
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Lexicon Handler for The ProGram Grammar
Development System.

W.R. Keller

Cognitive Studies Research Paper

Serial no: CSRP 40

June 1984

ABSTRACT

A lexicon handler for the ProGram Grammar
Development System is described,
the specification of word entries
considering the lexicon to consist of
permanent lexicon or dictionary, and i
cal component. The user may r e c o n ^ ^ ^
and irregular word forms in the perman^^J'U^^^U^
in a succinct and uniform way. The mP** f 0 ' '•*• / ̂
component is further subdivided to
formation rules and feature convenf
stated. These rules and conventions
capturing generalisations about the p ^ ^ K s e s of
inflectional morphology.

A version of the lexicon handler has been
implemented in the programming language Prolog.
The program performs two distinct tasks: the 'nor-
malisation' of user-defined lexicon components,
and the provision of an interface between the lex-
icon ant* the ProGram parser. Both aspects of pro-
gram operation are explained by reference to exam-
ples.

une 1984

o£ Contents

1 Introduction. 1-

2 Some Important Preliminaries. 3.

3 User Specification of the Lexicon. 7.

3.1 The Permanent Lexicon. 8.

3.2 The Morphological Component. 11.

3.2.1 The Morphological Rules. 11.

3.2.2 The Affix Dictionary. 12.

3.2.3 Spelling Rules. 13.

3.2.4 Feature Conventions. 14.

4 The Lexicon Handler Program. 15.

4.1 Normalisation. 16.

4.2 The Lexicon Interface Program. 20,

5 Concluding Remarks. 26.

References 28.

Appendix 1: A Lexicon Fragment. 29.

U1" *TXnMn

A Lexicon Handler -for The ProSram Grammar
Development System•

W.R. Keller

Cognitive Studies Research Paper

Serial no: CSRP 40

June 1984

L* Introduction.

The goal of the work described in this paper has been

the design of a new lexicon handler for the Sussex ProGram

Grammar Development System (Evans and Gazdar.1984) More

specifically, the intention has been to produce a design

which avoids much of the redundancy inherent in the existing

system, and which allows the user to capture morphological

regularities in a succinct and natural manner. In this con-

text 'redundancy' can be taken to mean the exhaustive

specification of all word forms, including those derived

through regular inflectional processes*. For example, in

the current lexicon separate entries must be made for each

form of the regular verb, love, despite the fact that:

(•). For present purposes, inflectional morphology is
taken to be the addition of suffixes to words which,
<i) Does not change the category of the word (though
usually modifying so-called minor features such as
tense, number, case, etc.); (ii) Operates in a grossly
regular (productive) and therefore predictable manner
with respect to some subclass of words of a particular
category.

Keller. June 1984

a. In the present tense -five out of the six forms are

identical (i.e. 'I love', 'you love' etc).

b. The third person singular present tense form exhibits

regular inflectional morphology (i.e. the addition of

the inflectional suffix 's' to give loves)

c. The past tense is also formed by a regular process,

namely the addition of the inflectional suffix 'ed'

(i•e. loved).

d- The past and present participle forms (loved and lov-

ing respectively) are also formed in a regular fashion.

Clearly such redundancy cannot be tolerated in a lexi-

con of any practical size <a thousand or more words say).

A step by step approach has been taken to the design

and implementation of the new system. The advantage of such

an approach is that at each stage of the design process, a

working system is available for evaluation and testing. In

many respects this process is incomplete, but further

refinements should be possible without major design changes.

Section 2 introduces some important preliminary

notions. The specification of the lexicon, from a user's

point of view, is presented by example in section 3. Section

4 describes the operation of the lexicon handler, and the

interface to the ProGram parser.

. Keller. June 1984

2. Some Important Preliminaries*

A few points concerning Generalised Phrase Structure

Grammar (GPSG) and the ProGram parser should be noted. A

thorough grasp of the points raised will be needed to under—

stand the following sections of the paper. The reader fami-

liar with both GPSG and the ProGram parser may skip most of

this section, but should reier to the notational convention

introduced in (P.8). Those interested in theoretical aspects

of GPSG are recommended to consult the document 'Generalised

Phrase Structure Grammars A Theoretical Synopsis11 (Gazdar

and Pullum.1982.> - henceforth GP82. Details of the ProGram

parser may be found in "The ProGram Manual11 (Evans and Gaz-

dar. 1984) .

P«i« Bar level, notation: GPSG employs category names

such as V, V and N (read as V bar, V and N bar respec-

tively). Informally, the number of bars indicates the

phrasal level of the category. Thus V, V and N correspond to

the more traditional syntactic categories V, VP and NP. A

category is LEXICAL if it has no bars (i.e. bar level zero).

For example, V and N are LEXICAL.

P.2. Complex Symbols; In GPSG category names ar& not

simple symbols, but have a complex internal structure. They

stand for complexes of features, which we may call feature

trees.

P-3. Feature Trees: A typical feature tree is

U.R. Keller. June 1984

presented graphically in (1).

(1).
bar—lexical-— 37

major— v ^number — sing

"Vm-i « ^ ^ xperson—1

vf orm—pres

Feature tree (i) has the name CAT (i.e. it is a category).

