NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

COLLECTED PAPERS ON THE LEARNING AND
RECOGNITION OF STRUCTURED PATTERNS

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA. 15213

January 1975

"Representation of Structured Events and Efficient Procedures for

Their Recognition,” by Frederick Hayes-Roth.

"An Automatically Compilable Recognition Network for Structured

Patterns,'" by Frederick Hayes-Roth, and David J. Mostow.

"Schematic Classification Problems and Their Solutiom,' by Frederick

Hayes-Roth.

"Uniform Representations of Structured Patterns and an Algorithm

for Grammatical Inferencel’z,” by Frederick Hayes-Roth,

The research reported here was supported in part by the Defense
Advanced Research Projects Agency under Contract F44620-73.C-0074,

<>

-
g
[y

COLLECTED PAPERS ON THE LEARNING AND RECOGNITION OF STRUCTURED PATTERNS

PREFACE

This collection of four papers presents many of the major findings in my research
related to the representation, recognition, and learning of structured patterns. The papers
have been assembled in one volume to facilitate the reader’s task of pursuing these topics
over several variations of focus.

The first paper presents an introduction to the problems of representation and
recognition of structured patterns and suggests several directions for further research. One
of these suggestions concerns a distributed processing network for pattern recognition. In
the second paper (co-authored by D. J. Mostow), such a network is developed for use as a
syntax system for speech understanding. The last two papers are cancerned specifically with
the learning problems encountered in the framework of structured patterns. The first of
these explains the use of the interference matching technique to abstract schemata from
examples, hypothetical class characteristics {(conjunctive sets of predicates) which should
perform well in related problems requiring classification of novel test items. The last paper
explains how such a jearning technique may be extended for rule learning or grammatical
inference. A computationally universal representation for production systems is introduced,
and it is shown how the techniques developed in the previous paper can be generalized to
solve learning problems involving the inference of such productions.

In short, these papers provide an overview of a theory of learning and behavior which
is more fully explained elsewhere.l While the theory is both intuitively plausible and
demonstrably formally correct (over the problem domain defined by behaviors whose rules are
representable as productions of this sort), its computational feasibility and practical utility
have yet to be demonstrated. Several applications, inctuding those discussed in the last paper,
are now being undertaken.

F. Hayes-Roth

January 16, 1975

1l-fayes-Fio’(h, F. Fundamental mechanisms of intelligent behavior: the representation,
organization, acquisifion and use of structured knowledge in perception and
cagnition. Unpublished doctoral dissertation. Ann Arbor: The University of

Michigan, 1974. HT (e

e e
pmprne s e : L
!‘s-r‘.f.ii‘.',-_ Do I TN H

REPRESENTATION OF STRUCTURED EVENTS
AND EFFICIENT PROCEDURES FOR THEIR RECOGNITION

Frederick Hayes-Roth
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

Structured events are configurations of objects in logical, spatial, temporal or activity
relations. A parameterized structural representation system for this class of events is
discussed. Parameters in such representations are arbitrarily chosen symbols used to insure
consistent references to the same object in diverse relations. All-or-none matching of two
representations is the basis for pattern recognition. In this framework, descriptions of pattern
or concept prototypes act as structural templates for stimuli. As a result, recognition can be
performed in a natural and structural way and is unaffected by manipulations of irrelevant
variables. Typical recognition procedures are reviewed and a variety of alternative
approaches are considered in light of the potential combinatorial explosions which might arise
in applications of these procedures. One alternative is proposed which can exploit both
redundancy among partially matching templates and computational parallelism in exhaustive
search (recognition) problems. Another possibility considered is to find special recognition
procedures for particular recognition problems. For example, to accomplish word recognition
in speechl understanding systems, highly practical techniques exist to match many templates in
parallel (simultaneously) using only simple bit string operations. In addition, both the
possibility of additional heuristic approaches to general recognition procedures and the total
abandonment of relational representations are also considered in this paper.

INTRODUCTION

Many prevalent questions in information science concerning perceptual, learning,
classification, and retrieval functions share a common conceptual base. These functions ail
necessitate some more or less formal approach to the representation of information and
techniques for comparing two or more information structures. In this paper, the notion of a

structured event, a discrete, integrated, relational information structure, is introduced.
Structured events provide a desirable basis for the representation of a wide variety of
knowledge. Further, transformations between events are easily described and can be used to
represent general behavior rules.

The bulk of this paper addresses two basic questions which, for the sake of
concreteness, are cast in the area of visual perception: (1) How should a stimulus and a
memory prototype (e.g. a Gothic capital letter "A") be represented? (2) How can a stimulus
representation be matched to a memory representation to accomplish recognition? The
answers to these questions will be easily seen to be generalizable to other problems involving
the representation and comparison of information structures. Before proceeding to a detailed
discussion of these questions, however, a brief review of previous approaches and an
overview of the proposed structural representation theory are provided.

PREVIOUS THEORIES OF REPRESENTATION AND MATCHING

Established-theories for the representation and recognition of patterns fall into four
categories. These will be called the graphic template model, spatial model, feature model, and
generative (syntactic) model. Each class is considered in turn.

The graphic template mode! (see, for example, Lindsay & Norman, 1972) proposes a
simple and seemingly desirable solution to both the representation and pattern matching
problems. In brief, a memory prototype is a graphic template or replica of the type of item to
be recognized. The representation of a Gothic capital "A" is conceived of as a stencil or
photograph of that letter. Stimuli are recognized as “A"s, roughly speaking, whenever the
light which they emit is present where the template is light and absent where the template is
dark. The advantages of such a system are that recognition is determined by a direct contact
and comparison of homologous stimulus and memory structures and that all classification
alternatives may conceivably be evaluated simultaneously. Its disadvantages are well known
and are summarized by the statement that a template is an oversensitive representation and
one which lacks any basis for generalization. Even insignificant deviations between the
stimulus and template (e.g. differences in proportion, size, orientation, font) may completely
inhibit proper recognition.

Spatial models underlie scaling theory approaches, signal detection theory, dimensional
representations, correlational methods, discrimination analysis, and most decision theory
approaches. In brief, a spatial model proposes that a prototype of a pattern class be
represented as a single point in an n-dimensional (usually metric) space where each dimension
reflects some muitivalued attribute which takes a particular value for each stimulus. Any

stimulus item is evaluated on each dimension and is represented by the pcint at the
corresponding coordinates in the pattern space. A stimulus is matched to each memory
prototype by some arbitrary distance function, and classification is usually performed by
assigning the stimulus {0 the class associated with the nearest prototype.

These models have the simplicity of representation and matching operations as their
outstanding qualities. Their primary disadvantages are a corollary of this simplicity. These
models are generally incapable of representing criterial value dependencies among a subset of
stimulus attributes. They are also unable to recognize that, although a particular set of
features or feature values are relevant to one pattern class, those features may be completely
irrelevant to the definition of other classes. One way in which this can be seen is by
considering the pattern volume corresponding to each pattern class. In spatial models the
procedure of classifying all stimuli close to one prototype to the corresponding class defines a
non-emply volume of points around each prototype which corresponds to the related class. If
particular features values were irrelevant to some class (as "amount of green paint" is
irrelevant to the pattern class "Volvo™), a decision procedure should ignore "amount of green
paint” in considering the potential ciassification of objects as "Volvo". The appropriate pattern
volume in such a case would then be a zero-volume hyperarea of some dimensionality less
than that of the entire pattern space (Hayes-Roth, 1973, 1974b; Michalski, 1973; Watanabe,
1973).

Feature models like that of Pandemonium (Selfridge, 1959) posit that each class is
defined by the simultaneous presence of a particular set of feature values. A prototype is
represented as a set of critical feature values and their necessary frequency of occurrence in
a stimulus which is to be considered an element of the corresponding class. While these
models solve the dependence and irrelevance problems attributed to spatial models, they too
have difficulties. Chief among these is that stimuli possessing correct features in an
inappropriate configuration are improperly recognized. This is a direct result of the matching
process used with feature list representations. A measure of the degree of successful
matching of stimulus and prototype is usually computed by determining the proportion of
features prescribed by the prototype that are found in the stimulus. Classification is then
performed by assigning the stimulus to the category associated with the best matched
prototype.

Generative models include grammatical approaches to representation and matching,
including linguistic pattern recognition (Uhr, 1971; Shaw, 1972; Joshi, 1973; Thomason, 1973),
analysis-by-synthesis (Neisser, 1967), and top-down language understanding systems
(Winograd, 1973; Woods, 1970). These approaches employ syntactic and semantic rules to
describe the kinds of stimuli that may be produced and encountered in the environment. A

prototype is represented or conceived of in terms of a list of productions, transitions, or
transformations which must be employed to generate it from a meaningless starting symbol.
Matching of stimuli and prototypes is usually done in two steps. First, the stimulus is
synthesized or "forged"; the rules of grammar are employed in some arbitrary manner until a
particular sequence of transitions is found which leads to the production of an acceptlably
close replica of the stimulus. Second, when the transitions can be given an iterpretation which
is plausible in the problem domain, that interpretation is employed in some way to effect
classification or understanding. One advantage of this type of approach is particularly
noteworthy. Given sufficiently powerful grammars, the generative technique is capable of
computing all definable recognition functions (Hopcroft & Uliman, 1969). In specific, any
structural dependencies or feature irrelevancies can be appropriately incorporated into the
rules of the grammar., On the other hand, the power of these approaches is intimately
connected to their principal disadvantages. Among these is their usually enumerative,
recursive, or non-deterministic searches of the space of possibilities (all sentences or stimuli
which can be produced by the grammar). As a result of such search procedures, these
programs do not provide plausible models of the apparently simple and immediate recognition
that is apparently involved in the perception of a well known pattern like the letter "A",
Furthermore, the performance of these systems is seriously degraded by any expansions of
the possible set of rules applicable at each step.

In some sense, generative models seem related to natural mechanisms of recognition in
the way Turing machines are related to human cognition. In both cases the strength of the
relationship rests primarily on the ability of one machine to effect input-output
transformations of a complexity equivalent to that of the natural system. Beyond that, there is
little to support the notion that the machine provides a believable or otherwise promising
model of the natural computations of interest.

STRUCTURAL REPRESENTATION THEQRY

Because of the inadequacies of the. preceding aiternatives, several researchers have
suggested the use of predicate-calculus or equivalent graph representations for pattern
prototypes and stimuli (Evans, 1969; Narasimhan, 1969; Winston, 1970; Barrow, et af, 1972;
Hayes-Roth, 1973, 1974a, 1974b, 1974c¢). In general, while the details of their approaches
vary widely, all of these researchers have proposed some representation for struciured

events and procedures for all-or-none matching of two event _representations to effect

recognition. One such représentation and related matching algorithm are reviewed here which,
because of their generality, subsume the previously proposed alternatives.

Structured events (Hayes-Roth, 1973) are configurations of objects in logical, spatial,

temporal, or activity relations. To represent these configurations, several kinds of elements
are used. A relation is a set composed of a predicate item and a number of named predicate
object items. A predicate is any property that is asserted to obtain among one, two, or more
objects. The functional role of each item in a relation is identified by its prefix symbol, "p" for
predicate, and completely arbitrary type names for the predicate objects. Parameters are
arbitrarily chosen symbols which name objects and are necessarily introduced in these
representations to permit consistent multiple references to an object in diverse relations.
Finally, a parameterized structural representation (PSR) is a two-tuple containing a set of
parameters and a set of parameterized relations which are simultaneously true and which

constitute the description of a single event of interest.
Ll

e

-

Figure 1. Structural Template as Pr—atotype.

Although the current paper is primarily directed to the structure and formal properties
of such representations, it will help to consider the concrete example in Figure 1, in which a
Gothic capital letter "A" is illustrated and the eight parameters used in its description are
indicated. The corresponding PSR is labelled A and is given below:
A: ({a b,c,d e L1, L2 L3}
{{p:on, node:a, line:L1]},
{p:on, node:b, line:L1},
{p:on, node:c, line:L1},
{p:on, node:c, line:l.2},
{p:on, node:d, line:L2},
{p:on, node:e, line:L 2},
{p:on, node:b, line:L3},
{p:on, node:d, line:L3}}) (1)

Each parameter in the parameter set {a, b, ¢, d, e, L1, L2, L3} identifies either a node (a
terminus of a line) or a line of the line drawing of the "A". The body of the PSR contains
relations asserting that each of the first five parameters is a "node” in the graphic structure
and that several nodes are incident "on" several lines.

It is not claimed that the PSR (1} is an accurate model of what humans acquire when
they learn the corresponding pattern. However, such a representation has several salutary

features. The representation is insensitive to attributes of an "A" which are not essential to
the basic concept. A similar description would be true of any "A" which reflected these
structural dependencies regardiess of its orientation, font, proportion, etc. As a result, the
PSR labelled A is considered a siructural template. It describes those properties-- visual, in
the current case--of any stimulus which are necessary for it to be classified as a proper
instance of the class of block capital "A™s. Although it is possible that additional features
(unary- relations) or other p-~ary relations (n=2, 3, ...) might be present in any exemplar of this
class, all of these may be considered superfluous here. Because the number of elementary
relations in a predicate calculus representation or in a PSR may make their complete listing
tedious, a compact form is also used in this paper. In that form relations with redundant
predicates and permutable objects are merged and represented by their set union. If this is
done for PSR A for Fig. 1, the following compact PSR is produced:
A:r { {a,b,c,d e Ll L2 L3}

{{p:on, node:a, node:b, node:c, line:L1},

{p:on, node:c, node:d, node:e, line:L2},

{p:0on, node:d, node:b, line:L3}}) (2)

Before considering the use of structural templates in recognition, the general properties
of the proposed structural representation system should be elaborated. Predicates may be
chosen with complete freedom where the only consideration need be the task to be
performed. Object type names, specified by the particular prefix symbols preceding objects in
a relation, are also arbitrary and should be chosen to suit the specific task, Some predicates
may be able t{o accept more objects than are of interest at any moment, and these others
nead not be specified at all. For example, one might conceive of a distinct predicate for each
verb-sense in a language and associated predicate objects representing each of the cases
associated with that verb-sense, e.g. agent, instrument, location, ete. In some instances, the
order of a relation (the number of possible predicate objects) will not be the number of
distinct object prefixes. For example, a symmetric binary (second order) relation would have
two object items with identical prefixes (e.g., {p:equal, value:x, value:y}).

Any set of relations may be named by assigning it an arbitrary parameter symbol, and
the corresponding labelled event may be cited as the object of some predicate by referencing
that symbol as the appropriate predicate object {Hayes-Roth, 1973c). This is particutarly
useful where a total configuration comprises several perceptually or logically distinct
subevents which are related as unitary wholes in some way. Examples of such
representations can be found in the translation of a linguistic phrase structure tree into a
corresponding PSR, with each node in the tree associated with a parameter representing the
set of descendants emanating from that node.

Although the PSR’s thus far described have employed only parameters as predicate
objects, in some sense this is not essential. When all objects are parameters and ali content
words are restricted to use as predicates, the PSR’s are considered to be in explicit form.
Otherwise, they are in implicit form. The relationship between the two forms is evident in the
following semantically equivalent PSR’s for the sentence, “John who is a very tall adolescent
likes Mary to run with him."

({t,uv,wxy 2}
{{piname, persomw, word:x},{p:name, person:y, word:z},
z:{{p:Mary}}, {p:tall, how much:v, who:w},
x:{{p:John}}, vif{pveryl}, ti{{pirun}},
{p:adolescent, whoiw}, u:{{p:do together, what:t, agent:w, agent:yl},
{p:like, agent:w, object:u}}) ‘ {3

¢ {uw vy}
{{p:name, person:w, word:John}, {p:name, person:y, word:Mary},
{p:tall, how muchivery, who:w}, {p:adolescent, who:w},
u:{{p:do together, what:run, agent:w, agent:y}},
{pilike, agent:w, object:u}}) (4)

The advantage of an implicit form like (4) is that it is easy to read because the content
words which actually represent predicates may be used as if they were constants within
relations. The value of an explicit form like (3) is that it clearly idenlifies every proposition
predicated about the event. As a result, the comparison of any two structured events is most
easily performed on explicit PSRs because irreconcilable differences between two patterns
will always result from some lack of correspondence between predicates and will therefore be
easily interpreted. Thus, any stimulus whose representation contains corresponding relations
to those of a temptate can be seen to mafch the template. On the other hand, when explicit
representations are being partial-matched to generate abstractions which are potential
pattern templates (Hayes-Roth, 1973, 1974a, 1974c), irreconcilable differences (residuals in
the matching process) constitute sets which may be considered categories of constants. In
any given recognition problem, the pattern template may specify that only members of
particular -categories may occur in particular relations. For example, a pattern template for
recognizing the occurrence of a sentence in active voice for the active-to-passive rule of
transformational grammar may require that the subject of the sentence be in the category
noun phrase, ocne of whose members is required, in turn, to be in the category noun.

