
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



PROGRAM DEBUGGING BY NEAR-MISS

RECOGNITION AND SYMBOLIC

EVALUATION

Rudi Lutz

This paper was given at the 6th European Conference on

Artificial Intelligence (ECAI-84) held in Pisa 1984.

Cognitive Science Research Paper

Serial No. CSRP. 044

The University of Sussex,
Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN



 



This paper was given at the 6th European Conference on Artificial
Intelligence (ECAI-84) held in Pisa 3984.

Program Debugging B# Near-nriss Recogrirtion and Symbolic Evaluation.

Rudi Lutz
Cognitive Studies Programme

University of Sussex
Brighton
England

Debugging accounts for at least 25% of the total time involved

in the programming process [1] and thus accounts for a highly

significant fraction of the cost of software projects. My aim is to

build intelligent tools to aid reasonably expert programmers with the

task of debugging logical errors, and this could form one component

of a larger "programmer's apprentice"-like system [9]. Most other

systems attacking this problem have used either "cliche"

recognition [e.g. 8] or symbolic evaluation [6]. The problem with the

use of "cliche recognition" alone is that it leaves the system unable

to deal well with pieces of code which do not correspond to any of the

system's known cliches (plans). Symbolic evaluation techniques can

deal with unknown code but the resulting expressions describing

the program tend to be unmanageably large. The project

described here hopes to show that a combination of these

techniques can result in a useable general purpose debugging

system, and indeed a similar viewpoint underlies Laubsch and

Eisenstadt's debugging system for novice SOLO programmers [3, 5].

An overview of the system currently being implemented is shown in

Figure 1. The main point about this is that the evaluation and

recognition modules do not work on the source code of the program but

on an internal representation of it, known as a surface plan. This is

to maintain language independence so that, although this project is

- 1 -

University Libraries



 



currently intended as a tool for Pascal programmers, the system

should be easy to modify for other languages by writing a new

front- and back-end (to read programs in a given language, and to

output a debugged program). The surface plan representation chosen for

this project is that developed by Rich, Schrobe, and Waters for the MIT

"Programmer's Apprentice11 project and has also been used by Laubsch

and Eisenstadt [5, 3],

A surface plan is a representation of the program in terms of its

control and data flow, and can be thought of as a graph consisting of

boxes joined by arcs representing the control and data flow within the

program. Each box can be thought of as a processor which is activated

when all of its input control- and data-flow lines are active, and

which then produces the appropriate outputs on its output lines.

Such processors can be grouped together to form higher level processes,

which can in turn form part of other processes. Figure 2 shows part of

such a graph where the spiral line indicates recursive nesting.

More information on this can be found in [8]. Internally these

control- and data-flow graphs are represented by frame-like structures

similar to those in [10]. Each basic operation (and constant) is

represented by a frame, as are more complex segments built up out of

the primitive operations and other segments.

Plans in the library are also represented in the same formalism.

However in addition to the control- and data-flow information each

plan also has associated with it the following:

1) Preconditions:- conditions that must be satisfied by the inputs
to a plan for a use of it to be valid.

2) Postconditions:-conditions satisfied by the outputs of a plan
given that its preconditions have been satisfied.

3) "Canned text" for interacting with the programmer.

4) "Canned text" for generating explanations, comments, etc.

- 2 -



 



Using this representation for programs and library plans the

system's strategy is:

(a) Translate the program into its surface plan.

(b) Recognise all occurrences of library plans. Make a note of any
"near" matches.

(c) Symbolically evaluate any remaining bits of code.

(d) Check for broken preconditions of any of the recognised plans.

(e) Use "correspondences" between near matches and broken
preconditions, and/or answers to questions put to the programmer to
attempt to fix bugs.

(f) Translate the debugged surface plan back into the source
language.

The current front-end translator from Pascal into the surface

plan formalism can deal with a large subset of Pascal, including the

structured looping constructs, conditional statements, assignment

statements, procedures and functions, and data structures involving

records and pointers. The current implementation works by a single-pass

recursive descent method, maintaining a table stating where each

variable was last updated. When a variable's value is used the system

can then generate a dataflow arc from where that variable was last

updated to the current consumer of that value. However because the

system is single-pass it cannot at the moment translate recursive

or forwardly defined procedures but it is currently being extended to

use the techniques of [4].

Cliche recognition is a hard problem. Since the cliches are also

held in the form of control- and data-flow graphs the problem

reduces to that of finding occurrences of one graph (the cliche)

in another (the program). However because the programs the system is

looking at are allowed to have bugs in them an exact match to a given

cliche may not be present. Accordingly, the system has to solve a

- 3 -



 



variant of the maximal common subgraph problem. In this particular

application there is a complication in that parts of the program may

belong to more than one cliche (i. e. they fill more than one role).

The current version of the graph matcher is a variant of an

algorithm due to McGregor [7] and is essentially a best-first

search. It begins by assuming that any arc can match any other arc

(subject to restrictions on type of source and destination node) and

then as nodes are tentatively paired, the possible matches become

increasingly restricted. In the longer term it is hoped that it will

be possible to use web grammars [11] to parse these graphs (perhaps

using a modification of Earleyfs algorithm [2] for parsing context

free grammars) and thus achieve more efficient matching by lessening

the need for searching.

Symbolic evaluation of surface plans is done by allowing evaluation

effects to propagate themselves throughout the surface plan's frame

system by means of if-added demons attached to the generic frame

representing each of the primitive actions known to the system.

