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ABSTRACT 

An algorithm is described which is a recognizer for any context-free 

grammar. It is shown that the bound on the time the algorithm takes to 

recognize any string with respect to an unambiguous grammar is proportional 
2 

to n , where n is the length of the string, that a bound on the time for 
3 

recognizing any string is proportional to n , and that a bound on the 
2 

space required is proportional to n . 



INTUITIVE EXPLANATION 

Let the grammar be in the form of a sequence of productions D " > C ^ # # # C 

where this means that D may be rewritten as the string ^...C^. symbols 

to the left of f->f are non-terminals, the symbols of the language itself 

are called terminals, and the non-terminal which stands for 'sentence1 is 

called the root of the grammar. The set of all productions with D on the 

left side are called the alternatives of D. We will work with this example 

grammar of simple arithmetic expressions, grammar AE: 

E -> T 

E ->E + T 

T -»P 

T -» T * P 

P ->a 

The terminal symbols are {a, +, * } , the non-terminals are {E, T, P}, and 

the root is E. 

The basic idea of the algorithm is as follows: It scans an input 

string from left to right. As each symbol is scanned, a set of states is 

constructed \diich represents the condition of the recognition process at 

that point in the scan. Each state in the set represents (1) a production 

such that we are currently scanning an instance of it, (2) a point in that 

production which shows how much of the production we have scanned, and 

(3) a pointer back to the position of the input string at which we began 

to look for that instance of the production. We will represent this triple 

as a production, with a dot in it, followed by an integer. 
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For example, if we are scanning a * a and we have scanned the first a, 

we would be in state set consisting of the following states: 

P -> a. 0 

T ->P. 0 

T -> T.*P 0 

E ->T. 0 

E ->E.+T 0 

Each state represents a possible parse for the beginning of the string, 

given that we have seen only the a. All the states have 0 as a pointer, 

since all the productions represented must have begun at the beginning of 

the string. There will be one such state set for each position in the 

string. To aid in recognition, we place a right terminator f — j f (a symbol 

which doesn't appear elsewhere in the grammar) at the right and of the 

input string. 

To begin the algorithm we put the state 

<|> -> .R-j 0 

into state set 0 (at position 0), where R is the root of the grammar and 

where (j> is a new non-terminal. Then we compute the closure of the state 

set as follows: For each state in the set with a non-terminal N immediately 

to the right of the dot, add one state for each alternative of N. Put the 

dot in this state immediately to the left of Cj and make the pointer point 

to the current position. This adds to the state set all productions which 

we might begin to look for at this point. 

In grammar AE, state set 0 starts with 

^ _» #E-| 0 



Then we add to it 

E -> .E+T 0 

E -* .T 0 

The process is recursive, however, so we must add more productions for T: 

T -> .T*P 0 

T -> #P 0 

and for P: 

P -> .a 0 

This completes the closure for state set 0. The closure operation also 

involves another operation (which is not applicable to state set 0) which 

will be explained shortly. 

After computing the closure of a state set, we scan the next character 

in the string (call it X) and construct a new state set for that new position 

as follows: For each state in the old state set \rtiich has X immediately to 

the right of the dot, put a state in the new state set which is the same 

as the old state except that the dot is moved 1 symbol to the right, so 

that X is now immediately to the left of the dot. If there are none with 

X to the right of the dot, an error has been detected since the input 

string doesn't match any of our current productions. Otherwise, we have 

gone into a new state set which contains all of the old states which still 

match the input string. 

In grammar AE, if we scan an 'a' first, we construct state set 1 from 

state set 0 as follows: 
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0 1 

#E—j 0 

E -» .E+T 0 

E -» .T 0 

T -> .T*P 0 

T -> .P 0 

P -> .a 0 P -» a. 0 

Now we must compute the closure of state set 1. Since there are no states 

with non-terminals to the right of the dot, the previous closure operation 

is not applicable. However, another kind, which operates on states in 

which the dot is to the right of the production, is applicable. 

For each such state 

D -»C,.f.C . f 
I n 

take each state in the closure of the state set to which f points of the form 

E -»c*.D3 k (where a and (3 are stringer) 

Add 

E -»c*D.p k 

to the closure of state set i. 