The representation of programmatic rules of behavior in this framework is achieved
through the use of transformations between contingency and response event PSRs The
contingency PSR describes an internal condition or state of the computing system which must

be satisfied before the transformation is invoked and the response occurs, This view of
computing is like that in production systems (Minsky, 1967; Newell, 1972; Becker, 1973}, web
grammars (Pflatz & Rosenfeid, 1969), and pattern-directed procedure invocation (Hewitt, 1972;
Rulifson, ef al, 1972). The response PSR describes conditions which are to occur as a result
of the successful invocation of the transformation. A computing system which is constructed
in this way is called inferrupt-driven or stimulys-driven, because computing is directty
controlled by the detection of conditions of importance. Transformations whose contingencies
are descriptions of sfimulus encodings and whose responses describe appropriate
classification or recognition behaviors are called categorical. Substitution transformations,
which employ one or more parameters in both the contingency and response PSR's which are
common between them, represent behaviors in which particular values are extracted from a
stimulus and are incorporated directly into the related response configuration.

These two types of transformations alone are sufficient to represent all conceivable
procedures. Although categorical transformations are really special cases of substitution
transformations, they may both be induced by effective algorithms which are somewhat
different in the two cases (Hayes-Roth,1974a, 1974c). Transformations have been introduced
at this point to complete the structural representation story and to facilitate the reader’s
appreciation of the generality of the later results.

Enough detail has now been provided on the representation question to permit the
consideration of all-or-none matching, the logical basis of structured pattern recognition.

ALL-OR-NONE MATCHING: THE LOGICAL BASIS OF RECOGNITION

F’résuming that known pattern prototypes are represented by PSR’s, the task of
recognizing the occurrence of a pattern exemplar is that of detecting when a stimulus contains

all of the structural relations specified by the prototype. Considar the example in Figure 2 of
o Ll 7 AN 1.2

Wi w NN

< > b P ANNY
; E N/ . d
Mi3 < ax "/ 3 \ /¢
- Figure 2. All-Ur-none Matching a Stimulus And Template.

determining whether the stimulus S matches the structural template A previously described
(2). Two problems arise as a direct result of the introduction of arbitrarily chosen parameter
symbols into the representations of both the stimulus and prototype. The bhinding problem

concerns the determination of a distinct correspondent among the parameters in S for each
parameter in the template A Corresponding parameters represent objects which play
equivalent roles in their respective patterns, those roles being defined by the relations in the
template. In the current example it is intuitively apparent that each node or line in A
corresponds to the node or line in § which occupies a similar locus in the drawings. The
correspondences are denoted u=a, v=b, wac, x=d, y=se, M1sL1, M2sL2, and M3=L3.

The solution of the binding problem is, however, closely allied to a solution of another
problem, the matching problem. The matching problem concerns the identification of a
corresponding relation in § for each relation in A such that the two relations are completely
comparable when fthe alphabetic differences between corresponding predicate object
parameters are ignored. In the current example, it is clear that every relation in A is
contained in S under the stated parameter equivalences. Thus S is said to match A, denocted
S(x)A, and the interpretafion is given that the pattern S contains the subpattern A,

In short, having solved the binding problem, the matching problem is to determine
whether every relation present in A is also present in §. On the other hand, a desirable
solution to the binding problem must necessarily provide a complete solution to the matching
problem, too. In the next section, two previously published all-or-none matching procedures
are briefly reviewed so that the proposed alternatives may be more fully appreciated.

PREVIOUSLY PUBLISHED PROCEDURES FOR ALL-OR-NONE MATCHING

The first algorithm, the interference matching procedure {Hayes-Roth, 1974a), is a three
step serial procedure for simultaneously solving the binding and matching problems. The
procedure is easily described in ferms of the concept of models of two or more eveents. A
mode! of a set of events with PSRs Ey, £, .., E,, comprises the following components: a set of
parameter correspondences defining equivalent parameters in each of the E; an abstraction E
which is a set of relations common to each of the E; when alphabetic differences between
corresponding parameters are ignored; and a set of residuals, Ry, Ro,..., R, which are sets of
relations present in each original E;, respectively, which are not represented in the common
absfraction E. Distinct models of a stimulus and a template will describe alternative ways of
matching the stimulus to the template (e.g. identifying maore than one occurrence of a
particular subpattern in a stimulus pattern). Distinct modeis of any set of events identify
alfernative ways in which each element in the set is similar to the others. The former
interpretation will now be elaborated as the use of models in the all-or-none interference
matching procedure for pattern recognition is explained.

The three steps of the procedure as applied to the question of determining whether S
matches A are as follows:

10

Step 1. The stimuius and template are represented as explicit PSRs S and A,
respectively. In parallel, all relations in S are compared with all relations in A.” Each pair of
relations from S and A which contain identical or semantically equivalent predicates are
matched to produce a corresponding model. The abstraction in this model contains a single
relation of the same type as in both compared relations. Each parameter in this relation is
assighed a new symbolic name identifying the pair of parameters from § and A which must be
assumed to correspond in the original patterns to allow the interpretation that the relations
are exactly equivalent. The residuals of § and A in this model are all relations originaily
present in S and A, respectively, except for the matched relations represented in the new
abstraction. In each model, the set of parameter correspondences contains each pair of
parame‘ters assumed to correspond by the forced equivalence of matched relations from S and
A. At all times during the interference matching procedure, only models which entail
consistent parameter bindings are allowed; that is, each parameter in A can be assigned at
most one correspondent in S.

Step 2. In parallel, all pairs of consistent and mergeable models are combined to form
new, more informative models. Two models are consistent if their parameter correspondences
are jointly consistent in the previously described sense. They are mergeable if all residuals in
each model contain the abstraction of the other model. That is each model to be merged must
reduce the unexplained residuals of the other by identifying some relations which are common
to both and which are complementary to those already identified. When these conditions are
satisfied, the modeis are combined by following these simple rules: the set of parameter
correspondences of both models are merged by forming their set union; and each residual in
the new model is the set intersection of the corresponding residuals in the original models.

Step 3. Each model which contains a null residual for the tempiate pattern A identifies
one occurrence of the pattern A in the stimulus 8. Each distinct model represents a unique
occurrence of A in S. The correspondent in § for each parameter in A is specified by the
appropriate element in the merged set of parameter correspondences.

Although it is apparent that this procedure is effective, two additional points shouid be
made. First, every possible occurrence of the template A in the stimulus S is detected and
represented by a corresponding model. Second, this algerithm is in some sense optimal for
the task of identifying every cccurrence of A in S. This conclusion is a direct result of the
fact that only those models which may lead to a solution are ever manipulated, and
manipulations cease as soon as sufficient evidence is obtained that any further operations will
be futile. Further, the procedure rapidly reduces the set of mergeable modeis by reducing
residuals whenever a merge occurs and, therefore, is guaranteed to halt.

11

The second algorithm is called the successive refinement procedure {Barrow, et al,
1972). It solves the binding and matching problems by successively identifying fewer and
fewer possible S parameter correspondents for each parameter in A and then enumeratively
checking each possible binding function (assigning one S parameter to every A parameter) to
see if it entails a complete match between the relations of A and S. The procedure by which
possible S correspondents for each A parameter are hypothesized is to compute features of
each A and S parameter and to consider any parameter q in S which exhibits all the features
of a parameter r in A as a possible correspondent of r. The possibilities are successively
refined (reduced) by computing more and more complex features (such as whether r occurs in
a relation {p:bigger, lir, 2:w}, where w is a parameter whose features include f{ and f;).

If successive refinements identify an A parameter with no possible correspondents,
recognition terminates in failure. In any other case, it may continue until such time as a
complete binding function betwen the parameters of A and S is generated consistent with the
current refinement and a test for matching relations is performed.

STRUCTURED PATTERN RECOGNITION: PROBLEMS AND POSSIBILITIES

Because the all-or-none matching problem is equivalent to the graph monomorphism
problem (Barrow, et al, 1972) and both are members of the class of complete problems
(problems sclvable in polynomial time only, apparently; by non-deterministic procedures), it is
possible that no deterministic algorithm for structured event recognition exists which does not
require an amount of time which grows exponentiaily with the number of parameters and
relations in the template and stimulus (Karp, 1972). For example, as the number of stimulus
relations with predicate gn increases in the preceding example, the number of Step 1 models
increases in proportion to the product of the number of these with the number of
corresponding template relations. Worse yet, in practical problems the number of pattern
templates is quite large (e.g., a 1500 word vocabulary in the Carnegie-Mellon University
speech understanding system, most of which require numerous alternative pronunciation
temptates) and each template must be separately matched to the stimuius.

Thus, there are four distinct avenues of approach for future work: (1) algorithms like
the interference matching and successive refinement procedu}'es may be heuristically
improved; (2) the computation which they perform may be organized and performed in paratie!
or in some other efficient way; (3) special algorithms may be developed for resiricted classes
of pattern structures; or (4) less powerful (general) pattern representations may be used.
Each of these possibilities is considered in turn,

(1) Several heurisitcs for fast pattern matching (or graph monomorphism} have already

12

been tried (Barrow, et al, 1972; Hayes-Roth, 1973). These usually involve reducing the
search space of possible binding functions or stimulus-template relation correspondences by
computing additional features of the possible correspondents. Both of the procedures
presented above employ such heuristics. Additional research may vyietd more practical
procedures than those currently available. For example, the interference matching procedure
can be exogenously constrained to consider at most M models and to introduce additional
relations into existing models in such a way as to minimize the potential combinatorial
explosion of alternative models (e.g., the next predicate type from the template for which
stimulus correspondents are enumerated by generating Step 1 models is chosen to be the one
with fewest possible stimulus correspondents). Some of the desirable properties of such
space limited interference matching (SLIM) procedures are discussed elsewhere {Hayes-Rath,
1974b, 1974c).

(2) Alternative organizations of the computing required for pattern matching may be
sought which can reduce the computing time or steps required. For example, for real-time
control, very fast recognition is desired, and it is interesting to inquire whether any algorithm
could solve the recognition problem with a template of N relations in k, k*N, ..., or kxnf(N)
steps (for some k or f(N)) and how this procedure would be affected by increasing numbers of
templates or stimulus components.

For example, one possible recognition system for a set of M templates, T Tow o Ty
which can be economically organized to allow partial resuits of matching the stimutus to one
template to be retained and used when other similar (partially matching) templates are
subsequently evaiuated is as follows. Let each template T; be represented as a set of explicit
relations Ri,l* - Ri,ni (i.e. all objects of Ri,j are parameters). Further, et each n-th order
stimulus relation wih the same predicate Q be considered as a separate instance of a first
level template Q(xy, ...,). Thus, the k instances of the template Q(x1, - X} may be identifed
as Q[1] = (al,l' 31 21 al,n)’ vy Q[K] = (ak,l' - ak,n)' meaning that 3 is the parameter
occurring as the j-th predicate object in the i-th distinct stimulus relation of predicate type Q.

The recognition of each template T, is effected by forming a network whose nodes
correspond to conjunctions of relations (a level m node Q in the network for T; corresponds to
the conjunction Qlxy, .., x,) = Ri,l and Ri,2 and ... and Ri,m)- Each node Q is associated with a
memory M{Q) whose k elements are M(Q)[1], .., M(Q)[k] such that M(Q}[j] = (aj,l' wens aj,n) is the
list of n argument values corresonding to the j-th instance in the stimulus of the pattern
represented by Q(xl, s ¥p). The arcs in this network connect a level m node Q to a level m-1
nade A{Q) and a level one node B(Q) whose conjunctive product is equivalent to Q. Thus a
template T, with n; relations is represented by a binary tree of n; levels. Finally, recognition
of template T; is effected by iteratively computing all instances of each level m node Q from

13

the instances of A(Q)} and B(Q), for m = 2, 3, .., n;. Notice that several templates Til’ Ti2' .y
Tig
reflected by their sharing a common subtree with root Q in the recognition net. As a result, a
minimal amount of computing can be done and al! stimulus instances of the common subpatiern

Q stored in M(Q).

might share a common subpattern (a subset of equivalent relations), and this can be

These notions can be formalized as foliows. The i-th element of any list L is denoted
L[i], so the j-th argument value of the i-th instance of the template represented by Q is
MQ)i][j] the length of L is denoted length{L). Each node Q is actually a list (A(Q), B(Q), M(Q),
N(Q), S(Q), DXQ), E(Q)), as follows:

A{Q) and B(Q) are the two nodes conjoined at Q;
M(Q) is the memory stack of all argument lists (instances) satisfying @

N(Q) is the number of argument values extracted from A{Q)} and B{(Q) instances and
placed into the M(Q) stack as an instance of Q;

5(Q) is a list of two-tuples (i,j) which mean that any instance of Q must derive from a
pair of argument lists, one from each of M(A(Q)) and M(B(Q)) with the requirement that the i-th
argument from A(Q) must be the same ("$"} as the j-th argument from B(Q). As an example, if
Q2 represents ({b:on, node:a, linesL1} and {p:on, node:b, line:L1}), then if each argument list
from Q1 (the node for all instances of {p:on, node:x, linexy}) is a list of the form (node, line),
we will require that L1 = L1 by putting (2, 2} in 5(Q2);

D(Q) similarly is a list of index pairs (i°,j’} requiring that the i’-th argument from A(Q) be
different ("D") than the j’-th from B(Q). Continuing with the preceding example, since a is not
equal to b, (1, 1) is in D(Q2);

E(Q) is a list of length N(Q) of pairs {A!IOR!B, index) which say where the argument
values for M(Qare to be derived from. If E(Q)[k] = (A(Q), m), the k-th argument value for M(Q)
is extracted ("E") from whatever argument was in the m-th location of the argument list used
from A(Q). Similarly, if E(QQ)[k] = (B(Q), m), it is taken from B{Q).

Given this network representation, a highly parallel algorithm which can be used for
recognition is as follows. It is written in a slightly extended form (allowing the simple type of
list indexing used above) of LEAP {Feldman & Rovnar, 1969; Feldman, 1972) which is itself an
extended ALGOL compiler. It should be noticed that all blocks of code at the same lavel
between the identifiers parbegin and parend ("parallel" begin and end) and all instantiations of

14

the blocks within the iterative parfor (“parallel for) and plrformh;}:‘:(fp‘.;allel“ foreach) can be
executed in parallel. Thus, the entire procedure for .computirjg‘ al! instances of Q from
instances of A(Q) and B(Q) could conceivably be computed in three time steps and & template
with N relations recognized in 3#N steps. :

procedure eval (list Q)

begin "evalQ"

comment Let Q=(A{Q),B(Q),M(Q),NQ),5(Q),D(Q),E(Q) -
and let each of these component names be a macro which compiles into
Q[k] for the appropriate k (e.g., A(Q)=Q[1). Similarly, let
slitem=(i,j) and dlitem=(i",j’) and iet i,j,i’,j’ be macros
similarly expanded;

integer array test!count[1:length(M(A(Q))), 1:length(M(B(Q))};

integer m, n, N(Q), i, j, V', |

list slitem, dlitem, A(Q), B(Q), M(Q), E(Q)

comment test!count[m,n)=k implies that the m-th instance of
A(Q) and the n-th instance of B(Q) satisfy k of the total number
of same/different tests on argument values specified by $(Q) and
D(Q). If k=length{S(Q))+length(DX{Q)), these two instances
can be combined and the appropriate argument values (specified by
E(Q)) extracted and placed in a list in M(Q) as an instance

of

begin "step 1"
comment initialize test!count to zero;
parfor me1 step 1 to length{M(A(Q))} do
parfor ne1 step 1 to length(M(B(Q))} do
test!count[m,n]<0;
ond "step 1™

begin “sl'tep 2"

parbegin "step 2a"

comment Evaluate each reguirement in ${Q) in parallel
over all pairs of instances of A{Q) and B(Q) in parallel;

parforeach slitem such that slitem in 5(Q) do

parfor m«i step 1 to length{M(A(Q))) do

parfor ne1 step 1 to iength(M(B(Q))) do
testlcount{m,n)etesticount{m,n] +

(if MCA(QNm,i1 = M(B(Q))[n,j] then 1 eise O)

15

comment slitem is iteratively bound to each element’
In s(Q), a list of two elements, which simultaneously binds
i and j;
parc:nd "step 2a";

parbagin "step 2b"
comment As in "step 2a" for requirements in DXQ);
parforsach dlitem such that dlitem in D(Q) do
parfor me1 step 1 to length{(M(A(Q})) do
parfor n<1 siep 1 to length(M(B(Q))) do
test!count[m,n}etesticount[m,n} +
(if MAQ)[m,i"] = M(B(Q))[n,j’] then O alse 1);
comment dlitem is iteratively bound to each element
in D(Q), a list of two elements, which simultaneously binds
i* and j% '
parend "step 2b";
end "step 2

begin "step 3"
comment Find all pairs of instances of A(Q) and B(Q)
which have satisfied Q;
parfor me1 step 1 to length(M(A(Q))) do
parfor n<1 step 1 to length(M(B(Q))) do
if test!lcount[m,n]=length{S{Q))+length(D(Q)) than
put extract{M(A(Q))[m], M(B(Q))n]} in M(Q)
before 1;
comment exiract{alist,blist} constructs an instance of Q
{a list of N{Q) elements) from alist (an instance of A{Q))
and blist (an instance of B(Q)) according to E(Q) and
put x in L before 1 places the element x
in the first position (at the head) of list |;
end "step 3% .
comment Now M(Q)} contains all instances of the pattern which
Q(xj, . X)) represents;
end "evalQ";

In sum, the proposed organization and algorithm have two major advantages: (1) they
exploit redundancy during the recognition of muitiple templates sharing common subtemplates

16

by only computing instances of these common subpatterns a single time and storing them in
corresponding M(Q) lists throughout the network; (2) they allow for extensive amounts of
parallelism during recognition processing. Whether or not these prove valuable depends
critically on the availability of appropriate parallel systems and the number of instances of
each subpattern, since the possible number of instances of Q is
length(M(A(Q)))xlength(M(B(Q)).

