
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Generating Logic -from ProSram Parse Trees.

W.R. Keller

Cognitive Studies Research Paper

Serial no: CSRP 39

June 1984

ABSTRACT

A program -for translating phrase structure
trees into expressions of logic is described. The
program is designed for use with the Sussex "Pro-
Gram" grammar development system, which embodies a
context-free parser designed for use with General-
ised Phrase Structure Grammars.

The translation strategy is based on that of
Montague Grammar. A formulation of intensional
logic <IL) in the logic programming language Pro-
log is used as a meaning representation language.
Expressions of IL are associated with individual
words in a Semantic Dictionary. Rules of semantic
composition combine simple constituent expressions
to obtain translations for larger phrases. An
additional storage mechanism permits a natural,
non-syntactic treatment of quantifier scope ambi-
guities.

For practical reasons it was decided that the
translations produced by the system should be
first order equivalent. For this reason the system
incorporates constraints which ensure that first
order reducibility is maintained.

55 X
31

Senerating Logic from ProGram Parse Tree©,

W.R. Keller

Cognitive Studies Research Paper

Serial no: CSRP 39

June 1984

i.« Lntjrgduc,ti,on

Many computational linguists now believe that natural

language understanding is best regarded as a many stage pro-

cess. On this view, the problem of designing an understand-

ing system is seen as decomposable into various self con-

tained sub-problems. Two factors have helped persuade compu-

tational linguists of the need to adopt such an approach.

Firstly, experience with complex computational systems has

shown that "divide and conquer11 strategies ar& generally

preferable to ad hoc, design techniques. Secondly, theoreti-

cal linguistics has lately tended towards a highly modular

view of syntactic, semantic and pragmatic specification. It

has therefore seemed reasonable to exploit this modularity

in the organisation of language understanding systems.,

The work presented in this paper is in the spirit of

recent research in computational linguistics (Gawron et al.

1982, Schubert and Pel letier 1982). The goal has been to

examine one sub-problem of the entire understanding process?

the translation of sentences into logical form. It has some-

times been argued that there is little point in such an

enterprise, that language simply isn't logical (for the

classical argument see Strawson 1950). However, implicit in

the work described here, is the contention that a descrip-

tion of truth-conditional content may be of use in the

semantic interpretation of sentences. It is not being

claimed that logical form and sentence meaning are identi-

cal, but rather that logical form may usefully serve as

input to subsequent stages of analysis. Support for this

contention can b$ found in much recent work on natural

language processing. For example, Takao Bunji (1981) has

shown the utility of identifying logical form before dealing

with apparently extra-logical phenomena such as presupposi-

tion and implicature.

More specifically, the objective has been to investi-

gate the use of Montague's semantics as a b a s i s for

translating English into logical form. To this end a program

has been written which maps phrase structure trees into

expressions of intensional logic (ID. At present the trans-

lator is constrained such that all intensions and higher-

order expressions eventually "drop out11. In consequence,

the resulting translations arm equivalent to expressions of

first order logic (FOL). The decision to maintain first

order reducibility is motivated by computational rather than

linguistic considerations. It is well known that writing

proof procedures for higher-order logics presents many

• _ T T _ ._

University L'^^;;^ .b/

difficulties (Boolos and Jeffrey 1974). Having ©aid this,

there remain good reasons for continuing to use higher-order

logic as a medium for the representation of meaning. In par-

ticular, sentence fragments such as "every man11 or "the king

of France11 defy satisfactory representation within FOL - on

this point see ^iarrmn (1983).

A consequence of enforcing first order reducibility is

the present system's inability to capture certain kinds of

semantic ambiguity. In particular, it cannot account for the

distinction between non-referential (de dicto) and referen-

tial (de re) readings of sentences. In fact only the

referential readings can be obtained. For example, the sen-

tence "John seeks a unicorn11 would receive a single, de re

analysis, paraphrasable as "there exists some particular

unicorn for which John is seeking". The alternative de dicto

interpretation, on which John has no particular unicorn in

mind, is unobtainable. Clearly, the relative merits of

semantic coverage and computational tractability must be

carefully weighed up, and a compromise found to suit a given

purpose. In many practical applications (e.g. a natural

language front-end to a database) de dxcto readings may be

superfluous. For the semanticist, on the other hand, the

logical translation can be an end in itself, in which case

faithful reproduction of de dicto/de re ambiguities may be

required. A feature of the system to be described is its

ability to manipulate logical expressions involving inten-

sional operators. This admit© the possibility of producing

11 rs ts - * * -

both de dicta and de re readings ii needed, with relatively

minor alterations to the translator.

