
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



COMPUl'Eft SCIENCE
TECHNICAL REPORT F1L

C&5 COMPREHENSION BY MODEL-BUILDING
AS A BASIS FOR AN EXPERT SYSTEM

J . L . Cunningham

. mtisnm,

Cognitive Science Research Paper

Serial no: CSRP 025

The University of Sussex

Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN

A!

DM USE ONLY



CRh, »'o;.r..v'/'f> iM t3

• ' •4



COMPREHENSION BY MODEL-BUILDING AS A BASIS FOR AN EXPERT SYSTEM

Abstract

This paper describes how a program designed to build a model (in the
formal logical sense) can be used as the inference component of an
Expert System. Some details of an existing program to do the model
building task are described. This program works with a powerful many
sorted logic. Use of a many sorted logic has computational advantages
for this task, and these advantages also carry over to the use of the
program as the inference component of an Expert System. In addition,
some advanced features of the existing program form the basis for a
non-numerical handling of uncertain knowledge.

1. Introduction

This paper describes the model building problem in section 1. It then

briefly describes a sorted first order calculus of great expressive

power, which is the formal language used by an existing model building

program. This program is described in section 2.

Section 3 discusses the salient features of Expert Systems, and section

4 relates these features to the existing program described in section 2.

Further sections then go into greater detail on the major issues raised

in section 4.

1.1 The Model Building Problem

This section starts with a very brief and informal description of the

nature of a logical model- For a formal description of a model, see any

introduction to symbolic logic, for example CTapscott, 19763.



model Duiiding as Expert System February 10, 1984

1.1.1

In what follows, the word "expression11 is used loosely to mean either a

term or formula, and "formula" a "well formed formula with no free

(unquantified) variables". (The objection to free variables is not part

of the theory, but is a personal preference.)

I will call a collection of logical formulae a theory.

If (and only if) formulae of a theory are mutually consistent, then it

is possible to find a mapping of a certain kind from expressions of the

logic into (the union of) two sets. One set is the set of the booleans,

and the other set I will call the universe (this set can even be the set

of expressions of the logical language). The mapping must be such that

terms of the logic are mapped to elements of the universe, and formulae

are mapped to the booleans. In particular, the formulae of the theory

must be mapped to true. In addition, it should be possible to construct

the value of the mapping for compound expresions from the values for

atomic expressions in a way which corresponds to the meaning of the

formulae. For example, if the mapping for two propositions P and Q is

determined (either because they are atomic, or by applying this

procedure recursively), then the disjunction of P and Q will be mapped

to the boolean true if either or both of P and Q are mapped to Q, and to

false otherwise. Similarly for other logical connectives, and for

quantifiers.

Here is an example: suppose the universe includes three elements K, L,

and ML If ^ and J^ are constant symbols in the logic, and jĉ  and ^ are

mapped to the elements j< and L^ respectively of the universe, then

mapping the terms f(k) and f (I) to the elements L^ and M^ respectively

would require that f(f(k)) also be mapped to M̂ .



Model building as Expert System February 10, 1984

Such a mapping, together with its universe, is called a model (remember

that the mapping must map formulae of the theory to true). If no model

exists, then the formulae are inconsistent. A model for some collection

of formulae is said to satisfy the formulae.

1.1.2

A model, in the sense used by this paper, can be viewed as a small

database. This database must have two properties: firstly, all the

facts in the database must satisfy a set of constraints, and secondly,

the database must be complete enough that it would be impossible to add

any new facts to the database which violated the constraints without

directly contradicting facts already present in the database. To

illustrate what I mean by "directly contradicting11, and as an example,

suppose that a database contains facts of the form MX is male11 or MX is

not male" or "X is female11 or MX is not female11 (where X stands for

either of the names "Mary" or "Lesley11). Further, suppose that the only

constraint is that someone can not be both male and female. Now, we will

consider three possible databases:

(1) "Lesley is male"

"Lesley is female"

This could not be a model, because it violates the constraint.

