
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



STUDYING NOVICE PROGRAMMERS:

WHY THEY MAY FIND LEARNING

PROLOG HARD

Josie Taylor and
Benedict du Boulay

ognitive Studies Research Papers

erial No. CSRP.O6O

he University of Sussex
ognitive Studies Programme
chool of Social Sciences
aimer, Brighton BN1 9QN



 



One of the aims of workers in Artificial Intelligence (hereafter AI) is

to develop programming environments and programming languages that can

be used to produce "intelligent" systems. Such environments (e.g.

Interlisp, Poplog) and languages (e.g. Lisp, Prolog and Pop-11) are

specially designed for this kind of task in the same way that other

programming languages such as Fortran and Cobol are tuned to the needs

of the scientific and commercial programmer. The success of this tool-

building activity, whether within AI or some other field, can be judged

on a number of criteria, one of which is the power of the tool and

another of which is the usability of the tool. Investigating how the

human user copes with the complex task of learning to use and exploit

computing facilities is the concern of the field of Human/Machine

Interaction (KMI).

There are many aspects to the finterface* between humans and machines

HMI research addresses such psycho-physical, ergonomic issues as the

layout of keyboards and terminal screens, as well as more cognitive

issues to do with programming practices and programming languages. It

is interested both in the qualities of a system that affect expert

performance as well as in the learnability of the systems by both naive

and experienced users (for general discussions of the relevant issues

see e.g. Smith and Green, 1980; Coombs and Alty, 1981; Monk, 1985;

Shneiderman, 1982).

Psychologists - in particular cognitive psychologists (e.g. Anderson,

1982; Norman and Draper, 1986) - have turned to the development of a

user psychology, not only because of the necessity of identifying the

needs of users in interaction with increasingly complex computer

. . » , . , ~ ; ^ I i



systems, but also because computing offers a microcosm of many of those

perceptual and intellectual issues in which psychology has always been

interested and, in many cases, a ready means of capturing useful data

about human performance.

In this paper we focus on a particular, new type of 'high-level'

programming language, Prolog. This is used mainly in AI although

Education is showing a growing interest in it for teaching such diverse

subjects as History, Logic and Mathematics (see e.g. Ramsden 1984). Our

main objective here is to delineate some of the issues that Prolog

beginners have to deal with, but first we explain the notion of a

'high-level' language, and the concept of a 'notional machine'.

The term high-level suggests two ideas. One is that the kinds of

entities one can manipulate in the programming language are similar (in

some way) to the kinds of entities in the problem situation. The other

is that the means provided for such manipulations fit the task, are

powerful and easy to use. Broadly speaking, the higher level a language

is, the less it need be constrained by the particular hardware upon

which it runs and the more it is designed for a specialised class of

problems.

Because the design of high level languages tends to reflect the

structure of problems rather than the structure of the computer on which

they run, they allow beginners to write interesting programs when they

may know very little about how a computer is physically constructed

(i.e. its hardware), or about how its internal workings are organised on

a global scale (i.e. the operating system software which allows

different kinds of operations to be carried out).

For most programming languages, including Prolog, the crucial notions



for the beginner are first, the 'workspace' area where activities are

conducted, second, the 'building blocks' provided by the particular

programming language for constructing 'mechanisms' and third, the means

of making these mechanisms perform. This idealised view of the system,

shorn of irrelevant detail, is described as the 'notional machine' (du

Boulay et al., 1981) - where the notional machine is an 'idealized

conceptual computer whose properties are implied by the constructs in

the programming language employed'. An analogy here is to think of a

programming language as being like a Meccano set or a Lego set with

standard parts for standard tasks, such as a wheel and bearing.

Building a program is not unlike building a model mechanism with one of

these sets. As a beginner, one needs to master the accepted means of

putting the parts together, ways of translating problem descriptions

(e.g. a crane) into the !language' of the parts provided and the

expected uses for what at first may seem rather oddly shaped bits and

pieces. Of course, one also has to master pragmatic issues, such as

what to do when the model does not work as intended or how to divide up

a complex mechanism sensibly into buildable constituent assemblies.

Until recently most programming languages for beginners stressed a

procedural/command oriented approach to structured problem solving, and

the language constructs supported this approach (e.g. Logo, Basic). A

facet of this problem solving approach is that it fits well within the

architecture and design of computing machinery, where the computer is

directed by the programmer to execute step(a), step(b)...step(n).

Analysis of beginner's difficulties has typically focussed on the

development of goals and plans in the programming process with emphasis

placed on the way that novices build mal-formed plans or join sub-plans

together incorrectly (see e.g. Soloway and Ehrlich, 1984). In their



analysis it is the plans which express the procedural knowledge of how

to get things done in the particular programming language.

However, the development of Prolog (Colmerauer et al. 1973) has

introduced a new type of language which is based on first-order

predicate logic. Here the programmer specifies what is true of the

eventual problem solution, leaving the computer to sort out the steps

towards finding the solution. Ideally, in the logic programming ethos,

the programmer can specify a problem solution in logic, and that

specification will run as a program. This is the distinction made much

of in the Prolog literature between telling the machine HOW to solve the

problem (by issuing commands in a procedure) and telling the machine

WHAT has to be true of the solution in the end.

