
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

COMPUTER SCIENCE
TECHNICAL EE^OliT FILE

A NOTE ON EFFICIENT CONTEXT SWITCHING

A. Ramsay

Cognitive Science Research Report

Serial no: CSRP 023

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falner
Brighton BN1 9QN

PITTSBURGH. PLKWYLVAIUA Ib213

673
A Note On Efficient Context Switching

Allan Ramsay
Cognitive Studies Programme, University of Sussex, FalmeifftNl ;

0273 - 606755 X:1008 N* /

3500 words, 12 pages

Abstract

It is often convenient to be able to save and subsequently restore the
state of a computation. It is also, in general, rather expensive. We
present a technique whereby states may be saved and restored extremely
fast, and yet the .information stored in a given state may be accessed
and updated reasonably quickly. This technique depends on an indexing
scheme which can be used to see whether the last value assigned to a
variable is still valid, or whether it must be retrieved from some
previous context (and if so, which one).

JL The Problem

AI programmers, expert system builders, etc. frequently need to write
programs that expLore large search spaces. Such programs have to save
the state of the computation whenever they decide to investigate one
area of the search space rather than another, since they may make the
wrong choice and be forced to back up and try again.

The process of saving and restoring computational states is expensive in
two ways. It requires a large amount of memory (at worst a complete copy
of the process image for every saved state), and it takes time. The
costs may be diminished if we are content to save less than the entire
state, e.g. just saving the calling sequence, or just saving the values
of some predetermined set of variables. We are mainly concerned here
with this latter case, where the values of a specified set of global
variables are to be saved and restored (this restricted form of state
saving has been widely used in AI - see for instance Kaplan's discussion
of ATN parsing for natural language (1), or CONNIVER's contexts (2)).
However, the mechanism described below will deal with arbitrary cases of
variable access and assignment, and could easily be adapted for contexts
which included the values of local variables as well as globals.

A number of implementations of this restricted form of state saving have
been proposed, but they have generally suffered either from taking a
long time to switch contexts, or from taking a long time to access the
values of variables within a given context. We present below a technique
for context switching in which contexts may be saved and restored
extremely quickly, and yet on most occasions the value of a variable may
also be accessed without any search.

iL Contexts vs. Stack Frames

The discussion of how to implement a state saving mechanism becomes
clearer if we relate our problem to that of saving and restoring the
values of dynamically bound local variables during procedure calls. The
effect of such a procedure call is to save the current values of the
local variables, i.e. the current context; do whatever processing is
required; and then restore the saved context. This is exactly the
problen we are dealing with, except that the contexts saved by procedure

Efficient Context Switching -2- Allan Ramsay

calling mechanisms are always dealt with first-in first-out, whereas we
want to be able to restore arbitrary contexts, e.g. ones that were saved
after the one that is current, or ones that have been restored once
already but that we want to try yet again.

Procedure calling mechanisms save the current context by stacking the
values that are to be saved, and popping them when they are to be
restored. We cannot use this approach, since we cannot rely on contexts
being saved and restored in any particular order. We can, however, begin
to solve our problem by looking carefully at two strategies that are
widely used for binding values to variables, namely deep and shallow
binding.

Allen provides a detailed discussion of these strategies (3); all we
will do here is to summarise the main points as they relate to our
particular problem.

In deep binding, all values of variables are kept on a single stack of
variable-value pairs. Assignment is done by pushing a new pair,
containing the relevant variable and its new value, onto the stack;
variable access is done by walking down the stack until a pair
containing the required variable is found - the value in this pair is
the most recent, i.e. current, value of the variable; saving and
restoring contexts is done by saving the position of the top of the
stack to save the context, resetting it to that position to restore it.
Thus in this very pure form of deep binding, context switching is
extremely easy, assignment is easy but wasteful of space, and access is
unacceptably slow.

In shallow binding, each variable has a stack of values directly
associated with it. The current value of a variable may be accessed very
quickly, since it is simply the top element of the associated stack, and
it may be updated by overwriting that element (not by pushing it on
top). However, context switching is rather laborious, since it is
necessary to scan all the variables whose values have to be saved or
restored and either push a copy of their current value onto their
associated stack (saving) or pop the current value off (restoring).

In practice most implementations use a combination of these strategies,
keeping saved values on a single stack and current values associated
directly with the variables (see for instance UCILISP (4) or P0PL06
(5)). In the remainder of this paper we will adapt this technique for
context switching where the simple FIFO constraint of procedure calling
is not obeyed.