(2) "Mary is female"

"Lesley is not female"

This does not violate any constraints but it is not a model because it

is possible to add another fact, e.g. "Mary is male", which does not

directly contradict a fact already in the database but does violate the

constraint. However, it is possible to extend the database (2) to give:



noaei ouncnng as txpert system February 10,

(3) "Mary is female"

"Mary is not male"

"Lesley is not female"

"Lesley is male"

This database does not violate the constraint. Facts such as "Mary is

male" which would violate the constraint are explicitly contradicted by

facts already present in the database (in this case "Mary is not male".)

1.1.3

The model building problem is to find a model for a given consistent set

of formulae (and to report failure if given inconsistent formulae). I

shall modify this notion of a model in the model building program to be

described in section 2. Under this modified formulation, the model

building problem is to take a set of constraints and an initial

database, and to extend the database until it is a model, as the example

(2) was extended to give (3) (in section 1.1.2). Notice that it was

necessary to restrict the possible values of "X" in the description of

allowable facts, otherwise it would still have been possible to add

facts to violate the constraints. For example we could have added the

facts "John is male" and "John is female".

The effect of this modification is that I shall regard as a model a

universe plus a representation of a mapping which is minimal in the

sense that a full model could be generated from this model by the

process described in section 1.1.1. For example,a minimal representation

of the mapping for the example in section 1.1.1 would include explicitly

a mapping from the symbols k^ and Ĵ , but would represent mappings from

terms such as f(k) and f(f(k)) by mappings for expressions such as f(K)

and f(L). (Note that these are not necessarily expressions of the



Model building as Expert System February 10, 1984

original logical language, since j< and L̂  need not be symbols of the

language. I assume that if elements of the universe occur as constants

in the language then they are always mapped onto themselves in any

model.)

In a first order logic with only a finite number of non-logical symbols,

if the universe of some model is finite, then the model itself is

finite. For some sets of formulae no finite model exists - even though

there may be infinite models. This possibility lends intuitive

plausibility to the following (true) assertion "Determining whether an

arbitrary set of logical formulae is consistent is not a computable

problem (not decidable)".

It is well known that only semi-decision procedures exist for first

order logic, i.e. that it is possible to find a proof of a theorem

if one exists, but that it is not a computable problem to determine

whether a proof exists. Existing algorithms may not terminate for

some formulae which are not provable. The assertion above follows

from this, since if a theorem is not provable its negation is

consistent.

Since the general problem is uncomputable, I have restricted myself to

finding finite models for sets of formulae. For any given finite

universe this problem can easily be shown to be equivalent to

determining consistency in the propositional calculus, and is therefore

decidable. However, for the problems of interest, the search space for

most simple algorithms becomes enormous, and heuristic techniques must

be used. In section 2, I will describe a program to do this task for

formulae of a sorted logic.

The task of model-building must be contrasted with theorem proving,



model building as Expert System February 10,

although there is some overlap.

1.2 Sorted Logic

A sorted logic is one in which allowable models are restricted so that

terms cannot be mapped to arbitrary elements of a universe. Instead, the

universe is divided into subsets called sorts. Exactly how this division

into sorts is used to restrict allowable models differs in different

sorted logics. One common way to use sorts is to introduce quantifiers

for each sort, so that whereas an unsorted formula:

(x) PCxD

might be read as "for all X, X is P", or more informally "everything is

P", the corresponding sorted quantifier could be read as "for all X in

sort S, X is P", or more informally as "every S is P". This last

rendering immediately suggests that such a sorted logic might be

reducible to an unsorted logic, by replacing the sorted formulae with

corresponding unsorted formulae. The example could be replaced by:

(x) SCxl => PCx]

This suggested reduction of an axiom system in a sorted logic into an

equivalent unsorted system, so that there is a one to one correspondence

between the possible models for both systems, is always possible, by

systematic transformations like that in the example above. There are

also other systematic ways to achieve this reduction. However, a sorted

logic has greater expressive power (is more concise), plus additional

computational advantages (see section 5.1).