It has been claimed, primarily by Kowalski (1979), that 'logic'

programming languages like Prolog are easier to learn and use than

other, high-level, AI languages because predicate logic is 'human-

oriented', and is therefore more readily understood than other

programming formalisms. This argument would not convince a psychologist,

and, in fact, given the low level of performance on logical deductive

reasoning tasks noted in the psychological literature one might predict

a whole host of potential problems. Unsurprisingly, observations of

students learning Prolog confirm that many of them do not find it easy

or natural (Taylor, 1984).

Most languages tend to be adopted by a band of people eager to claim

that their language is natural, easy to learn and just right for this or

that class of problem. Despite the hyperbole, it is clear that learning

to program in any language is not necessarily easy. The interesting

question that Prolog poses because of its structure (which we discuss



below) is whether problems in learning to program centre around learning

to cope with the machine and its idjosyncracies, or whether problems are

to do with thinking in a particularly constrained and sometimes

counter-intuitive manner (i.e. in a formal logical way). An issue of

particular concern to developmental psychologists is the question of how

a student's general cognitive competence, especially the ability to

handle logic and inference, interacts with the ability to learn Prolog

successfully.

Prolog does offer some automatic facilities which, in theory, ought to

relieve the beginner of certain chores associated with understanding the

machinery in learning to program. Prolog can, for example, make

inferences from statements. Given the information that 'Firemen wear

red braces' and that 'John is a fireman', Prolog can automatically infer

that John wears red braces if it needed to. Furthermore, by a process

called backtracking, Prolog can find as many solutions to some query as

there are in the database. After finding the first successful answer to

a query, the user can ask Prolog to look for any others, and so obtain,

upon occasion, multiple solutions to one question.

This process, in turn, is facilitated by the use of 'variables'. The way

in which Prolog uses variables is interesting, and differs from the way

that most other programming languages use them. Discussion of these

subtleties is not essential for our purposes here, but we occasionally

need to refer to the concept of variables so we provide a somewhat

simplified example of their use.

The easiest way to think of a variable is as an empty slot which can be

filled by anything that 'matches' and is of the correct form. The most

straightforward case of filling a variable is when the variable is empty



at the outset (i.e in the query, say) and the database contains

information of the correct form which allows the variable to be filled.

The following example illustrates the basic process. The database in the

computer has an entry regarding the colour of elephants:

DATABASE ENTRY: grey(elephant).

The user types in a query asking 'what do we know about that is grey?':

USER'S QUERY: grey(X).

'X' here representing the variable, or empty slot that will be filled.

Prolog will match the query with the database item, and X will

represent, or be linked to 'elephant' in the query. Prolog will answer:

PROLOG'S RESPONSE: X = elephant

This example illustrates the use of a variable in its most elementary

form, and there are many ways in which this basic idea can be elaborated

and extended. The relationship of variables to backtracking is that if

the user wishes to search further to see if there is anything else in

the database which is grey, he or she can say, "OK, but now look for any

other instances of database entries that match my original query". At

this point, X (the variable) goes back to being empty (the link between

'X* and 'elephant' being broken), and Prolog continues looking down the

database for any other legal match. If the database contains the

statement that 'skies are grey', e.g.

DATABASE ENTRY: grey(skies).

then X in the query will stand for 'skies' and Prolog will respond:

PROLOG'S RESPONSE: X = skies



So at first sight Prolog looks as though it should be fairly easy to

learn. However, the language's apparent simplicity is beguiling,

beginners occasionally being lulled into a false sense of security and

then finding themselves quite at sea with no idea how to proceed and

some uncertainty about whether they have correctly understood those

topics they thought were secure. The automatic facilities, whilst

simplifying certain sorts of tasks, introduce their own subtle

difficulties for the unwary beginner, and a large part of a Prolog

programmer's skill lies in knowing how to constrain them.

Our objective is to see what, if anything, is special about Prolog in

this respect, and to discuss some of the more misleading claims made on

its behalf. One of the issues that will emerge is that we do not yet

have a convincing picture of what the ideal Prolog notional machine

should look like, nor do we yet have good strategies for teaching the

language (see Bundy and Pain, 1985).

Difficulties for Novice Programmers

Difficulties associated with learning most languages, including Prolog,

can be separated into six overlapping classes. These classes should not

be thought of as general stages in learning to program or particular

stages in the process of producing a working program. Rather they

represent views of the programming process at different levels. Each of

these views needs to be elaborated and assimilated by the the student in

order to become expert.

(i) There is the general PROBLEM OF ORIENTATION, finding out what

programming can be used for, what general kinds of problem can be

8



ackled and what the eventual advantages might be of expending effort in

?arning the skill. For example, at Sussex University we run short

ltroductory courses for Arts undergraduates who want to acquaint

lemselves with AI approaches and programming techniques (du Boulay,

)86). Such students sometimes find the high-level theoretical

Iscussions of AI interesting and stimulating, but find the programming

Dmponent of the course difficult because it is not clear to them what

ley could ever use it for - the problems computers can solve are not

irt of these students' conceptual framework.

li) There are the difficulties of INTERPRETING PROBLEM DESCRIPTIONS.

lis includes getting a precise enough understanding of what the problem

> in order to determine what might count as a solution. This will

)rmally involve identifying what elements, relations or objects in the

iven situation need to be taken into account and what links there are

>tween the solution and important factors in the problem. Even if the

jginner does not know what the solution to the problem will eventually

?, he or she does have to know the kind of shape a solution would take

i order to progress to the next stage.

