to an IPL symbol which appears in some of the

processes of GPS.

AMOUNT -- indicates that following it is the third argument, required by
some OPERATIONS, of a TRANSFORMATION.

APPLY — is the type of the GOAL of applying an operator to an object.

ATTRIBUTE -- is the type assigned to words which are attributes of nodes
of OBJECT-SCHEMAs.

COMMON-DIFFERENCE stands for all types of differences.

COMPARE-OBJECTS — is a parameter to the process that matches two objects.

CONSTRAINED-MEMBER -- is a RELATION on three arguments. It requires that
its third argument, which must be a TEST, is true and that its first
argument is in the set designated by its second argument.

CONSTRAINT — precedes the thirdargument of a TEST whose RELATION is
CONSTRAINED-MEMBER.

COPY -- is the OPERATION that places a copy of its first argument at the
FEATURE which is its second argument.

CREATION-OPERATOR -- is the kind of MOVE-OPERATOR that creates new resultant
objects.

DECREASE — is the OPERATION that decrements its first argument by its third
argument and increments its second argument by its third argument. The
first and second arguments must be FEATURES, and the third argument follows
AMOUNT.

DEFINED --is the RELATION that requires its first argument to have a value
other than UNDEFINED. It only has one argument.

DESCRIBED-OBJ — is the type of object which is represented by a group of
TESTs.

DIFF-ORDERING — orders the type of difference according to their relative
difficulty.

EQUALS — is the RELATION that requires its two arguments to designate the
same value.

EXCLUSIVE-MEMBER — is the RELATION that requires its first argument to be a
unique member of the SET designated by its second argument.

EXPRES — is the type of data structure that is an arithmetic expression.

FEATURE — is the type of data structure that designates a feature of an
object.

FIRST — is the LOC-FROG that designates the first subnode of the implied node
of an OBJECT-SCHEMA.

FIRST-FIRST — is the LOC-PROG that designates the FIRST node of the FIRST
node of the implied node of an OBJECT-SCHEMA.

FIRST-FIRST-FIRST — is the LOC-PROG that designates the FIRST node of the
FIRST node of the FIRST node of the implied node of an OBJECT-SCHEMA.

NOT-A-CONSTRAINED-MEMBER — is the RELATION that is the negation of CONSTRAINED-
MEMBER.

FIRST-SECOND -- is the LOC-PROG that designates the SECOND node of the
FIRST node of the implied node of an OBJECT-SCHEMA..

FOR-ALL — signifies that the TEST in which it occurs contains a universally
quantified variable. The quantified variable follows FOR-ALL and the SET
of values of the variables follows the variable.

FORM-OPERATOR — is the type of operator that consists of an input form,
which is an OBJECT-SCHEMA, and an output form, which is an OBJECT-SCHEMA.

FUNCTION -- indicates that following it is the name of a function.

GOAL -- is the type of data structure that represents a desired state of
affairs and a history of previous attempts to achieve the GOAL.

GREATER-THAN — is the RELATION that requires its first argument to be greater
than its second argument.

INCREASE — is the OPERATION that increases the value of its second argument
by the amount of its first argument.

IN-THE-SET — is the RELATION that requires its first argument to be in the
SET designated by its second argument.

LESS-THAN — is the RELATION that requires its first argument to be less than
its second argument.

LIST-OF-OFR — is a list of the FORM-OFERATORs in the task specification.

LIST-OF-VAR — is a list, of the variables in the task specification.

LOC-PROG — is the type of the symbols that are the relative names of the
nodes of OBJECT-SCHEMAs.

MOVE — is the OPERATION that removes the value of its first argument and
makes it the value of its second argument. Both arguments must be FEATURES.

MOVE-FUNCTION — is the OPERATION that removes the value of its first argument
and makes the value of its second argument equal to a function of its first
argument. The function follows FUNCTION.

MOVE-OPERATOR — is the type of operator which consists of several groups of
RELATIONS and a group of TRANSFORMATIONS.

MOVES — signifies that a group of TRANSFORMATIONS will follow.

N-ARY-CONNECTIVE — is a type of symbol. Any node (of an OBJECT-SCHEMA) that
has this type of symbol as the value of an ATTRIBUTE has more than one sub-
node. This information is used by the routines that convert objects and
operators into their internal representation.

