
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

This paper describes the internal specifications of * 1 . It is intended

that it be detailed enough so that it could be used by someone learning to

maintain the system, but organized in such a way that someone who wants to

know only enough to use some part of the meta-language can extract what he

wants without too much trouble.

The language consists entirely of a set of macros. It is therefore coded
*

completely in the 360 macro language . A knowledge of this language may or

may not be necessary, depending on one's use of these specifications. This

paper consists of descriptions of the function of each macro and descriptions

of the use of each global SET symbol.

First we shall present one *1 statement and the code it produces as an

example. Assume that the following definitions have been made:
BASFIELD
BASFIELD
FIELD
FIELD

M'
N
A, 1, (16, 31)
B, 2, (0, 15)

Then this statement

DO (MB,<r<s NBA)

produces the following code:
Code

1. L 3, N
2. L 3, 8(3)
3. N 3, Bl
4. SRL 3, BS
5. L 3, 4(3)
6. N 3, A1
7. L 4, M 00 SLL 3, 16
9. L 5, 8(4)

10. N 5, BO
11. 0 3, 5
12. ST 3, 8(4)

Macro Produced By

\ RIGHT

) J
ACCESS

LINK SEQ LEFT
SHIF ^

\ BINOP \ OP

STOR) STORE
>
DO

Explanation: (1) loads the contents of base field N into register 3; (2) loads

the word containing the B-field of the block pointed to by N; (3) extracts the
* IBM System /360 Basic Operating System Language Specifications, Assembler
(16K Disc/Tape)

field contents; Bl is a mask which has 1 ls in the bit positions of field B

and 0 fs elsewhere; (4) shifts it over so that it can be used as a pointer;

BS is a constant which is the number of bits that the right end of field B

is away from the right end of its word. These 3 have accomplished linking

through that field. (5) and (6) access the A-field of the block presently

pointed to, but do no shifting. This will come later if necessary. (7)

loads base field M. (8) now realizes that the quantity NBA must be at the

same position in its register as a B-field, so it shifts register 3 over to

get it to that position. (9) loads the word containing the B-field of the

block pointed to by M into a new register. Register 4 is needed for later

use. Since we are storing into this B-field, we must first destroy* its old

contents. (10) does this since BO is a mask with 0 fs in the bit positions

of field B and 1 fs elsewhere. We can now OR in the quantity we want to

store with (11) and store it back in memory from whence it came with (12).

T

MACRO DESCRIPTIONS

Each macro of the *1 system is described in the following format:

Macro The name of the macro.

Called by A simple list of the macros which call the macro.

Inputs All the parameters of the macro will be listed with

explanations of what they are. Some of the globals

used in the macro which function explicitly as inputs

will also be explained. The absence of a global from

this part or from output doesn't indicate that it

definitely could not be considered an input or output

of the macro.

Macros called A list of all macros called by the macro. Some will

" have explanations beside them. The absence of an ex

planation means that either the use of the macro can

be understood from reading its description or it will

be explained below under Action.

Outputs A list similar to Inputs.

Code* A look at the code produced and macros called by the

macro in order and with parameters. Some explanation

will be given here, but usually the code and the reason

for it is explained under Action. The use of any globals

shown here or in a listing of the macros may be found

by consulting the list of global descriptions.

Action This explains what the macro accomplishes and how.

Since each of the macros which is affected by the meta-language is affected

in the same way, this explanation is made separately of these macros. It is

under the heading META-LANGUAGE even though this is not a macro.

May not appear in some descriptions.

Macro

Called by

Inputs

Macros called

Outputs

Action

ACCESS

LINK, RIGHT

Globals

OLD

NEW

C

SETUP

Globals

NEW

Code:

L NEW, FG

N NEW, CI

Register pointing to block of

field to be accessed.

Register to get field.

The name of the field being

accessed.

To set up F and G to represent

to word of the field.

The register into which the fiels

has been accessed.

It accesses the field contents, but does not shift to the right side of

their register

* Affected by Meta-language

Macro

Called by

Inputs

Macros called

Outputs

Action

ADDD

BINOP

None

EASY

None

Code:

EASY

with parameter nA f f, to produce

the code to do addition.

Macro

Called by

Inputs

Macros called

Outputs

Action

ADDX

BSTORE

Parameters

RO A register to which RX may be

added.

