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Abstract 

T h e P r o d u c t i o n Qual i ty Compi ler -Compi ler (PQCC) pro ject is an inves t iga t ion of the c o d e 
g e n e r a t i o n p rocess . The pract ica l goal of the pro ject is to bu i ld a t r u l y au toma t i c 
c o m p i l e r - w r i t i n g sys tem. Compi lers bui l t w i th this system wi l l be compe t i t i ve in e v e r y 
r e s p e c t w i t h the best hand-genera ted compilers of today. They must gene ra te h i g h l y 
o p t i m i z e d ob jec t code, and meet h igh standards of re l iabi l i ty and reasonable s t anda rds o f 
p e r f o r m a n c e . The sys tem must opera te f rom descript ions of bo th the source language and 
t h e t a r g e t compu te r . Br ing ing up a new compiler, g iven a sui table language d e s c r i p t i o n and 
t a r g e t a r c h i t e c t u r e desc r ip t i on , must be inexpensive and must not requ i re the ass is tance of 
b u i l d e r s o r mainta iners of the comp i le r -wr i t i ng system itself. This paper desc r ibes t he goa ls 
a n d m e t h o d o l o g y of the PQCC p ro jec t . 
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Introduction 

T h e P roduc t i on Qual i ty Compi ler-Compi ler (PQCC) pro ject is an invest iga t ion of the code 

g e n e r a t i o n p rocess . The pract ical goal of the pro ject is to bui ld a t r u l y au tomat ic 

c o m p i l e r - w r i t i n g sys tem; compi lers built w i th this system wi l l be compet i t ive in e v e r y r e s p e c t 

w i t h t he bes t hand -gene ra ted compilers of today. They must genera te h igh ly o p t i m i z e d 

o b j e c t code , and meet h igh standards of rel iabi l i ty and reasonable standards of p e r f o r m a n c e . 

T h e s y s t e m must ope ra te f rom descr ipt ions of both the source language and the t a r g e t 

c o m p u t e r . The cost of b r ing ing up a new compiler, g iven a suitable language d e s c r i p t i o n and 

t a r g e t a r c h i t e c t u r e descr ip t ion , must be small — on the order of th ree man-months , w i t h o u t 

ass is tance f r o m bu i lders , maintainers, or other persons deeply involved in the or ig ina l s y s t e m . 

Th is r e s e a r c h bui lds on previous work in two areas: code op t im iza t i on , and 

c o m p i l e r - w r i t i n g systems ("compi ler-compi lers") . Section 2 descr ibes the deve lopmen ts in 

t h o s e areas w h i c h we bel ieve are relevant to our work. The re lat ion of the PQCC p r o j e c t t o 

p r e v i o u s (and c u r r e n t ) w o r k in these areas, or to the state of the ar t , can be summar i zed 

b r i e f l y : 

- W i t h some notab le except ions, previous work in compiler deve lopment too ls has 
f ocused on the pars ing and lexical analysis phases of compi la t ion. Thus, 
" c o m p i l e r - c o m p i l e r " has come to be almost synonymous w i th "parser gene ra to r " . 
We w o u l d l ike to ex tend the funct ion of compi ler-compi lers, to inc lude the 
p r o d u c t i o n of opt imizers and code generators. We be l ieve that 
comp i l e r - comp i l e r s wi l l become far more popular as commercial s o f t w a r e 
d e v e l o p m e n t tools when this is done. 

- A g rea t many code opt imizat ion techniques are known and have appeared in the 
l i t e r a t u r e . Never the less, construct ion of opt imizing compilers is st i l l nea r l y a 
b lack ar t . As a resul t such compilers tend to be expensive bo th to bu i ld and to 
use. They also tend to be unrel iable, in that the object code p roduced a f te r 
op t im i za t i on may be e i ther worse than the unopt imized code, or a l toge ther 
w r o n g . We wou ld l ike to organize, even to formal ize, the huge "bag of t r i c k s " 
assoc ia ted w i t h code opt imizat ion. Ultimately opt imizat ion should be done as 
r o u t i n e l y , cheap ly , and re l iably as parsing. 

In t h e nex t sec t ion we wi l l examine what these broad statements mean in speci f ic t e rms , and 

w e w i l l ou t l i ne the l imi tat ions and specif ic object ives of the PQCC pro jec t . Sect ions 3 and 4 

g i v e an o v e r v i e w of the s t ra tegy and methodology of the pro jec t . The remain ing sec t i ons , 

un t i l t he summary , are discussions of each of the phases of the code genera t ion p r o c e s s , in 

o u r p r o p o s e d o rgan iza t ion of it. 
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1« Goals of the project 

1.1 . Subgoals 

Es t imat ing the "qua l i t y " of a compiler is a complex matter. In o rder to eva luate the success 

o f a c o m p i l e r - c o m p i l e r , w e must have standards for each of severa l dimensions f o r a comp i l e r 

p r o d u c e d b y i t : the qua l i ty of opt imizat ion (size and speed of code produced) , t he s ize and 

s p e e d of the compi le r i tsel f , i ts re l iab i l i ty , the fr iendl iness of i ts user i n te r face , and p e r h a p s 

o t h e r cha rac te r i s t i c s of it wh ich are not user-v is ib le , such as the t ime requ i red to p r o d u c e it 

and t he cos ts of maintenance. 

We cons ide r the qua l i ty of code produced by the Bl iss-11 compiler [ 2 5 ] to be a s t a n d a r d . 

Tha t is , t o w h a t e v e r ex ten t the compilers produced by the PQCC fail to meet th is s t a n d a r d , 

o u r t r e a t m e n t of op t imizat ion wi l l be considered incomplete. Several too ls , of v a r y i n g 

d e g r e e s of soph is t i ca t ion , are available for measuring the qual i ty of code p r o d u c e d b y a 

c o m p i l e r , b y compar ison w i t h other compilers [54 , 55 , 2 0 } A great deal of s u b j e c t i v i t y 

r e m a i n s in th is measurement , in spi te of these advances. 

It is eas ie r , bu t less usefu l , to set hard standards for compiler size and speed , and f o r t h e 

t ime r e q u i r e d to p roduce the compiler. In the former areas, the B l i ss -11 comp i le r se t s 

s t a n d a r d s tha t are reasonable but not high. We do not w ish to cons t ra in o u r s e l v e s t o 

p a r t i c u l a r l imi ts of size and speed wi thout having a thorough (quant i ta t ive) unde rs tand ing of 

t h e cos ts of va r ious code generat ion and opt imizat ion techniques. It seems clear tha t w i t h 

t h i s i n f o r m a t i o n w e could choose a col lect ion of techniques w i th acceptable p e r f o r m a n c e . We 

e s t i m a t e tha t the t ime requ i red to produce a compiler for a d i f fe ren t language a n d / o r t a r g e t 

mach ine , poss ib l y including the time requi red to wr i t e the necessary desc r ip t i ons of t h e 

l anguage and machine, should be fewer than three man-months. But at this ea r l y s tage of t h e 

r e s e a r c h , it is not poss ib le to be v e r y precise about this goal. 

1.2. L imi tat ions 

W e have chosen w i t h some care the means of keeping our research task to f i n i t e s ize . We 

h a v e r e t a i n e d ambi t ious goals, as descr ibed above, w i th regard to the saving in the cos t o f 

c o m p i l e r cons t r uc t i on and the degree of code opt imizat ion at tainable. However , w e have 

p l a c e d rea l l imi ts on the range of languages to be compiled and the range of t a rge t mach ines. 

I n add i t i on to these , we have set some other limits to our ambit ions, having t o do w i t h t h e 

p r o c e s s of p r o d u c t i o n of compi lers; these wi l l be descr ibed in sect ion 3.2. 

We cons ide r on ly the "a lgebra ic" languages. This is a vague te rm; it is easier to d e s c r i b e 
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w h a t s o r t of language character is t ics we do not expect to handle, than to desc r ibe w h a t w e 

d o e x p e c t to handle. We exclude languages which prov ide the p rogrammer w i t h a 

w e l l - s u p p o r t e d and non- t r i v ia l data abstract ion f rom the s tar t , e.g. l ist p rocess ing (LISP), 

a r r a y p rocess ing (APL), s t r ing processing (SNOBOL). While these languages p r e s e n t 

i n t e r e s t i n g and w o r t h w h i l e opt imizat ion problems, opt imizat ion and code gene ra t i on must b e 

d o n e in t e rms of r un - t ime subrout ines rather than instruct ions. Wi th our i n s t r u c t i o n - l e v e l 

mach ine desc r i p t i ons and opt imizat ion techniques geared to saving indiv idual r e g i s t e r s o r 

r e d u c i n g code s ize in wo rds , we have l i t t le to o f fer to the advancement of that v a r i e t y o f 

t e c h n o l o g y . We are more at ease w i th ALGOL, PL / I , FORTRAN, BLISS, PASCAL, C, Ada , and 

o t h e r g e n e r a l - p u r p o s e languages. 

We cons ide r a w ide but st i l l l imited range of target machine arch i tec tures . These inc lude 

o n e - a d d r e s s (PDP-8, NOVA), two-address (PDP-11), genera l - reg is ter (PDP-10, 1108 , S / 3 7 0 ) , 

and t h r e e - a d d r e s s (VAX) arch i tectures, and mixtures of these (almost all rea l c o m p u t e r s a r e 

m i x t u r e s ) . We exc lude pu re stack machines, and other designs even more spec ia l i zed t o 

h i g h - l e v e l languages, fo r reasons similar to the reasons for excluding s p e c i a l - p u r p o s e 

l anguages . For these arch i tec tures, many of the usual techniques for code g e n e r a t i o n and 

o p t i m i z a t i o n , such as global and local register allocation and ta rge t ing , are p a r t l y o r e v e n 

w h o l l y i r r e l e v a n t . Techniques that are useful , on the other hand, are outs ide our domain o f 

e x p e r t i s e . In add i t ion , w e do not consider the issues raised by vec tor machines, o r b y v e c t o r 

i n s t r u c t i o n s on o the rw i se convent ional machines, or by machines implemented w i t h p i pe l i n i ng 

o r o t h e r schemes for achieving paral lel ism. 

No te tha t pa r t i cu la r l y poor l y designed archi tectures are not exc luded. Thus, w e a r e 

p r e p a r e d t o deal w i t h v e r y asymmetric instruct ion sets, or systems in wh ich s u p p o s e d l y 

g e n e r a l - p u r p o s e reg is te rs or o ther locations must be v e r y near ly ded icated to pa r t i cu l a r 

p u r p o s e s . (This la t ter ca tegory includes instruct ion sets in which common a r i t hme t i c 

o p e r a t i o n s may on ly read their operands, or w r i t e their resul ts , in h igh ly r e s t r i c t e d 

c a t e g o r i e s of r eg i s te r s . The 8 0 8 0 / Z 8 0 machines are a we l l - known example.) In sp i te of some 

v i s i b l e p r o g r e s s in the art of inst ruct ion set design, new archi tectures appear e v e r y so o f t e n 

w h i c h a re no b e t t e r than those of twen ty years ago, and we cannot a f fo rd to ignore these . 

1.3. Supergoals 

The goals of the PQCC pro jec t arise f rom several broader goals: 

- We w o u l d l ike to attack the high cost of so f tware , by making h i gh - l eve l 
languages more v iable as so f tware construct ion tools. Our approach to th is is to 
t r y t o decrease the costs of compiler construct ion, and to improve the qua l i t y ( in 
t e r m s of b o t h e f fec t iveness and re l iabi l i ty) of code generat ion. To some ex ten t 
t he PQCC p ro jec t is an ou tg row th of the Bl iss-11 opt imiz ing compi ler p r o j e c t 
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[ 2 5 ] . 

- We are i n te res ted in appl ications of formal, symbolic descr ip t ions of compu te r 
a r c h i t e c t u r e s . Other research in this area has invest igated the gene ra t i on of 
assemblers [ 5 6 ] , ver i f i ca t ion tools [ 30 ] , emulators, and other tools d i rec t l y f r o m 
c o m p u t e r a rch i tec tu re descr ipt ions. The PQCC pro jec t is pa r t l y an o u t g r o w t h of 
t he SMCD (Symbol ic Manipulat ion of Computer Descript ions) p ro jec ts [ 4 8 ] . 

- We be l i eve t he re are ser ious unanswered questions about the des ign of 
i n t e rmed ia te languages for target machine independent compi l ing sys tems , 
espec ia l l y w h e n the product ion of h igh-qual i ty code is an issue. We discuss 
some of these in sect ion 4.2; our proposal , called TCOL, may be thought of as 
ano the r e n t r y in a f ie ld that includes the original UIMCOL [ 5 2 ] , BCPL OCODE [ 3 8 ] , 
and JANUS [ 2 8 ] . 

- We w o u l d l ike to formal ize code generat ion and opt imizat ion techniques, in much 
the same w a y that pars ing [ 3 9 ] and f low analysis opt imizat ion techniques [ 4 5 ] 
have been formal ized. More general ly, we wish to know how techn iques are 
r e l a t e d to one another , and for any technique, to have a good unders tand ing of 
i ts cos ts , i ts app l icab i l i ty , and its ef fect iveness. 

2. Research context 

2 . 1 . C o m p i l e r - w r i t i n g systems 

M a n y c o m p i l e r - w r i t i n g systems prov ide l i t t le or no suppor t , or even a w e l l - d e f i n e d 

f r a m e w o r k , f o r code genera t ion . Typical of the usual approach is YACC [ 5 8 ] . This is a p a r s e r 

g e n e r a t o r , w h i c h w o r k s f rom a language descr ipt ion in the form of a c o n t e x t - f r e e g rammar , o r 

se t of productions. Wi th each product ion, the compiler w r i t e r may associate a s u b r o u t i n e he 

has w r i t t e n , and an indicat ion of what arguments are to be passed to i t . (A rgumen ts may 

i nc lude r e f e r e n c e s to tokens in the production.) These subrout ines must do all the p r o c e s s i n g 

n e c e s s a r y f o r semant ic analysis and code generat ion. They are w r i t t e n in a g e n e r a l - p u r p o s e 

l anguage (C [ 9 ] or a dialect of Fort ran) ; except for the abi l i ty to r e f e r to tokens in t h e 

p r o d u c t i o n s , no s u p p o r t is p rov ided to the wr i te r . 

A s l i gh t l y more in te res t ing system is GCL, a language for w r i t i ng code gene ra to r s , used t o 

b u i l d t he P L / I op t im iz ing compi ler [ 19 ] . This is based on a genera l -pu rpose language, bu t it 

o f f e r s automat ic faci l i t ies for generat ing labels in the code s t ream, a l locat ing ( v e r y ) 

t e m p o r a r y s to rage (and using it in the object code), and generat ing any of the t a rge t mach ine 

( S / 3 6 0 ) i ns t ruc t i ons . More impor tant ly , it o f fers a signif icant abst ract ion to the user , tha t is , 

a f r a m e w o r k f o r the code generat ion process. A parse t ree is assumed, and t h e r e is a set of 

p r i m i t i v e s f o r ex t rac t i ng in format ion f rom it and for "wa lk ing" i t : using i ts s t r u c t u r e to d i r e c t 

t h e f l o w of c o n t r o l . The GCL system is typical of another class of c o m p i l e r - w r i t i n g s y s t e m s 
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[ 1 4 ] , in w h i c h some a t ten t ion has been paid to the code generat ion phase, bu t the s y s t e m 

b u i l d e r must s t i l l des ign and implement all the strategies, including most op t im iza t ions , h imsel f . 

Somet imes these sys tems come w i th a pre-code-genera t ion phase wh ich does some 

r u d i m e n t a r y f l o w analysis on the program. In general , however , such sys tems a re no t 

a d e q u a t e f o r , and even prec lude, techniques that involve mult iple phases, o r n o n - t r i v i a l 

a u x i l i a r y da ta s t r uc tu res . 

In r e c e n t y e a r s t he re have been several attempts to formal ize the code g e n e r a t i o n 

p r o c e s s , w i t h a v i e w to bui ld ing compi le r -wr i t ing systems. These e f f o r t s are c loser in t h e i r 

aims to the PQCC p ro jec t than are the more popular comp i le r -wr i t i ng sys tems m e n t i o n e d 

a b o v e . A s u r v e y of these has been w r i t t en by Cattel l [ 10 ] . In addi t ion, t w o e f f o r t s s h o u l d 

b e m e n t i o n e d w h i c h w e r e too recent to appear in the survey [ 22 , 12] . We w i l l d iscuss t h i s 

c o d e g e n e r a t i o n research in more detai l in section 9.2. 

2.2 . Code opt imizat ion 

The l i t e r a t u r e on code opt imizat ion begins at least as ear ly as the Fo r t ran I compi le r [ 2 3 ] . 

S ince t h e n t h e r e have been several famous (or notor ious) opt imiz ing compi lers about w h i c h 

l a n d m a r k p a p e r s (or books) have been wr i t t en [ 2 1 , 19, 25 ] , and dozens, pe rhaps h u n d r e d s , o f 

p a p e r s abou t ind iv idua l opt imizat ion techniques. ( [ 2 ] is a fa i r ly recent b i b l i og raphy ; p a r t i a l 

c a t a l o g u e s can be found in [ 3 , 50 , 32].) Unfor tunately, except for a few v e r y w e l l - r e s e a r c h e d 

a r e a s , such as g lobal ( in t raprocedura l ) f low analysis [ 4 ] , and evaluat ion o rde r and t a r g e t i n g 

[ 7 ] , much of the pub l ished l i te ra ture is di f f icult to use. Algor i thms are f r e q u e n t l y v e r y 

d e p e n d e n t u p o n the ta rge t arch i tec ture, or upon the nature of the run - t ime s u p p o r t , o r u p o n 

p e c u l i a r i t i e s of the source language; sometimes they can be general ized in non -obv ious w a y s , 

b u t usua l l y t he au thors make no attempt to do so. Frequent ly authors are unaware of o t h e r 

a t t e m p t s to so lve ident ical problems (a phenomenon not at all l imi ted to l i t e r a t u r e o n 

o p t i m i z a t i o n , o r even computer science). Performance measurements are exceed ing ly r a r e , 

w h e t h e r of a lgo r i thm size or speed, or of ef fect iveness in improving ob jec t code qua l i t y . 

As a r esu l t , s tandards of opt imizat ion in the compiler community are low. Most comp i l e r s 

p e r f o r m no s ign i f icant opt imizat ion at all. Good opt imizing compi lers are usual ly the resu l t o f 

e x p e n s i v e p r o j e c t s requ i r ing many real years as wel l as man-years of e f f o r t . M a n y 

o p t i m i z e r s do not re l iab ly produce correct code, causing users to rou t ine ly d isable t hem w h e n 

r u n n i n g the associated compi lers. Others use "heur is t ic" algori thms, wh ich somet imes make 

t h e r e s u l t i n g code wo rse than the unoptimized code. Useful opt imizat ion techn iques a re 

r e d i s c o v e r e d many t imes by d i f fe rent compiler w r i t e rs — or , more o f t en , not r e d i s c o v e r e d . 

Some s ign i f i can t op t im iza t ion techniques are almost whol ly independent of the a r c h i t e c t u r e 
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of t h e t a r g e t machine. These include data and contro l f low analysis [ 24 , 4 ] , eva lua t ion o r d e r 

r e a r r a n g e m e n t [ 7 ] , and the "pack ing" phase of global register al locat ion [ 1 5 , 2 9 ] . In a f e w 

o t h e r a reas , such as code select ion and local register al location [ 4 9 ] , a t tempts have b e e n 

made to pa rame t r i ze a technique, such that it can be moved f rom one ta rge t machine t o 

a n o t h e r w i t h changes on ly to a set of tables descr ib ing the machine. This is ou r p r i n c i p a l 

m e t h o d ; the bu lk of our w o r k is to f ind formalizations for as many as possib le of t he k n o w n 

u s e f u l o p t i m i z a t i o n techniques, such that they can be easily parametr ized. 

