
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



PRKLDHNARlf DESIGN SPECIFICATIONS OF XX g A VARIAOT OF L 

Jo Earley and A 0 Newell 

July 13, 1966 

MI *** 

This? is a. working draft and may not be cited or reproduced 
without the permission of the authors * The research was 
supported by Contract SBwI46 frcn the Advanced Research 
frojectu Agency o.C the Department of Defense* 

Carnegie Institute of Technology 



mZLTKOMXt DESIGN SPECIFICATIONS 0F XX, A VARIANT OF L*\ 

J a Barley and A* Newell 

This paper describes a variant of L which is being implemented for 

the IBM 360 computer at Carnegie Tech0 The language (as yet unnamed and 

simply called XX here) is embedded in the OS 360 Assembler Language and 

consists of a series of macros which may be called by the source language 

prograumersa This accounts for some of the unusual and limited syntax, 

XX is intended to be a system ict which list processing systems and 

languages may be written making it unnecessary for the systems programmer 

to go to the machine level« However, it may also be used effectively as 

a programming language ltself« The aim ia to give the programmer as much 

control as possible over all the processes he may use --• available space., 

list 1inking, block storage allocation — while maintaining reasonable 

programing easeo 

Sections I and II contain the definitions and basic operations >iirieh 

make up the heart of XX* Section III contains additional operations 

necessary to make it complete as a programming language. This much repre

sents Basic XXu With this language one should be able to accomplish arty 

o f the operations intended for the language, though maybe not easily o r 

efficientlyo Section IV contains certain operations which are m e r e l y 

abbreviations for sequences of Basic TX. commands, but which make some v e r y 

Kncwlton, Kenneth G o < > A 'Progransner*s Description of L v BeD Telephone 
Laboratoriesf' "Low~Level Linked List Language, Be - % i>i^i;or^ :• 



common operations easy to write< Section V defines a language in which a 

programmer may communicate to the XX compiler how he would like certain 

operations to be implemented* and Section VI defines a similar language 

in which certain monitoring checks may be turned on0 

A general familiarity with Knowlton's I system is assumed in this 

papero 



Ic Definitions 

A* Blocks 

<Block Definition> ss = BLOCK <IdentIfier>, (<Number>s <Number>) 

<Identifiex> ss = <2etter> | <Identifier> <Letter> J identifier; <Digit* 

<Tlumber> ss = <Digit Sequence> j <SETA Symbol> 

A block is a number of contiguous words in memory which are to be treated 

as a unit* In a block definition, a name is defined to stand for a specific 

type of blocko This is designated by the numbers of the beginning and end 

words of th« blocko These may be used to select a sub"block of a containing 

block or to define the extent of a block. 

Thus after executing 

BLOCK B 9 (4, 10) 

we may use B to refer to words 4 through 10 inclusive of a larger block. 

After executing 

BLOCK STAGS, ( 0 9 1023) 

we may use S P A C E to set up a block of 1024 words at some location, The 
th 

initial word >f a block is called the 0 one for numbering purposes. 

The extent of a block may be defined by using decimal numbers or SrTA 

symbols (see Assembler manual"1 which hold compile-tirae arithmetic quantitieSo 

Thus* altaough blocks may he redefined* they are static at runtime in the 

sense t?»at the programmer always kncvs for any particular use of a block 

name the size and shape of the block to which he is referring, This 

philosophy has been used in the design of the language in that no tests are 

included to determine the shape of a block ov its location i n a l a r g e r b l o c k 



T 

Bo Fields 

<Field Definition^ %t- FIELD identifiers* <Number>9 ( Number>o <Number>) 

A field is a number of contiguous bits within a word of a black whieh 

are to be treated as a unit* A name is defined to stand for a specific type 

of field in a field definition The first number gives the word of the block 

in which the field resides The next two define the boundaries of the field 

just as in a block definitiono Thus* 

FIELD A, l t (18, 31) 