None

None

If RX = 0, we do nothing. Otherwise we code

AR RO, RX

and we set RX to 0. This is because we are

about to use an instruction which cannot name

double indexing, so if we have an index reg

ister, we must add it to the one base register

we are using, RO.

Macro

Called by

Inputs

Macros called

Outputs

Action

AND

BINOP

Globals

RR,EX, F,G

SHIF, STOR

None

Code:

SHIF

0

N

STOR

RR, CO

RR, FG

(with NEW=RR, EX=FALSE)

First we place l fs all around the quantity and then we AND it directly into

the word containing the field. Then we put it back in memory.

Macro

Called by

Inputs

Macros called

Outputs

Action

BASBLOCK

Source Language

Parameters

B The name of the block

BOUNDS The lower bound and size of

the block.

BLOCK Block is called with the same

parameters, except that BASE=1,

None

Sets up compile-time information about the block.

Macro

Called by

Inputs

Macros called

Outputs

Globals

Action

BASFIELD

Source Language

Parameters

BUG

LOC

None

BUGS

GBLA

B

The name of the base field.

Its location.

This is the column of the

bug table which contains the

bug names.

Index to most recent storage

location for base fields.

TB Index to bug table.

BUG is set equal to LOC if it is passed or to

the storage location (indexed by B) if it is not.

Macro

Called by

Inputs

Macros called

Code

Action

BINDEC

BINOP

Parameters

F2

Fl

RIGHT, TABLEF

ADDX

SETUP

RIGHT F2

SRL

CVD

SEQ

UNPK

The field on the right which

contains a binary number.

The field on the left which will

contain decimal digits.

To check for adding RX to OLD

since UNPK cannot use double

indexing.

To set up F for UNPK.

RR,POS

RR,DOUB

Fl

INC(L, OLD), DOUB

(where INC has been set to access the

first byte of F2 and L = length of Fl

in bytes)

We calculate F2 right justified in RR. We

convert it to decimal into DOUB. Then we

calculate Fl and unpack DOUB into the field

that it points to.

BINOP

OP, TEST

Parameters

SEQ The sequence on the left.

OP The operator.

QUAN The quantity on the right.

BINDEC,DECBIN If the operator is D <- B or B «- D

it calls those immediately.

DO If the operation is push or pop,

it calls DO with the appropriate

arrangement of operands to perform

the operation.

RIGHT Otherwise RIGHT is called with

QUAN as a parameter. This calcu

lates the quantity on the right.

LEFT Then LEFT is called to calculate

the sequence on the left except

for its last element.

STORE,BSTORE,DIV,MULT,ADDD,ORR,AND,XOR,GT,LT,
EQ,BEG

Then depending on the operator, the

appropriate macro is called to exe

cute the operation or test indicated,

None

Codes the operation or test passed to it.

I 10

Macro BLINK

Called by SEQ, RIGHT, LEFT

Inputs Globals

C The block through which we are

linking.

Macros called TABLEBK, RIGHT, RET

Outputs See Action

Action 1. If C is a static base block we code

LA NEW, C.

2. If C . is a static block we increment INC by

C f s lower bound.

3. If C is a dynamic block, we push down a number

of globals used in RIGHT, then we call RIGHT

on the lower bound of C. This leaves the

increment we want in RR. Then,

a. If C is a base block we just set OLD to

be RR so it will link through that next.

b. If RX is zero, we set RX to RR so that

RR will be used as an index register

in the next access.

C If RX already has an index register, we

code AR RX, RR.

Then we pop back all the quantities that we pushed.

Macro

Called by

Inputs

Macros called

Outputs

Action

BLOCK

Source Language, BASBLOCK

Parameters

B

BOUNDS

Globals

The name of the block.

The lower bounds and size of the

block.

BASE = 1 if its a base block, = 0 otherwise.

TESTSEQ To test the lower bound to see

whether it is dynamic.

BLKS,LB,DLB,SIZ Each of these is a column in the

table of blocks. BLKS contains

the block name, LB the lower bound

if it is a static field and not a

base field, DLB the lower-bound

if it is dynamic, and SIZ the size.

If it is a static base block, the block name is set

equal to the lower bound.

Macro

Called by

Inputs

Outputs

Action

BRAKTEST

SEQ

Parameters

STRING A sequence which is being linked

through.

Globals

I The index of a character in the

sequence.

C That character.

Globals

I (The index of the next name in the

sequence) ~ 1.

C The name of the sequence which be

gins with the input C.