The translator itself carries out no syntactic

analysis, but is intended as an "add on" to the Sussex "Pro-

Gram11 grammar development systems <Evans and Gazdar 1984)•

ProGram is a context-free parser employing a Generalised

Phrase Structure Grammar or GPSGs (Gasdar and Pullum 1982,

Gazdar, Klein, Pullum and Sag 1982)* An interesting aspect

of the present work has been to investigate the problems of

using a Montague-style semantics in this context.

An outline pf Montague Semantics and its relevance to

Computational Linguistics is provided in section 2. Section

3 presents a brief overview of the translator and gives

details of input and output. In section 4 the translation

process is described, and a detailed example showing how a

tree is mapped into a corresponding expression of IL is

given in section 5.

2* Montaflu®. ©ÊfflffiilC *Q<A CgmiDUtati^onj,! LtDSyiJlt®

The system of formal semantics on which this work is

based was first developed by Richard Montague in the early

1970's. (Montague 1970). For the computational linguist,

Montague's theory is attractive -for several reasons!

i. It is fflodelj thf,greti.£. Although "model" in this sense

is an abstract mathematicalconcept, it has a familiar

computational analogues the database. In a natural

«, cs w

language understanding system, the database may take

the place of the model of formal theory, characterising

objects in the universe of discourse and the relation-

ships between them- Manipulation of the database con-

tents might then reflect changes in states of affairs-

Hierarchical organisation of many databases can be used

to record changes over time, events, etc. (for example

see Gunji 1981).

ii. It is truth condjjtXonjil,, The meaning of a (declara-

tive) sentence may be regarded as the conditions that

would have to obtain in the world in order for the sen-

tence to be true. This makes sense computationally if

the database is considered to be a partial (i.e. fin-

ite) world model. Sentence meaning can then be

evaluated with respect to the state of affairs existing

in the current database (or even some previously

current database).

iii. It is a mathematically precise theory of semantics

resting on the contention that natural languages are by

no means dissimilar to the sorts of formal logical sys-

tems employed by philosophers and logicians.

iv. Particularly attractive is Montague 's ru 1...e-1o-ru 1 e

hYpjDthesis. Roughly speaking the hypothesis states

that the categories and rules of the semantics, must

stand in a one to one relation with the categories and

rules of the syntax. Another important idea is that the

"" 6 *"

semantics should be compositional * The meaning of some

syntactic expression E, is a function of the meanings

of the expressions F1,..,FN (and only these) just in

case there is some syntactic rule combining F1,»«,FN to

give E.

The remainder of this section is intended as a brief

introduction to Montague Srammar. Only those aspects of

Montague's strategy which are directly relevant to subse-

quent sections of the paperare dealt with. For a more

detailed exposition the reader is referred to Dowty ejt 'aJL

(1981). Readers already familiar with Montague's semantic

programme may wish skip the rest of this section.

To begin with it is important to understand certain

unconventional features of the intensional logic (ID used

by Montague, particularly the meaning of the terms 'inten-

sion' and 'extension'.

Suppose that m is a non-logical constant of a category

e denoting the individual Mary (e is the category of indivi-

duals)- Then the! ijn^jn^on. of m. (written..^m) belongs to the

category Cs,,e)f and may be thought of as the concept of the

individual Mary. Likewise, suppose that the translation into

IL of the intransitive verb run i® the one place predicate

tyn/ ®f category<e,t> (the category of functions from indi-

viduals to truth values). The concept of run' - i.e. ACjun'

- is then of category <s,<e,t>> which is also known as IV

(for Intransitive Verb phrase) and is the semantic category

U.K. Kel ley- . June

appropriate to the traditional VP of syntax. Such concepts

of predicates may be referred to as pxSI!!L®r.iJkjSJ5if thus 'Vun.'

denotes a property of Ind.iyiduals..

