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1. INTRODUCTION 

Let 0 be a region in R n, n = 1,2,...,5, SO denote its boundary. We 

consider quasi-linear elliptic differential equations of the form 

(1) L[u] = - 2 Da(a fl(x)DPu) = f(x,u) , x € Q, 
kl.lPl^l * 

subject to the boundary conditions 

( 2 ) u(x) = 0 , x € a n, 

where we have freely used the standard multi-index notation, cf. [15]. 

For example, x= (x.j,...,x ) € R n and if a = (a-j»• • • >an) is any index 

whose components are non-negative integers, \̂ \ = + + • # • + a
n
 a n c* 

J> a s D-.̂ .-.D a n = rxr;— . A basic question, both in proving 
• n o * •••on 

xl x n 

the existence of a solution of ( 1 ) , ( 2 ) by means of the Schauder Fixed 

Point Theorem, cf. [1], [8], and in approximating that solution numerically, 
c f - [ 5 ] , [ 6 ] , [ 7 ] , [ 1 1 ] , [ 1 2 ] , and [ 1 3 ] is whether or not we can obtain 

an a priori bounds for classical solutions of ( 1 ) , ( 2 ) in the uniform 

norm over Q. 

The special case of n = 2 , L = - A has been studied by many people. 

In [6] a uniform norm a priori bound was obtained for the case in which 
|^ <; y < ~> where p = max |f (x) | and A <|KX) = - 1 , x 6 Q, ̂  (x) = 0 , 

x € 5 Q. In [9] such an a priori bound was obtained for the case in which 



lim inf — X ? U 0, and in [11] such an a priori bound was obtained for 
|u | <» 

the case in which there exists a positive constant u^ such that 

<; - (4) 2 for all I u ^ u~ where Q is contained in the strip u a 1 1 0 
[x-j | <> a. In this paper, we give new conditions on the problem (1), (2) 

which guarantee the existence of a uniform norm a priori bound. 

2. MAIN RESULTS 

We assume throughout this paper that the coefficients, a (x)9 

op 

||3 | <, 1, are real-valued, bounded, measurable functions in Q and 

that there exists a positive constant C such that if 
(3) a(u,v) = F E a (x)D^u(x)DPv(x)dx, then 

J C i |of|,|P|̂ 1 <* 

(4) a(u,u) * C 2 Hull 2 s C 2 T S |Dau(x) | 2dx, 

1 2 CO 

for all u £ Wq* (Q), the completion of the real-valued C^(Q) functions 

with respect to j| - I I i o • We remark that if L is strongly elliptica 

i.e., there exists a positive constant 9 such that 2 a _ (x )F ae^Q \F 
"kl.lel-i 

for all x €Q and all real n-vectors 5, then by Garding's inequality, 

cf. [15, pg. 175] there exists a constant S such that the quadratic form 

associated with the differential operator L + SI satisfies (4) and we 

may consider the problem 

(5) (L + SI)[u] = f(x,u).+ Su , x € 0, 

(6) u(x) = 0 , x € a n , 

which is equivalent to (1), (2). 

We define the real number 



w e w j , 4 t o ) FnCw(x)]^ dx 
w i 0 

Inequality (4) yields the result that A > 0. 

We assume that f(x^u) is a measurable function with respect to x € 0, 

continuous with respect to u for almost all x £ 0 and there exists a 

constant y < A such that 

(8) f(x?u) - f(x,0) ^ y < A f o r a l m o s t a l l x € q a n d a l i u ^ 0. Clearly 

(8) is satisfied if f(x,u) is continuously differentiable with respect 

to u for almost all x € Q and ~~(x,u) <, y < A for almost all x £ Q. Our 

first result gJLves an a priori bound in the ||*|| 9 - norm for 
W''Z(Q) 

generalized solutions of (1), (2). It improves and extends Lemma 4 of 

[7], which considers the case of n = 1. 

Theorem 1. Let u(x) be a generalized solution of (1), (2), i.e., 

(9) f S a fl(x)DauDP(tdx = f f(x,u)(|>dX 

for all (ji € W J , 2 ( n ) . Then 

(10) ||u|| ^ 7 < J n
 2 a . ( W u d x ) ^ i [ 8 ( u , u ) ] ^ 

* , \ 1/2 ( L [ f ^ » 0 ) ] 2 «3x) l / 2 = M. 
c(a- y) ' J n 

Proof. Setting (f = u in (9) and using inequality (8) we obtain 

a(u,u) = J*Q f(x,u)udx <; f(x,0) ud x + Y u (x)dX-£ 

<; (T u 2(x)dx) l / 2 (T f 2(x,0)dx) l / 2 + * a(u,u). 



