
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

*1 MANUAL

by

Allen Newell

Jay Earley

Fred Haney

Carnegie Institute of Technology
Pi11sburgh, Pennsylvania

June 26, 1967

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)
and is monitored by the Air Force Office of Scientific Research.

Ml LMRARY
CARNE6IE-MELL0N UNIVERSITY

*1 MANUAL

*1 is a set of system 360 macros [1] designed to perform the basic tasks

that appear in many list processing and systems programming applications. It

is based on L6, a list processing language designed by K. Knowlton of the Bell

Laboratories [2]. According to Knowlton, the purpose of L6 was to permit users

to "get much closer to machine code in order to write faster running programs,

to use storage more efficiently, and to build a wider variety of data

structures,11 The goals of *1 are approximately the same. As implemented at

Carnegie-Mellon University, *1 contains most of the important facilities of L6,

except the available space mechanism. This was omitted purposely because it

or other available space schemes can be programmed rather easily in *1. *1 also

contains a number of additions to L6: block operations, dynamic bounds on

fields and blocks, the meta-language.

One objective in the design of *1 has been to give the programmer

control over the code that is produced. This is accomplished by making the

internal workings available to the user and by allowing him to alter any of

the internal macros for his own use either directly or by using the meta

language.

*1 provides two basic data structures, the block and field, which may be

compounded into arbitrarily complex high-level data structures. Data within

these structures is referenced by indexing or by chains of pointers which lead

to desired storage locations. The language also includes a basic set of

arithmetic and logic operations, data comparisons and tests, control operations,

and input/output operations.

Data Structures

A block is a set of contiguous words or bytes which are to be treated

as a unit. Two types of blocks may be defined. A base block is an actual set

of words or bytes in memory; it is declared by giving the address of its origin

and its length. A block, on the other hand, is not a specific piece of memory,

but rather a type of structure, whose origin is specified at run time when it

is used. The declarations are as follows:

BLOCK block (origin and length in words)

BBLOCK base block (origin and length in words)

YBLOCK block (origin and length in bytes)

YBBLOCK base block (origin and length in bytes)

Note that a Y indicates that data is given in bytes rather than words. A base

block declaration defines a block by specifying its name, extent, and the

address of the origin [leftmost byte]. A block declaration specifies the name

and extent of a block, but the origin must be specified at run time in relation

to an outer block.

Examples:

BBLOCK B,(L0C,8)

YBLOCK C,(4,40)

Base block B contains 8 words with origin at location LOC. C is a block

of 40 bytes with origin at the number 4 byte of an implied outer block.

The other data structure of *1 is the field. A field is a set of

contiguous bits within a full word. Like a block, a field may have explicit or

implicit origins. Its origin is always specified in words.

Examples: BFIELD D,PLACE

FIELD C,0,(18,31)

The base field D is a full-word at location PLACE. Field C is bits

18-31, inclusive, of the beginning word of some implied outer block. Whenever

C is used, its origin must be specified by the context. All numbering of bytes,

bits and words starts at 0.

Definitions*

<IDENTIFIEK> :: =* <LETTER>| <IDENTIFIER>|j^CLETTER>| <IDENTIFIEKXDIGIT>

<QUANTITY> ::= <FIELD SEQUENCE>|$<ASSEMBLER EXPRESSION>|<ASSEMBLER EXPRESSION

<0RIGIN> ::= <QUANTITY>

<SIZE> ::= <QUANTITY>

<BL0CK SPECIFIER> ::= BLOCK|BBLOCK|YBLOCK|YBBL0CK

<BLOCK DEFINITION> ::= <BLOCK SPECIFIFJO <IDENTIFIER>,(<ORIGIN>,<SIZE>)

<NUMBER> ::= <DIGIT SEQUENCE>|<SETA SYMBOL>

<LOW BIT> ::= <NUMBER>

<HIGH BIT> ::= <NUMBER>

<FIELD DEFINITION> :: = FIELD <IDENTIFIER>,<ORIGIN>, (<LOW BIT>,<HIGH BIT>)|

BFIELD <IDENTIFIER>,<LOCATION>

Examples:

BLOCK B,(3,5)

BBLOCK DM(LOC,XYZ)

FIELD A,l,(18,31)

BFIELD B,L0C

Within a section we first define the syntax using BNF [3], and follow it with
a more informal description.

