NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

a

>

COMPULTER SUIENCE Lkd
TECHNICAL REPORT FiL

COMPREHENSION BY MODEL-BUILDING
AS A BASIS FOR AN EXPERT SYSTEM

J.L. Cunningham

UMIVERSITY LIBRA
CARNEG?E-MEHO&! b"x"éﬁ’;
EITTSBUR%H, PENNSYLVAN

Cognitive Science Research Paper ‘
Serial no: CSRP 025

The University of Sussex
Cognitive Studies Programme
School of Social Sciences ‘
Falmer

Brighton BN1 9QN

ROOM USE ONL
?~§“3;;7; ¥ .

— 1aY

2,
TN

¥

Uingycniy Libaties

Carnegme Maollon Universily 65 X
PittsiCRh, »'opraw/t> iYt3 -

COMPREHENSION BY MODEL-BUILDING AS A BASIS FOR AN EXPERT SYSTEM

Abstract

This paper describes how a program designed to build a model (in the
formal Llogical sense) can be used as the inference component of an
Expert System. Some details of an existing program to do the model
building task are described. This program works with a powerful many
sorted Logic. Use of a many sorted logic has computational advantages
for this task, and these advantages also carry over to the use of the
program as the inference component of an Expert System. In addition,
some advanced features of the existing program form the basis for a
non-numerical handling of uncertain knowledge.

1. Introduction

This paper describes the model building problem in section 1. It then
briefly describes a sorted first order calculus of great expressive
power, which is the formal language used by an existing model building

program. This program is described in section 2.

Section 3 discusses the salient features of Expert Systems, and section

4 relates these features to the existing program described in section 2.

Further sections then go into greater detail on the major issues raised

in section 4.

1.1 The Model Building Problem

This section starts with a very brief and informal description of the
nature of a logical model. For a formal description of a model, see any

introduction to symbolic logic, for example L[Tapscott, 1976].

nodel Duiiding as Expert System February 10, 1984

1.1.1

In what follows, the word "expression™ is used loosely to mean either a
term or fornula, and “formula" a "well formed fornula with no free
(unquantified) variables". (The objection to free variables is not part

of the theory, but is a personal preference.)
I will call a collection of logical fornulae a theory.

If (and only if) fornulae of a theory are nutually consistent, then it
is possible to find a mapping of a certain kind from expressions of the
logic into (the union of) two sets. One set is the set of the booleans,
and the other set | wll call the universe (this set can even be the set
of expressions of the logical |anguage). The mapping nust be such that
terms of the logic are mapped to elenents of the universe, and fornmul ae
are mapped to the booleans. In particular, the fornulae of the theory
must be mapped to true. In addition, it should be possible to construct
the value of the mapping for conpound expresions from the values for
atomc expressions in a way Wwhich corresponds to the meaning of the
fornul ae. For exanple, if the mapping for two propositions P and Q 1is
determned (either because they are atomc, or by applying this
procedure recursively), then the disjunction of P and Qwill be mapped
to the boolean true if either or both of P and Q are mapped to Q and to

false otherwise. Simlarly for other [logical connectives, and for

quantifiers.

Here is an exanple: suppose the universe includes three elements K L
and M. If " and J* are constant synbols in the logic, and j¢* and " are
mapped to the elements j< and L respectively of the wuniverse, then
mapping the ternms f(k) and f (1) to the elenments L» and M' respectively

woul d require that f(f(k)) also be mapped to M.

Mdel building as Expert System February 10, 1984

Such a mapping, together with its universe, is called a model (renenber
that the mapping nust map formulae of the theory to true). If no node
exists, then the fornulae are inconsistent. A nodel for some collection

of formulae is said to satisfy the fornulae.

1.1.2

A model, in the sense used by this paper, can be viewed as a snal
database. This database nust have two properties: firstly, all the
facts in the database nust satisfy a set of constraints, and secondly,
the database nmust be conplete enough that it would be inpossible to add
any new facts to the database which violated the constraints wthout
directly contradicting facts already present in the database. To
illustrate what | mean by "directly contradicting', and as an exanple,
suppose that a database contains facts of the form™ is male™ or ™ is
not male" or "X is femle™ or ™ is not female™ (where X stands for
either of the names "Mary" or "Lesley). Further, suppose that the only
constraint is that someone can not be both male and female. Now, we will

consi der three possible databases:

(1) "Lesley is male"

"Lesley is female"
This could not be a model, because it violates the constraint.