For particular reasons Montague chose to denote proper

names by sets of properties of individuals. The translation

oi Mary (i.e. Mary') is then given by the lambda expression

>.PCvP(m>3

where VP denotes the extension of P. Since P is a pro*-

perty of individuals - category <sf<eft>> - then VP is a

predicate of category <e,t>. Montague introduced a conven-

tion - the the so-called "brace convention*' - to permit such

expressions to be written more perspicuously. Thus Mary/ may

be written

Either way, Mary * is of category <<$? <BPt>>ft>, which is

also known as T (for Term phrase) and is the semantic

category corresponding to the syntactic category of NP.

The primary means of combining expressions of

Montague's IL to give new expressions is func.tign.al appiijra-

tj.,on» Since Mary/ is a function from properties of indivi-

duals to truth values, and '"run/ is a property of individu-

als, Mary/ may be applied to ""run/. The result, after

lambda conversion, and taking into account the brace conven-

tion, is run/(m) which is of semantic category t - the

category appropriate to (declarative) sentences. The expres-

~» £2 ~»

sion is the translation into IL of the English sentence

"Mary runs1' *

Similarly by treating love/ as a function from Term

phrases (T) to Intransitive Verb phrases (IV), the meaning

of "John loves Mary" may be obtained by first applying Ijoye/

to llary' and then applying John/ to the result.

Finally, note that certain sentences such as "everyone

loves someone" are ambiguous for reasons having to do with

the relative scope of quantifiers- In order to deal with

such quantifier scope ambiguities Montague specified various

rules for 'quantifying-in' term phrases. Using these rules,

term phrases may be introduced into IL expressions contain-

ing free variables. The order in which term phrases involv-

ing quantifiers (e.g. 'everyone' or 'a woman') are intro-

duced, dictates the relative scope of the quantifiers. In

general the quantifier associated with the last term phrase

to be introduced, receives wider scope than any introduced

previously- It should be evident how this may lead to the

different readings available to sentences like "everyone

loves someone".

In the present system, the use of a phrase structure

grammar makes it impossible to adopt Montague's own analysis

of scope ambiguities. Instead the translator incorporates a

system loosely based on the "storage" mechanism originally

proposed by Cooper (1975).

Li t>

Q —.

3. Oyeiivi.jgw of. the

The program -for translating phrase structure trees into

expressions of intensional logic is written in the program-

ming language Prolog. Detailed knowledge of Prolog is not

assumed in what follows, but the reader may wish to consult

a standard textbook such as "Programming in Prolog11 (Clock-

sin and Mellish 1981). The translator may be conveniently

divided into four components.

1. A module responsible for performing the mapping from

trees to expressions of I.L. This module accepts as

input phrase structure trees of the same form as those

produced by the ProSram parser (Evans and Gasdar 1984)

and associates with each, one or more expressions of

IL. (The precise details of input and output will be

given shortly).

2. A module containing rules of semantic composition, one

rule for each kind of tree node which may occur in the

input. The semantic rules thus match tree fragments

characterised by a mother category, and the categories

of the immediate daughters. To this extent the form of

the rules depends on the grammar used for parsing sen-

tences in the first place. Each rule shows how a com-

plex expression for a node is to be built from simpler

expressions associated with the daughter nodes. The

module also contains rules for quantifying-in term

phrases. That is, introducing translations of NP's into

- 10 -

IL expressions containing free variables/

3. A semantic dictionary associating expressions of IL

with a small number of English words/

4. A module for reducing complex expressions o-f IL to

simpler, equivalent expressions.

Input to the translator takes the form of phrase struc-

ture trees having the following characteristics. Each tree

is an instance of 'node', a term in the language Prolog, and

of the form

node(N, F, D).

Here N is taken to be the category name for the mother

category of the node (e.g. s for sentence, VJD for verb

phrase, and so forth). A feature tree F is associated with

the mother category, and D is a list of the daughter sub-

trees. Each daughter sub-tree is also an instance of node,

except where N is a lexical category (i.e. the category

corresponding to some word; e.g. y for verb, or n. for noun,

etc.). In this case D is simply a word.

For example, (1) is the phrase structure tree for "kirn

sees bill11 (feature information has been omitted for clar-

ity).

„/?• Keller. June 1934

node(s, _, C
node(np, _, t

node(pn, , kirn)
3) ,

node(vp, _, C
node(v, _, sees),
node(np, _, C

node(pn, , bill)
3)

3)
3)

The translator produces as output expressions of inten-

sional logic, conveniently encoded in Prolog. The Prolog

•formulation of IL will henceforth be called the 'logical

representation language' (LRL for short)- Nothing hangs on

this though, at an abstract level IL and LRL are one and the

same language.