If C is not " [" , it does nothing. If it is, it

stores into C all the characters between the

and the next , f] , f and sets I to be the index of

the "] " .

Macro . BSTOIIE

Called by BINO?

Inputs None

Macros called TABLEBK, ADDX, GPAIR, SETG, CLEAR

Outputs None

Code If the right side is a quantity,

ST RR,INC.G

CLEAR (INC=INC+4, SIZE=size of left block-4)

If the right side is a Z word block,

LM OLD, OLDH-I, INCR(RR)

STM OLD, 0LD-K1, INC (OLD)

CLEAR (INC=INC^, SIZE=size of left block-8)

Otherwise
MVC INC(L, OLD), INCR(RR)

CLEAR (INC=INC-fL, SIZE=size of left block-L)

where L = size of right block.

Action: We do the store in one of three ways; then we set up the inputs for

CLEAR, which zeroes the rest of the left block.

Macro

Called by

Inputs

Macros called

Outputs

Code

CALL

UNOP

Parameters

DEST A quantity which supplies the address

of the subroutine.

DO, RIGHT

None

if DEST is a sequence

DO ([MS], +, 1)

if DEST is a label

DO ([M S H F O] , ^ , * - ^)

B DEST

DO ([MS], +,. 1)

RIGHT DEST

DO ([MS][FO],^,*-h\ T
2)

BR RR

(where MS is the pointer to the mark stack for subroutines, FO is

the Oth full word in its block, N^ and N^ are constants adjusted

so that the address of the next command after the branch is stored

in the mark stack)

Action: We push down the mark stack, put in it the return address and go to

the beginning of the subroutine.

CHANGE

MACROS A list of macros to be substituted

for when called.

THINGS A list of fields, blocks, etc. for

which the above macros are altered.

TAG A string designating this particular

call on CHANGE.

ENTER, ENTERB To make entries in the change table

for fields, and for base fields.

For each combination of a macro and a field or

block, TAG is entered in the spot in the change

table corresponding to that field or block and

macro. i.e. If LINK and Field A, where A is

the 3rd field, then LINK(3) <- TAG. If ACCESS

and base field B, where B is the 2nd base field,

then ACCESSB(2) <- TAG. If "FIELDS 1 1 or "BFIELDS"

occurs, all entries in that column are made.

See Output

Macro COMP

Called by UNOP

Inputs SEQ The sequence defining the field to

be complemented.

Macros called LEFT, GREB, STOR

Outputs None

Action; Code:

LEFT

L R, FG

X R, CI

STOR (with NEW=R, EX=0)

We get the word containing the field into R and exclusive or

with a mask containing 1 fs in the bit positions of the field.

Called by BSTORE

Inputs Globals

„ SIZE The size of the block to be cleared.

Macros called GREG

Outputs None

Code SR R,R

ST R,INC.G

5T R, [INC-f4]#G

Action: First we set R to zero and then store it into each word of the

block with a succession of ST statements.

Macro

Called by

Inputs

Macros called

DECBIN

BINOP

Parameters

F2 The field on the right which contains

decimal digits.

Fl The field on the left which will get

a binary number.

SEQ, IABLEF, GREG, STORE

SETUP To set up F for the PACK instruction.

ADDX To check for adding RX to OLD since

PACK cannot use double indexing.

Code SEQ F2

PACE DOUB,INC(L, OLD)

CVB RR, DOUB

LEFT Fl (pos r= 0)

STORE

(where INC has been set up to access the first

byte of F2 and L = length of right field in

bytes)

Action: We calculate F2 and pack it in a double word DOUB. We then convert

it to binary into register RR, and from there store it with the left

field.

Macro

Called by

Inputs

Macros called

Output

Code For input:

LAB

For output:

ON

LAB

DEF

INPUT

Parameters

.BLK The name of the i/o block.

DTFCD, DTFPR To define the files for the blocks,

OPEN To open the l/o area.

BLK is entered in IOBL, the label table for

l/o labels. The index of this entry is then

the integer which is added to LAB to produce

the label of the DTF.

B

DTFCD

OPEN

DTFPR

ON OPEN

ON

TYPEFLE = INPUT,

RECFORM = FIXUNB,

BLKSIZE = 8 0

DEVICE = 1442

DEVADDR = SYSRDR,

EOFADDR = ^ f W o x ... , \5LK,(2) if specified

IOAREA.1 = BLK

LAB

RECFORM = F1XUNB,

BLKSIZE = 1 2 0 ,

DEVADDR = SYSLST,

DEVICE = 1443,

IOAREAi; = BLK

LAB

Action: The indicated l/o block is defined and opened.