(2) "Mary is female"

"Lesley is not fenale"

This does not violate any constraints but it is not a nodel because it
s possible to add another fact, e.g. "My is male", which does not
directly contradict a fact already in the database but does violate the

constraint. However, it is possible to extend the database (2) to give

roagetL bdbuililaing as cxpert osystem redbruary 1Y, 17054

(3) "Mary is female"
"Mary is not male"
"Lesley is not female"

"Lesley is male”

This database does not violate the constraint. Facts such as 'Mary is
male" which would violate the constraint are explicitly contradicted by

facts already present in the database (in this case "Mary is not male".)

1.1.3

The model building problem is to find a model for a given consistent set
of formulae (and to report failure if given inconsistent formulae). I
shall modify this notion of a model in the model building program to be
described 1in section 2. Under this modified formulation, the model
building problem is to take a set of constraints and an initial
database, and to extend the database until it is a model, as the example
(2) was extended to give (3) (in section 1.1.2). Notice that it was
necessary to restrict the possible values of "X" in the description of
allowable facts, otherwise it would still have been possible to add
facts to violate the constraints. For example we could have added the

facts "John is male'" and "John is femate".

The effect of this modification is that I shall regard as a model a
universe plus a representation of a mapping which is minimal in the
sense that a full model could be generated from this model by the
process described in section 1.1.1. For example,a minimal representation
of the mapping for the example in section 1.1.1 would include explicitly
a mapping from the symbols k and L, but would represent mappings from

terms such as f(k) and f(f(k)) by mappings for expressions such as f(K)

and f(L). (Note that these are not necessarily expressions of the

Model building as Expert System February 10, 1984

original logical language, since K and L need not be symbols of the
language. 1 assume that if elements of the universe occur as constants

in the language then they are always mapped onto themselves in any

model.)

In a first order lLogic with only a finite number of non-logical symbols,
if the universe of some model 1is finite, then the model itself is
finite. For some sets of formulae no finite model exists - even though
there may be infinite models. This possibility Llends intuitive
plausibility to the following (true) assertion "Determining whether an

arbitrary set of logical formulae 1is consistent is not a computable

problem (not decidable)'.

It is well known that only semi-decision procedures exist for first
order logic, 1i.e. that it is possible to find a proof of a theorem
if one exists, but that it is not a computable problem to determine
whether a proof exists. Existing algorithms may not terminate for
some formulae which are not provable. The assertion above follows

from this, since if a theorem 1is not provable its negation is

consistent.

Since the general problem is uncomputable, I have restricted myself to
finding finite models for sets of formulae. For any given finite
universe this problem can easily be shown to be equivalent to
determining consistency in the propositional calculus, and is therefore
decidable. However, for the problems of interest, the search space for
most simple algorithms becomes enormous, and heuristic techniques must
be used. In section 2, I will describe a program to do this task for

formulae of a sorted logic.

The task of model-building must be contrasted with theorem proving,

model building as Expert System February 10, '7**

al though there is sone overlap

1.2 Sorted Logic

A sorted logic is one in which allowable nodels are restricted so that
terms cannot be mapped to arbitrary elements of a universe. Instead, the
universe is divided into subsets called sorts. Exactly how this division
into sorts is wused to restrict allowable nodels differs in different
sorted logics. (ne commn way to use sorts is to introduce quantifiers

for each sort, so that whereas an unsorted fornula
(x) PCxD

mght be read as "for all X, X is P, or nore informally "everything is
P', the corresponding sorted quantifier could be read as "for all X in
sort S Xis P', or nore informally as "every S is P'. This last
rendering immediately suggests that such a sorted logic mght be
reducible to an unsorted logic, by replacing the sorted formulae with

corresponding unsorted formulae. The exanple could be replaced by:
(x) Sl => PCx]

Thi's suggested reduction of an axiom system in a sorted logic into an
equi val ent unsorted system so that there is a one to one correspondence
between the possible nodels for both systems, is always possible, by
systematic transformations |like that in the exanple above. There are
al so other systematic ways to achieve this reduction. However, a sorted
logic has greater expressive power (is nore concise), plus additiona

conputational advantages (see section 5.1).