An alternative, which is equivalent to having sorted quantifiers, is to

have sorted variables. The effect is much the same.



Model building as Expert System February 10, 1984

Most references to sorted logic assume that the sorts will be disjoint.

Pat Hayes, in CHayes, 19713, describes a particularly expressive sorted

logic which allows non-disjoint sorts. In addition, instead of sorting

the quantifiers or the variables explicitly, he proposes a sort function

specifying the sort which the value of a functional expression may be in

for each combination of sorts for its arguments. This sort function may

be partial. By including predicates in this scheme, (and including

booleans as part of the universe), he specifies that a formula is only

well-formed if its sort can be determined. Variables are allowed to

range over any values for which the formula is well-formed. It is a

variant of this last form of sorted logic that is used by the program

described in the next section. This logic is also used by A G Cohn

CCohn, 19833.

*̂ The Existing Program

A program has been built to build a model to satisfy a given

(consistent) set of axioms. This section discusses some features of this

program; these features are referred to in section 4 — the discussion

of using this program as the kernel of an expert system.

2.1 The Logic

2.1.1

The program uses a powerful sorted logic like that described at the end

of section 1.2. This use of sorted logic allows a given problem to be

axiomatised more concisely than in conventional unsorted logic, although

it is necessary to specify the value of the sort function for the

function and predicate symbols used in any particular problem. Even so,

there is a net improvement in clarity and conciseness for all but the



noaei building as Expert System February 10, 191

most simple problems, (The program is designed to work with tens <

axioms, rather than a few. For such problems the improvement in clarii

and conciseness is much greater than for only a few axioms.)

2.1.2

This representation language is used internally by the program, that i:

it is not reduced to some primitive normal form such as Horn clause;

All the usual logical connectives are allowed, plus some unusual on<

(for example, there is a "partitioning" connective, see section 2.1.4!

Most connectives are not treated as binary connectives, but have

natural n-ary form. Thus

(P <=> Q) and (Q <=> R) £nd (R <=> S)

may be written as

P <=> Q <=> R <=> s

If the propositions P, Q, R and S were themselves complex, there wou

be an even greater computational saving in treating the equivalem

connective as n-ary. (Consider also the representation of the abô

expression in Disjunctive/Conjunctive normal form - even assuming tl

propositions are atomic.)

2.1.3

Function symbols as well as predicate and relation symbols may be use<

This allows a natural representation of one distinction between "th<

and "a" in English. Thus a Moslem might say:

Allah = god()

where a Hindu might say



Model building as Expert System February 10, 1984

God(Allah)

More specifically, the use of a function symbol is a convenient way to

represent that there is only one of something.

This example also illustrates another unusual distinction made in the

logic used by this program: there is a distinction made between

constants and functions of no arguments. Informally, this distinction

corresponds to the distinction between two kinds of singular definite

noun phrases as made by, for example, Donnellan CDonnellan, 19661.

The constant symbol corresponds to a referential noun phrase, it refers

to a known referent: in the program, the constant symbols are the same

symbols that are used for elements of the universe. The symbol, used as

a formal language symbol, always refers to itself as a universe element.

This is, a notational and implementational convenience.

The function of no arguments corresponds to an attributive noun phrase,

it refers to some unknown referent. This referent must be one of the

elements of the universe, but exactly which one is unknown until a model

has been successfully built.

This distinction could be helpful in implementing a natural language

interface to the program. This point is related to sections 4.1 and 4.6

and will be included in a later memo discussing natural language

interfaces to sorted logic.

2.1.4 Non-standard features

Finally, in this section, brief mention of two unusual features.