The syntactic form <ASSEMBLER EXPRESSION> represents an assembler constant,

any expression which is a legal operand of a SETA instruction, or an assembler

symbol,as defined by the System 360 Assembler Language Manual. Usual these will

be decimal numbers or assembler names which have been assigned locations in the

assembly. The $ may be used to resolve ambiguity (see Operations). If a quantity

is to be used as an address and it is less than a full address then it is as if

it were extended with 0 fs on the left.

The origin of a block or field and the size of a block may be specified

either statically or dynamically. If it is specified statically by an assembler

expression, this value is fixed for the assembly. If it is specified dynamically

by a field sequence F (see below), the origin of the block will be the current

contents of field F at the time that the block is accessed. This means that

these sizes and locations can be changed at run time. Since this.is implemented

using index registers, it is ready-made for use in accessing tables and arrays.

The origins of base blocks and base fields may not be specified dynamically.

A field consists of the low bit, the high bit, and all bits between. A

base field is always one full-word. We soon expect to allow the location of a

base field or base block to be a general register or registers. This will allow

*1 to produce much better code and will also aid in communication between *1 and

assembler language code.

Sequences

<ELEMENTARY IDENTIFIER> :: = <LETTER>| <ELEMENTARY IDENTIFIERXDIGIT>

<NAME> ::= [<IDENTIFIER>] |<ELEMENTARY IDENTIFIED

<FIELD NAME> :: = <NAME>

<BASEFIELD NAME> ::= <NAME>

<FIELD SEQUENCE> :: = <SEQUENCEXFIELD NAME>|<BASEFIELD NAME>

<BLOCK NAME> : : = <NAME>

<BASEBLOCK NAME> :: = <NAME>

<BLOCK SEQUENCES> ::= <SEQUENCEXBLOCK NAME>|<BASEBLOCK NAME>

<SEQUENCE> ::= <FIELD SEQUENCE>|<BLOCK SEQUENCE>

A sequence is a chain of block and field names which leads to a block

or field. The first name in the sequence and only the first must be a base

field or base block name. Each field is assumed to contain a pointer to a

location in memory. An implied block is assumed to exist there with that loca

tion as its O**1 word.

The value of the sequence is calculated in the following way: First a

block is accessed. If the sequence starts with a base field we access the

implied block which that points to; if it starts with a base block we access

that block. If the next name is a block name B, we then access the B sub-block

of that block. If the next name is a field name F, we access the F field of the

block and then access the implied block pointed to by that field. In either case

we now have a block again, so the process is repeated. This continues through

the sequence until the last name gives us either a block or field as a value.

In the case that a field is last, we do not access its implied block.

A field sequence points to a field (<FIELD NAME>) within a block

(<SEQUENCE>). A block sequence points to a sub-block (<BLOCK NAME>) of an outer

block (<SEQUENCE>).

Examples:

BFIELD W, ...

BBLOCK C, (...,5)

FIELD A, 1, (0,15)

FIELD Zl, 0, (21,26)

BLOCK BIG, (2,4)

BLOCK Q, (2,2)

To calculate WA[BIG]QZ1 we go through the following chain:

W:

To calculate CAQ we do:

C:
A -

Zl
BIG o

Note that one may concatenate single letter names (or single letters followed by

digit strings) to form sequences without punctuation. Other names, however,

require [] around them.

Operations

<SHIFT OPERATOR> ::=->-* | <- <-

<SHIFT OPERATION :: = (<SHIFT OPERATOR> <QUANTITY>,<FIELD SEQUENCE>)

COMPLEMENT OPERATION :: = (-n,<FIELD SEQUENCE>)

<FIELD OPERATOR> :: = +|*|-| /|MOD|A|v|xV

<fIELD OPERATION> :: = (<FIELD SEQUENCE>f<FIELD OPERATOR>, <QUANTITY>)

<EITHER> ::= <BLOCK SEQUENCE>|<QUANTITY>

<STORE OPERATION> ::= (<SEQUENCE>,«-,<EITHER>)

<POINTER OPERATION> ::= (<FIELD SEQUENCER*o,<EITHER>)

The operators have the following meanings:

OPERATOR MEANING

«- Logical move or store

+ Add

Subtract

* Multiply

/ Divide

MOD Remainder
A Logical and

V Logical or

XV Logical exclusive or

-i Logical complement

Shift right

«- «- Shift left

<-o Store pointer

When a field operation is performed the field sequence and quantity are

combined according to the field operator and the result replaces the contents

of the field specified by the field sequence. The arithmetic operations will

work correctly for non-negative integers and for negative integers which are

kept in full word fields.