LRL may be defined in the usual recursive fashion.

Throughout the following definition E, Ei and E2 are

intended to represent arbitrary expressions in LRL, and V is

some Prolog variable. (For present purposes, a Prolog atom

can be any sequence of lower-case letters, e.g. "love11,

"everyone11, "bill11, and a Prolog yaxlabXe is any sequence of

letters and numbers that begins with a capital; e.g. "He11,

nXi"f "Bill11).

i. Any atom or variable may be an expression of LRL.

ii. Any term of the form not(E> is an expression of LRL.

iii. Any term of the form C(E1,E2) where C is one of and,

or, egual, Implies, i£f (if and only if) is an expres-

H.8. Keller. June 1984

- 12 ~

sion of LRL.

iv. Any term of the -form #<M,E) where Q is one of forall,

exists,, is an expression of LRL.

v. Any term of the form L̂ Mfedji (V,E) i s a n expression of

LRL.

vi. Any term of the forms (a) apj3<El ,E2) , apj? <Ei , <:£2>)

is an expression of LRL.

vii. The terms *""£ and ^E are expressions of LRL.

The intended interpretation of LRL expressions involv-

ing the logical operators <ii. and i i i•) should be clear to

those familiar with the predicate or prepositional calculus.

For expressions involving quantifiers <iv.) V is the vari-

able quantified over and E is an arbitrary expression of LRL

within the scope of the named quantifier (usually E will

contain free occurrences of V). Definitions v. and vi. are

meant to capture lambda abstraction and functional applica-

tion respectively. In v. V is the variable bound by the

lambda operator. In vi.(a) it is intended that El be applied

to E.2« Definition vi.(b) introduces Montague's brace conven-

tion and indicates that the extension of El be applied to

E2. The operators '"•' and '*"' introduced in vii. correspond

to Montague's intension and extension operators respec-

tively.

The semantic dictionary associates expressions of LRL

W./?. Keller. June 1984

~ 13 -

with English words. For example the translation of bill into

LRL is:

lambda(P, app(P, <bill>>>

As an example of an expression involving quantifiers,

everyone translates intos

lambda(P, forall(X, implies(app(person, X) , app(P, -CXJ))))

Tjhj?

Siven a phrase structure tree as input, the translator

sets about interpreting each node of the tree, working from

the bottom up- In other words, the translation rules are

applied in a recursive fashion to the tree such that*

trans(tree) « combine(trans(sub-tree1),-.,trans(sub-treeN))

Since leaf nodes associate words with syntactic

categories, interpretation begins by looking up the transla-

tion of a word in the semantic dictionary. This is then

assigned as the translation of the mother category in accor-

dance with the appropriate semantic rule.

In general, once every daughter sub-tree has been

assigned a translation, then the mother category may also

have a translation associated with it. An expression of LRL

is built from the translations of the daughter nodes, as

prescribed by the semantic rule for a node of the given

type. Note that the system effectively adheres to the rule

- 14 ~

to rule hypothesis, in that each type of node has only one

corresponding semantic rule. Once an expression -for the

mother category has been assembled, it is systematically

reduced to its simplest equivalent -form. A simple semantic

rule for noun phrases is shown in (2).

combine< nod^(np,NP,
Cnode<det,DET,),node(n,N,) 3 >, C3) i-
reduce(app (DET/'N) , NP) /

Rule <2> matches any np, tree node which has det and n

daughter nodes. A translation for the noun phrase is formed

by applying the translation of the determiner to the inten-

sion of the noun translation, and then reducing the result.

Sometimes, a semantic rule will specify that the trans-

lation of a particular daughter node must be stored for

later use. In such cases, a dummy expression having a free

variable - the rmimrjBjxcM yACiAfelJE ~ i« substituted in place

of that daughter's translation. The latter is added to a

list of 'free terms', with a note of the newly introduced

reference variable. Once the root node of the phrase struc-

ture tree has been interpreted the list of free terms is

emptied by quantifying-in each expression, taking account of

its associated reference variable. The storage operation is

thus very similar to the mechanism proposed by Robin Cooper

(1975). A successful mapping has been achieved once the

root node has a reduced expression of LRL assigned to it,

and the store of free terms is empty.