Lii) There are difficulties associated with the mapping from an

iderstanding of the problem to an understanding of the general

-operties of the THE NOTIONAL MACHINE (i.e. the simplified conceptual

)mputing system with which the beginner is working, see above),

irthermore, the beginner is often not only dealing with one notional

ichine, that is the one associated with the language they are using,

le beginner will usually also have to master an editor, and an

aerating system, and both of these have notional machines associated

Lth them - i.e. at no point are we talking about the actual physical

achine built of metal and silicon with wires and disks, but idealised



mental models of part of the computer's functioning. If the beginner is

lucky, the three notional machines of the programming language, the

editor and the operating system may be seamlessly interwoven, or at

least not conflict with one another. Whether it is one notional machine

or many, this will entail realising how the behaviour of parts of the

tangible machine (the keyboard and screen) relate to these notional

machines - for example whether the information on the terminal screen is

a record of prior interactions between the user and the computer, or is

instead a window onto some part of the machine's innards.

Second, there are difficulties in transforming an understanding of the

problem into the terms of reference of the programming language. If the

concepts embodied in a language are entirely new to the student, this

can sometimes be a slow and difficult task. One of the subtle changes

that occurs in the programmer is that he or she comes to view new

problems in terms of the potentialities (and limitations) of the

available tool. Those who argue that a particular language is 'natural'

are usually right: they have been changed by their own exposure to the

language and now see problems in its terms, which may prevent them from

perceiving the difficulties that a new learner is having.

The beginner has to recognise and then integrate these two components of

the notional machines to gain an understanding of the sometimes complex

execution of a program.

(iv) There are problems associated with the notation of the various

FORMAL LANGUAGES that have to be learned, including mastering both the

syntax and their underlying semantics. Understanding syntax usually

means knowing what kinds of symbols are legal, and how they may be

strung together to produce certain kinds of effects. The semantics may



be viewed as an elaboration of the properties and behaviour of th

programming language's notional machine, crudely sketched above

Relating syntax to semantics involves realising which strings of symbol

will make the computer produce what particular types of !actions'.

In practice this would entail understanding how the notional machin

works in its own terms, mostly independent of any particular problei

(which is what distinguishes this level from that described in (iii

above).

(v) Associated with notation are the difficulties of acquiring STANDAR

STRUCTURES, cliches or plans that can be used to achieve small seal

goals, such as working down a list of items performing some operation

or transforming one structure into another. For example, Ehrlich an

SoJoway (1982) have investigated the ftacit plans' that expert

construct from experience for dealing with standard situations. Th

plans are tacit because the expert may not be consciously aware of thei

presence. So, an expert can look at some problem description, decid

that a certain type of construct is appropriate, and employ th

corresponding plan of action without devoting special thought to th

matter, whereas beginners have to generate a plan afresh every time.

The hypothesis is that experts assign a functional role to programmin

structures and eventually disregard the execution details (i.e. how th

computer actually does it) thus enabling them to take a higher leve

view of the programming process. Beginners, on the other hand

understand programs by examining how the computer does something, whic

is a correspondingly lower level view. So, given a program to read an

understand, experts will be concerned with WHAT it does, what are th

inputs, what are the outputs, and so on, whereas novices interpret HO



; does it, and may not retain information about what the overall goal

the program was.

nee there often are standard ways of accomplishing certain effects in

ty computing language, it is useful for these to be taught directly to

udents, rather than have them laboriously work them out for

temselves.

i) Finally there is the issue of mastering the PRAGMATICS of

kogramming, that is learning the skill of how to specify, develop, test

td correct ('debug') a program using whatever tools are available.

me of these six issues are entirely separable from the others and much

the shock of the first few encounters between the learner and the

astern are compounded by the student's attempt to deal with all these

fferent levels of difficulty at once.

lis paper concentrates on four of the above issues:

* interpreting problem descriptions

* moving from problem descriptions to Prolog programs

* the semantics of Prolog

* pragmatics.

; various points we will mention experimental work that we have

idertaken with Prolog novices (mostly undergraduates and postgraduates)

id Prolog experts (mostly research fellows and faculty).

JTERPRETING PROBLEM DESCRIPTIONS

itities and relations

le of the skills that the beginning programmer has to master is that of

12



reading a piece of text expressing a problem and deciding what the

problem is. This requires an analysis of the major entities involvec

of their relationships and how a solution may be obtained in principle

For some programming languages the kinds of entity about which problen

can be stated are numerical or at least similarly well delineated. Thes

quantities stand out from the surrounding description and are thi

automatically highlighted. As Prolog allows statements to be made aboi

any relationships and implications there is no clear boundary betwee

things that can be described in Prolog and those that cannot. ThJ

means that it is much harder for the beginner to use the kind c

landmarks that might serve, say, in a numerical problem to see what t\

major entities are. One way to reduce this difficulty is to stress tf

notions of relationships and individuals and give the students lots c

practice in using a given restricted vocabulary to express limit€

aspects of English sentences (see Ennals, 1984 for examples of thj

approach).

Even if the major entities and reJationships are clear there is tl

problem of deciding how these should be represented. Should a proble

that involves 'John liking Mary1 be thought of as problem involving

relationship, 'liking', and two individuals, 'John' and fMary', whic

in Prolog might look like this:

EXAMPLE 1: likes(John, mary).

Perhaps it should be thought of as a single event with three parameters

'John', 'liking' and 'Mary'.

EXAMPLE 2: event(John, likes, mary).

Another possibility is to think of it involving a single individual



'Mary!, who happens to be in the state of being 'liked-by-John'.