5 Full Context Switching

For our task it is convenient to adapt the basic strategies as follows:

(i) a context is still a stack of variable-value pairs (a binding
stack), but it now has associated with it an index. We can use the
indices to see whether one context is a direct descendant of another. r

(ii) when we update a global variable we add a new variable-value pair
to the current stack, as in deep binding; and we associate the new value
directly with the variable, as in shallow binding; but we also associate
the index of the current context with the variable, so that we know when
the value was set.

Efficient Context Switching -3- Allan Ramsay

(iii) to save a context, we now simply save the binding stack and its
index; to restore it, we reset the saved stack and index to be the
current stack and index. Thus all we need to do when we want to switch
contexts is to update the values of two global variables - there is no
need to construct any new data structures or to transfer large blocks of
data.

(iv) variable access is a little more complex. The essential point is to
compare the index of the current context with the index that was stored
with the variable when it was last updated, using an algorithm described
below. to see if the variable's index is a direct predecessor of the
current one. If it is then the value associated directly with the
variable must be the required one, since the context in which it was
last updated is a direct ancestor of the current one. If, on the other
hand, the index for the variable is not a predecessor of the current
one, then the variable must have been updated on some divergent branch
of the computation. In this case we will have to search down the current
binding stack to find the value we want.

To see what is going on, consider the following example:

C1: 3 -> Y;

CO: 1 -> X; 2 -> Y;

C2: ?X, ?Y

The above diagram represents a situation where 1 has been assigned to X
and 2 to Y in context CO; CO has been saved, and continued as C1, and 3
has been assigned to Y; and finally C1 has been saved, and CO has been
restarted as C2. What are the current values of X and Y ?

Clearly the value directly associated with X, i.e. the value most
recently assigned to it, is 1. This value was assigned in CO, which is a
direct ancestor of the current context, and hence is the value we want.

The-value currently associated with Y is 3, the value assigned in C1. C1
is not a direct ancestor of C2, so this value is not correct in C2.
Hence we will have to search down the the binding stack for C2 for the
required entry. C2fs stack is built on top of CO's, so the first value
we will come to is 2, as required.

This all sounds very long-winded. The crucial point is the construction
and comparison of indices, since if this can be done quickly then in
many cases we can access variables almost as fast as if they were
shallow bound in an environment with simple FIFO context switching, and
we will nes/er do worse than orthodox deep binding.

4 Indexing Contexts

Suppose we are just starting work, so the stack is empty, the index
1, and all the variables are initialised with the standard v*
"undefined" and index 1. We do some work, updating the stack and
variables as we go, and eventually arrive at a decision point, where
want to save the current state of affairs for later while ue explo

i

Efficient Context Switching -4- Allan Ramsay

some hypothesis.

At this point we need to create two contexts, namely one to save for
later and one to make immediate use of. For each we initialise the stack
as a list containing nothing but a pointer to the current binding stack,
so that the binding stack in any given context is in fact a chain of
partial stacks. We obtain their indices by doubling the current index,
and adding 1 to it for one of them and not for the other. At this point
we have created two contexts, with stacks equivalent to the original and
indices 010 and 011 (binary), simply by copying a pointer and doing some
trivial arithmetic.

As we continue to spawn contexts we
indices marked as below

will grow a tree of them with

0100

010

01

| 011

0101

0110

0111

It is now easy to see if one index, 11 say, is a direct predecessor of
another, 12. We simply keep comparing them and then shifting 12 right
one place until either they are equal (11 is a direct predecessor of 12)
or 12 is less than 11 (11 is not a direct predecessor of 12).

This gives us what we needed - a rapid algorithm for generating indices
(shift the old one left one place, use this for the state which is to be
saved and add 1 for the one which is to be continued), and a rapid
algorithm for comparing indices (repeatedly shift right and compare).

To see again how this works out, suppose that as we grew the above tree
we had done the following assignments to X and Y.

Efficient Context Switching -5- ALlan Ramsay

SSX 0 2 3 c . 1
Ramsay, Allan,
A note on efficient context
switching /

2 ~> Y

3 - > Y

1 - > X

, ?Y

In context 0100, the chain of par t ia l binding stacks would have

looked l ike

Stack for 0100
CY 33 —

Stack for 010

—> n
Stack for 01

— > CY 23

whereas in context 0111, it would have looked like

Stack for 0111 Stack for 011
zl _ -> c x 23 —

Stack for 01
-> CY 23

What are the values of X and Y in context 0111 ?

