NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

X

COMPUTER SCIENCE DPPY.
TECHNICAL REPORT FILE

A NOTE ON EFFICIENT CONTEXT SWITCHING

A. Ramsay

Cognitive Science Research Report
Serial no: CSRP 023

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer

Brighton BN1 9QN

CARNEGIT-MELLOD UNivenniiy

PITISBURGH, PENNSYLVANIA 15213

gy, g e P S W e ey {ﬂw — - v@‘!!"
E.. Yog Ty » P ¥ P [

e " LS S | R

I G
IS : —_____.—_’

, P g

?EJ R |

¥
g

Carnegic |
Pittshurgh, Pen

Abstract

S5 X
023

5217 A Note On Efficient Context Switching

- ——— — — ———— — v — ——— —— — - ——
Tttt T Tttt 4+t 3 3+ + 3+ 1+

Allan Ramsay

Cognitive Studies Programme, University of Sussex, Falm
0273 - 606755 X:1008

3500 words, 12 pages

It is often convenient to be able to save and subsequently restore the
state of a computation. It is also, in general, rather expensive. We
present a technique whereby states may be saved and restored extremely
fast, and yet the information stored in a given state may be accessed
and updated reasonably quickly. This technique depends on an indexing
scheme which can be wused to see whether the last value assigned to a
variable is still valid, or whether it must be retrieved from some
previous context (and if so, which one).

1 The Problem

Al programmers, expert system builders, etc. frequently need to write
programs that explore Large search spaces. Such programs have to save
the state of the computation whenever they decide to investigate one
area of the search space rather than another, since they may make the
wrong choice and be forced to back up and try again.

The process of saving and restoring computational states is expensive in
two ways. It requires a large amount of memory (at worst a complete copy
of the process image for every saved state), and it takes time. The
costs may be diminished if we are content to save less than the entire
state, e.g. just saving the calling sequence, or just saving the values
of some predetermined set of variables. We are mainly concerned here
with this latter case, where the values of a specified set of global
variables are to be saved and restored (this restricted form of state |
saving has been widely used in Al - see for instance Kaplan's discussion
of ATN parsing for natural lLanguage (1), or CONNIVER's contexts (2)).
However, the mechanism described below will deal with arbitrary cases of
variable access and assignment, and could easily be adapted for contexts
which included the values of local variables as well as globals.

A number of implementations of this restricted form of state saving have |
been proposed, but they have generally suffered either from taking a|
long time to switch contexts, or from taking a long time to access the|
values of variables within a given context. We present below a technique
for context switching in which contexts may be saved and restored
extremely quickly, and yet on most occasions the value of a variable may
also be accessed without any search. :

2 Contexts vs. Stack Frames ; ;

The discussion of how to implement a state saving mechanism becomes
clearer if we relate our problem to that of saving and restoring the
values of dynamically bound local variables during procedure calls. Th
effect of such a procedure call is to save the current values of t
local variables, i.e. the current context;” do whatever processing
required; and then restore the saved context. This is exactly
problem we are dealing with, except that the contexts saved by proc

Efficient Context Switching -2- Al an Ramsay

calling mechanisns are always dealt with first-in first-out, whereas we
want to be able to restore arbitrary contexts, e.g. ones that were saved
after the one that is current, or ones that have been restored once
already but that we want to try yet again.

Procedure calling mechanisms save the current context by stacking the
values that are to be saved, and popping them when they are to be
restored. W cannot use this approach, since we cannot rely on contexts
being saved and restored in any particular order. W can, however, begin
to solve our problem by looking carefully at tw strategies that are
widely wused for binding values to variables, nanely deep and shallow
bi ndi ng.

All'en provides a detailed discussion of these strategies (3); all we
will do here is to summarise the main points as they relate to our
particular problem

In deep binding, all values of variables are kept on a single stack of
variabl e-value pairs. Assignment is done by pushing a new pair,
containing the relevant variable and its new value, onto the stack;

variable access is done by walking down the stack wuntil a pair
containing the required variable is found - the value in this par is
the nost recent, i.e. current, value of the variable; saving and

restoring contexts is done by saving the position of the top of the
stack to save the context, resetting it to that position to restore it.
Thus in this very pure form of deep binding, context swtching is
extremely easy, assignment is easy but wasteful of space, and access is
unacceptably sl ow

In shallow binding, each variable has a stack of values directly
associated with it. The current value of a variable may be accessed very
qui ckly, since it is sinply the top element of the associated stack, and
it my be updated by overwiting that element (not by pushing it on
top). However, context switching is rather [laborious, since it is
necessary to scan all the variables whose values have to be saved or
restored and either push a copy of their current wvalue onto their
associ ated stack (saving) or pop the current value off (restoring)..