Semantic rule (3) applies to any yp node having y and

np daughter nodes* The noun phrase translation is not com-

bined directly with that of the verb, but instead i© stored

along with a reference variable* This latter is taken from

the translation of the dummy element he(N). A partial

interpretation for the verb phrase is obtained by applying

the verb translation to the intension of the dummy

expression He, and then simplifying the result*

(3).
combine(node(vp, VP,

tnode(v,V,) ,nod©(np,NP^()]) , CN»NP3
once(trans(he(N)f He) > ,
reduce (app<V, -"He), VP >.

Rule (4) below is for quantifying-in noun phrase transla-

tions* It takes a partial sentence interpretation Si and

introduces a term phrase TP* This is achieved by applying TP

to the expression

•"•lambda (V, SI)

where V is the reference variable associated with TP in the

list of free terms. The resultant lambda expression is then

reduced*

<4> *
do_quant_in(s, Si, VsTP, S) B~

var(V) *
reduce (app (TP* "'"lambda (V, SI)), S).

Varying the order in which free terms are picked from

the storage list and quantified-in may lead to several dif-

ferent expressions being produced for a given phrase struc-

"• 16 "*

ture tree. This is in -fact exactly what is required, since

it allows quantifier scope ambiguities to be handled in an

elegant, non-syntactic fashion- The system is designed to

ensure that if the quantifying~in stage is ever re-done,

then the list of free terms will be permuted. Asa conse-

quence, all interpretations potentially arising from quan-

tifier scope ambiguities may be produced.

5- An. E>LM!PJLB.» \

The translation process may be illustrated in detail

with reference to a step by step example. A phrase structure

tree for the sentence Mevery man loves a woman11 is shown in

(5). The tree is of the same form as those produced by the

ProGram parser, but all feature information has been omit-

ted. Details of syntactic features are not required by the

translator and &re thus irrelevant to our interests. Also,

it is assumed that words which appear at terminal tree nodes

are in their base forms. This permits the translator to

look up words directly in the semantic dictionary without

having to perform prior morphological analysis, an unneces-

sary complication. It should be pointed out that this minor

simplification is merely a convenience, and does not other-

wise affect the translation process.

The translation process starts with the nodes

node(det, _, every)

~ Keller .*

- 17 -

(5).
node(s, _, C

node(np, _, C
node(det, _, every),
node(n, , man)

3),
node(vpf _, C

node(v, _, love),
node(np, _, C

node <det, _, a),
nodefn, _, woman)

3)
3)

3)

At this stage the determiner every is looked up in the

; semantic dictionary. This yields the expression

'-.. lambda (P»
lambda(Q,

for«U(X, impl ies (app <P, CX>), app(Q, <X>)))))

which becomes the translation o-f the det node, in accordance

§ with the corresponding semantic rule. The rule builds a new
I

instance o-f node, paralleling that of the phrase structure

tree, but having the translation of the mother category in

place of feature information. In this case the 'semantic

node' is

node(det, Lexpr, every)

where Lexpr is the lambda expression for every^ Since this

expression cannot be reduced, interpretation continues with

the 'noun' node:

node(n, _, man)

Here exactly the same sequence of operations are performed,

U £> kin I 7i»r .7j*r.i» 1Q.QA

_ 1 Q _

ID

resulting in the semantic node:

node(n, man, man)

In this case the word man., has no special translation into

LRL associated w i t h i t i n the semantic dictionary, and is

therefore left as it stands. The translation of man is to

be thought of as a one place predicate on the domain of

individuals (or equivalently, a set of individuals)•

Again no reduction of the translation is necessary, and

the current node fc becomes the noun phrase node immediately

dominating every and man. A semantic rule for nodes of type

np (i.e. rule(2) of section 4) shows how a translation for

this node may be obtained. It is achieved by constructing

(and then reducing) an expression of the form:

app(DET, ^N)

Here DET is the translation of the determiner node (i.e. of

fiyjSEY > a n d "N is t h e intension of the translation associ-

ated with the noun node (i.e. Aman). This results in the

expression

app (lambda(P,
lambda(Q,

foralKX,
implies(app(P, <X>), app(Q, CX>))))), --man)

which after lambda conversion becomes

lambda(Q, forall(X, impl ies (app (""man , {X>>, app(Q, <X>)>))

This may be further reduced by taking account of the brace

convention to give the final expression

W-#. Keller. June 1984

lambda(Q, forall(X, implies(app(man, X), app(Q, CXJ))))

The present stage of the process is then completed by build-

ing a semantic node -for the noun phrase having this transla-

tion.