An alternative, which is equivalent to having sorted quantifiers, is to

have sorted variables. The effect is much the sane.

Model building as Expert System February 10, 1984

Most references to sorted logic assume that the sorts will be disjoint.
Pat Hayes, in [Hayes, 1971], describes a particularly expressive sorted
logic which allows non-disjoint sorts. In addition, instead of sorting

the quantifiers or the variables explicitly, he proposes a sort function

specifying the sort which the value of a functional expression may be in
for each combination of sorts for its arguments. This sort function may
be partial. By including predicates in this scheme, (and including
booleans as part of the universe), he specifies that a formula is only
well-formed if its sort can be determined. Variables are allowed to
range over any values for which the formula is well-formed. It is a
variant of this last form of sorted logic that is used by the program

described in the next section. This Llogic is also used by A G Cohn

{Cohn, 19831.

2. The Existing Program

A program has been built to build a model to satisfy a given
(consistent) set of axioms. This section discusses some features of this
program; these features are referred to in section 4 -- the discussion

of using this program as the kernel of an expert system.

2.1 The Logic

2.1.1

The program uses a powerful sorted logic like that described at the end
of section 1.2. This use of sorted lLogic allows a given problem to be
axiomatised more concisely than in conventional unsorted logic, although
it 1is necessary to specify the value of the sort function for the
function and predicate symbols used in any particular probltem. Even so,

there is a net improvement in clarity and conciseness for all but the

model building as Expert System February 10, 19t

most simple problems. (The program is designed to work with tens ¢
axioms, rather than a few. For such problems the improvement in clarif

and conciseness is much greater than for only a few axioms.)

2.1.2

This representation language is used internally by the program, that i
it is not reduced to some primitive normal form such as Horn clause:
ALL the usual logical connectives are allowed, plus some unusual on
(for example, there is a "partitioning" connective, see section 2.1.4.
Most connectives are not treated as binary connectives, but have

natural n-ary form. Thus
(P <=> Q) and (@ <=> R) and (R <=> 9)
may be written as

P <=>Q<=>R<K=>S

If the propositions P, @, R and S were themselves complex, there wou
be an even greater computational saving in treating the equivalen
connective as n-ary. (Consider also the representation of the abo
expression 1in Disjunctive/Conjunctive normal form - even assuming t

propositions are atomic.)

2.1.3
Function symbols as well as predicate and relation symbols may be use
This allows a natural representation of one distinction between '"th

and "a" in English. Thus a Moslem might say:
Altah = god()

where a Hindu might say

Model building as Expert System February 10, 1984

God(Allah)

More specifically, the use of a function symbol is a convenient way to

represent that there is only one of something.

This example also illustrates another unusual distinction made 1in the
logic used by this program: there is a distinction made between
constants and functions of no arguments. Informally, this distinction
corresponds to the distinction between two kinds of singular definite

noun phrases as made by, for example, Donnellan [Donnellan, 19661.

The constant symbol corresponds to a referential noun phrase, it refers
to a known referent: in the program, the constant symbols are the same
symbols that are used for elements of the universe. The symbol, used as
a formal Language symbol, always refers to itself as a universe element.

This is, a notational and implementational convenience.

The function of no arguments corresponds to an attributive noun phrase,
it refers to some unknown referent. This referent must be one of the

elements of the universe, but exactly which one is unknown until a model

has been successfully built.

This distinction could be helpful in implementing a natural Llanguage
interface to the program. This point is related to sections 4.1 and 4.6

and will be dincluded in a Llater memo discussing natural Language

interfaces to sorted logic.

