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ABSTRACT

A program for translating phrase structure
trees into expressions of logic is described. The
program is designed for use with the Sussex '"Pro-
Gram" grammar development system, which embodies a
context—-free parser designed for use with General-
ised Phrase Structure Grammars.

The translation strategy is based on that of
Montague Grammar. A Fformuletion of intensional
logic (IL) in the logic progreamming language Pro-
log is used as & meaning repr=zsentation language.
Expressions of IL are associata:d with individual
words in a Semantic Dictionary. Rules of semantic
composition combine simple constituent expressions
to obtain translations for larger phrases. An
additional storage mechanism permites & natural,
non-syntactic treatment of quantifier scope ambi-
guities.

For practical reasons it was decided that the
translations produced by the system should be
first order equivalent. For this reason the system
incorporates constraints which ensure that first
order reducibility is maintained.
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1. Introduction

Many computational linguists now believe that natural
langquage understanding is best regarded as a many stage pro-
cess. On this view, the problem of designing an understand-
ing system i1is seen as decomposable into various self con-
tained sub-problems. Two factors have helped persuade compu-
tational linguists of the need to adopt such an approach.
Firstly, experience with complex computational systems has
shown that ‘"divide and conquer' strategies are generally
preferable to ad hoc design techniques. Secondly., theoreti-
cal linguistics has lately tended towards a highly modular
view of syntactic,‘semantic and pragmatic gpecification. It
has therefore seemed reasonable to exploit this modularity

in the organisation of language understanding systems.

The work presented in this paper is in the spirit of
recent research in computational linguistics (Bawron et al

1982, Schubert and Felletier 1982). The goal has been to

examine one sub-problem of the entire understanding process:



the tramslation of sentences into logical form. It has some-
times been argued that there is little point in such an
enterprise, thatflanguage simply idisn’'t }ogical ‘ffor the
classical argument see Strawson 1950). However, implicit in
the work described here, is the contention that a descrip-
tion of truth-conditional content may be of use in the
semantic interpretation of sentences. It is . not being
claimed that lbgical form and sentence meaning are identi-
cal, but rather that logical form may usefully serve as
input to subsehuent stages of analysis. Support for this
contention can be found in much recent work on natural
language processing. For examplé, Takao Gunji (1981) has
shown the utility of identifying logical form before dealing
with apparantly’extra-logiéal phenomena such as presupposi-

tion and implicature,

More specifically, the objective has been to investi-
gate the use of Montague's sémantics_\as & basis for
translating English into leogical form. To this end & program
has been written which maps phrase structure trees into
expressions of intensional logic (IL). At present the trans-
lator is aonstkainad“,ﬁuchwthatwallhintgoﬁigng-@ngwhigher—
order expressions eventually '"drop out'. In consequence,
the resulting translations are equivalent to expressions of
first order logic (FOL). The decision to maintain first
order reducibility is motivated by computational rather than
linguistic considerations. It is well known that writing

proof procedures for ,higher~order logics presents many

. University Libraries )
58 ol Sl
v om me v W e e ey : farnecio Melion uqufﬁm



difficulties (Boolos and Jeffrey 1974). Having said this,
there remain good reasons for continuwing to use higher-—order
logic as a medium for the representation of meaning. In par-—
ticular, sentence fragments such as "every man" or "the king’
of France'" defy satisfactory representation within FOL -~ on

this point see Warren (1983).

A consequence of enforcing first order reducibility is
the present system’'s inability to capture certain kinds of
semantic ambiguity. In particular, it cannot account for the
distinction between non-referential (de dicte) and referen-
tial (de ré) readings of sentences. In fact only the
referential readings can be obtained. For example, the sen-
tence "john seeks a unicorn” would receive a single, de re
analysis, paraphrasable as '"there exists some particular
wnicorn for which john is seeking". The alternative de dicto
interpretation, on which john has no particular unicorn in
mind, is unobtainable. Clearly, the relative merits of
semantic coverage and computational tractability must be
carefully weighed up, and a compromise found to suit & given
purpose. In many practical applications (e.g. a natural
language front-end to a database) de dicto readings may be
superfluous. For the semanticist, on the other hand, the
logical translation cam be an end in itself, in which case
faithful reproduction of de dicto/de re ambiguities may be
required. A feature of the system to be described is its
ability to manipulate logical expressions invdlving.inten~

sional operators. This admits the possibility of producing
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both de dictoe ahd'de re readings if needed, with relatively

minor alterations to the translator.