Attention is now switched to the verb phrase sub-tree.

First a semantic tree node is built for the verb node:

node(v, love, love)

The noun phrase sub-tree is then interpreted in an identical

fashion to that described for 'every man'. The translation

for the determiner a is

lambda(P,
lambda(Q,

exists(Y, and(app(P, CY>), app(Q, CY>)))))

The following semantic node is built for the common noun

wjsman:

node(n, woman, woman)

These translations are combined exactly as before to give

(after reduction)

lambda(G!, exists(Y, and(app(woman, Y) , app(Q, <Y>))))

The verb phrase node itself may now be processed. For the

first time a semantic rule which stores a daughter node's

translation is encountered (see rule (3) of section 4). To

begin with, the rule specifies that the translation of a

special dummy element he(N) should be looked up in the

semantic dictionary. The translation is

*R. Keller. June 1984

• - 2 0 -

lambda(P, app(P, CXi>)>

where XI is the r-jsi^sESBSM YJLtl&fel© and is unique to this

expression. (Eaqh subsequent translation of he(N> will con-

tain a new reference variable). Next, the noun-phrase

translation is associated with the new reference variable

and stored for later use. The term XI s NP - where HP is the

noun phrase translation - is then the first free term to be

added to the storage list. The use of the reference variable

XI will become apparent 1ater on, when the noun-phrase

translation is quantified in. In the meantime, the transla-

tion of he(N) is combined with the translation of the verb

node to yields

appQove, ^lambda<P, app(P, *X1}))>

This expression cannot be reduced further by the usual

operations of functional application and so forth. However,

since we are aiming at first order reducibility for the

expressions produced by the translator, it is expedient at

this stage to apply a special 'extensioning' reduction. The

extensioning process yields the new expression

app(love, XI)

The idea is that for any predicate P which applies to

expressions of the form

(known as the individual sublimation concept of X) there is

a corresponding predicate P* which applies only to indivi-

W.tf. Keller* June 1984

- 21 -

duals. Further, Fv will be true of an individual X just in

case P is true of X's sublimation concept.

The slightly confusing thing about the 'extensioning'

operation used by the translator is that the applied predi-

cate is not renamed- That is, love does not become loyM*

or some such. In practice this isn't really worrying. All

the hard work of keeping track of changes in the interpreta-

tion of predicates is done automatically "behind the scenes1'

by the module responsible for reducing LRL expressions.

Having assembled a semantic node for the verb phrase,

the root node is now interpreted. Once again this involves

storing a noun phrase translation (i.e. that for the noun

phrase 'every man') and combining a dummy element with the

translation of the other daughter node. Following reduction

the expression obtained is

app (app(love, XI), X2)

Interpretation of the phrase structure tree is now

essentially complete. All that remains is to empty the

storage list by quantifying-in each free term. A quantifi-

cation rule for the sentence node indicates how this may be

achieved (rule (4) section 4). First the expression

lambda(X2, S)

is formed, where S is the translation of the sentence node.

The variable X2 is the reference variable associated with

the free term to be quantified in (in this case the

i4*R. Keller. June 1984

translation of 'every man ') . The -free term is then applied

to the intension of this new expression giving

app(lambda<Q,
forall<X,

implies(app(man, X), app(Q, <X>)))),
••"lambda (X2, app (app (love, Xi>, X2>>)

This rather complex expression reduces to the more familiar

forall (X, implies(app (man, X) f app (app (love, XI), X>>)

which becomes th$ new translation associated with the root

node.

The second free term is now dfalt with in exact1y the

same way. Following reduction, interpretation is complete

(modulo re-doing the quantifying-in stage) with the result

exists(Y, and(app(woman, Y),
forall(X, implies(app(man, X),

app(app(love, X), Y)))))

As previously noted, attempting to re-do the

quantifying-in stage results in the storage list being reor-

dered. In this case, the free terms will be chosen in the

opposite order, with the consequence that the translator

will produce the new expression

forall(X, implies(app(man, X),
exists<Y, and(app(woman, Y),

app(app(love, X), Y)))))

In this way both readings of "every man loves a woman11 may

be obtained.....