2 . 3 . C u r r e n t research 

A t least t h r e e o the r promis ing research or development e f fo r t s , w i t h goals similar to t h o s e 

o f PQCC, have recen t l y been descr ibed. A comparison of their goals and methodo log ies w i t h 

o u r s w i l l he lp to c la r i f y the PQCC ef fo r t . 

T h e Exper imen ta l Compil ing Systems (ECS) pro ject [16 , 17, 18] is address ing the p r o b l e m s 

o f t a r g e t - m a c h i n e and language independence in opt imizing compi lers. They are p r i m a r i l y 

i n t e r e s t e d in modu lar iza t ion and standardizat ion of opt imizing compi ler des ign ; t h o u g h t h e 

goa l of th is w o r k is not a compi le r -wr i t i ng system, it would be a v e r y logical b y - p r o d u c t . 

T h e i r mode l of the compi la t ion process involves translat ion to a near ly un i fo rm i n t e r m e d i a t e 

l anguage ( IL) , f o l l owed by a loop in which machine independent opt imizat ions are p e r f o r m e d 

f o r as long as is deemed to be useful , fo l lowed by a "machine ta i lo r ing" phase in w h i c h t he iL 

r e p r e s e n t a t i o n is b rough t much closer to the instruct ion level of the ta rge t machine. 

T h e r e are major d i f fe rences in methodology between the two p ro jec ts . The ECS and PQCC 

t r e a t m e n t s of op t im iza t ion are two widely separated points on a phi losophical s p e c t r u m , f r o m 

" k n o w l e d g e - i m p o v e r i s h e d " to "knowledge-based" systems (to use terms b o r r o w e d f r o m 

A r t i f i c i a l In te l l igence research [37] ) . Central in the ECS approach is the a t tempt to a v o i d 

spec ia l case analysis — to use a few power fu l and general opt imizat ion techn iques , such as 

g l o b a l f l o w analys is , constant fo lding and propagat ion, procedure in tegra t ion , and dead code 

e l i m i n a t i o n , to subsume opt imizat ions that are usually d iscovered only by more spec ia l i zed , o r 

e v e n ad hoc% methods. The PQCC methodology, by contrast , is knowledge-based o p t i m i z a t i o n 

~ w e are w i l l i ng to use all the (dozens of ) known opt imizat ion techn iques and 

s u b - t e c h n i q u e s , sub jec t on ly to the condit ion that we can parametr ize them to use eas i l y 

u n d e r s t o o d machine and language descr ipt ions. This d i f ference in ph i losophy is r e f l e c t e d i n , 

among o t h e r th ings , the d i f fe rence between the intermediate representa t ions f o r p r o g r a m s , 

d i s c u s s e d in sec t ion 4.2. 

The o t h e r major d i f fe rence in methodology is the means of adapt ing a compi ler to d i f f e r e n t 

l anguages and machines. The procedure given in [ 1 6 ] for the "pa r t i cu la r i za t i on " p r o c e s s 
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i n v o l v e s w r i t i n g p rog rams: a storage mapper, def ining procedures w r i t t e n in IL, and p e r h a p s 

o t h e r s (a f ina l component wh ich does peephole opt imizat ions is ment ioned b r i e f l y ) . As 

d i s c u s s e d ea r l i e r , w e are s t rong ly committed to the use of formal descr ip t ions , wh i ch t e n d t o 

t a k e t h e f o r m of tab les of in format ion, rather than programs; the compi ler w r i t e r ' s v i e w of 

t h e PQCC s y s t e m wi l l be nearer the declarat ive end of the "procedura l vs . d e c l a r a t i v e " 

s p e c t r u m of know ledge organizat ion. A good summary of the arguments on bo th s ides of th i s 

i ssue can be f o u n d in [ 5 7 ] . 

The MUG2 p r o j e c t [ 3 4 , 35 , 4 3 ] , like the PQCC pro jec t , is an e f fo r t to p roduce (mu l t ipass) 

o p t i m i z i n g compi le rs f r om language and machine descr ipt ions. The model of t he code 

g e n e r a t o r p r e s e n t e d in [ 4 3 ] is closely re lated to our own , and is descr ibed f u r t h e r in s e c t i o n 

9 .2 . [ 3 5 ] desc r ibes a language for descr ib ing opt imizat ions, especial ly t r ee t r ans fo rma t i ons of 

t h e k i nd d iscussed in sect ion 7.5; the language, OPTRAN, is to allow the c o m p i l e r - w r i t e r t o 

i m p o s e a c o n t r o l s t r uc tu re of his own choosing on the search for such opt imizat ions. 

The p o r t a b l e C compi ler [ 4 1 , 4 2 ] is not a compi ler-compi ler system, but a compi le r f o r C 

w r i t t e n w i t h an a t tempt to isolate the machine-dependent por t ions. It has been t r a n s f e r r e d 

t o a l a rge number and va r i e t y of machines w i th a change of rough ly 201 of t he code ; t h e 

t r a n s f e r r e q u i r e d about th ree man-months of e f fo r t , by the author of the or ig ina l comp i l e r . 

T h e p o r t a b l e C compi ler does almost no global opt imizat ion, but the local code g e n e r a t i o n is 

o f h i gh qua l i t y [ 2 0 ] . In addi t ion, compilers for another language (For t ran 77) have b e e n 

w r i t t e n us ing approx imate ly the same por table C code generator . Thus the po r t ab le C e f f o r t 

has made some p rog ress t owa rd the goals of language and target machine i ndependence 

w h i c h w e are i n te res ted in ; it is di f f icul t to tell f rom the publ ished descr ip t ions , h o w e v e r , 

w h e t h e r the sys tem could be extended to do more opt imizat ion, or to compi le s l i g h t l y 

h i g h e r - l e v e l languages (e.g. Pascal), or whether the system could be p o r t e d eas i ly b y a 

p e r s o n o t h e r than the or ig inal implementor(s). 

3« Overall strategy 

3 . 1 . Sys tem organizat ion 

F i g u r e 1 is a c rude box diagram of the PQCC system and a compiler gene ra ted b y i t . The 

c o m p i l e r cons is ts of a ske le ton compiler (PQC) and a set of tables wh ich it uses as inpu t ( in 

a d d i t i o n to the user program); the tables contain all the necessary language and t a r g e t 

mach ine d e p e n d e n t in format ion . Note, however , that these tables are not themselves w r i t t e n 

o r mod i f i ed b y the compi ler w r i t e r , that is, they are not the or ig inal desc r ip t ions of t h e 

l anguage or t a rge t machine. They are instead output f rom the "comp i le r -comp i le r " s y s t e m 

(PQCC), w h i c h takes as input the or iginal descript ions. 
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Source 
p r o g r a m ^ Skeleton compiler (PQC) 

- > Object 
p rog ram 

Language 
desc r ip t i on ' 

Machine 
Descr ip t ion 

Tables 

Table generator (PQCC) 

Figure 1 : Crude box diagram of PQCC system 

TCOL program 

S o u r c e 
p r o g r a m 

Language 
d e s c r i p t i o n 

Machine 
(descr ip t ion 

Ob jec t 
p r o g r a m 

Figure 2 : Detailed box diagram of PQCC system 

F i g u r e 2 shows some of the s t ruc ture of the PQC and of the PQCC. The d iv is ion of t h e 

c o m p i l e r i n to phases has t w o important consequences to our sys tem d e v e l o p m e n t 

m e t h o d o l o g y : 
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- The phases ope ra te ser ia l ly (at least in the experimental vers ions of the sys tem) , 
each tak ing as its input the ent i re output of the prev ious phase and p e r f o r m i n g 
some in te l lec tua l l y manageable subtask of the compilat ion process. This a l lows 
t he PQCC i tsel f to be decomposed into intel lectual ly manageable po r t i ons : w i t h 
each phase the re is associated a "phase generator" , wh ich c rea tes the 
language /mach ine env i ronment informat ion requi red by that phase. 

- W o r k on each phase can proceed independent ly of work on (almost) any of the 
o t h e r phases. Thus, if some phase does not work , or does not even ex is t , 
p r o g r e s s can st i l l be made on the phases fo l lowing it in the compi ler . This has 
b e e n v e r y d i f f i cu l t to achieve. It requires that any phase should be debuggab le 
in " s tand -a lone mode", that is, wi thout being plugged in to the en t i re compi le r . 
Th is in t u r n requ i res several condit ions: 

- It must be possible to prepare input for that phase, and examine o u t p u t 
f r o m it. Thus, the phase must be w r i t t en to read f rom, and w r i t e t o , 
s tanda rd i npu t -ou tpu t devices (usually disk f i les). It must read and w r i t e 
tex t f i les , not b inary f i les, because humans must be able to read and w r i t e 
them as we l l . 

- The no ta t ion in wh ich the f i les are w r i t t en must be suf f ic ient ly gene ra l , o r 
su f f i c i en t l y r i ch , so that the ent i re state of the compi lat ion can be 
r e c o r d e d . (We have op ted for general i ty instead of r ichness.) 

- The no ta t ion must be near ly uni form f rom phase to phase. This a l lows us 
(somet imes) to exper iment w i th the order ing of the phases, or to r u n a 
phase even i f we cannot prov ide a "dummy" vers ion of the p rev ious phase. 
The one except ion to this is the notat ion used for ou tput f r o m the CODE 
phase (and input to the FINAL phase); this has the same syn tax as t he 
no ta t i on used for prev ious phases, but does not use the same semant ics. 

The i n te rmed ia te nota t ion is discussed in later sect ions: LGN syntax in sec t ion 
4 . 1 , and TCOL semantics in sect ion 4.2. 

3 . 2 . Discla imer 

T h e r e are t w o aspects of the compilat ion process which we reso lu te ly re fuse t o s t u d y . 

W h a t e v e r sys tems w e bui ld wi l l have to be plugged into o ther systems, not w r i t t e n b y 

o u r s e l v e s , to c a r r y out these necessary tasks: 

- Pa rs ing / l ex i ca l analysis: we wi l l presume the existence of a compi ler f r o n t - e n d 
su f f i c i en t to t rans fo rm a source program into a TCOL-like parse t ree . The ar t of 
p a r s e r gene ra t i on is suf f ic ient ly wel l developed that we are not i n t e res ted in 
t r y i n g to advance it. Note that the problem of imposing un i form semantics on 
TCOL is a d i f f e ren t mat ter ; we would like to understand the problems of language 
semant ics we l l enough to go beyond ad hoc techniques for " f i x i ng " the ou tpu t of 
g i v e n pa rse rs . 

- Load ing and re loca t ion : we wi l l presume the existence of a compi ler "back e n d " 
su f f i c i en t to t u r n the output of our last phase into executable code. We can 
p r o v i d e ins t ruc t ions fo rmat ted for an assembler, or even fo rma t ted fo r b i n a r y 
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f i l es , us ing in fo rmat ion present in our target machine descr ip t ions; but w e are 
not i n t e r e s t e d in the problems of loader independence (wh ich are indeed 
d i f f i cu l t ) . 

3 .3 . A note on phase o rder ing problems 

A p r o b l e m common to mul t i -phase opt imizing compilers is that the re is no " i dea l " o r d e r i n g 

o f phases . Phase A t rans forms the program in ways that ob l i te ra te some op t im iza t ions t ha t 

o t h e r w i s e cou ld have been per fo rmed by phase B, which fo l lows i t ; but if the o r d e r o f t h e 

t w o phases is sw i t ched , phase B per forms opt imizat ions that dep r i ve phase A o f 

o p p o r t u n i t i e s . The dual of this s i tuat ion is one in which the t w o phases o p e n up n e w 

o p p o r t u n i t i e s f o r each o ther . We re fer to these as phase ordering p rob lems, or H c h i c k e n / e g g 

p r o b l e m s " , a f te r the famous quest ion, "Which came f i rs t , the chicken or the egg?". The f i r s t 

t y p e a re negative phase o rder ing problems, and the second t ype are positive. T h e r e a re 

s e v e r a l w a y s of deal ing w i t h such situations. 

- One can use i te ra t ion . The two phases are simply repeated, one af ter the o t h e r , 
un t i l the p r o g r a m set t les down. We are not accustomed to the use of i t e r a t i o n 
un t i l conve rgence in compi lers, but in fact this technique is h ighly successfu l in 
t h e FINAL phase of the Bl iss-11 compiler [ 2 5 ] , and it is used in the PQC FINAL 
phase as we l l (see sect ion 10). Of course, it is no solut ion to negat ive phase 
o r d e r i n g p rob lems, but it may be the only optimal solut ion for pos i t ive p rob lems . 
In o r d e r fo r it to be appl icable, there must be some guarantee of conve rgence ; in 
o r d e r fo r it to be pract ica l , convergence must almost a lways occur a f te r a v e r y 
smal l number of i te ra t ions. 

- One can ignore the prob lem. This approach is reasonable if the i n te rac t i on 
b e t w e e n the t w o phases is ra re , or is o therwise unimportant , or if t h e r e is no 
o t h e r p rac t ica l a l te rnat ive . 

- One can use i te ra t ion wi thout convergence; that is, the number of i t e ra t ions o f 
each phase may be f ixed ahead of time. 

- One can use what we call "wi ld guess" techniques. These may be used fo r b o t h 
p o s i t i v e and negat ive phase order ing problems. Phase A may make some s imple 
set of assumpt ions about the results of phase B, and act on them. This g ives 
some of the e f fec t of having two i terat ions of phase B. The advantage of it o v e r 
hav ing t w o i te ra t ions is that phase B need not be programmed to al low i t e r a t i o n , 
tha t is, it need not be idempotent. This is important , because w r i t i n g a phase to 
be i dempo ten t , especia l ly if it computes new at t r ibute values fo r p rog ram t r e e 
nodes ra the r than simply per forming t ree t ransformat ions, requ i res at least a 
s t r o n g p rogramming and design discipl ine, and at wors t may be hope less ly 
d i f f i cu l t . 

W e w i l l e n c o u n t e r var ious phase order ing problems in our discussion of the phases of t h e 

c o m p i l e r ; w e w i l l t r y to indicate for the important ones how we have dealt w i t h them. 
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4 . Intermediate Representations 

4 . 1 . LGN 

T h e f o l l o w i n g l ist should be appended to the list of requi rements, p resen ted in sec t i on 3 . 1 , 

w h i c h must be met by our ex terna l representat ion of programs: 

- The no ta t i on should be able to represent an a rb i t ra ry d i rec ted g raph w i t h many 
l inks , inc lud ing cycl ic l inks. 

- The no ta t i on should be able to represent informat ion independent ly of i ts 
imp lemen ta t i on , e.g., represent ing a sequence of data which may be s t o r e d as a 
l is t , a se t , a vec to r , etc. This is because the optimal r ep resen ta t i on of 
i n f o r m a t i o n fo r one compi ler phase may not be optimal for any o ther . 

- The no ta t i on should be t ransformable to an eff ic ient representa t ion , e.g., a h igh ly 
p a c k e d b i t rep resen ta t i on w i th single bits for booleans, small f ie lds fo r small 
va lues , etc. In par t icu lar , it should be possible to discard the i n p u t - o u t p u t 
b e t w e e n t w o phases and collapse them into a single p rogram; u l t imate ly , w e 
cou ld d e v e l o p source code that would integrate into a single compi ler w i t h o u t 
any i n te rmed ia te represen ta t ion other than the b inary image in memory, 

- The imp lementa t ion should not lose informat ion because a par t icu lar phase does 
no t need i t ; in par t icu lar , it must preserve such informat ion idempoten t l y f r o m 
i npu t to ou tpu t . 

T h e "L inear Graph Nota t ion" , or LGN 1 meets these goals to va ry ing degrees. The s y n t a x o f 

LGN d e s c r i b e s nodes of the graph in terms of a node t ype and a t t r i b u t e - v a l u e pa i r s 

assoc ia ted w i t h the node. Each node is labeled, and the label was chosen to be an oc ta l 

n u m b e r so tha t an implementat ion could emit the machine address of the node as i ts labe l (as 

i n d e e d ou r debugge r does). However, the only important requi rement on labels is un iqueness 

w i t h i n a pa r t i cu la r g raph . This is checked on input (dupl icate labels indicate an e r r o r 

c o n d i t i o n ) and is expec ted to be p reserved on output . 

4 . 1 . 1 . Example 

A n examp le he re might g ive more of the f lavor of LGN: 

The nam© indicates that the notation is a linear representation of a generally non-linear, even non-planar internal 
graph structure. 
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1 7 : OBJECT 
(NAME BALL) 
(COLOR YELLOW) 

2 3 : ACTOR 
(NAME JACK) 
(AGE 6 ) 

3 1 : RELATION 
(NAME PLAYS-WITH) 
(WHAT 2 3 : ) 
(TOWHAT 1 7 : ) 

Th is examp le was chosen because it has nothing whatever to do w i t h compi le rs . I t is 

t h e r e f o r e poss ib le to concent ra te on what the notat ion says w i thout w o r r y i n g about w h a t w e 

mus t say t o desc r ibe a compi ler data s t ruc ture ; that is discussed later in sec t ion 4.2 (see 

f i g u r e 5) . This shows that there exist things called OBJECTs that have names and c o l o r s , 

ACTORs tha t have names and ages, and RELATIONS for connect ing actors to o b j e c t s ( o r 

p o s s i b l y o b j e c t s to actors) , which have names and d i rec ted arcs WHAT and TOWHAT. 

A t t r i b u t e names such as "NAME", "AGE", "WHAT", and "TOWHAT" are not i n t e r p r e t e d b y t h e 

LGN s u p p o r t sys tem — any o ther ident i f iers could have been used equal ly w e l l . M o r e o v e r , 

t h e NAME f ie lds in the th ree t ypes of nodes, OBJECTs, ACTORs, and RELATIONS, a re no t 

n e c e s s a r i l y r e l a t e d to each o ther , or confused or connected w i t h each o the r in any w a y b y 

t h e LGN s y s t e m . Thus LGN could be the external representa t ion of a conven t iona l r e c o r d 

s t r u c t u r e , as p r o v i d e d by languages like PASCAL. 

4.1 .2 . Primitive data types 

The p r i m i t i v e t y p e s for the a t t r ibu te values are: 

integer r ep resen ted external ly by a s t r ing of d ig i ts, or by a symbol ic name; 

label r ep resen ted by an octal number fo l lowed by a colon ( f o r w a r d r e f e r e n c e s 
are handled cor rec t ly ) ; 

identifier r ep resen ted by a st r ing of le t ters , digi ts, and even some p u n c t u a t i o n 

marks; 

string quo ted st r ings of a rb i t ra ry characters; 

sequence sequences of values (separated by blanks) of any of the above t y p e s , 
poss ib ly w i t h var ious types intermixed. 

Va lues of the identifier t y p e are represented internal ly by unique in tegers g e n e r a t e d b y t h e 

LGN s y s t e m ; t w o of them can be tes ted for equal i ty , but no o ther meaningful o p e r a t i o n s can 
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b e p e r f o r m e d . 

A n LGN s u p p o r t package provides the sof tware necessary to w o r k w i t h t h e s e 

r e p r e s e n t a t i o n s in a p rogram. It contains: 

- A d e f i n i t i o n - f i l e genera tor , which takes a specif icat ion of the node t y p e s , 
a t t r i b u t e names, and al lowable value types and values, and produces de f i n i t i on 
f i l es used by the source program. These fi les prov ide the necessary access to 
t h e f ie lds , to the node in format ion, and to the representat ion. They add i t iona l ly 
d e f i n e the tables requ i red by the input /ou tput suppor t . 

- I n p u t / o u t p u t run t ime suppor t , which reads and wr i tes LGN f i les. 

- Runt ime u t i l i t y suppor t , which provides procedures for set and list man ipu la t ion , 
s t o r a g e management, c reat ion and delet ion of nodes and complex va lues , and 
e r r o r hand l ing. 