Macro

Called by

Inputs

Macros called

DIV

BINOP

Parameters

OP =/ if quotient is wanted or = MOD if

remainder.

SHIF, GREG, STOR

Outputs

Code:

GPAIR

None

To get a pair of registers for the

division.

Let Rl and R2 are a pair of contiguous

registers, Rl is even, and R is a

third register

SHIF

L

SR

LR

N

R2, FG

Rl, Rl

R, Rl

R2, CI

DR Rl, RR
MOD

STOR (OLD=R, NEW = Rl) SLL — — " R2,CS

STOR (OLD = R, NEW = R2)

Action: We shift the quantity in RR to match the position of the left

quantity. We load the word containing the left field into R2 and

zero Rl. We copy the word into R. Then we extract the field con

tents in R2, and divide the pair by RR. This leaves the quotient

in R2 and the remainder in Rl. The quotient will be right justi

fied, however, so in that case we shift it left to match the field

position and then store it. The remainder is already in the correct

position, so in case of l rMOD f l, we just store it.

Called by

Inputs

Macros called

Outputs None

Action: Codes each operation.

Macro EASY

Called by ADDD, SUB, ORR, XOR

Inputs Parameters

OP A letter indicating the operation

to be performed (A,S,0,X)

Macros called SHIF, STOR

Outputs None

Code SHIF

OP RR, FG

STOR (NEW=RR, EX=0)

Action: The quantity on the right is shifted over so that it matches the

right side of the left field. Then it is added (or subtracted,

etc.) right into the word containing the field. The result is

then stored back into memory.

Pl,...,P8 Parenthesized operations of

source language

OP Called once with each operation

as a parameter.

Macro

Called by

Inputs

Macros called

Outputs

ENTER

CHANGE

Parameters

MACROS

TAG

Globals

Tl

None

A list of macros in whose columns,

entries are to be made.

A string which is the entry which

is to be made.

The index of the entries which are

to be made.

The above entries are made for columns LINK,

STOR, STORE, or ACCESS

Macro ENTERB

Same as ENTER except that the column names all have B's after them.

t

Macro

Called by

Inputs

Macros called

Outputs

Action: Produces c

EQ

BINOP

Parameters

OP

REL

NOTANY

None
to make the test.

The relation (=, = o, —f=, —p=o)

With parameter E for equality test.

With parameter OP, to set up K

and N for REL #

Called by

Inputs

Macros called

Outputs

Code

SRL R, LD

SLL Rl, RD ^

>
This produces a mask with
l fs in the bits of the
field in R.

FD The name of the field.

N The word of the block in which

it resides.

BITS The beginning and ending bits of

the field.

GREG,RRESS To get and return registers used

for computing the mask,

FLDS, WORD, WID, SHIF, EXT

Each of these is a column in the

table of fields. FLDS contains

the field name, WORD the number

of bytes to be incremented to

access the correct word of the

block, WID the width of the

field in bits, SHIF the number of

bits the field is from the right

side of its word, EXT=1 if the

field is not a full word so that

extracting is necessary.

Let R and Rl be two registers, LD and RD be the

distance of the field from the left and right

hand side of its word in bytes. ONES=X 1FFFFFFFF 1.

The code:

L R, ONES

LR Rl, R

Macro FIELD - cont'd.

NR R, Rl

LR Rl, R
I This puts its

J complement in X Rl, ONES J wwm*"-cuw= "w x" R 1

Action: This code computes the two marks.

They then are stored in the next two available storage locations

for masks (indexed by M) .

Let F be the field name. Fl = the ones mask, FO = the zeroes mask.

Also FS = the entry in SHIF.

Macro FINAL

Called by Source

Inputs None

Macros Called CLOSE

EOJ

Outputs None

Code CLOSE

EA EOJ

Action: EA is the end-at-file address

does not specify one.

Language

To close each of the l/o blocks.

To end the run.

LAB (For each l/o block)

for l/o blocks for which the programmer

Macro

Called by

Inputs

Macros called

Outputs

Code

GOTO

UNOP

Parameters

DEST

RIGHT

None

If a quantity

B DEST

The quantity which specifies

the address to go to.