Firstly, the formalism allows use of a "partitioning" connective. Hayes

CHayes, 19793 calls formulae resulting from this connective "taxonomies"



Model building as Expert System February 10, 1984

by analogy with classification. I shall refer to such formulae as

"partitionings". The partitioning connective (like most of the

connectives used in this system) is n-ary. As an example:

P II ft II R II S

is a partitioning of P, Q, R and S, where P, Q, R and S are boolean

valued formulae.

The meaning of this example formula is that exactly one of the four

sub-formulae holds (is true). If none of them are true, then the

partitioning has the value "false". Thus we could have the following

"taxonomy":

(x). VertebrateEx]
<=> ( Mamma I Ex]

I BirdCxD
ReptileCx]
FishCx]
AmphibianCxD)

No value is defined when more than one of the sub-formulae is true, so

such a partitioning would be ill-formed.

The other non-standard feature is the use of "generalised quantifiers".

These are a generalisation of the usual logical quantifiers, again to

increase the expressive power of the language. They will not be

discussed further in this paper, for more information see [Cunningham,

1984].

Both the above features are reducible to equivalent first order

expressions with the usual connectives and quantifiers.



Model building as Expert System February 10, 1984

2.2 Control

The purpose of the program is to accept a collection of axioms, and to

generate a database representing a possible model for the axioms. The

program takes as input sort structure specifications for the universe,

sorting functions (see section 1.2) for the predicate and function

symbols of the language, a collection of axioms and, optionally, some

initial fragment of the model. Then the program works by checking that

axioms evaluate to "true". Since a given atomic expression may have

different values in different models, it is not possible to infer every

value in a model. So the program assumes values for some atomic

expressions, when they are not otherwise constrained. It doesnft assume

a value for some expression if the value of the whole expression can be

determined without it. For example, if, evaluating the expression:

P and Q and R and S

the program discovers that, say, R evaluates to "false11 it is

unnecessary to evaluate, or assume values for, any of the other sub-

expressions.

The checking process is necessarily fairly simple (for efficiency

reasons), so this assumption of values can occur even when,

theoretically, the value is determined by the requirement for a

consistent model. Consequently, it is possible to have two contradictory

assumptions. In these circumstances, the program starts reasoning at a

"meta-level" about the various assumptions it has made, in order to

decide which of them to reject. When it rejects an assumption, a form of

"truth maintenance" is necessary CDoyle, 19783, because the value of

other formulae in the system will be contingent upon the rejected

assumption.



Model building as Expert System February 10, 1984

3. Requirements for an Expert System

The task an expert system must perform can be seen as very similar to

the task this model building program must perform. Here I define the

requirements of an expert system:

3.1

It must accept general domain specific knowledge in a form conveniently

specified by a human expert. In many earlier systems this knowledge is

effectively in the form of MIF ... THEN ..." rules, that is, rules with

some condition and a consequent action or inference, although these

rules may be organised into a network.

3.2

It must be able to accept volunteered information about a particular

problem within that domain. This volunteered information should be

acceptable at any time in the "expert" consultation.

3.3

It must ask questions when it would benefit from being given the answer,

but it should also be able to continue if no answer is available. Also,

it should be able to accept an indirect answer. By this I mean that the

user of the system should be able to volunteer information in answer to

a question (as specified in point 3.2 above), and if this information

makes it unnecessary to obtain a direct answer, it should not re-ask the

original question.



Model building as Expert System February 10, 1984

3.4

3.4.1

Answers to questions and volunteered information may be uncertain or

incomplete. An expert system should allow this, and be able to make

sensible use of such information.

3.4.2

The human expert's knowledge may be heuristic and even inconsistent. In

particular, the use of defaults should be permitted. An example default

rule is "All people have two legs11, which could be disregarded in cases

which were exceptions. An expert system with such a default rule should

accept a statement like "Long John Silver has only one leg".

3.5

An expert system should be able to explain its reasoning. By this, I

mean two things. Firstly, it should be able to provide a justification

of any conclusions it reaches (either intermediate or final). Secondly,

it should be able to describe what inferences can be made from a

particular piece of knowledge, and hence what use might be made of the

answer to some question the system has asked.