X has associated value 1, associated index 011, and the current index is
0111. We compare the the two indices; the current one is greater, so we
shift it right and it becomes 011; this is equal to the one associated
with X, so we know that the value 1 associated directly with X is indeed
its current value.

Y has associated value 3, associated index 0100. We compare this index
with the current one; they are not equal, and the current one is greater
than Yfs, so we shift it right and compare them again; the shifted index
is now 011, which is less than Y's index, so we know that the value,
associated with Y is no longer valid and we will have to search the
current binding stack. This includes the stack containing the entry fo
2 -> Y, so we will find the required value .

5. Refinements

There are a number of refinements to the above scheme which will improv<
its performance without altering its essential properties, as follows;

(i) if you have to search the stack for the value of a variable, it ts
probably worth updating its associated value and index to the value you
have just found and the current index. If you have just accessed
variable in a given context, you are pore likely to access it next ir
the same one or some direct descendant of it than in any one other
context, so it makes sense to ensure that you will be able to find th
value directly on this path rather than on the one you have just

Efficient Context Switching

switched from.

- 6 -

AtiS

Allan Ramsay

1988

<ii) in the discussion above, we said that every time you update a
variable you have to push a new entry onto the binding stack. In fact,
if you update a variable twice in the same context, the second entry
will permanently obscure the first. The first entry willthen simply
waste space and make searches of the stack for other variables take
longer. For this reason, instead of associating the current value
itself with the variable we associate the current stack entry. This
extra level of indirection has little effect on the access time, and
allows us to update the stack entry rather than adding a new one
whenever we repeatedly assign to a variable in the same context - a
particularly important consideration in view of the effects of a
fragment of code such as

repeat 100 times 1+1 -> I; ... endrepeat;

which would otherwise add 99 unwanted entries to the binding stack.

These refinements to the basic scheme can each be implemented without
introducing any change in its functional behaviour. If they are both to
be used within the same system, it is essential to note that entries
created by virtue of refinement (i) should not be overwritten when the
variable is next assigned, as described in refinement (ii).

£ Conclusions

The mechanism outlined above for saving and restoring arbitrary contexts
compares very favourably with previous systems with the same goal (6,
7) . Saving and restoring contexts becomes a trivial matter; assigning
values to variables takes a short, nearly fixed amount of time, as does
accessing their values except when you have switched into a context
which is incompatible with the one in which the variable was last
accessed or assigned. Admittedly, we require more space for storing
saved values than would be necessary if contexts were always switched
under a FIFO discipline. We do, however, make reasonably economic use of
space by ensuring that every context is built directly on top of its
actual predecessor, rather than on a copy of it, so that we do not store
unnecessary copies of information.

The mechanism has been implemented in P0P-11, but only to save and
restore the values of a user-specified set of global variables. As such
it has been used effectively to implement the "registers" of a back-
tracking ATN parser (1). It does, however, provide a complete
description of variable access and assignment, and hence could easily be
used for the temporary assignment of local variables during procedure
calls. Using the mechanism described here would inevitably be slower
than the techniques currently used, but it would greatly facilitate the
implementation of the state-saving required for more complex control
structures than simple call-and-return.

References

(1) R.M. Kaplan A general Syntactic Processor in "Natural Language
Processing", ed.l"- Rustin, Algorithmic Press 11973)

(2) G.J.Sussman & D.V.HcDer»ott CONNIVER Reference Hanual MIT AI Pe»o

Efficient Context Switching - 7 - Allan Ramsay

259 (1972)

(3) J. Allen Anatomy of LISP McGraw-Hill (1978)

(4) J.R. Meehan New UCI LISP Manual Lawrence Erlbaum Associates (1979)

(5) S. Hardy The POPLOG Programming System Cognitive Studies Research
Paper 3, Univ. of Sussex (1982)

(6) D.G.Bobrow & B.Wegbreit J* Model For Control Structures For AI_
Programming Languages IEEE Trans, on Computers (1976)

(7) J. Urmi A Shallow Binding Scheme For f a s t Environment Changing In J\
"Spaghetti TtacF1 TTISP System" CTTTRTAT-R-76-1 8 , Drvrv. of Linkoeping
(1976) "