Intuitively, state set i is the state set we were in when we went 

looking for that D. We have now found it, so we go to all the states in 

that state set which caused us to look for a D and we move the dot over 

the D. 

In the example, we add to state set 1, 

T -»P. 0 

and this causes us to compute its closure, adding 



T -> T.*P 0 

E -» T. 0 

and finally 

E ->E.+T 0 

->E.-^ 0 

We now scan the next symbol and repeat the operations. If we come up with 

the state set consisting of the single state 

- » R — 0 

then we have scanned the string and it is legal. 

This completes the algorithm. 

We will try it on grammar AE and the following string: a + a * a 

State Set Part of String Original States Added in Closure  
Scanned 

0 -> .E-| 0 E -> .E+T o 

E -» .T 0 

T -> .T*P 0 

T -» #P 0 

P -> .a 0 

1 a P ->a. 0 T -»P. 0 

T -» T.*p 0 

E -» T. 0 

E ->E #+T 0 

-»E.-| 0 

2 a + E -»Ef.T 0 T .P 2 

T -» .T*P 2 

P -> .a 2 



3 a + a P -> a. 2 T -> P. 2 

T -»T.*P 2 

E -* E+T. 0 

E -»E.+T 0 

(f-»E.-{ 0 

4 a + a * T-»T* #P 2 P .a 4 

5 a + a * a P -»a. 4 T -> T*P. 2 

T-»T.*P 2 

E -» E+T. 0 

E -»E.+T 0 

(j> -»E.-| 0 

6 a + a * a -| $ -> E—|. 0 

The technique of using state sets and the first closure operation 

are derived from Knuth's work on LR(k) languages [1]. In fact, our 

algorithm reduces to Knuth's algorithm for LR(0) grammars except for 

the fact that we don't do reductions since ours is a recognition al

gorithm. Our algorithm actually can be modified to do parsing without 

unnecessary loss of efficiency. It can also be modified to include 

Knuth's k symbol look-ahead in the cases where that would increase its 

efficiency. 

The algorithm also seems to be able to recognize in time proportional 

to n, a large class of grammars including LR(k) [l] f bounded context [2] f 

finite unions of these, and some others. These include the grammars for 

which there exists a fixed bound on the size of any state set. We will 

attempt to characterize the grammars for which the time or space is pro

portional to n is a later paper. 



DEFINITIONS 

We have two disjoint sets of symbols, the non-terminals and the 

terminals. We will use capitals for non-terminals, lower case letters 

for terminals, Greek letters for strings of symbols, and X's for either 

terminals or non-terminals. A is the empty string. 

^ production is of the form A -» a . A grammar is a set of productions 

with a certain one of its non-terminals designated the root R of the grammar. 

Most of the rest of the definitions are understood to be with respect to a 

particular grammar. We write a =* (3 if a y f 6t e> A s u c h that & = yAg and 

P = yeb and A -» € is a production. We write a =* g ((3 is derived from a) 

if g strings <ynt a (m^O) such that u I m 

A sentential form is a string a such that R => A sentence is a 

sentential form consisting entirely of terminal symbols. The language  

defined by a grammar is the set of its sentences. We may represent any 

sentential form in at least one way as a derivation tree reflecting the 

steps made in deriving it (though not the order of the steps). For example, 

in grammar AE, either derivation 

E=>E + T=>T + T=*T + P 

or 

E = * E + T = > E + P = > T + P 

is represented by 

E 
/\\ 
E + T 
I ! 
T P 



A sentence is unambiguous if it has a unique derivation tree. 

A grammar is unambiguous if each of its sentences is unambiguous. 

Number the productions arbitrarily 1, . g where each production 

is of the form 

D -> C -
P P 1 

1 £ P * g 

Add a Oth production 

D o - * R H 

where R is the root of the grammar and -| is a new terminal symbol. 

A state is a triple of integers (p, j, f). Intuitively we will consider 

p to be a production number, j the number of symbols in the production we 

have scanned, and f is a state set number. A final state is a state of the 

form (p, n p , f). 

At any particular point in the recognition, when we have scanned i 

symbols, we represent the condition of the input string and the state sets 

by 

xl • »• • x^ M 

where X^ ... X^ are the symbols we have scanned, p is the rest of the input 

string and S Q ... are the state sets. 