In practice nost inplenentations use a conbination of these strategies

keeping saved values on a single stack and current values assogjated: .. .

directly with the variables (see for instance UCILISP (4) or POPLO6

(5)). In the reminder-of this paper we will adapt this technique for
context swtching where the sinple FIFO constraint of procedure calling
is not obeyed. ' A _

5 Full Context Switching rﬂﬁﬁw~%égrl%f-

For our task it is convenient to adapt'the bééic-strategies as follows:

(i) a context is still a stack of wvariable-value pairs (a bindi'ng
stack), but it now has associated wth it an index. W can use the
indices to see whether one context is a direct descendant of another. '

(ii) when we update a global variable we add a new variable-value pair
to the current stack, as in deep binding; and we associate the new val ue
directly with the variable, as in shallow binding; but we also associate
the index of the current context with the variable, so that we know when
the value was set.

Efficient Context Switching -3- Allan Ramsay

(iii) to save a context, we now simply save the binding stack and its
index; to restore it, we reset the saved stack and index to be the .
current stack and index. Thus all we need to do when we want to switch
contexts 1is to update the values of two global variables - there is no

geed to construct any new data structures or to transfer large blocks of
ata.

(iv) variable access is a Little more complex. The essential point is to
compare the index of the current context with the index that was stored
with the variable when it was last updated, using an algorithm described
below. to see if the variable's index is a direct predecessor of the
current one. If it is then the value associated directly with the
variable must be the required one, since the context in which it was
Last updated is a direct ancestor of the current one. 1If, on the other
hand, the index for the variable is not a predecessor of the current
one, then the variable must have been updated on some divergent branch
of the computation. In this case we will have to search down the current
binding stack to find the value we want.

To see what is going on, consider the following example:

C1: 3 ->Y;

CO: 1 =>X; 2 ->Y;

c2: 72X, ?Y

The above diagram represents a situation where 1 has been assigned to X
and 2 to Y in context CO; CO has been saved, and continued as C1, and 3
has been assigned to Y; and finally C1 has been saved, and C0 has been
restarted as C2. What are the current values of X and Y ? &

Clearly the value directly associated with X, d.e. the value most
recently assigned to it, is 1. This value was assigned in C0, which is a
direct ancestor of the current context, and hence is the value we want. '

The .value currently associated with Y is 3, the value assigned in C1. C1|
is not a direct ancestor of €2, so this value is not correct?in‘tZJ
Hence we will have to search down the the binding stack for €2 for the
required entry. C2's stack is built on top of CO's, so the first value
we will come to is 2, as required. i

This all sounds very long-winded. The crucial point is the construct
and comparison of dindices, since if this can be done quickly th
many cases We can access variables almost as fast as 1if they.
shallow bound in an environment with simple FIFO context switching,
we Wwill never do worse than orthodox deep binding.

4 Indexing Contexts

Suppose we are just starting work, so the stack is empty, the <index
1, and all the wvariables are idnitialised with the standard v*
"undefined” and index 1. We do some work, updating the stack and

variables as we go, and eventually arrive at a decision point, where
want to save the current state of affairs for Llater while we explo

Efficient Context Switching =4~ Allan Ramsay

some hypothesis.

At this point we need to create two contexts, namely one to save for
later and one to make immediate use of. For each we initialise the stack
as a list containing nothing but a pointer to the current binding stack,
so that the binding stack in any given context is in fact a chain of
partial stacks. We obtain their indices by doubling the current index,
and adding 1 to it for one of them and not for the other. At this point
we have created two contexts, with stacks equivalent to the original and
indices 010 and 011 (binary), simply by copying a pointer and doing some
trivial arithmetic.

As we continue to spawn contexts we will grow a tree of them with
indices marked as below

0100
|
010 |
' |
| |
| 0101
01 |
-r e = . |
| 0110
|
011 I
|
|
| 0111
|

It is now easy to see if one index, I1 say, is a direct predecessor of
another, 12. We simply keep comparing them and then shifting I2 right

one place until either they are equal (I1 is a direct predecessor of 12)
or I2 is less than I1 (I1 is not a direct predecessor of I12).

This gives us what we needed - a rapid algorithm for generating dindices
(shift the old one Left one place, use this for the state which is to be
saved and add 1 for the one which is to be continued), and a rapid
algorithm for comparing indices (repeatedly shift right and compare).

To see again how this works out, suppose that as we grew the above tree
we had done the following assignments to X and Y.