(3) A very promising direction for research in structured pattern recognition is the
discovery of special representational cases where simpler (less general) recognition algorithms
will suffice. An example from our current speech understanding research will make this point
clear. One of the major problems in speech understanding is word recognition. This is
difficult for many reasons, two of which are that each word has numerous possible
pronunciations (phonetic spellings) and in any given instance a phoneme may be missing
(undetected) or an extra phoneme may be inserted (incorrectly differentiated from its
temporally adjacent neighbors). Furthermore, at any point in time, t, the computational
subsystem that is used to identify phonemes present in the speech input may hypothesize
numerous galternatives h(t) = (pt,l' Pt,2r = pt'”t)' One particularly efficient strategy for
performing recognition in this environment is now proposed.

Frequently, the numerous phonetic spellings for each word can be efficiently
represented by a finite state transition network without cycies, because the multiple spellings
result from the independent combinations of phonetic alternatives at various temporal
positions in the word. For example, the following eight pronunciations (spellings) of “America"
can be efficiently coded by the list equivalent Ty in (4) corresponding to the network of
Figure 3: (ax,m,eh,r,ax,k,ax), (ax,mehyr,axk,ah), (ax,meh,r,ihk,ax), (ax,m,eh,r ih,k,ah),
(ah,m,eh,r,ax,k,ax), (ah,m,eh,r,ax,k,ah), (ah,m,eh,r,ihk,ax), (ah,m,eh,r,ah,k,ih),

Ty = {(ax,ah),m,eh,r(ax,ih)k(ax,ah)} (4)
AX AX AX
M EH R K
<> _/’
AH 1H AH

Figure 3. A transition network for the 8 pronunciations of

*America.”

Given numerous hypothesized phonemes h(t} at each time t=1,2,..,N and numerous word

17

templates Ty, T2, -y Ty @s in (8), an efficient recognition procedure exists which can examine
all templates and all alternative pronunciations in parallel using only bit string logical products
(and) and sums {or). For each phoneme p, several inverted bit strings s(p,j) = bibp..by are
computed and permanently stored in a dictionary, as follows: by=1 if p occurs as an alternative
in the j-th arc (or in the j-th sublist) of T;, where j=1,2,.,L and L is the length of the longest
word template (list); by=1 if the length of T; is less then j; in any other case, b;=0. If any
selection of phonemes py, Py41s « Pkal-1 from L temporaily adjacent hypothesized sets h(k),
h(k+1), .., h{(k+L-1) matches a template T;, then the i-th bit, b;, of the bitwise logical product 8
= s(py,1) and s(pr+1,2) and ... and s{py, 1L} wilt be 1. Moreover, if the logical sum (bitwise
or) of the inverted strings S(Pk+jv”) for j=1,2,.,length{h(k)} are called C(k,n) (for each n=1, 2,
w L), the i-th bit d; of D(k) = Clk,1) and C(k,2) and ... and C(k+L-1,L)is 1 if any such selection
of phonemes entails recognition of T, starting at t=k.

The preceding extremely efficient parallel search of all word templates is adequate only
when there is a perfect match between the sequences of hypothesized phonemes and a word
template. However, there is a simple elaboration which makes it suitable for the cases of at
most r insertions or deletions. Instead of the preceding sorts of computations, we use
inverted bit strings y(p,j) of length MsL, where L bits are assigned successively to each word
template Ty, To, s Tpp and the j-th bit of the L bits for word template T; is 1 if phoneme p
occurs in the j-th sublist of T, or if j exceeds the length of T;. Let the L bits corresponding to
T; (those starting at position (i-1)sL+1) in such a string B be denoted Z(B,i). The preceding
algorithm could be recast in terms of such strings y as follows. Let C(k,n) be the bitwise
logical sum of all strings y(pk:j,n) as before, and let D(k) = C(k,1) or C(k+1,2) or ... or C(k+L-
1,L). Then Z(D{k),i) = 111..1 =(1)- only if some selection of temporally adjacent phonemes
matches T; starting at t=k. In this case, the number of 1 bits in Z(D(k),i), count(Z(DXk),)), is
equal to L.

Now suppose a single deletion occurred in word T; at time t=k+m (m in {1,2,..,L-1})
Then the first m bits of Z(D(K),i} will be 1 but the rest will probably be 0. On the other hand,
the last L-m-1 bits of Z(D(k-1),i) will all be 1. Similarly, if a single insertion occurred at time
k+m, the last L-m bits of Z(D(k),)) will probably be O but the last L-m-1 bits of Z(D(k+1),1) will
be 1. Thus, an efficient way to recognize T, at time k allowing at most 1 insertion or deletion
or both is to determine whether count(Z(D(k-1) or D{k) or DXk+1})i) > L-2. In general, to
recognize T; with a maximum of r insertions or deletions the recognition algorithm is "accept T,
it count(Z(convolve(kr),i)) > L-r-1," where convolve(k,r) = D(k-r) or D{k-r+1) or ... or DX{k+r).

in sum, in the special case of word recognition, a very powerful yet simple technique
exists for evaluating many templates (wiih errors) in parallel and obviates a more general,
combinatorial procedure. Such techniques may possibly occur in other limited recognition
problem domains and are clearly worth seeking. ‘

18

(4) Finally, less general pattern representations can be used. For example, the
preceding framework for word recognition might be considered a feature representation since
recognition could be performed on bit strings wherein each bit corresponds to a particular
attribute of the stimulus. The need to consider abandoning general structural representation
and matching will necessarily arise whenever, in specific contexts, a combinatorial explosion in
all-or-none matching actually occurs. In general however it is not possible to determine this
on a priori considerations and, as a result, nothing further will be said here.

CONCLUSIONS

Real-world pattern recognition problems appear to require relational (graph)
representations. General ali-or-none matching procedures for such problems were discussed.
The possibility exists that these procedures will require computing time which increasas
exponentially with pattern complexity. Thus, special approaches aimed at preventing this
predicament are necessarily sought. For example, the availability of parallel processors and
extensive memory could make the proposed recognition network an efficient, general
procedure. On the other hand, an analysis of the problem domain {e.g., word recognition) may
yield specially tailored, extremely efficient procedures for recognition. In general, it is
apparent that continued research into structured pattern recognition is warranted and
promises to yield practical techniques which may, incidentally, provide valuable insights into
the interesting relationship between representational and computational complexity.

19

- REFERENCES

Barrow, H.G., Ambler, AP, & Burstall, RM. Some techniques for recognising structures in

pictures. In S. Watanabe (Ed.), Erontiers of pattern recognition. New York: Academic
Press, 1972,

Becker, JD. A model for the encoding of experiential information. In R. C. Shank & K. M.
Colby, Computer models of thought and language. San Francisco: Freeman, 1973,

Evans, T.G. Descriptive pattern-analysis techniques. In A. Grasselli (Ed.), Automatic
interpretation and classification of images. New York: Academic Press, 1969.

Feldman, JA., & Rovnar, F. An Algol-based associative language. Communications of the ACM,
1969, 12, 439-449, '

Feldman, JA., Low, JR, Swinehart, D.C, & Taylor, RH. Recent developmentments in Sail.
Proceedings AFIPS Fall Joint Conference, 1972, 1193-1201.

Hayes-Roth, F. A structural approach to pattern learning and the acquisition of classificatory
power. Proceedings of the Eirst International Joint Conference on
Recognition, 1973. ‘

Hayes-Roth, F. An optimal network representation and other mechanisms for the recognition
of structured events. Proceedings of the Second International Joint Conference on
Pattern Recognition, 1974a.

Hayes-Roth, F. Schematic classification problems and their solution. Patiern Recognition,
1974b, 6, 105-113.

Hayes-Roth, F. Fundamental mechanisms of intelligent behavior: the representation,
organization, acquisition, and use of structured knowledge in perception and
cognition. Unpublished doctoral dissertation. Ann Arbor: The University of Michigan,
1974c¢.

Hayes-Roth, F. Uniform relational representations and an algorithm for grammatical inference.
Pittsburgh: Computer Science Department, Carnegie-Mellon University, 1974d.

Hewitt, C. Description and theoretical analysis (using schemata) of PLANNER: a language for
proving theorems and manipulating models in a robot. Cambridge: MIT Project MAC,
1972.

20

Hoperoft, J. £, & Uliman, D. D. Formal languages and their relation fo automata. Reading,
Massachusetts: Addison-Wesley 1969.

Joshi, A. K. Remarks on some aspects of language structure and their relevance to pattern

analysis. Pattern Recognition, 1973, 5, 365-382.

Karp, RM. Reducibility among combinatorial problems. In AE. Miller & JW Thatcher (Eds.),
Complexity of computer computations. New York: Plenum Press, 1972.

Lindsay, P. H, & Norman, D. A. Human information processing, An introduction o psychology.
New York: Academic Press, 1972.

Michalski, R. 5. AQVAL/1--computer implementation of a variable-valued logic system VL, and
examples of its application to pattern recognition. Proceedings of the Eirst
International Joint Conference on Pattern Recognition, 1973.

Minsky, M.L. Computation; finite and infinite state machines. Englewood Cliffs, N.J.: Prentice-
Hall, 1967,

Narasimhan, R. On the description, generation, and recognition of classes of pictures. In A.

Grasselli (Ed.), Automalic interpretation and classification of images. New York:
Academic Press, 1969,

Neisser, U. Cognitive psychology. New York: Appleton, 1967.

Newell, A. A theoretical exploration of mechanisms for encoding the Stimulus. In A. W. Melton
& E. Martin (Eds.}, Coding processes in human memory. Washington: Winston, 1972.

Pflatz, JL.,, & Rosenfeld, A. Web grammars. Proceedings of the First International Joint
Conference on Artificial Infelligence, 1969.

Rulifson, J. F., Derksen, J. A, & Waldinger, R. J. QA4: a procedural calculus for intuitive
reasoning. Menlo Park: Stanford Research Institute, 1972,

Selfridge, 0. G. Pandemonium: a paradigm for learning. In D. V. Blake & A. M. Uttley (Eds.),
Proceedings of the Symposium on the Mechanisation of Thought Processes. London:
H. M. Stationery Office, 1959.

Shaw, A.C. Picture graphs, grammars, and parsing. In S. Watanabe {Ed.), Erontiers of pattern
recognition. New York: Academic Press, 1972,

21

Thomason, M. G. Finite fuzzy automata, regular fuzzy automata, and pattern recognition.
Pattern Recognition, 1973, 5, 383-390.

Uhr, L. Flexibie linguistic pattern recognition. Battern Recognition, 1971, 3, 363-370.

Watanabe, S.” Subspace method in pattern recognition. Proceedings of the First Iniernational
Joint Conference on Pattern Recognition, 1973. '

Winograd, T. A program for understanding natural language. Cognitive Psychology, 1972, 3,
1-191.

Winston, P.H. Learning structural descriptions from examples. Al-TR-76. Cambridge: MIT
“Artificial Intelligence Laboratory, 1970.

Woods, W. A. Transition network grammars for hatural language analysis. Communicalions of
the ACM, 1970, 13, 591-606.

AN AUTOMATICALLY COMPILABLE RECQGNITION NETWORK
FOR STRUCTURED PATTERNS!

Frederick Hayes-Roth and David J. Mostow
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

A new melhod for efficienl recognition of general relational structures is described and
compared with exisling methods. Patterns to be recognized are defined by lemplates
consisting of a sel of predicale calculus relations. Productions are represenfable by
associating actions wilh templates. - A network for recognizing occurrences of any of the
template patterns in data may be automatically compiled. The compiled network is economical
in the sense that conjunctive producls {(subsets) of relations common to several templales are
represented in and computed by the nelwork only once. The recognition network operates in
a bottom-up fashion, in which all possibilities for pattern matches are evaluated
simultaneously, The distribution of the recognition process throughout the network means
that it can readily be decomposed into parallel processes for use on a multi-processor
machine. The method is expected to be especially useful in errorful domains {g.g., vision,
speech) where parallel treatment of aiternative hypotheses is desired.

INTRODUCTION

The work described in this paper was motivated by certain problems involved in the
task of recognizing siructured patterns, especially the problem of parsing canlinous spoken
speech. From the point of view of the language parser, an essential quality of speech is its
errorful nature. Ambiguities in acoustic segmentation, phonetic labelling, word
hypothesization, and semantic interpretalion necessitate understanding systems which can deal
efficiently with multiple allernalive hypotheses about each partion of the inpul (Newell, et al,

11his work was supported in part by Advanced Research Projects Agency Contract F44620-
73-C-0074 to Carnegie-Mellon University.

1973). The usual methods of dealing with such muiliple hypotheses typically entail an
expensive search through a combinatorial space, since they consider only one hypothesis for
each portion of input at a time, and then exploit contextual relationships to eliminate certain
combinations of adjacent hypotheses_ as impossible. The data structure and associated
recognition procedure described in this paper can be thought of as effectively reversing this
process by first exploiting context -- thereby eliminating all but a few combinations from
consideration -~ and then testing contextually related hypothese's for adjacency. Since the
contextual information is statically embedded in the data structure itself, comparatively little
work needs to be done at recognition time. This work requires only the computation of a few,
simple operations rather than a complex search. Moreover, the method provides an efficient
way to handle the spurious insertions, deletions, and repetitions characteristic of speech.

TEMPLATE GRAMMARS

In this section, we define template grammars for recognizing relational structures. We
then define a template normal form (TNF) for template grammars and describe an algorithm for
translating a given template grammar into an equivalent TNF grammar which is ecanomical in
that it maximally exploits repeated subtemplates in the original grammar. The construction of
an automatically compilable recognition network (ACORN) from a TNF grammar s
straightforward and is described in the next section.! The definitions we use are tailored to
natural language understanding, but are immediately generalizable to other applications (e.g.,
vision),

A relation ity to; X]s - Xp) I8 an n-ary predicate corresponding to some element or
pattern in the language. For example, the relation teli(ty, t5) holds if the word “tell” occurs in
_ the input utterance beginning at time f] and ending at time ty. In general, ty and t, are
temporatl arguments specifying the time interval containing a recognized occurrence of the
relation, and X, s X are selected arguments and features of the occurrence. A relation is
catled primitive if it corresponds to a primitive element (terminal symbol) of the language, pon-
primitive if it corresponds to a pattern of elements {non-terminal symbot), and top-level if it
corresponds to a complele paitern (sentential form).

A template T is a Boolean combination of relations ris i=1, ., [T|, restricted as follows. It

lin actuality, our compiler will compile the input grammar directly into a recognition network,
without the intermediate step of translation into TNF. For the purposes of this
discussion, however, we have divided ACORN compilation into the two phases of
translation into TNF and construclion of the recognition network from the TNF

grammar.

must be either a disjunclion
rl(tl, t2; Xl. ...,‘Kn) Of Fz(tl, 12; Xl, vy Xn) or ... Or rd(tl, t2;)(1, ey Xn), lTl =dz 1,
or a conjunction

Pty ot Xy xn'l) and ... and rp(llo, g X1y an) and
not r +l(tl 1o 5 X y o X)'B.D_d'--._an_(']ngir {4 sto 5wy o, x, Ygepzl)
P pil “pel’ T ipal Mo+t q lq 2q lq Ng qzp

In the first case {disjunction), the symbolic arguments {ty to; xq, =) are the same for each

Fy i=1,.,d In the second case, a weaker condition must be satistied: the relations must

i
have enough symbolic arguments in common for the template to be gonnected, that is, for any
partition of the ptq relations STRERSe into two non-empty sets A and B, there must exist
relations ra(fla, tza; xla, vy xna) (A and rb(tlb, tzb; xlb, . xnb) «B such that

ty , ¢ y b £ .
{la 2a}ﬁ”lb (_,b}?‘@

A femplale grammar is a sel of rules of the form [<template> => <relation>; <action>].
The aclion optionally associated with each rule specifies what should be daone in 1he event
that an instance of the template is recognized in the input and the rule is invoked. Thus a
template grammar is actually a production system of the sort described by Newell (1973).