The translator itself carries out no syntactic
analysis, but iagintanded as an "add on" to the Sussex "Pro-
Gram" grammar development system: (Evans and Gazdar 1984).
ProGram is & ¢ontext—¥ree parser employiné a Generalised
Fhrase Structure Grammar of GPSG: (Gazdar and Pu}lum 1982,
Gazdar, Klein, Pullum and Sag 1982). An interesting aspect
of the present w@rk has been to investigate the problems of

using a Montague-style semantics in this context.

An outline Qf Montague Semantics and its relevance to
Computational;Liﬁguistics is provided in section 2. Qectian
3 presents a brief overview of the translator and gives
details of inpét and output. In seétion 4 the translation
process is described, and a detailled example showing how a
‘ tree is mapped into &a corresponding expression of IL is

given in section 8.

2. Montague Grammar and Computational Linguists

based was first developed by Richard Montague in the early
1978 ' s. (Montague 197@). Faor the computational linguist,

Montague 's theory is attractive for several reasons:

i. It is model theoretic. Although "model"” in thie sense
is an abstract mathematical concept, it has a familiar

computational analogue: the database. In a natural
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ii.

iiia

ive

language understanding system, the database may take
the place of the model of formal theory, characterising
objects in the universe of discourse and the relation-
ships between them. Manipulation of the database con-
tents might then reflect changes in states of affairs.
Hierarchical organisation of many databases can be used
to record changes over time, events, etc. (for example

see Guniji 1981).

It is truth conditional. The meaning of & (declara-

tive) sentence may be regarded as the conditions that
would have to obtain in the world in order for the sen-—
tence to be true. This makes sense computationally if
the database is considered to be a partial (i.e. Fin-
ite) wdrld model . Sentence meaning can then be
evaluated with respect to the state of affairs existing
in the \current database (or even some previously

current database).

It is a mathematically precise theory of semantics
resting on the contention that natural languages are by
no means dissimilar to the sorts of formal logical sYs5—~

tems emploved by philosophers and logicians.

Particularly attractive is Montague's rule-to-rule

hypothesis. Roughly speaking the hypothesis states
that the categories and rules of the semantics, must
stand in a one to one relation with the categories and

rules of the syntax. Another important idea is that the
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semantics should be conpositionaT* The neani ng of sone
syntactic expression E, is a function of the meanings
of the expressions F1,..,FN (and only these) just in
case there is sone syntactic rule conmbining F1,»«, FN to

gi ve E.

The rehaindgr of this section is intended as a brief
introduction to Montague Sranmmar. Only those aspects of
Mont ague' s strategy which are directly relevant to subse-
quent sectioﬁs of the paperare dealt wth. For a nore
detail ed exposition the reader is referred to Dowty ¢gt. 'alL
(1981). Readers already famliar with Mntague's semantic

programe may W sh skip the rest of this section.

To begin with it is inportant to wunderstand certain
unconventional features of the intensional logic (1D used
by Montague, particularly the meaning of the terns 'inten-

sion' and 'extension'.

Suppose thaf mis a non-logical constant of a category
e denoting the individual Mary (e is the category of indivi-
dual s)- Then the! ijn*i_n*on. of m (witten..”m) belongs to the
category GCs,,e); and may be thought of as the concept f the
i ndividual Mary. Likew se, suppose that the translation into
IL of the intransitive verb run i® the one place predicate
tyn/ @f category<e,t> (the category of functions fromindi-
viduals to truth values). The concept of run' - i.e. “Gun'

- is then of category <s,<e,t>> which is also known as 1V

(for Intransitive Verb phrase) and is the semantic category

U K Kell ev- . June i{iwia



appropriate to the traditional VF of syntax. 8Such concepts
of predicates may be referred to as properties, thus “run’

denotes a property of individuals.