If a sequence

RIGHT DEST

BR RR

Action: We compile a branch to the given destination. If it is a sequence

we get it into RR and then branch to it.

Macro

Called by

Inputs

Macros called

Outputs

GPAIR

MULT, DIV, BSTORE

None

None

GBLA

Globals REG

Number of the first register of

the pair.

Register column.

Action: Finds the first pair of contiguous unused registers starting with an

even register. They are both set to 1. to show that they are in use.

Macro GREG

Called by Many things

Inputs None

Macros called None

Outputs Globals

R Number of register found

Action: The first unused register (REG(R) = 0) is found and its entry is

set to 1. showing that it is now in use.

Macro GT

Same as EQ except parameter is H for high.

Macro IF

Called by

Inputs

Macros called

P1,...,P8

GBLB

ANY

TEST

OP

RREGS

A number of tests followed by THEN

followed by a number of operations.

=0 if called from source language

=1 if called by IFANY

Called with each test as parameter.

Called with each operation as

parameter.

Called after each call of TEST or

OP to mark. The registers they

had used as unused.

Outputs None

Action: First it produces the code for the tests. These will produce branches

to OUT on false if ANY = 1 and branches to IN on true if ANY = 0.

Then it produces the code for the operations with the appropriate

labels. For example, with 2 tests and 2 operations we get

OUT

IF

Test

Branch on False to OUT

Test

Branch on False to OUT

Operation

Operation

NOPR

IN

OUT

IF ANY

Test

Branch on true to IN

Test

Branch on true to IN

Branch to OUT

Operation

Operation

NOPR

Macro

Called by

Inputs

Macros called

Outputs

IFANY

Source Language

Parameters

P1,...,P8

IF

None

A number of tests followd by

THEN followed by a number of

operations.

With same parameters as IFANY,

except that ANY = 1.

Action: Produces code to execute the operation if any of the tests are true.

Macro

Called by

Inputs

Macros called

IN

Source Language

Parameters

BLK

TABLEL

GET

Outputs » None

Action: The next card is read into block BLK,

The name of the block into which

a card is to be read.

To look up the block name and

set its DTF label.

To input the card.

Macro

Called by

Inputs

Macros called

Outputs

Code

INITIAL

Source Language

None

BASFIELD, FIELD

None

BEGIN

ONES

DOUB

ON

BALR 2,0

USING *,2

B ON

DC 12C r

DS ID

and others

Action: Initial declares certain storage areas, standard constants, and

standard fields and/or base fields.

Macro INPUT

Called by Source Language, OUTPUT

Inputs Parameters

P1,...,P8 Input blocks.

Macros called DEF With each of the parameters in turn.

Output Globals

OUT Is reset to False

Action: DEF compiles the DTF for each input block.

Macro

Called by

Inputs

Macros called

Outputs

LEFT

BINOP, SHIFT, COMP

Parameters

SEQ The sequence to be linked through

in preparation for an operation

or test.

GREG, ?ABLEF, INBLEB

SEQ

SETUP

GBLB

EX

F and G

BKL

This links through all the names

of the sequence except the last.

To set up the right characters in

F and G so that the proper field

can be accessed in macros which

follow.

=1 if the program should extract

in working with the last field.

Contain the first and second parts

of the character string needed to

access the last field. See Setup.

=True if the last name in the

sequence is a block,

has the last name in the sequence.

Action: Links through the sequence and leaves the outputs described above.

Macro

Galled by

Inputs

Macros called

Outputs

Code

LINK*

SEQ

Parameters

Globals

OLD

NEW

None

A register pointing to a block.

A register which will point to

a new block obtained by linking

through the C field of the old

block.

ACCESS

Globals

OLD The register which points to the

new block and will now be OLD

for the next link.

ACCESS

SRL

We get the word of the field into NEW, extract it, and shift it.

Then we set OLD to NEW.

NEW, CS

Macro LT

Same as EQ except parameter is L for LOW.

^Affected by Meta-Language

All macros which are affected by the meta-language are affected in the

following way:

Let the macro be MAC. If MAC(TI) is not null, we call CHANGES with

parameter MAC(Tl). Otherwise the macro is processed normally. MACB is

used if the macro is processing a base field instead of a field.

However, before this check is made, we check CH. If this is true, it

means that we have already called CHANGES.from this macro and that CHANGES

has called it back again. In this case we set CH to False and then process

the macro normally. Thus, if the meta-language programmer wants CHANGES to

call the same macro which called it, he must set CH to true first.