Table 1. Sample Grammar (Gpp)

[Ford(t|, i,) => TOPIC(t |, 15; expr); expr+"FORD"]
[Rockefeller(i, to) or Rocky(t, to) => TOPIC(t |, ty; expr); expre"ROCKEFELLER"]
[Kissinger{t |, 15) => TOPIC({, 15 expr); expr"KISSINGER"]
[or(t), 15) and TOPIC(t,, t; expr) => TOPICk(t |, to; expr);]
[TOPIC(i), to expr ;) and TOPICK(t,, to; expry) =>
TOPIC*“], tai expr); expr e expr| U expry]
6. [UTTERANCEHI, tg) and aboul(l,, 1) and TOPIC('(S. tg: expr) =>
TOPIC*{t4, 145 expr);]
7. [UTTERANCE(|, tg) and telll |, t,) and melt,, t5) and
nothing(ts, 1) and aboul(ty, 5} and TOPICx(ty, tg: expr) =>
REJECTC, te; expr) SUPPRESS(expr) |
8 [UTTERANCE(), t5) and tell(l|, t,) and me(t,, t3) and
nol nothingits, 1) and about(t 4, ty) and TOPICk(tg, te; expr) =>
REQUEST(t |, tg; expr) RETRIEVE(expr)]

OB W N

As an example, consider the sample template grammar Gpp (Table 1) which is part of a
much larger grammar for analyzing spoken queries to a wire-service news retrieval system
(Frost, 1974). Gpp’s top-leve! relations are REQUESTY and REJECT. A sample instance of
REQUEST is the utterance "Tell me all about Rocky." An instance of REJECT is the utterance
"Tell me nothing about Ford, Rockefeller, or Kissinger. The primitive relation
UTTERANCE(t;, t5), used in rules 6, 7, and 8, simply signifies that the entire utterance spans
the time interval [t), 5} this makes the beginning and ending times of the utterance
accessible as arguments {o other relations, without violating the framework of the template
grammar. Rule 2 illustrates the use of features and actions. The feature, expr, of TOPIC is the
semantic expression eventually passed to the actual news retrievat routine, The action of Rule
2 gives expr the value "ROCKEFELLER." Rule 5 is an example of recursion. It handles phrases
of the form "topic,, topicy, .., topic,_y, or topic,,.” The action of Rule 5 forms a compound
semantic expression from the expressions associated with its individual constituents. Thus the
instance “Ford, Rockefeller, or Kissinger” of the relation TOPICx has expr = {"FORD",
“ROCKEFELLER", "KISSINGER"}.- Rule 6 shows how context sensitivity can be embedded in a
template grammar. It slates that any instance of TOPIC which occurs at the end of an
utterance, and whose left context is ABOUT, constitutes an instance of TOPIC%. Rule 8
illustrates the use of negation. It states that any utterance of the form "Telt me ... about X" is
a request for information about X unless the gap "." contains the word "nothing.” Thus "Tell
me about Ford,” "Tell me all about Ford," and "Tell me everything you know about Ford," are
all instances of REQUEST. This illusirates the capacity of a template grammar to ignore
redundant portions of the input.

‘ A template grammar is in template normal form (TNF) if the following conditions are
satisfied: o .

(1) The tempia'ie of each rule has one of the following types:

<relation;> or <relalion> or ... or <rglation >, d>l (disjunctive type}
<relation|> and <relationy> {conjunctive type)
<relation > and nol <relationy> {negative type)

The relations in a disjunctive template have the same symbolic arguments; the relations in a
conjunctive or negative templale are connected.

(2) Every non-primitive relalion appears on the right side of exactly one rule. Hence we can
define the type of a relation to be the type of its unique defining template; a primitive relation
is simply said to be of primitive type. '

It is clear thal any template grammar G can be translated into an equivalent grammar G*
in TNF by means of adding new relations and rules. The task of the automatic translator is to
do this in such a way as to minimize the number of new relations added.

Let G = {[T, =>rpAJ:i=1, . |G} be a template grammar. Define W(G) to be the set
of rules in G which fail o satisfy condition (1) of TNF, ie, tXG) = {T ¢ G: Tis a conjunction of
relations and |T] > 2}. Define N(G) = E (|T] - 2). Then N(G) = O itf U(G) = @ iff G salisfies
condition (1). Morcover, NG is a me$st®of how far off G is from satistving (1) We are
now ready to describe the algorithm for translating the input grammar G into an equivalent
TNF grammar G*.

Step 0. Let Gp = G and set j<0.

Siep 1. U N((‘) =0, go 1o Slep 2. Otherwise, find a pair of relations <ry, ro> such that
rilty o) Xps e X n aDd {not) roltg, tgi vy o oY) is @ connected subtemplate of at least one
template T « U((‘), ie., one for which {t, to} n {tg, ta} # . Define the new relation r ., to
be this subtempla’re Replace the subtemplate by r..,, wherever possible in Gj, and add a
new tule

[rl(i 1 to) Xy xn) and (not) "2(‘3' tgi Yo ym) => rnew(t'c“)’ tei 215 o zk);].

(A later example will illusirate the criteria used In selecting the arguments tg, tg, 21, 02y of
the new relation from the arguments t), ty, tg, tay X{o oo Xpy Y10 Ym of its constituent
relations ry and ry.} Call the resulting equivalent grammar Gj+1. Lel jej+!1 and go te Step 1.

Note that NG,) < N(G;), since each iteration of Step | shortens at least one template
in U(G) Hence Siep | mut terminate after J < N(G) iterations, giving a G such that
-N(G) = 0. The hecur istic we use in an effort to obtain a minimal G (Le, to minimize J) is
simple: each iteration ihrough Step 1, choose the subtemplate which occurs the greatest

number of times in U(G)), ie. fhe pair of relations which will give the maximum reduction in
N(G;)-

It remains to satisfy condition {2). This is done by

Step 2. For every relation r which appears in the grammar G, on the right side of d 2 2°
rules [T; =>r Al i = 1, o, dy rewrite each rule {T; =>r; A;] ‘as [T; => ;3 Al where r, is 2
unigue new retation, and add the new rule ["1 QL ro or .L.gr_rd =>r;] Call the resulting
grammar G*. By ils construction, G* is equivalent to Gy and satisfies conditions (1} and (2).
Therefore G* is the desired TNF grammar equivalent to G.

As an example, consider the application of this translation algorithm to the sample
grammar Gap. The templates Ty Tp, and Tg of rules 1, 2, and 3 are disjunctions, and
I:I'4| =]T5| =2, so UGy) = WGpp) = {Te: T, Tgl and NGy} = ITGI—Z +{T71-2 + [Tg|-
2=1+44+4=9 The relation pair which occurs the greatest number of times in WGp) is
<UTTERANCE, about>, which occurs in Tg: T7, and Tg. However, all three occurrences of this
pair fail to salisfy the connectivily condition, since {t;, tg}n {to,t3} =9 in Tg and
fty, tg) n {tg tg} =@ in T and Tg. Because several relation pairs occur twice, arbitrarily
choose the pair <tell, me>, which occurs in T7 and Tg, for replacement. Accordingly, the
following rule is added to the grammar;

9. [tellity,) and melty, t3) => TELLsME(t), tq);)

Rule 9 states that if the word "tell" occurs in the time interval [ty t2] in the spoken input, and
the word "me” occurs in the interval [tz 3], then the relation TELL+ME occurs in the
concatenated interval [ty t3] We rewrite rules 7 and 8 as

7%, [UTTERANCE(t }, t5) and TELL+ME(t), t5) and
nothing(t,, t3) and about(ty, t4) and TOPICk(t 4, tg; expr) =>
R.EJECT(ii, tg); SUPPRESS(expr)]
8% [UTTERANCE(t), t5) and TELL+ME(t}, 1) and
not nothing(ts,, tq} and about(ts, 15) and TOPIC(t,, tg; expr) =>
REQUEST(1, t5); RETRIEVE(expr)].

Note that N(G{) = N(Gg) - 2 = 7.

Now repeat Step 1. A choice must be made among several relation pairs which occur
twice; arbitrarily choose the pair <about, TOPICk>, add the new rule

10. [about(l}, t5) and TOPICKt, t3) -> ABOUTSTOPICA, tg)],
and rewrite rules 7% and 8% as

7*%. [UTTERANCE(t, t4) and TELL+ME(t), t,) and
nothing(t,, 13) and ABOUT+TOPICk(t, t4; expr) =>
REJECT(t), t4) SUPPRESS(expr)]
8**. [UTTERANCE(t |, 14) and TELLsME(|, t,) and
nol nothing(ts, t3) and ABOUT+TOPICK(ly, t4; expr) =>
REQUEST(t |, t4); RETRIEVE(expr)].

As a resuit, N(Go) = NG|} - 2 = 5. Note that the minimization heuristic rules out the choice of
the relation pair <nothing, aboul> for replacement; to do so would reduce N(G;} by only I,
since the relation nothing is negated in Tg but not in T+.

Again, Step | allows a choice among relation pairs occurring twice; arbitrarily choose
the pair <UTTERANCETELL+ME>. At this point, care must bé exercised in defining a new
relation. In previous applications of Step 1, relations were siroply concatenated. Here,
however, relations overlap. When UTTERANCE(t |, t4) and TELLsME(t, t5) are conjoined into a
new relfation, t| as well as ts and ty must be retained, since t| appears elsewhere in rules 7%*
and &** (as an argument of REJECT and REQUEST). Previously, such a probtem did not arise,
because the argumenl shared by the pair of relations appeared nowhere else in the rule, and
consequently could safely be omitted from the new retation. In the case at hand, the
transtator adds a new rule

11, TELLSME(|, t,) and UTTERANCE |, tg) => TELLeME-UTTERANCE(t, tg: t)]
and rewrites rules 7¥* and 8** as

7*** [TELL+ME-UTTERANCE(t,, t4; t|) and nothing(t,, t3) and
ABOUT+TOPICxk(t4, {4 expr) =>
REJECT(t{, 4} SUPPRESS(expr)]
8*** [TELL+ME-UTTERANCE(t, 145 t|) and not nothing(ts, tq) and
ABOUT+TOPICK(tq, ty; expr) =>
REQUEST(t}, t4) RETRIEVE(expr)),

with the result that MNGg) = N(Go) - 2=3. In our mnemonic convention for naming new

relations, the "+" in “TELL+ME-UTTERANCE" denotes concatenation, and the "-" denotes
overlapping.

There is now only one relation pair which occurs twice, namely <TELL+ME~
UTTERANCE, ABOUT+TOPIC%>, The transtator adds a new rule

12. [TELL+ME-UTTERANCE(12, tas 11) and ABOUT’TOP|C*“3, fq; expr) =>
TELL+ME-UTTERANCE-ABOUT+TOPICk{t», t4; t1, ty, expr}]

and rewrites rules 7%*" and 8¥** as

7% [TELL+ME-UTTERANCE-ABOUT+TOPICK{t5, t4; t{, t4, expr) and nothing(ts, t3) ~>
REJECT(1, t4); SUPPRESS(expr)]

8**¥*¥, [TELL+ME-UTTERANCE-ABOUT+TOPICK(ty, tgi |, t4, expr) and not nothing(t,, t5) =>
REQUEST(t |, t4) RETRIEVE(expr)].

Since |Tyxt%%| = |Tgesek] = 2, we now have'U(G‘a) = {Tg} and N(Gg) = N(G3) - 2 = L.

At this point, there are two connected pairs of relations, each occurring once in Tg-
Arbitrarily, choose the pair <about, TOPIC>. In conjoining aboul(t,, t3) and TOPIC(t, tg: expr),
the translator discards t,, since it appears nowhere else in ryle 6, but must retain tq, which
appears as an argument of the relation TOPICk. Accordingly, it adds the new rule

¥

13. [aboul(t), t5) and TOPIC(t,, ts; expr) => (ABOUT)TOPIC(t,, tg; expr)]
and rewrites rule 6 as
6% [UTTERANCE(t, 13) and (ABOUT)TOPIC(t, t; expr) => TOPICK(t,, t5; expr);]

In our naming convention, the parentheses in "(ABOUT)TOPIC" are a mnemonic {or context
sensitivity, indicating that an occurrence of TOPIC with about as its left-hand context
constitutes an occurrence of (ABQUT)TOPIC. Al this point, [Tgtl = 2, WGg) = @, and N(Gg) =
N(Ga)-1 = 0, so Gy satisfies condition (1) of TNF.

Now apply Step 2 to Gg. The only relations which occur on the right side of more than
one rule are TOPIC, which occurs on the right side of rules 1, 2, and 3, and TOPIC%, which
occurs on the right side of rules 4, 5, and 6*. The translator rewrites rules 1, 2, and 3 as

1*. [Ford(t|, t») => TOPIC/1{t, l5; expr); expre"FORD"] _
2%, [Rockefeller(ty, t5) or Rocky(t|, t5) => TOPIC/2(t|, tp; expr); expr«"ROCKEFELLER"]
3% [Kissinger(t |, {5) => TOPIC/3(t}, to; expr); expr«"KISSINGER"]

and adds the new rule

14, [TOPIC/1(t}, t» expr) or. TOPIC/2(1, 15; expr) or TOPIC/3(t}, to; expr) =>
TOPIC(t ¢, |2; exprk)

Similarly, rules 4, 5, and 6* are rewritten as

a* [or(ty, t,) and TOPIC(t,, t5; expr) => TOPICx/4(t, t5; expr);]
5% [TOPIC(t), to: expry) and TOPICKt,, t3; exprp) =>
TOPICx/5({t, t3; expr); expr « expry U exprp]
6**. [UTTERANCE(t |, t5) and (ABOUTITOPIC(t,, t; expr) => TOPICk/6(t5, t3; expr)i]

and the following new rule is added:

15. [TOPICx/4(t,, to; expr} or TOPlC*IS(tl, t2'. expr) or TOPIC*/S(tl, l2; exp'r) ="
TOPlC(tl, t2; expr);) ‘

The resulting grammar GAP*, shown in Table 2, is in TNF.
Table 2. Sample Grammar in TNF (GAP*)

1*. [Ford(t}, 1») => TOPIC/1(t), to; expr); expr<"FORD"]

2*. [Rockefeller(t|, t5) or Rocky(ly, lé) => TOPIC/2(t |, to; expr); expr+«"ROCKEFELLER"]

3% [Kissinger(l], 15) => TOPIC/3(t}, t»; expr); expre"KISSINGER"]

4% [or(t], {5) and TOPIC(tp, tg; expr) => TOPICK/4(t |, t5; expr);]

5*. [TOPIC(t, to; (?Xpl’l) and TOPIC*(tZ, ta exprz) => '
TOPIC%/5(t |, 15; expr); expr « expr) U expry]

6**. [UTTERANCE(|, t3) and (ABOUT)TOPIC(t), ty; expr) => TOPIC*/6(tp, tg; expr);]

7% [TELL+ME-UTTERANCE-ABOUT +TOPICK(to, to; ty, t4, expr) and nothing(ty, t3) =>
REJECT(t), t4); SUPPRESS(expr)]

8¥*¥¥* [TELLME-UTTERANCE-ABOUT+TOPICKt,, i t}, ty, expr) and noi nothing(ly, tg) =>
REQUEST(1 |, t4); RETRIEVE(expr)]

9. [lel{ty, 1) and melty, t3) => TELL+ME(t}, tg)]

10. [aboul(ty, 1) and TOPICx{ty, t3) => ABQUT+TOPICKt), t3);]

11, [TELLsME(l |, 15} and UTTERANCE(t, tg) => TELL+ME-UTTERANCE(tp, tg; t);]

12, [TELLsME-UTTERANCE(!,, t; t{) and ABOUT+TOPICK(t, t4; expr) =>
TELL+ME-UTTERANCE-ABOUT+TOPICk(t, t5; ty, tg, expr);]

13. [aboul(l), t5) and TOPIC(t,, {5 expr) => (ABOUT)TOPIC(t,, t3; expr);]

14. [TOPIC/1(1}, to; expr} or TOPIC/2(ty, to; expr) or TOPIC/3(ty, toi expr) =>
TOPIC(t |, to; expr) }

165, | TOPIC*/‘I(ti, toi expr) or TOPIC*/5(t, ty; expr) or. TOPICx/6(t |, fz; expr) =>
TOPIC(§, 1o expr);]

THE RECOGNITION NE_TWORI(I

Given a template grammar in TNF, a corresponding recognition network (ACORN} is
constructed as follows. For each relation r appearing in the TNF grammar, there is a unique

IThe recognition network used here is based on the structure described in Hayes-Roth
(1974b).