Both these kinds of explanation should be in a form comprehensible to a

human, although it is acceptable that the human has to be expert in the

application domain in order to understand the explanation.

3.6

This is a related requirement. When the system asks questions there

should appear to be some purpose to them. The system should not appear

to be asking unrelated questions. This is clearly an important



Model building as Expert System February 10, 1984

requirement when the system is being used by a human expert (and hence

when a system is being developed), but I am not sure to what extent this

requirement would be necessary if the system were being used by someone

unfamiliar with the problem domain. (Would a person unfamiliar with a

given problem domain be able to understand the point of questions a

human expert would regard as relevant? If not, they couldn't be

concerned by apparently irrelevant questions, since for them all the

questions would seem obscure.)

3.7

The system should be able to work in conjunction with a human expert, so

that at one stage the system might take the initiative but a human

expert could advise the system that it was working on an incorrect

hypothesis, and the human could suggest an alternative strategy.

4- Using the Model Builder

I shall consider each of these points in relation to using my existing

model-building program as an expert system.

4.1

The particular sorted logic used here is a convenient formalism in which

to express expert rules. Any statement expressible in the full first

order predicate calculus is expressible, so the system can accept

information in a more convenient form than most current rule-based

expert systems. In particular, the "generalised quantifiers", referred

to in section 2.1.4, allow easy expression of some classes of statement

which are normally awkward to represent in a predicate calculus. It is

not, of course, immediately suitable for use by someone unfamiliar with



Model building as Expert System February 10, 1984

formal logic. However, it is a tractable research problem to translate

highly domain specific natural language into this sorted logic and the

task is made easier by the interactive nature of an expert system.

Obviously this statement could be contentious, and I intend to make it

the subject of a later memo. There is a related problem here with

natural language output - see section 4.6 below.

4.2

Since the program works by building a model satisfying some initial

formulae, there is no difficulty in adding volunteered information to

the model before building commences. Once the program is in operation it

may make assumptions, either using defaults or as working hypotheses.

Volunteered information can conflict with such assumptions, but this is

no harder to deal with than conflicts between internally inferred data

and assumptions. The existing program mechanisms can cope unchanged.

4.3

Only a primitive form of question asking has been provided in the

existing program.

4.4

4.4.1

The program already distinguishes between known facts and assumptions,

thus it already distinguishes between certain and uncertain knowledge.

It may be desirable to extend the range of possible "certainties" with

which the program works. This could, if desired, be done numerically by

associating numerical "confidence" values with the inferred and

hypothesised data. A more interesting approach lies in using the



wodel building as Expert System February iu,

system's meta-reasoning capabilities. This is discussed further in

section 4.6 and the section on control strategies (5.2) below.

4.4.2

The program distinguishes between two kinds of knowledge. The first

kind, corresponding to expert domain knowledge, consists of •axioms1.

These are well formed formulae in the full sorted logic. (The program

also needs to be given information about the sort-structure assumed by

these axioms.) The other kind of knowledge corresponds to 'facts1 about

a particular problem within the domain. For the program, this would be a

specification of part of the mapping from atomic propositions and terms

to the model. At present, the program only allows uncertainty in this

second kind of knowledge, and it requires definite 'axioms1. The

modification to the program to enable it to use default axioms, and

uncertain axioms, is again fairly straightforward.

There is a real distinction between "uncertain11 axioms and "default"

axioms. The difference lies in the effect of discovering some fact (or

assumption) that contradicts the axiom. As an example, consider the

axiom "all birds can fly":

(x).BirdCxU => Can_flyCxH

Suppose the universe contains three birds: an owl an eagle and an

ostrich. What should be the effect of discovering that the ostrich

cannot fly?