For particular reasons Montague chose to denote proper
names by sets of properties of individuals. The translation

of Mary (i.e. Mary’') is then given by the lambda expression

XPLVYF(m) 1
where YF denotes the extension of P. 8Since F is a pro-
perty of individuals - category (s.<e,t>} - then YF is a
predicate of category <e,t>. Montague introduced a conven-
tion - the the so-called "brace convention” - to permit such

be written

XFLF{m3 1

¢

Either way, Mary’ is of category <((s,{e,tr},t}, which is
also known as T (for Term phrase) and is the semantic

category corresponding to the syntactic category of NF.

The primary means of combining expressions of

tion. Since Mary’ is & function from properties of indivi-

duales to truth values, and “run’ is & property of individu-
ale, Mary' may be applied to “run’. The result, after
lambda conversion, and taking into account the brace conven-
tion, is run’'(m) which is of semantic category ¢ -~ the

category appropriate to (declarative) sentences. The expres-
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si0n is the translation into IL of the English sentence

"Mary runs".

Similarly by treating love’ as a&a function From Term
phrases (T) to Intransitive Verb phrases (IV), the meaning
of "John loves Mary" may be obtained by first applying love’

to Mary’ ' and then applying Jdohn' to the result.

Finally, note that certain sentences such as "evervone
loves someone' are ambiguous for reasons having to do with
the relative scope of quantifiers. In order to deal with
such quantifier scope ambiguities Montague specified various
rules for ‘quantifying-in’ term phrases. Using these rules,
term phrases may be introduced into IL expressions contain-
ing free variables. The order in which term phrases involv-
ing quantifiers (e.q. ‘everyone’ or ‘a woman’') are intro-
duced, dictates the relative scope of the quantifiers. In
general the quantifier associated with the last term phrase
to be introduced, receives wider scope than any introduced
previously. It should be evident how this may lead to the
different readings available to sentences like '"everyone

loves someone'.

In the present system, the use of & phrase structure
grammar makes it impossible to adopt Montague’s own analysis
of scope ambiguities. Instead the translator incorporates a
system loosely based on the “"storage” mechanism originally

proposed by Cooper (1975).

W n 'm ) T aw Triswem OO



2. Qverview of the Translator.

The program for translating phrase structure trees into
expressions of intenéiohal logic is written in the program-
ming language Prolog. Detailed knowledge of Prolog is not
assumed in what follows, but the reader may wish to consult
a standard textbook such as "Programming in Prolog" (Clock~
sin and Mellish 1981). The tranmslator may be conveniently

divided into four components.

i. A module responsible for performing the mapping +From
trees to expressions of IL. This module accepts as
input phrase structure trees of the same form as those
produced by the ProBGram parser (Evans and Gazdar 1984)
and associates with each, one or more expressions of
IL. (The precise details of input and output will be

given shortly).

2. A module cmnfaining rules of semantic composition, one-
rule for each kind of tree node which may occur in the
input. The semantic rules thus match tree fragments
characterised by a mother category, and the categories
of the immediate daughters. To this extent the form of
the rules depends on the grammar used for parsing sen-
tences in the first place. Each rule shows how a com-
plex exbression for a node is to be built from simpler
expressions associated with the daughtef nodes. The
hodule also contains rules for quantifying—in term

phrases. That is, introducing translations of NF's into

M R el lomy  Tinrs 1904
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Il. expressions containing free variables.

3 A semantic dictionary associating expressions of IL

with a small number of English words.

4. A module for reducing complex expressions of IL to

simpler, equivalent expressions.