10

node, node(r), in the network. (Hence minimizing the number ot relations in the TNF grammar
is equivalent to minimizing the number of nodes in the network.) For every rule [T => r; A}, an
arc is drawn from node(s;} to node(r) for each relation s in the template T. Each node(s;) is
said to be a conslituent of node(r), and node(r) a derivative of node(s;). A node may have
zero, one, or more derivatives. The recognition network for the sample grammar Gaps
constructed from the TNF grammar GAP*' is shown in Figure 1.

Node(r) contains various information: its type {i.e., the type of relation r); the action A in
the rute [T =>r; A, if any; and the correspondence between the arguments of relation r and
the arguments of its constituent relations s,. This correspondence consists of two parts, a set
of tests and a generator. The tests represent any requirements for agreement between the
arguments supplied by the constituents node(s;)). The generator is a list of the arguments
which are to be supplied in turn {o the derivatives of node(r). The arguments are encoded
according to a canonical numbering scheme best described by an example. Consider
node(TELL+ME). Its constituents are node(TELL), which supplies argumenis by oy and
node(ME), which supplies arguments t,t5. Let L be the concatenated argument list
(t1s to, tg, tg) Then node(TELL+ME} can specify its arguments by their indices in L. Thus
node(TELL+ME)’s only test is L{2) = L(3), denoted by "2:3" below node(TELL+ME} in the
network. (See Figure 1.) Similarly, node(TELL+ME)'s generatar is the list { L{1), L(4)), denoted
by "(1, 4)" above node{TELL*ME)} in the network. Arguments which are not supplied by a
node’s constituents but instead originate at the node itself are specified by negative indices.
For example, node{TOPIC/2)s generator is denoted by "{1, 2; -1%" the -1 specifies the
argument expr, which originates at node(TOPIC/2). The action stored in n'ode(TOPIC/Z) assigns
this argument the value "ROCKEFELLER".

All of the recognition network components described so far are static. There is also
associated with each node{r} a dynamic |nstance list .. Each instance in the instance list of
node(r) represents a single recognized occurrence (instantiation) of the relation r in the input
utterance. An instance has four components: a unique identification number I; the time interval
(tq, t2} containing the occurrence; the values xy, .., ¥, of selected arguments and features of
the occurrence; and a support set S5 containing one or two instance identification numbers.
An instance is denoted l:(ll, P25 X1y v Xy SS). During the recognition process, instances are

created and deleted dynamically.

The recognition process is bottom-up, as foliows, Initially all instance lists are empty.
A lexical analyzer is invoked and begins to scan for occurrences of primitive relations in the
input utterance. Since the lexical analyzer receives imperfect, incomplete information from the
phonetic labelling rouline, the best it can do is to identify possi occurrences. When it finds
-a possible occurrence of a relation r, it adds a new element to the instance list of node(r)

11

(3, 4; 5) (3, 4; 5}
REJECT " REQUEST
:6 1:6
2:7 2:7
M
(1, 4 3, 2, 6) (1, 2)
TELL+ME-UTTERANCE-ABOUT+TOPICK nothing
2:\‘
(2.5;1)/ (1, 4;)
TELL+ME-UTTERANCE ABOUT+TOPIC*
13 2:3
A . o T
(1%2,3)
TOPICX
A
(3.14; 5) (1,L4; 5) (1.L5;—1)
TOPIC%/6 | TOPIC*/4 TOPIC%/5
2:4 /E/?q _
(1, 4) (1, 2) 3, 4, 5) (1,2 | (1,23
TELL+ME UTTERANCE /~ ABOUT(TOPIC) or TOPIC
23 23, T
f ~
1,2 G2 1,2 (1, 2; -1) (1,2 -1) (1, 2 -1)
tell - me about TOPIC/ . TOPIC/2 TOPIC/3
| A
(1, 2) ‘ (1,r2) (1+2) (1, 2)
Ford Rockefeller Rocky Kissingar

Figure 1. Sample Recognition Network (an ACORN). See text for an explanation of the tests i
below the nodes and lhe generators (i, in; ig, .., iy) above them.

12

containing the appropriate information. To understand the recognition process, imagine each
node(r) as having a demon. The node(r) demon continuously monitors the instance list of each
constituent node(s;) of node(r). Whenever a new instance is added to the instance list of
node(s;), the nodelr) demon adds a reference to this new instance to its node(s;) add sef.
Similarly, whenever an existing instance of s; is deleted, the node{r) demon saves a copy of it
in its node(s;) delete sel. Add sets and delete sets are referred to collectively as change
sets.! The demon then activales {wakes} node(r) itself by invoking code stored in node(r). ¢

When node(r) is activaled, it updates its instance list according to the ihformation in its
constituents’ instance lists and change sets. I node(r) can derive {construct) any new
instances from instances of its constituents, it does s0, adding the new instances to its
instance list. The supporl set of each instance contains the identification numbers of the
instances from which it has been derived. Node(r) deletes from its instance list any instances
supported by {(derived from) the defunct instances listed in its constituents® deleie sets. The
exact way in which all this is done depends, of course, on the type of node(r).

If node(r) is disjunctive, then it has d constituents hode(s), .., hode(sq). For each
instance I:(tl, l2; Xy X3 5S) N a node(sj) add set,' node(r) adds a new element
Inewtys tos 2y, oo Z); {IP to its own instance list, computing Z|,., 2 from the values of
X 11w Xp according fo the generator stored in node(r). lhew's support set is {I} because the
instance Ihew ©f r is derived from (supported by, dependent on) the instance 1 of r’s
constituent relation s;. For each defunct instance I in a node(s;) delete set, node(r) deletes all
instances Ioig{t)s o5 2)0 o 2,5 SS) supported by I, e, such that ¢SS, (Actually, for
disjunctive r, all instances of r will have support sets of size one, so [€ SS iff S5 = {I}.
However, for conjunclive r, |SS| = 2; hence the set notation).

_ If node(r) is conjunctive, then it has exactly lwo constituents, node(s) and node(s,),
with respective instance lists L} and IL2, add sets AS) and ASp, and delete sets DSy and DSZ.
First node(r) deletes any of its instances Ioigtys tos 2y, oy 23 8S) which were derived from
instances in DS, or DSy, Le., those for which S5 n (DS| U DSy) # P. Then node(r) looks for
new instance pairs I):(t,, b2 Xy o ¥y 8570 D L) and Ixiltg, tg vy oo Y $S2) i ILy such
that (t), to; xq, .y %) malches (t3, 145 ¥ s -» Yy according to the tests stored in node(r). For

1pemons and change sels are already used in the Hearsay 1l system (Lesser, et al,, 1974).

2One of the major virtues of the recognition network is that all the nodes contain simitar code;
in an actual imp!ementation' the differences between nodes would he
parameterized and only the paramelers stored in the nodes. For clarity of
presentalion, however, we treat nodes as autonomous entities.

13

each such matching pair, node{r) adds a new element 1., i, toi z), . 25 {1, 1oh to its
instance list, using ils generator o select z|, ., 2y from x g, o X Y15 <0 Yr It is sufficient to
check only those pairs of instances Iy, l5 of which one or both are new, or more formally,
such that either 1; ¢ AS; and I CIly or Iy < IL; and I, € AS,. For example, suppose the
input utterance is "Tell me nothing about Rockefeller,” and the lexical analyzer finds an
instance [:(0, 18; ..) of tell and an instance 1,418, 23; ..} of me. Then the test stored in
node(TELL#ME) becomes 18 = 18, which is true, so node(TELL#ME) adds a new instance
Inewi0s 23; {1, o)) to ils instance list to represent the occurrence of "tell me" in the
concatenated time inferval [0, 23] (Time is measured in centiseconds since the beginning of
the uiterance.) Now suppose the lexical analyzer mistakenly identities the syllable “fell” in
"Rockefeller” as the word "tell,” and adds an instance 13257, 269; ..) to node(tell)’s instance
list. This may happen, for example, if the phonetic tabeller correctly identifies the "F" in
"Rockefeller” as an unvoiced consonant but can’t tell if it’s an "F," a "T," or a "P." No harm is
done, however, since when node(TELL+ME) matches I3 against Iy, the test 269 = 18 fails, and
no new instance of TELL+ME is derived from Il3. This example shows how the ACORN
automatically weeds out spurious instances hypothesized by the lexical analyzer on the basis
of incomplete phonelic information.

Finally, if node(r) is negative, then it has two consliluents, node(s |} and node(s,), where
r =(s; and nof s»). LetILy, Ly, ASy, ASo, DS, 082 be the instance lists, add sets, and delete
sets of rnode(s;) and node(s,). First node(r) deletes any of its instances
Tolditts 125 21y« 2i3 S} derived from defunct instances in DS, Le., those for which
SS n DSy # . Then nodelr) fooks for any instance pairs Lty tos s v %33 SSp) in 1Ly and
Iotg, tgi Yo -0 ¥ii $S2) In ASy such that () o X gy v xn)' matches (14, tgi Y1) o Yyn!
according to the tests stored in node(r). For each such pair, node(r) deletes all of its
instances g g:(ty, 121 2}, .., 2,5 55) which depended on [y, e, such that I} ¢SS This is done
since each such I, previously an instance of (s and not sp) is now invalidated by a new
instance of s,. Adding inslances of node(r) is also a bit tricky, and proceeds as follows. First
node(r) consiructs the set IS of all instances ij € IL| which match some I in DSy Then
node({r) looks for all instances Il:(tl, 123 X |y o X3 SSL) in AS| U IS which match none of the
instances in IL,. For each such [, node(r) adds a new instance I .(ty, to; 2, .y 243 {1} 1) to
its instance list.

To illustrate this, let us continue with our sample utterance. Suppose that at some point
the lexical analyzer has recognized all the words in the utierance except the word "nothing;"
and node(TELL+ME-UTTERANCE-ABOUT+TOPIC*) has 14423, 41; 0, 274, "ROCKEFELLER" ...) on
its instance list. Since the instance list of node(nothing) is empty, node(REQUEST) will have an
instance Igx0, 274, "ROCKEFELLER", {i4}} on its instance list. Now suppose that the lexical
analyzer finally recognizes the word “nothing,” and puts the instance 1g«(23, 41;..) on

14

node(nothing)’s instance list. This activates both of node(nothing)’s derivatives. Node(REJECT) .
matches Ig against 1, tests 23 =23 and 41 = 41, and accordingly adds a new instance
1540, 274; "ROCKEFELLER"; {Ig, I} to its instance list. Node(REQUEST) maiches lg against I,
tests 23 = 23 and 41 = 41, and accordingly deletes I5:(0, 274; "ROCKEFELLER™; {I4}) from its
instance list. This example shows how information is accumulated and corrected dynamically
during the ACORN recognition process. It also illustrates the ACORN's state-saving nature and
its sharing of informatlion between top-level nodes.

Once node(r) has examined its conslituents’ change sets and, if appropriate, revised its
own instance list, it goes back lo sleep. Meanwhile, the demons sitting on the derivatives of
node(r} have been walching its instance list and, when changes occur, activate their nodes.
This chain reaction continues, fuelled by new instances generated by the lexical analyzer, until
the lexical analyzer has slopped, all nodes are asleep, and all change sets are empty.

At this point each instance Ii(ty, t5; x|, .., x,55 SS) of a non-primitive node, nade(r), may
be interpreted as a parlial parse of the interval [ty, to], with relevant syntactic and semantic
teatures given by X1« Xy FOr example, when the recdgnition_of our sample ulterance
terminates, the instance 1:(41, 274; "ROCKEFELLER"; 1agouT Itopick)) of ABOUT+TOPIC* may
be considered to be a parlial parse of the input interval [41, 274} containing “about
Rockefeller.” Parse trees can easily be reconstructed from the information contained in the
support sets, especially if an appropriate scheme is used for assigning identification numbers
to instances. Specifically, an ACORN assigns the unigue number <node(r), i> to the ith
successive instance ot node(r). This is easily implemented by storing a counter for i in each
node. Moreover, this scheme insures that each node can assign identification numbers to its
instances independently, without worrying about numbering conflicts, a property which is
desirable for the implementation of the recognition network on a multi-processor machine.
Parses of the entire utterance are given by instances of top-level nodes. Thus the instance
1740, 274; "ROCKEFELLER"; {I4, lg}} of REJECT constitutes a total parse of the sample
utterance, and supplies the semantic feature, expr, required by the action SUPPRLSS(expr).

RELATIONSHIP TO EXISTING PARSERS AND PATTERN-MATCHERS

The original motivation which led to the ACORN concept was the development of a
general automatic recognition system for spoken ubterances, visual scenes, and other
structured patterns in which contexl is a fruitful source of information. Since the speech
understanding ACORN treats an uiterance as a relational structure, it is related both to natural
fanguage parsers and to general pattern-matching mechanisms.

The ACORN’s closest relative among natural language parsers is PARRY (Colby, 1974), a

15

program which simulates a paranoid individual being interviewed by a psychiatrist. PARRY
uses the following methods to interpret ils unrestricted idiomatic English input. Given an input
sentence, e.g., "Tell me whal is your currenl primary occupation,” PARRY replaces each word
by a canonical synonymic form, dropping any words it doesn’t recognize, such as "current” in
this example. This resulls in { TELL ME WHAT BE YOU MAIN JOB). PARRY then breaks up the
sentence into short phrases, using function words such as *what" as reliable phrase boundary
indicators. This method of segmentation yields ({ TELL ME) (WHAT BE YOU MAIN JOB).
PARRY tests each phrase against a large library of stored templates. If no match is found for a
phrase, PARRY omits one word al a time from the phrase, and tests each shortened version.
Thus if { WHAT BE YOU MAIN JOB) is not in PARRY’s library of patterns, it tries (BE YOu
MAIN JOB), { WHAT YOU MAIN JOB), (WHAT BE MAIN JOB), and ultimately (WHAT BE YOU
JOB), which matches a stored pattern. If there is still no match, PARRY assumes the phrase is
unimportant and ignores it. Having reduced the input sentence to a few templates, PARRY
attempts to match the pattern of templates against a library of such patterns. 1f necessary, it
ignores some of the templates in order to get a match. Finally, an action associated with the
matched pattern leils the response roulines how to react. PARRY manages lo handle
teletyped input in unrestricted English {ast enough (1 second response) and accurately enough
to perform impressively on Turing’s imitation test.

While the approach underlying PARRY is very successful with typed input, it appears to
be too risky for spoken input. Unlike the “oerfect” typed input which PARRY receives, the
input to the syntax routine of a speech understanding system such as Hearsay Il (Lesser, et
al.,, 1974) is highly imperfect. For example, often the best that Hearsay II's phonetic labelling
routine can do is, in effect, to say "this phone is an unvoiced consonant, probably F, T, or P."
Each level of the system must be able to handle multiple alternative hypotheses about each
portion of the input, and hope that other levels will be able to rule out most of the
hypotheses on various grounds. PARRY can say, with confidence, “this portion of the input is
such-and-such (g.g., the word "oh"), so I'lt ighore it;" Hearsay Il can only say "if this portion of
the input is "oh," I can ignore it; but if it’s really the word "no," then I'll need it." Thus in order
to be used in a speech understanding system, PARRY’s techniques must be implemented in a
non-deterministic fashion. .An ACORN can be thought of as a non-deterministic version of a
PARRY-like system in which all possibilities are followed simultaneously in parallel.

Woods™ augmented transition network (ATN) (Woods, 1970) is a mechanism for parsing
natural language. It works top-down, uses backtracking, and produces a formal parse of the
input sentence. In contrast, an ACORN works bottOm—itp, does no backtracking, and dispenses
with a formal parse, exiracling only those features of the utterance which are relevant o the
particular application. Both structures are augmented with actions and consequently have the
power of a Turing machine. An ACORN can be thought of as a bottom-up version of an ATN.

16

Miller {1974) has proposed a parser for spoken English which builds multiple partial
parse trees representing alternative hypotheses about portions of the input utterance. In
order to assemble the partial parse trees inlo a complete parse tree, Miller’s parser performs
a complicated and heuristic search for legal combinations of hypotheses. An ACGRN differs
from Miller’s parser in handling all combinations simultaneously rather than sequentially, and in
the simplicity of the matching operations it uses.

Current artlificial intelligence programming syslems such as PLANNER (Hewitt, 1972), QA4
(Rulifson, 1972), and SAIL (Feldman & Rovnar, 1969) can match a given relational template
against a data base. However, the method they use is an exhaustive iterative search: one
relation of the template is instantiated, and the data base is searched for instances of that
relation which are consistent with the rest of the template. For example, SAIL, in matching the
template { COLOR @ ?X = RED) and (SHAPE @ 7X = SPHERICAL), might lock at all objecls in its
data base which have RED as the value of the altribute COLOR, and test the SHAPE attribute of
each one in turn for a value of SPHERICAL, finally finding the object BALL which satisfies both
conditions. If several templates are to be matched against the data base, they must be
matched one at a time. In contrast, the associative matching operation performed by ACORNs
effectively tests all the relations of all the templates simultaneously.