The -feature name CAT itself has two subfeatures, BAR and

HEAD. Sub-feature LEXICAL of BAR indicates that this is a

lexical category (bar level zero). The so-called HEAD

features are further divided into MAJOR and MINOR. The

MAJOR features specify the 'gross identity' of the category,

in this case V for verbal. The MINOR features are an

assortment of tense (VFORM), and agreement, markings for the

category. Here they mark VFORM as PRES (present tense), PER-

SON as i (1st person) and NUMBER as SING (singular). In sum-

mary, the feature tree represents the category appropriate

to a 1st person singular, present tense verb. We might have

chosen to write this feature tree in the following way:

[cat, [bar, [lexical, 3733, [head, Cmajor, v3, [minor,.mill

The interpretation of this format should be clear.

P.4. Subcateqorizati on: Words of the same lexical

category may nonetheless 'prefer' different syntactic con-

texts (e.g. there are intransitive, transitive and ditransi-

tive verbs). GPSG elegantly captures such facts about indi-

H.R. Keller. June 1984

vidual words by giving syntactic rules 'rule-names' (e.g.

1_, 37, trans, intrans) . Roughly speaking, a word of some

lexical category C, may only be introduced by a rule men-

tioning that category, if C bears the rule-name as one of

its constituent features. This special feature is conven-

tionally a sub-feature of LEXICAL so (1) has the "subcategor—

ization feature' 37. The category may be thought of as

belonging to a subclass, or subcategory of verb named 37.

F-5. Aliases; Aliases are a notational device, useful

in specifying feature trees when writing grammars for the

ProGram parser. Since identical feature trees may need to be

written out many times, it is much simpler to write a single

specification and give it a unique name. This name is known

as the feature tree 'alias'. For example, category (1) might

be given the alias vJL (or anything else appropriate).

P.6. Feature Syntax: So far the term 'feature' has

been used freely without being given any precise definition.

As might be expected, such a definition would involve

details about the names and structure of features. However,

it is not the intention to give a formal definition here,

since it is not necessary for an understanding of the rest

of the paper. (See GP82, pp 1 - 11 for a detailed account of

syntactic features.) Instead an outline of 'feature syntax',

as used to specify features for use by the ProGram parser,

will be given. An example of a feature syntax definition is

shown in (2).

U.R. Keller. June 1984

(2>. feature Ccat, bar, head].
feature [bar, {lexical, 1, 2>]
feature [head, major, minor]
feature [major, Cv, n>]
feature [minor, agr, {case, vform>]
feature Cagr, person, number]
feature [number, {sing, plur>]
feature [vform, <pres, past}]
feature [case, tnom, poss}]
feature [person, (1, 2, 3>]

Amongst other things (2) indicates that CAT is a

feature having two subfeatures BAR and HEAD. Similarly the

feature HEAD has the subfeatures MAJOR and MINOR and so on.

Curly brackets group mutually exclusive features. The

feature BAR thus has one subfeature, with the value either

LEXICAL i or 2. Feature tree (1) might well have been con-

structed in line with the syntax of (2>.

To make life a little easier in the rest of the paper,

an effort will be made to adhere to the feature syntax of

(2) whenever examples are given. The reader may then always

refer to this syntax to clarify matters if confusion arises.

P«7« Feature Normalisation: It is permissible and con-

venient to omit certain details of features when using the

ProGram parser. For example, (3) is an acceptable instance

of the feature CAT although it apparently has no subfeature

BAR

(3). [cat, [head, major, minor]]

However, before such features may be used by the parser pro-

gram, they must be 'normalised'. The normalised version of

feature (3) would appear much like <3'>, where F1,...,F4

H.R. Keller. June 1984

stand in lieu of the sub-features missing in the original

specification.

<3'>. Ccat, Fl, Chead, [major, F23], [minor, F3, F43 3

Normalisation thus brings out the precise structure of

a given feature tree, though otherwise it does not supply

any additional information.

P«8« A Notational Convention: Throughout the rest of

the paper, where name is understood to be the name of an

aliased feature, then Name may be taken as standing for its

normalised form. For example, if verb is an alias, then so

long as there is no danger of confusion, Verb will denote

its normalised counterpart.

3. User Specification of the Lexicon.

It is convenient to think of the lexicon as divided up

into two main parts:

1. The Permanent Lexicon**. That is, the repository of

all unanalysable or otherwise idiosyncratic word forms,

including word roots and irregular forms.

2. The Morphological Component, i.e. rules of word forma-

tion and spelling, etc.

<•>• The term permanent lexicon is taken from Rochelle
Lieber <1981), although the sense in which it is used
here is not precisely as she intended. For Lieber, the
permanent lexicon contains all simple morphemes, in-
cluding affixes, whereas in the present system the af-
fix dictionary is listed as part of the morphological
component•

«./?. Keller. June 1984

The specification of these components by the user will

now be informally introduced using examples.

3. 1_. The Permanent Lexicon

To enter a word into the permanent lexicon the user

must specify:

i. The category of the word (e.g. noun, verb, adjective,

etc.) , and

ii. Subcategorization information: i.e. the name of a par—

ticular syntactic rule introducing a word of this type.

The permanent lexicon consists of a number of category

entries, each of which in turn is divided into several sub-

category entries. For example, consider the simple category

entry given below.

(4). verb: trans — > Clove, hate>,
ditran — > {buy # (past # bought)>.

