NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Lo-0 Coloal

&
PRELIMINARY DESIGN SPECIFICATIONS OF XX, A VARIANT OF 1. .

4« Earley and A, Newell

Juiy 13, 1966

Ghic is & working draft and may not ba cited or reproduced
withicul, ghe pernisgicon of the autbovs. The research was
supported by Contzace 8B-148 frew the Adveneed Rossursh

Frojscte fgency of the Departeeat of Defesse.

Carvegis Institete of Tectwmolsgy

PN

FRELIMINARY DESIGN SPECTFICATIONS OF XX, A VARTANT oF r°.

d, Barley and A. Newell

This paper describes a variant of 15* which is being implemented for
the I8M 360 computer st Carnegie Tech. The langusge [as yet unnamed snd
s8imply calfied XX here) is embedded in the OS5 360 Assembler Language and
consists of a series of macros which may be called by the source language
programners. This accounts for scme of the unususl and limited synkax.

ZX is Intended to be a systewm in which list processing systems and
languages may be writter making it umnecesgsary for the systems prograwner
to go to the machine level. However, it may also be used effectively as
a prograsming language Ltself., The aim is to give the programmer as wuch
control as posaible over all the processes he may use -~ available spare,
list linking, block storage allocation -~ vhile maintaiping ressonable
programming ease,

Sections I aud II contain the definitions and basic operstions shich
make up the heart of XX. Section III contains additicnal operaiicons
necessary to make it complete as a programming language. This wuech ropre
sents Baslec XX. With this language one should be able to acconplish o
of the operations initended for the language, though miybe rot easily o
efficiently. Section I¥ contains certair operations which are meraly

abbreviations for sequences of Basic ¥X commands, but which make scme wery

6

Knowiten, Kenreih 6., 4 Programmer's Description of L7, Rel:
Laberatories” Low-Level Linked List Lauguesa. Deld Telopion: oo
L9465,

compren operabions esasy to write. Section V defines a language in -oich a
programmer may comsunicate to the XX compiler how he would like certain
operations to be implemented, and Seqtion VI defines a similar language
in which certain monitoring checks may be turned on.

A general familiarity with Knowlton's 16 system is assumed in thig

paper.

I. Definitions
4. Blocks
<Block Definition> ::= BLOCK <Identifier>, (<Number>, ~Number:)
<Identifier> ::= <letter> | <Identifier> <Letter: | <Identifier- ~Digit.
<Number: ::= <Digit Sequence: | <SETA Symbol::

A block is a number of contiguous words in memory which are to be treated
ag a unit. In a block dzfinition, a name is definad te stand for a specific
type of block. This is designated by the numbers of the beginning and end
words of the block. YThese may be used to select a stb-bloclk of a containing
block or to define the extent of a bhlock.

Thus after executing

BLOCK B, (4, 10}
we may use B t» rafer to words 4 through 10 inclusive of a larger bloeck.
After executing

BLOCK STACE, (0, 1023)
we may use SPALE to set up & blcck of 1024 words at some location. The
initial word »i a block is called the Oth one for numbering purpcses.

The exteat of a block may be defined by using decimal numbers or SY.TA
svmbols (sce Assembler manual) which hold compile-time arithmetic guantities,
Thus, altaough blocks may ks redefined, they are atatic at run-cime in the
sense th:at the programmer aivays knews for any particular use of a block
name ine size and shape of the block te which he is referving. This
phil ;sophy has been used in the design of the language in that no tesis are

in:luded to determine the shape of a biock or its location in a Taraer Diook

B. Fields
<Field Definition> ::= FIELD <Identifier-, «NMumber.-, (<Number’, <Number:}
A Field is a number of contiguous bits within a word of a black whieh
are to be treated as a unit., A name is defined to stand for a specific type
of field in a field definition. The first number gives the word of the block

in which the field resides. The next two define the boundaries of the fiezld

just as in a block definition. Thus,
FIELD A, 1, (18, 31)
sets up field A to be this part of a two word block:

0 18 31

Fleld definitions way be used with any block, Like blocks. they may
overlap or coincide in any way, and one may be accesszd from a block of any
gsize, including an implied block (see IJA)., Like blocks, field shapes are
static at run-time and so are known to the programer.

C. Bugs

<Bug Definition: ::+= BUG <Jdentifier List
<ldentifier List: j:= <Identifier:- t <Identifier List- ~Identifier:

A bug refers to a specific location in memory, unlike blocks and fieids,
which are only types, to be referenced relative to the beginuning of a block,
A bug is a full word in length and like fields and blocks it may contain any
information the programmer chooses to astore in it. Bugs participate in ali ths
same operation as do full word fields.

In a bug definiticn, each name is declared to staud for a specific bug

Its location is assigned by the compiler.