EXAMPLE 3: liked_by_john(mary).

There are further possibilities as well. Each of these looks rather

different when translated into Prolog and has repercussions on how the

rest of the program should be expressed and on what kinds of inferences

can be drawn by the program. Questions of how best to solve this kind of

issue depend very much on what kind of solution is being sought. In

general changes of representation can have a profound effect on how

easily a problem can be tackled (and on how efficient a program may

eventually be). For example, although at some levels each of these

representations refer to the same state of affairs, the ease with which

they can be manipulated and changed in the context of a database

differs. Example 1 could probably be thought of as the standard way of

representing relationships in Prolog, and allows for the creation of a

database in which we can represent the 'likes1 relationship holding

between multiple 'partners1 or fobjectsf - i.e. the representation is

easily extensible:

likes(John, jane).

likes(jane, mike),

likes(sally, susan) etc.

Example 2 has a structure which is more general - 'events1 might be of

many different types:

event(likes, John, reading).

event(likes, susan, sally).

event(likes, judith, pasta)

event(helps, judith, John) etc.



But this very flexibility may be a trap, because the minimal amount o

structure is imposed on the database. We could represent other things:

event(world, war, two).

event(fido, fights, cats).

event(anything, you, like)....etc.

Example 3 could be seen as an overreaction to Example 2. Th

datastructure is somewhat overconstrained so that we can only tal

either about things which are liked by John:

liked_by_John(apples).

liked_by_john(school).

or about a particular individual (Mary):

liked_by_peter(mary).

liked_by_mother(mary).

Of course for some purposes this constraint may be exactly what i

needed, but the point is that Prolog allows the learner to represen

information in a variety of ways, and the learner must acquire a sens

of what is a 'goodf way for any given problem.

Generality of solution

A widespread problem that beginners face when interpreting proble

descriptions is deciding how general a solution should be. This proble

may occur in Prolog to a larger degree than in other languages for th

reasons given above. This issue was thrown into sharp relief when w

asked a selection of Prolog experts to provide solutions for th

following problem:



"Write a program for designing an architectural unit obeying the

following specifications: Two rectangular rooms, each room has a

window and interior door, rooms are connected by interior door, one

room also has an exterior door, a wall can have only one door or

window, no window can face north, windows cannot be on opposite

sides of a unit." (Coelho, Cotta and Pereira, 1982, p.63)

Although this is a very loosely expressed specification, we were rather

surprised by the very wide range of interpretations that were placed

upon it. Some saw it as a problem to design a general purpose

architectural planner which could solve the problem automatically, using

the given data as an example of the class of data that such a planner

should handle. Others saw it more specifically as a puzzle about the

stated unit. Others again couched their solutions as essentially

constraint-checkers and as a memory aid to help someone who would do the

actual problem-solving for him or herself.

FROM PROBLEMS TO PROGRAMS

High-level languages

Certain forms of logic have a long history of being used as problem

solving tools, and in computing such forms are frequently used as

specification languages (i.e. 'intermediary' languages which express the

logical correctness of some problem solution prior to its being couched

in any particular programming formalism). What Prolog has to offer is

that it is both a form of predicate logic and a runnable programming

language with machine independent syntax and semantics. So if a

programmer specifies the logic of some solution, he or she can then

simply run it (it may run slowly) instead of having to translate it into

a more conventional programming language with idiosyncracies due to its

16



dependency on hardware. This streamlines the process of program

development by disposing of the need for major translations from one

representation to another, and allows for more effective deployment of

programmer time and effort, though minor changes within the

representation may be needed for the purposes of efficiency.

At both a practical and a theoretical level we can see the advantages

that logic programming languages have for the programmer (indeed one of

us uses it for research). But the programmer here is often a

professional who can appreciate the freedom of programming in such a

machine-independent language. The situation is less clear-cut for

beginners. Note that we are NOT arguing that beginners should not be

taught Prolog or that it is unteachable. What we ARE arguing is that

teaching it to beginners poses special problems, above and beyond those

posed by other more conventional languages, precisely because it is

higher level. It presents the beginner with the double edged blade of

freedom to create interesting programs quickly, and the freedom to make

serious errors equally as quickly.

Claims for Prolog

In common with other languages, Prolog has suffered from enthusiastic

claims for its ease of use. The particular line of reasoning to support

this claim for Prolog is that since Prolog is based on logic it will be

simple to learn (implying that everybody is good at logic) and that it

will easier for novices to express themselves in the language because

logic can be understood in terms of its natural language equivalents

(KowaJski, 1979).

We believe this argument is a liberal interpretation of the »ore formal

discussion of Prolog1s high-level status described above and is based on

17



assumptions about people's natural reasoning abilities. Apart from

leading novice programmers into false expectations of what the process

of programming is about, and what they can expect of their own

performance, this kind of interpretation runs counter to what we know of

people's logical deductive reasoning abilities.

Logic, reasoning and natural language

There are three assumptions which will be questioned here: first, that

predicate logic captures the logic underlying human reasoning and

language; second, that logic is natural; and third, that logic has

natural language equivalents. We shall take each in turn.

The crux of the argument is this: although most adults are capable of

formal reasoning, the suggestion that such reasoning either conforms to,

or is captured in, the precise rules of predicate logic is unwarranted.