Input to the translator takes the form of phrase struc-
ture trees having the following characteristics. Each tree
is an instance of ‘node’, a term in the language Frolog, and

of the form

node(N, F, D).
Here N is taken to be the category name Ffor the mother
category of the node (e.g. s for sentence, vp for verb
phrase, and so forth). A feature tree F is associated with
the mother category, and D is a list of the daughter sub-
trees. Each daughter sub-tree is also an instance of node,
vecept where N is a lexical category (i.e. the category

corresponding to some wordi e.g. v for verb, or n for noun,

etc.). In this case D is simply a word.

For example, (1) is the phrase structure tree for "kim
sees bill" (feature information has been omitted for clar-—

ity).

W.R. Keller. June 1984
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{1)
node(s, _, C
node(np, _, t
node(pn, ., kirn)
3) 1
node(vp, _, C
- node(v, _, sees),
node(np, _, C
node(pn, _, bill)
3)
3)
3)
The translator produces as output expressions of inten-
sional logic, conveniently encoded in Prolog. The Prolog
eformulation of IL will henceforth be called the 'logica

representation | anguage' (LRL for short)- Nothing hangs on
this though, at an abstract level IL and LRL are one and the

sane | anguage.

LRL may be defined in the wusual recursive fashion.
Throughout the following definition E, E and E2 are
intended to represent arbitrary expressions in LRL, and V is
sonme Prolog variable. (For present purposes, a Prolog atom
can be any sequence of |ower-case Iettérs, e.g. "| ove'?,
"everyone', "bill!, and a Prolog yaxlabXe is any sequence of

letters and nunmbers that begins with a capital; e.g. "He'!,

"Xi"y "Bill),
. Any atom or variable may be an expression of LRL.
ii. Any termof the formnot(E> is an expression of LRL.

lii. Any termof the form C(E1l, E2) where Cis one of and,

or, egual, Inplies, A& (if and only if) is an expres-

H 8 Keller. June 1984



sion of LRL.

ive Any term of the form G(V,E) where ¢ is one of forall,

Va Any term of the form lambda(V,E) is an expression of

LRL.

vi. Any term of the form: (a) app(E1,E2), (b)) app(El,{EE})

is an expression of LRL.
vii. The terms "“E and “E are expressions of LRKRL.

The intended interpretation of LRL expressions involv-
ing the logical operators (ii. and iii.) should be clear to
those familiar with the predicate or propositional calculus.
For expressions involving quantifiers (iv.) V is the vari-
able quantified over and E is an arbitrary expression of LRL
within the scope of the named quantifier (usually E will
contain free occurrences of V). Definitions v. and vi. are
meant to capture lambda abstraction and functional applica-
tion respectively., In v. V ig the variable bound by the
lambda operator. In vi.(a) it is intended that El be applied
to EZ2. Definition vi.(b) introduces Montague’'s brace conven-—
tion and indicates that the extension of Eil be applied to

2. The operators '™’ and '™’ introduced in vii. correspond
to Montague’'s intension and extension operators respec—

tively.

The semantic dictionary associates expressions of LRL

W.R, Keller. June 1984
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with English words. For exanple the translation of hill into

LRL i s:
| ambda( P, app(P, <bill>>>

As an exanple of an expression involving quantifiers,

| ambda( P, forall (X, inplies(app(person, X), app(P, -CXJ))))

4. Thj? Translation Process.

Siven a phrase structure tree as input, the translator
sets about interpreting each node of the tree, working from
the bottomup- In other words, the translation rules are

applied in a recursive fashion to the tree such that*
trans(tree) « conbine(trans(sub-tréel),-.,trans(sub-treeN))

Since leaf nodes associate words with syntactic
categories, interpretation begins by looking up the transla-
tion of a word in the semantic dictionary. This 1is then
assigned as the translation of the nother category in accor-

dance with the appropriate semantic rule.