An Example

Consider the Pascal program fragment shown below:

while not eof do
begin
while not eoln do
begin
read(n);
findplace(n, p);
addtolist(n, p);

end;
readln;

end;

This is part of a Pascal program to sort a set of numbers held in a

file by reading each one in turn and inserting it into a linked

list (initially empty). Procedure findplace finds the item after which

- 4 -



 



the new number is to be inserted, and procedure addtolist is supposed to

do the inserting.

Although this sorting method is standard enough to be in the

system's library of "cliches", it is interesting to see how well the

system can cope if the plan for this is not in the library since it is

not realistic to expect the system to have a plan for every possible

program. However it is assumed that the system does have knowledge of

various sub-plans of the program.

Now suppose that addtolist does its pointer manipulations in the

wrong order, resulting in the behaviour shown in Figure 3. How does the

system find this bug? The system begins by recognising everything

it can about the program. In particular it recognises that findplace

is an implementation of its library plan for finding the first item in

a list satisfying some property (in this case being larger than the

number just read in). During this recognition phase it also notes

that part of procedure addtolist is quite close to the standard plan

for splicing in a new element to a list. Of course this does not

neccessarily mean there is a bug — the near match could just be a

coincidence.

After the recognition process has been completed the system

symbolically evaluates any unrecognised fragments of code. In

particular it notes that the effect of the unrecognised part of

addtolist can be described by:

Successor(Successor(P))=Successor(P) Relation (1)

where P is the node after which the new item is to be inserted.

After symbolic evaluation the system attempts to verify the

preconditions for each of the componenents of the program. From the

precondition slot of the library plan corresponding to findplace the

system retrieves the condition that the list input to findplace must

- 5 -



 



be a thread i.e. it must have a directed graph structure with no

cycles and unique first and last nodes. This is clearly true at point A

in Figure 2, but because of the recursive nature of the graph it must

also be true at point B since this is the input to the call of

findplace in the recursive invocation of the plan. However relation

(1) implies that this input does have a cycle and thus violates the

precondition.

There is thus an inconsistency between the output of addtolist

and its subsequent use as input to findplace in the next loop cycle,

and this would not have been detected using cliche recognition or

symbolic evaluation on their own. This inconsistency between parts

of the program indicates a domain-independent bug and the system can

now attempt to repair it. For this particular bug the system notes that

if the near match to a splicing plan were actually a splicing plan the

precondition would not have been broken and the system can use this

conjunction of a broken precondition and a near match to repair the

program (possibly after asking the programmer for confirmation).

It is hoped that this combination of cliche recognition and

symbolic evaluation will lead to the creation of powerful tools to aid

programmers in the debugging task. A Pascal-to-surface plan translator

and a first version of the graph matcher have already been

implemented, and work is currently in progress on the symbolic

evaluation module. In the future it is hoped that such things as

meaningful variable name analysis (to facilitate indexing into the

relevant parts of the plan library), and the ability to reason

backwards from incorrect output to the error can be incorporated leading

to a tool which people will find both helpful and natural to use.



 



References

1) DeJaney W. A. Predicting the Costs of Computer Programs. Data
Processing Magazine 32. (1966)

2) Earley J. An Efficient Context-free Parsing Algorithm. CACM 6:8,
451-455 (1970)

3) Eisenstadt M. , Laubsch J. Domain Specific Debugging Aids for
Novice Programmers. Proc. 7th Int. Joint Conf. on Artificial
Intelligence (IJCAI-81). Vancouver BC Canada. (1981).

4) Hecht M. S. Flow Analysis of Computer Programs. Elsevier North-
Holland, Inc. New York (1977)

5) Laubsch J. , Eisenstadt M. Towards an Automated Debugging
Assistant for Novice Programmers Proc. Artificial Intelligence and
Simulated Behavior Conference Amsterdam (1980)

6) King J. C. Symbolic Execution and Program Testing. CACM 19:7 July
(1976)

7) McGregor J. J. Backtrack Search Algorithms and the Maximal Common
Subgraph Problem. Software-Practice and Experience 12, 23-24 (1982).

8) Rich C. Inspection Methods in Programming M. I. T. Artificial
Intelligence Laboratory AI-TR-604 June 1981

9) Rich C. , Shrobe H. Initial Report on a LISP Programmers1

Apprentice. IEEE transactions on Software Engineering. SE-4:6 1978. pp.
450-467

10) Goldstein I.P. and Roberts R.B. NUDGE, A Knowledge-Based
Scheduling Program. Proc. 5th Int. Joint Conf. on Artificial
Intelligence (IJCAI-77). Cambridge Massachusetts USA (1977).

11) Rosenfeld A. and Milgram D. Web Automata and Web Grammars.
Machine Intelligence 7, 307-324 (1972).



 



Run-Time
Error
Message
Expert
System

Source
Program

Tr8D3l8tor
(Front-

End)

Variable
Name
Analyser

7 \

Plan
Recogniser

7 \

Internal
Repres-
entation

Plan
Library

Translator
(Back-

End)

f Programmer J

Debugged
Program

Symbolic
Evalu8tor

i<ey

z Information
Flow



 



s /

Anything else
in file

NcI

No

YeS

V

Yes

y

M H M »^ H M l 1 > H

</

Re8d

\ / \

Initial
List

Findpiace

\ /

Addtolist

\

New List

i \ % \ > i t t i i t > t t t \ \ \ i > \ i

Figure 2

MOT

Surface Plan of Pascal
Code in text (some arcs
omitted for clarity)

\
7



 



Initial
List 3

i

i

\ /

5

Recor

/

Item to be
Inserted 6

-d to

8

be insertei

1

i

3 am

9

in

Intended
Result • > ]

}

8

/ \

]

Actual
Result

3
I

, / 5 J
\

6

8

\

i

9

Figure 3



 