The store operation will store a constant, or the contents of the field

or block on the right, into the field or block on the left. The information

is stored right justified in a field and right justified beginning at the last

word or byte of a block. The rest of the field or block is cleared. If a

block or quantity is stored into a block or field which is too small, it may

clobber contiguous information. The convention of not making a check for any

kind of error holds throughout the language, so that a minimal amount of code

will be produced. Any user who wants these checks can insert them using the

me ta-1anguage.

In a pointer operation it is assumed that the right hand operand points

to a location in memory. It causes the left field to point to that location.

When the right operand is a field sequence, the pointer operation is the same

as a store. When the right operand is a block sequence, it causes the left

field to point to the beginning of the block.

The MOD operator produces the remainder upon division of the field

sequence by the quantity.

Shift operations cause the contents of the field specified by the field

sequence to be shifted the number of bits specified by the quantity. 0 fs are

supplied when bits are vacated by the shift, but any non-zero bits which are

made to overlap other fields within the same word may cause trouble can be

checked using the meta-language.

Examples:

(ABF,+,4) adds 4 to ABF.

(ABF,V,AZF) unites the contents of AZF into ABF.

ABCFG) complements ABCFG.

(-»-»3,AB) shifts the contents of AB 3 bits to the right.

Note: If the sequence of characters that specifies a quantity has a valid inter

pretation as a sequence, then it is treated as a sequence. Assembler expressions

which might be misconstrued as sequences must be preceded by $. Thus if NAME is

an assembler label, and N is a base block or base field and A, M, and E are

blocks or fields then

(W,<-,NAME) treats NAME as a sequence

while (W,<-,$NAME) treats it as an assembler label.

Input/Output and Data Conversion

<l/0 DECLARATION> : := INPUTKBASEBLOCK NAME>| OUTPUT<BASEBLOCK NAME>

<l/0 OPERATION> ::= IN<BASEBLOCK NAME>|OUT<BASEBLOCK NAME>

CONVERSION 0E> :: = BH)|D<-B

CONVERSION OPERATION> ::= (<FIELD SEQUENCE>,CONVERSION 0E>,<FIELD SEQUENCER

Any base block may be declared as an input area, an output area, or both.

Its declaration must occur before it is used in an i/o operation. The IN

operation causes a card to be read and stored in the specified base block. The

OUT operation causes the contents of the specified base block to be printed on

the system print device. As with other operations, no check is made to see that

the i/o area is of the right size.

The B<-D operation converts the contents of the right-hand field from

the zoned decimal format to binary format and stores the result in the left-

hand field. Ik-B converts the right field from binary to zoned decimal and stores

the result in the left-hand field. (Note that B«-D is a single symbol and is not

(B,«-,D) which is a store operation.)

Tests

<RELATION> ::= > | < | ^

<ARITHMETIC TEST> ::= (<QUANTITY>,<RELATION>,<QUANTITY>)

<EQUALS> ::=

<POINTS> ::= =o|^o

<BASIC TEST> ::= (<SEQUENCE>,<EQUALS>,<EITHER»|

(<FIELD SEQUENCE>,<POINTS>,<SEQUENCE>) |

(<SEQUENCE>) | (-<SEQUENCE>)

<EITHER> :: = <BLOCK SEQUENCE>| <QUANTITY>

Tests only have meaning when they occur in test statements (see the

following section).

The equality test checks to see if the contents of two fields or blocks

are the same. In case they are not of the same size, the smaller one is padded

on the left with zeroes. This is analogous to the store operation (i.e., after

storing one field or block into a larger one, an equality test on them will

yield true).

A pointer test =o is true when the field sequence and sequence designate

the same storage location.

The logical test (<SEQUENCE>) is true if the designated field or block

is non-zero. The —i symbol indicates reversal of the sense off the test.