In general, once every daughter sub-tree has been
assigned a translation, then the nother category may al so
have a translation associated with it. An expression of LRL
is built from the translations of the daughter nodes, as
prescribed by the semantic rule for a node of the given

type. Note that the systemeffectively adheres to the rule

I I ] 2 am T T = N e am TN
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to rule hypotﬁesis, in that each type of node has only one
corresponding semantic rule. Once an expression for the
mother category has been assembled, it is systematically
reduced to its simplest equivalent form. A simple semantic
rule for noun phrases is shown in (2).
(2).
combine ( node (np NF,
[node (det ,DET,_) ,node(n,N, 21 ), [1 ) -
reduce( app(DET,™N), NP ).
Rule (2) matches any np tree node which has det and n
daughter nodes. A translation for the noun phrase is formed
by applying the translation of the determiner to the inten-

sion of the noun translation, and then reducing the result.

Sometimes, a semantic rule will specity that the trans-—
lation of & particular daughter node must be stored #or
later use. In such cases, & dummy expression having a free
variable - the reference variable - is substituted in place
of that daughter 's translation. The latter is added to a
list of 'free terms’', with a note of the newly introduced
reference variable. Once the root node of the phrase struc-—
tuwre tree has been interpreted the list of free terms is
emptied by quantifying—in each expression, taking account of
its associated reference variable. The storage operation is
thus very similar to the mechanism proposed by Robin Cooper
(1975 . A successful mapping has been achieved once the

root node has a reduced expression of LRL assigned to it,

and the store of free terms is empty.



Sémantic rule (3) applies to any ygvnode having v and
np daughter nodes. The noun phrase translation is not com-
bined directly with that of the verb, but instead is stored
along with a reference variable., This latter is taken from
the translation of the dummy element hel(lN). A partial
interpretation for the verb phrase is obtaimed by applvying
the verb translation to the intension of the dummy

expression He, and then simplifying the result.

¢

i

)l
combine( node(vp, VF,
(node(v,V,_ ) ynode(np,NF, _21), LCN:NF1 ) 3~
once( trans(he(N), He) ),
reduce( app(V, “He), VF ).
Rule (4) below is for guantifying—-in noun phrase transla-
tions. It takes & partial sentence interpretation 81 and

introduces a term phrase TFP. This is achieved by applying TF

to the expression

“lambda(V, 81)
where V is the reference variable associated with TF in  the
list of free terms. The resultant lambda expression is then
reduced.
(4).
do_qguant_in{ s, 81, V:TF, 8 ) -
var (V) ,
reduce( app(TF, “lambda(V, 81)), & ).
Varying the order in which free terms are picked from

the storage list and quantified-in may lead to several dif-

ferent expressions being produced for a given phrase struc-
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ture tree. This is in fact exactly what is required, since
it allows quantifier scope ambiguities to be handled in an
elegant, non-syntactic fashion. The system is'designed to
ensure that if the quantifying—~in stage is ever re-done,
then the 1list of free terms will be permuted. Asa conge-

quence, all interpretations potentially arising from quan-—

tifier scope ambiguities may be produced.

9. An Example.

The translation process may be illustrated in detail
with reference to a step by step example. A phrase structure
tree for the sentence "every man loves a woman' is shown in
(%) . The tree is of the same form as those produced by the
ProGram parser, but all feature infarmétion has been omit-—
ted. Details of syntactic features are not required by the
translator and are thus irrelevant to our interests. Also,
it is assumed that words which appear at terminal tree nodes
are in their base forms. This permits the translator to
look up words directly in the semantic dictionary without
having to perform prior morphological analysis, an unneces-
sary complication. It should be pointed out that this minor
simplification is merely a convenience, and does not other-

wise affect the translation process.