Efficient Context Switching =5~ Allan Ramsay

SSX 023 c.1 I ->Y

Ramsay,

Allan,
A note on efficient context
switching /

§_Refinenents

2 ->Y

1->X

?2X, ?Y

In context 0100, the chain of partial binding stacks would have

Looked Llike

Stack for 0100 Stack for 010 Stack for 01
LYy 33 >] > Ly 2]

whereas in context 0111, it would have Looked Like

Stack for 0111 Stack for 011 Stack for 01
L3 > [X 2] ========> [Y 2]

What are the values of X and Y in context 0111 ?

X has associated value 1, associated index 011, and the current index is
0111. We compare the the two indices; the current one is greater, so ue!
shift it right and it becomes 011; this is equal to the one associated
with X, so we know that the value 1 associated directly with X is 1ndeed
its current value.

Y has associated value 3, associated index 0100. We compare this index
with the current one; they are not equal, and the current one is greateﬂ
than Y's, so we shift it right and compare them again; the shifted index
is now 011, which 1is Lless than Y's index, so we know that the value
associated witl s no longer valid and we will have to search the
current binding stac ncludes the stack containing the entry for
2 -> Y, so we will find the required value . ‘

There are a number of refinements to the above scheme which will inpr?f?
its performance without altering its essential properties, as follows; |

(i) if you have to search the stack for the value of a variable, it #s
probably worth updating its associated value and index to the value you
have just found and the current index. If you have just accessed

variable in a given context, you are more Llikely to access it next in
the same one or some direct descendant of it than 4in any one other
context, so it makes sense to ensure that you will be able to find the
value directly on this path rather than on the one you have just

Effi'cient Context Switching -6- Allan Ramsay

TR

_ 3 8482 DOY453 9017

<ii) in the discusston above, we said that every time you update a
variable you have to push a new entry onto the binding stack. In fact,
if you update a variable twice in the same context, the second entry

sw'tched from AtS 2 5 1988

wll permanently obscure the first. The first entry will'then sinply
waste space and make searches of the stack for other variables take
| onger . For this reason, instead of associating the current value

itself with the variable we associate the current stack entry. This
extra level of indirectifon has little effect on the access time, and
allows us to update the stack entry rather than adding a new one
whenever we repeatedly assi'gn to a variable in the same context - a
particularly inportant consideration in view of the effects of a
fragment of code such as

repeat 100 times 141 -> I ... endr epeat ;
whi ch woul d otherw se add 99 unwanted entries to the binding stack.

These refinenments to the basic schene can each be inplenmented wthout
introducing any change in its functional behaviour. If they are both to
be used within the same system it is essential to note that entries
created by virtue of refinement (i) should not be overwitten when the
variable is next assigned, as described in refTnement (ii).

£ Concl usi ons

The nechani sm outlined above for saving and restoring arbitrary contexts
conpares very favourably wth previous systens with the same goal (6,
7). Saving and restoring contexts becomes a trivial nmatter; assigning
values to variables takes a short, nearly fixed amount of time, as does
accessing their values except when you have switched into a context
which is inconpatible wth the one in which the variable was |ast
accessed or assigned. Admttedly, we require nore space for storing
saved values than would be necessary if contexts were always swtched
under a FIFO discipline. W do, however, make reasonably econom c use of
space by ensuring that every context is built directly on top of its
actual predecessor, rather than on a copy of it, so that we do not store
unnecessary copies of infornmation.

The mechani sm has been inplemented in POP-11, but only to save and
restore the values of a user-specified set of global variables. As such
it has been used effectively to inplement the "registers" of a back-
tracking ATN parser (1). It does, however, provide a conplete
description of variable access and assignment, and hence could easily be
used for the tenporary assignnent of local variables during procedure
calls. Using the mechanism described here would inevitably be slower
than the techniques currently used, but it would greatly facilitate the

i npl enentation of the state-saving required for nore conplex contro

structures than sinple call-and-return.

Ref erences

(1) RM Kaplan A general Syntactic Processor in "Natural Language
Processing", ed.|"- "ROSTTNn, Argorithmc Press 11973)

(2) GJ.Sussman & D.V.HcDer»ott CONNI VER Reference Hanual MT Al Pex»o

Efficient Contexf Switching -7- Allan Ramsay

259 (1972)
(3) J. Allen_ Anatony of LISP MGawH Il (1978)
(4) J.R Meehan New UC LISP Manual Law ence Erlbaum Associates (1979)

5) S. Hardy_The POPLOG Programmng System Cognitive Studies Research
Igaper 3, Uni v 0of SUSSEX (15%2)

|S6) D.G Bobrow & B.Wegbreit J* Mdel For Control Structures For A
rogrammng Languages |EEE Trans, on Conputers (19/6) A

(7) J. Urmi A Shallow BindIng Scheme For f®st Environment Changing In_ J\
"Spaghetti TtacE' TISP stem’ CTTTRTAT-R-76-18, Drvrv. of Linkoeping
(1976) b