Formalisms such as classical logics, and programming languages attempt

to be unequivocal. In the study of deductive reasoning - and of

programming - we see people struggling to solve problems within the

framework of a formalism which, in the interests of maintaining its

formality, embodies certain necessary, but counter-intuitive,

constraints. Such tasks are difficult and require practice, so the

argument that Prolog somehow short circuits this learning pattern simply

because it is based on predicate logic is meaningless.

The significant difference to grasp is between the formalisms of

classical logic as devised by logicians, and the hypothesised 'logical1

thinking processes used by people in their everyday lives, and it is

this difference which is frequently blurred in the Prolog literature.

Psychologists are uncertain about whether a 'natural1 logic exists, let



alone what kind of classical logic it might resemble, if any (see

Johnson-Laird, 1983). It may be true that first-order predicate logic

usefully formalises some aspects of the human reasoning process, but so

do many other formalisms (e.g. various branches of mathematics).

Predicate logic is not special in this respect, nor should we expect

untutored people to have a natural aptitude for using it any more than

we would for a more mathematically oriented logic. Evidence produced by

psychologists in fact supports the view that, in general, people have no

natural aptitude for formal logic (see Evans, 1982 for a review of this

literature).

Finally, the claim that logic has natural language equivalents throws

our previous remarks into relief because part of the explanation in the

psychological literature for poor performance at deductive reasoning is

attributed to people failing to understand the difference between

expressions couched in natural language and expressions in the

formalism. The extraction of 'meaning1 from natural language expressions

often depends upon knowledge of causal or temporal factors known by the

listener, who may, in fact end up misinterpreting the expression by

importing too much knowledge into the discussion domain. Logic, on the

other hand, conforms to quite a different set of rules, often dealing

simply with truth functional relations between elements of expressions,

regardless of the meaning. In propositional calculus, for example,

propositions have one of two truth values - they are either true or

false - which is not the case in natural language. Connectives are

defined solely as functions of the truth values of the propositions they

interrelate (see Johnson-Laird and Wason, 1977). Furthermore, standard

logic does not deal with temporal or causal events, and basing

interpretations on the semantics of natural language may lead to all

1 Q



kinds of difficulties. For example, the two English sentences: (taken

from Johnson-Laird and Wason, p.79)

She inherited a fortune and he married her

and

He married her and she inherited a fortune

could be attributed different meanings by someone untutored in logic,

but in the predicate calculus with its restricted meaning for fandf,

they are identical.

People are quite naturally inclined to misinterpret logical expressions

if these differences are not spelled out to them clearly. Furthermore,

misinterpretations can arise from the content and form of the material

to be analysed. Students may be led astray by 'atmosphere effects' (Begg

and Denny, 1969) i.e. assertions couched in natural language create an

atmosphere which, in the absence of rigorous logical analysis, may

seduce people into deriving conclusions which favour that atmosphere

(for example, people are disinclined to draw a !negative1 conclusion

from 'positive1 assertions). Lastly, untutored people are led into

fallacious reasoning by not considering all the relevant information.

Some diagrammatic representations of logic (e.g. Venn diagrams) try to

overcome this well-known problem. Interestingly, this kind of difficulty

also surfaces in the programming environment, where people tend to

underspecify algorithms - e.g. telling the computer what to do if some

situation arises, but forgetting to tell it what to do if it doesn't.

In theory, therefore, rather than appearing to be an easier programming

language to learn than any other, one could argue that Prolog might be

disastrous as a first language, since the combination of logic and

20



programming at the same time, each with their independent constraints

and their relationship in programming, would make the novicefs task

extremely arduous. For example, we have seen that failure to consider

the full scope of the problem/solution domain in programming will result

in underspecification of algorithms; in logic, it will lead to

fallacious reasoning. In Pro]og it may lead to both.

For practical purposes, however, the dilemma is this: if the problem

statement refers to abstract notions then the task is often difficult;

if concrete material is substituted for abstract (e.g. natural language

expressions are substituted for symbolic expressions) then task

difficulty diminishes greatly, but the reasoning process becomes error-

prone because people feel free to use their natural language

comprehension skills where it is inappropriate. Their interpretations

of formal expressions are based on what they know of the real world,

which, in certain cases, will lead them astray in the logical domain.

From a teaching point of view, we would emphasise the need to encourage

learners to view Prolog programming as a problem-solving exercise, and

discourage the notion of 'translation' from English to Prolog and back

again, since the semantics of each is quite different.

We have some evidence of this tendency to confuse the rules governing

natural language and the rules governing a formalism. At Sussex

University we teach Prolog to first year Arts undergraduates who

frequently have no strong science or mathematical background. One course

lasts 9 weeks and is designed to introduce them to Artificial

Intelligence ideas and techniques. It is not a programming course as

such, but they learn how to use a high-level AI programming language, in

this case Prolog.



We asked a group of these students to perform two straightforward tasks:

the first was to give us an English rendering of some Prolog clauses,

the second was to create a Prolog database from information expressed in

English. Whilst the first task presented no difficulties at all, the

second task was problematic. The English sentences were a mixture of

facts and conjunctions, such as

John works hard and likes music

which are easily represented in Prolog:

works_hard(John), likes(John, music).

and some causally dependent sentences such as

John is a good student because he works hard

which are not easily represented, because Prolog, like logic, doesn't

deal with causal relationships.

So how do our logically unsophisticated students cope with such a

problem? We had a variety of responses, but none of our students

explicitly said that this sentence could not be represented because of

the limitations of the basic formalism. Some students argued that the

solution to this problem is to create a rule which says: if I can prove

that John works hard then I can infer that he is a good student. In

Prolog form this can be read: infer that John is a good student if you

can prove that he works hard.

good_student(John) :- works_hard(John).