sets up field A to be this part of a two word blocks 

0 18 31 

Field definitions may be used with any blocko Like blocks, they may 

overlap or coincide in any way, and one may be accessed from a block of any 

size^ including an implied block (see IIA)* Like blocks,* field shapes are 

static at run-time and so are known to the programmer, 

Co Bugs 

<Bug Definition: ti» BUG identifier iist> 

<Identlfier List> <Identifier> { identifier Lis t> identifier:-

A bug refers to a specific location in memory* unlike blocks and fields* 

which are only types, to be referenced relative to the beginning of a blocko 

A bug is a full word in length and like fields and blocks it may contain any 

information the programmer chooses to store in it* Bugs participate in all the 

same operation as do full word fieldso 

In a bug definition, each name is declared to stand for a specific bug 

Its location is assigned by the compiler,, 



r 

H o Basic Operations on Fields and Blocks 

A* Designation 

<Elementary Identified ss» <Letter> J <Blemantary Identifiers <Bigit> 

<Name> ss- <Elementary Identifiers j [<Identifier>1 

<Sequence> % s= <Name> J <Sequence> <Name> 

<Field Name> : s» <Name> 

<Field Sequenced s t ~ <Sequence> <Field Name> 

<Block Nama> <Name> 

<Block Sequenced % %- <Sequence> <Block Narae> 

The first name in the sequence and only the first; must be a bug name* 

Each field is assumed to contain a pointer to a location in memory** An 
th 

implied block is assumed to exist there with that location as its 0 1 word* 

If a field is too small to contain an address, 0ns are added on its left to 

make it the right size* 

The value of the sequence is calculated in the following ways We star^ 

by accessing the implied block pointed to by the initial buge If the next 

name is a block name B # we then access the B sub-block of that block* If 

the next name is a field name F D we access the F field of the block and 

then access the implied block pointed to by that field0 In either case 

we now have a block again, so the process is repeated0 This continues 

through the sequence until the last name gives us either a block or field 

as a value* In the case that a field is last* we do not access its implied 

blocko 



Thus to calculate 

FI..KLD A. 1 ̂  (0, 15) 

FIEU) Z, 0, (21* 26) 

BLOCK LV1G, ("•', 5.) 

Bv.CK Q, (2,3) 

[;c --.h1 • û h the. following chains 

B, Basic Field Operations 

<Pield Operations % ?« (<Fieid Sequenced <~» <Quantity>) 

(<Field Sequence^ <~ o, <Sequence>) 

<Quantity> iSa<Field Sequence> | <Number> | $ <Expression> 

A qumtity may be the contents of a field* a decimal number^ or any legal 

assambler expression preceded by a $ 

'V1' stores the right quantity into the field on the Uft right-justified. 

If the quantity is tos> small 9 the rest of the field is • leaned to 0„ However*, 

if the quantity is to® large i t may clobber any information stored to the 

left of the f i e l d o 



fVo 1 8 makes the field on the left point to the block indicated by the 

sequence on the righto If it is a block sequence, rise left field points 

to the block which is its value<> If it is a field sequence, the left field 

points to the implied block of the field which is the value of the sequence*, 

C< Basic Block Operations 

<Block Operation> sg« (<Block Sequenced, *n, <Block or :juantity>) 

<Block or ûanfcity> ss« <Block Sequence> J < quantity?* 

When a quantity is stored into a block it is placed right^justified in 

the last word of the block and the rest of the block is cleared to 0 O If a 

smaller block is stored into a block it is placed in the last words and the 

rest is cleared to 0 o If a larger block is stored it may clobber contiguous 

informationo 

Do Basic Tests 

<Basic Test> %i~ (<Sequence>, <Kqual£>» <Block or Quantity» j 
(<Field Sequence>, <Foints>8, <Sequence>) j <Sequence> | 

"7<Sequence> 

<Equals> t%- ~ \ 

<Points> ss« «o | -r«o 

One may test for equality or inequality between the contents of a field or block 

and a quantity or block or field contents* If the two operands do not match 

in size, leading 0 8s or leading blank words are added to the smaller one to 

make it conform before the test is made0 

A field may be tested to see whether or not it points to the implied block 

of some field sequence or the value of a block sequence0 

If just a field or block sequence appears, the test is true if it is 

non-zero and false otherwise* ,8-yff reverses these., 



(X, *o 9 WAD) is true 

(Z9 «y9 WA) makes X point where A points 

(WBt 3) puts a 3 in B 

(WAD9 *-» 3) puts a 3 in D and clears the rest of 

Now we have 

w§ i ] I s 4 c r 

B 3 | A -

Now (WB, =, XD) is true 



f 

III o Additional Programming Features 

Through the use of defined blocks and fields, one nay access 

sub^blocks and fields which are fixed in their location add size, but which 

may lie in varying blocks« If one ne#ds to access varying sub"blocks or words 

of a block* he may perform arithmetic on the field pointing to the block to 

obtain the needed resuite If one needs to access varying fields within a 

word he may perform logical operations on the word to obtain the result0 

Ao Arithmetic 

<Arithmetic Operation> ?:» (<Field Sequence>v 

<Arithmetic Operatot>, <Quantity>) 

<Arithmetic Operator> xs« + J • | * j / 

The contents of the field which is the value of the field sequence is 

modified by executing the Indicated operation between it and the quantity, 

and storing the result back Into the field as in an ordinary store commando 

Thus (XY9 3) increments the contents of the Y field of X by 3 0 In 

all fields except those which are full words, numbers should be kept to non» 

negative integers0 If any operation produces a negative number, garbage may 

resulto In full word fields, signed arithmetic will work correctlyo 

<Arithmetic Test> gj«* (<Quantity>9 <Relation>, <Quantity>) 