If the axiom is (to be used as) a default, then we simply dis-believe

that the ostrich can fly. It is as if the axiom is a concise

representation of three separate assumptions: that the owl can fly, the

eagle can fly and the ostrich can fly. The assumptions are unconnected,



Model building as Expert System February 10, 1984

so discovering that one is wrong has no effect on the others.

If the axiom is uncertain, then discovering one exception may cause

complete loss of confidence in any inference from the axiom. Suppose we

think it possible that "all pigs have wings11:

(x)PigCx3 => Has_wingsCx]

We then encounter Porky the pig, and discover him to be wingless. This

could shake our belief in the wingedness of the pigs Pinky and Perky.

When the axiom is quantified over more than one variable, the

possibilities get more complex. As a further complication, we may wish

to have a spectrum of possibilities between the "default11 kind of axiom,

and the "uncertain11 kind of axiom. Alternatively, the "default11 and

"uncertain" properties can be considered as distinct notions so that,

for example, if we know nothing about whether birds fly, and the first

bird we discover is an ostrich, we may postulate an uncertain default

axiom:

(x).BirdCxD => not CanJlyCxD

The notions of uncertain and default axioms need further consideration.

4.5

In order for the program to have a form of truth-maintenance system, it

must record reasons for all of its beliefs. Thus, in order to justify

any given assertion to a human user, it is able to refer to the rules,

data and hypotheses on which that assertion is based. Ideally, a natural

language description of, say, a rule would be generated from the actual

sorted logic formula representing that rule. This would be in contrast

to most existing expert system technology which requires an "explanation



nociel building as Expert System February 10, 1984

text11 to be associated with each rule, although there are exceptions.

4.6

Making the system ask apparently purposeful questions is perhaps the

most challenging part of the task of modifying the existing program. At

present the program has a very simple control strategy, and although a

simple question asking modification has been added (mentioned in 4.3

above), that will ask a group of related questions for one rule, there

is no control over how it chooses rules to consider. However, this

control problem has been considered in the design of the program. When

the program discovers an inconsistency in its hypotheses, it starts

reasoning at a meta-level (using the same mechanisms as for the original

problem). At this level it is reasoning about the assumptions and

symbols used for the original problem. It is not until a consistent

meta-model has been found for the original problem that the original

problem can be resumed. Thus the making of an assumption is determined

by procedures working in the problem domain but these procedures can

access the meta-level database to determine how to make an assumption.

An assumption can only be rejected after doing some meta-level reasoning

about that assumption and its relationship with other assumptions.

The natural way to handle control questions in this framework would be

for the control decision procedures to be influenced by the facts and

hypotheses about the non-logical symbols of the problem domain which are

present in the meta-level database. Since the mechanisms used in the

meta-domain are the same as those used in the problem domain (implying

the existence of a meta-meta-domain), there could be interaction with

the user about the meta-domain. Also, the program would be capable of

making assumptions about axioms from the problem domain. It might even



Model building as Expert System February 10, 1984

conclude that some default rule should never be used! Such meta-

information, being about general rules and defaults, could be allowed to

persist from one specific problem in the domain to another: thus

providing a limited learning capability. These issues are still being

investigated, but there is some discussion in section 5.2.

4.7

The requirement of section 3.7, for interactive operation and control

guidance, is naturally provided by the strategy discussed in section

4.6. The meta-domain is concerned with the relationships between

assumptions, rules and facts, and with issues of control. It works in

exactly the same fashion as the original problem domain, so requirement

3.7 can be reduced to requirement 3.2 at the meta-level. Notice also

that every time a difficulty is encountered with the inference process

at the problem level (such as a contradiction between assumptions), a

consistent resolution of this must be found at the meta-level. This, as

well as resolving the conflict, might very easily result in a different

consistent model of the best control strategy for the problem domain. If

the system described this consistent control strategy, it would be

keeping the user informed of just what it was trying to do - in fact,

the user could have been participating in the formation of the control

strategy.

5. Discussion

In this section I return to those points, above, which needed further

exposition.