Category entry (4) states that the words love, hate,

buy and bought Ar& all of the category verb (verb is an

alias). The rule names indicate that love and hate are to

be further classified as trans (i.e. transitive), while buy

*nd bought are ditran (ditransitive). Exactly what features

make up the category verb is up to whoever is writing the

lexicon. In general however, it is to be expected that,

apart from the features Ccat, bar, head! with Cbar, lexi-

cal 3, the category will bear little more than the MAJOR sub-

U.R. Keller. June 1984

features. This is since the MINOR -features (whatever they

may be) must be free to be specified at a later stage.

Feature conventions and/or morphological rules, will ensure

that they become 'filled in' before the category is used by

the parser.

It is best to consider the word entries love and hate

in (4) as being verb roots (subclass transitive). Likewise

buy is a verb root of subcategory ditransitive, but in this

case extra information is supplied indicating that it is

irregular in the past tense. The special symbol # is used

to associate with a word root, a list of irregular 'forms'.

A form may either be simple (i.e. a word) or complex, in

which case it consists in a feature and a forms list

separated by #. For the word root buy the associated forms

list has only one member, made up of the feature PAST and

the simple form bought. So, the verb root buy has a single

irregular form in the past tense, specifically, bought

rather than »buyed. The entry for buy is a simple example

of a 'word tree'. A more complex example would be the word

tree for the highly irregular verb be, shown in (5). (The

layout is intended to make the word tree easier to read, but

is otherwise unimportant).

(5).. be # (pres « {sing # Cperson # (1 # am,
2 # are,
3 # is)},

plur # arey,
past # {sing # (person # (1 # was,

2 # were,
3 # was)},

plur # were))

H.R. Keller. June 1984

It should be reasonably clear, aside -from certain

details, just what is meant by (5). It states, for example,

that the 1st person singular present of be is the word am,

and that all of the plural past tense forms are were. In

the latter case it is simply that the word tree specifies no

more than that were is plural and past tense, which permits

such an interpretation. Actually it would be permissible to

specify each person separately, but this would introduce

redundancy, exactly what we are trying to avoid. Returning

to (4), note that the complete lack of any information con-

cerning other word forms in the entries for loyjs^ and hate

effectively marks them as perfectly regular. The entry for

buy, on the other hand, exhibits regularity "up to a

point11, that is buy is irregular only in respect of its past

tense form bought.

One extra point about word trees is of interest. It may

be noted that <5) uses sometimes curly, sometimes round

brackets to group together particular terms. The round and

curly brackets have different interpretations, and are use-

ful in making precise the meanings of word trees. Suppose

that instead of the feature names SING and PLLJR used in word

tree (5) (and the feature syntax of (2)> the grammar writer

had, quite reasonably, used the names 1 and 2. If this were

the case, then the feature names 1 and 2 would be ambiguous,

being interpretable either as markings for NUMBER or PERSON.

Use of round brackets gets over this problem. Any . feature

mentioned inside round brackets is to. be taken as a

H.R. Keller. June 1984

sub-feature of the -feature directly outside the brackets.

Thus in <5> the -features 1., 2 and 3 are all subfeatures of

PERSON Curly brackets impose no such constraint, and in the

entry -for be, PERSON need not be a subfeature o-f SING nor

SING a sub-feature of PRES (though in -fact they might be in

reality; when there can be no possible con-fusion, round

brackets are not mandatory)•

This means that the round brackets used in (5) are

really unnecessary, since the features are unambiguous.

Using them can make the structure of features dearer how-

ever. They may serve as a visual aid, helping to reduce the

possibility of errors whilst specifying the lexicon. In

addition their use will tend to make life easier for the

program responsible for normalising the permanent lexicon

(the normalisation process is described in section 4.1).

3.2. The Morphological Component

The morphological component of the lexicon may be

further divided up into four sub-components. These sub-

components are responsible for capturing the morphological

regularities governing the words listed in the permanent

lexicon. Each will be described in turn.

3. 2. 1_. Morpholoqical Rules.

Morphological rules are intended to capture generalisa-

tions about the regular morphological processes of a

language. A typical rule for English might be the following

14.R. Keller. June 1984

(clearly a rule would also be needed for verbs).

(6). nmorph: noun -> noun, nsuff marked [number].

The rule simply states that a noun may consist o-f a

noun stem followed by a suffix marked for the feature NUMBER

(i.e. giving subfeatures of NUMBER). Both noun and nsuff

ar& aliases and stand for appropriate feature trees. The

rule label nmorph (short for 'noun morphology') is analogous

to the names associated with syntactic rules, i.e. it pro-

vides subcategorization data. In this case it is the

suffix(es) to be introduced by the rule with which we ar&

interested.

3.2.2. The Affix Dictionary.

The affix dictionary has entries detailing the various

inflectional affixes that occur in a language. For example

the following entry might dippe^r as part of the affix dic-

tionary for English.

(7). nmorph: nsuff — > s + si.

Affix entry (7) states that the morpheme 's' belongs to

the category nsuff (an alias) and may be introduced by a

morphological rule having the name nmorph. It should be

clear that this permits the suffix 's' to be introduced by

rule (6) of section 3.2.1.