Called by BINOP

Inputs None

Macros called SHIF, GREG, STOR

GPAIR To get a pair of registers for

the multiplications

Outputs None

Code Let Rl and R2 are a contiguous pair of registers, Rl

is even, and R is a third register.

SHIF

L R2, FG

LR R, R2

N R2, CI

MR Rl, RR

SRDL Rl, CS

STOR (OLD=R, NEW=R2)

Action: We shift the quantity in RR to match the position of the left quantity.

We load the word containing the left field into R2 and R. We extract

the field contents in R2 and multiply the pair by RR. Because it

is multiplication, the result will be shifted over to the left

twice as far as it should be for the position of the field. So

we shift it back to the right. The shift is double since it might

extend over both registers. We then store it back into R and put

that back in memory.

Macro

Called by

Inputs

Macros called

Outputs

NOTANY

TEST, EQ, GT, LT

Parameters

OP

None

Globals

LAB

K

An operator which may or may

not start with -i.

=OUT if called from IF, = IN

otherwise, the l&bel is fol

lowed by an integer (10) to

make it unique from other

statements.

=2 if OP starts with =1

otherwise.

Action: Sets LAB and K.

Macro

Called by

Inputs

Macros called

OP

DO, IF

Parameters

OPER

RETURN

UNOP

BINOP

A parenthesized operation.

With.no parameter in case

the operation has only one

member.

. With the 2 members of the

operation as parameters if

the operation has 2 members.

As with UNOP if the operation

has 3 members.

Outputs None
Action: Codes the operation.

Macro OUT

Same as IN except that PUT is called to print a line.

Macro OUTPUT

Called by Source Language

Inputs P1,...,P8 Output Blocks.

Macros called Input With same parameters except

that OUT is set True.

Action: The DTF's for the blocks are compiled.

Same as ADDD, except that the parameter is 0.

Called by Source Language

Inputs Parameters

BUG The name of the bug which is to be

made a priority bug.

SW =OFF if the priority of the bug is

to be turned off rather than on.

Macros called . CHANGE, GREG, TABLEB

SAVE To save the register which will hold

the bug from being returned by RREGS.

RET To return this register when we are

finished with it.

Outputs The entry for the bug in the PRIO column of the

bug table is set to the number of the register

that the bug is loaded into.

Code if SW ^ OFF

L R, BUG

CHANGE (ACCESS), (BUG), A

CHANGE (LINK), (BUG), L

CHANGE (STORE), (BUG), ST

if SW = OFF

ST R, BUG

CHANGE (ACCESS, LINK, STORE), (BUG), OFF

Action; The changes which one setup here must then be carried out by calling

the macro "PRIORS 1 1 from CHANGES.

Macro RREGS

Called by DO, IF

Inputs None

Macros called None

Outputs None

Action: Sets all entries to 0 which are 1 in the register column. It is

marking these registers unused.

Called by ' CHANGES

Inputs Parameters

TAG The tag that was passed to CHANGES,

PRIO(TI) The register which the prioritybug

now resides in.

Macros called RET

Outputs See Action

Action: If TAG = A, we return the register R which was just gotten, and

set NEW = PRIO(TI), because NEW is the output register for an

access. If TAG = L, we just set OLD = PRIO(TI) because OLD is

the output register for a link.

If TAG = ST, we code

LR PRIO(TI), RR

This stores the quantity into the bug.

Macro REL

Called by EQ, GT, LT

Inputs Parameters

OP =E for equality, = H for >, =L

for <

Macros called ACCESS

Outputs None

Code ACCESS

SHIF

CR NEW, RR

B(N)OP LAB

Action: Right has already left a quantity in RR. We access the contents

of the field at the end of the left sequence. We shift the right

one over to match it. We compare them. We branch depending on

various things to the appropriate label(See NOTANY, IF).

Macro RETURN

Called by OP

Input None

Macros called DO

Outputs None

Code DO ([MS], -, 1)

DO (GOTO, [MS][F1])

(where MS is a pointer to the mark stack and Fl

is the 1st (not Oth) full word in its block).

Action: We pop the mark stack, and then go to the address we just popped.

ACCESS

TESTSEQ

Globals

RR

POS

INCR

RXR

BKR

sequence.

To test whether QUAN is a sequence.