2.1.4 Non-standard features

Finally, in this section, brief mention of two unusual features.
Firstly, the formalism allows use of a "partitioning"” connective. Hayes

[Hayes, 1979] calls formulae resulting from this connective "taxonomies"

Mdel building as Expert System February 10, 1984

by analogy wth classification. | shall refer to such fornulae as
"partitionings". The partitioning connective (like nost of the

connectives used in this system is n-ary. As an exanple

PILftII RIT'S

is a partitioning of P, Q Rand S, where P, Q R and S are boolean

val ued formul ae.

The neaning of this exanple formula is that exactly one of the four
sub-formulae holds (is true). If none of them are true, then the
partitioning has the value "false". Thus we could have the follow ng
"taxonomy":
(x). Vert ebrat eEx|
<=> (Mamal Ex]
*I Bi rdCxD
| ReptileCx]
|| FishCx]
|1 Anphi bi anCxD)
No value is defined when nore than one of the sub-fornulae is true, so

such a partitioning would be ill-formed.

The other non-standard feature is the use of "generalised quantifiers"
These are a generalisation of the usual logical quantifiers, again to
increase the expressive power of the language. They wll not be
discussed further in this paper, for more information see [Cunningham
1984] .

Both the above features are reducible to equivalent first order

expressions with the usual connectives and quantifiers.

Model building as Expert System February 10, 1984

2.2 Control

The purpose of the program is to accept a collection of axioms, and to
generate a database representing a possible model for the axioms. The
program takes as input sort structure specifications for the universe,
sorting functions (see section 1.2) for the predicate and function
symbols of the language, a collection of axioms and, optionally, some
initial fragment of the model. Then the program works by checking that
axioms evaluate to "true". Since a given atomic expression may have
different values in different models, it is not possible to infer every
value in a model. So the program assumes values for some atomic
expressions, when they are not otherwise constrained. It doesn't assume
a value for some expression if the value of the whole expression can be

determined without it. For example, if, evaluating the expression:

P and @ and R and S

the program discovers that, say, R evaluates to '"false" it is

unnecessary to evaluate, or assume values for, any of the other sub-

expressions.

The checking process 1is necessarily fairly simple (for efficiency
reasons), so this assumption of values can occur even when,
theoretically, the value is determined by the requirement for a
consistent model. Consequently, it is possible to have two contradictory
assumptions. In these circumstances, the program starts reasoning at a
"meta-level”™ about the various assumptions it has made, in order to
decide which of them to reject. When it rejects an assumption, a form of
"truth maintenance" 1is necessary U[Doyle, 19781, because the value of
other formulae in the system will be contingent upon the rejected

assumption.

Model building as Expert System February 10, 1984

3. Requirements for an Expert System

The task an expert system must perform can be seen as very similar to
the task this model building program must perform. Here I define the

requirements of an expert system:

3.1

It must accept general domain specific knowledge in a form conveniently
specified by a human expert. In many earlier systems this knowledge is
effectively in the form of "IF ... THEN ..." rules, that is, rules with

some condition and a consequent action or inference, although these

rules may be organised into a network.

3.2
It must be able to accept volunteered information about a particular
problem within that domain. This volunteered information should be

acceptable at any time in the "expert” consultation.

3.3

It must ask questions when it would benefit from being given the answer,
but it should also be able to continue if no answer is available. Also,
it should be able to accept an indirect answer. By this I mean that the
user of the system should be able to volunteer information in answer to
a question (as specified in point 3.2 above), and if this information
makes it unnecessary to obtain a direct answer, it should not re-ask the

original question.

Mdel building as Expert System February 10, 1984

3.4

3.4.1

Answers to questions and volunteered information nay be uncertain or

inconplete. An expert system should allow this, and be able to make

sensi ble use of such infornation.

3.4.2

The human expert's know edge may be heuristic and even inconsistent. In
particular, the use of defaults should be permtted. An exanple default
rule is "Al people have two |egs™, which could be disregarded in cases
which were exceptions. An expert systemwith such a default rule shoul d

accept a statement like "Long John Silver has only one |eg".