The appendage '+ si' is an indication that in some

cases regular word roots taking the suffix 's' may undergo a

U.R. Keller. Jane 1984

certain amount of re-spelling. As an example, it is con-

venient to think of the noun box as forming a regular plural

boxes with the noun suffix 's'. The root has been modified

slightly however, by the addition of the letter 'e#. To

analyse such cases correctly, it is necessary to specify

precisely what kinds of adjustments in spelling may occur.

Each suffix has associated with it the name of a 'spell-

rule' to do just that, and in this instance it is the

spell-rule si.

3*2.3. Spelling Rules.

To continue the example started in the previous sec-

tion, spell-rule sJL might be specified as follows:

(8). si: ?/e — > ?/C3,

?/ve — >

Rule (8) consists of a rule name, and then a number of

re-write rules separated by commas. Each re-write rule

states that some sequence of letters may be rewritten as a

new sequence of letters. The special symbol '?' matches any

letter sequence, but specifies the same sequence on both

sides of the arrow. Thus the first rewrite rule of <B) indi-

cates that a sequence of letters ending in 'e', may be re-

written as the same initial sequence ,but now ending in CD.

By this rule boxe may be rewritten to box followed by C3.

Since LI represents the null sequence of letters then this

means that boxe simply becomes box as required.

U.R. Keller. June 1984

Similarly the second and third rewrite rules will deal

with putative word roots such as flie (from -flies) and

thieve (-from thieves) . Actually, both f lie and thieve also

match the -first re-write rule (and would be respelled as f li

*nd thiev respectively). This is not a problem since the

lexicon will recognise that neither constitute valid word

roots. Even so, spell-rule (8) should really be rather more

choosy about just when it will allow 'e* to be stripped -from

a putative word root. As it stands, it is possible that

panes might get taken as the plural of ean, rather than

pane. Of course, if eajne is listed in the permanent lexi-

con, then the correct interpretation will be located before

this occurs. The difficulty is that any further analysis of

pane will invoke (8), and eventually turn up the anomalous

alternative. Preventing such "overgeneration" would require

that the first re-write rule of (8) be replaced by several

rules of a more specific nature,

3.2.4• Feature Conventions.

Typical feature conventions for the category verb might

be:

(9.a), verb convention number marked sing,
person marked 1 or 2,
vform marked pres.

(9.b>. verb convention number marked plur,
person marked 1 or 2 or 3,
vform marked pres.

where verb is an alias.

H.R. Keller. Jane 1984

Feature conventions (9, a) and <9.b) allow any word of

category verb to be construed as being of either 1st or 2nd

person singular present, or lstf 2nd or 3rd person plural

present. The conventions could apply to the words love, hate

and buy in category entry (4) of section 3.1. They won't

apply to bought however, since this already has VFORM marked

PAST. If v-past is a category alias of precisely the same

form as verb, but with the additional feature specification

tvform, past], then convention (10) will apply to bought,

(10). v—past convention number marked sing or plur,

person marked 1 or 2 or 3.

It says that any word of category v-past may be taken as

1st, 2nd or 3rd person singular or plural. A little reflec-

tion should show that this is just what is wanted, both for

bought and in the general case.

4. The Lexicon Handler Program.

The lexicon handler program is made up of six indepen-

dant modules. *Each of these modules is written in the pro-

gramming language Prolog, some knowledge of which may help

in understanding various details of their operation, it is

not essential however. For a comprehensive guide to Prolog

the reader is referred to "Programming in Prolog11, Clocksin

and Mellish (19B1).

Once the user has specified a lexicon as described in

section 3, each of the resulting data files (i.e. permanent

lexicon, morphological rules, etc.) must be normalised.

14.R. Keller. June 1984

Broadly speaking, the normalisation process takes a data

file, and converts it into a -form that may be used directly

by the lexicon inter-face. The six modules then consist of

•five normalisation modules and the lexicon interface itself.

Normalisation will now be briefly described, followed by the

operation of the lexicon interface module,

4.1_. Normal i sat i on

Normalisation of the permanent lexicon, converts each

entry into a set of Prolog clauses, one 'word clause' for

each word mentioned in an entry. This process is carried

out by the predicate NORMPLEX, which produces Prolog clauses

of the form:

(11). <key>(<Cat>, <rule_name>, <reference>).

The <key> is the name of the word for which the clause has

been built, prefixed by '1_'. <Cat> is a normalised syntac-

tic category, <rule_name> is the name of some syntactic rule

and <reference> gives information about other irregular

forms of the same word.

For entry (4) of section 3.1, the following word clause

would be produced for the verb love;

(12>. l_love(Verb, trans, LI)

Here Verb is the category, and trarjs the appropriate rule

name. The reference field of word clause (12) is the empty

list 'LI' as love has no irregular forms. Appropriate

clauses for buy and bought would be:

*/„/?. Keller. June 1984

(13.a). 1_buy(Verb , di tran , Itminor,tvf armf past 3 3,bought3 >
(13.b), l_bought(V-past, ditran, buy).

The reference field for buy shows that it has an irreg-

ular form bought. A tree of MINOR features associated with

this irregular form marks it as past tense. The word clause

for bought has the (normalised) category V-past, which will

be identical to Verb except that it will bear the additional

MINOR feature specification tvform, past3. Note that these

are just those MINOR features to be found along with bought

in the reference of (13.a)v the word clause for buy. The

reference field of (13.b) on the other hand, names the word

of which bought is an irregular form: i.e. the word root

buy.