A t t r i b u t e s of t y p e integer and identifier f requent ly appear similar in the e x t e r n a l 

r e p r e s e n t a t i o n . This is because of the faci l i ty for def in ing symbolic names fo r i n t e g e r 

a t t r i b u t e va lues . Consider , for instance, the at t r ibute COLOR, of "ob jec t " th ings. The user can 

s p e c i f y tha t the on ly legi t imate colors have symbolic names BLUE, RED, YELLOW, and GREEN, 

a n d can f u r t h e r spec i f y wh ich integers these four names represent . If, a l t e rna t i ve l y , t h e 

COLOR a t t r i b u t e had t y p e identifier, then any name would be a legi t imate co lor ; t w o c o l o r s 

c o u l d be t e s t e d fo r equa l i t y , but no other operat ions (such as typ ica l in teger o p e r a t i o n s ) 

w o u l d be mean ing fu l . 

A t t r i b u t e names and symbol ic names, like ident i f iers, need only con fo rm to the v e r y 

p e r m i s s i v e LGN syn tax fo r ident i f iers . Since most languages (BLISS in par t i cu la r ) have m o r e 

r e s t r i c t e d i den t i f i e r syn tax , the LGN faci l i ty for def ining them allows them to be assoc ia ted 

w i t h " i n t e r n a l " i den t i f i e rs , wh ich are expected to obey the rules of the host language. 

4 . 1 .3 . Composi te data types 

T h e i n t e rna l r ep resen ta t i on of a sequence is def ined by the user; thus, the sequence 

(SUBNODES 1 7 : 4 4 : 7 6 : 1 2 2 : 5 : ) 

may be s t o r e d as 

an array: the o rde r is p reserved , and the i t h element of the a r ray is the i t h va l ue 
in the sequence; 

a set: the o rde r is not p reserved, and dupl icate ent r ies are omi t ted . I n s e r t i o n 
and re t r ieva l are ef f ic ient; 

a List: the o rde r is p reserved , and insert ions and delet ions are e f f i c ien t w h i l e 
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indexing is not (l ists are doubly l inked). 

(A l l o f these rep resen ta t i ons are fu l ly suppor ted by the LGN sof tware. ) 

I n add i t i on , atomic t y p e s or ar rays may contain values of t ype item. An item has a va l ue 

w h i c h can be any of the atomic types or composite types , and has a t y p e - t a g ind ica t ing w h i c h 

t y p e the va lue possesses. For example, the fo l lowing sequence could be s t o r e d o n l y in an 

i t e m - a r r a y , se t , o r l is t : 

(THING-SEQUENCE " s t r i n g " 1 7 : 45 a n y - i d ) 

S im i l a r l y , t he f o l l ow ing t w o nodes would require that the VALUE f ie ld be of t y p e i t e m , and t h e 

t y p e of t he i tem w o u l d be determined at run time by examining a tag f ie ld . 

1 7 : SOMENODE 
(VALUE 4 4 : ) 

2 3 : SOMENODE 
(VALUE 5 ) 

I n t h i s examp le , the t y p e tag associated w i th the VALUE f ie ld of node 17: wou ld ind ica te t ha t 

t h e t y p e of the VALUE f ie ld is label, and the type tag of the VALUE f ie ld of node 2 3 : w o u l d 

i nd i ca te tha t the t y p e of the value f ield was integer. As w i th "union mode" o r " v a r i a n t 

r e c o r d " f e a t u r e s in many languages, this feature defeats some of the t y p e check ing t ha t 

n o r m a l l y is done . 

4 .1 .4 . The definition file generator 

The LGN de f i n i t i on f i le generator is a program which reads a descr ip t ion of the nodes , 

i n c l ud i ng the names of the f ie lds, t ype of value, possible values, etc. and emits the s o u r c e 

c o d e necessa ry fo r def in ing these data s t ructures to the language used f o r t h e 

i m p l e m e n t a t i o n . A l though cu r ren t l y all the source code is in BLISS-10 [ 6 ] , the spec i f i ca t i ons 

a r e in LGN i tse l f and the def in i t ion f i le generator could emit record dec lara t ions f o r SAIL , 

PASCAL, C, o r w h a t e v e r the des i red target language would be. 

A p a r t i c u l a r l y usefu l f ea tu re , mentioned ear l ier , is the abi l i ty to cons t ruc t t ab les f o r 

d i s p a t c h i n g to speci f ic p rocedures based upon the value of a f ie ld in a node. For e x a m p l e , 

o n e may w i s h to "unde rs tand " in some way the proper t ies of the b inary o p e r a t o r s : 
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/ 

mod 

+ commutât i v e , a s s o c i â t i v e 
commutât i v e f a s s o c i â t i v e 
not c o m m u t â t i v e , a s s o c i a t i v e 
not commutât ive? not a s s o c i a t i v e 
not commuât ive , not a s s o c i a t i v e 

• • • 

w h i c h might invo lve the fo l lowing code: 

c a s e n o d e [ o p e r a t o r ] of 
b e g i n 

[ A d d o p ] 
[ M u l o p ] 
[ D i v o p ] 
[ S u b o p ] 
[ H o d O p ] 

COMASSOC(node); 
COMASSQC(node)j 
NCOMASSOC(node): 
NCOMNASSOC(node); 
NCOMNASSOC(node) 

e n d ; 

In any language, th is is awkward , because as the set of opera tors is ex tended , each s i te in 

t h e p r o g r a m w h i c h involves such a dispatch table must be ex tended in k ind. Whi le th i s 

c e r t a i n l y can be done, it is tedious, and dif f icult to do cor rec t l y (cons is tent ly ) . The LGN 

s y s t e m a l lows drspatch tables to be built wi thout regard to the actual values assigned to t h e 

s y m b o l i c names a l lowed for a part icular integer f ie ld; it sor ts the set of d ispatch tab le e n t r i e s 

p r o v i d e d b y the user , and f i l ls in default entr ies for symbolic names wh ich the user has f a i l ed 

t o p r o v i d e fo r . In the BLISS system, the dispatch table is simply a tab le of s u b r o u t i n e 

a d d r e s s e s , and the d ispatch ing code looks l ike: 

No te tha t t he code at the dispatch site is not sensit ive to the actual size of the t ab le , i.e. t o 

t h e n u m b e r of ope ra to r s . The table is suff ic ient ly simple that it can be gene ra ted b y t h e 

d e f i n i t i o n f i le gene ra to r ; this assumes that the act of incorporat ing this tab le in to the ac tua l 

s o u r c e p r o g r a m is accomplished by some compiler d i rec t ive, such as (depend ing o n t h e 

l a n g u a g e ) require. . .source, include, copy, etc. 

The f i le g e n e r a t o r has the advantage of knowing the exact values it has assigned to t h e b i t 

p a t t e r n s w h i c h r ep resen t the tokens w + w , "/"> etc. in the opera tor f ie ld of a node, and can 

t h e r e f o r e emi t a c o r r e c t l y so r ted table. Declarations exist for what to do w i t h u n s p e c i f i e d 

. D i s p a t chTab I e [ . node[ Oper a t o r ] ] (.. node) t 

o p e r a t o r s . 
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4 . 1 .5 . Observat ions on LGN and its support 

T h e use of LGN has not been en t i re ly ideal. The r e a d e r / w r i t e r rout ines have a s ign i f i can t 

impac t o n the pe r fo rmance ; several minutes (of real t ime) are requ i red to read in a l a r g e 

d a t a b a s e such as a machine descr ip t ion. This l imitat ion is almost en t i r e l y at t he I /O and 

b u f f e r - s c a n n i n g leve l , ra ther than in storage allocation or manipulat ion. Once t he da ta 

s t r u c t u r e is r ead in , w e pay no time penal ty for the use of LGN, a l though w e incur some 

s p a c e p e n a l t y due to the internal symbol tables it maintains. 

The c u r r e n t implementat ion does not allow a typical space opt imiza t ion used in rea l 

s y s t e m s , w h i c h is to re -use the (idle) space of one phase in another phase. Thus, w e w e r e 

u n a b l e to c r e a t e data s t ruc tu res in which the f ields of one phase ove r l apped the f ie lds of 

a n o t h e r phase , e v e n though there was no confl ict in their use. A l though la rge ly an a r t i f ac t o f 

o n e pa r t i cu l a r implementat ion of the LGN support package, this did cause us p rob lems in t ha t 

a l a r g e number of wo rds (cu r ren t l y 19 words) are requi red to represent a t r ee node, w h e n in 

f ac t f e w e r than half of these contain useful information at any one t ime. 

Ne i t he r of these defec ts are serious enough to cause us to reconsider the use of LGN. The 

ease w i t h w h i c h w e w e r e able to manage a large, complex database ( the r e p r e s e n t a t i o n o f 

t h e basic t r e e nodes) and create many small, specia l -purpose representa t ions f o r each phase 

c o n t r i b u t e d s ign i f i can t ly to the rapid implementation of the f i rs t compi ler ; in fac t , abou t s ix 

m o n t h s e lapsed b e t w e e n the beginning of serious coding on the compi ler and the p r o t o t y p e 

d e m o n s t r a t i o n sys tem. 

The i n t e r a c t i v e debugger for Bliss (SIX12) was extended to use the in te rna l LGN t a b l e s , 

and w e cou ld thus examine and display our data s t ructures using LGN-like syn tax . The ab i l i t y 

t o d e b u g in t e rms of our conceptual data s t ructures rather than thei r in terna l r e p r e s e n t a t i o n 

w a s a n o t h e r fac to r wh ich con t r ibu ted to rapid development. A l though some sys tems, such as 

L ISP, p r o v i d e such fea tu res as a matter of course, v e r y few algebraic languages o r 

i m p l e m e n t a t i o n languages prov ide such facil i t ies. 

4 .2 . TCOL 

A n issue not se t t l ed by the design of LGN descr ibed in the prev ious sect ions is w h i c h da ta 

s t r u c t u r e s are to be used to represent the source program. The init ial choice is b e t w e e n 

v a r i o u s l inear rep resen ta t i ons , such as t r ip les or quadruples ( two-address and t h r e e - a d d r e s s 

" i n s t r u c t i o n s " ) , and a two-d imensional representat ion (such as a parse t ree) . We chose t h e 

l a t t e r . Some arguments fo r this choice are presented in [ 19 , 14] . We summar ize o u r 

p r i n c i p a l reasons as fo l l ows : 
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- The l inear represen ta t ions are too confining in their p rescr ip t ions fo r the 
s t o r a g e and re t r i eva l of operat ion results. It is di f f icul t to genera te good code 
f o r t h r e e - a d d r e s s machines f rom t r ip les, or for two-address machines f r o m 
q u a d r u p l e s . 

- The l inear represen ta t ions requi re that source- level cont ro l cons t ruc ts be 
b r o k e n d o w n in to tests and jumps. The disadvantages of doing this too ea r l y in 
t he compi la t ion process are discussed below. 

- The t r e e rep resen ta t i on has a good deal of psychological "natura lness" . I t seems 
to be much easier fo r a human reader to grasp the data dependenc ies of a 
p r o g r a m f r o m a (su i tab ly p re t t yp r in ted ) parse t ree than f r om a (su i tab ly 
p r e t t y p r i n t e d ) l ist of t r ip les or quadruples; the lat ter has all the readab i l i t y 
p r o b l e m s of assembly code. 

I t ' s i m p o r t a n t to remember that the two kinds of representa t ion are essent ia l ly equ i va len t 

in p o w e r . It is equa l ly possible to construct a control f low graph (see sect ion 6) f r o m e i t h e r 

f o r m , and in fact w e maintain a linear list of all t ree nodes in execut ion o rder . C o n v e r s e l y , 

t h e s u b t r e e pa t t e rn -ma tch ing opt imizat ions descr ibed in sect ion 7.5 could be d e s c r i b e d and 

p e r f o r m e d w i t h almost equal faci l i ty on a linear representat ion of the p rog ram — if it w e r e 

t h o r o u g h l y ana lyzed and augmented w i th enough informat ion to recons t ruc t t he t r e e 

s t r u c t u r e . Howeve r , much less e f fo r t , bo th in coding and in unders tand ing, is r e q u i r e d t o 

r e g e n e r a t e l i nea r i t y in format ion f rom the t ree s t ruc ture , than to regenera te data d e p e n d e n c y 

i n f o r m a t i o n f r o m a l inear s t ruc tu re . 

We have e l eva ted our representa t ion of programs to the status of a no ta t ion or language , 

ca l l ed T C O L This ac ronym is histor ical ly motivated; the last th ree le t te rs are f r o m the e a r l i e r 

a c r o n y m UNCOL [ 5 2 ] , and the f i rs t le t ter stands for "Tree" . An appraisal of the aims and 

a p p r o a c h e s of UNCOL-like systems, by comparison w i th our own , can be f ound in [ 3 6 ] . 

A l t h o u g h those sys tems are not especial ly appropr ia te for producing good-qua l i t y code , w e 

h a v e b o r r o w e d one cent ra l idea f rom them: the not ion of a single, (a lmost) u n i f o r m 

i n t e r m e d i a t e language, to allow simultaneous compatibi l i ty be tween the ou tpu t of many 

p a r s e r s and the input of many code generators. Unlike most UNCOLs, wh i ch are l i ke 

i n s t r u c t i o n se ts of a s t y l i zed computer, TCOL contains no implicit computer model ; it can b e 

r e g a r d e d as a s t y l i zed programming language. 

We do not w o r k w i t h a parse t ree , but w i th a t ree that ref lects abstract syntax: 

- o p e r a t o r p recedence rules, and parenthesizat ion by the programmer to ge t 
a r o u n d them, are no longer evident in the t ree ; 

- c o n s t r u c t s wh ich are indef in i te sequences of other constructs are r e p r e s e n t e d as 
nodes w i t h inde f in i te ly many operands, though they may have been r e p r e s e n t e d 
in the parse t r e e as (highly unbalanced) t rees. An example of this is g i ven in 
f i g u r e 3 ; 
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- t e rm ina ls in the grammar are not necessari ly represented by leaves in the t r e e . 
In pa r t i cu la r , a b inary opera tor expression is represented by a node w i t h t w o 
o p e r a n d s ; the value of the op at t r ibute is the ident i ty of the ope ra to r . In a 
pa rse t r e e , the node would have had three operands, of which the middle one 
w o u l d be the ope ra to r . 

I n a d d i t i o n , some semantic rules must be fo l lowed: 

- Al l o p e r a t i o n s , including coercions and dynamic checking of subscr ip t ranges and 
t y p e s , must be expl ic i t ly represented in the t ree . This includes the 
" d e r e f e r e n c i n g " coerc ion , so e f fec t ive ly TCOL uses the Bliss "do t " no ta t i on [ 6 ] . 
F igu re 4 shows some typ ica l examples of the results of this po l icy , fo r va r i ous 
p r o g r a m m i n g languages. Figure 5 shows a TCOL t ree rep resen ted in LGN; th is is 
( s l i gh t l y s impl i f ied) ou tput f rom a BLISS parser which we use fo r t es t i ng 
p u r p o s e s . 

- D i f f e r e n t o p e r a t o r s must be represented by d i f ferent names. Thus in teger and 
rea l add i t ion are just as dist inct f rom each other as are addi t ion and 
mu l t i p l i ca t ion . 

- C o n t r o l s t r uc tu res are represented by s t ructures, not b roken d o w n in to tes ts 
and j umps . This means that the contro l s t ructures in TCOL v a r y somewhat 
d e p e n d i n g on what language is being implemented. For instance, one of t he 
TCOL o p e r a t o r s fo r Algol 68 is for; for BLISS there are incr and deer; f o r 
FORTRAN t h e r e is do. All the expressions which are par ts of the cons t ruc t a re 
o p e r a n d s of the opera to r ; thus the t ree node for a for loop in an A lgo l 6 8 
p r o g r a m has a f rom operand , a by operand, a to operand, and a do ope rand . 

- Dec la ra t ions are not ord inar i ly represented in the f ree . Except ions are 
dec la ra t i ons w i t h wh ich code is specif ical ly associated, such as the BLISS enable 
d e c l a r a t i o n ; an in i t ia l iz ing declarat ion of a var iable would be r e p r e s e n t e d as an 
ass ignment . 

- No t r e e node may appear in more than one basic block in the u l t imate c o n t r o l 
f l o w g r a p h . The terms basic block and control flow graph are de f ined in sec t ion 
6; the prac t ica l meaning of this rule is that the code genera ted fo r a c o n t r o l 
c o n s t r u c t node must be s t ra ight - l ine code. This sounds b izar re ; what it means is 
t ha t some such nodes must have dummy operands, wh ich rep resen t va r i ous 
p ieces of s t ra igh t - l i ne code. Here are some examples: 

- The Algol 60 i f - then-else statement is represented by one node. I ts 
o p e r a t o r is cal led if. It has three operands: the boolean exp ress ion , and 
the t w o a l te rnat ive statements. NO CODE wi l l be genera ted fo r the if node. 
This is because the test ing and condit ional branching wi l l be g e n e r a t e d 
automat ica l ly for the boolean expression node, and the branch at the e n d 
of the then par t wi l l be generated automatically for that node. T h e r e f o r e , 
the if s ta tement node presents no problem. 

- The i f - then-e lse express ion, on the other hand, requi res some care. Given 
that the value of the expression is requ i red, it may have to be moved 
a round . The value of the node wi l l be held at run t ime in some t a r g e t 
machine s torage locat ion, such as an accumulator or a memory loca t ion . 
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The va lues of the then part and the else part wi l l also be held in locat ions, 
and all t h ree of these locations may be d i f ferent f rom each o ther . Code 
must be genera ted to move the contents of the lat ter two locat ions in to 
the f i r s t locat ion. There wil l thus be two s t ra ight - l ine pieces of code , 
w h i c h fo r s impl ic i ty should be represented by two dummy ope rand nodes. 
Each dummy operand node has an operator named copy. It s tands 
b e t w e e n the if node and the corresponding a l ternat ive node; that is, the 
then pa r t is no longer an operand of the if node, but ra ther an o p e r a n d of 
the f i r s t copy node. 

- S tepp ing loop const ructs , in many languages, requ i re cons iderable ca re . 
Cons ider the Algol 68 for expression: 

for L from e l by e2 to c3 do c4 od 

The semant ics of this construct require that the by and to pa r ts must not 
change dur ing execut ion of the loop. Therefore the in i t ia l izat ion code , 
w h i c h a l ready includes the init ial ization of i to c l , must also (poss ib l y ) 
in i t ia l ize t w o compi le r -c reated variables to e2 and e3. The in i t ia l i za t ion 
code is r ep resen ted by a dummy operand node whose operands are i, e l , 
e2 , and e3. The loop increment code is represented by a dummy o p e r a n d 
node , and the loop test code by yet another dummy operand node. F inal ly , 
some languages, such as BLISS, allow for the loop to r e t u r n a va lue , in 
w h i c h case the re is some code to s tore the value in an a p p r o p r i a t e 
loca t ion ; th is code is represented by the incr node i tself . 

Statement : BEGIN j :» 1; K :=* 2; I :» 3 END 

Wrong Right 

SYMBOL 
I 

T 

CONSTANT 

etc. etc. 

•SB 

SYMBOL 

1 
"J " 

CONSTANT etc. e t c . 

Figure 3 : Right and w rong TCOL representat ions of a compound s ta tement 

M a n y a r t i f ac t s of the compi lat ion process are not re f lec ted in TCOL. The TCOL t r e e 

r e p r e s e n t i n g a p r o g r a m should not be affected by the presence or absence of such p a r s e r 

f e a t u r e s as: macros and open subrout ines; generic operators and rout ines ; comp i le - t ime t y p e 

c h e c k i n g and ve r i f i ca t i on condi t ion checking; source- f i le inclusion faci l i t ies ( P L / I include, 

COBOL copy) ; and condi t ional compilat ion. Moreover, block s t ruc tu re and encapsu la t ion , w h i c h 
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S ta temen t (Source Language) TCOL t r e e 

i - j (For t ran) 

i j (Algol 68) / \ 
i *- . j (Bliss) SYMBOL DEREF 

SYMBOL 

a = j 
a := j 

o r 
a REAL(j) 

(For t ran) 

(Algol 68) / \ 
SYMBOL FLOAT 

1 1 
1 

" i " DEREF 

SYMBOL 

T 

Figure 4: Examples of TCOL t rees 

p l a y i m p o r t a n t ro les in language syntax def in i t ion, leave few t races in the TCOL 

r e p r e s e n t a t i o n of a p rogram. Along w i th the parse t ree there must be a symbo l t ab le , b u t 

t h i s has no s t r u c t u r e ; it is just a set of LGN graph nodes, one for each user va r i ab le , w i t h no 

n e c e s s a r y re l a t i on to each other . Each node holds just enough in format ion about the v a r i a b l e 

so t ha t l a te r phases can al locate storage for it (e.g. whether its l i fet ime is s tat ic , s t a c k - l i k e , o r 

h e a p - l i k e ) , de te rm ine what its aliases may be, and generate debugging i n fo rma t ion (e.g. a 

p r i n t name) f o r i t . 