Branching and the Composition of a Program

CONTROL OPERATION> ::= (GOTO,<QUANTITY>)

<OPERATION> :: = <FIELD OPERATION>|<SHIFT OPERATION>| COMPLEMENT OPERATIOtt>|

<STORE OPERATION>|<POINTER OPERATION>|

CONTROL OPERATION>|<l/0 OPERATIO!£>| CONVERSION OPERATION>

CPERATION SEQUENCE> ::= <OPERATION>|<OPERATION SEQUENCE>,<OPERATION>

<IF WORD> IF|lFANY

<TEST SEQUENCE> :: = <TEST SEQUENCE>,<TEST>|<TEST>

<TEST STATEMENT> :: = <IF WORDXTEST SEQUENCE>,THEN,CPERATION SEQUENCE>

<DEFINITION> :; = <BLOCK DEFINITION>| <FIELD DEFINITION>

<STATEMENT> ::= <DEFINITION>|<TEST STATEMENT|IXKOPERATION SEQUENCE>

<L ABEL ED STATEMENT> : := <IDENTIFIERXSTATEMENT>| <STATEMENT>

Examples:

LAB ELI IFANY (ABF, =, ABE), (ABF, =o,G), THEN, (ABH,<-BIG), (GOTO,LABEL2)

DO (X,+,3), (Y,*,5), (ABCF,<-,AG)

The control operation, GOTO, specifies an unconditional branch to the

storage location designated by the operand. Normally this will be the identifier

of a labeled statement, but this address may be computed, since a field sequence

may be used as the operand.

All operations of the operation sequence of an IF statement are executed

if the logical value of every test of the test sequence is true. Otherwise

control passes to the next statement in the program. The operations specified by

an IFANY statement are executed if at least one test of the test sequence is true.

Since negatives of all tests exist, "IF NONE" and "IF NOT ALL" are not needed.

If an operation sequence is preceded by DO, the operations in the

sequence are performed unconditionally from left to right.

Abbreviations

The *1 instructions described in the preceding sections will perform many

of the simple tasks that are common to list processing or systems programming

applications. Other more complex tasks can be carried out by macros written in

terms of *1 instructions. For example the bookkeeping involved in dynamic

allocation of work areas can be coded easily in *1. The operation of inserting

or deleting a block in a linked list is another example. Important jobs like

these will be included in *1 as library macros. New ones will be added to the

library whenever they are in sufficient demand. The following abbreviations are

in the implementation of *1 at CMU. Each <... OPERATION> is to be added as

another alternative to <OPERATION>.

<PUSH> ::= i<FIELD SEQUENCEXFIELD NAME>

<POP> ::= t<FIELD SEQUENCEXFIELD NAME>

<LEFT SIDE> ::= <PUSH>|<FIELD SEQUENCE>

<RIGHT SIDE> ::= <POE>|<QUANTITY>

<PUSH-POP OPERATION :,:= (<LEFT SIDE>,«-o,<RIGHT SIDE>)

HINT LURAIY
CARNEGIE-MEUIN BNIWRSfTY

PUSH or POP, operates on a list of blocks which are linked by a specified

field. The field sequence portion of a PUSH or POP points to a block in the

list. The field name portion indicates which field links the blocks together.

The POP operation deletes the specified block from the linked list and causes

the field designated by the left side portion to point to the deleted block.

For example, the POP operation

(W,<-o,tXB)

accomplishes the following:

(W,*o,X),(X,*o,XB)

The PUSH operation inserts a specified block into the linked list at a

prescribed point. The right side is a field which points to the block to be

inserted. The left side is a PUSH whose field sequence specifies at which point

in the list the block is to be inserted. The field name portion of the PUSH

specifies at which point in the list the block is to be inserted. The field name

portion of the PUSH specifies the line field. The effect of

(*WCC,«o,X)

is

(XC,*o,WC),(WC,«-o,X)

Currently, PUSH and POP cannot be combined in the same operation, but we hope

to correct this. (Normally (iXA,^o,tYA) has the effect of (YA,«-o,X), (X«oY),

(Y,<-o,YA) but this requires a temporary store to obtain what is really wanted.)

SUBROUTINE OPERATION> :: = (CALL,<QUANTITY>)| (RETURN)

The CALL and RETURN abbreviations provide a subroutine mechanism. CALL

saves the address of the operation following the CALL and transfers control to

the designated subroutine. Addresses are saved in a stack so that recursive

calls of subroutines are allowed. RETURN occurs in the subroutine; it causes

a transfer to the last address saved by a CALL and the popping of the stack.

A subroutine requires no special declaration and its body need not be contiguous.

It is merely entered by a CALL and left by a RETURN. In fact, the same program

label may be used for both subroutine calls and GOTO fs.