Normalisation of the morphological rules is performed

by the predicate NORMMORPH. Each'rule is converted to a

MORPHRULE clause of the form:

(14). morphrule(<r_name>, <Catl>, <Cat2>, <s_

In (14), <r_name> is the name of the user specified morpho-

logical rule for which the clause has been built. Both

<Catl> and <Cat2> &r& normalised categories, and <s_list> is

a list of suffix specifications. For rule (6) of section

3.2.1 the appropriate MORPHRULE would be (6').

(6').
morphrule(nmorph, Noun, Noun, CNsuff marked Cnumber3 3).

Again nmorph is the rule name. The list of suffixes

consists in a single specification for a suffix of category

*/„/?„ Keller. June 1984

Nsuf f which should be marked -for the -feature NUMBER.

Normalisation of the affix dictionary is also rela-

tively simple, and is carried out by NORMAFF. Entry (7) of

section 3.2.2 has as its normalised form (7').

<7'). affrule(s + si, nmorph, Nsuff).

The correspondence between affix entry (7) and its nor-

malised counterpart (7') should be relatively clear. Things

aren't always quite so straight forward though, sometimes an

entry will specify more than one suffix. For example:

(15). vmorph: vsuff — > s + si, ed + s2

This might be the entry for the verb endings 's' and 'ed'

(i-e. loves and loved). The clause generated for (15) by

NORMAFF would be:

(15'). affrule(A, nmorph, Vsuff) :-

member(A, Cs + si, ed + s23).

Clause (15') says that an affix A is of category Vsuff, sub-

class nmorph, if it is a member of the list of suffixes

(15'').

(15''). Cs + si, ed + s23.

Predicate NORMSPELL converts each spell-rule into a

number of clauses. For spell-rule (8) of section 3.2.3.

three clauses will be produced, one for each re-write rule.

In general however a single re-write rule may result in many

clauses. For example, re-write rule (16) deals (in a lim-

Keller. June 1984

ited -fashion only) with so-called consonant doubling. It

will re-spell putative verb roots such as gassv patt or saqq

- which may result after removal of the inflectional suffix

'ed' - to their correct forms geis, pat and sag.

U6>. ?/Cs,t,g] — > 7/11

Assuming that (16) is part of some spell-rule named sC5 then

three clauses will be produced by the normalisation process.

Each has the form of (16').

<16'). spell(s3f Xf Y) :-
append(Z, Al, X),
append(Z, A2, Y) f !.

In the actual clauses Al will correspond to one of the three

letter sequences 's'f 't' or 'g'f and A2 to the null letter

sequence C3. Clause (16') will then re-write a sequence of

letters Z followed by Al C's' say), as a new letter sequence

Z followed by A2. Note that this is just Z, since A2 is the

null sequence.

The predicate NORMCONV is responsible for converting

the feature conventions specified by the user into various

CONVRULEs. Each convention results in a single CONVRULE of

the following form being produced:

(17). convrule(<NCat>, C) :-

member(Cf <Cat_list>).

Here <NCat> is a normalised category, and <Cat_list> is a

list of normalised categories. Convention (IS) would be nor—

malised to yield clause (IS').

Keller. June 1984

- 20 -

(18). v convention number marked sing or plur

<1B'>. convrule(V, C) :-

member(C, CV-sing, V-plurl).

The <Cat_list> contains the two normalised categories V-sinq

and V-plur. identical to V, but with NUMBER marked SING and

PLUR respectively. Thus (18') ensures that a word of

category V may, by convention, either be taken as having the

category V-sijnMg. or V-

4>2. The Lexicon Interface Program

In the following description of program operation, it

will be convenient to refer to the various normalised com-

ponents of the lexicon by the names of their user—specified

forms. Thus 'permanent lexicon' should be understood not as

the file of user-specified lexical entries, but as the set

of clauses produced by the program NORMPLEX during the nor—

malisation process. Similarly for 'morphological rules' etc.

The top-level interface to the ProGram parser is the

predicate LEXRULE. Given a word, LEXRULE's job is to ascer—

tain the category, and the name of the syntactic rule which

introduces it. To start with, LEXRULE just looks to see

whether the word may be found amongst those listed in the

permanent lexicon. It builds a word clause of the same form

as those returned by NORMPLEX, and then checks to see if a

matching clause was produced during normalisation. If such

a clause exists, LEXRULE notes the specified category,

rule-name and reference, and then goes on to perform any

14.R. Keller. June 1984

feature conventions applicable. Finally, a check is made to

ensure that the resultant category is acceptable for the

current word. The check is necessary because feature con-

ventions Are generalisations which do not apply in certain

specific instances. For example, a feature convention might

capture the generalisation that words of category verb may

be taken as 1st or 2nd person singular present (e.g. conven-

tion (9.a) of section 3.2.4) This is fine far verbs such as

love, but not for irregular verbs like be, since this

already has the 1st and 2nd person singular present forms am

and are. It is easy to prevent feature conventions from

applying in such cases. All that is needed is to look at the

current word's reference, which lists each of its irregular

forms and their associated MINOR features. As an example, if

be is the word which has just been looked up, then the

reference field of its word clause will list the irregular

forms ani and are. Since these will have the MINOR features

for 1st and 2nd person singular present respectively, the

feature convention will be known not to apply. In this way,

'regular' interpretations of irregular words can be avoided.