Note that ':-' in Prolog means 'iff and the inclusion of this rule in a

program would enable Prolog to infer that 'John is a good student1 by



using another fact in the database, i.e. 'John works hard'. This is

interesting solution because it highlights the sometimes sut

differences between causal reasoning and logical inference in nati

language. Our students, in effect, are asking 'Will this happen?' rat

than 'Does this logically follow?' more clearly illustrated in

sentence: If I tip my cup then my tea will fall out. This kind of cai

reasoning requires an intuitive temporal dimension (one thing n

happen before another). Prolog viewed as logic has no such dimensj

but Prolog viewed as an executable programming language does - the

Prolog actually works through a program allows for a non-linear (becc

of the backtracking), but plausible sense of time. Provided that

students do not make the mistake of thinking they are being logice

correct, and provided they are consistent in this somewhat unorthc

interpretation of the ':-' operator, they will probably progress qi

happily.

Another response was for students to declare that the sentence

impossible to represent. For them, 'if and 'because' "don't mean

same and so it can't be done". In fact, although none of these stude

were logically trained, this response is closest to the logical star

However, we suspect that rather than being correct for this reas

these students were actually trying to translate English into Pro]

and expected Prolog to have corresponding operators to the Eng]

connectives 'because', 'so', 'therefore'. Interestingly, though, whj

fretting about the causal links, they were quite happy to c

quantifiers such as 'all' and 'every' from statements like "All Misl

students work hard", and "Every student of Misha's works har

Quantifiers are another feature of English with which Prolog does

deal directly, but which are usually dealt with by careful use



ariables. It may be that the techniques for dealing with quantifiers

re less obviously altering the meaning of a sentence than the

if/because' substitution. But, either way, if students are inclined to

onstruct the meaning of a program from the meaning of English and not

rom the semantics of the programming language, they may find life

ifficult.

he situation is problematic both at the level of predicate logic and at

he level of computer programming. From the point of view of logic,

tudents who do not realise that logical expressions are subject to the

ules of logic, and not the rules of natural language may find

hemselves in very deep water later on in trying to interpret the

meaning1 of sentences such as 'Either some dogs are animals or no

nimals are not dogs' which doesn't have a very sensible English meaning

ut which is logically sound. From the point of view of computing, there

re two issues.

irst, data or information in computer programs, whether in Prolog or

ot, has to be structured 'sensibly' for the current purpose, whatever

hat may be, or else programs will produce meaningless or incorrect

nswers. Learning how to sensibly represent knowledge is arguably the

ost important issue to be confronted by the beginner in learning to

rogram. So long as students think that they merely have to embark on a

urface translation from English into the hieroglyphs of Prolog, they

void the crucial issue of knowledge representation which is relevant to

11 aspects of computing and AI. Such students will confuse themselves

iy writing disorganised programs which will either take a long time to

un, or which will not run at all. Students may then have to waste time

lebugging badly conceived programs.



Second, from the beginner's point of view, programming involves the

notion of problem solving, which usually means devising an algorithm

which the computer will use to work out the answer to some problem. The

difficulty in adopting the 'translation' view is that simply re-

representing the English text in Prolog is not going to solve the

problem - the student must work out how the algorithm will proceed, and

what information it needs to succeed. Students who lose sight of this

goal, are likely to be severely hampered in their learning.

Another facet of the natural language issue is when students try tc

understand a program in terms of natural language, and not in terms of

the functional relations between different parts of the program. Thej

may think that Prolog 'understands' the meaning of words, or that some

words are significant to Prolog. This becomes particularly apparent ir

database manipulation tasks. Ross (1982) points out that beginners are

usually presented the declarative viewpoint of Prolog (see next section]

angled towards database creation and search programs which often use £

lot of English words. In his opinion this approach promotes complacency

because Prolog looks very easy at this level. Beginners can fooJ

themselves that they are learning to program, when in fact they are

understanding the program by understanding the English, i.e. b̂

attributing meaning to the words used. This can allow students to ignore

various important aspects of the Prolog notional machine, and its

behaviour, which will cause a great deal of confusion later.

Debugging will be difficult if there is a disparity between wha1

students think their program is saying (described at a linguistic

level), and what it is actually doing (at the notional machine level).

For example, we have noted that, when asked to describe what theii

Prolog programs were supposed to do, some students at Sussex were able

25



to give quite competent English descriptions. But the code they had

written either simply did not reflect this English description, or did

not work in the desired way because the logical structure of the problem

solution had not: been extracted from the English. The solution, as

expressed in these programs, lay in understanding the meaning of the

English words, which of course Prolog cannot do.

So encouraging beginners to understand logic/Prolog by the use of

natural language may not be the great advantage it at first appears.

Kowalski (1979) makes the caveat that natural language will only provide

an 'informal guide' to understanding logic. This is fine for someone who

understands either logic, or programming, or both. He or she will have a

fundamental grasp of the limitations of the 'informal guide1 as an aid

to understanding. But the warning is not adequate for the optimistic

novice.