NOT-AN-EXCLUSIVE-MEMBER — is the RELATION that is the negation of EXCLUSIVE-
MEMBER.

NOT-EQUAL — is the RELATION that is the negation of EQUALS.

NOT-GREATER-THAN — is the RELATION that is the negation of GREATER-THAN.

NOT-IN-THE-SET — is the RELATION that is the negation of IN-THE-SET.

NOT-LESS-THAN — is the RELATION that is the negation of LESS-THAN.

OBJ-ATTRIBUTE — is a list of all the words that are ATTRIBUTES.

OBJECT-SCHEMA — is the type of an object that is represented as a tree
structure. OBJECT-SCHEMAs can contain variables in which case they repre
sent a class of objects.

OPERATION -- is the type of symbol that designates the function of a TRANS
FORMATION.

PARTICULAR — precedes the name of the node of which the FEATURE (in which
it occurs) is a function. PARTICULAR always occurs within the scope of a
FEATURE which is not a function of the implied node.

POST-TESTS -- signifies that the group of TESTs that follow must be satisfied
by the resultant object. This word only occurs in a MOVE-OPERATOR.

PRETESTS — signifies that following it is the group of TESTs that represents
the class of objects to which the operator can be applied. This word only
occurs in a MOVE-OPERATOR.

QUOTE -- indicates that the word following it stands for itself.

REDUCE — is the type of the GOAL of reducing a difference on an object.

REMOVE — is the OPERATION that deletes the value of its first argument. It
only has one argument.

RELATION — is the type of symbol that designates the function of a TEST.

SELECT --is the type of the GOAL of selecting an element of a SET.

SET — is the type of data structure that is a set of items.

SET-SIZE — is a type of difference that is produced by the commutive match
used in the integration task. SET-SIZE is not a FEATURE.

SECOND — is the LOC-PROG that designates the second subnode of the implied
node of an OBJECT-SCHEMA.

SECOND-FIRST — is the LOC-PROG that designates the FIRST node of the SECOND
node of the implied node of an OBJECT-SCHEMA.

SECOND-SECOND — is the LOC-PROG that designates the SECOND node of the SECOND
node of the implied node of an OBJECT-SCHEMA.

+ -- is an arithmetic operation that appears in EXPRESS.

SIGN — is an ATTRIBUTE of the integration task and the predicate calculus
task. The routine that converts objects and operators into their internal
representation knows the meaning"of SIGN.

SUBEXPRESSIONS -- designates that the match should detect differences at all
nodes of OBJECT-SCHEMA. It only occurs in a COMPARE-OBJ.

SUBEXPRESSION-TESTS — signifies that the set of TESTs that follows it must
be true of every node of an OBJECT-SCHEMA. It only occurs in a DESCRIBED-OBJ.

SYMBOL — is an ATTRIBUTE of the integration task and the predicate calculus
task. The routine that converts objects and operators into their internal
representation knows the meaning of SYMBOL.

TABLE-OF-CONNECTIONS — associates with each type of difference the desirable
operators.

TEST — is a data structure consisting of a RELATION and its arguments.

THIRD — is the LOC-PROG that designates the third subnode of the implied node
of an OBJECT-SCHEMA.

TOP-GOAL — is a statement of the problem.

TOP-NODE — the LOC-PROG that designates the topmost node of an OBJECT-SCHEMA.

TRANSFORM — the type of the GOAL of transforming one object into another.

TRANSFORMATION — is a data structure consisting of an OPERATION and its argu
ments.

TRUE — is a RELATION on a single argument. A TEST whose RELATION is TRUE is
satisfied if one or more of the TESTs in the argument, which must be a set
of TESTs, is satisfied.

UNARY-CONNECTIVE — is a type of symbol. Any node (of an OBJECT-SCHEMA) that
has this type of symbol as the value of an ATTRIBUTE has one subnode. This
information is used by the routines that convert objects and operators into
their internal representation.

UNDEFINED — is the RELATION that requires that its first argument has the
value, UNDEFINED. It only has one argument. UNDEFINED can also be the
value of a FEATURE, an ATTRIBUTE, or a LOC-PROG.

VAR-DOMAIN — indicates that following it is a group of TESTs that must be
satisfied in order for the variables to have legitimate values. It only
occurs in MOVE-OPERATORs.

V-TESTS -- is the type of a group of TESTs that follows TRUE.