THE ALGORITHM 

Start the algorithm in condition: 

where a
 i s t h e input string and S Q is {(0,0,0)}. Set i to 0. Go to A. 

A: Scan the head symbol of a. Call it X ^ + j . 

Construct the closure of S^. 

Let S 1 + 1 - f(p,j+l, f) | 3(p, j, f) in SjJ and C ( 1 } = X i + 1 } . 

If S ^ is empty reject the input string. 

If S i + 1 = {(0,2,0)} accept the input string. 

Otherwise increase i by 1 and go to A. 

S^ is saved for later use; S^ need not be. 

The closure S^ of a state set S^ is computed as follows: Add all states 

of S,̂  to S^. Scan the states in S| in some order performing the following 

operations on each state s: 

(1) If s s (p j f) is non-final, then for each q such that C / j 8 l 1 v = D 

p(j+1) q 

add (q, 0, i) at the end of S f (so that it will be scanned) unless 

it is already a member. 

(2) If s = (p, n f f) is a final state, then for each q such that 

(q, j, k) is in S^ and c
q ( j + j ) s = D

p > a d d k ) a t t h e e n d 

of S^ unless it is already a member. Call (q, j, k) the parent 

of (p, n p, f) 



- I D -

TIME BOUND 

Theorem 1: Let G be a grammar with g-1 productions. Let m-1 be the maximum 
np> 0 ̂  p ^ g-1. Let & be a string of length n-1. Let an operation be an 

algorithm which takes a fixed amount of time independent of the size of the 

grammar or the string being processed. 
2 3 2 

(1) There is an upper bound of the form g mn /3 + 0(n ) on the number 
of operations in recognizing <y with respect to G. A 2 

(2) If fji is unambiguous, there is an upper bound at the form grnn +0(n) 

Proof: 

on the number of operations in recognizing a with respect to G. 

(1) There are at most gmi states in any state set S^. 

(2) The following are operations: 

a. Test whether a state is in a state set: For each state set 

we construct a 3-dimensional boolean matrix to represent the 

existence or absence of any triple. 

b. Find a non-terminal which appears immediately to the right 

of a dot in a state set: For each state set we keep a list 

of all such non-terminals. 

c. Find an alternative of a non-terminal: For each non-terminal 

we keep a list of each of its alternatives. 

d. Find a state in a state set which is a parent of another state: 

For each state set and for each non-terminal we keep a list 

of the states which have that non-terminal immediately to 

the right of the dot. 

(3) To compute the first closure function on a state set S^, it takes 

at most g operations. There is one step for each non-terminal, 



and each such step can involve one operation for each alternative 

of the non-terminal. 

(4) a. To compute the second closure function on a state set S^, it 

takes at most [gi] [gmi] operations. There are gi steps, 

one for each final state in and each such step can 

involve up to gmi operations (one for each parent state), 

b. However, at most gmi states can be added by the second closure 

operation. Assume that more than one of the second closure 

operations produced the same state. Let two of them be as 

follows: 

(q.J,k) €"8 f i , (q,j,k) € S f 2 , D p l = C q ( j + 1 ) - D p 2 , 

and either p^ ^ p 2 or f̂  ^ so that (q,j+l,k) is added to 

in both ways. 

So we have 

V"Vqr< - Cq(J+1) * X T " X f 1
C p 1 1 # # # C p 1 n * X T - - X i 

I I 1 p-
and * 1 * 

xr •• Xk c
qr-- cq(j+i) *

 xr , , xf\' # , ,V« * xr- # xi 
2 2 2 P 2 

and since Pj=P£ a n d ^yz^2 c a n l t both be true, the above 2 

derivations of X^...Xi are represented by different derivation 

trees. So there exists an ambiguous sentence X^ ... X^a fot 

some a* Thus, in the case that the grammar is unambiguous, 

the second closure function takes at most gmi operations. 

(5) To compute S ^ , from S£ it takes at most gmi operations, one 

for each state in . 



(6) Combining (3), (4), and (5), it takes at most 

2 2 
g + [gi][g»i] + gmi = g +g mi + gmi 

operations to compute S^ +^ from in general, and it takes at 

most 

g + gmi + gmi = g + 2gmi 

operations in the unambiguous case. 