The semant ics of each TCOL opera tor may vary f rom target machine to ta rge t machine and 

f r o m language to language. At the ve ry least, the meaning of each ar i thmet ic o p e r a t o r 

c h a n g e s w h e n the w o r d size of the target machine changes; and TCOL o p e r a t o r s w h i c h a re 

no t r e l e v a n t to a par t icu lar language (such as s t r ing operat ions in a language that does no t 

p r o v i d e s t r i ngs ) may s imply be d ropped. More subtle or more in teres t ing changes may o c c u r : 

t h e r e l a t i onsh ip b e t w e e n negat ion and logical complementat ion is d i f f e ren t f o r t w o ' s 

c o m p l e m e n t and one's complement machines; some ari thmetic operat ions may be checked f o r 
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o v e r f l o w and may t he re fo re have potent ial s ide-ef fects; the semantics of b u i l t - i n da ta 

a b s t r a c t i o n s such as s t r ings may d i f fer sl ight ly f rom one language to another . These 

d i f f e r e n c e s do not appear in TCOL, but in a set of axioms which are i nco rpo ra ted in to t h e 

l anguage de f i n i t i on . The use and nature of these axioms are descr ibed b r i e f l y in sec t i on 9 

a n d in mo re deta i l in [ 1 1 ] . 

T h e r e a re o the r issues of semantic var iat ion f rom one TCOL to another that w e have no t 

y e t dea l t w i t h . These are var iat ions of semantics of basic language cons t ruc ts : p a r a m e t e r 

p a s s i n g , a l ias ing, the t rea tment of limit and increment parameters of s tepp ing loops ( t o u c h e d 

o n above ) . We hope eventua l ly to develop notations for expressing these charac te r i s t i cs o f 

l anguages , and to de termine precisely their ef fects on the PQC compiler. Unti l t hen w e w i l l 

h a v e to dea l w i t h these issues in an ad hoc manner, whenever br ing ing up a compi le r f o r a 

n e w language. 

The t r e a t m e n t of a r ray and record accesses is to represent the address compu ta t i ons 

e x p l i c i t l y in the TCOL t ree . The motivat ion for this wi l l become clear w h e n w e d e s c r i b e 

o p t i m i z a t i o n s p e r f o r m e d on these address computations in var ious phases (FLOWAN and 

s e v e r a l DELAY phases) ; it is impossible to manipulate these computat ions, and compare t h e m 

w i t h each o t h e r , in a rat ional manner wi thout exposing the ar i thmetic opera t ions of w h i c h 

t h e y a re composed . The pena l ty paid for this is that in format ion is lost , o r at any r a t e 

s c a t t e r e d and made d i f f icu l t to use: target machine indexing operat ions, so obv ious in t h e 

s o u r c e code , must be red iscovered in a separate phase (see sect ion 7.6) of the compi le r . 

The t r e a t m e n t of con t ro l s t ruc tures is sti l l more unusual, for the oppos i te reason . As 

m e n t i o n e d ea r l i e r , these are represented in a t ree form close to the i r o r ig ina l pa rse t r e e 

f o r m ; if w e t r e a t e d them as we t reat data s t ructures, we would instead break them d o w n i n to 

t e s t s , j u m p s , and labels. The t radeof f is d i f ferent here. The benef i t of b reak ing c o n t r o l 

c o n s t r u c t s in to tes ts and jumps is not in bet ter opt imizat ion. In fact op t imiza t ion is l i ke ly t o 

be w o r s e : it is ex t reme ly di f f icul t to recognize the appl icabi l i ty of a special t a rge t machine 

i n s t r u c t i o n f o r loop c?ontrol, if the components of the stepping loop are sca t te red h i the r and 

y o n t h r o u g h the p rog ram t ree . Rather, the benef i t is in s l ight ly decreased cost of 

t r a n s p o r t i n g a compi ler f rom one target machine to another. For each con t ro l c o n s t r u c t 

o p e r a t o r in a TCOL, one or more descr ipt ions of code sequences that can implement it must 

a p p e a r in the code genera t ion template l ib rary ; the signif icance of this wi l l become c lear in 

s e c t i o n 9. In the absence of quant i ta t ive knowledge or even est imates of th is inc reased cos t , 

w e have t e n t a t i v e l y chosen the scheme that allows bet ter opt imizat ion. 
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VERSION 16 NODES #11610 
I 0681 bagin 
! 0002 local Xj 
! 0003 0 M n A,B| 
I 0004 X » .A • .B 
I 000S and 

ROOT TREE 2343i 

I t SYMBOL 
(NOME "X") 
(LIFE DYNAMO 
(SI2E 2) 

2% SYMBOL 
(NAME "A") 
(LIFE STATIC) 
(SIZE 2) 
(GLOBAL NO) 

3 s SYMBOL 
(NAME H B") 
(LIFE STATIC) 
(SIZE 2) 
(GLOBAL NO) 

2343t TREE 
(OP i « ) 
(SUBNOOES 2344t 2345t) 

2344i LEAF 
(OP SYMBOL) 
(ANCESTOR 2343t ) 
(VAL I t ) 

2345: TREE 
(OP • ) 
(ANCESTOR 2343s) 
(SUBNOOES 2346s 2347s) 

2346s TREE 
(OP DEREF) 
(ANCESTOR 2345s) 
(SUBNOOES 2350s) 

2350s LEAF 
(OP SYMBOL) 
(ANCESTOR 2346s) 
(VAL 2s) 

2347s TREE 
(OP DEREF) 
(ANCESTOR 2345s) 
(SUBNOOES 2351s) 

2351s LEAF 
(OP SYMBOL) 
(ANCESTOR 2347s) 
(VAL 3s) 

Figure 5: Example of a TCOL t ree represen ted in LGN 
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5* Constant folding and constant propagation 

C o n c e p t u a l l y the f i rs t compi ler phase to operate on the program is one of cons tant f o l d i n g . 

W e d i s t i ngu i sh b e t w e e n constant folding and constant propagation: 

- Cons tan t fo ld ing is the evaluat ion of arithmetic expressions at compi le t ime, w h e n 
t he i r ope rands are known. This also may include prov is ion for operands w h i c h 
a re addresses of var iab les — not necessari ly known unt i l load t ime, or e v e n r u n 
t ime. Thus, the address computat ion involved in an ar ray access w i t h cons tan t 
s u b s c r i p t s is done dur ing constant folding. Reduction of express ions i nvo l v ing 
i den t i t i es is done dur ing this phase as wel l ; for instance, H a + 0 " is reduced to 
it it a . 

- Cons tan t p ropaga t ion is a d i f fe rent opt imizat ion, involv ing data f low analysis (see 
sec t i on 6). The contents of a program variable may be known at compi le t ime 
fo r c e r t a i n l imi ted sect ions of a program. (These usually are the sec t ions 
immed ia te ly a f te r in i t ia l izat ion of the variable.) In these sect ions, r e fe rences to 
t he con ten ts of the var iab le may be replaced by references to the comp i le - t ime 
cons tan t . 

We assume that if the language allows declarations of names for constants (e.g. the constant 

d e c l a r a t i o n of Pascal), these names have been replaced by the i r meanings in the p r o g r a m 

t r e e . Thus it might seem that constant folding is an easy s tep, once done and t hen f o r g o t t e n . 

H o w e v e r , it is he re that we encounter the f i rst of the (posi t ive) phase o r d e r i n g p r o b l e m s 

d i s c u s s e d in sec t ion 3.3. Subsequent optimizations create new oppor tun i t i es fo r cons tan t 

f o l d i n g . This is pa r t i cu la r l y t rue of the t ree- t rans format ion subphases (see sec t ion 7). For 

i n s t a n c e , t he e x p r e s s i o n : 

(a + 3 ) + 4 

w i l l be s imp l i f i ed to 

a + (3 + 4) 

at w h i c h po in t it wou ld be useful if the constant folding phase could be r u n again. Our 

s o l u t i o n t o th is par t i cu la r phase order ing problem is to modularize the constant fo ld ing phase . 

I t cons i s t s of a module wh ich contro ls the walk of the program t ree , and a module w h i c h , 

g i v e n any exp ress i on node whose operands are leaf nodes (constants), does the a r i t hme t i c 

n e c e s s a r y to " f o l d " the express ion, re turn ing a single leaf node represen t ing the resu l t . Th is 

l a t t e r modu le is avai lable to be called by subsequent phases. 

Cons tan t fo ld ing may be extended to include compile-t ime determinat ion of c o n t r o l f l o w 
r e s u l t s . Thus , the express ion : 

if true then thenpart else elsepart fi 

may be r e d u c e d to just the then-par t . This is useful if the cons tan t - fo ld ing f e a t u r e of t h e 

o p t i m i z e r is to be used to construct a condit ional compilat ion fac i l i ty . Ord inar i l y , h o w e v e r , 
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c o n d i t i o n a l compi la t ion wi l l have taken effect before the code generat ion phases are b e g u n — 

s u p p o r t e d , p e r h a p s , b y a macro processor or preprocessor. 

6. Flow Analysis 

T h e FLOWAN, TNBIND (sect ion 8) and FINAL (section 10) phases all do some so r t of da ta 

and c o n t r o l f l o w analysis of the program. The f i rs t of these is FLOWAN; the p u r p o s e of t h i s 

p h a s e is t o de tec t opt imizat ions involv ing code motion and e l iminat ion o f r e d u n d a n t 

c o m p u t a t i o n s . 

C ruc ia l t o the act ion of this phase, and later phases, is the cons t ruc t ion of a control flow 

graph. This is a g r a p h whose nodes represent basic blocks; a basic block [ 2 3 ] is a sec t i on o f 

t h e p r o g r a m conta in ing no branches, except at its end, and no labels, except at i ts b e g i n n i n g . 

In o u r r e p r e s e n t a t i o n , of course, a basic block is an o rdered set of nodes f r om the p r o g r a m 

t r e e . L inks in the g raph are d i rec ted, and represent possible t rans fers of con t ro l b e t w e e n 

bas ic b locks . This data s t ruc tu re is basic, in that it is common to almost all f l ow ana lys is 

s y s t e m s [ 4 ] ; o t he r s t ruc tu res wi l l be built on top of i t , including the execution list, a l i n k e d 

l is t of all t he p r o g r a m t r ee nodes threaded in (approximate) execut ion o rder . 

We w i l l not t r y to catalogue all thè optimizations that are or wi l l be done b y th is phase , 

b u t a b r i e f summary of them wi l l g ive some of the f lavor of it. We wi l l r e fe r to the d iag rams 

in f i g u r e 6 , w h i c h cover t w o separate pages. In these, bi ts of Algol 6 8 p r o g r a m t e x t a r e 

p r e s e n t e d , a long w i t h a r rows denot ing (possible) t ransfers of cont ro l f rom one to a n o t h e r . 

G r e e k l e t t e r s are used to indicate pieces of program text that are i r r e l evan t t o t h e 

o p t i m i z a t i o n be ing descr ibed . " t " always denotes a var iable c rea ted by the comp i l e r , 

g u a r a n t e e d to have a name dist inct f rom those of all user var iab les and all o t h e r 

c o m p i l e r - c r e a t e d var iab les (CCV's). 

1 . D iagram a shows an example of redundant expression elimination. (The 
misnomer "common sub-express ion detect ion" re fers to the same t rans fo rmat ion . ) 
B e f o r e op t im iza t ion the expression a • 6 * c is evaluated tw ice . A f t e r , it is 
e v a l u a t e d once; i ts value is saved in a CCV, and used twice. There are a lways 
r e s t r i c t i o n s on the " i r re levan t " code in order that it be t r u l y i r re levan t , e.g. it 
must con ta in no assignments to a, 6, or c, and there may be no con t ro l t r a n s f e r s 
f r o m ou ts ide it to w i th in it. Diagram b shows a more complicated example. 

2 . D iagram c shows the hoisting code motion: two occurrences of the same 
e x p r e s s i o n o r s tatement are combined into one, by moving them " b a c k w a r d s " 
o v e r a f o r k in the p rogram f low graph. If they are expressions (or even if on l y 
one of them is an expression) , a CCV must be created, as in the examples of 
r e d u n d a n t express ion el imination. Diagram d shows reverse hoisting; on l y 
s ta temen ts can par t ic ipa te in this code motion. 

3 . D iagram e shows another kind of code motion; for lack of a be t te r name, w e w i l l 
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cal l th is rho motion, the name used in [25 ] . Here, an express ion or s ta tement is 
m o v e d so that it is on ly evaluated once on each path leading to a jo in po int in 
t he f l o w g raph . This is most useful when the jo in point is the e n t r y po int of a 
l o o p , and the express ion is being moved out of the loop. A degenera te case of 
th i s op t im iza t i on occurs when the two instances of the express ion are the same 
ins tance , i.e. the same node in the program t ree. This is shown in d iagram f. 
Th is is t he op t im iza t ion classically known as "moving invar iant code out of l oops" . 

4 . D iagram g shows an example of strength reduction. This opt imizat ion changes an 
e x p e n s i v e ope ra t i on in a loop (such as mult ipl ication) to a simpler o p e r a t i o n 
(such as addi t ion) , or even gets r id of the expensive opera t ion a l toge ther b y 
chang ing the loop con t ro l , as in the example. While the example is r a t h e r 
e x o t i c - l o o k i n g , this opt imizat ion finds considerable use in the t rea tment of a r r a y 
s u b s c r i p t s [ 2 3 ] . Where the source program increments an ar ray subscr ip t b y 1 
each t ime a round a loop, the object program may increment a po in te r b y some 
number d i f f e ren t f rom 1; this is useful for arrays of more than one d imens ion, 
b u t also fo r one-d imensional ar rays, if (as on the IBM S/370 or DEC PDP-11) t he 
address d i f f e rence be tween two consecutive array elements is more than 1. 

5 . F ina l ly , d iagram h shows, not an opt imizat ion, but an example of source code fo r 
w h i c h the FLOWAN phase wi l l make an important determinat ion about the ob jec t 
code s t r u c t u r e . The Algol 68 specif ications of the semantics of s tepp ing loops 
a re tha t the increment and limit parameters do not change dur ing the loop. Thus , 
if t he loop body contains code that may change the value of var iab le 6, the loop 
in i t i a l i za t ion must copy the contents of 6 into a CCV t, and use the con ten ts of t 
i ns tead of 6 as the loop l imit. FLOWAN determines whether or not th is copy ing is 
r e q u i r e d . (Note that even if it is not requi red, it may be usefu l , e.g. if 6 is not in 
a fas t r eg i s te r , but could be copied into a fast register for the du ra t ion of the 
loop . This is d iscovered in TNBIND (see section 8), not in FLOWAN.) 

The op t im iza t i ons descr ibed in paragraphs 1, 2, and 3 above are f requen t l y u n p r o f i t a b l e in 

s i t u a t i o n s w h e r e t hey happen to be feasible. There are two possible reasons fo r th is . One is 

t h e w e l l - k n o w n t radeo f f be tween time and space. If a hoist ing code mot ion requ i res a CCV, it 

may inc rease the t ime requ i red for execut ion of the program, even though it decreases t h e 

s i ze of the ob jec t code. Cont rar i l y , if rho motion requires a CCV, it may dec rease t h e 

e x e c u t i o n t ime , wh i le increasing object code size. Al though most p rogram op t im iza t ions a re 

b e n e f i c i a l to b o t h execu t ion t ime and code size, the t radeoff is occasional ly impor tan t , and it 

has b e e n sugges ted that it be under contro l of the programmer (or at least under c o n t r o l of 

t h e p r o j e c t manager) . The o ther reason is that when these opt imizat ions invo lve e x p r e s s i o n s , 

and hence requ i r e CCV's, sometimes the expressions involved are so easy to compu te t ha t 

t h e y are s w a m p e d by the cost of manipulating the CCV's. 

Th is last cons idera t ion is ra ther important. Unfor tunate ly it has rece ived almost no 

a t t e n t i o n in the l i t e ra tu re (that we know of). Code motion and redundant e x p r e s s i o n 

e l i m i n a t i o n are most usefu l when they are applied to address computat ions, such as f o r 

i n d e x i n g in to a r r a y s or fo r record accesses; but it is precisely in these cases tha t t a r g e t 
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mach ine f e a t u r e s , such as indexing and indirect ion, tend to make express ions v e r y easy t o 

c o m p u t e . The analysis necessary to determine whether one of these op t im iza t ions is 

p r o f i t a b l e (desirability analysis) is v e r y target machine dependent ; we have sepa ra ted it f r o m 

t h e FLOWAN phase, and it is discussed under DELAY (see sect ion 7.2). Thus the FLOWAN 

p h a s e does not actual ly ca r r y out those opt imizat ions, but leaves indicat ions tha t t h e y a r e 

f e a s i b l e . This phase is en t i re l y independent of the target arch i tec ture , but dependen t o n t h e 

seman t i cs of t he language. 

7. The DELAY phases 

DELAY is the name g iven col lect ively to a group of phases which do s o u r c e - t o - s o u r c e 

t r a n s f o r m a t i o n s of the p rogram t ree before the register al location and code gene ra t i on . W i t h 

some e x c e p t i o n s , these t ransformat ions are target machine dependent . The AMD and c o n t e x t 

d e t e r m i n a t i o n phases do not, s t r ic t ly speaking, t ransform the t ree , but associate semant ic 

i n f o r m a t i o n w i t h each node. It is reasonable to expect that some of these phases cou ld be 

r u n c o n c u r r e n t l y w i t h each o ther , but for our (research) purposes, c la r i t y is more i m p o r t a n t 

t h a n e f f i c i e n c y , and w e have kept them separate. The name "DELAY" is a misnomer ; i t s 

h i s t o r y is exp la ined in sect ion 7.3. 

7 . 1 . Contex t determinat ion 

We d e f i n e the context of an expression to be the informat ion, der ivab le f r o m i ts pos i t i on in 

t h e p r o g r a m t r e e , about how its value is to be used. For instance, in languages w h i c h a l l ow 

an ass ignment to be e i ther an expression or a statement, the context of an ass ignment 

d e t e r m i n e s w h i c h it w i l l be. From the earl ier discussion of FLOWAN, it is c lear that at least 

some c o n t e x t i n fo rmat ion must be available before that phase, and in fact w e w i l l p r o b a b l y 

m o v e p a r t of the contex t determinat ion phase to a posi t ion before FLOWAN. 

A t p r e s e n t w e d is t ingu ish four d i f ferent contexts which an express ion may be i n : 

- t he no-value con tex t : i ts value is th rown away, that is, it is a s ta tement . 

- t he flow-value con tex t : its value is used only to determine the subsequent p a t h 
of c o n t r o l . This is the context of, for instance, the boolean par t of a cond i t iona l 
e x p r e s s i o n , or the whi le part of a whi le-do loop. 

- t h e operand con tex t : this is the usual context of an express ion; i ts va lue is used 
as, fo r ins tance, the source of an assignment, or one of the operands of an 
a r i t hmet i c ope ra to r . 