If the parameter is a quantity or

field sequence, it is left in reg

ister RR. If a block sequence, RR

points to the block which contains

the last block; If a base block,

RR = 0.

This is the number of bits from the

right side of the register that this

quantity lies.

This is the current incrment to be

used in displacements for accessing

the block on the right. It is only

used if we have a block sequence.

The current index register to be used

in accessing the block on the right

if it is a block sequence.

Contains the block name if QUAN is a

block sequence.

BINOP, CALL, BINDEC, GOTO, SHIFT, TEST, SEQ

Parameters

QUAN The quantity to be evaluated.

GREG, TABLEF, TABLEB

SEQ The link through the sequence if

there is one, except for the last

element.

To access the last element of the

Code For a three name field sequence

LINK

LINK

ACCESS

Action: If the quantity is an assembler expression, that is loaded in a

register. If it is a base field, that is loaded in a register. If

it is a sequence, it links through the sequence and then if it ends

in a field the final value goes in a register. If it ends in a

block, RR will contain a pointer to the containing block and BKR

contains the ending block name. Otherwise BKR will be null.

Called by PRIORITY

Input Parameters

Rll The number of a register

Macros called None

Outputs None

Action: That entry corresponding to the register in the register column is

set to 2, so that it will not be set to 0 by RREGS.

Macro

Called by

Inputs

Macros called

Outputs

SEQ

RIGHT, LEFT, DECBIN

Parameters

STRING

GREG, TABLEB, TABLEBK

BRAKTEST

LINK

BLINK

Globals

ONLY

A string of names to be

linked through.

It checks if the next name in

the sequence is bracketed, and

if so, puts the name in C.

Links from the block pointed

to by OLD through field C and

points to the new block with

register NEW.

To link through a block.

=TRUE if the sequence consisted

of a base field only.

The last name of the sequence.

Action: It links through all names in the sequence except the last. For

each field or base field name it calls LINK, and for each block

or base block name it calls BLINK.

Macro

Called by

Inputs

Macros called

Outputs

SETUP

LEFT, ACCESS, BINDEC, DECBIN

None

SETG

Globals

F,G

To set G, see below.

These hold characters which repre

sent how to access the current

field. F has the displacement, G

has (R) or (Rl, R2) where the R f s

are registers. So we can later

write L R, FG and the like.

Action: Besides setting F and G, it zeroes INC and RX after using then to

set up F and G.

Called by SETUP, BSTORE

Inputs None

Macros called None

Outputs Globals

G Sets G as described in SETUP.

Action: Sets G and zeroes RX.

POS The position of the quantity on the

right in RR.

ONLY " =TRUE if the quantity came from a base

field.

SHIF(TI) The position of the quantity on the

left in its word.

None

Code is produced to shift RR to the position of

SHIF(TI)

SHIF

SHIFT

UNOP

Parameters

SIZE A quantity representing the amount of

the shift.

SEQ A field sequence which is to be shifted

Globals

DIR =R if the shift is right, = L otherwise

Macros' called RIGHT, LEFT, GREG, STOR

Outputs None

Code RIGHT SIZE

SRL RR, POS

LEFT SEQ

L Rl, FG

LR R2, Rl

N Rl, CI

S(DIR)L Rl, 0(RR)

STOR (OLD = R2, NEW = R l)

Action: The size is calculated and put right justified in RR. Then the word

containing the field to be shifted is put into Rl and R2. The field

contents are extracted and shifted using Rl and then they are stored

into the copy in R2 and put back in memory.

Macro

Called by

Inputs

t

Macro

Called by

Inputs

Macros called

Outputs

Code OLD, CO

NEW, OLD

NEW, FG

Action: We destroy the contents of the field in OLD. Then we OR in the quantity

and store it back into memory. IF EX = FALSE only the store is done,

so this is used often to do just the store.

EASY, MULT, DIV, AND, COMP, STORE, SHIFT

Globals

OLD A register containing the word which

contains the field which is to be

stored into. This may be undefined

if EX s FASE.

NEW A register containing the quantity to

be stored.

None

None

N

OR

ST

Macro

Called by

Inputs

Macros called

Outputs

Code

STORE*

BINOP

Parameters None

Globals

F, G The characters which access

the word of the field to be

stored into. (i.e. for a field

which is in the 2nd word of its

block, which is pointed to by

register 3, F=2, G=(3)

RR The register containing the

quantity to be stored.