The translation process starts with the node:

node (det, _, every)

W.R. Keller. June 924
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(5) . ]
node(s, _, L
node{np, _, [
node (det, _, every),
node{n, _, man)
1,
node(vp, _, L[
node(v, _, love),
node(np, _, [
node (det, _, &),
node(n, _, woman)
iy
o
1)

At this stage the determiner every is looked up in the
semantic dictionary. This vields the expression
lambda(F,
lambda (G,
forall (X, implies(app(F, {(X}), app(@, {X})))))
which becomes the translatioﬁ of the det node, in accordance
with the corresponding semantic rule. The rule builds a new
instance of node, paralleling that of the phrase hstructure
tree, but having the translation of the mother category in

place of feature information. In this case the ‘semantic

node’ is

node (det, Lexpr, every)
where Leupr is the lambda expression for every. 8ince this
expression cannot be reduced, interpretation continues with

the ‘moun’ node:

node{n, _, man)

Here exactly the same seguence of operations are performed,

FX Y =) P B S Trsv am T O



resulting in the.semantic node:

nede(n, man, nan)

In this case the word nan, has no -special-—translation into
LRL associated 'withitin the semantic dictionary; and is
therefore left as it stands. The translation of man is to
be thought of as a one place predicate on the domain of
i ndi vi dual s (dr equi valently, a set of individuals)e

| Agéin no reduc;ion of the translation is hécéssary, and
t he cufrent node¢. becones the noun phrase node inmediately

dom nating every and man. A semantic rule for nodes of type
hp (i.e. rule(é) of section 4).$hom$ héw a:trahgfaffdn for
this node may be.obtained. It is achieved by constructing
(and then reduciﬁg) an expression of thé form
app(DET, "N)

Here DET is the translation of the deterniner node (i.e.. of -
fiyjSEY> 2and "Nisthe jntension of the translation-associ-
ated with the noun node (i.e.-“man). -This results in the

expressi on

app (| anmbda(P,
| ambda( Q
f or al KX,

inplies(app(P, <X>), app(Q CX>))))), --nan)

whi ch after |anbda conversion becones

| anbda(Q forall (X, inplies(app ("nan, {X>> app(Q <X>)>))
This may be further reduced by taking account of the brace

convention to give the final expression

W#. Keller. June 1984



| anbda(Q forall (X, inplies(app(man, X), app(Q CXJ))))
The present stage of the process is then conpleted by buil d-
ing a semantic node -for the noun phrase having this transl a-

tion.

Attention is now switched to the verb phrase sub-tree.

First a semantic tree node is built for the verb node:

node(v, |ove, |ove)
The noun phrase sub-tree is then interpreted in an identica
fashion to that described for 'every man'. The translation

for the determiner a is

| anbda( P
| anbda( Q

exi sts(Y, and(app(P, CY>), app(Q CY>)))))

The following semantic node is built for the comon noun

node(n, wonman, womran)
These translations are conbined exactly as before to give

(after reduction)

| anbda(Q, exists(Y, and(app(wonman, Y) , app(Q <Y>))))
The verb phrase node itself may now be processed. For the
first tinme a semantic rule which stores a daughter node's
translation is encountered (see rule (3) of section 4). To
begin with, the rule specifies that the translation of a
special dummy el enent he(N)  should be looked up in the

senmantic dictionary. The translation is

H*R Keller. June 1984



lambda(F, app(F, {X13}))
where X1 is the reference variable and is ,uniqqe to this
eXpression. (Each subsequent translation of he(N) will con-
tain a new reference variable). Next, the noun-—-phrase
translation is associated with the new reference variable
and stored for later use. The term X1 : NF -~ where NP is the
noun phrase translatidn - is then the first free term to be
added to the storage list. The use of the reference variable
X1 will become apparent later on, when the nounﬂéhrase
translation is quantified in. In the meantime, the transla-
tion of he(N) is combined with the translation of the verb

node to yield:

app(love, "lambda(F, app(F, {X1})))
This expression cannot be reduced Ffurther by the usual
operations of functional application and so forth. However,
aince we are aiming at +First order reducibility for the
expressions produced by the translator, it is expedient at
this stage to apply a special ‘extensioning’ reduction. The

extensioning process vields the new expression
app(love, X1)

The idea is that for any predicate F which applies to

expressions of the form

“XFLYP(X) ]
(known as the individual sublimation concept of X) there is

a corresponding predicate F« which applies only to indivi-

W.R. Keller. June 1984
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duals. Further, Fv will be true of an individual X just in

case P is true of X s sublinmation concept.