. Kell&r* June 1984

- 23

Compositional, model-theoretic semantics offers an

approach to natural language processing which combines

theoretical rigour with a disciplined methodology. If the

computational linguist initially finds the strategy imposed

by formal semantics rather unpromising, further investiga-

tion is likely to be more rewarding. Perhaps surprisingly,

it turns out that many key ideas characteristic of model

theoretic semantics, may be related quite naturally to fami-

liar programming concepts.

$ •

I What has been described in this paper is a system which
i

\ employs Montague's semantics as a basis for the translation

of English into logic. A formulation of IL in Prolog permits

a precise and transparent semantic specification. Semantic

rules may be correlated closely with the syntactic struc-

tures to be interpreted, making semantic generalities rela-

tively easy to capture. The alignment of rules and struc-

tures in this way amounts to a version of Montague's rule to

rule hypothesis. It is possible, however, that a single

semantic rule may correspond to a whole set of syntactic

rules, each of which admits the same sort of tree fragment.

The current translator is equipped to deal with a

fairly small sample of English declarative sentences.

Nevertheless it has shown itself to be capable of analysing

complex semantic phenomena such as quantifier scope ambigui-

ties. Providing semantic rules for a somewhat wider range

. Keller- J

1

~ 24 ~

of (declarative) constructs should not pose any significant

problems.

A number pf improvements to the translator are

envisaged:

i. Currently semantic rules must be written as Prolog

clauses. It should be possible to generate each clause

automatically from a description of the expression to

be built and the corresponding grammatical rule.

ii. The translator presently has a rather rigid

storaqe/quantifying-in strategy. All noun phrase

translations are stored and then quantified-in at the

last moment* This has the advantage of treating noun

phrase translations in a uniform fashion, but can lead

to unwanted results. For example "kirn sees bill11 will

receive two (identical) interpretations since there are

two ways of quantifying-in the translatipns of kjun and

bill.

iii. It would be convenient for the user to have some degree

of control aver the translation process. A choice the

user might wish to make which has already been men-

tioned, is between FQL equivalence and IL representa-

tions including de dicto analyses.

Kmllmr. Jura* 1984

Boolos, George and Richard Jeffrey (1974) Computabi1ity and
Logic. Cambridge University Press, London•

Clocksin, William and Christopher Mellish (1981) Programming
in Prolog. Berlins Springer—Verlag.

Cooper Robin. (1975) Montague's Semantic Theory and
Transformational Syntax. Doctoral dissertation, Univer-
sity of Massachusetts, Amherst.

Dowty, David R. Robert E. Wall fc Stanley Peters. (1981).
Introduction to Montague Semantics, Synthese language
library; v. 11. D. Reidel, Dordrecht Holland.

Evans, Roger and Gerald Gazdar (1984) The ProGram Manual.
University of Sussex Cognitive Science Research Paper
35 (CSRP 035)

I Gawron, Jean Mark, Jonathan King, John Lamping, Egon
I Loebner, Anne Paulson,Geoffrey Pullurn, Ivan Sag & Tho-
I mas Wasow. (1982) Processing Enlish with a Generalised
I Phrase Structure Grammar. Proceedings of the 20'th
•? Annual Meeting of the Association for Computational

Linguistics, University of Toronto, June.

Gazdar, Gerald, and Geoffrey Pull urn (1982) Generalised
•* Phrase Structure Grammars A Theoretical Synopsis.

Bloomingtons Indiana University Linguistics Club mimeo.
I Also available as University of Sussex Cognitive Sci-
| ence Research Paper 7 (CSRP 007).

Gazdar, Gerald, Ewan Klein, Geoffrey Pull urn, and Ivan Sag
(1982) Coordinate structure and unbounded dependancies.
In M. Barlow, D. Flickinger & I.A. Sag (eds.> Develop-
ments in Generalised Phrase Structure Grammars Stanford
Working Papers in Grammatical Theory, Volume 2. Bloom-
ingtons Indiana University Linguistics Club, 38 - 68.
Also available as University of Sussex Cognitive Sci-
ence Research Paper 6 (CSRP 006) .

Gunji, Takao (1981) Toward a Computational Theory of Prag-
matics - Discourse, Pressuposition, and Implicature.
Unpublished doctoral thesis, Ohio State University.