The same interpretations would, of course, apply to a

regular verb such as love, because its reference field is

the empty list (i.e. love has no irregular forms). Conse-

quently, LEXRULE will return the first such interpretation

it finds (and a rule-name). If LEXRULE is made to re-analyse

love, then further interpretations may be found. Each new

analysis carried out by LEXRULE will find an alternative

U.R. Keller. June 1984

category specification, until no more arm available.

If LEXRULE is asked for details of a word not appearing

in the permanent lexicon, then the 'direct' strategy out-

lined above will clearly fail. Supposing that this has hap-

pened, then LEXRULE will adopt a new strategy, namely 'mar—

phological analysis'. Morphological analysis involves the

following operations:

1. Choose a (previously unselected) morphological rule

- if none are left then FAIL.

2. Parse the current word according to the rule

selected at 1. If this is successful then the result is a

putative word root with a tentative category assignment.

Additionally, a Combined Affix Category, bearing all those

MINOR features associated with the various inflectional

affixes found during the parse will be returned. Continue

to the next stage of the process (3). Alternatively, if the

parse fails, re-do 1.

3. Look up in the permanent lexicon the word root

returned by stage 2. If successful (i.e. the word is

listed) then continue to stage 4 with the appropriate word

category and rule-name. If unsuccessful, then attempt to

respell the root and if this can be done re-do 3; otherwise

re-do 2.

4. Unify the category returned by stage 3 with the Com-

bined Affix Category returned by stage 2. The result is the

U.R. Keller. June 1984

Basic Category to be associated with the current word.

5. Apply any -feature conventions that pertain to the

Basic Category, to give the Final Category.

6. Check that the Final Category resulting -from 5 is

acceptable for the current word.

This process may be clarified by means o-f a simple

example.

To start with, suppose that the user has specified the

following morphological rules, affix dictionary entry and

spell-rule:

nmorphs noun —> noun, nsuff marked [number].
vmorph: verb —> verb, vsuff marked Cvform, number, person]

nmorph: nsuff —> s + spell27.
vmorph: vsuff —> ed + spell33, s + spel!27.

spell27:

where for present purposes the category vsuff is marked for

the features:

Cvform, pres]
tnumber, sing]
Cperson, 33

Additionally, suppose that catch is listed in the per—

manent lexicon as a verb of subcategory trans, and that LEX-

RULE has just failed to locate catches in the permanent lex-

icon. Lexrule therefore changes its strategy to morphologi-

cal analysis and begins by selecting the morphological rule

»

U.R. Keller. June 1984

nmorph (stage 1). An attempt is now made to parse catches

according to this rule (stage 2). The affix dictionary is

first consulted to see if there is a listed suffix which may

be introduced by the rule nmorph. This succeeds since the

suffix 's' (and its associated spell-rule spe!127) may be

selected. As catches ends in 's'f it may be analysed into

the putative word root catche and inflectional morpheme 's'

in accordance with the chosen morphological rule. A category

noun is tentatively assigned to catche, and a note made of

the category belonging to the suffix (nsuff). Stage 2

therefore concludes successfully and stage 3 begins. Lexrule

now looks up catche in the permanent lexicon. It can be

assumed that this fails (since catche is not a word) so re-

spelling is applied to the putative root. The spell-rule

chosen is spell27, as this is the rule-name linked with 's'

in the affix dictionary. The re-write rule

will then re-spell catche to catch, which may again be

looked up in the permanent lexicon.

At this point, LEXRULE has almost succeeded in

correctly identifying catches as a plural noun. It will go

on to return this interpretation after completing stages 4f

5, and 6. For the sake of argument however, suppose that the

plural noun catches is not required. Alternative syntactic

categories may be obtained by Prolog backtracking. The

effect of this is to restart morphological analysis at stage

H.R. Keller. June 1984

2V just as i-f stage 3 had actually failed.

Stage 2 begins as be-fore with the affix dictionary

being consulted, but as no -further suffixes may be found to

be introduced by nmorph. it quickly fails.

Stage 1 now recommences with the selection of a new

morphological rule vmorph. As a result, consultation of the

affix dictionary yields the suffix 'ed' which may be intro-

duced by this rule. This time however, it is impossible to

analyse catches as a letter sequence ending in 'ed'. The

affix dictionary is consulted yet again, and the further

inflectional suffix 's' is returned. The word catches is now

successfully parsed into the constituents catche and 's'.

The category tentatively assigned to catche on this occasion

is that of a verb.

At stage 3 LEXRULE will initially fail to find a verb

called catche in the permanent lexicon. After re-spelling -

again with spel127 - an entry for the word catch is identi-

fied, with category verb and subcategory trans. This con-

firms that the analysis is essentially correct. The unifica-

tion process at stage 4 takes the category found for catch

in the permanent lexicon at stage 3, and effectively adds to

it the category vsuff associated with the suffix 's'. This

gives the Basic Category specification for catches, indicat-

ing that it is a verb with Cvform, past], [number, sing]

and Cperson, 3]. Analysis is now almost complete; all that

remains is to apply any appropriate feature conventions and

«„/?„ Keller. June 1984

to check that the resulting category is acceptable. Assum-

ing that no conventions apply to the Basic Category, stages

5 and 6 now succeed. Lexrule will return a Final Category

* o r catches appropriate to a 3rd person singular, present

tense verb, and in addition indicate that the subcategory is

transitive. This is just as required.