YIELDS — separates the input form and the output form of a FORM-OPERATOR.

-350 -
— in the LIST mode of translation is the text-word that separates the
OBJECT-SCHEMAs in a SET of OBJECT-SCHEMAs and separates the input forms
in a FORM-OPERATOR that has two objects as an input. In the other modes
of translation, it is processed as a meta-word.

— is the value of the ATTRIBUTE, SIGN. The routine that converts the
operators and objects of certain tasks into their internal representation
knows this.

3. Skip-words

The following words are ignored by the translator unless otherwise

specified:

A,ALL, AN, ANY, AT,AND, ADD, ARE, BE, DO, DOES, FOR, FROM, IS, IT, IN, INTO,

NOT, ONE, ONES, ON, OR, OF, SHOULD, THAN, THE, , 1. , 2. , 3 . , 4 . ,

5. , 6. , 7. , 8. , 9. , 10., BY, THAT.

APPENDIX B: THE OPERATORS OF THE LOGIC TASK

This appendix contains the specification of the one-input operators

in the formulation of logic in Fig. 8 : They are expressed as FORM-OPERATORs

in the first section and as MOVE-OPERATORS in the second section. The two

input operators of the logic task are not included in this appendix because

there is no provision for expressing two input operators as MOVE-OPERATORs.

The names used for the operators in Fig. 8 are also used in this appendix.

Some of the operators in Fig. 8 can only be expressed as several FORM-OPERATORs,

each of which is assigned a local name, e.g., a, b,... In section 2, the

MOVE-OPERATORs are assigned the same names. For example, the MOVE-OPERATOR

Rl: a,b is equivalent to the two FORM-OPERATORs, Rl: a and Rl: b.

1. FORM-OPERATORs

The logical connectives, conjunction, disjunction, implication, and

negation, are symbolized as ., V, I, and -, respectively. A, B, C and X are

free variables that stand for propositions.

Rl: a. (A V B) YIELDS (B V A)
b. (A . B) YIELDS (B . A)

R2: (A I B) YIELDS (- B I - A)

R3: a. (A V A) YIELDS A
b. { A . A) YIELDS A

R4: a. (A V (B V C)) YIELDS ((A V B) V C)
b. (A . (B . C)) YIELDS ((A . B) . C)
c. ((A V B) V C) YIELDS (A V (B V C))
d. ((A • B) . c) YIELDS (A . (B . C))

R5: a. (A V B) YIELDS - (- A . - B)
b. - (-A » - B) YIELDS (A V B)

R6: a. (A I B) YIELDS (- A V B)
b. (- A V B) YIELDS (A I B)

-352 -
R7: a. (A V (B . C)) YIELDS ((A V B) . (A V C))

b. (A . (B V C)) YIELDS ((A . B) V (A . C))
c. ((A V B) . (A V C)) YIELDS (A V (B . C))
d. ((A . B) V (A . C)) YIELDS (A . (B V C))

R8: a. (A . B) YIELDS A
b. (A . B) YIELDS B

R9: A YIELDS (A V X)

2. MOVE-OPERATORS

The notation used in the MOVE-OPERATORs is the same as above with

the exception that PERIOD is used for conjunction because "." is used as

punctuation in the specification of MOVE-OPERATORs. Additional information

must be given for specifying the logic operators as MOVE-OPERATORs:

a. LEFT and RIGHT are used as the names of the LOC-
PROG, FIRST, and SECOND.

b. SYMBOL and SIGN are the ATTRIBUTES of a node of
an OBJECT-SCHEMA.

c. <V,.> is the set of two elements, V and ..
d. <V,I> is the set of two elements, V and I.

f. [VI,IV] is the FUNCTION whose value is I if the
input is V and V if the input is I.

g. [V.,.V] is the FUNCTION whose value is . if the
input is V and V if the input is ..

The MOVE-OPERATOR representation of R1-R9 follows:

Rl: a,b. (PRETESTS

THE SYMBOL IS IN-THE-SET <V,.>.
MOVES
1. MOVE THE LEFT TO THE RIGHT .
2. MOVE THE RIGHT TO THE LEFT .)