3.5

An expert system should be able to explain its reasoning. By this, |
nean two things. Firstly, it should be able to provide a justification
of any conclusions it reaches (either intermediate or final). Secondly,
it should be able to describe what inferences can be nade from a

particular piece of know edge, and hence what use mght be made of the

answer to some question the system has asked.

Both these kinds of explanation should be in a form conprehensible to a
human, although it is acceptable that the human has to be expert in the

application domain in order to understand the explanation.

3.6

This is a related requirement. \Wen the system asks questions there
should appear to be some purpose to them The system should not appear

to be asking unrelated questions. This is «clearly an inportant

Model building as Expert System February 10, 1984

requirenent when the system is being used by a human expert (and hence
when a system is being devel oped), but | amnot sure to what extent this
requirenment would be necessary if the system were being used by someone
unfamliar with the problem domain. (Wuld a person unfamliar wth a
given problem domain be able to understand the point of questions a
human expert would regard as relevant? If not, they couldn't be
concerned by apparently irrelevant questions, since for them all the

questions woul d seem obscure.)

3.7

The system should be able to work in conjunction with a human expert, so
that at one stage the system mght take the initiative but a human
expert could advise the systemthat it was working on an incorrect

hypot hesi s, and the human could suggest an alternative strategy

% Using the Mbdel Buil der

| shall consider each of these points in relation to using ny existing

nodel -bui I ding program as an expert system

4.1

The particular sorted logic used here is a convenient formalism in which
to express expert rules. Any statement expressible in the full first
order predicate calculus is expressible, so the system can accept
informtion in a nore convenient form than most current rule-based
expert systems. In particular, the "generalised quantifiers", referred
to in section 2.1.4, allow easy expression of some classes of statenent
which are normally awkward to represent in a predicate calculus. It is

not, of course, inmmediately suitable for use by someone unfamliar wth

Mdel building as Expert System February 10, 1984

formal logic. However, it is a tractable research problem to translate
highly domain specific natural |anguage into this sorted logic and the
task is made easier by the interactive nature of an expert system
Gobviously this statement could be contentious, and | intend to nmake it
the subject of a later meno. There is a related problem here wth

natural |anguage output - see section 4.6 below.

4.2

Since the program works by building a nodel satisfying sone initia
fornulae, there is no difficulty in adding volunteered informtion to
the nodel before building comences. Once the programis in operation it
my rmake assunptions, either using defaults or as working hypotheses.
Vol unteered information can conflict with such assunptions, but this is
no harder to deal with than conflicts between internally inferred data

and assunptions. The existing program mechani snms can cope unchanged

4.3

Only a primtive formof question asking has been provided in the

existing program

4.4

4.4.1

The program already distinguishes between known facts and assunptions,
thus it already distinguishes between certain and uncertain know edge.
It may be desirable to extend the range of possible "certainties" wth
which the program works. This could, if desired, be done nunerically by
associating nunerical "confidence" values wth the inferred and

hypot hesised data. A more interesting approach lies in wusing the

nodeL DUILAINg as expert osystem reoruary v, 170%

system's meta-reasoning capabilities. This 1is discussed further in

section 4.6 and the section on control strategies (5.2) below.

4.4.2

The program distinguishes between two kinds of knowledge. The first
kind, corresponding to expert domain knowledge, consists of 'axioms'.
These are well formed formulae in the full sorted Llogic. (The program
also needs to be given information about the sort-structure assumed by
these axioms.) The other kind of knowledge corresponds to ‘'facts' about
a particular problem within the domain. For the program, this would be a
specification of part of the mapping from atomic propositions and terms
to the model. At present, the program only allows uncertainty in this
second kind of knowledge, and it requires definite ‘axioms'. The
modification to the program to enable it to use default axioms, and

uncertain axioms, is again fairly straightforward.

There is a real distinction between "uncertain" axioms and "default"
axioms. The difference Lies in the effect of discovering some fact (or
assumption) that contradicts the axiom. As an example, consider the

axiom "all birds can fly":
(x).Bird[x] => Can_fly[x]

Suppose the universe contains three birds: an owl an eagle and an
ostrich. What should be the effect of discovering that the ostrich

cannot fly?