5. Concluding Remarks.

What has been described is a program designed to aid in

the specification of a lexicon for the ProGram parser. The

lexicon handler allows the user to make generalisations con-

cerning listed words, thereby eliminating much of the redun-

dancy inherent in the existing system. For example, rules

may be written to capture regularities in the formation of

words through processes of inflectional morphology, and

feature conventions may be stated allowing significant

reductions to be made in the number of word entries which

need to be specified.

Despite the major advantages offered by the ^lexicon

handler over the existing system, further work is envisaged

to reduce still further the effort required in building a

lexicon for the Grammar Development System. A part of this

work will be directed towards finalising certain details of

the current program implementation, and the formalisms dev-

ised for the specification of the different lexicon com-

ponents. In particular, it is felt that certain aspects of

the morphological component could be improved upon. The

#„/?, Keller. June 1984

modular design approach ensures that any modifications may

be implemented and evaluated against the background of a

substantially complete, working system.

For the rest, there is still more to be done in elim-

inating redundancy. The lexicon handler is currently inca-

pable of dealing wi^h sub-regularities, regularities holding

between small classes of otherwise irregular words (examples

in English include: teach and tajugjrt, seek and sought« catch

*nd caught, etcj as well as, sing sang and sung, ring, rang,

and rung). Neither can it cope with homonyms, i.e. dif-

ferent words having the same morphology (an example is the

English verb do which has both an auxiliary and a non-

auxiliary variant). It is not anticipated that incorporat-

ing mechanisms to deal with such phenomena into the lexicon

handler framework will present serious difficulties.

Keller. June 1984

References,

Clocksin, William, and Christopher Mellish<1981) Programming
in Prolog, Berlin: Springer—Verlag.

Evans, Roger, and Gerald Gazdar(1984) The ProGram Manual.
University of Sussex Cognitive Science Research Paper
35. (CSRP 035).

Gazdar, Gerald, and Geoffrey Pullum(1982) Generalised phrase
structure grammar: a theoretical synopsis. Bloomington:
Indiana University Linguistics Club mimeo. Also avail-
able as University of Sussex Cognitive Science Research
Paper Wo 7. (CSRP, 007).

Lieber, Rochelle(1981) On the organisation of the lexicon.
Bloomington: Indiana University Linguistics Club.

H.R. Keller. June 1984

Appendix.

A Lexicon Fragment.

What follows is a small lexicon fragment, just to
demonstrate various aspects of lexicon specification. A
slightly expanded feature syntax to that used in the main
text is assumed.

Top level features: ROOT has two subfeatures CAT and FOOT.
FOOT features can be ignored for present purposes.

feature [root, cat, foot3.
feature [cat, bar, head3.
feature [bar, {lexical, 1, 2>3.
feature [head, major, minor3.

Major features;

feature tmajor, tv, n>3.

Minor features: VFORM may be AUX (auxilliary) as well as
either PAST, PRES, PSVE (passive) or PRESP (present partici-
ple).

feature [minor, agr, {case, vform>3.
feature [agr, number, person].
feature [vform, aux, {past, pres, psve, presp>3.
feature [case, Cnom, poss>3.
feature [person, ti, 2, 3>3.
feature [number, {sing, plur>3.

The following alias specifications are used in the lexicon
fragment. To begin with, here are the NOUN and VERB
categories (note the minimally specified MINOR features).

alias(noun, [root,[cat,[bar,lexical 3,
[head,[major,n3,minor 3 33).

alias(verb, [root,[cat,[bar,lexical 3,
[head,[major,v3,mi nor 3 3 3 >.

Rather more complicated aliases for past tense verbs and
auxilliary verbs:

U.R. Keller. June 1984

- 30 -

alias(v_pastf troot,Ccat,Cbar,lexical3,
Chead,Cmajorfv3,
[minor,Cvform^past]]]]] >.

alias(v_aux, Croot , Ccat,Cbar,lexical 3,
Chead,Cmajor,v3,
C minor, Cv-f orm,aux 3 33 3 3) .

Suf-fix category aliases -for past tense, third person singu-
lar present, passive and present participle respectively. In
this case it is the MAJOR -Features which are absent.

alias (vsu-f-fl, Croot, Ccat, Chead,
Cminor ,agr , Cv-form,past3 3 33 3) .

alias(vsuf*2, Croot,Ccat,Chead,
Cminor,
Cagr,Cnumber,sing 3,Cperson,33 3,
Cvform,pres33333).

alias(vsu-f-f3, Croot, Ccat, Chead,
Cminor,agr,Cvform,psve3 33 3 3).

alias(vsuff4, Croot,Ccat,Chead,
Cminor,agr,Cvform,presp3 3 333).

A single noun suf-fix category NSUFF. This has NUMBER marked
PLUR and CASE marked marked NOM.

alias(nsu-f-f, Croot, Ccat, Chead,
Cminor,Cagr,Cnumber,plur33,
Cease,nom33333).