- t h e address con tex t : i ts value is used as an address; for instance, it may be t h e 
des t i na t i on of an assignment, or the operand of the "de re fe rence" o p e r a t o r (see 
sec t i on 4.2). 
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In a d d i t i o n , if an express ion is in the operand or address context , we de te rmine how many 

b i t s of it a re to be used; the knowledge that part of a value is i r re levant somet imes enab les 

b e t t e r code to be genera ted for the computat ion of it. 

The above con tex t in format ion is obviously useful for expressions whose va lues are s imp le 

mach ine w o r d s . Other context informat ion might be valuable for more in te res t ing data t y p e s : 

f o r comp lex numbers , on ly the real or imaginary parts might be used; fo r s t r i ngs , o n l y t h e 

l e n g t h might be used, or on ly cer ta in character posit ions. 

If an e x p r e s s i o n invo lv ing one of the logical operators (and, or, etc.) has a f l o w - c o n t e x t , i t 

may be tha t no code at all need be used to evaluate it. Instead, its operands are e v a l u a t e d , 

a n d t he f l o w of con t ro l is determined d i rect ly f rom them. This means that code to e v a l u a t e 

t h e s e c o n d o p e r a n d may not be executed, if the f low of contro l can be de te rm ined f r o m t h e 

f i r s t o p e r a n d . (Of course, the legal i ty of this coding requires that the second o p e r a n d have 

no s ide e f fec ts . ) This is r e f e r r e d to in [ 5 0 ] as the McCarthy conditional t r ans fo rma t i on . I t 

s o m e t i m e s " c o m p e t e s " w i t h some of the FLOWAN optimizations for the r ight to a f fec t a p iece 

o f c o d e ; f o r example , if the second operand of a logical opera tor is to be made cond i t i ona l , i t 

mus t no t con ta in the ini t ia l izat ions of any CCV's. Thus, there is a negat ive phase o r d e r i n g 

p r o b l e m b e t w e e n contex t determinat ion and FLOWAN. 

C o n t e x t de te rm ina t i on is implemented as a simple t o p - t o - b o t t o m t ree walk . C o n t e x t 

i n f o r m a t i o n may be passed f rom the dest inat ion of an assignment to its source , o r f r o m an 

e x p r e s s i o n or s ta tement to i ts operands. 

7 .2 . Desirability analysis 

S u p p o s e that FLOWAN f inds two instances, el and e2, of the same express ion in a p r o g r a m , 

a n d f i n d s tha t e2 is redundant w i t h respect to el. The s t ra igh t fo rward course of ac t ion is t o 

d e s i g n a t e a CCV fo r this pair of expressions; code is generated so that el is s t o r e d in t h e 

CCV b e f o r e be ing used (it may in fact be computed d i rect ly in the CCV), and the sec t i on o f 

t h e p r o g r a m wh i ch wou ld have used e2 uses the contents of the CCV instead. This c o u r s e 

m a y be less p r o f i t a b l e than leaving the code alone, however , for any of th ree reasons : 

- s u b s u m p t i o n : the computat ion of el and c2 might be car r ied out impl ic i t l y 
because of the nature of their ancestors in the program t ree . For ins tance, 
cons ide r : 

a 6 [ s + 1 ] ; 
c := d [x + 1] ; 

w h e r e b o t h 6 and d are stat ical ly allocated arrays. Here, the two instances of 
x + 1 are of in te res t . If no CCV is designated to represent them, the add i t ion 
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o p e r a t i o n wi l l be " f o l ded " into the address computat ion, so that it costs no th ing . 
To make th is c learer , we give two code sequences for the DEC PDP-10 fo r the 
a b o v e p r o g r a m tex t , i l lust rat ing the two ways of dealing w i t h the redundan t 
e x p r e s s i o n s i tua t ion : 

"x + 1 " computed i n CCY "x + 1 " not computed i n CCV 

MOVE R l , X MOVE R l . X 
ADDI R l . 1 MOVE R 2 , B + K R 1 ) 
MOVE R 2 , B (R1 ) MOVEM R 2 , A 
MOVEM R 2 , A MOVE R 2 , D + K R 1 ) 
MOVE R 2 , D(R1> MOVEM R 2 , C 
MOVEM R 2 , C 

In the second code sequence, a CCV has been designated to rep resen t the t w o 
o c c u r r e n c e s of x. When one set of redundant expressions is b roken up , t he 
o p e r a n d s become el ig ib le to be t reated as redundant. 

- add ress ing h a r d w a r e : the computat ion of el and e2 might be done cheap ly , b y 
us ing the e f fec t i ve address computat ion available on the ta rge t machine. 
Genera l l y address computat ions have some cost, but if there are not too many of 
t h e m , t h e y may be cheaper than the instruct ions necessary to manipulate a CCV. 
A n examp le of th is is: 

a := 6 [x] 
b [x] := c 

Here , it is feas ib le to compute the address b [x] in a CCV (by moving the 
c o n t e n t s of x in to it and adding the address of 6 to i t ) , but this is was te fu l on 
a lmost any ta rge t machine, because the address can be computed more cheap ly 
b y an index ing opera t ion . 

- o p e r a n d vs . f l ow-va lue context : some operators , including of course the logical 
o p e r a t o r s and and or, but also including (on most target machines) the o p e r a t o r s 
f o r compar i son be tween values (=, ^, <, <, >, >), requ i re substant ia l ly less 
c o m p u t a t i o n w h e n they are in a f low-va lue context than in an ope rand con tex t . 
If el and e2 are bo th in f low-va lue contexts, and they are in th is set of 
o p e r a t o r s , it is usual ly not prof i tab le to compute el and save it in a CCV, 
because th is e f fec t i ve l y puts it in an operand context . However , if one of t hem 
is a l ready in an operand context , the boolean value must be computed a n y w a y , 
so it might as we l l be s to red in a CCV. 

N o t e tha t in the last t w o cases (but not the f i rs t ) , the number of instances of the e x p r e s s i o n 

i n v o l v e d is impo r tan t : the more there are, the more at t ract ive is the op t ion of us ing a CCV. 

The des i r ab i l i t y phase examines each redundant expression set, and each code mo t i on 

i n v o l v i n g an exp ress ion , deciding whether or not to car ry out the opt imizat ion as spec i f i ed b y 

FLOWAN. Somet imes a single expression can be removed f rom a set , if it is one of t h e 

r e d u n d a n t members , leaving the rest of the set intact. When a set is b r o k e n up , s imi lar se t s 
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a r e f o r m e d us ing the operands of the original expression. The phase takes a number of 

p a r a m e t e r s desc r ib ing the target machine, including a table of the re la t ive costs of the code 

s e q u e n c e s f o r each ope ra to r in each of the relevant contexts ( f l ow-va lue , o p e r a n d , and 

add ress ) . 

7 .3 . Unary complement operator propagation 

The " u n a r y comp lementa t ion" opera tors , such as negation and logical comp lementa t ion , a re 

i n v o l v e d in a severa l in te res t ing kinds of optimizations. Sometimes it is possib le to push t h e m 

u p w a r d s , so to speak, so that they are subsumed into operat ions occur r ing at h igher po in t s in 

t h e p r o g r a m t r e e . Diagrams a and b in f igure 7 show examples of th is. The po l i cy of 

d e l a y i n g code gene ra t i on for unary complement operators as long as poss ib le , used b y t h e 

B l i s s - 1 1 compi le r [ 2 5 ] , was one of the functions of the DELAY phase in that sys tem, and t h e 

o r i g i n of i ts name. 

Before After PDP-•11 code 

a <-«> + (-0) - {« + 15) 

b <-«) • ( -0) a* fi 

ç a (NOT b) AND c a c AND (NOT b) MOV 
B I C 

c , a 
b . a 

d a : - b - a a : - -(a - b) 

or 
a :» (-a) + b 

SUB 
NEG 

NEG 
ADD 

b , a 
a 

a 
b . a 

Figure 7 : Diagrams for unary complement opt imizat ions 

M o r e i n t e r e s t i n g are the opt imizat ions which involve taking advantage of ta rge t machine 

i n s t r u c t i o n s w h i c h p e r f o r m pecul iar combinations of b inary opera to rs and una ry comp lemen t 

o p e r a t o r s . Most machines have a subtract ion instruct ion; some but not all have n e g a t i o n ; 

f e w e r s t i l l have an ins t ruc t ion which negates a quant i ty whi le moving it f r om one loca t ion t o 

a n o t h e r . On the DEC PDP-10, all 16 of the possible logical funct ions of t w o var iab les can be 

p e r f o r m e d in one ins t ruc t ion ; on the PDP-11, only f ive (six on some models). Somet imes i t is 

p o s s i b l e t o get b e t t e r code by taking advantage of the commutat iv i ty of an o p e r a t o r . 
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D iag rams d and e show examples of these opt imizat ions; in bo th cases, the P D P - 1 1 c o d e 

assoc ia ted w i t h the op t im ized fo rm of the expression is also shown. 

7.4. Evaluat ion o rde r and target ing 

Targeting is an opt imizat ion that is useful on one-address , t w o - a d d r e s s , and 

g e n e r a l - r e g i s t e r a rch i tec tu res . It is the attempt to make use of the commuta t i v i t y o f 

a r i t h m e t i c o p e r a t o r s , in o rde r to avoid loads and stores. On a t w o - a d d r e s s o r 

g e n e r a l - r e g i s t e r machine, it may be possible to compute an express ion in the des t i na t i on t o 

w h i c h it is to be assigned; if one of the operands of the express ion is the f o rmer va lue o f 

t h a t d e s t i n a t i o n , e v e n the init ial loading of that location may be el ided. (This o p t i m i z a t i o n is 

c a l l e d " r e n a m i n g " in [ 46 ] ) . Refer r ing to f igure 8, diagrams a and b 

Be fo re A f te r 

a a b + c * d a c * d + b 

b a :» c * d + a a :» a + c * d 

c (a -i- b) * ((c * d) + (e * f)) 
eva luat ion on a single-accumulator machine 

s t r a i g h t f o r w a r d evaluat ion order be t te r eva luat ion o r d e r 
us ing t w o temporar ies ( t l and t2 ) using one t e m p o r a r y ( t l ) 

load a load c 
add b mul t ip ly by d 
s t o r e to t l s to re to t l 
load c load e 
mu l t ip ly by d mul t ip ly by f 
s t o r e to t 2 add t l 
load e s tore to t l 
mu l t ip ly b y f load a 
add t 2 add b 
mu l t ip ly b y t l mul t ip ly b y t l 

F igure 8 : Diagrams for target ing and evaluat ion o rde r 

s h o w examp les of ta rge t ing . It was touched on br ie f l y in the examples fo r sec t ion 7.3; a 

s ing le a l go r i t hm, to be discussed in a fu tu re paper, per forms bo th t a rge t i ng and u n a r y 

c o m p l e m e n t t rans fo rmat ions . 

No te tha t ques t ions about side ef fects do not arise in the decisions about w h e t h e r o r no t 

t o c o m m u t e the operands of an operator . Regardless of whether or not the o p e r a n d s a r e 
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c o m m u t e d , t h e y can be evaluated (if their evaluat ion requires any code) in the o r d e r s p e c i f i e d 

in t h e sou rce p rog ram. Evaluation order determination, which must deal w i t h the ques t i on o f 

s ide e f f e c t s , is a separa te opt imizat ion. 

D iag ram c shows an express ion for which changing the order of eva luat ion of the o p e r a n d s 

a l l o w s b e t t e r code to be genera ted. This is the smallest example of such an e x p r e s s i o n , and -

s ince e x p r e s s i o n s of this complex i ty are extremely rare in user programs [ 3 1 ] , it is c lear t ha t 

t h i s o p t i m i z a t i o n is of l imi ted value. Nevertheless it has received a great deal of a t t e n t i o n in 

t h e l i t e r a t u r e [ 7 ] , p a r t l y because it has been confused w i th the ta rget ing p rob lem, and p a r t l y 

b e c a u s e it seems so c leanly def ined, easy to study. 

For s imp le exp ress ion t rees , wi thout redundant expressions or side e f fec ts , t h e r e is a 

s imp le a lgo r i t hm invo lv ing a bo t t om- to - t op t ree walk for f inding the opt imal eva lua t ion o r d e r . 

T h e most tha t need be done to the original program is that, for some express ions w i t h t w o 

o p e r a n d s , the o rde r of evaluat ion of the operands is swi tched. Complicat ions are i n t r o d u c e d 

w h e n t r e e s con ta in e i ther ini t ial izat ions or uses of CCV'S; in addi t ion, it may be d e s i r e d t o 

t r e a t mo re than one t r e e , as w i t h a sequence of statements in a block each i nvo l v i ng an 

e x p r e s s i o n t r e e . Ei ther of these complications makes the eva luat ion o r d e r p r o b l e m 

N P - c o m p l e t e . It may be necessary to inter leave evaluat ion of operands of an o p e r a t o r , no t 

j u s t to s w i t c h them. 

We are c u r r e n t l y using a simple heurist ic modif ication of the a lgor i thm fo r s ing le 

e x p r e s s i o n t r e e s , to handle single t rees containing references to CCV's. This is d e s c r i b e d in 

[ 2 5 ] . A more soph is t i ca ted algor i thm, involving a constrained sor t ing of the t r e e nodes , is 

u n d e r cons i de ra t i on (also see [1 ] ) . 

7.5 . O ther t r e e transformations 

A n i n t e r e s t i n g and useful set of opt imizations meet all the fo l lowing requ i remen ts : 

- T h e y are easi ly charac ter ized as transformations of the program t r ee . 

- T h e y are ta rge t machine independent. 

- The cond i t ions necessary to apply any t ransformat ion can be v e r i f i e d b y 
i nspec t i ng a f i xed-s ize subt ree of the program t ree. 

T h e s e op t im iza t i ons are pe r fo rmed by the tree transformation phase. This phase is d r i v e n b y 

a t a b l e of t r ans fo rma t i on pat terns . Each pat tern consists of two sub t ree ske le tons ; t he f i r s t 

d e s c r i b e s the condi t ions that must be met for some t ransformat ion to be app l i cab le ; t h e 

s e c o n d desc r i bes the resul t of the t ransformat ion. (The l ib ra ry of pa t te rns is o r g a n i z e d t o 

s p e e d the sea rch fo r appl icable t ransformat ions; this is discussed in sect ion 9.) The phase is 
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o r g a n i z e d as a t r e e walk ; at each node, all t ransformat ion pat terns which might be app l i cab le 

a r e matched against the local por t ion of the program t ree . This pa t te rn -ma tch ing o p e r a t i o n 

uses variables: the nodes which match the leaves of the pa t te rn sub t ree are r e m e m b e r e d , 

and can be r e f e r r e d to in the resul t subt ree. 

Some examples wh ich make this process clear are g iven in f igure 9. Diagram a is a s imp le 

e x a m p l e g i v e n in [ 5 0 ] . The t ransformat ion being descr ibed is f r om " ( e l - e2) > 0 " t o 

"el > e 2 " , f o r any express ions e l and e2. This example already raises some i n t e r e s t i n g 

i ssues . 

- The same t rans fo rmat ion is applicable for each of the o ther f i ve compar i son 
o p e r a t o r s ; the pa t t e rn notat ion should be r ich enough to descr ibe all six 
t r ans fo rma t i ons w i t h only one pat te rn . 

- The p a t t e r n matcher should understand that some opera tors are commuta t i ve , 
and indeed that the comparison operators have a pecul iar va r ia t i on of 
c o m m u t a t i v i t y : "0 < ( e l - e2) M is equivalent to " (e l - e2) > 0 M . 

- T h e r e is a negat ive phase order ing problem between this phase and FLOWAN. If 
M e l - e 2 " is r ep resen ted by a CCV, the t ransformat ion cannot be p e r f o r m e d ; bu t 
if the t rans fo rma t i on could have been per formed, perhaps w e l > e 2 " cou ld have 
b e e n r e p r e s e n t e d by a CCV instead. One possible resolut ion of this p rob lem is 
t o have a "canonica l izat ion" t ransformat ion phase before FLOWAN: the r e v e r s e 
t r a n s f o r m a t i o n (see diagram b) is per formed, in ant ic ipat ion of c rea t ing as many 
CCV's as poss ib le . 

D iag ram c i l lus t ra tes the d is t r ibu t ion of mult ipl ication over addi t ion. Here, some of t he 

l eaves of t he s u b t r e e must match constants (i.e. leaves of the program t ree ) , but the va lues 

of t h e cons tan ts are not speci f ied. This opt imizat ion is not useful by i tsel f , but occurs w h e n 

t h e r e s u l t i n g node can be involved in fu r ther opt imizat ions. In par t icu lar , it occurs w h e n 

t h e n e w l y c r e a t e d constant which is the r ight -hand operand of the node can be " f o l d e d " i n to 

a n o t h e r cons tan t by tak ing advantage of the associativity of addit ion. 

Th is b r i n g s up another issue. The t ree t ransformat ion phase being desc r ibed cannot be 

r e s p o n s i b l e f o r tak ing advantage of associativi ty of operators . The TCOL r e p r e s e n t a t i o n of 

t h e s e o p e r a t o r s is b ina ry , and thus the size of the subt ree that must be examined in o r d e r t o 

f i n d assoc ia t i v i t y opt imizat ions cannot be bounded. One solut ion of th is p r o b l e m is t o 

r e p r e s e n t such o p e r a t o r s as n-ary , that is, to allow them to have any number of o p e r a n d s , 

and t o comb ine them dur ing this phase, perhaps sort ing the operands (assuming the o p e r a t o r 

is c o m m u t a t i v e ) to expose as much constant folding as possible. We wi l l p r o b a b l y use a 

d i f f e r e n t scheme, invo lv ing a separate phase, in order to reta in the s impl ic i ty of hav ing t o 

dea l o n l y w i t h b i na ry ope ra to rs in later stages of the compiler. 



35 

B e f o r e After 

e l : e 2 : 
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e l : e2 : 

e l : e2 : 
e l : e2 : 
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e l : 

CONSTANT 
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c2 

CONSTANT 

e l : CONSTANT 
c l * c2 

c l c2 

e l : 

CONSTANT 

CONSTANT 1 
c l 

c l 

CONSTANT 

CONSTANT 

LENGTH 

CONCAT 

e l : e2 : 

LENGTH LENGTH 

e l : e 2 : 

Figure 9 : Tree t ransformat ion phase examples 
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The d i s t r i b u t i o n opt imizat ion is useful , as mentioned above, on ly w h e n t h e r e is some 

p o t e n t i a l f o r us ing the node so created in some fur ther opt imizat ion. In o r d e r to d e t e c t 

t h i s w h i l e examin ing on ly the f ixed-s ize subt ree, we must somehow encode the po ten t i a l f o r 

f u r t h e r op t im iza t i ons as "con tex t " informat ion in the or iginal V node. We expec t to do th i s 

b y mak ing a guess about this potent ia l dur ing the context phase (see sect ion 7.1). This w i l l 

b e d i scussed in more detai l in sect ion 7.6. 

The r e v e r s e of the d is t r ibu t ion t ransformat ion (see diagram d) can also be use fu l , if i t 

p r o d u c e s a new " + " node whose constant operand is 1, and if on the ta rge t machine t h e 

a d d i t i o n of 1 is easier than the addit ion of other constants. This t rans fo rmat ion is t hus no t 

e n t i r e l y t a r g e t machine independent , in that it is useful on some machines but not on o t h e r s ; 

h o w e v e r , it may be usefu l to include such transformat ions in this phase. Not ice tha t t w o o f 

t h e nodes w h i c h match leaves of the pat te rn subt ree must be identical ( in this case, iden t i ca l 

c o n s t a n t s ) . This is deno ted by having one leaf re fer to the pa t te rn var iab le de f i ned b y t h e 

o t h e r o n e . 

D iag ram e desc r ibes a t ransformat ion mentioned in both [ 1 9 ] and [ 1 6 ] as be ing a use fu l 

t e s t case. It is reassur ing that the pa t te rn- resu l t notat ion is concise enough to desc r i be th i s 

o p t i m i z a t i o n c lean ly and e legant ly , w i thout recourse to details of the design or imp lemen ta t i on 

o f t h e t r e e t r ans fo rma t i on phase. 