<Relation> t:« > J ̂  | < j < 

These tests treat their operands in the same form as the basic tests0 

Bo Logical Operations 

<Logical Operation> 25=. (<Field Sequence>, <Logical Operation>, 
<Quantity>) j <Field Sequence>) | 
(<Pield Sequence^ <Shift Operator^ <Quantity>) 

<Logical Operator> s x = a, j | x v 

<Shift 0peratot> ss« | 



The logical operators modify the field on the left in a way analogous to 

arithmetic operators. Thus (X» \* Z) stores into X the logical union or 

X and Eo "XV executes the "exclusive or11 operation, n-fn complements the 

contents of the field which is its argument. 

The shift operators shift the contents of the left field left or right 

the number of bits specified by the quantity on the righto This shift is done 

within the field itself• 0*s are supplied where bits are vacated by the 

shifty but any bits which overlap after the shift may cause trouble 

Co Input/Output and Conversion 

<l/0 Operation> ss« (<Sequence>, <3)evice>$ <Quantity>) } (<Device>9 NEXT) 

<Device> :s« PRINT | PUNCH j READ 

These operations designate that the number of characters specified by the 

number quantity on the right are to be read into or taken out of the field 

or block specified on the lefto As with other operations, this is done 

right-justified and no check is made for overlap on the lefto (Some 

operations for conversion of digits from card code to binary are also ne@ded0) 

Do Control Structure 

<Control Operation s:« (GOTO,, <Identifier>) 
(CALL, <Identifier>) 
(GOTO, RETURN) 

GOTO specifies a simple change of control« 

CALL produces a call on a closed subroutine starting at the specified label* 

RETURN specifies that control is to return to the next statement after the 

most recent call on a subroutine.* 



<Operation> s s * <Field Operation | <Block Operat:ion> j 
Arithmetic Operation> J <Logical Operation> | 
<Control Operation> { <l/0 Operation^ 

<Test> <Basic Test> J <Arithmetic Test> 

<Operation Sequence^ s s = <©peration> j <Operation Sequence> <Operation> 

<Test Sequence^ s s « <Test> J <Test Sequence> <Teat> 

<Definition> zt~ <Block Definition> j <Field Definition>|<Bug Definition 

<IF Word> it** IF J IF ANY 

<Statement> s s « <Definition> J <IF Word> <Test Sequence^ THEN,, 
<Operation Sequence> j 
DO <Operation Sequenced 

DO specifies that each if a sequence of operations are to be executed in 

ordero IF specifies that if all of the tests in the sequence are true then 

all the operations following the THEN are to be executed, IFANY specifies 

that if one or more of the tests are true*> then all the operations are to be 

executedo 

<Labeled Statements t:« <Identifier> <Statement> J <Statement> 

A program is a series of labeled statements embedded in an appropriate 

assembler language program0 



IV o Abbrevia tions 

The following operations are in the spirit of XX, but not required as 

primitive definitions Therefore they are Included here along with the Basic 

XX code which defines them0 

A. Push and Pop 

<Push> s s « ^<Pield Sequence> <Pield Name> 

<Pop> s s= T<Pield Sequence> <Field Name> 

<Left Side> s:» <Push> j <Field Sequence> 

<Right Side> <Pop> j <Quantity> 

<PushHPop Operation> (<Left Side>, H>, <Right Side>) 

Push and pop work on a list of blockso The field sequence following the " 9 9 

or " T " points to a certain block in the list The field name specifies the 

field by which the blocks of the list are linked 

The pop operation deletes the block from its list and points to it as 

indicated on the left Thus, 

<W, +o« tXB) 

is equivalent to 

(W9 «-o, X), (X, *o9 XB) 

It changes this configuration 

B B 

Into this one 



The pop operation may be used as in an ordinary stack when its field 

sequence points to the top of the stack* It may be used to delete an 

element from the middle of a list if the field sequence links through the 

list to the block to be deleted0 

The push operation Inserts the block pointed to on the right side into the 

list on the left so that it is pointed to by the field indicated0 Thus9 

( UCC9 ««, X) 

is equivalent to 

(xc, «-o» m)9 (we, +*9 x) 

It changes this configuration 

X§ 

into this one 

c 

Notice that X still points to the inserted blocko 
These operations may also be combined? 