If the axiom is (to be used as) a default, then we simply dis-believe

that the ostrich can fly. It 1is as 1if the axiom 1is a concise
representation of three separate assumptions: that the owl can fly, the

eagle can fly and the ostrich can fly. The assumptions are unconnected,

Model building as Expert System February 10, 1984

so discovering that one is wong has no effect on the others.

If the axiomis uncertain, then discovering one exception may cause

conplete loss of confidence in any inference fromthe axiom Suppose we

think it possible that "all pigs have wings':
(x)PigCx3 => Has_wi ngsCx]

W then encounter Porky the pig, and discover himto be wngless. This

coul d shake our belief in the wingedness of the pigs Pinky and Perky.

Wien the axiom is quantified over more than one variable, the
possibilities get nore conplex. As a further conplication, we nmay w sh
to have a spectrumof possibilities between the "default™ kind of axiom
and the "uncertain™ kind of axiom Aternatively, the "default™ and
"uncertain" properties can be considered as distinct notions so that,
for exanple, if we know nothing about whether birds fly, and the first

bird we discover is an ostrich, we may postulate an wuncertain default

axi om
(x).BirdxxD => not CanJl yCxD

The notions of uncertain and default axionms need further consideration.

4.5

In order for the programto have a formof truth-naintenance system it
nust record reasons for all of its beliefs. Thus, in order to justify
any given assertion to a human user, it is able to refer to the rules,
data and hypotheses on which that assertion is based. Ideally, a natural
| anguage description of, say, a rule would be generated fromthe actual
sorted logic fornula representing that rule. This would be in contrast

to nost existing expert system technology which requires an "explanation

model building as Expert System February 10U, 1764

text" to be associated with each rule, although there are exceptions.

4.6

Making the system ask apparently purposeful questions 1is perhaps the
most challenging part of the task of modifying the existing program. At
present the program has a very simple control strategy, and although a
simple question asking modification has been added (mentioned in 4.3
above), that will ask a group of related questions for one rule, there
is no control over how it chooses rules to consider. However, this
control problem has been considered in the design of the program. When
the program discovers an inconsistency 1in its hypotheses, it starts
reasoning at a meta~level (using the same mechanisms as for the original
problem). At this Llevel it 1is reasoning about the assumptions and
symbols used for the original problem. It is not until a consistent
meta-model has been found for the original problem that the original
problem can be resumed. Thus the making of an assumption 1is determined
by procedures working 1in the problem domain but these procedures can
access the meta-level database to determine how to make an assumption.
An assumption can only be rejected after doing some meta-level reasoning

about that assumption and its relationship with other assumptions.

The natural way to handle control questions in this framework would be
for the control decision procedures to be influenced by the facts and
hypotheses about the non-logical symbols of the problem domain which are
present in the meta-level database. Since the mechanisms used in the
meta-domain are the same as those used in the problem domain (implying
the existence of a meta—-meta-domain), there could be interaction with
the user about the meta~domain. Also, the program would be capable of

making assumptions about axioms from the problem domain. It might even

Mdel building as Expert System February 10, 1984

conclude that sone default rule should never be wused! Such neta-
information, being about general rules and defaults, could be allowed to
persist fromone specific problem in the domin to another: thus
providing a Ilimted Ilearning capability. These issues are still being

investigated, but there is some discussion in section 5.2,

4.7

The requirement of section 3.7, for interactive operation and contro
gui dance, is naturally provided by the strategy discussed in section
4.6. The neta-domain is concerned wth the relationships between
assunptions, rules and facts, and with issues of control. It works in
exactly the same fashion as the original problem domain, so requirenent
3.7 can be reduced to requirement 3.2 at the meta-level. Notice also
that every time a difficulty is encountered with the inference process
at the problem level (such as a contradiction between assunptions), a
consistent resolution of this nust be found at the meta-level. This, as
wel| as resolving the conflict, mght very easily result in a different
consi stent model of the best control strategy for the problem domain. I|f
the system described this consistent control strategy, it would be
keeping the user informed of just what it was trying to do - in fact,

the wuser could have been participating in the formation of the contro

strategy.