55“

1I. Basic Qperations on Fields and Blocks
&s Designation

«Elementary Identifier> ::= <Letter> | <Elementary Identifier- <Digit>

<Name> ::= <Blementary Identifier~ | {<Identifier>]

<tequence> ::= <Name> | <Sequencer <Name:

<¥iald Name> ::= <Name>

“Field Sequence> ::= <Sequence> <Field Name>

<Block Name: ::= <Name>

<Block Sequencel> ::= <Sequence: <Block Name>

The first name in the sequence and only the first must be a bug name.
Each field is assumed to contain a pointer to a locaition in memory. An
implied block is assumed to exlst there with that location as its G“l word.
If a field is too swall to contain an address, 0%°s are added on ire ieft to
make it the right zize.

The value of the sequence is calculated in the following way: We star.
by accessing the implied block pointed to by the inic-ial bug, If the nexr
name is a block mame B, we then access the B sub-block of that block. 1f
the next name i3 a field name F, we acecess the F fie'd of the block and
then acgess the implied block pointed to by that fisld, JIn either case
we now have & block again, so the process iz repected. This continues
through the sequence until the last name gives us either a block or field
as a value. In the case that a fleld is last, we do not accese itn dmpl lad

bloei.

thag o catoulate

BOUCK . (2.3

woopo fhecugh the following chaln:

AR k2 v i s e o] e oo

Y

-
e P P Y
o
- v
s u

‘a
H
h
¥
_..,-/

et e e e | 1B1G

i
H

~

!

|

1

{

M

. Basic Pleld Operatioas

~Pield Operationy 3:= (<Field lequence:. «, <Quantity=)

{«<Field Sequencer, « 0, <Sequence;r)
<{uontity ;t= <Fleld Sequence> | <Number> l $ <Expressions
4 quamtity may be the contents of a field, a decimal number, or any legal
a2suembler expression arecedad by a §.
“" giores the right guantity into the field on the lu¢fr pight-justified.
If the quantity is tos small, the rest of the field is « leaned to 0. However,
if the quantity is tos large it may clobber any information stored to the

lofit of the field.

n?"n

Yo" makes the fileld on the left point to the block indicated by the
sequence on the right. If it is a block sequence, tie left field pointa
te the block which is its value, If it is a field sequence, the left field
points to the implied block of the field which is the value of the sequence.
C. Basie Block Operations
<Block Operation> ::= (<Block Sequence>, ¢, <Block or juantity>)
<Block oxr Juantity> 33= <Block Sequence> | < mantity>
When a quantity is stored into a block it is placed right-justifiad in
the last word of the block and the rest of the block is cleared to 0, If a
smaller block is stored into a block it 1is placed in the last words and the
rest is cleesred to 0. If a larger block is stored it may clobber contiguous
information,
D. Basic Tects

<Basic Test> i:= (<Sequence>, <Equals>, <Block or Quantity>) |

{<¥Field Sequence>, <Points>, <Sequence») | <Sequence> |
Sequence>

<Equals> s:x = | 7=
<Points> :3= =0 | g=0
One may test for equality or inequality betweam the contents of a field or block
and a quantity or block or field contents. 1f the two operands do not match
in size, leading 0's or leading blank words are added to the smalier one to
make ft conform before the test is made,
A field may be tested to see whether or not it points to the implied block
of some fizld sequence or the value of a block sequernice,
If just a field or block sequence appears, the test is true 4f it is

non~zero and false otherwise. "™ reverses these.

Examples:
Suppose we have
Ws i
i ¢
B A 7694
X: —

(X, =0, WAD) is true
(X, +0, WA) makes X point where A points

{(WB, « 3) puts a 3 iIn B

(WAD, «, 3) puts a 3 in D and clears the rest of it.

Now we have

W | i c

B_3 _a < 3

X: -

Now (WB, =, XD) is true

1y
]

ITT, Additional Programrcing Features
Through the use of defined blocks and flalds, one may access

sub=blocks and fields which are fixed in thelr locatiou add aize, but whiech
may lie in varying blocks, 1If one neads to access varying sub-=blocks or words
of a block, he may perform arithmetic on the field pointing to the block to
obtaln the neaded result, If onea needs to access varying flelds within a
word he may perform logical operations on the word tc obtain the resuit.

A, Arithmatic

<Arithmatic Operation> 3:= (<Field Sequence>,
<Arithmetic Operator>, <Quantity>)

<Arithmetic Operator> 3i=+ | ~ | * | /

The contents of the field which is the value of the field sequence is
modified by executing the indicated operation betwesn it and the quantity,
and storing the result back into the field as in an ordinary store commsnd,

Thus (XY, 4+, 3) increments the contents of the ¥ field of X by 3. In
sll fields aexcept those which are full words, numbers should be kept to non-
negative integers, 1If any operation produces a negative number, garbage may
result, In full word fields, signed arithmetic will work correctly.