7 .6 . Access mode determinat ion ("AMD") 

M a n y t a r g e t a rch i tec tu res allow address computations that do more than s imply i ndex ing 

and i n d i r e c t i o n . A s tandard example is the S/370, which f requent ly al lows index ing w i t h t w o 

i ndex r e g i s t e r s . More recent examples are the DEC V A X - 1 1 / 7 8 0 [ 5 3 ] and the LLL S - l [ 4 4 ] ; 

t h e s e b o t h a l low indexing combined w i th (implicit) shi f t ing of the index reg is te r , and d o u b l e 

i n d e x i n g comb ined w i t h ind i rect ion. For these archi tectures, the quest ion of how much of t h e 

p r o g r a m ca lcu la t ion can be per fo rmed by the addressing hardware is n o n - t r i v i a l ; t h e 

c o m p l i c a t i o n is compounded by the possibi l i ty of using CCV's to assist w i t h add ress 

c o m p u t a t i o n . Even fo r the DEC PDP-11 , w i th a simple addressing arch i tec ture a l low ing s imp le 

i n d e x i n g and ind i rec t ion (possib ly combined), the use of CCV's makes the p rob lem s u f f i c i e n t l y 

d i f f i c u l t tha t the simple algor i thms presented in [ 2 5 ] for solving it are sometimes inadequa te . 

The Access Mode Determination (AMD) phase assigns to each program t r ee node a l ist o f 

t h e w a y s in w h i c h it could be represented as an inst ruct ion operand. For ins tance, cons ide r 

t h e BLISS e x p r e s s i o n 

. . ( . * + 4) 
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us i ng t he DEC PDP-11 as a target machine. For readers unfamil iar w i t h BLISS, is t h e 

e x p l i c i t d e f e r e n c i n g ope ra to r . Thus x is being used as a var iable wh ich holds a po i n te r to an 

a r r a y of p o i n t e r s , .x is the value of the var iable, that is, an address; .(•* + 4) is the va lue 

r e t r i e v e d b y an a r r a y access, that is, another address (one of the po in ters) ; and the va lue o f 

t h e w h o l e exp ress i on , ,(-x + 4), is the contents of the location po in ted to (an i n t e g e r , 

p e r h a p s ) . Suppose it appeared in an operand context , such as the source of an ass ignment . 

T h e ass ignment w o u l d eventua l ly result in the generat ion of a MOV ins t ruc t ion , of w h i c h t h e 

s o u r c e o p e r a n d cou ld take any of ten forms: 

@4(R3 ) — if .x w e r e loaded into register R3 , 

@0(R3) — if .x+4 we re a CCV, loaded into register R3 . 

@ ( R 3 ) + — same as the above, but this is the last re ference to the CCV. 

@6(SP) — if .(.x+4) we re loaded into a memory location six by tes 
d is tant f rom the top of the run- t ime stack. 

@ ( S P ) + — same as the above, but the memory location is at the top of 
the stack, and this is the last re ference to the express ion. 

@R3 — if .(.x+4) we re a CCV, loaded into register R3 . 

8 ( S P ) — if the whole expression, ..(.x+4), were a CCV, loaded into 
a memory locat ion six bytes f rom the top of the stack. 

@SP — same as the above, using the top of the stack. 

( S P ) + — same as the above, at the last re ference to the CCV. 

R3 — if ..(.x+4) we re a CCV loaded into register R3 . 

Of t h e s e , t h r e e invo lve the use of the auto- increment feature of the PDP-11 h a r d w a r e : t h e 

t h i r d , t he f i f t h , and the n inth. This feature wi l l be discussed in sect ion 10; at th is s tage o f 

c o m p i l a t i o n , t h e y are t r ea ted as identical to the forms d i rect ly above them — the s e c o n d , 

f o u r t h , and e i gh th respec t i ve ly . Skeletons for any of the other forms could be assoc ia ted 

w i t h t he t r e e node for "..(.# + 4)" , depending on which of the subnodes could be r e p r e s e n t e d 

b y C C V s ( in the absence of CCV's only the f i rst and four th forms are re levant ) . W i t h each 

s k e l e t o n t h e r e is a list of "actual parameters" — indications of wh ich subnodes must b e 

l o a d e d in to r eg i s t e r s or memory locations in order to use the form. 

W e w i l l d iscuss in sect ions 8 and 9 how these forms are used in code gene ra t i on . A n 

i n t e r e s t i n g po in t of methodology is raised by this phase, for we are ( ten ta t i ve l y ) f o l l o w i n g a 
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d i f f e r e n t s t r a t e g y w i t h operand access modes than we fo l low in the o t h e r phases . 

Spec i f i ca l l y , w e p rov ide an exhaust ive enumerat ion of all the access modes re l evan t t o a 

n o d e . Our po l i cy th roughout the compiler phases, whenever severa l poss ib le w a y s o f 

g e n e r a t i n g code are avai lable, has been to choose one (possibly co r rec t i ng it l a t e r ) and 

i g n o r e t he res t . This is a s t ra igh t fo rward way of avoiding slow searching a lgor i thms ( t h o u g h 

i t does no t , of cou rse , ensure that the compilation process wi l l be fast) . We have a b a n d o n e d 

it in th is case, in the bel ief that in general there wi l l be few access modes assoc iated w i t h a 

n o d e . Most nodes cannot be computed at all by ef fect ive address ha rdware ; f o r these nodes 

t h e o n l y poss ib le access modes are those for direct access to the var ious kinds of r e g i s t e r s 

a n d m e m o r y . Skeletons for these are usually not associated w i t h the nodes (i.e. t h e y a re 

imp l i c i t ) ; th is g r e a t l y decreases the cost of the AMD phase. 

Th is phase is pa ramet r i zed by a list of the possible operand access modes (AM's) , each 

assoc ia ted w i t h the ske le ton program subtree that it represents . This l ist is p r e p r o c e s s e d so 

t h a t , us ing a s imple b o t t o m - u p t ree walk, access modes can be associated w i t h nodes w i t h o u t 

t h e use of p a t t e r n matching. The preprocessing involves creat ion of someth ing l ike a f i n i t e 

s t a t e mach ine , in wh ich the "s ta te " of a node depends on its opera to r and the s ta tes of i ts 

t w o o p e r a n d nodes. 

T h e r e is a comple te set of mutual (negative) phase order ing problems b e t w e e n FLOWAN, 

t h e d e s i r a b i l i t y analysis phase, the phase to per fo rm associat iv i ty t rans fo rmat ions , and t h e 

A M D phase . We have put FLOWAN f i rs t arb i t rar i l y , but we wi l l at tempt to reso lve the con f l i c t 

b e t w e e n the la t te r t h ree phases by the "wi ld guess" method. The context phase a t t emp ts t o 

g u e s s w h e t h e r a node wi l l be involved in an address computat ion, or in an assoc ia t i v i t y 

t r a n s f o r m a t i o n , b y using a set of v e r y approximate, local, easi ly computed c r i t e r i a . The 

d e s i r a b i l i t y phase reads the record left by the context phase, g iv ing less p r e f e r e n c e t h a n 

usua l to us ing a CCV for a node if the node is l ikely to be act ive in the la ter (assoc ia t i v i t y 

a n d AMD) phases. 

8. Register allocation 

The t e r m " reg i s te r a l locat ion" has been used in the l i te ra ture to descr ibe at least t h r e e 

r e l a t e d ac t i v i t i es . We wi l l call these local, pseudo-local, and global reg is ter a l locat ion. 

Local a l locat ion is t w o tasks: select ing accumulators and other special ized s to rage loca t ions 

f o r e v a l u a t i o n of simple ar i thmet ic expressions, and select ing s torage in wh ich to save t h e 

r e s u l t s if t h e y are not used immediately in the evaluat ion. Histor ical ly [ 4 7 ] , th is top ic has 

a lso i nc luded the ta rge t i ng and evaluat ion order problems discussed in sect ion 7.4, bu t w e 

h a v e t r e a t e d them separa te ly here. 
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Pseudo - l oca l a l locat ion is an intermediate task, the allocation of s torage for an e n t i r e basic 

b l ock . Cons ider the compi lat ion of a long sequence of statements, invo lv ing much a r i t hme t i c , 

s u b s c r i p t ca lcu la t ion , and indexing, for a target machine w i th a l imited number of accumula to r 

and index reg i s te r s . In the compi led code, var iables, subscr ipts, and in termedia te c o m p u t a t i o n 

r e s u l t s w i l l cons tan t l y be moved into registers, used, perhaps modi f ied, and r e t u r n e d t o 

m e m o r y . The task of pseudo- local allocation is to choose the " r i gh t " reg is te rs to use f o r each 

a c t i o n tha t occu rs , and thus to reduce the amount of t ra f f ic be tween reg is te rs and m e m o r y . 

[ 2 6 ] is a classic paper on the subject ; var ious other algorithms have been p r e s e n t e d tha t a re 

m o r e su i tab le fo r one-pass compi lers. 

Globa l a l locat ion is the al location of storage for more than one basic b lock, or an e n t i r e 

s u b r o u t i n e , at a t ime. Successively more ambitious compilers have a t tempted to k e e p 

c o n s t a n t s and C C V s in reg is ters [ 8 ] , to keep user var iables in reg is te rs [ 2 5 ] , to k e e p 

v a r i a b l e s in r eg i s te r s dur ing loops and other bounded program regions [ 2 1 ] , and to k e e p 

v a r i a b l e s in r eg i s t e r s dur ing a rb i t ra ry program segments [5 ] . Other techniques are poss ib le . 

T h e goa l of g loba l op t imiza t ion may be to reduce the t raf f ic be tween memory and r e g i s t e r s , 

t o r e d u c e the t r a f f i c b e t w e e n reg is ters , to allow use of regis ter operands ins tead of m e m o r y 

o p e r a n d s in ins t ruc t ions , to reduce the amount of memory used, or any combinat ion of t hese . 

T h e r e is a d i f f i cu l t phase order ing problem in the re lat ion be tween local a l locat ion, g loba l 

a l l oca t i on , and code genera t ion . Local allocation is closely t ied to code gene ra t i on in an 

o b v i o u s w a y : the s to rage which is requi red for the result (and operands) of an e x p r e s s i o n is 

d e t e r m i n e d b y the ins t ruc t ions used to compute it. Global al location, on the o the r hand , no t 

b e i n g a o n e - p a s s process, must be done separately f rom code genera t ion . M o r e o v e r , local 

a l l oca t i on can make good use of informat ion about register avai labi l i ty and c o r r e l a t i o n s 

b e t w e e n r e g i s t e r s and var iab les, der ived by global al location, whi le global a l locat ion can make 

g o o d use of i n fo rma t ion about regis ter availabil i ty and prospect ive loads and s to res , d e r i v e d 

b y local a l locat ion. 

Our a p p r o a c h to this p rob lem is re lated to those presented in [ 5 ] and espec ia l ly [ 2 5 , 2 9 ] . 

Reg i s te r a l locat ion and code generat ion are not two but th ree phases. The f i r s t of these can 

b e t h o u g h t of as a "guess" at code generat ion. 

In o r d e r to discuss these th ree phases it is f i rst necessary to def ine a basic concep t , t h e 

Temporary Name (TN). TN's are records, used to hold all the in format ion about the resu l t s of 

r e g i s t e r a l loca t ion that must be available to the code generator . They are used to r e p r e s e n t 

e n t i t i e s that must be al located storage, such as variables or the resul ts of exp ress ions ; bu t a 

T N can o n l y c o r r e s p o n d to one storage location, so that it may be necessary to r e p r e s e n t a 

s i ng l e v a r i a b l e w i t h more than one TN. Note that local, pseudo- local , and global a l locat ion a re 
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u n i f i e d , in the sense that t hey all use TISPs; this faci l i tates communication b e t w e e n them. 

The f i r s t of the th ree phases can be called TN assignment; it de te rm ines t h e 

c o r r e s p o n d e n c e b e t w e e n TN's and program ent i t ies. The second phase is packing; i t 

e s t a b l i s h e s the co r respondence be tween TISPs and target machine s to rage locat ions. The 

t h i r d phase is code generation - - a scarcely avoidable misuse of a t e rm that w e have u s e d 

e a r l i e r t o desc r i be the who le compilat ion process after pars ing. TN assignment is d i scussed 

in s e c t i o n 8 . 1 , pack ing in sect ion 8.2, and code generat ion in sect ion 9. The f i r s t t w o phases 

t o g e t h e r a re r e f e r r e d to as TNBIND, the name for the module of the B l i ss -11 compi le r w h i c h 

p e r f o r m e d the i r func t ions . 

8 . 1 . TN assignment 

The assoc ia t ion of TWs w i t h local ent i t ies, such as expression resul ts or ope rands , is d o n e 

b y a t r a v e r s a l of the t ree (or of the execut ion l ist) closely re la ted to that done fo r code 

g e n e r a t i o n . The desc r ip t i on of this t raversal is postponed unti l sect ion 9. The same l i b r a r y 

o f c o d e sequences is used; however , instead of associating a code sequence w i t h a node , th i s 

p h a s e assoc ia tes in fo rmat ion abstracted f rom the code sequence. This includes not o n l y t h e 

r e q u i r e m e n t s f o r va r ious t ypes of local storage by that sequence, but also usage i n f o r m a t i o n ; 

t h u s , one o r more TN's may be associated w i th a node, and w i th each TN t h e r e w i l l be 

i n f o r m a t i o n about w h e n it is used (i.e. at what nodes it appears in ins t ruc t ion o p e r a n d s ) and 

h o w it is used (i.e. the re la t ive costs, in words of code or in memory re fe rences at e x e c u t i o n 

t i m e , of a l locat ing the TN to the var ious d i f ferent categories of s torage). 

The d e r i v a t i o n of this usage informat ion is discussed in [ 29 ] . In con junc t ion w i t h t h e 

i n f o r m a t i o n le f t b y the AMD phase, a two-dimensional table of ta rget machine d e p e n d e n t 

i n f o r m a t i o n is used : for e v e r y category of storage ( there may be severa l k inds of r e g i s t e r s , 

p l us s ta t i c and stack memory) , and for every formal parameter of e v e r y i n s t r u c t i o n - o p e r a n d 

t r e e s k e l e t o n , t h e r e is an en t r y indicating the cost of t r y i ng to use a unit of that k i nd o f 

s t o r a g e as an actual parameter in that skeleton. (The ins t ruc t ion-operand t r e e ske le tons a re 

d i s c u s s e d in sec t ion 7.6.) Note that each TN wi l l , in general , appear in severa l i n s t r u c t i o n 

o p e r a n d s , us ing d i f f e ren t access modes (e.g. direct access, indexing, ind i rect ion) . 

No te tha t the abs t rac t ion of TN-re la ted information f rom code sequences can be done b y 

t h e c o m p i l e r - c o m p i l e r sys tem; that is, the l ib rary of code genera t ion templa tes may be 

s e p a r a t e d in to t w o sub- l i b ra r ies , one of which contains only in format ion re levan t to T N 

ass ignmen t , the o the r of which contains information for code genera t ion . This can be 

e x p e c t e d to save substant ia l s torage dur ing both compilat ion phases. 

TN's must also be associated w i th global ent i t ies, such as var iables ( including CCV's). Th is 
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is d o n e s e p a r a t e l y ; it is done before the local assignment pass, in o rder to associate usage 

i n f o r m a t i o n w i t h g lobal as wel l as local TN's. The global assignment phase must guess w h e n it 

w o u l d be use fu l to assign more than one TN to a var iable; this guess wou ld o r d i n a r i l y be 

b a s e d o n the loop s t r uc tu re of the program, as determined by FLOWAN. Note, h o w e v e r , t ha t 

if t h e guess is overop t im is t i c and assigns too many TN's, l i t t le harm is done; if t h e r e are no t 

e n o u g h fas t r eg i s t e r s to accommodate the most important of these TN's, t h e y w i l l r e v e r t t o 

t h e same loca t ion as the o thers , just as if only one TN had been assigned to the va r i ab le . 

A f t e r the assignment passes, complete l i fetime informat ion is associated w i t h each TN. (A 

T N is alive at some node in the program t ree if there is some possible pa th of e x e c u t i o n , 

s t a r t i n g at tha t po in t , along which the next reference to the TN fetches f rom i t , r a t h e r t h a n 

ass ign ing a new va lue to it. Thus if two TN*s are both alive at some point , t hey may not be 

a l l oca ted to the same location.) Each TN has a list of (dis joint) " l i fet ime pa i rs " : pa i rs of p o i n t s 

in t h e p r o g r a m , b e t w e e n which the TN is alive. Given two TN's, it can easi ly be d e t e r m i n e d 

w h e t h e r t he i r l i fe t imes over lap , by inspecting their lists of l i fet ime pairs. 

No te tha t th is o rgan iza t ion of l i fet ime informat ion is completely d i f fe ren t f r o m tha t g i v e n in 

[ 4 ] , in w h i c h the in fo rmat ion is associated w i th basic blocks (or, at a f iner g ra in , w i t h p r o g r a m 

p o i n t s ) . Thus d i f f e ren t f low analysis algorithms must be used to gather it e f f i c i en t l y . The 

o r g a n i z a t i o n of l i fe t ime in format ion is determined by the plans for the pack ing phase 

(d i scussed in the next sect ion). 

The TN assignment phase is also responsible for gather ing p re fe rence in fo rma t ion . Th is 

w i l l be d e f i n e d and discussed in the next sect ion. 

8 . 2 . Packing 

I t m ight seem that the packing phase would be ve ry target machine dependent , because o f 

t h e w i d e v a r i e t y of reg is te r conf igurat ions in archi tectures cu r ren t l y in use: 

- T h e r e are machines w i t h separate index registers and accumulators, machines in 
w h i c h some reg is te rs can serve both funct ions, and machines in wh i ch any 
r e g i s t e r that can se rve the former funct ion can also serve the la t ter . 

« 

- T h e r e are machines in wh ich some registers of a class are a rb i t ra r i l y r e s t r i c t e d . 
Thus the DEC PDP-11 has six f loat ing-point regis ters, but two of them cannot be 
used f o r a w ide va r i e t y of operat ions. 

- On some machines, consecut ive pairs of registers are requ i red fo r some 
o p e r a t i o n s . Sometimes the f i rs t member of the pair must be even , or must be 
o d d . 

- Some s to rage classes are f in i te (such as registers) , whi le some are e f f e c t i v e l y 
i n f i n i t e (such as var ious types of memory). 
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H o w e v e r , the ta rge t machine dependence of this phase is v e r y easi ly p a r a m e t r i z e d . A 

n o t a t i o n has been deve loped to descr ibe how many members each class of s to rage has, h o w 

t h e c lasses o v e r l a p w i t h each o ther , and how they are re lated to each o ther (e.g. class A is 

t h e r e s t r i c t i o n of class B to its f i rs t four members); once a target machine has been d e s c r i b e d 

in th i s n o t a t i o n , the packing phase has enough informat ion about it to run . (Note tha t t h i s 

mach ine d e s c r i p t i o n is also used by the TN assignment phase, to descr ibe res t r i c t i ons on TN's 

a n d t o o r g a n i z e the usage in format ion about them.) 

The fundamenta l data s t ruc tu re of the packing phase is an interference graph (see f i g u r e 

10) . Each g r a p h node represen ts a TN; a link between two nodes indicates that the t w o TN's 

h a v e o v e r l a p p i n g l i fe t imes (i.e. may not be allocated to the same location). ( I t w o u l d also be 

p o s s i b l e t o use the reve rse of this graph, in which a link indicates that the l i fe t imes do no t 

o v e r l a p . ) 

S u p e r i m p o s e d on the in te r fe rence graph is a preference graph (see f igure 11). Each l ink in 

t h e p r e f e r e n c e g r a p h indicates that the two TN's "should" be al located to the same l oca t i on , 

t o a v o i d loads or s to res . These links are labeled w i th counts of the loads and s t o r e s 

i n v o l v e d , poss ib l y we igh ted to give more importance to those which occur in loops. 