5. Discussion

In this section | return to those points, above, which needed further
exposi tion.

Wdel bunding as Expert System February 10, 1984

5-1 Conputational advantages of Sorted Logic

This section only discusses the conputational advantages of sorted
logic, although there are other advantages for a human user. There are

three main conputational advantages:

5.1.1 Conciseness

Since shorter expressions may be used in the sorted logic than if the
extra information derived from the sort structure had to be added
explicitly, there is a conputational saving sinply because the know edge
represented takes less space. Also, it is possible to "traverse" through
the sub-fornulae of a small formula nore quickly than through a larger
formula, so there are time savings as well. (This assunes sonme sensible

representation of the sort information.)

5.1.2 Separating the sort information

Sort information is supplied to the program separately from the sorted

axionms. This is an advantage for two reasons.

Firstly, it is easy and natural to inpose a sort structure on a problem
domain. Wen this is not done explicitly (as in an unsorted logic), the
know edge this enbodies nust still be present but is scattered amongst
the other pieces of knowedge. The separation of the sort structure
enabl es the automated checking of the consistency of the sort structure.
It does not seem necessary for this part of a problemto be specified

with uncertainty or defaults.

Secondly, since the sort information relates to the whole problem
domain, rather than to individual problems in the domain, this autonated
checking need only be done once. If the sort information were mxed in
with other information, it would effectively be checked as part of the

nmodel - bui I ding each time the system tackled a new probl em

Model building as Expert System February 10, 1984

5.1.3

Unlike theorem proving, building a model may involve checking the values
of formulae with many different substitutions of universe élements for
variables. Suppose, in a simple problem, there were five disjoint sorts,
each with four universe elements. Then an axiom universally quantified
over three variables could have (4 x 4 x &4 = 64) possible substitutions.
In principle, it seems that it may be necessary to check that the axiom

holds (is true for) each of these sixty four substitutions.

The equivalent unsorted axiom, as well as being longer, would still have
three universally quantified variables, but each of these could now
range over the whole universe, giving (20 x 20 x 20 = 8000) possible
substitutions. Even though most of these would be trivially true
(because they would correspond to inappropriate substitutions of

variables), it would still be computationally expensive.

5.2 Control Strategies

The program works by attempting to ensure that all the axioms it is
given evaluate to "true". The control problem is to determine what order
it does things in order to achieve this. At present, only a Llimited
number of simple heuristics are 1in use, but the system has existing

mechanisms to enable it to use '"meta-reasoning” to guide a control

strategy.

There are two constraints on the control strategy. The first constraint
is that the program should be reasonably efficient. The second
constraint is that described in section 3.7: that the system should

appear to ask sensible questions.

Moael buillding as Expert System February 10, 1704

5.2.1 Efficiency

There is only one important requirement necessary to achieve efficiency:

the program should not make incorrect assumptions.

To avoid incorrect assumptions, the program can partly rely on
heuristics, but must mainly rely on not making any unnecessary
assumptions. For this reason, the program works in one of four 'modes"
of operation, switching between them as necessary. The modes are called
"s', "U", "D" and "A". In modes "D" and "U" the program does not make
any assumptions, and only in modes "D" and "S" does the program make

inferences. Mode "D" is the preferred mode of operation.

The main efficiency gains could be achieved by evaluating axioms in some
optimal order, and by changing modes optimally. (If it is necessary to
know a value for some term but the actual value is unimportant, then it
is better to assume some value, which can only be done in modes "S" or

"A", than to continue to attempt to infer the value in mode "D".)

5.2.2 Sensible Questions

I conjecture that a good control strategy, if determined using the
meta-reasoning capability mentioned 1in section 4.7, would also be
"sensible"” in the sense that it would tend to discover contradictions
between assumptions as soon as possible, and hence to ask questions
which were related. To do this well might require the ability to switch
from evaluation of one axiom to evaluation of another axiom which had
terms in common with the first axiom. At present, the program can
perform this switch of axioms after doing some meta-reasoning. However,
there is no clever method of determining which axiom to consider next:

only simple heuristics are used at present.