Wodel bunding as Expert System February 10, 1984

5-1 Computational advantages of Sorted Logic

This section only discusses the computational advantages of sorted

logic, although there are other advantages for a human user. There are

three main computational advantages:

5.1.1 Conciseness

Since shorter expressions may be used in the sorted logic than if the

extra information derived from the sort structure had to be added

explicitly, there is a computational saving simply because the knowledge

represented takes less space. Also, it is possible to "traverse" through

the sub-formulae of a small formula more quickly than through a larger

formula, so there are time savings as well. (This assumes some sensible

representation of the sort information.)

5.1.2 Separating the sort information

Sort information is supplied to the program separately from the sorted

axioms. This is an advantage for two reasons.

Firstly, it is easy and natural to impose a sort structure on a problem

domain. When this is not done explicitly (as in an unsorted logic), the

knowledge this embodies must still be present but is scattered amongst

the other pieces of knowledge. The separation of the sort structure

enables the automated checking of the consistency of the sort structure.

It does not seem necessary for this part of a problem to be specified

with uncertainty or defaults.

Secondly, since the sort information relates to the whole problem

domain, rather than to individual problems in the domain, this automated

checking need only be done once. If the sort information were mixed in

with other information, it would effectively be checked as part of the

model-building each time the system tackled a new problem.



Model building as Expert System February 10, 1984

5.1.3

Unlike theorem proving, building a model may involve checking the values

of formulae with many different substitutions of universe elements for

variables. Suppose, in a simple problem, there were five disjoint sorts,

each with four universe elements. Then an axiom universally quantified

over three variables could have (4 x 4 x 4 = 64) possible substitutions.

In principle, it seems that it may be necessary to check that the axiom

holds (is true for) each of these sixty four substitutions.

The equivalent unsorted axiom, as well as being longer, would still have

three universally quantified variables, but each of these could now

range over the whole universe, giving (20 x 20 x 20 = 8000) possible

substitutions. Even though most of these would be trivially true

(because they would correspond to inappropriate substitutions of

variables), it would still be computationally expensive.

5.2 Control Strategies

The program works by attempting to ensure that all the axioms it is

given evaluate to "true". The control problem is to determine what order

it does things in order to achieve this. At present, only a limited

number of simple heuristics are in use, but the system has existing

mechanisms to enable it to use "meta-reasoning" to guide a control

strategy.

There are two constraints on the control strategy. The first constraint

is that the program should be reasonably efficient. The second

constraint is that described in section 3.7: that the system should

appear to ask sensible questions.



Fiodel building as Expert System February 10, 1984

5.2.1 Efficiency

There is only one important requirement necessary to achieve efficiency:

the program should not make incorrect assumptions.

To avoid incorrect assumptions, the program can partly rely on

heuristics, but must mainly rely on not making any unnecessary

assumptions. For this reason, the program works in one of four "modes"

of operation, switching between them as necessary. The modes are called

"S", lfUM, "D" and "A11. In modes f(DM and ftUM the program does not make

any assumptions, and only in modes "D" and "S" does the program make

inferences. Mode MD" is the preferred mode of operation.

The main efficiency gains could be achieved by evaluating axioms in some

optimal order, and by changing modes optimally. (If it is necessary to

know a value for some term but the actual value is unimportant, then it

is better to assume some value, which can only be done in modes "S" or

"A", than to continue to attempt to infer the value in mode "D".)

5.2.2 Sensible Questions

I conjecture that a good control strategy, if determined using the

meta-reasoning capability mentioned in section 4.7, would also be

"sensible11 in the sense that it would tend to discover contradictions

between assumptions as soon as possible, and hence to ask questions

which were related. To do this well might require the ability to switch

from evaluation of one axiom to evaluation of another axiom which had

terms in common with the first axiom. At present, the program can

perform this switch of axioms after doing some meta-reasoning. However,

there is no clever method of determining which axiom to consider next:

only simple heuristics are used at present.