(CALL,LAB)

is an abbreviation for

DO ([MS],+,1)*

DO ([MS][F0],<-o,next)

DO (GOTO,LAB)

where next is the address of the next instruction.

FIELD F0,0,(0,31),

and MS is a base field which is a pointer to the mark stack. The storage for

this stack must be set up by the programmer and MS must be initialized.

(RETURN)

is an abbreviation for

DO ([MS],-,1)

DO (GOTO, [MS] [Fl])

where

FIELD Fl,1,(0,31)

* MS, FO, and Fl must be preceded by a $, see Implementation.

Implementation and the Meta-Language

The current implementation of *1 consists of about 70 macros. Only a

few of their names occur in the *1 language described in the preceding sections.

When one of these macros occurs in a program a sequence of nested macro calls

produces the code required to perform the required task. It is not unusual for

a simple *1 operation; e.g., the «- operation, to produce 15 or more macro calls.

Most of these calls are for *1 internal macros; that is, those whose names do

not appear in the *1 syntax. However, there is no reason, in general, why a

program should not call one of the underlying macros if it serves the programmer1

purpose. An effort has been made to make these internal features available to

users. They are described in detail in a separate paper, *1 Internal

Specifications.

Included in *1 is a language - the meta-language - which may be used to

regulate or alter the code produced by *1 macros. Users who want to use this

feature of *1 may want to acquaint themselves with the internal operation of the

language, by using the internal specs and/or a listing of the macros. The meta

language will be explained in a subsequent version of the manual.

Register Allocation

The instructions produced by *1 macros make extensive use of general

registers for indexing, masking fields, etc. For this reason it is necessary

to follow special procedures when using registers in assembly language within

a *1 program. The *1 compiler does its own register allocation. Therefore,

when the programmer wants to use a new register himself, he must either ask *1

to give him a register to use or he must take one which *1 is not using and tell

*1 not to use the register. This communication is done with five internal

macros: GREG*, RREGS, SAVE, RET, and GPAIR. The general method of operation of

these macros is as follows: A single tag (i.e., entry in a vector) is associated

with each general register. Each tag may be 0, 1, or 2. At any time during

the compilation of a program, a 0 indicates that the register is not in use, a

1 that it is in temporary use by *1, and a 2 that it is in permanent use either

by *1 or the programmer. The values of these tags are manipulated as follows:

GREG Changes the first 0 tag to 1

GPAIR Changes the first consecutive even-odd pair of O's to l's.

RREGS Changes all 1 tags to 0.

SAVE R Sets the tag of R to 2.

RET R Sets the tag of R to 0.

GREG requires no parameter. It returns the number of the first available

register by means of the SETA symbol &R. All registers must be obtained via <8R.

Hence, if more than one register is required the user must assign successive

values of R to different SETA symbols.

This procedure is illustrated below:

GBLA &R

LCLA &S

GREG

SETA <6R

GREG

instructions involving &S and <SR

* The names of all internal macros are preceded by an X, and the names of all
global SET symbols, fields, and blocks used by *1 are preceded by a $ even
though they are not written that way in this manual.

GPAIR requires no parameter. It returns in &R the number of the first

available pair of registers such that the first is even numbered.

RREGS returns all registers which have not been protected by the SAVE

macro to the store of available registers.

SAVE requires one parameter. It protects the specified register from

the RREGS macro.

RET requires one parameter. It returns its register to the store of

available registers.

Note: RREGS is called automatically at the end of each *1 <OPERATION>,

so any register which needs to be safe over an operation must be protected by

SAVE.

Example

This is a simple *1 program to find the last element on a list. The

list is pointed to by LIST and linked by L. It has a 0 in the link field of

the last element. T will act as a temporary and will point to the result when

it is finished.

BFIELD

BFIELD

FIELD

DO

BACK IF

DO

OUT

LIST,...

T,...

L,..., (...,«..)

(T,<-o,LIST)

(TL,=,0),THEN,(GOTO,OUT)

(T,<-o,TL), (GOTO,BACK)

3
References

[1] IBM System/360 Disk and Tape Operating Systems Assembler Language

Specification, Form C24-3413-3.

[2] Knowlton, Kenneth C , "A programmer^ description of L6«" Communications

of the ACM, August, 1966.

[3] Naur, Peter, (ed.) ,fRevised report on ALGOL 60, 1 1 Communications of the

ACM, January, 1963.