The system is designed to allow its control strategy to be influenced by

Mdel building as Expert System February 10, 1984

its neta-1evel reasoning

5,2,3 Meta-|evel Reasoning

As inplied in section 4.7, the system can switch to a meta-level copy of
all its data-structures, in order to reason _.abaut the problem domain as
opposed to reasoning jta the problem domain. Certain procedures, nost
notably those controlling the making of assunptions, can access the
neta-level in order either to add information (e.g. about a new

assumption), or to inspect data-structures (e.g. to guide what

assunptions to make).

At present, this nechanismis not used by the control structures, but

there would be no difficulty in using the existing mechanisms for this
pur pose.

5.2.4

This nmeta-level reasoning capability seems likely to be nost useful when
nore realistic expert domains are investigated, which involve different
kinds of uncertain know edge. For example, it may be wuseful to use
"defaul t ' axi oms before making any assunptions about the values of terms
occurring in such axions, but perhaps "uncertain® axioms should only be

used after all other axionms have bheen consi dered.

There is also scope for generalising the notion of "nodel: for exanple,
finding partial models wusing only nodes "0" and "U" (i.e. no
assunptions). There could be different kinds of axiom those which are
conpletely satisfied by a model, requiring evaluation in all four modes;
and those only used to restrict the model for the first kind of axiom

and eval uated only in modes "D" and "U™

The exact status of any axiom would be represented as a neta-leve

Model building as Expert System February 10, 1704

assertion. Since the meta-level works in the same way as the problem
level, this representation strategy allows for the status of axioms to

be Left undefined, and hence assumed by the program.

6. Conclusion

It has been shown that there are definite similarities between the
inference part of the task that an expert system must perform, and the
task of constructing a model satisfying a collection of Llogical
formulae. Whether or not the greater generality of the model building
task must impose too great a barrier to efficiency of the system when
used as an expert system 1is an open research question, although the

lines of research described in section 5.2 would suggest that it is not.

There are definite advantages to be gained from using formal Llogic as
the basic representation Language of an expert system. These Lie chiefly
in the well-defined semantics for formal logic, which would allow clean
interfaces between the inference component of an expert system, and
other parts of the system: the natural Llanguage interfaces and the
control component. Other systems (such as automatic planning, or theorem
provers) could also be cleanly interfaced. This paper has also assumed
that translation between sorted logic and natural language is relatively
tractable, although it was beyond the scope of the paper to present the

supporting arguments.

Use of Llogic in the control component of the system allows the
elimination of the ad-hoc numerical computations at present performed by
most expert systems. Again, the well-defined semantics allows clear
expression of exactly how uncertain knowledge is being handled by the

system. This extra clarity is illustrated by the distinction made in

IR

3 _fimfls DD453 9823

Model building as Expert System - February 10, 1984

section 4.4.2. AUG 2 5 1988

In conclusion, there are a number of substantial issues which are worth

tackling. It would be worthwhile to attempt to build an expert system

along the lines described in this paper.

SX 025 c.1

Cunningham, J. L.
Comprehension by
model-building as a basis f

Model building as Expert System February 10, 1984

References.

Cohn, A G, (1983), "Mechanising a Particularly Expressive Many Sorted
Logic", PhD Thesis, University of Essex.

Cunningham, JL, (1984), "Generalising Quantifiers'", Cognitive Science
Research Paper #30, University of Sussex.

Donnellan, Keith (1966), "Reference and Definite Descriptions”,
Philosophical Review LXXV, pp 281-304.

Doyle, J, (1978), "Truth Maintenance Systems for Problem Solving",
MIT Artificial Intelligence Laboratory Report 419, January 1978

Hayes, P J, (1971), "A Logic of Actions', Machine Intelligence 6,
Edinburgh University Press.

Hayes, P J, (1979), "The Naijve Physics Manifesto', Expert Systems in the
Micro Electronic Age (ed D Michie), Edinburgh University Press.

Tapscott, B L, (1976), "Elementary Applied Symbolic Logic",
Prentice-Hall