SYNTAX AND SEMANTICS

The general problem for beginners with Prolog is that the underlying

notional machine is both powerful and complex with a surface behaviour

that is hard to predict accurately. Most of the preceding section

concentrated on what is called the declarative semantics of Prolog (and

the difficulties that novices have with it). The declarative semantics

describe Prolog programs in terms of the high-level logical

specification of what it will do (i.e. with no emphasis on !how! it will

be done). There is however another view of Prolog that links back to the

remarks about mechanisms in the introduction.

Prolog is not just a means of recording and then interrogating static

observations about a world. It is also a programming language in which



things can be made to happen (inferences) and these will occur in a

particular order. The user needs to understand this in order to predict

accurately what a Prolog program will do. The procedural semantics is a

formal account of what Prolog programs do and how they do it. A

competent Prolog programmer must reconcile the declarative and

procedural view of the language and recognise the circumstances when

each is the best way to interpret what is presented. These two views

are not in conflict, they are complementary.

Unfortunately, Prolog syntax does not offer any clear pointers to what

is happening 'behind the scenes', i.e. what changes are taking place in

the internal state of the machine. Much of the machine's activities have

to be interpreted from dense and compact syntax, and because there are

few indications of flow of control (i.e. the order of events) through

the program, students sometimes find it difficult to interpret how the

code will run. Prolog presents a particular difficulty for beginners in

this respect because although it is true that in other languages

identifying and sustaining the correct flow of control is important,

part of Prolog's power is in its automatic inferencing and backtracking

mechanisms. Backtracking is the mechanism that enables Prolog to try

further rules, if available, when it fails in its attempt to use a

particular rule to establish the truth of some inference. This

mechanism ensures that Prolog automatically attempts every possible way

of trying to prove an inference before giving up and reporting that it

cannot.

The novice must learn how to control these processes by learning how to

order sentences in the program, recognising circularities within a rule,

ordering sub-goals within a goal and employing certain special

controlling primitives (such as the the 'cut') to achieve a solution.

27



Prolog provides a facility, called a 'trace package' with which the

programmer can observe the internal chain of events, such as inferencing

and backtracking, while a program runs. These packages are not without

their own drawbacks for the novice. Sometimes they present a view of the

system which is at odds with the notional machine that the beginner

thinks is there, or they provide either too much or too little detail,

or indeed are just hard to control in their own right.

Beginners tend to write programs which Prolog can run away with by

drawing an endless chain of useless but true inferences. This happens

because they include rules that are in some sense circular e.g. that

'John is a good student if John is a good student*. The system can end

up fruitlessly trying to find the end of the chain of identical

inferences that such a rule would generate. The actual problems are

often more subtle than this, of course, and involve the complex use of

variables.

We asked students to write a small program on paper, and then describe

what the machine would do with it. Most of them were capable of

outlining one possible solution (the one they were expecting) but they

gave incomplete descriptions of ALL the work the machine would have to

do to get there. When we ran the program and switched on the tracing

package they were surprised to see how much variable !matching' and

backtracking was involved during the solution process. This lack of

knowledge about how much work Prolog may have to do behind the scenes

even to produce an apparently simple - and to the human user often

obvious - answer can make it difficult for students to debug faulty

programs. In other words, if the solution is not correct first time,

students may have great difficulty identifying where the error lies.



Backtracking confuses beginners in other ways. There have been a numbe

of studies to identify common misconceptions about what Prolog does whe:

it backtracks whose results are confirmed by our own work with novice

(see e.g. Coombs and Stell, 1984, Van Someren, 1984). One of the issue

is that it can only be understood properly in dynamic terms and th

static text of the written program is only a partial guide and may even

according to Coombs (1985) be a positive hindrance!

PRAGMATICS

One of the findings from our work with experts was their much greate

reliance on the Prolog tracing facilities to debug their programs. I

did not merely seem a matter that they were more skilled in using thes

facilities (which of course they were). There seemed to be a differenc

in what they perceived as a reasonable course of action when developin

a program. The experts appeared to be much readier to admit th

difficulty of predicting exactly what a Prolog program would do unde

various circumstances and used the system itself to help with th

prediction and hence the debugging. The novices, on the other hand

seemed to want to undertake this hard predictive task for themselve

without help. It was as if they perceived their task as putativ

programmers to be doing this job unaided.

It has to be admitted that learning to use the tracer and interpret it

output can itself be hard. The messages from the tracer and th

dynamically changing layout of information on the screen require tha

the student understands the procedural semantics of Prolog if they ar

to be fully appreciated. In particular Prolog's backtracking behaviou

is much in evidence and we have already discussed above some of th



problems that students have with this. Students who only partiall

understand this aspect of Prolog will probably be helped by trying ti

interpret the trace output, but they may be reluctant to turn to this a

a source of help for debugging.

CONCLUSIONS

Prolog provides beginners with the means to write interesting, non

trivial programs at an early stage in the learning process, usin;

powerful computational mechanisms, so capturing the interest of th<

learner from the outset. The language allows for a various types o

computing-related activities - aside from writing programs, it can b<

used as a database creation and search language, as a representatio;

language for problem solving, and because the principles on which Proloj

operates are machine independent, the learner can get a global view o

computers and their operations without getting unnecessarily bogged dow]

in highly specific machine-related details.

A problem common to all computing languages is that if a beginne;

suffers from woolly thinking, then the computer will highligh

deficiences with unpitying relentlessness. A specific problem wit]

Prolog is that up to a point it will allow the user to write some fairl;

silly, usually contradictory, things without complaining. But clearly

at some point, things will go awry, leaving the beginner in a state o

confusion.