Finally a minimal AFFIX category:

alias(af-fix, Croot, Ccat, Chead, Cminor3 3 33)•

The Permanent Lexicon.

The permanent lexicon consists o-f VERB, V_AUX and NOUN
category entries. The VERB entry is subdivided into three
subcategory entries:

VP_2s Transitive verbs.

VP_3: Ditransitive verbs.

VP_4: Verbs taking sentence complements.

H.R. Keller. Jane 1984

verb: vp_2 — > i love, hate,
catch # (past # caught,

psve # caught),
see # (past # saw,

psve # seen) >v
vp_3 — > i hand,

give # (past # gave,
psve # given)9

buy # (past # bought,
psve # bought) >,

vp_4 — > C believe,
think # (past # thought,

psve # thought),
know # (past # knew,

psve # known) >•

Category V_AUX (auxilliary verb) has a single member in this
lexicon -fragment: the irregular verb be,

v_aux: vp_5 — > { be # (pres # Csing # {person # (1 # am,
2 # are,
3 # is)},

plur # are},
past # Csing # {person # (1 # was,

2 # were,
3 # was)},

plur # were),
psve # been) }.

Finally a category entry for (count) nouns.

noun: nb_l — > { book, thief, fly, hand, catch,
man # (plur # men),
woman # (plur # women) >.

The Morpholoqical Component.

1- Morphological Rules,

The following rules deal with verb morphology (VMORPH)
and noun morphology (MNMORPH). The category for which AFFIX
is an alias does for both rules in this case.

Verbs may take suffixes marked for ABR and VFORM:

vmorph: verb -> verb, affix marked Cagr, vformU.

Nouns may take suffixes marked for NUMBER:

H.R. Keller. June 1984

nmorph: noun ~> noun, affix marked Cnumber3.

ii . The Affix Dictionary

Five affix dictionary entries are given here in all,
four of which pertain to verbs. The suffix categories
VSUFF1,..,VSUFF4 are for past tense, third person singular
present, passive and present participle respectively,

vmorph: vsuffl -> ed + si.

' vmorph: vsuff2 -> s + s2.

vmorph: vsuff3 — > ed + si.

vmorph: vsuff4 -> ing + si.

A single entry for the plural suffix 's' which attaches to
nouns. The category NSUFF has NUMBER marked PLUR.

nmorph: nsuff —> s + s2.

iii. Spelling Rules.

The spell-rules SI and S2 are not particularly practi-
cal, but suffice for the present example.

Spell-rule SI corrects the spelling of word roots following
the removal of 'ed' or 'ing'. For example, the first re-
write rule will take lov to love.

si: ?/v — > ?/ve,
— > ?/te,
— > ?/ce.

The second spell—rule will strip an 'e' following the remo
val of 's'; e.g. c.atche to catch.

s2: ?/he — >
?/ve — >

?/se —

iv. Feature Conventions.

Feature conventions do quite a lot of work. The first
two allow anything of category VERB to be either 1st or 2nd
person singular present, or 1st, 2nd or 3rd person* plural
present.

tf./J. Keller. June 1984

verb convention number marked sing,
person marked 1 or 2f
vform marked pres.

verb convention number marked plur,
person marked 1 or 2 or 3f
vform marked pres.

The -following convention is for past tense verbs (V_PAST>
and permits words such as caught or loved to be taken as
1st, 2nd or 3rd person singular or present*

v_jpast convention number marked sing or plur,
person marked 1 or 2 or 3.

Finally, two conventions -for nouns. They allow anything o-f
category NOUN to be singular and nominative, or singular
with case unmarked (which can be taken to mean accusative).

noun convention case marked nomf
number marked sing.

noun convention number marked sing.

H.R. Keller. June 1984

A Lexicon Handler -for The ProGram Grammar
Development System.

W.R. Keller

Cognitive Studies Research Paper

Serial no: CSRP 40

June 1984

ABSTRACT

A lexicon handler for the ProGram Grammar
Development System is described. Redundancy in
the specification of word entries is avoided by
considering the lexicon to consist of two parts: a
permanent lexicon or dictionary, and a morphologi-
cal component. The user may record base forms
and irregular word forms in the permanent lexicon
in a succinct and uniform way. The morphological
component is further subdivided to permit word
formation rules and feature conventions to be
stated. These rules and conventions ar& useful in
capturing generalisations about the processes of
inflectional morphology.

A version of the lexicon handler has been
implemented in the programming language Prolog.
The program performs two distinct tasks: the 'nor—
malisation' of user—defined lexicon components,
and the provision of an interface between the lex-
icon and the ProGram parser. Both aspects of pro-
gram operation arm explained by reference to exam-
ples.

June 1984

ojt Contents

1 Introduction. *•

2 Some Important Preliminaries. 3.

3 User Specification of the Lexicon. 7.

3.1 The Permanent Lexicon. 8.

3.2 The Morphological Component. 11.

3.2.1 The Morphological Rules. 11.

3.2.2 The Affix Dictionary. 12.

3.2.3 Spelling Rules. 13.

3.2.4 Feature Conventions. 14.

4 The Lexicon Handler Program. 15.

4.1 Normalisation. 16.

4.2 The Lexicon Interface Program. 20.

5 Concluding Remarks. 26.

References 28.

Appendix 1: A Lexicon Fragment. 29.