ONLY =TRUE if we are storing into a

basefield.

GREG, SHIF, STOR

None

If the right side is a quantity,

SHIF

L R, FG

STOR (OLD=R, NEW=RR)

If the right side is a block,

LA RR, INCR(RR,RX) [RX may be absent]

STORE (POS=0)

Action: In the first case we are just storing, so the quantity in RR is shifted

to match the position of the field in F. Then we load R with the word

containing the old copy of F, and we store. In the second case we

are making the left field point to the right block, so we load RR with

the address of the beginning of that block and recall store.

* Affected by meta-language

Macro SUB

Same as ADDD, except that the parameter is S.

Macro TABLEB

Same as TABLEF except it works on the bug table,

Macro TABLEBK

Same as TABLEF except it works on the block table.

Macro

Called by

Inputs

Macros called

Outputs

TABLEF

Many things

Parameter

FD

None

Globals

FOUND

Tl

Action: Looks up the name in the table.

The name of the field to be looked up

=1 if it finds the name in the table.

= the index of the name in the table.

Macro TABLEL

Same as TABLEF except that it works on the label table for l/o.

T

Macro

Called by

Inputs

Macros called

TEST

IF

Parameter

OPER A parenthesized test to be coded.

BINOP If the test is binary, then BINOP is

called with the 3 parts of the test as

its parameters.

NOTANY Is called in the case of a test on just

a sequence. This puts the correct label

in LAB and sets K to 1 or 2 depending

on whether there is a n preceding the

sequence.

RIGHT Is called with the sequence as parameter.

Code After calling these macros, let R be a register, then

SR R, R

. CLR RR, R

B(N)Z LAB

(where N depends on —t and on whether called from

IF or IFANY and LAB depends on latter)

Action: We set the contents of the field into RR, if necessary we compare

it with zero, and then we branch according to conditions (see IF).

only produced if no extracter
was used to get the quantity
in RR.

t

Macro

Called by

Inputs

Macros called

UNOP

OP

OP

THING

COMP

GOTO

SHIFT

CALL

The unary operator

Its operand.

With parameter THING if the operator

is to perform the complement

operation.

With parameter THING, if the operator

is "GOTO 1 1.

With parameters

(1) The rest of OP, excluding the

— o r <r<~

(2) THING

and with DIR=R for L for

With parameter THING if operator is

"CALL".

Outputs None

Action: Perform the unary operation.

Called by BLOCK, RIGHT

Inputs Parameters

STRING A string which may be a sequence.

Macros called BRAKTEST, TABLEF, TABLEB, TABLEBK

Outputs Globals

FOUND =TRUE if string is a sequence.

Action: If the first name in the string is a block or basefield, and every

other name is a block or field, then FOUND f-TRUE else FOUND <- FALSE.

Same as ADDD, except that the parameter is X.

GLOBAL DESCRIPTIONS

GBLA

See BRAKTEST.

The displacement which is to be used in the next access of a

field within a particular sequence.

A counter used to get unique names for the IN and OUT labels

used in IF and IFANY.

See BLOCK.

The index of the address of the most recently stored mask.

See LINK, ACCESS, or STOR.

See RIGHT.

The output register of GREG and GPAIR.

Registers.

The column of registers;. It contains a 0 in the entry with

index of a register that is not in use. It has a 1 for registers

temporarily in use, and a 2 for those permanently in use.

See RIGHT.

The register which is to be used as an index in the next access

of a field within a particular sequence. If RX=0, there is no

index register needed.

See FIELD

See BLOCK.

The index of the most recently entered base field in the bug table.

The index of the most recently entered block in the block table.

The index of the most recently entered field in the field table.

The index of the most recently looked-up entry in the field, base

field, or block tables.

TL The index of the most recently entered lable in the lable table

for I/O.

WID See FIELD.

WORD See FIELD.

ANY See IF.

BASE See BASBLOCK.

BKL = TRUE if the left sequence is a block sequence..

EX See LEFT.

EXT See FIELD.

FOUND, = TRUE if the thing looked for in TABLEF, TABLEB, TABLEBK, or

TESTSEQ was found.

ONLY = TRUE if the object we are processing is a base field or base block

as opposed to a field or block.

t

GBLC

BLKS See BLOCK.

C The current or most recently looked-at name which is from a

sequence.

DLB See BLOCK.

F, G See SETUP.