The ACORN’s nearest ancestor among general pattern-matching methods is hierarchical
synthesis {Barrow, et al, 1972). Consider the task of matching an inpul against a template.
For example, the template might be a schematic representation of a building, and the input
might be a set of line segments. Certain substructures, such as rectangles, may occur at
several places in the femplate. A recognition algorithm employing hierarchical synthesis would
replace the single, many-component template for "building" with a hierarchy of templates. The
top-level template might define a building in terms of doors, windows, and walls. These
components would in turn be defined by lower level templates, and so on. The lowest-level
templates (e.g,, "rectangle”) wouid be defined in terms of line segments. The recognition
algorithm would proceed by locating all instances of low-level templates such as "rectangle,”
grouping them info (or "synthesizing™ higher-level templates such as "door” and "window,"
and so on up to "building.” Barrow, et al., have noted that using hierarchical synthesis speeds
up recognition considerably. Hierarchical synthesis is efficient for two reasons. First, it can
exploit the repetition of sublemplates by recognizing all instances of a single subpattern just
once. Second, before considering whether or not the entire pattern specified by a temptlate is
present, it can insure that all necessary subpatierns are present.

However, hierarchical synthesis as described by Barrow, et al, depends on a hierarchy
defined a priori by the user. This limitation is transcended by the interference matching
method (Hayes-Roth, 1974a), which does hierarchical synthesis in paralle! in all possible

17

directions, thereby obviating the need for a predefined hierarchy. In interference matching, a
template is represented as a set of relations. Each relation is a predicate with one or more
symbolic variables. E.g, "line(a, b)" asserts that there exists a line segment joining the points
a and b. The input is also a set of relalions, whose arguments are constants. A partial match
consists of an assignmeni of input constants to the symbolic variables of a subset of the
relations in the template such that all of the relations in the subset hold true. Interference
matching works by finding partial malches and combining them into compiete matches.

Like interference malching, the ACORN method is an improved version of hierarchical
synthesis in that it requires no predefined hierarchy. The ACORN compiler itself delermines
an economical hierarchy, and emheds it in the form of a recognition network. Hierarchy
selection can be factored out into a separate compilation phase because the choice of
hierarchy depends only on the templates and not on the individual input ullerance. In
interference matching, on the other hand, hierarchy selection depends on the input pattern,
and is therefore a part of the recognition process. Thus the ACORN method combines lhe
convenience of automatic hierarchy selection with the efficiency which comes from using a
predefined hierarchy in the recognition process.

In real-world apptlications, input is matched against several lop-level templates. Current
methods of hierarchical synthesis (Barrow, et al, 1972} and interference matching (Hayes-
Roth, 1974a) involve matching the input against one template at a time. Such an approach is
clearly undesirable for tasks such as speech recognition, which may involve farge numbers of
templates. The ACORN compiler takes a whole set of templates and produces a single, unified
recognition network for it; common subtemplates are shared not just within top-level
templates but also between them. An instance of a subtemplate is recognized just once -- not
separately for each top-level template in which it occurs. Hence recognition time depends not
on the total number of templales, but just on the number of templates which are matched by
some portion of the input. Therefore we expect recognition time to be very much sublinear in
the size of the template =et. This property is encouraging, since the number of templates
required to recognize a significant subset of English would probably be several thousand.

In sum, an ACORN can be looked at as a bottom-up version of an ATN, a paraliel
implementation of a non-deterministic version of a PARRY-like system, a powerful pattern-
matcher for efficient associative retrieval, or an improved mechanism for hicrarchical
synthesis, with auiomatic hierarchy selection and subtemplate sharing between templates.

18

APPLICATIONS, IMPLICATIONS, AND EXTENSIONS

In order for an ACORN to be efficient, the templates and input data characteristic of the
chosen problem domain should tend to be asymmetric, so that a template will usually match a
given portion of the input in at most one way. Let us illustrate with a negative example.
Suppose the template we wish to match is Kgla, b, ¢, d, e), the complete graph on five
vertices, represented by the conjunction of relations line{a, b) and line{a, ¢} and
and line{d, e). Then any occurrence of Kg (as a subgraph, say) in the input corresponds to
B! = 120 instances of T, since there are 5! different ways to bind the variables a, b, ¢, d, e o
the five vertices of the Kg in the input. For symmetries on a larger scale, the problem grows '
combinatorially worse. Clearly, an ACORN would be inefficient in such a domain, since it would
insist on finding all instances of every template.

Fortunately, many interesting applications do not have this bothersome properly.
Speech, in particular, is highly asymmetric, partly because it is embedded in a one-dimensional
ordered temporal domain. If teil(t), to) is true, then t| <t5, so leli(t,, t;) cannot be true.
Symmetries at a higher level can occur only if there is more than one syntactically and
semantically valid way to group the inpul words into phrases, je, if the input is inherently
ambiguous. In the presence of sufficient semantic and contextual information, most natural
language utterances are fairly unambiguous, or at worst have a small number of possible
meanings (Le., two or three rather than 120). Hence speech should be amenable to recognition
by ACORN.

What are the advantages of ACORNs for speech understanding? The bottom-up
template-oriented approach is especially conducive to handling natural, idiomatic,
conversational natural language robustly. Consider the problem in spoken speech of spurious
insertions such as "oh,” "um,” "er.” We wish 1o treat them the same as silences. We da this by
adding rules like [oh(l, 15) => SILENCE(1), to%] 1o our template grammar, and inserting the
relation SILENCE in the templates between every two adjacent relations whose occurrences in
input are likely to be separated by spurious insertions. This solution is not as expensive as it
may seem. Since spurious inserlions are recognized automatically, it is not necessary to test
for each possible spurious inserlion at each point in the input, which would indeed be

expensive, and would be the only apparent solution in a top-down system such as an ATN.

This example also illustrates the reason for non-deterministic application of Colby’s
methods in a speech understanding system. Even if a spurious insertion is recognized, the
corresponding portion of the input must not be discarded, since it may have been recognized
incorrectly. 1f an ACORN recognizes an instance of “oh™ in the interval [ty, to] it puts the
instance (ty, t2; .} on the instance list of SILENCE, without discarding any information. That

19

way, if the interval actually conlains the word "no," it is still there for the lexical analyzer to
find. In conirast, when PARRY ignores information, it throws it away altogether.

Another phenomenon common 10 conversational speech is the idiomatic expression, €.g.,
"How are you?" Using ACORNs, we can simply include explicit template rules for such

expressions, e.g,,
[how+aresyou(t |, to)} => GREETING(t, tok REPLY{"Fine, how are you?")),

thereby short-circuiting the delailed syntactic parse which would be attempted by a more
formal system such as Woods’.

The two techniques just described can be combined. Certain idioms such as "by the
way" carry essentially no useful information and can be treated as spurious insertions by
ruies like

[by(ty, t) and thelt,, tq) and way(tg, t4) => SILE_NCE(ll, tghl

Some expressions occur either as meaningless idioms or as meaningful phrases, depending on
context. Consider, for example, the utterance "I see, could | see the midnight digest?," which
occurred in an actual experimental protocol. The first occurrence of "I see" is idiomatic and
can be ignored; the second is crucial to the meaning of the utterance. An ACORN, in
processing this utterance, would recognize both occurrences as instances of SILENCE, without
discarding any information. The first occurrence would be ighored, as desired, but the second
one would still be availabie to match other templates. PARRY can also ignore a spurious
occurrence of an ordinarily meaningful expression, but only by omitting elements in the input
one at a time and attempting a match each time. The ACORN is in effect performing this
operation in paratlel rather than ileratively.

Spurious deletions can also be handied by ACORNs. To handle spurious deletions, we
want to permil parlial matching of templates. We can do this within the ACORN framework
simply by adding extra templates corresponding to commonly occurring partial matches of the
original templates. The obvious weakness of this method is that it requires a priori knowledge
of which deletions are likely to occur. The success of the method would require many
iterations over a large corpus of test utterances, with new templates added as needed.
Hopefuily this process would converge, after a reasonable number of such iterations, to
acceptable performance with respect to handling spurio.us deletions. (This method of "massive
iteration” seems to have worked succeésfully for Colby.)

20

Partial templates could.be used for another purpose as well. Aithough the bottom-up
approach has several advantages, as described above, it is useful to have certain properties |
associated with top-down processing. One such property is the abitity to focus the attention
of lower-level modules on critical portions of inpul. Another is the ability to hypothesize
words from above, for lower-level modules to confirm or reject. Aithough we earlier referred
to a lexical analyzer which finds all instances of primitive relations (words) in the input
utterance, this would in practice be loo expensive. The actual Hearsay Il system seeks to
constrain hypothesization as much as possible; to do this it applies high-level information to
cut down the number of possible words considered for each portion of the input. Thus it is
desirable to have a speech understanding ACORN generate intermediate partial information
telling the lower level modules which portions of the input they should concentrate on
processing, and which waords are likely to occur at a given place in the input, on the basis of
the already recognized portions of the surrounding confext.

This top-down extension to the basic bottom-up mechanism requires knowledge about
the predictive value of partial templates. For example, we know that "What time" often occurs
in the phrase "What time is i{?" We can incorporate this information in an ACORN by including
a2 rule

[what(t], 15) and time(ty, tg) => WHAT*TIME(), tg) TEST(tg, 1,5 fis 1t],

where TEST is the action invoked upon recognition of the template. The effect of the TEST is
to look for the missing instance of "is it" starting at the time t3 in the input utterance. 1f it is
found, it is added to the instance list for "is it,” leading to the desired completion of the full
template "What time is it."

In the above example, a partial template was used to predict downwards in the network.
Partial templates can also be good upward predictors. For example, given an instance of the
partial template T = "ime is it,” the probability P(T,|T|) that it occurs as part of the
template T, = "Whal time is it" may approach certainty. If P(T5|T;) is high enough, say .99,
~we may wish to save processing time by simply assuming that T, does in fact occur. We could
obtain values for 1he various Bayesian probabilities P(TilTj) by using the network to recognize
a large set of utlerances and coliecting appropriate data automatically. The ultimate extension
of this is a learning system, which would modify its Bayesian probabilities continously and add

nodes for new pariial templates when appropriale.

Note that the utility of upward predictors derives from the redundant nature of speech.
Upward prediclion offers a robust method of dealing with unintelligible portions of an
utterance by making reasonable guesses aboul what they contain. A system which insisted on

21

making a complete parse of the input utterance would necessarily give up in failure when

confronfed with an unintelligible fragment.
EVALUATION AND CONCLUSIONS

A full evaluation of the ACORN method must of course await implementation, which is
currently in progress. In the meantime, there are several properties we expect the method to
have.

Efficiency

The expected efficiency of ACORNs derives from several sources. Since the recognition
process is organized so that contextual constraints are evaluated before adjacency constraints
in the search through the space of combinations of hypotheses (see Introduction), a maximum
of information is precomputed and stored statically in the network structure itself. Moreover,
the state-saving nature of the recognition process eliminates most of the potentially costly
recomputation which would be done by an equivalent top-down system such as an ATN.
Finally, information sharing between templates reduces both time and memory costs. We
expect recognition time to be considerably sublinear in the number of templates, which is
crucial for any system which must handle hundreds or thousands of templates. This charing of
information between templates will provide a significant improvement over alternative methods

which test templates separately.
Rebustness

Using an ACORN makes it possible to dispense with a formal parse. This informatity
should contribule both to efficiency -- g8, by permitting the immediate recognition of idioms
like "how. are you" -~ and to robusiness with respect fo ungrammaticality, spurious insertions,
and unintelligibility. Even when an ACORN cannot fuily parse an utterance, it still provides a
partial parse. E.g., if ACORN cxpects a complete sentence but is given an utterance consisting
only of a houn phrase, it will recognize the noun phrase {(assuming that the noun phrase is an
instance of some node in the network). A top-down system like an ATN could also do this -~
but only by adding noun phrase as a special case of a sentential form. When one considers
the multitude of wentence fragments which commonly occur as utterances in conversational
speech (e.g, "Where did you go?” "Out.” "What did you do?" "Nothing."), it appears that some
sort of bottom-up approach is necessary to handle them all efficiently.

Stmplicity and Decomposability

22

ACORNs are organized so as to factor recognition processing into simple, universal
operations performed at the nodes. This should make them fairly easy to implement; in
particular, a large ACORN shouldn’t be much more complicated to build and maintain than a
small one. Moreover, the fact that each operation is performed locally, involving only a node
and its constituents, means that ACORNs should be readily decomposable for implementation on
paratlel processing machines. Since little inter-process synchronization will be required, the
speed-up factor should be good,

Flexibility

To expand an ACORN lo handle new cases, one need only add appropriate new rules to
the template grammar and recompile the recognition network. Of course, since compitation will
be an expensive process, we plan to implement facilities for editing an already-compiled
network. This should make ACORNs quite flexible to work with,

Generality

Finally, we expect ACORNs to have a broad range of applications, since they seem well-
suited to recognizing any sort of relational pattern which embodies littte symmetry and much
contextual structure. Both spoken utterances and real-world scenes appear 1o bhe in this
class. At present, we are implementing an ACORN to handle syntax and semantics for
Hearsay 1. We hope that our ACORN will do this efficiently. If it does, the ACORN method
may be indicated as an effective overall organization for general recognition systems.

23

REFERENCES

Barrow, H.G, Ambler, AP, & Burslal, RM. Some techniques for recognising structures in

pictures. In S, Watanabe (Ed.), Erentiers of patlern recognition. New York: Academic
Press, 1972,

Colby, KM, Faught, B, & Parkison, RC. Pattern-matching rules for the recognition of natural
language dialogue expressions. Memo AIM-234. Stanford: Stanford Arfificial
Intelligence Laboratory, Stanford University, 1974,

Feldman, J.A, & Rovnar, F. An Algol-based associative language. Communications of the ACM,
1969, 12, 439-449,

Frost, M. The news service system. Operating Note SAILON 72-2. Stanford: Stanford Artificial
Intelligence Laboratory, Stanford University, 1974,

Hayes-Roth, F. An optimal network representation and other mechanisms for the recognition
of structured events. Proceedings of the Second International Joint Conference on
Pattern Recognilion, 1974a.

Hayes-Roth, F. The representation of structured events and efficient procedures for their
recognition. Pitisburgh: Department of Computer Science, Carnegie-Mellon
University, 1974b.

Hewitt, C. Description and theoretical analysis (using schemata) of PLANNER: a language for
proving theorems and manipulating models in a robot. Cambridge: MIT Project MAC,
1972. '

Lesser, V. R, Fennel, R. O, Erman, L. D,, & Reddy, D. R. Organization of the HEARSAY Il speech

understanding system. Proceedings I[EEE Symposium oh Speech Understanding,
1974.

Miller, P.L. A locally-organized parser for spoken input. Communications of the ACM, 1974,
11, 621-630.

Newell, A, Barnell, 1, Forgic, ., Green, C, Klatt, D, Licklider, JC.R, Munson, 1, Reddy, R, &
Woods, W. Speech understanding systems: final report of a study group. New York:

American Elsevier, 1973.

24
Newell, A, Production systems: models of control structures. In W.C. Chase (Ed.), Yisual
information processing. New York: Academic Press, 1973.

Rulifson, J.F., Derksen, J.A.,, & Waldinger, R.J. QA4: a procedural calcﬁllus for intuitive reasoning.
Menlo Park: Stanford Research Institute, 1972.

Woods, WA, Transition network diagrams for natural language analysis. Communications of the
ACM, 1970, 13, 591-606.

Puitern Recognition

Pergamon Press 1974, Vol 6 pp. 105 113, Printed m Greal Britain

SCHEMATIC CLASSIFICATION PROBLEMS
AND THEIR SOLUTIQN*

FREDERICK HavEs-RoTHT
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, U.S.A.

{Received 18 December 1973, revised 25 April 1974)

Abstract—The necessity arises in a variety of tasks to classify iterns on the basis of the presence of one
of a number of criterial seis of co-related feature values. Such sets are called class characteristics. Because
such classification problems require the identification of characteristics on the basis of limited training
information, they enail a difficult search problem. Consideration of the differences between the theoretical
models underlying characteristic and volume patiern generators suggests a schematic approach. Sche-
mata. sets of commonly co-occuring features values. are probabilistic indicators of class membership
whenever the characteristics are unknown but the characteristic model prevails. Formal and algorithmic
solutions to the classification problem when exemplars are simple {consist only of M feature or attribute
values) are described. The relevance of these procedures to problems involving general (relational) data

structures is also indicated.