The system is designed to allow its control strategy to be influenced by



Model building as Expert System February 10, 1984

its meta-level reasoning.

5,2,3 Meta-level Reasoning

As implied in section 4.7, the system can switch to a meta-level copy of

all its data-structures, in order to reason about the problem domain as

opposed to reasoning jrn the problem domain. Certain procedures, most

notably those controlling the making of assumptions, can access the

meta-level in order either to add information (e.g. about a new

assumption), or to inspect data-structures (e.g. to guide what

assumptions to make).

At present, this mechanism is not used by the control structures, but

there would be no difficulty in using the existing mechanisms for this

purpose.

5.2.4

This meta-level reasoning capability seems likely to be most useful when

more realistic expert domains are investigated, which involve different

kinds of uncertain knowledge. For example, it may be useful to use

"default10 axioms before making any assumptions about the values of terms

occurring in such axioms, but perhaps "uncertain11 axioms should only be

used after all other axioms have been considered.

There is also scope for generalising the notion of "model11: for example,

finding partial models using only modes "0" and "U" (i.e. no

assumptions). There could be different kinds of axiom: those which are

completely satisfied by a model, requiring evaluation in all four modes;

and those only used to restrict the model for the first kind of axiom,

and evaluated only in modes "D11 and "U11.

The exact status of any axiom would be represented as a meta-level



Hodel building as Expert System February 10, 1984

assertion. Since the meta-level works in the same way as the problem

level, this representation strategy allows for the status of axioms to

be left undefined, and hence assumed by the program.

6. Conclusion

It has been shown that there are definite similarities between the

inference part of the task that an expert system must perform, and the

task of constructing a model satisfying a collection of logical

formulae. Whether or not the greater generality of the model building

task must impose too great a barrier to efficiency of the system when

used as an expert system is an open research question, although the

lines of research described in section 5.2 would suggest that it is not.

There are definite advantages to be gained from using formal logic as

the basic representation language of an expert system. These lie chiefly

in the well-defined semantics for formal logic, which would allow clean

interfaces between the inference component of an expert system, and

other parts of the system: the natural language interfaces and the

control component. Other systems (such as automatic planning, or theorem

provers) could also be cleanly interfaced. This paper has also assumed

that translation between sorted logic and natural language is relatively

tractable, although it was beyond the scope of the paper to present the

supporting arguments.

Use of logic in the control component of the system allows the

elimination of the ad-hoc numerical computations at present performed by

most expert systems. Again, the well-defined semantics allows clear

expression of exactly how uncertain knowledge is being handled by the

system. This extra clarity is illustrated by the distinction made in



3 fiMflS DD453
Model building as Expert System February 10, 1984

section 4 .4 .2 . AU6 2 5 1988

In conclusion, there are a number of substantial issues which are worth

tackling. It would be worthwhile to attempt to build an expert system

along the lines described in this paper.

SSX 025 c.1
Cunningham, J. L.
Comprehension by
model-building as a basis f



Model building as Expert System February 10, 1984

References.

Cohn, A G, (1983), "Mechanising a Particularly Expressive Many Sorted
Logic11, PhD Thesis, University of Essex.

Cunningham, JL, (1984), "Generalising Quantifiers", Cognitive Science
Research Paper #30, University of Sussex.

Donnellan, Keith (1966), "Reference and Definite Descriptions",
Philosophical Review LXXV, pp 281-304.

Doyle, J, (1978), "Truth Maintenance Systems for Problem Solving",
MIT Artificial Intelligence Laboratory Report 419, January 1978

Hayes, P J, (1971), "A Logic of Actions", Machine Intelligence 6,
Edinburgh University Press.

Hayes, P J, (1979), "The Naive Physics Manifesto", Expert Systems in the
Micro Electronic Age (ed D Michie), Edinburgh University Press.

Tapscott, B L, (1976), "Elementary Applied Symbolic Logic",
Prentice-Hall