The slightly confusing thing about the 'extensioning'

operation wused by the translator is that the applied predi-

cate is not renanmed- That is, |ove does not becone | QyM

or sone such. In practice this isn't really worrying. Al
the hard work of keeping track of changes in the interpreta-
tion of predicates is done autonmatically "behind the scenes™

by the nodul e responsible for reducing LRL expressions.

Havi ng assenbled a semantic node for the verb phrase,
the root node is now interpreted. Once again this involves
storing a noun phrase translation (i.e. that for the noun
phrase 'every man') and conbining a dummy element with the
translation of the other daughter node. Foll ow ng reductiOn

t he expression obtained is
app(apb(love, X)), X2)

Interpretation of the phrase structure tree is now
essentially conplete. Al that remains is to enpty the
storage list by quantifying-in each free term A quantifi-
cation rule for the sentence node indicates how this may be

achieved (rule (4) section 4). First the expression

| anbda( X2, S)
is fornmed, where S is the translation of the sentence node.
The variable X2 is the reference variable associated with

the free term to be quantified in (in this case the

i4*R  Keller. June 1984



translation of ‘every man’). The free term is then applied
to the intension of this new expression giving
app( lambda (@,
forall (X, ’
implies (app{(man, X)), app(C, {X})))),
~lambda (X2, app(app(love, X1), X2)) )

This rather complex expression reduces to the more familiar

forall(X, implies(app(man, X)), app(app(love, X1), X))
which becomes the new translation associated with the root

node.

The second free term is now dealt with in exactly the
same way. Following reduction, interpretation is complete
(modulo re-doing the quantifying—in stage) with the result

existslY, and(app(woman, Y),
forall (X, implies(app(man, X),
app(app(love, X), Y)))))

As previously noted, attempting to re—do the
guantifying-in stage results in the storage list being reor-
dered. In this case, the free terms will be chogsen in ihe
opposite order, with the consequence that the translator
will produce the new expression

forall(X, implies(app (man, X),
exists (Y, and(app{(woman, Y),
app(app(lave, X}, Y)))))
In this way both‘readings of "every man loves a woman" may

be obtained.

CW.R. Keller. June 1984
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4. Conclusions.

Compositional, model~theoretic semantics offers an
approach to natural language processing which combines
theoretical rigour with a disciplined methodology. I+ +the
computational linguist initially finds the strategy imposed
by formal semantics rather unpromising, further investiga—
tion is likely to be more rewarding. Ferhaps surprisingly,
it turns out that many key ideas characteristic of model
theoretic semantics, may be related quite naturally to fami-

liar programming concepts.

What has been described in this paper is a system which
employs Montaque’'s semantics as a basis for the translation
of English into logic. A formulation of IL in Prolog permits
a precise and transparent semantic specification. Semantic
rules may be correlated closely with the syntactic struc-—

tures to be interpreted, making semantic generalities rela-

tively easy to capture. The alignment of rules and struc-

tures in this way amounts to a version of Montague’'s rule to
rule hypothesis. It is possible, however, that a single
semantic rule may correspond to a whole set of syntactic

rules, each of which admits the same sort of tree fragment.