Figure 10: An in ter ference graph 

A g o o d pack ing must meet four c r i te r ia : 

- No t w o TN's wh ich are connected by an in ter ference arc may be packed in 
(a l loca ted to) the same storage location. 
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Preference arcs 

Figure 1 1 : A p re fe rence graph and an in te r fe rence g raph 

- The cost measure determined by summing the re lat ive costs of all TN's, as 
d e r i v e d f r o m the usage informat ion discussed in the prev ious sect ion, and f r o m 
t h e k n o w l e d g e about wh ich storage class each TN has been packed in , shou ld be 
k e p t l ow (pe rhaps minimized). 

- The p r o f i t measure determined by summing the values of all p re fe rence arcs that 
connec t t w o TI\Ps packed to identical locations should be kept h igh (pe rhaps 
max imized) . 

- For some s to rage classes, there may be a cost associated w i t h using any member 
of the s to rage class, which is f ixed regardless of how the member is used. For 
i ns tance , a run - t ime convent ion for the preservat ion of reg is ter contents across 
r o u t i n e calls may requ i re that if a register is used by a rout ine, it must be saved 
at the beg inn ing of the rout ine and res tored at the end. Thus the re is a cost 
measure de te rm ined by the number of locations (of cer ta in classes) wh i ch are 
used in a g i ven packing; this should be kept low. 

I t can eas i l y be seen that packing is a part icular kind of graph co lor ing p rob lem. A lso , t h e 

r e s e m b l a n c e of pack ing to bin packing problems has been observed in [ 2 9 ] . A number of 

a l g o r i t h m s have sugges ted themselves to us, in addit ion to the many wh ich have a p p e a r e d in 

t h e l i t e r a t u r e , and w e plan to do considerable exper imentat ion w i t h the pack ing phase . 

F o l l o w i n g the po l i cy descr ibed in sect ion 7.6, we are pr imar i ly in te res ted in a lgor i thms t ha t 

a r e o n e - p a s s , usual ly "g reedy" , ra ther than those which exhaust ive ly search the space o f 
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p o s s i b l e pack ings. However , exper ience w i th systems descr ibed in [ 2 5 ] and [ 2 9 ] has s h o w n 

us tha t a modest , con t ro l l ed amount of backtracking can be w o r t h its cost. 

9« Code Generation 

The code g e n e r a t o r descr ibed here is basically an extension of the one bui l t b y Ca t te l l 

[ 1 1 ] . . The ex tens ions are pr imar i ly for the use of informat ion ga thered in p rev ious phases , 

i n c l u d i n g r e g i s t e r a l locat ion, access mode determinat ion, and evaluat ion o rde r and t a r g e t p a t h 

d e t e r m i n a t i o n . Bo th the code generator and the method of target machine desc r i p t i on a re o f 

i n t e r e s t ; w e w i l l summarize them in the fo l lowing sections, but for detai ls w e r e f e r t he r e a d e r 

t o [ 1 1 ] and [ 1 3 ] . 

9 . 1 . Machine Descript ions and Code Generator Generation 

The code gene ra t i on phase is d r iven by a l ib rary of code generation templates. Each 

t e m p l a t e cons is ts of a subtree pattern and a code sequence. Examples of templa tes f o r t h e 

P D P - 1 0 are g i v e n in f i gu re 12; b r ie f l y , if a subt ree of the program t ree matches t he s u b t r e e 

p a t t e r n in the obv ious w a y , and var ious other condit ions (not shown) are met, the t e m p l a t e is 

instantiated, tha t is, the inst ruct ions given in the code sequence are emi t ted , the i r o p e r a n d s 

b e i n g d e t e r m i n e d f r o m the values of the pattern variables ( the p rog ram t r e e nodes w h i c h 

m a t c h e d the leaves of the subt ree) . A bet ter descr ipt ion of the use of the l i b r a r y w i l l be 

g i v e n in the nex t sec t ion ; what concerns us here is how the l i b ra ry is cons t ruc ted , f r o m a s t i l l 

m o r e p r i m i t i v e machine descr ip t ion . 

We w i l l r e f e r to the more pr imi t ive machine descr ip t ion as the MD tabled Th is 

r e p r e s e n t a t i o n is genealogical ly re la ted to ISP [27 , 3 3 ] : there are descr ip t ions of the s t o r a g e 

c lasses ava i lab le , descr ip t ions of the ef fect ive address calculations, and desc r ip t ions of t h e 

c o m p u t a t i o n p e r f o r m e d b y each instruct ion. The pr incipal d i f ference is that each i n s t r u c t i o n 

is r e p r e s e n t e d , not by an algor i thm to simulate it, but by a g roup of p recond i t i ons and 

p o s t c o n d i t i o n s ( in te rms of the machine state, i.e. the contents of var ious locat ions) o f i ts 

e x e c u t i o n . It is easier in this formulat ion to understand the ef fect of an i ns t r uc t i on ; some 

c h a r a c t e r i s t i c s become harder to descr ibe, mostly involv ing the e f fec ts of d i f f e r e n t 

se r i a l i za t i ons of the address computat ion steps. 

G i ven desc r i p t i ons of the instruct ions, in a TCOL-like notat ion, it is poss ib le to f i n d a 

s e q u e n c e of i ns t ruc t ions to evaluate any TCOL t ree , by a search process remin iscent of t h o s e 

in many A r t i f i c i a l In te l l igence systems. This is too slow to be used in the compi le r i t se l f ; 

MD stands for "Machine Description"; in [11] this is called the MOP table. 
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Tree pattern 

a l : 

a l : e l : 

Code sequence 

ADD a l , e l 

TEST L 
* s (true) 

N I I : 

a l : 

AND 

7- \ 
CONSTANT 

e l : 

TDNN a l 9 e l 

JRST 11 

Figure 1 2 : Some sample code generat ion templates for the PDP -10 (s impl i f ied) 

i n s t e a d , it is used to create code generat ion templates for a p rede te rm ined set o f 

" i n t e r e s t i n g " sub t rees . This set is generated using a number of ru les. Two ru les in p a r t i c u l a r 

s e r v e to insu re that some kind of code can be generated for any p rogram: 

- T h e r e is one template for eve ry TCOL operator , whose pa t te rn t ree is s imple 
e n o u g h that it is a lways applicable wherever that opera tor occurs. The f i r s t 
examp le in f i gu re 12 is one of these. 

- T h e r e is one template for eve ry possible data move (load or s to re) ; that is, if 
t h e r e are n d i f f e ren t kinds of storage on the target machine, t he re are 
t emp la tes fo r genera t ing code to move a data item f rom one t y p e of s to rage to 
ano the r . 

In add i t i on t h e r e is at least one template for every inst ruct ion, in wh ich the p a t t e r n t r e e 

d e s c r i b e s the e f fec ts of that inst ruct ion; the second example in f igure 12 is an examp le o f 

t h e s e . O ther ru les encourage the discovery of "clever code sequences"; howeve r , f i nd ing all 

o f t h e s e is equ iva len t to solv ing the halt ing problem, and the number of such sequences t ha t 

a r e u l t ima te l y r e p r e s e n t e d by templates depends on how long the template search is le f t t o 
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r u n . 

Some a r i thmet i c ope ra to r s in a g iven TCOL may not appear anywhere in the MD tab le . For 

i n s t a n c e , t he logical exclusive or (XOR) operat ion does not appear a n y w h e r e in t h e 

d e s c r i p t i o n of the DEC PDP-11 /20 archi tecture; thus using the MD table alone it w o u l d no t be 

p o s s i b l e t o de te rm ine how to generate code for this operator . The search p rocess must 

k n o w abou t the fo l l ow ing language axiom: 

a xor 6 s a and not 6 or 6 and not a 

Th is must be inc luded in the set of axioms alluded to in sect ion 4.2. For typ ica l machines, t h e 

o n l y c o n t r o l o p e r a t o r s wh ich appear expl ic i t ly in the MD table are go to ... and if ... then go to 

so t emp la tes f o r the o ther contro l operators must also be der i ved using axioms abou t 

c o n t r o l . 

The most impor tan t omission f rom the MD table is in format ion descr ib ing the r u n - t i m e 

c o n v e n t i o n s and subrou t ines , or C IWM (Compiler Writer's Virtual Machine), of t he p l a n n e d 

c o m p i l e r . This inc ludes: 

- f undamen ta l convent ions , such as the representat ion of simple boolean va r iab les ; 

- da ta s t r u c t u r e convent ions, such as the representa t ion of a r rays , reco rds , and 
i nvoca t i on f rames; 

- d e t a i l e d ope ra t i ng ru les, such as the names and call ing sequences of p r e c o d e d 
s u p p o r t rou t ines . 

W e have dea l t w i t h these in an ad hoc manner up to now — an approach that is r e a s o n a b l e 

f o r languages w i t h minimal run- t ime suppor t , such as Bliss. In the near f u t u r e w e e x p e c t t o 

s t u d y t he CWVM issues more closely. 

9 .2 . The Maximal Munching Method 

The h a s t y desc r i p t i on of the use of code generat ion templates in the p rev ious sec t i on l e f t 

o u t t he most i n te res t i ng par ts . In this section we wi l l descr ibe the templa te l i b r a r y in m o r e 

d e t a i l , and the a lgor i thm for walk ing the program t ree , known as the "Maximal Munch ing 1 ' 

a l g o r i t h m . 

The temp la te l i b r a r y is d iv ided into several sub- l ib rar ies , or schemas. The cho ice o f 

schemas to be searched to f ind a pa t te rn matching a node is de termined by the con tex t of 

t h e node . The t w o pa t te rns in f igure 12 would be found in d i f fe ren t schemas: the f i r s t 

w o u l d be in an ope rand -con tex t schema, the second in a f l ow-va lue -con tex t schema. A n 

add i t i ona l c lass i f ica t ion of pa t te rns is done, to speed up the code genera t ion sea rch : t h e y 
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a r e hashed b y the pr inc ipa l operator . Thus the f i rs t pa t te rn wou ld on ly be t e s t e d in 

g e n e r a t i n g code fo r an ( in teger) addit ion; the second only for an equal i ty compar i son in a 

f l o w - v a l u e con tex t . Fur ther hashing may prove to be useful in some s i tuat ions. 

A l l t emp la tes make some requi rements on the forms of their operands: the AM's assoc ia ted 

w i t h t h e m b y the AMD phase must include some which are sui table in the i n s t r u c t i o n 

o p e r a n d s in the templa te 's code sequence. However, the pa t te rn match w i t h a temp la te does 

n o t fa i l if t he operands do not meet these requirements; instead, load or s t o r e code is 

g e n e r a t e d so that t hey do meet them. This is the use of the fetch decompostion r u l e ; t h e 

c o r o l l a r y store decomposition rule is used when the pa t te rn imposes requ i rements o n t h e 

d e s t i n a t i o n of the pr inc ipa l opera tor . The top node in a pa t te rn t ree in the o p e r a n d - c o n t e x t 

schema is a lways assignment (" : -") ; but an actual assignment need not be p resen t in t h e 

p r o g r a m t r e e in o r d e r to match such a pa t te rn , thanks to fe tch and s tore decompos i t i on . In 

t h e TN ass ignment phase, the use of fetch or store decomposit ion causes a new local TN t o 

b e c r e a t e d and associated w i t h the appropr ia te node; in the code genera t ion phase, t he TN is 

u s e d as the des t ina t ion of the load or s tore code that is generated. 

T h e second example in f igure 12 is a pat tern for one of the special cases of t es t i ng f o r 

e q u a l i t y . Not on l y is t he re a requirement on its r ight operand (it must be a cons tan t , w h o s e 

v a l u e must be ze ro ) , but also there is a requirement on the opera to r of the node w h i c h is i t s 

l e f t o p e r a n d . For such pa t te rns to be used, the l ib rary must be o rde red , so that t h e y a re 

a l w a y s t e s t e d b e f o r e the "general case" pat terns are tested. In add i t ion , and most 

i m p o r t a n t l y , the o r d e r in wh ich the program t ree nodes are t rea ted must be t o p d o w n . In 

t h i s examp le , fo r instance, the code generator must not reach .the and node b e f o r e r each ing 

t h e " = " node — o the rw i se code would be generated for the logical and ope ra t i o n , and t h e 

spec ia l case w o u l d no longer be applicable. This backwards t raversa l of the p r o g r a m is 

a b s o l u t e l y c ruc ia l if the large amount of special case test ing character is t ic of g o o d code 

g e n e r a t o r s is to be kept inte l lectual ly manageable. The use of templates so r t ed so as to " b i t e 

o f f " as l a rge a s u b t r e e as possible of the program t ree, w i th the backwards t r ave rsa l of t h e 

t r e e , is d e s c r i b e d in [ 1 1 ] as the "Maximal Munching Method". 

The mechanism of the backwards t ree t raversal is meshed w i t h the mechanism of f e t c h 

d e c o m p o s i t i o n . If an ope rand does not requi re fetch decomposit ion, that is, it is a t r e e w h i c h 

e x a c t l y matches the ske le ton t ree for some appropr ia te access mode, no code need be 

g e n e r a t e d , in o r d e r to represen t it as an instruct ion operand. Usually, howeve r , one of i ts 

s u b t r e e s does not match the corresponding part of the access mode t r e e ; o r , t he w h o l e 

o p e r a n d t r e e does not match any access mode t ree. In this case, code must be g e n e r a t e d t o 

e v a l u a t e the non-match ing t r ee , leaving the result in the designated des t ina t ion ; th is causes 

t h e code g e n e r a t o r to be cal led, recurs ive ly . 
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For some ta rge t machines, especial ly those w i th large inst ruct ion sets , t h e r e may be 

s e v e r a l code genera t i on templates whose pat te rn t rees d i f fer f rom each o the r on l y in t h e 

r e q u i r e m e n t s on the access modes of the nodes. For instance, two of the PDP-10 i n s t r u c t i o n s 

t o do i n t e g e r add i t ion are represen ted by the same pat te rn t ree ; the on ly d i f f e rence is t h a t 

o n e leaves i ts resu l t in an accumulator, whi le the other leaves its resul t in the o the r o p e r a n d 

( g e n e r a l l y a memory locat ion). Neither of these templates is a special case of the o t h e r . The 

cho i ce b e t w e e n them, t h e r e f o r e , cannot be determined beforehand; that is, in the o r d e r i n g o f 

t e m p l a t e s in t he templa te l i b ra ry , nei ther of these may precede the o ther . Ins tead, the code 

g e n e r a t o r must choose be tween them, by estimating the amount of f e t ch and s t o r e 

d e c o m p o s i t i o n that must occur for each one, and using the one that w i l l cost the leas t . 

Because r e g i s t e r al locat ion has been done in a previous phase, the es t imate may b e 

c o n s t r a i n e d t o use local in format ion only : informat ion about the nodes wh ich match the r o o t 

and leaves of the p a t t e r n t ree . 

In the p resence of the more advanced evaluat ion order algori thms h in ted at in sec t ion 7.4, 

and t h e code mot ion opt imizat ions descr ibed in section 6, it may p rove to be necessa ry t o 

w a l k t he execu t i on l ist ra ther than the program t ree to generate code. However , th is w i l l no t 

a f f e c t t h e code genera t i on templates, or even the Maximal Munching Method. It means o n l y 

t h a t a c o u p l i n g is b r o k e n : the coupl ing descr ibed above, be tween the d i scove ry that t h e r e is 

no t a p e r f e c t match b e t w e e n some operand node and the cor respond ing A M ske le ton t r e e , 

and t he subsequen t call of the code generator to evaluate that node. This ra ises some 

a n n o y i n g imp lementa t ion prob lems, but these are outside the scope of this paper . 

The idea of genera t i ng code using l ibrar ies of templates is not new, and it is use fu l t o 

c o m p a r e the sys tem descr ibed above w i th others that have appeared in the l i t e r a t u r e . A 

w e l l - k n o w n example was used in the For t ran-H compiler [ 21 ] . In that sys tem, t h e r e is one 

t e m p l a t e pe r o p e r a t o r . The template contains all the instruct ions which could eve r be used in 

c o d i n g tha t o p e r a t o r , including loads and stores. Each inst ruct ion is associated w i t h a v e c t o r 

o f b i t s w h i c h desc r ibes something about when it is to be used. When the templa te is a p p l i e d , 

a n o t h e r v e c t o r of b i ts descr ib ing the "s tatus" of the operands (i.e. w h e t h e r t h e y a re in 

r e g i s t e r s o r in memory , and whether or not they must be in reg is ters a f ter the o p e r a t i o n ) is 

p u t t o g e t h e r ; t h e n a cur ious algor i thm is used, which wi l l not be descr ibed he re , to use th i s 

v e c t o r and the b i t vec to rs in the template to determine which of the ins t ruc t ions w i l l be 

e m i t t e d . 

The F o r t r a n - H scheme is not addressed to the problem of target machine i ndependence , 

and thus is less genera l than our system in obvious and perhaps easi ly remediab le w a y s : t h e 

mean ings of the ope rand status bi ts are closely t ied to the S /360 a rch i tec tu re ; t h e r e is l i t t l e 
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o r no p r o v i s i o n fo r the use of in terest ing AM's. More important are d i f f e rences in t h e 

s t r u c t u r e of t he templa tes . In our system, load and store instruct ions do not appear in t h e 

t e m p l a t e s f o r the basic ope ra to rs ; this makes the latter simpler, whi le somewhat comp l i ca t i ng 

t h e code g e n e r a t i o n process. In addit ion, if there are several ins t ruc t ions each of w h i c h 

c o u l d be used to eva luate an opera tor , depending on where its operands are , w e w i l l have 

s e v e r a l t emp la tes ins tead of just one; this also contr ibutes to the s impl i f icat ion of i nd i v idua l 

t e m p l a t e s . The s impl i f icat ion of the templates contr ibutes to the maintainability of t h e 

t e m p l a t e l i b ra r i es ; at p resent we are concerned that the l ibrar ies be unders tandab le and 

ma in ta i nab le , because we ant icipate that this wi l l cont r ibu te to usab i l i t y of t h e 

c o m p i l e r - w r i t i n g sys tem as a whole by persons other than ourselves. 

T h e r e a re also d i f fe rences in descr ip t ive power be tween the Fo r t ran -H templa tes and o u r s . 

T h e r e does not appear to be any mechanism in the former system to take advan tage o f 

k n o w l e d g e about special operand cases, such as operands which are constants , or c o n s t a n t s 

w h o s e va lues are known. (However, some part icular opt imizat ions, such as c o n v e r t i n g 

mu l t i p l i ca t i ons b y p o w e r s of t w o into shif ts, are descr ibed; these are the k ind o f 

t r a n s f o r m a t i o n s that w e discuss in section 7.5.) Even more special ized cases, such as t h e 

e x a m p l e s h o w n above in wh ich one operand must itself have a par t icu lar o p e r a t o r , l i k e w i s e 

c a n n o t be accommodated into the For t ran H templates. 

S n y d e r [ 4 9 ] descr ibes a template system in which there may be more than one t e m p l a t e 

f o r each o p e r a t o r ; in addi t ion, some provis ion is made for special cases of constant o p e r a n d s 

( a l t h o u g h the f u r t h e r special cases involving multiple operators are not de tec ted) . Thus t h e 

c o d e g e n e r a t i o n a lgor i thm itself is somewhat similar to our own . There is no p r o v i s i o n f o r a 

s e p a r a t e r e g i s t e r a l locat ion phase, or for operat ions which requ i re comple te ly t e m p o r a r y 

s t o r a g e ( i .e. s t o rage wh ich is dist inct f rom the operands and the resul t ) . 