<Arithmetic Test> ::= (<Quantity>, <Relation>, <Quantity>)

<Relation> :1:=> | 2| < | g

Theae tests treat their operands in the same form as the basic tests.

B. Logical Operations

<Logical Operation> ::= (<Field Sequence>, <Logical Operation>,
<Quantity») | (-, <Field Sequence>) |
(<Field Sequence>, <Shift Operator>, <Quantity>)

<Logical Operator> st= Al | 2 v

<Shift Operator> 33= H—l -3

= 10 =

The logical operators modify the field on the left in & way analogous to
aritimetic operators. Thus (X, v, Z) stures into X the logical union or
X and Z. "Re" executas the "exclusive or" operation. "=' complements the
contents of the field which is its argument.

The shift operators shift the contents of the left field left or right
the number of bits specified by the quantity on the right. This shift is done
within the field itself. 0%s are supplied where bits are vacated by the
shift, but any bits which overlap after the shift may cause trouble.

C. Input/Output and Conversion

<1/0 Operation> ::= (<Sequence>, <Device>, <Quantity>) | (<Device», NEXT}

<Device™ :3= PRINT | PUNCH | READ

These operations designate that the number of characters specified by the
tumber quantity on the right are to be read into or taken out of the field
or block specified on the left. As with other gperations, this is dome
right=justified and no check is made for overlap on the left. (Soma
operations for conversion of digits from cerd code to binaryare zlso neaded.)

D. Control Structure

<Control Operation> ::= (GOTQ, <Identifier>)
(CALL, <Identifier:)
(GOT0, RETURN)

GOTO specifies & simple change of control.
CALL produces a call on a closed subroutine starting at the specified label.
RETURN specifies that contrel is to return to the next statement after the

most recent call on a subroutine.

=11 =

<Operation: ::= <Field Operation> | <Block Operation> |
<Arithmetic Operation> | <Logical Operation> |
<Control Operation> | «<I/0 Operation>

<Test> ;2= <Basic Test» | <Arithmetic Tests

“Operation Sequence> ;:= <Operation™ [<Operation Sequence> <0peration-
<Test Sequence™ ;:= <Tast> | <Test Sequence> <Test:

<Definition> ::= <Block Definition> | <Field Definition>é<3ug pDefinition>
<IF Word> ::= IF | IFANY

<Statement> :¢= <Definition> | <IF Word-> <Test Sequence>, THEN,
<Operation Sequence: |

DO <Operation Sequencel

DO specifies that each 1f a sequence of operations are to be executed in

order, IF specifies that if all of the tests in the sequence are true then

all the operations following the THEN are to be executed, IFANY specifies

that if one or more of the tests are true, then all the operations are to be

exacuted,

<Labeled Statement> ::= <Identifier> <Statement> | <Statement:

A program is a series of labeled statements embedded in an appropriate

assembler language program.

..12-

IV. Abbreviations

The following operations are in the spirit of XX, but nct required as
primitive definitions. Therefore they are included here along with the Basic
XX code which defines them,

A. Push and Pop

<Push> ::= {<Fleld Sequence™> <Field Name>

<Pop> ::= T<Field Sequence> <Fleld Name>

<Left Side> ::= <Push> | <Field Sequence>

<Right Side> ::= <Pop> | <Quantity>

<Push-Pop Operation> ::= (<Left Side>, «o, <Right Side>)

Push and pop work on a list of blocks. The field sequence following the "¢ "
or "T" points to a certain block in the list. The field name specifies the
field by which the blocks of the list are linked.

The pop operation deletes the block from its list and points to it as
indicated on the left. Thus,

{W, 0, +XB)
is equivalent to
(W, «0, X), (X, «0, XB)

1t changes this configuration

x: —t B —f— B %

into this one

X: -.._/ B\ B ey

™ 13 e,

The pop vperation may be used as in an ordinary stack when itz flald
sequence points to the top of the stack. It may be used to delete an
element from the middle of a 1ist if the field sequence links through the
1ist to the block to be deleted.
The push operation inserts the block pointed to oa the right side into the
1ist on the left so that it is pointed to by the field indicated. Thusg,
{ WC, ¢«o, X)
13 equivalent to
(XC, «o, W), (W, ¢0, X)

It changes this configuration

Ws ——3

into this one

Notice that X still points to the inserted block.
These operations may also be combined:

(XA, «o, PYB)Z (YA, o, X), (X, +o0, ¥), (Y, vo, YB)

- 14 =

B. Move Pointer

<Move Pointer> ::= (Field Seguence>, - <Field Sequence-)