Inequality (10) follows from the fact that y < A. QED. 

The next result follows directly from Theorem 1 and the Sobolev 

Imbedding Theorem cf. [15]. 

Corollary. If n = 1 and u(x) is a generalized solution of (1), (2) then 

u(x) €C°[0,1] and ||uj| n = max |u(x)| < ~ M, where M is the 
CU[0,1] x6[0,1] 

positive constant defined in (8). 

The situation for n > 1 is not quite as simple. We say that the 

differential operator L given in (1) is regular in Q if and only if the 

following condition is satisfied. If g £ L P ( Q ) (1 < p < oo) and 
u 6 W ' (fi) n L p (n) (I < p < °°) is such that 

a(«i,v) = f g(x) v(x) dx for all v £ wj' 2 ( n ) , then u € W 2 , P ( n ) and 

(11) | |u| | ? <, k { | |g| | + | |u| [ } where k is a positive 
WZ,P(fi) L P(Q) L P ( n ) 

constant independent of u. We remark that any differential operator, L, 

satisfying (4) is regular in Q if Q and the coefficients a ~(x) are 
op 

sufficiently smooth, cf. [2, Theorem 8.2]. 

Theorem 2. Let n = 2,...,5 and L be regular in Q. If there exists 

positive constants A, k, t, and e such that 

(12) |f(x,u) | ̂  A + k \u\ t
9 if n = 2, for all x e Q ] - » < u < oo, or 

(13) |f(x,u)| ^ A + k | u|W(n-2)(n+2 e)^ if n = 3,...,5, for all x € Q, 

- co < u < GO, and 

0 / \ n i 2n 
4) -r + e <: — 0 z n- L 

and u(x) is a generalized solution of (1), (2), then u(x) 6 C° (Q) and 



satisfies an a priori bound in the uniform norm. 

Proof. We first consider the case n = 2. By Sobolev's Imbedding Theorem, 

it suffices to show that any generalized solution, u(x), satisfies an a 

priori bound in W 2 , 2(Q). Hence, by inequality (11) it suffices to show 
2 

that u satisfies an a priori bound in L tl) and g(x,u) satisfies an 
2 

a priori bound in L (Q). By Sobolev's Imbedding Theorem u satisfies 

such an a priori bound and by a result of Vainberg, cf. [14] g(x,u) 

satisfies such an a priori bound if and only if inequality (12) holds. 

For the cases n = 3,4 and 5, it suffices by Sobolevfs Imbedding 
2 ̂  I 

Theorem, to show that u satisfies an a priori bound in W (Q) for 

a priori bound in L (Q) and g(x,u) satisfies an a priori bound in 

L (Q)• u satisfies such an a priori bound since by Sobolevfs Imbedding 

g(x,u) satisfies such an a priori bound by a result of Vainberg, cf. [14], 

QED. 

We remark that for the case n = 2, L = - A, Theorem 2 extends the 

result of [6] since — <> A, cf. [3]. 

3. AN APPLICATION 

Theorem 3. If L and f(x,u) satisfy the hypotheses of Theorem 2, then 

(1), (2) has a generalized solution. 

Proof. By Theorem 2, if u is a generalized solution of (1), (2) then 

Theorem it satisfies such an a priori bound in L 2n/n-2 (Q) and ~ + e < 2n 
n-2 

u g C°(Q) and | |u| | ^ B for soi 
CU(Q) 

the modified boundary value problem 

^ B for some positive constant B. Consider 



~ |f(x,B+1) 
(15) L[u] = f(x,u) =,(f(x,u) 

V(x,-B-1) 

if u ̂  B+1 
if |u| <, B+l 
if u <; -B-l 

(16) u(x) = 0 , X 6 d n . 

It is easy to see the generalized solutions of (15), (16) satisfy the 

same a priori bound as those of (1), (2), and hence it suffices to show 

that (15), (16) has a generlaized solution. However, the existence of 

such a solution follows by applying the Schauder Fixed Point Theorem to 
1 1 2 

the mapping L~ Y of W ' (fi) into itself, cf. [1], [8]. QED. 
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