Classification ~ Nominal Non-spatial
Attribute Relation Performance,
INTRODUCTION

Several researchers''—* have recenily argued for the
necessity in many problem contexts 1o identify differ-
ent sets of features, as well as distinet sets of feature
values, associated with each of several alternative pat-
tern classes. For example. in classifving a test jtem X
as an element of one of the classes C,.C.,.... Cy, the
simultaneous presence in X of all values prescribed by
a schema §; might be criterial {or the choice €, where
S; = 18,1, 5. ... 5, 152 set of required feature values.
Such a schematic approach to classification problems
is to be distinguished from more typical rolume
approaches in which each test item is located at a point
in M-dimensional space determined by its values on
each of M feature dimensions and classified as an ele-
ment of that class to whose exemplars it is most “proxi-
mate” in one of a variety of arbitrary wavs.

Clearly both sorts of techniques mav have advan-
tages. Volume approaches are characterized by a
simultaneous dependence on gach of a common set of
feature dimensions and a corresponding inability to
recognize the irrelevance of some features for some
classes. In the language of volume approaches. a
schema of m features would correspond to an m-
dimensiona! hyperplane in M-space™ The greatest

* This study was supported in part by Nationai Institutes
of Health Grant GM-01231 1o The University of Michigan.

105

Characteristic

Interference Matching Schema

advantage of the volume approach is the simplicity of
the related solution: each test point can occur in at
most one pattern volume and the associated classifica-
tion response is trivial. In the schematic approach.
however, a test item may march (contain) the schemata
of a number of alternative classes, and the classifica-
tion decision is not obvious. :

The current paper provides a detaited description of
the schematic approach to classification problems. In
the next section two knowledge models. spatial and
characteristic, are introduced which. it is suggested.
constitute the underlying theoretical bases for the

_volume and schematic approaches, respectively. Consi-

deration of the differences between the models illu-
minates the relative advantages and suitability of each
approach for a specific task. Following that, simple
(non-relational) and general (relational) schematic clas-
sificatton problems are defined. Both a complete for-
mal solution and an efficient heuristic solution to the
simple classification problem are then presented. A for-
mal solution to the more general relational classifica-
tion problem is available elsewhere!™ Finally, the
optimal properties and desirability of the schematic
solutions are considered.

KNOWLEDGE MODFLS UNDERLYING
CLASSIFICATION PROCEDL RES

A knowledge model is a theory describing the way
in which feature values of pattern exemplars are gener-

106

ated. For example. a model of computer program mal-
funciions would relate erratic program behavior to the
kinds of bugs which could cause it. A knowledge model
underlyving classification procedures must relate the
kinds of commonulitics one finds in the feature value
sets of each excmplar to the process which generates
them.

One prominent class of volume classification tech-
niques associates all itemns whose vector representations
are closely together in \-dimensional space as likely
elements of the same category or class. The obvious
knowledge model. the sparial model. which underlies
this is that exemplars of a given class tend to share all
teature values in common and deviations from the
class central or mean values on each dimension are
stochastically generated but severly constrained. Also,
the assumption of independence of the deviations on
each dimension is usually made, although in some
cases. pairwise linear correlations of these deviations
are considered. In short, this spatial model postulates
that exemplars are ballistically preduced, and all
exemplar feature deviations from the target point (the
ideal) are. 1n a sense, probabilistic errors.

The model underlying schematic classification is the
characteristic medel. It postulates that a given class, say
doy. is defined by a characteristic, a set of mandatory
features and that any other features present or absent
(e.2. color of exes or shape of tail) are irrelevant to the
class concept. Employing such a model. one would
predict that all exemplars of each class would manifest
the corresponding class characteristic and that all non-
criterial features would occur probabilistically.

A generalization of this single characteristic model
would permit a number of distinct characteristics to
define the class concept disjunctively. For example. an
exemplar X of the class ol periodicals would necess-
arily reflect at 12ast one of the following characteristics:
~X isa newspaper.” “ X isa magazine.” or "X is a scho-
larly journal,” This generalized characteristic model is
assumed to underlie the schematic classification pro-
cedures developed later in this paper.

TWO TYPES OF SCHEMATIC CLASSIFICATION
PROBLEMS

The simple schematic classification problem entails
the identification of those schemata (feature sets) which
are common to exemplars of each pattern class and the
application of those schemata 1o effect classification of
<1 items. Each class C,. Ca..... Cy is associated with
a reference set Ry = (E;ii = iR;1} of known
exemplars of C,. Each exemplar E, is an ordered set
of feature values, E;; = ok = 120 MY, where £,
is an element of F,. the finite set of all possible values

FREDERICK HAVES-ROTH

of the kth feature or attribute dimension. In addition,
some assumptions regarding the sampling procedure
used to generate these reference sets must be made. In
this paper these assumptions are: (1) each reference set
R, represents a random sample of size |R|| taken with
repiacement from a much larger population P; of
exemplars of C;; and (2} the relative cardinalities
(population sizes) ol P\ P,...., Pyare

N
Pl-P:-----P:\-(E P = 1)
i=1
and that in random samples taken from

P=

N

P;
=1
for test classification. each class type will occur with
frequency determined by the multinomial distribution
with corresponding parameters p,. p...... py. Lhe p;
may be assumed known or may be estimated from the
cardinalities of the reference sets R;.

Each pattern class C, is assumed to be defined by an
unknown number of characteristics Cippm =

I,2,...]C}. Each characteristic is a simple schema of
the form Ci,, = [Comi:k = 1. 2.... M| where cach ¢y is
either a feature value in F, or is ¢ {(nil), indicating the
irrelevance of the kth feature value to the characteristic
C,.. Each characteristic C,, is assumed to predict
membership in class C; in the sense that every item in
C; must manifest one of the associated class character-
istics C,,. and items in any other class C; should mani-
fest such characteristics only by the chance combina-
tion of the component feature values. Classification of
a test item X is thus performed by finding which
characteristics C,,, are matched by X and choosing the
class C, associated with the strongest or best predictor.
The details of such a procedure are considered after the
more general schematic problem is introduced.

The general (relational) schematic classification
problem is similar to the simple problem just discussed
in all ways but onc. In this problem, the exemplars of
each class may be sets of objects or events described

4—a

Fig. 1. A typical exemplar in a general schematic classifica-
tion task.

Schematic classification problems 107

in terms of both simple feature values and relations
among objects. actions. subpatterns, etc. An example
of the sort of exemplar which might be encountered in
a general classification problem is the following para-
meterized structural representarion (PSR) for the con-
figuration in Fig. 1:

(ip = square, ¢, = a}, \p = square, ¢, = h!,

\p = circle, 0 = ¢}, ip = square, 0, = d.,

{p = contains, 0, = a. 0, = b!, {p = contains,

0, =¢,0, =dl,
ip=above,o, = a0, =b,0, =c,0, = dl,
{p = same, 0, =a.0, = b.o, = d). (n

In this representation. the symbols. @. b. ¢ and 4 are
called parameters. because their only function is to faci-
litate consistent reference to objects occurring in

several relations. Each relation is represented as a set .

comprising a predicate (p) and the ordered predicate
objects {0, and 0.) which it relates. The predicates used
in this example carry their ordinary English interpre-
tations.

Suppose that this item were an exemplar of the class
C, defined by the following characteristic: “C, con-
tains any items which contain at least four geomeltric
figures with two vertically organized pairs of nested
figures such that the interior figures in both pairs are
the same.” This characteristic is easilv represented in
terms of the following PSR:

(ip = figure, 0, = d'|, (p = figure. 0, = b',
{p = figure, 0, = ¢'}, {p = figure, o, =4d?,

{p = contains, 0, = a’,0, = b, 'p = contains,
0, =c,0, =4d},

{p = above,0, =a'.0, = b, 0, = ¢, o, =d7,

p=same, 0, = b, 0, = d)). 2

It is clear that the item in Fig. I described by (1)
matches the characteristic (21. This follows from the
fact that each parameter (e.g. a1 in (1) corresponds 1o
the similar primed parameter (e.¢. «'} in (2) and that
each relation in (2} 1s martched by a corresponding rela-
tion in (). Here, however. maiching is a more general
phenemenon. The relaluon P = square. o0, =g’
matches {p = figure. 0, = a ! because the former im-
plies the latter if the equivalence of u and & is assumed.
The same is true of the matching relations = same.
0, =a.0,=bo =d and {p = same. o, = b, 0, =
d'} under the assumed pairwise equivalences vh.b7
and {d. d;.

Procedures for the generation of appropriate sche-
matic representations of characteristics and for match-

ing a test item to a set of possible predictive character-
istics of this general sort are complex and bevond the
scope of this paper. Both are discussed in Haves-
Roth'" and fully detailed in Haves-Roth'S! For the
current purposes. however. it will suffice to note that
both the simple and gencral classification problems are
identical in their formal structures. That is. in both
cases, schemata which are essentially frequent subre-
presentations of exemplars of each pattern class are
identificd and then used to ciassify matching test items.
In this paper. detailed solutions are provided only for
the sunple problem. However, because of the signifi-

-cant similarity between the simple and relational pro-

blems. the generality of the provided solutions is im-
medtately apparent,

A FORMAL SOLLTION TO THE SINPLE
SCHEMATIC PROBLEM

A few definitions must be given before proceeding.
A schema S is any set fi:k = 1.2, ..M such that

LEF,orf = ¢. The order of §. o{S). is the number of
non-nil f; in §. The null schema ¢ = S, f, = ¢. k =
L2....M] is of order zero and is matched bv any

schema or exemplar. The interpretation given a
schema S is that it represents a subset of features {those
not equal to ¢) which uare co-related. occur simul-
laneously. in one or mare exemplars of a paitern class.
The schema Tis a subschema of the schema S if §
matches T. and this is denoted S(*)T. S*)T whenever
each non-nil feature value in T also occurs in S. The
notation R; § denotes the set of all elements E;; 10 the
teference sctR of C;which match S. R denotes the union

U R;.

i=l
and R; denotes the set of exemplars of all classes
other than C;: R; = R — R,. As an example of this
notation. |K,'S| denotes the number of exemplars
of classes other than C, which match the schema S. To
denote that X is an exemplar of the pattern class C, {or
an element of the corresponding population P g XeC;
is written,

Given these definitions. the schematic classification
problem ts formalized as follows. Consider all possible
schemata §.S5.....5, matched by u test irem \.
Which of these is the best.indicator or strongest predic-
tor of membership in a single class C; and which cluss
1s 50 tndicated?

The solution proposed here rests on a particular in-
terpretation of “best indicator.” A schema S of X is
said to indicate or predict a class €. denoted S=C,.
to the extent that the a posteriori conditional odds that
X is an element of the corresponding population P,
Pr[X e, RYRENY| PN =CoX* 15T exceed 1. The per-

Jormunce value of S as an indicator of C.US =Chis

108

a weighted sum of the expected number of correct less
incorrect classifications (expected gain):

U(5=C) = Elainumber of correct classifica-
tions of ¢, mdicated by $)—
a Jnumber of incorrect classifica-

tions of C; indicated by Sh
=a EN{S=C), —a, EN(S=C),
3)
where a, and a,. denote the respective significances of
correct and wrong classifications, E denotes the
expectation operation. N(S=>C;} and NAS=>C)
denote the number of correct and wrong classifications
of test items as members of C; indicated by 5. In brief,
the classification rule used is to classify X as an exem-
plar of the class C; only if there exist somg fand j such
that X3S, and Ut$;=C) = U(5,=C,) for all k such

that X(*)S, and for all hand i {1. 2. N].
L{S=>C,) can be computed in a straightforward
way, The a priori probability densities. P{X e C] ~
R[0. 1] {assuming p, unknown) PLX*)SIXeC] ~
R[0. 1Jand P'[X(*)S|X ¢ C;] ~ R[O. 1] represent our
initial wncertainty about the true probabilities. respec-
tively. that any item drawn at random will be an
exemplar of C;. that any exemplar of C; will match §.
and that any non-exemplar of class C; will match §.
'R[0. 17 is the rectangular {uniform) density function
over all values in the interval from 0 to 1. The
reference sets R; and K; can be considered samplés
which provide . additional information about these
probabilities and. when combined with these prior
distributions. vield posterior density distributions for

the variables of principal interest. .

Briefly. each variable can be considered a binomial
parameter about which the uncertainty at the outsct
reflected by the distribution R[0. 1]. is maximal. The
estimation of the posterior probability P'[X e Ci}.
when p, is unknown. may be considered as an example.
The number of sampled exemplars which are clements
of C, is simply 'R,. Those which are not contained in

C, are elements of R, and their number is |R,|. The pos--

terior density distribution for P'[X € C] is then

P'[XeC] ~ Be(l + IR 1+ R\ 4
ihe Beta distribution with parameters | + |R}l and I +°
|R: (Ferguson'”'). Similarly. the other posterior

densities of interest are:

PIX(MSIX e (]
~ Be(l + RS 1+ Rl — RS (5)

PLXMSIX €C)
~ Be(l + RSl 1+ |Ri| — IR.5). (6)

FrepERICK HAYES-ROTH

From these lacts. the lollowing results are immediately
derivable:

ENAS=C) = EP[X*SIXeCIP[XeCl}

_ _L+IRIT+HIR/S
24+ R +|R| 2+ IR|

_L+IRL 4+ RS
TFR| 24IR)
EIN(S=C) = EIPTX(MSIX € C] PIX ¢C)

1+ RS 1+|Ry
2+ iR 2+ R + IR

1+ |R|1 +|R;/S!

TITR| 2T R ®)
a (1 + iRj) RIS
TFIRI
—a 1+ :an%%/%
U(S=>C) = TR —.)

This general solution is provided for cases in which
the true population proportions p, are unknown. When
the p; are known however. the terms {1+ |RDA2Z+
IRand{l + |[R{){2 + [R|) are replaced by p;and {1 —
p;). so that
US=>C)=ap l_ﬂm

2+ IRy
1+ |R,/S|
- aw(l - Pl 10
P K] (10}
The essential terms in these equations, |R,/S| and 1R/S,
are called the positive and negative sampling frequen-
cies of §in R,. respectively.

A COMPLETE ALGORITHMIC SOLUTION
TO THE SIMPLE SCHEMATIC PROBLEM

There is one outstanding problem in applying the
rule suggested in the preceding section for classifica-
tion decisions. The number of non-trivial schemata
matched by X = ix,.... Xyl is 2¥ — 1 which, for
most realistic problems. is vastly too many to consider.
One major algorithmic approach that suggests itself
{Michalski'?) is to look for a small number of low-
order schemuta which are moderately diagnostic for
the reference set of each class. In this approach, each
additional schema is especially chosen for its diagnos-
ticity with respect to those exemplars not yet explained
by (matching) the previously chosen schemata. The
fundamental problem with such an approach is that it

file:///RJSl

Schematic classification probiems

is not very robust.. The choice of most desirable sche-
mata is likely to be overly dependent upon the exem-
plars encountered. especially when the size of the refer-
ence set is small in comparison to the number of fea-
ture values and or characteristics associated with that
set. Consider what must be done if a high-order
schema occurs frequently throughout one reference set.
Any particular lower-order subschema chosen to
represent the higher-order one is hikely 1o perform
badly whenever the entire set or some other subset of
co-related features in the original schema is actually
criterial.

Rather than following the tipical sequential pro-
cedures which essentially assembie high performing
schemata by addition of one feature at-a-time. the
approach considered here operates simultaneously on
the entire sets of features composing each exemplar
and avoids choices among alternative schemata which
are potentially correct representations ol criterial
characteristics. The simple interference nurtching (SIMy
algorithm solves the classification problem by first
generating a maxinal decomposition of each reference
set R; as follows. A maximal abstracuon ol simple
exemplars E;,. E;...... E,;. denoted

H
H *Ej
=1
is the schema répresenting the set of feature values
common {0 all of them. Thus.

M
H*Efj =E*Er By = 0 h =fijk
Ji=1
i fie=fioo= ... = figx otherwise f, =¢. k = I.
2.0, M. The operation denoted by * and I* 15

called the inrerference product because of its similarity
to physical interference processes. A maximal abstrac-
tion cluster in the reference set R is a set of exemplurs
in R; with a unique non-null maximal abstraction not
maltched by any other exemplar in R. That is h =

(Ej . Eje oot Ejpisacluster in R i[E, eR {n =
L....H).
H
I1-£, = ¢
wl Vin
andfornoje{l.2 .. iR — Uyrja . ooyl isitirue
that
H
EAVT*E,.
n=1

Finally, the maximal decomposition of R,. denoted D,.
is the set

D, = 14,7 A;; is the maximal abstraction of a cluster

RijA,,mR.j=121D). (11

PR AT ¢

109

The decomposition D, is verv significant. It repre-
sents the minimal complete set of non-redundant
(highest-order) schemata which occur in R, with dis-
tinct frequencies. Consider any mh order schema 4, in
D, The number of non-trivial lower-order schemata
which it matches is 2® — 2. Such schemata may be en-
tirely redundant with 4,; with respect to the number
of exemplars in R; which match them, Let T be a sub-
schema of 4, so that T representsa submaximal absirac-
tion of the exemplars in R; A,;. Then. if any exemplar
£, matches 4. italso matches T. Furthermore. if there
is any E;. which does not match A;, but does match
T there must be some other [ower-order maximal
abstraction 4, ¢ D, and associated cluster R, ., such
that A (*ITand iR, 4,1 > IR, 4,j]. Thus. every schema
Tis eather redundant with some A, in D, in the sense
thatitis a lower-order schema with the same positive
sampling frequency or is 1sell an element of D, with a
larger associted cluster R, T.