This 1s an abbreviation for a pointer set operation which moves the

pointer down a list. (FA, -5 BC)} is equivalent to (FA, <o, FABC)

C. Block Splitting

<3plit Operation> ::= {(SPLIT, <Block Sequence>, <Quantity>, <Field Nome>-)

This operation splits the block into sub-blocks of the size indicated by

the quantity and links them together using the field indicated. A zero is

placed in the last field.
Given the definition
BLOCK B,{I, 1)

the equivalent of

- (SPLIT, AB, K, F)

is the following (where A, R, L, P are bugs, F is a field, and I, J, K

represent integers):
DO (R,+0,4), (R, +, I)
DO (L, «0, A), (L, +, J)
LOOP DO (P, «o0, R), (R, +, K)
IF (R, >, L), THEN, (GOTO, OUT)
DO (PF,«0, R), (GOTO, LOUP)
OUT DO (PF, «, 0)

D. Available Space Operations

The block splitting operation gives the programmer a method for setting

up lists that could be used for available space lists,

He may then use push and

- 15 -

pop operations for getting new cells from available space and returning them,
In order to make these processes even easier, the following abbreviations
are available.

<Avallable Spaces ::= (SPACE, <Field Sequence>, <Number:>,
<Field Name>, <Number:)

This sets up an available space list in blocks of the size given by the
first number linked together by the field name. It is pointed to by the field
sequence and it extends the number of words in memory past this point given by
the second number.

(SPACE, S, 4, F, SIZR) &

BLOCK B, (0, SIZE)
DO (SPLIT, SB, 4, F)

Since the programmer has supplied the name of the space list and its link
field, he can access it using push and pop or perform any other L6 operations
on it. If he wants to move all this behind the scenes, however, he may execute

(SPACE, -Number>, <Number:)

This causes an available space list to be built up in blocks of the size
of the first number. The second number gives the total size of the list in words.
The location and link field of the list are unknown to the programmer. He may
now use just " and ".;" with no parameters to work with his available space
list, Thus, (W, <o, T) points W to a new cell. And (} , «o,PWA) pops the
top element off WA and returns it to available space.

Even though an available space list S has been defined in this way, anothe:
list may have been defined more recently and would therefore be the one evoked
by "4 " and "$". To return this function to S, we execute

(SPACE, §).

~ 16 -

¥, The following declarations allow the programmer to specify how certain
operations are to be implemented.
<lmplementation Declaration: ::= <Implementation Feature> <Scope>
PRIORITY MASK
<lmplementation Featurer ::= PRIORITY BUG
MASE. EQUALS <Field Name>
MASK COMPLEMENT <Field Name>
<Scope;- ::= DEF| ON | OFF | <empty>
The priorty features must have a scope of DEP. They indicata that all bugs
or field masks defined In the next definition are to reside in general registers.
The twe mask features must also have a scope of DEF, They indicate that field
masks defined in the next definition are to be the same as the masks of another
field or the complement of those of another field with respect to a 32 bit word.

For the complement feature to be used, the original field must reside at one

end of a word,

VI. The following declarations allow the programmer to declare the certain
monitoring and error checking features are to be operating in this program,
<Monitoring Declaration> ::= <Monitoring Feature> <Action> <Scope>

<Monitoring Feature> ::= FIELD OVERLAP
SHIFT CVERLAP
NEGATIVE INTEGER
ZERO LINK <Parameter:

ACCESS <Parameter>
%
<Parameter> ::= <Field Name> | <Ruwpty:

<Action> ::= <Control Operation>

w 17 »

Each of these declarations causes the compiler to check for the cceurreace
of certain conditions. When it finds one of these it exacutes the action whick
has been specified with it, This must be either a goto or a call om a subroutiie,
In the case of a goto, control just continues from there. In case of the cali =f
a subroutine, control may return either to the next operation after the one one
which it trapped, or it may return and attempt to execute the instruction again,

‘Pield overlap" checks to see if one is gtoring a quantity into a field whi:h
1s toe small for the quantity. This check also operates on arithmetic and
logical operations which leave their results in fields., "Shift overlap"
checks to see if the quantity which was shifted now overlaps its field within
its worda"Negative intagef'tests to ses if an arithmetic operation puts a
negative integer into a field which is less than a £full word.

"Zero link" checks to see when the program tries to link through a field
which contains 0. This may apply only to a specific field if that fleld is
mentioned as the paraemeter of the feature., ‘'Access' checks every time any
fielid is aceessed or every time a specific field ig accessed according to its
parameter, |

The scope of these declarations may be DEF, specifying that they appiy to
the object defined in the next definition throughout the program. A feature
may be turnad ON and OFF, or if no scope parumeter is givem, then it applies

to the next statement only.