The code gene ra t i on templates descr ibed by Ripken [ 4 3 ] are v e r y close, in the i r des ign and 

in t h e o v e r a l l approach to the problem of target machine independence, to the temp la tes w e 

h a v e d e s c r i b e d here . The pr incipal d i f ference is in the cont ro l s t r uc tu re of the code 

g e n e r a t i o n a lgo r i thm itself . Ripken's algorithm f i rs t walks the t ree f rom the bo t t om up. (As 

w e have n o t e d , th is prec ludes the use of special-case templates, such as the second one in 

f i g u r e 12). This phase addresses the problem descr ibed ear l ier , of mult ip le templa tes f o r t h e 

same t r e e p a t t e r n : all the templates applicable to a g iven node are reco rded ( that is, t h e i r 

c o s t s a re r e c o r d e d , though no code is generated). The next phase uses the cost i n f o r m a t i o n 

t o a l loca te r e g i s t e r s local ly , walk ing back down the t ree and choosing code sequences. Th is 

has t he f l avo r of a dynamic programming algori thm; though there is no p rov i s ion fo r any 

i n t e r a c t i o n b e t w e e n local and global register allocation, the local al locat ion may be op t ima l f o r 

a g i v e n g loba l a l locat ion because of the exhaustive enumerat ion of possible code sequences 
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in t h e f i r s t ( b o t t o m - u p ) phase. (Optimality may be lost in some ci rcumstances because of 

some s imp l i f i ca t ions in the cost record ing mechanism, but in the usual cases it is ach ieved.) 

The LIS [ 1 2 ] sys tem fo r const ruct ing code generators is of in teres t , because it i n v o l v e s a 

p r i m i t i v e d e s c r i p t i o n of the target machine, w i th separate descr ipt ions of each i n s t r u c t i o n ; t h e 

i n s t r u c t i o n s are automat ical ly g rouped by the system, so that d i f fe ren t ins t ruc t ions can be 

c h o s e n f o r a g i ven ope ra to r , depending on what kinds of s torage locat ions are to con ta in t h e 

o p e r a n d s and resu l t . However , despi te claims to the con t ra ry , this sys tem is on l y min imal ly 

a d d r e s s e d to the issues of target machine independence. It wou ld requ i re subs tan t i a l 

r e c e d i n g (and redes ign of basic data s t ructures) to descr ibe machines o ther than t he UNIVAC 

1 1 0 8 ; and desc r ib ing machines that are not e i ther two-address or g e n e r a l - r e g i s t e r 

a r c h i t e c t u r e s w o u l d seem to be impossible. 

10. The FINAL phase 

T h e o u t p u t of the code generat ion phase is a doubly l inked list of in te rmixed i n s t r u c t i o n s 

and labe ls . These are in a format that retains only minimal target machine i n d e p e n d e n c e . 

T h e i n s t r u c t i o n operands are l ists of actual parameters for the sub t ree ske le tons of the A M ' s ; 

t h e s e a re cons tan ts or re ferences to storage locations. In pr inc ip le the e f f ec t of any 

i n s t r u c t i o n cou ld be recons t ruc ted , forming a TCOL t ree , f rom the MD table e n t r y f o r it and 

f r o m i ts ope rands . The reason for this is that fu r ther opt imizat ions are done on the p r o g r a m 

w h i l e it is in th is fo rmat . 

N o t w i t h s t a n d i n g the arguments in section 4.2 for the use of t r e e - s t r u c t u r e d i n t e r m e d i a t e 

r e p r e s e n t a t i o n s , t he re are some optimizat ions which are more easi ly done on the f ina l l i near 

f o r m of the ob jec t code. These may arise f rom any of several c i rcumstances: 

- I ns t r uc t i ons may have ef fects other than those for which they w e r e emi t ted . For 
ins tance , on a machine w i th condit ion codes, an inst ruct ion which was em i t t ed b y 
the code genera to r because it per forms some ari thmetic ope ra t i on may, 
i nc iden ta l l y , set the condi t ion codes. Instruct ions whose sole pu rpose is to set 
t he cond i t i on codes can sometimes be subsumed in ins t ruc t ions w h i c h 
acc iden ta l l y set them. It is not desirable for the code genera t ion phase to 
" k n o w " all the e f fec ts , or indeed any of the ef fects , of the ins t ruc t ions it emi ts ; 
th i s know ledge is more appropr ia te ly delegated to a separate phase. 

- Reve rse -ho i s t i ng code motion ( re fe r red to as cross-jumping in [ 25 ] ) that was not 
ev i den t at the TCOL level may become evident at the ins t ruct ion leve l . This is 
because opera t ions which are single nodes in the TCOL t ree (or s ingle 
i ns t ruc t i ons in t r ip le or quadruple program representat ions) may p roduce 
mu l t i p le ins t ruc t ions ; and f requent ly the cleanup ins t ruct ion sequences fo r 
non - i den t i ca l TCOL nodes may be identical. This is especial ly t r ue fo r ope ra t i ons 
such as sub rou t ine calls, which are l ikely to involve highly s t e r e o t y p e d 
i ns t r uc t i ons to maintain the CWVM, such as instruct ions to cut back the r u n - t i m e 
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s tack . 

- The code genera to r is more intel lectual ly manageable if it does not have to be 
t oo ca re fu l about the senses and destinations of condit ional and uncondi t iona l 
b r a n c h ins t ruc t ions . That is, it may emit a branch inst ruct ion whose des t ina t ion 
is ano the r (uncondi t ional ) branch instruct ion, or a branch whose des t ina t ion is 
the next i ns t ruc t ion , or a condit ional branch which only skips o v e r an 
uncond i t i ona l b ranch ~ code that is correct but wastefu l in obv ious ways . It is 
eas ies t t o leave gl i tches l ike this to be cleaned up by a conceptua l ly sepa ra te 
phase . 

- Some opt im iza t ions can only be per formed w i th a detai led knowledge, not on l y of 
t he e f f ec t s of ins t ruc t ions, but of their sizes as wel l . A classic example of th is is 
t he reso lu t i on of shor t and long branch instruct ions on the PDP-11 [ 2 5 , 5 1 ] . A 
b r a n c h ins t ruc t i on can take two forms: the short form if its dest inat ion is k n o w n 
at assembly t ime and is w i th in 256 bytes of the or ig in, or the long (cost l ie r ) f o r m 
o t h e r w i s e . The a lgor i thm to determine which form is used for each b ranch must 
take account of the number of bytes requi red by each ins t ruc t ion , inc lud ing, of 
c o u r s e , the b ranch inst ruct ions themselves. 

F INAL p e r f o r m s some opt imizat ions that are usually called "peepho le" op t im iza t ions [ 4 0 ] . 

H o w e v e r , s ince the who le list of instruct ions is kept in core, that te rm is i n a p p r o p r i a t e ; in 

f a c t , f o r any op t im iz ing t rans format ion which involves two or more re la ted ins t ruc t ions , F INAL 

a l l o w s f o r i nde f i n i t e l y many in terven ing instruct ions, prov ided that they are i r r e l evan t t o t h e 

o p t i m i z a t i o n . 

The FINAL phase re l ies on cont ro l f low graph data s t ruc ture at tached to the p r o g r a m , as 

d e s c r i b e d in sec t ion 6. The s t ruc tu re of the graph may change f rom FLOWAN to FINAL, and a 

bas ic b lock now rep resen ts a list of instruct ions rather than a list of p rogram t r e e nodes. 

The c o n t r o l s t r u c t u r e of the FINAL phase is based on an inf in i te loop, as d iscussed in 

s e c t i o n 3.3. Four classes of opt imizat ions are per fo rmed, each of wh ich may o p e n up n e w 

o p p o r t u n i t i e s fo r most of the o thers : 

- r emova l of useless inst ruct ions: an instruct ion whose ef fec ts are i gno red b y 
subsequen t ins t ruc t ions may be removed. A complete data f low analysis is 
p e r f o r m e d on the cont ro l f low graph, so that at any inst ruct ion, it is poss ib le to 
d e t e r m i n e w h e t h e r the locations it modifies, including "s ta tus" locat ions such as 
c o n d i t i o n codes, are alive af ter it is executed (see sect ion 8 for the de f in i t i on of 
a l iveness) . 

- b r a n c h and label opt imizat ions: the consequences of de l ibera te ly care less code 
g e n e r a t i o n , desc r ibed above, are cor rec ted. 

- c ross j u m p i n g : the reverse hoist ing opt imizat ion mentioned above is p e r f o r m e d . 
For each basic block, the instruct ions which could (if it we re useful) be moved to 
t he e n d of the block are col lected into its postlogue set; the post logue sets of 
basic b locks wh i ch share a common jo in point are compared w i t h one another . 
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- p e e p h o l e t rans fo rmat ions : a set of opt imizations on ins t ruc t ions, pa i rs of 
i n s t r uc t i ons , or larger g roups, are per formed; the opt imizat ions are taken f r o m a 
l i b r a r y of pa t te rns which wi l l be descr ibed below. Typical opt imizat ions may 
r e d u c e t w o ins t ruct ions to one, or replace two instruct ions by t w o cheaper 
i n s t r uc t i ons , or rep lace one or more operands by cheaper operands. 

Passes are made ove r the whole program, or over individual basic blocks, unt i l c o n v e r g e n c e is 

a c h i e v e d , i.e. un t i l no f u r t h e r opt imizat ions can be found. Some opt imizat ions, such as t h e 

r e s o l u t i o n of sho r t and long jumps descr ibed above, may be done as separa te subphases . I n 

f a c t , w e k n o w tha t t he re are negat ive phase order ing problems in the in te rac t ions of some o f 

t h e d i f f e r e n t peepho le opt imizat ions, and the simple s t ruc tur ing of FINAL as an in f in i te l oop is 

no t su f f i c i en t to take account of these. Not only must there be some sp l i t t i ng of t he phase 

i n t o subphases , bu t also the cr i ter ia for doing this sp l i t t ing must be spec i f ied in t e r m s of 

e a s i l y d e s c r i b e d character is t ics of the target machine; the spl i t t ing can then be done b y t h e 

F INAL phase g e n e r a t o r , o r if necessary by the compiler wr i te r . 

T h e r e a re n o n - t r i v i a l problems in the parametr izat ion of the target machine d e p e n d e n c e o f 

p a r t s of FINAL. These are pr imar i ly the problems of dealing w i t h the peephole o p t i m i z a t i o n s : 

t h e l i b r a r y of them must be genera ted; their appl icabi l i ty condit ions must be d e t e r m i n e d ; and 

t h e cond i t i ons under wh ich they improve, rather than worsen , code must be d e t e r m i n e d . We 

h a v e chosen to al low the compi ler bui lder to "suggest" opt imiz ing t rans fo rmat ions ; th is is 

r e a s o n a b l e if t h e r e are not too many of them. (The cur rent B l i ss -11 compi ler [ 2 5 ] uses a b o u t 

30 . ) A p r o g r a m , the legality checker, determines the condit ions under wh ich a t r a n s f o r m a t i o n 

is c o r r e c t , i.e. it l ists a set of rest r ic t ions on the instruct ion operands and o the r p a r a m e t e r s 

t o t h e t r a n s f o r m a t i o n pa t t e rn , such that it does not change the meaning of the p r o g r a m . 

E x p e r i e n c e has s h o w n that the human compiler w r i t e r is v e r y l ikely to do th is t ask 

i n c o r r e c t l y . Somet imes the re are e r ro rs due to neglect of special cases, or e v e n o u t r i g h t 

m i s u n d e r s t a n d i n g s of the ef fect of the t ransformat ion; sometimes the re are c ler ica l e r r o r s . 

T h e last componen t of the parametr izat ion is a cost function: a func t ion tha t , g i v e n an 

i n s t r u c t i o n in FINAL fo rmat , re tu rns some suitable measure of its cost ( fo r example , i ts s ize in 

b y t e s , o r i ts execu t i on t ime in cycles). This funct ion is easily der ivab le f r o m i n f o r m a t i o n in 

t h e MD tab le . Whenever a peephole t ransformat ion is found to be appl icable at some po in t in 

a p r o g r a m , t he costs of the inst ruct ion sequences it creates and des t roys are c o m p a r e d , t o 

d e t e r m i n e w h e t h e r it should in fact be appl ied. 

F i g u r e 13 shows an typ ica l pa t te rn for a peephole opt imizat ion, for the DEC P D P - 1 1 . The 

p u r p o s e of the t rans fo rmat ion is to reduce two instruct ions to one. The second i n s t r u c t i o n 

i n c r e m e n t s a reg i s te r b y two ; since the PDP-11 is by te-addressable and each w o r d cons is ts 

o f t w o b y t e s , th is is a common operat ion , used in s tepping a po in ter t h rough an a r r a y o f 

w o r d s . The t r ans fo rma t i on subsumes the second instruct ion into an ope rand of t he f i r s t , b y 
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Figure 13: A typical peephole opt imizat ion 

m a k i n g use of the "au to increment " feature of the PDP-11 : the use of the au to inc remen t 

access mode automat ica l ly s teps the register by two , whi le act ing o the rw i se as if s imp le 

i n d i r e c t i o n t h r o u g h the reg is ter had been done. 

Th is examp le , s imple as it is, raises some interest ing points about the p a t t e r n n o t a t i o n , t h e 

l e g a l i t y checke r , and the FINAL phase as a whole: 

- The opcode of the f i rs t inst ruct ion is i r re levant , and the commas su r round ing i ts 
o p e r a n d ind icate that it may have other operands as wel l . The nota t ion must be 
r i ch e n o u g h to al low for a great deal of unspecif ied informat ion. ( Impl ic i t l y it is 
assumed tha t any inst ruct ions whose effects are known not to be re levant to th is 
o p t i m i z a t i o n may come be tween the two relevant instruct ions.) 

- C o r r e s p o n d i n g l y , the legal i ty checker must be able to detect w h e n the 
unspec i f i ed in fo rmat ion must obey certa in limits. This t rans format ion is inva l id if 
t he opcode is one wh ich operates on bytes instead of words (in these cases the 
r e g i s t e r is s t epped by one instead of two). It is also inval id if t he re is an 
o p e r a n d a f te r the one g iven, and this other operand makes re fe rence to t he 
same reg i s te r . The legal i ty checker must make sure that bo th these cond i t ions 
a re imposed. 

- The reade r may wonder why the given opt imizat ion wasn' t included in ea r l i e r 
comp i le r phases, perhaps by means of cooperat ion be tween the AMD phase and 
the phases that use the code generat ion template l ib rary . The reason is rea l l y 
tha t w e don ' t unders tand it wel l enough. (This is t rue , genera l l y , of all 
op t im iza t i ons invo lv ing the autoincrement and autodecrement fea tu res of t he 
P D P - 1 1 and similar features on other target machines.) There is a dangerous 
t e n d e n c y fo r opt imizat ions to slip into the FINAL phase simply because w e don ' t 
k n o w how , at the cu r ren t stage of the pro ject , to include them in ear l ie r phases 
of the compi ler . This tendency has to be moni tored carefu l ly , because it is 
almost a lways t rue that when an opt imizat ion can be per fo rmed bo th at the TCOL 
( s o u r c e - p r o g r a m ) level and the FINAL (ob jec t -program) level , it can be done 
more p o w e r f u l l y , that is, on a larger scale, at the TCOL level . 

T h e t a r g e t machine dependence of peephole optimizations is obv ious, and p r o b a b l y i n h e r e n t l y 

d i f f i c u l t t o pa rame t r i ze . This accounts for the scarci ty of prev ious l i t e ra tu re on p e e p h o l e 

o p t i m i z a t i o n techn iques. We have reason to hope, however , that using the sys tem s k e t c h e d 

h e r e , w e can take most of the w o r k of construct ion of this phase out of the hands of t h e 
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c o m p i l e r w r i t e r . 

I L Summary 

1 1 . 1 . Opt imizat ions not mentioned above 

The r e a d e r w h o is famil iar w i t h the opt imizat ion l i te ra ture wi l l undoub ted ly th ink of a 

n u m b e r of op t im iza t i on techniques which were not mentioned in the p rev ious pages. In most 

cases , w e are i n te res ted in these techniques, but simply have not i n teg ra ted them in to o u r 

f r a m e w o r k at th is w r i t i n g . Here are some of the be t t e r - known ones: 

- Removal of " ta i l recurs ion" . If it happens that, along some execut ion pa th lead ing 
to the end of a subrout ine , the last thing executed is a recurs ive call to tha t 
s u b r o u t i n e , that call can be re l ieved of a great deal of the ove rhead usual ly 
assoc ia ted w i t h subrout ine calls. It can be coded as a reset t ing of the va lues of 
t he pa rame te rs (if any) of the current call, fo l lowed by a jump to the beg inn ing 
of the sub rou t i ne . This is an at t ract ive opt imizat ion, not uncommon in r e c u r s i v e 
p r o g r a m s , and it is t r i v ia l l y discoverable in the TCOL rep resen ta t i on of the 
p r o g r a m , supp lemented by the contro l f low graph. 

- Topo log ica l so r t i ng of basic blocks. It is f requent ly useful to change the o r d e r in 
w h i c h the basic blocks of the program are coded. This may be done to minimize 
t h e number of branches f rom one block to another, and to move them to minimize 
t he number wh ich occur in loops. The problem of f inding the best o r d e r i n g 
seems to suggest some kind of topological sor t ing. 

- I n t e r - p r o c e d u r a l analysis and optimizat ions. A wide va r ie t y of benef i t s can be 
ga ined by ex tend ing the compiler to hold data about more than one p rocedu re in 
c o r e at a t ime. These include expansion of procedures in line (i.e. rep lacement of 
p r o c e d u r e calls by procedure bodies), acquisit ion of be t te r in fo rmat ion about 
v a r i a b l e al iasing for use in f low analysis, and automatic al locat ion of g loba l 
va r i ab l es and p rocedure parameters to registers and static memory locat ions. 
Few of us have any fami l iar i ty w i th these opt imizat ion techniques, because w e 
a re accustomed to compi lers that deal w i th one subrout ine or e v e n one 
s ta temen t at a t ime. But we suspect that the day is coming w h e n small 
s u b r o u t i n e s are the rule rather than the except ion, and i n t e r p r o c e d u r a l 
op t im i za t i ons wi l l be eve ryday tools rather than exotic subjects of research . 

11 .2 . Status 

A t th is w r i t i n g , some phases of the skeleton compiler have been implemented; a f e w (some 

o f t h e smal ler DELAY phases) are close to final form. Other phases exist on ly in p r e l i m i n a r y 

f o r m o r not at al l . The phase generator for code generat ion has been imp lemented ; no o t h e r 

p h a s e g e n e r a t o r s have even been designed. The phases and their genera to rs , h o w e v e r , a re 

o n l y p a r t of the comple te PQCC system. 
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- TCOL must be exact ly speci f ied. It must be possible for an un in i t ia ted 
p r o g r a m m e r , g iven a parser of any kind which produces as ou tpu t a parse t r e e 
as any k ind , to f i gu re out f rom our descr ipt ion just what semantic requ i remen ts 
his pa rse t r e e should meet and how he should meet them. We have s t a r t e d 
w o r k , t h e r e f o r e , on a detai led TCOL manual. 

- A somewha t smaller task, though just as necessary, is the exact spec i f i ca t ion of 
LGN, and the s tandard representat ion of TCOL in it. Again, we have the 
beg inn ings of a manual. Some pro jects at CMU are already using LGN-TCOL f o r 
t he i r o w n w o r k in language implementation. The short te rm benef i t of th is is t he 
use of the ( reasonab ly we l l -deve loped) LGN support system; in the long t e r m , of 
c o u r s e , t h e r e is the benef i t for us of additional test ing of the code gene ra t i on 
s y s t e m . 

- The ru les fo r cons t ruc t ing MD tables must be drawn up. In addi t ion, t he re must 
be documenta t i on for the format of the code generat ion template tables and the 
tab le of t r e e t rans format ion pat terns; we expect that users of the sys tem wi l l 
f i n d it des i rab le or even necessary to extend these tables "by hand" , fo r reasons 
o u t l i n e d in ear l ie r sect ions. Though this documentat ion is far f rom comple te , w e 
have had some success w i th teaching uninit iated programmers how to cons t ruc t 
and unde rs tand MD tables, and (untested) descr ipt ions of severa l popu la r 
a r c h i t e c t u r e s have been const ructed by them. 
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