The current translator is equipped to deal with a
fairly small sample of English declarative sentences.
Nevertheless it has shown itself to be capable of amnalysing
compléx semantic phenomena such as quantifier scope ambigui-~

ties. Providing semantic rules for a somewhat wider range

W.R. Keller. Tuns 1904
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of (declarative) constructs should not pose any significant

pr obl ens.
A nunber pf i nprovenents to the translator are
envi saged:

i Currently semantic rules nust _be witten as Prolog
cl auses. It should be possible to generate each cl ause
automatical ly froma description of the expression to

be built and the corresponding grammatical rule.

ii. The transl at or presently has a r at her rigid
storaqe/quahtifyingiin strategy. Al noun phrase
transl ations are stored and then quantified-in at the
| ast nDnenf* This has the advantage of treating noun
phrase translations in a uniformfashion, but can |ead
to unmanted results. For exanple "kirn sees bill™ will
receive two (identical) interpretations since there are
two ways of quantifying-in the translatipns of kun and

bi.ll.

iii. It would be convenient for the user to have sone degree
of control aver the translation process. A choice the
user might wish to make which_  has already been nen-
tioned, is between FQ equivalence and IL representa-

tions including de dicto anal yses.

W_R. KMinr. Jura* 1984
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Appendix.

Sample Translations,.

listed below are a small n&mber of analyses produced by
the translator program. To begin with, & very simple exam-
ple:

"Rim runs”

appfirun, kie)

A rather more complex example involving a definite descrip-
tion:

Ythe man runs'

exists{_27, forali{_Z8, and{iff{equal(_27, _28), appiman, _Z8}),
applrun, _ZD1H

Transitive verbs are treated as functions From individuals
to intransitive verb denotations.

"kim sees bill"
app (app(see, bill}, kial
"a woman sees john

exists( %, and{app{wosan, _%1, applapp{see, ichn), _9}})

The next sentence exhibits guantifier scope ambiguity, and
has two translations associated with it. Note the relative
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"every nan | oves sone worman'

forall(.19, iipliesfappdan”® J9), exists!J!B, and(app(«oaan, JB),
app(app(love; Jit), J9)))))

Backtrack!'ng produces the alternati ve interpretations

existsi_2B, 4nd(app(*oaan; _28i, forall(_i9, iipliesiappiian, J9>,
appiappdove, Jl), J9))H)f

The next sentence actually has six identical interpreta-
tions, since there are six ways of quantifying-~in jkjn fjjdo
@¥d a hone« Note that ditransitive verbs such as give
translate into -functions fromindividuals to transitive verb
denot ati ons. : '

"kirn gi ves -fido a bone'

exists(. 16, and(app(bone_, J6!, app(app(app(give, fido), _16> kit)))

In the "following exanple, the six translations are distinct
syntactically, but there are only three different semantic
interpretations. (Only the orderings of the existential
quantifiers wth respect to the universal quantifier are
truth-conditionally significant).

‘severyone gives the dog a bone"

foraiHJi, iiplies(app(per5on, J1), exists(J2, andUppChone, _12),
exists(j3, forall.(J4, and (iff (equal iJZ~ J4), appldog, J4)),
applapp(app(give, J3), -J2J, JDHJI))) ? ?

existsi”i2, and(app(bone, ~12), foralli_li, i8plies(app(person, ~ii),
exists! 13, foralli_u] and«i«(equal(J3,J4), apptdog, _141),
applapp(@pp<give, J3), J2), .ill))))))) ?j -

forall{J |, iiplies(app(person, “iil, enstsl*iS, forall(J4, and(iif(
equal(J3; J4); app(dog, ,14))s e_xists(_12, andfappibone, ".12),
app(appUpp(give, 13), J2), _11))))))) ? ;
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existsJ.13, faralK.14, and(iff(equal(.13, J$), appCdog, .14)),
faraiK.li, isplies(app(person, .11), exist5(_12, and(app(bane, .12},

app(app(app(give, J3), J2u JN))) ?

exists (*12, and (app (bone, .12), exists(*i3, forall(J4, and(if#{
equal(.13, .14), appidog, .14)), forall't.il, iipliestapp'tperson,'.!!),
app(appUpp(give, .13)" .12), .11)))))))) ? ;

exist5<J3, foralli.M, and(i«<equal(.13, .14), app(dog, .14)),
+ exist5(.12, andiapptbone, J2), foralH.II, iipiieE(app(person, .11),
app (app (app (give, .13)," .12), J)))) ?