R2: (PRETESTS
THE SYMBOL EQUALS I .
MOVES

MOVE THE LEFT TO THE RIGHT I.
2. MOVE THE RIGHT TO THE LEFT
3. MOVE-FUNCTION OF THE LEFT SIGN TO THE LEFT SIGN, THE FUNCTION IS

[-+>+"] • w T c ~*
4. MOVE-FUNCTION OF THE RIGHT SIGN TO THE RIGHT SIGN, THE FUNCTION IS

R3: a,b. (PRETESTS
THE SYMBOL IS IN-THE-SET <V,.>.
MOVES
MOVE THE LEFT TO THE TOP-NODE .)

R4: a,b (PRETESTS
1. THE SYMBOL IS IN-THE-SET <V, .> .
2. THE SYMBOL EQUALS THE RIGHT SYMBOL .
MOVES

2. m m THE1 RIGT-TT-LTiFT̂ T̂
3. MOVE THE RIGHT-RIGHT TO THE RIGHT .)

c,d. (PRETESTS
1. THE SYMBOL IS IN THE SET <V,.> .
2. THE SYMBOL EQUALS THE LEFT SYMBOL .
MOVES

2. m TS i ^ T l S^O^RIGHT-LEFT
3. MOVE THE RIGHT TO THE RIGHT-RIGHT .)

R5: a,b. (PRETESTS
1. THE SYMBOL IS IN-THE-SET <V,.> .
MOVES
1. MOVE-FUNCTION OF THE SYMBOL TO THE SYMBOL ,

THE FUNCTION IS [V.,.V] .
2. MOVE-FUNCTION OF THE SIGN TO THE SIGN , THE

FUNCTION IS [-+,+-] .
3. MOVE-FUNCTION OF THE LEFT SIGN TO THE LEFT

SIGN , THE FUNCTION IS [-+,+-] .
4. MOVE-FUNCTION OF THE RIGHT SIGN TO THE RIGHT

SIGN , THE FUNCTION IS [-+,+-] .)

R6: a,b. (PRETESTS
1. THE SYMBOL IS IN-THE-SET <V,I> .
MOVES
1. MOVE-FUNCTION OF THE SYMBOL TO THE SYMBOL ,

THE FUNCTION IS [VI,IV] .
2. MOVE-FUNCTION OF THE LEFT SIGN TO THE LEFT

SIGN , THE FUNCTION IS [-+,+-] .)

R7: a,b. (PRETESTS
1. THE SYMBOL IS AN EXCLUSIVE-MEMBER OF <V, .> .
2. THE RIGHT SYMBOL IS AN EXCLUSIVE-MEMBER OF

<V,.> .
MOVES

- 354 -
1. MOVE THE SYMBOL TO THE LEFT SYMBOL .
2. MOVE THE RIGHT SYMBOL TO THE SYMBOL .
3. COPY THE SYMBOL AT THE RIGHT SYMBOL .
4. MOVE THE LEFT TO LEFT-LEFT .
5. COPY THE LEFT AT THE RIGHT-LEFT .
6. MOVE THE RIGHT-LEFT TO THE LEFT-RIGHT .)

c,d. (PRETESTS

R9:

THE SYMBOL IS AN EXCLUSIVE-MEMBER OF <V,.> . ~ j
THE LEFT SYMBOL IS AN EXCLUSIVE-MEMBER OF J

1.
2. THE LEFT SYMBOL IS AN EXCLUSIVE-MEMBER OF

< v , - . > .
3. THE RIGHT SYMBOL EQUALS THE LEFT SYMBOL . ~>
4. THE LEFT-LEFT EQUALS THE LEFT-RIGHT .
MOVES J
X. MOVE THE LEFT SYMBOL TO THE SYMBOL .
2. MOVE THE SYMBOL TO THE RIGHT SYMBOL . 1
3. MOVE THE LEFT-LEFT TO THE LEFT . ~j
4; MOVE THE LEFT-RIGHT TO THE RIGHT-LEFT

R8: a. (PRETESTS
THE SYMBOL EQUALS PERIOD .
MOVES
MOVE THE LEFT TO THE TOP-NODE .)

b . (PRETESTS
THE SYMBOL EQUALS PERIOD .
MOVES
MOVE THE RIGHT TO THE TOP-NODE .)

3. COPY X AT THE RIGHT SYMBOL .)

]
J

(MOVES J
1. MOVE THE TOP-NODE TO THE LEFT .)
2. COPY V AT THE SYMBOL . - i

J

"1
J

]

J

]

2