UXA9 TYB)H <YA» *o9 X), (X9 +o9 Y ) t (Y» «•©, IB) 



Bo Move Pointer 

<Move Pointer> g s * (Field Sequence^ <Field Sequence :) 

This is an abbreviation for a pointer set operation which moves the 

pointer down a list (FA, BC) is equivalent to (FA, FABC) 

Co Block Splitting 

<Split Operatlon> s s « (SPLIT,, <Block Sequence^ <Quantity>9 <Pield Name>) 

This operation splits the block into sub-blocks of the size indicated by 

the quantity and links them together using the field indicated. A zero is 

placed in the last fleldo 

Given the definition 

BLOCK B f(I, J) 

the equivalent of 

* (SPLIT, AB, K 9 F) 

is the following (where A* R, h9 P are bugs, F is a field, and I, I, K 

represent integers): 

DO (R,*o9A)» (Rf + t I) 

DO a * A), (h9 J) 

LOOP DO (P, *o, R ) f <Rf K) 

IF (R? >9 L)9 THEN, (GOTO, OUT) 

DO (FFg*o, R), (GOTO, LOOP) 
OUT DO ( J F , 0) 

Do Available Space Operations 

The block splitting operation gives the programmer a method for setting 

up lists that could be used for available space lists. He may then use push and 



pop operations for getting new cells from available space and returning themc 

In order to make these processes even easier, the following abbreviations 

are available0 

^Available Space> it* (SPACE^ <Field Sequence^ <Number>, 

<Field Namc£>, <Number>) 

This sets up an available space list in blocks of the size given by the 

first number linked together by the field name* It is pointed to by the field 

sequence and it extends the number of words in memory past this point given by 

the second number 

(SPACE* S, 4, F, SIZE) « 

BLOCK B* (0» SIZE) 

DO (SPLIT, SB, 4, F) 

Since the programmer has supplied the name of the space list and its link 

field* he can access it using push and pop or perform any other L^ operations 

on itc If he wants to move all this behind the scenes, however, he may execute 

(SPACE* <Number>, <Number>) 

This causes an available space list to be built up in blocks of the size 

of the first number, The second number gives the total size of the list in words 

The location and link field of the list are unknown to the programmero He may 

now use just 'V and t ,^ , , with no parameters to work with his available space 

listo Thus, (W9 «-o, ?) points W to a new cell. And (4 9 <-o91*WA.) pops the 
top element off WA and returns it to available space <> 

Even though an available space list S has be@n defined in this way, another 

list may have been defined more recently and would therefore be the one evoked 

by 11 f " and m4pm. To return this function to S, we execute 

(SPACE, S) 0 



V o The following declarations allow the programmer to specify how certain 

operations are to be implementedc 

<Xmplementation Declarations ss» <Implementation Features <Scope> 

PRIORITY MASK 
<Implementation Featured s s « PRIORITY BUG 

MASK EQUALS <Field Name> 
MASK COMPLEMENT <Fleld NameO 

<Scope> s s » DEF| ON j OFF J <empty> 

The priorty features must have a scope of DEFo They Indicate that all bugs 

or field masks defined in the next definition are to reside in general registers* 

The two mask features must also have a scope of DEFo They indicate that field 

masks defined in the next definition are to be the same as the masks of another 

field or the complement of those of another field with respect to a 32 bit word, 

For the complement feature to be used, the original field must reside at one 

end of a wordo 

V I o The following declarations allow the programmer to declare the certain 

monitoring and error checking features are to be operating in this program. 

<Monitoring Declaration> tx= <Monltoring Feature> <Action> <Scope> 

<Mbnitoring Feature> s s « FIELD OVE&LAtf 
SHIFT OVERLAP 
NEGATIVE INTEGER 
ZERO LINK <Parameter> 
ACCESS <Parameter> 

<Parameter> s s « <Field Name> J <Empty> 

<Action> s$« <Control Operation> 



Each of these declarations causes the compiler to check for the occurrence 

of certain conditions*. When it finds one of these it executes the action which 

has been specified with itc This must be either a goto or a call on a subroutine, 

In the case of a goto, control just continues from there• In case of the cai- of 

a subroutine, control may return either to the next operation after the one one 

which it trapped, or it may return and attempt to execute the instruction again, 

''frield overlap11 checks to see if one is storing a quantity Into a field whi ± 

is to© small for the quantity* This check also operates on arithmetic and 

logical operations which leave their results in fieldso "Shift overlap" 

checks to see if the quantity which was shifted now overlaps its field within 

its word* Negative integer tests to sem if an arithmetic operation puts a 

negative integer into a field which is less than a full word* 

"Zero link" checks to aem when the program tries to link through a field 

which contains 0* This may apply only to a specific field if that field is 

mentioned as the parameter of the feature0 "Access" checks every time any 

field is accessed or every time a specific field is accessed according to its 

parametero 

The scope of these declarations may be DBF, specifying that they apply to 

the object defined in the next definition throughout the progress A feature 

may be turned ON and OFF, or if no scope parameter is given, then it applies 

to the next statement only0 