(7) Summing each of these for i = 1, n gives 
general: n 

2 3/ Q g mn /3 

unambiguoi 

= ng + 2gm i 

= ng + 2gmn(n+1)/2 
2 



SPACE BOUND 

Theorem 2; Under the assumptions of Theorem 1, there is an upper bound 

proportional to gmn Jl + O(n).on the space required in recognizing & with 

respect to G. 

Proof: 

Since the maximum number of states in a state set is gmi, we can 

sum that over the number of state sets to get a bound on the total number 

of states: 

The storage required for the matrices and lists of (2)a through (2)d of 

Theorem 1 (and of course the storage for the state sets themselves) is at 

most proportional to the number of possible states. 

A 

i=1 



RECOGNIZER PROOF 

Theorem 3: If state set contains state (p, j, f) then 

C * • • • C . X r . - • • • X, « 

pi pj f+1 i 

Proof: 

By induction on i. 

It is vacuously true in S Q since j=0 and f=i=0. All states in must 

also have j=0 and f=i=Of so the theorem is also vacuously true for S^. Now, 

assume that it is true for S£ , for all f ̂  i. So for (p, j, f) 6 S^, 
* C - • • • C , X- • • • X, pi PJ 1 i 

All states in S i + 1 are of the form (p, j+1, f) where c
p(.j+i) = Xi+1 > s o 

* 
Cp1 # # # CPJ CP(J+D * * 1 # # # Xi Xi+1 

Therefore, the theorem holds for S ^ . Any state in S^ + 1 was computed 

from a state in ^ for which the theorem holds by either of the closure 

operations. In the case of closure operation 1, only states for which j=0 

and f=i+1 are added, so the theorem holds vacuously for them. In the case 

of operation 2, suppose that that (q, j+1, k) is added because (p, n^, f) 

is in S^ + 1, (q, j, k) is in S^, and c
q ( j + 1 ) = D p- W e h a v e 

Cpl ••• C p n * Xf+1 ••• Xi+1 
• P 

and so 

so 

D P * X f H ••• Xi+1 

Cq(j+D x f H xi+i 

Combining these we get 

Cq1 ••• Cqj Cq(j+1) * ^ + 1 # #- Xf*fl-1 # " Xi+1 



So the theorem holds for S^ +^ 

This proves the theorem. 

Corollary: 

If the algorithm accepts an input string, then it is a sentence* 

Proof: 
If the algorithm accepts a , then S R = { ( 0 , 2 , 0 ) } , and by Theorem 3 , 

so a is a sentence. 

Theorem 4: If contains (p,j,f) and 

°p(j+1) * Xi+1 Xk-

then S* contains (p,j+1,f). 

Proof: 

By induction on m in the definition of . 

If m = 0 , then k=i+1 and ^(j+i)- Xi+j s o s
i +-| contains (p,j+1,l). 

Otherwise, g q such that 

C = 1 ) —»C - ... C 
p(J+i) q qi qn q 

and a k A ^ k- ^ ... ^ k such that k n=i, k = k and 
0 1 n O n 

q q 
Cql * \ +1 • * # *k1 

0 

C 3q2 \ + V *k ' •••» C q n * *k + T • * \ 
i 2 q n -1 n 

q q 

Because of the first closure operation on S^, (q ,0,i) will be in S^. Arid 

by inductive hypothesis we know that if (q,r,i) is in S f e , then (q,r+l,i) is in S f c , r=0,...,n - 1 , since 
r q 

C q r ^ *k r+1 



So by induction on r, S f c = S f c contains (q, n , i). But the second 
n 

closure operation, acting^on this state, adds (p, j+1, f) to S£. This 

completes the proof. 
Corollary: 

If the input string is a sentence, it will be accepted by the algorithm. 

Proof: 
S^ contains (0,0,0) and 

1 n 

so by Theorem 4, S^ contains (0,1,0). And since —| = S
n+1 c o n t a i n s 

(0,2,0). This is the only state it can contain, since —\ appears no\rtiere 

else in the grammar. So the algorithm accepts the input string. 

The corollaries to Theorems 3 and 4 together show that the algorithm 

is a recognizer for all context-free grammars. 
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