There is much that technology can do to ease the load on the user

Improved debugging tools and friendly environments for Prolog are unde:

development. However, learners have to be made aware of the fact thai

learning to program, just like acquiring any complex skill require!

effort and practice. It is unlikely that any language will be able to d<



away with hard work and application. Similarly, it may be tempting fc

the tutor to think that because Prolog is a high level language the

less effort needs to be put into the teaching materials - it will t

easier to teach as well as to learn. This does not seem to be the case

We have seen that some difficulties are related to Prolog's interne

structure (i.e. the backtracking mechanism) which require the carefi

development of clear and adequate models of the language to present t

students (see Pain and Bundy 1985) Other problems are to do mor

generally with students' expectations of themselves - that they shou]

be able to learn programming effortlessly - and of computers (i.e

thinking they can understand the meaning of English words). This clas

of problem can sometimes combine with a student's limited proble

solving skills (or abilities) to make the task of learning to progrs

appear an impossible task.

This paper scratches the surface of many complex problems which we ar

continuing to investigate. There are a number of further interestir

issues thrown up by our current experiments which need further analysis

One example is the apparent unwillingness of novices to use the close

world assumption and their wish to represent negative informatic

explicitly rather than leaving it to be 'discovered1 by Prolog as z

absence of positive information.

ACKNOWLEDGEMENTS

We thank Julie Rutkowska and Maarten van Someren for helpful comments c

early drafts of this chapter, and Jon Cunningham for discussions. ThJ

work is supported by a grant from SERC/Alvey.



REFERENCES

ANDERSON, J. R., (1982) 'Acquisition of Cognitive Skill', Psychological

Review Vol. 89, No.4, 369-406

BADRE, A., and SHNEIDERMAN, B. , (1982) Directions j.n Human Computer

lJQt§L§£ii2!l Norwood, N.J.: Ablex Publishing Corporation

BEGG, I., and DENNY, J. P., (1969) 'Empirical reconsideration of

atmosphere and conversion interpretations of syllogistic reasoning

errors1, Journal of Exp. Psychology, 81, 351-354

COELHO, H., COTTA J. C. , and PEREIRA, L. M. , (1982) How to Solve ĵt

™AHi PLQIQK* 3rd ed., Laboratorio Nacional de Engenharia Civil, (Obra

03/53.752), Lisbon, Portugal

COOMBS, M. J., and ALTY, J. L., (1981) Com^uUng SkiL^s and the User

London: Academic Press Inc.

COOMBS, M. J., (1985) Alvey Conference, Edinburgh

COOMBS, M. J., and STELL, J. G., (1985) fA Model for Debugging Prolog by

Symbolic Execution: The Separation of Specification and Procedure',

Dept. of Computer Science, University of Strathclyde

DU BOULAY, J.B.H., O'SHEA, T., MONK, J. (1981) 'The Black Box inside the

Glass Box: presenting computing concepts to novices1, Int. J. Man-

Machine Stjudies, 14, 237-249.

DU BOULAY, J.B.H., (1986) fPOPLOG for beginners: A powerful environment

for learning programming', in Artificial Intelligence Programming

Environments, R. Hawley (Ed.), forthcoming, Chichester: Ellis Horwood

EHRLICH, K., and SOLOWAY, E., (1982) 'An Empirical Investigation of the

32



it Plan Knowledge in Programming', Department of Computer Science

earch Report No. 236, Yale University

ALS, R., (1984), Beginning M^cro-Prolog, Chichester: Ellis Horwood

NS, J. St. B. T., (1982) The Ps^chodogY of Deductive Reasoning

don: Routledge and Kegan Paul

NSON-LAIRD, P. N., (1983) Mental Models Cambridge: Cambridge

versity Press

NSON-LAIRD, P. N., and WASON, P. C. (eds), (1977) Thinking - Readings

Cjognrtive Science Cambridge: Cambridge University Press

ALSKI, R. (1973) 'Predicate logic as programming language', Memo No.

Department of Computational Logic, School of AI, University of

nburgh

ALSKI, R., (1979) Logic for Problem Solving, New York: North Holland

K, A., (1985) Fundamentals of Human-Computer Intjeracjtion London:

demic Press Inc.

MAN, Donald A., and DRAPER, Stephen W. , (1986) User Centered System

ign - New Perspectives on HuiQ9J2""£2IILE!i££I iHl§L§£iion Hillsdale, N.

Lawrence Erlbaum

N, H., and BUNDY, A., (1985), 'What Stories Should We Tell Novice

log Programmers?', work in progress report, University of Edinburgh

SDEN, E., (1984) ed. Microcomputers in Education Chichester: Ellis

wood



3SS, Peter (1982) "Teaching Prolog to Undergraduates1' in AISBQ, Autumn

)82

INEIDERMAN, B. , (1980) Software Psycholorgi Cambridge, Mass.: Winthrop

iblishers

JITH, H.T., GREEN, T.R.G. (1980), 'Human Interaction with Computers',

)ndon: Academic Press Inc.

)L0WAY, E., and EHRLICH, K., (1984), 'Empirical Studies of Programming

lowledge', in IEEE Transactions on Software Engineering, Sept. 1984

WLOR, J. (1984) 'Why novices will find learning Prolog

ird', Proceedings ECAI, 1984

\N SOMEREN, M. W., (1984), 'Misconceptions of Beginning Prolog

rogrammers1 Memorandum 30, Dept. Of Experimental Psychology, University

• Amsterdam



 