Montague Richard (1970) The proper treatment of quantifica-
tion in ordinary English. In Thomason 1974, 247 - 270.

Schubert, L & F.J. Pelletier (1982) From English to Logics
Context-Free Computation of "Conventional" Logical
Translation, Computational Linguistics 8. 27 - 44.

/? _ k"a 1 J *>r .'/JJ*1. » t OQA

- 26 -

Strawson, Peter (1950) On Refering. Mind 59.32.0.- 344.

Thomason, Richard <1974) Formal Philosophy's Selected Papers
o-f Richard Mpntague. Yale Univ. Press, New Haven, CT.

Warren, David (1983) Using Lambda-Calculus to Represent
Meanings in Logic Grammars, Proceedings o-f the 21 'st
Annual Meeting o*f the Association -for Computational
Linguistics, Toronto, June,

U

Samp.I.e. Irans,l,ati,ons_.

Listed below are & small number of analyses produced by
the translator program. To begin with, a very simple exam-
ple:

"kirn runs '

appirun, kit)

A rather more complex example involving a definite descrip-
tions

"the man runs11

e n s t s (J 7 , f o r a l i f _ 2 8 , a n d C i f f (e q u a l i l l , J2S) , a p p i t a n ,
a p p i r u n , _27>)))

Transitive verbs are treated as functions from individuals
to intransitive verb denotations.

'kirn sees bill11

app(app(seef bill), kirn)

'a woman sees John"

exists!̂ ?, and(app(«osan, J), app(app(seet John), J))}

The next sentence exhibits quantifier scope ambiguity, and
has two translations associated with it« Note the relative
ordering of exists and for.a 11, in each case-

28 -

"every man loves some woman11

forall(.19, iipliesfappdan^ J9) , exists! J!B, and(app(«oaan, JB),
app(app(lovef Jit), J9)))))

Backtrack!ng produces the alternati ve interpretations

existsi_2B, 4nd(app(*oaanf _28i, forall(_i9, iipliesiappiian, J9>,
appiappdove, J l) , J9))))f

The next sentence actually has six identical interpreta-
tions, since there are six ways of quantif ying-~in jkijn, fjjdLo
«̂ nd a_bone« Note that ditransitive verbs such as give
translate into -functions from individuals to transitive verb
denotations.

"kirn gives -fido a bone11

exists(.16, and(app(bone, J6!, app(app(app(give, fido), _16>f kit)))

In the "following example, the six translations are distinct
syntactically, but there are only three different semantic
interpretations. (Only the orderings of the existential
quantifiers with respect to the universal quantifier are
truth-conditionally significant).

'•everyone gives the dog a bone"

fora iHJ i , iiplies(app(per5on, J l) , exists(J2, andUppCbone, _12),
exists(j3, forall.(J4, and (iff (equal iJZ~ J 4) , appldog, J 4)) ,

applapp(app(give, J3) , -J2J, J D H J I))) ? ?

^i2, and(app(bone, ^12), forall i_l i , i§plies(app(person, ^ i i) ,
exists! 13, foralli u] and«i«(equal(J3,J4), apptdog, 141),

applapp(app<give, J3) , J 2) , . i l l))))))) ? j •

J l , iiplies(app(person, ^ i i l , enstsl^iS, forall(J4, and(iif(
equal(J3f J 4) t app(dog, ,14)) f exists(_12, andfappibone, .̂12),

app(appUpp(give, 13), J 2) , 11)))))'))) ? ;

- 2 9 -

existsJ.13, fara lK.14, and(iff(equal(.13, J$), appCdog, . 14)) ,
f a r a i K . l i , isp 1 ies(app(person, .11) , exist5(_12, and(app(bane, .1

app(app(app(give, J 3) , J2U Jl)))))))) ? ,'

exists (^12, and (app (bone, .12) , exists(^i3, f o r a l l (J 4 ,
equal(.13, .14) , appidog, . 14)) , f o r a l l ' t . i l , i ipliestapp'tperson,'.!!),

app(appUpp(giv6, .13)^ .12) , . 1 1)))))))) ? ;

exist5<J3, f o r a l l i . M , and(i«<equal(.13, .14) , app(dog, . 14)) ,
• exist5(.12, andiapptbone, J 2) , f o r a l H . l l , iipiie£(app(person, .11) ,

app (app (app (give, .13)," .12) , Jl)))))))) ?