Because the formal solution given in the previous
section requires the identification of schemata with
greatest performance measures. the maximal decom-
position D, is an extremely useful structure. The perfor-
mance of a schema A;eD; as an indicator of C,
Ui4;;=C.) is an increasing function of |[R, 4, und a
decreasing function of IR, 41,/. Any schema T which is
redundant (in the above sense) with A4,; is such that {R,’
T| =R, A, inall probability [R, 4,;| < K, Ti. butin
nocase can it be that 'R, Tt < IR, | since X(*).1;; im-
plies X(*)T. Thus, an algorithmic solution nced only
bother to identify (in the first phasel schemuta in D,
Not only are these the highest performing schemata.
but all schemata of non-zero frequency in R, not pres-
ent in D; are subschemata of at least one other schema
in D,

A complete algorithmic solution to the first part of
the sumple schematic classification problem. identifs-
ing the schematu with hughest performance values. is as
follows. For each i = | to N by 1, initialize the list D,
to be empty. and for each j = [10 IR, by 1. repeat the
following two-step interference procedure,

Step 1. Foreach k = 1 to iD by 1 (if D, list is not
emply). compute a new schema S, a maximat abstrac-
tion. by the interference product

I =

ELeR 11,°F)

§= (12)

and if § ¢ D, concatenate S to the D, list.

Step 2. Concatenate £, to the D, list. unaitered.

At the conclusion of this procedure. cuch schema
Auin Dy is maximaliy performing and non-redundant.
However, there may be some redundunt lower-order
schemata which will in fact be criterial for some

file:///Aij-.Aij

110

classification 1asks on novel test items. Supposz §, isa
redundant subschema of a higher-order schema § and
anitem .\ is 10 be classified. It is possible that all of the
following would be true: not [X{*)5]. X(*1S,. and

UGS,=Cl= max max Li4=C)

XIS =N

In such a case. §, is a critical charactenistic schema.
Although suchsituations are very improbable when the
reference sets are very large and conform to the
assumptions made earlier. for a complete solution each
of the schemata in D; should be nerativeh reduced
tinformationaliy by setting some non-nil feature values
to o to produce redundant lower-order schemata which
are concatenated to the £, list if not already contained
in 11. The entire expanded fist. denoted D*. should
then be sorted accerding 1o the performance value of
each contained schema. Although this procedure
ultimaiely entails a considerauon of mamy redundant
schemata. this 15 unavoidable when a complete
solution is required.

The ordered list D* for cach reference sct answers
the first part of the classification problem. The second
part. which class is most strongly indicated. is easily
answerad in terms of these sorted lists. The c¢lassifica-
tion response to a test item X is . whenever. for some
A€ suchthat Y(*)4, Ui, = C) 2 Lid,, = C)
for all /. j. k and n such that 4,, = D? is matched by X.
Of course. all lists can be scanned simultaneously if
they are merged and sorted in roro by performance
values: then the first 4,; in the combined list matched
by .Y would entail the classification decision C.

AN EFFICTENT SPACE LIMITED ALGORITHM FOR THE
SIMPLE PROBLEM

There is one principal weakness of the complete
solution just discussed. The number of schemata in
each DF listis likely to be astronomical due 10 the ran-
dom pairings of non-criterial features in each exem-
plar. Nevertheless. with minor modifications. the
general SIM algorithm provides an efficient and desir-
able procedure.

The principal wais to limit the extensive processing
ivolved are: ¢1) limit the number of schemata con-
tained in each D : (21 Yimit the tote] number of sche-
matia over all clusses 10 those # with highest perfor-
mance values: or 13y reject all schemat indicatig C,
whose performance values ure below some value . In
general these criteria result in o mitation on memors
spices (on the number of schemuta i each list D, or
overalll and. as< a result. on the time of processing.
Hence. the resuiting moditicd ulgonithms are called
space limited interference marching 1SLIM procedures.

FrReDERICK HAVES-ROTH

To produce a SLIM algorithmw the only mandatory
modification 0 the previous procedure which is needed
is 10 limit the number of schemata held in working
memory according to the selected criterion. and this is
straight-forward. At each stage in processing. memary
will be occupied with those schemata so far producible
on the basis of exemplars sampled with maximum
expected performance values.

Other techniques for producing major improve-
ments in processing speed and effectiveness in SLIM
procedures include: (1) limited positve and or nega-
tive sumpling: (1) elimination of negative sampling: (3)
intersection matching: {4) inverse organization of the
D, lists: and (31 effecuive list pruning through competi-
ton for space based on conditional performance
values. Each of these is discussed in turn.

Limited positive sampling restricts the extent to
which a newty produced schema S is evaluated for fre-
quency of occurrence. R, 5. A schema § is produced
by the interference operation applied to a newly intro-
duced exemplar E; and a previously computed
abstraction 4,,. Rather than computing |R,. i by check-
ing each E, for a match with S. a limited sample
R, C R, can be so evaluated. This significantly reduces
the number of computations without biasing the
results or jeopardizing robustness of the procedure.
Limited regative sampling similarly restricts the com-
putation of K, §i also required for the computation of
LiS=>C)).

Negative sampling can be completely eliminated in
a reasonable wayv by assuming that the feature values
occurring in a schema § which indicates €, are inde-
pendently distribuied in R,. the non-exemplars of C,.
The validity of this assumption is both questionnable
and testable in any particular case. Nevertheless, if this
assumption is made. the frequency with which § would
be expected to occur in K, is simply computable as the
Joint probubility {productyof each of the marginal pro-
babilities associated with each non-nil f, in §. ie.

estimated IR, 8! = [T (R. /.11R0) % 1R (13)
fies
Lo

The simplicits of this computation can afford signifi-
cunt reductions in processing lime compared to both
unlimited and linnted negative sampling.

Intersection matching is an extremely efficient pro-
cess lor computing the sampling [requency of a schema
Sinu set R Euch feature value £, 18 associzted with
bit steing Biyf,) = th b by isuch that by = 1f the
Kth feature salue ¢ of exemplar £, equals £, other-
wise b; = 0. Then timited or uilimited sampling can be
effected by anding the corresponding bits of alb strings
Bif,iof non-nil £, in S If unlunited sampling is desired,

file:///alues
file:///alue

Schematic classification problems 111

the entire bit strings are anded. Limited sampling is
performed by reducing the length of each B(f,} to in-
clude only those exemplars in a reduced subset R’ of
R;. Ineither case. the resultant jth bitis | only if E {*)S.
The cardinality of R,/S or R;- S is then the number of
1 bits in the resultant bit string. Similarly. negative
sampling can be eflected by anding 1ogether the appro-
priate inverted bit strings from the sc1 R,

A major processing savings may be achieved
through an inverse organization of the D, lists, as fol-
lows. Each feature value f, is associated with a bit
string d{f} such that the jth bit is one only if the jth

" schemata in the D; list contains the value f,. Because
the SLIM procedure requires the evaluation and sior-
age of schemata only when they are not already in the
D, list, these d{ f,) bit strings can be used to expedite the
related searches. The and producr d{S) = d{f,)™
d{f) ~...~d{f) for all non-nil f, €S would then
identify all schemata in D, maiching a newly produced
schema S5. If. in addition. a bit string ofr). which
is one in bit j only if the jth schema in the D, list is of
order t, is anded to d{S) the resultant string is not
identically zeroes only if § is in D, already. Such a
search technique s desirable whenever the capacity of
the D, lists is very large in comparison to the order of
the schema S.

Finally, the overall expected utilitv or roral perfor-
mance of the D; list of schemata can be maximized (in
expectation) and. conversely, redundant schemata can
be eliminated through competition if schemata are
dynamically ordered by conditional performance
values. Two sorts of redundancy are necessarily con-
trolled. First, any schema § which maiches a lower-
order, higher performing schema § is assigned a null
conditional positive sampling set ifrequency zero). This
assignment reflects the fact that whenever S’ indicates
class C;, § indicates C, more sirongly, because S(*)§
and X(*)§" imply X(*)S. Thus the stmultaneous pres-
ence of both Sand § ina D, list is unnecessary, and
§ is truly redundant with §. A more complicated sort
of redundancy arises when a schema S in D, matches
a lower performing schema §. This mav occur
whenever S is a characteristic of C, und the number of
characteristics of C; exceeds one. Such a lower-order
schema §' may be produced whenever an exemplar E.;
introduced by the interference procedure contains a
distinct characteristic Tand E,*S = &". To eliminate
the possibility that schemata refecting such accidental
interference patterns proliferate tus they might if ofS)
is large). the redundant lower-order schema § is
assigned the conditional positive sumpling set defined
by .

R/S = (R, - URiSys

keK

(14)

where K = L U(§,>C) > L«'{S':bCi)and Su(*y5.
This conditional sampling sct estimates the frequency
with which the schema § occurs in exemplars of C
which do not also match §. Whenever a low-order
schema § is actually characteristic and not simply
redundant with a higher performing schema. this will
necessarily be reflected by a substantial number of ele-
menisin RS as defined by (14). Conversely, the empti-
ness of R,/ indicates that § is comptetely redundant
with higher performing schemata.

If conditional performance values of schemata are
compuled as in equations (9) and (10) using. when
appropriate. the conditional positive sampling fre-
quences defined above. the performance valties so
obtained estimate the net weighted gain of correct less
incorrect classifications attributable to the correspond-
ing schemata in the presence of the higher performing
current alternatives. That is, higher performing. lower-
order schemata preclude the application in classtfica-
tion of a matching lower performing schema. and
higher performing. higher-order schemata make less
probable the necessity of a matched lower-order
schema as an indicator of class C.. Competition for
storage space on the D, list based on conditional per-
formance values then acts to preserve the overall maxi-
mally performing sct of schemata at each moment in
tirne. ’

It is argued here that such a measure is the best to
use for space allocation decisions. One principal zlter-
native to this technique would be to define the condi-
tional positive sampling set as follows:

RS = (R, ~|JR/S)iS
jed

where J = [j:U(S; =) > U(S =(,)}. Comparing
this 1o (14), it can be seen that this alternative considers
the predictive value of a schema only in marginal
terms. that is. in terms of what predictive power it adds
to the existing set of higher performing schemata re-
gardless of whether they match it or not. A simple
example will betray the undesirability of such a 1ech-
nique. Suppese €, comprises four characteristics:
Cio=F =f. F.=f. Co=1Fa=hfH Fy=f,
Co=iFy=fi. Fu=f. Cu=[F =fi. Fy =1l
where an element F; = f; significs that the jth feature
value must equal f;. Although overlupping. these fea-
ture set characteristics are distinet. Evaluating perfos-
mance in terms of the sampling set defined by {135
would be disastrous in this case. At most two of the
characteristics would be considered to have non-nuli
positive sumpling sets. and either the pair |C,,. C,;! or
the pair {C,, C,) would be thus evaluated. Which
pair would be assigned positive sampling frequencies
greater than zero and which frequencies of zero would

(15

12 FREpFRICK Haves-RoTH

be determined only by chance. The usefulness of the
derived schemata for classification would then be ex-
tremely tenuous. Only if all test items presented mani-
festone of the lucky two positively performing charac-
teristics would classification be successful. contrany 1o
the assumption that any ol the four characteristics
ought to be criterial {or classification. Such errors do

not arise if the conditional frequency is computed

according to equation (141

In addition to maximizing the expected total perfor-
mance of the schemata in the D, list. making perfor-
mance valuzs conditional upon higher performing
schemata may be viewed as pruning unneeded sche-
mata from further consideration when more valuable
alternatives are present. This viewpoint is illustrated in
the following example.

An example

Suppose C, is assoctated with two characteristics.
C,, = icolor = red. temperature = medium. pres-
sure = lowest, and €, = |color = pink. pressure =
low, size = largest] in a study imvelving exemplars
comprising 100 values on attributes including size,
color. temperature. and pressure. Suppose also that
each attribute takes on 3 different values, so that the
number of possible distinct schemata indicating mem-
bership in class €, is (5 4+ 1"~ 1. Under the
assumptions that C,, occurs with probability 2 3in R,
that C,, occurs with probability 1 3 in R,. that each
value is equiprobable on each non-criterial attribute
dimension. and that C,, and C, occur in R, only by
chance combinations of the corresponding indepen-
dent random variables. it 15 possible to indicate the
extreme ciliciency of SLIM procedures.

The probability of # chance {non-criterial) feature
value matches among A exemplars randomly chosen
cither only from R, C, or only from R,C,, is
approximately:

7
_opnky= (9")(1 SPET D — (5% 1Y (16

For example. the probability that any (at least 1)
chance maiches occur among 7 exemplars is approxi-
mately:

1 —pl0=1—[1 - (1/5"7% .
= 97(1 5" = 0006. (1T}

After sampling about 30 exemplars from R,. there-
fore. it would be extremely unlikely that either C,, or
(", . would not have been produced. Even if space for
schemata was limited to S. sav. it would be very improb-
able that all spaces would have been occupied by sche-
mata matching only €, . Each time a new exemplar
from R, C,, is interfered with an cexisting schema

A,;€ D; which matches C,,. either the new schema $
(equation 12}is a lower-order schema matching C,, or
5 = A, In the former case. the positive sampling fre-
quency of A;; is reduced to zero to account for the
redundancy between § and A;: this makes A; the
weakest competitor for space on the D, list. In the lat-
ter case. no changes are made to the D, list. In short,
until C,, is produced by interference matching at most
ene high performing schema in D, is likely to match
€. The second highest performing schema is, simi-
larly. likely to be one matching C,,. Because some ex-
tremely improbable sampling circumstances might
make other schemata more prevalent than ones match-
ing either €y, or ;.. a few additional (here, 3)
memory spaces might be required to produce a proper
solution to the classification problem.

In the future. simulations will be run to compute the
actual performance of SLIM procedures under a var-
iety of constraints. For the present, however, it should
be clear that only a small amount of redundancy in the
storage used to hold alternative schemata is necessary
to offset large differences in the positive sampling fre-
quencies of alternative characteristics.

CONCLUSIONS

A complete solution to the simple schematic classifi-
cation problem was developed using the simple inter-
lerence matching technique. It produces a set of sche-
matic characteristics of the reference set R; of a pattern
class C; by interfering the representations of all subsets
of exemplars to identify ciusters in R; and their corre-
sponding maximai abstractions. Each of these abstrac-
tions is a potenual indicator of membership in C; by
the assumptions underlving the characteristic model.

A number of heuristics can be employed to design
practical SLIM procedures whose results approximate
the most useful results of the complete procedure. In
such space limited procedures. the ranking of schemata
by conditional performance values acts to maintain in
memory schemata of the highest possible order relative
to the large set of potentially redundant lower-order
subschemata with similar positive sampling frequen-
cies. This. in turn. acts to increase the probability that
subsequent interference of a newly sampled exemplar
and a previously produced schema will result in the
production and identification of a subschema which is
in fact better performing. until the true characteristic
schemata are so produced. Conversely, when higher-
order schemuta maich lower-order. higher performing
schemata. the evidence is strong that the former are
redundant with the latter in the sense that both match
the same characteristic. and only the latter ¢can poss-
ibly be applied to elfect classification. By appropriate

Schematic classification problems 113

reduction of the performunce values of such redundant
schemata. SLIM procedures insure that uscless sche-
mata are pruned from evercrowded storuge.

Although these properties suggest that SLIM pro-
cedures may be optimal with respeet to the overal) per-
formance of the schemata produced given the particu-
lar storage constraint. the proof of such a claim would
both require an excessive number of very strong
assumptions (¢.g. assumptions ubout the joint distribu-
tions and numbers of compatible and incompatible
distinct characteristics in cach exemplar and over each
class) and be very complicated suatisticallv. In the
absence of such a proof. the importance of SLIM pro-
cedures is argued on the basis of 1their three obvious
properties: they are associated with an important and
reasonable underlying model and. therefore. are widely
applicable: because they utilize as much information as
possible at each stage of processing and avoid un-
necessary and arbitrary choices, they are apparently
quite robust:and they are easily computed. primarily in
terms of extremely efficient bit string logical products.
It seems likely. therefore. that SLIM techmques will

prove valuable wherever the characteristic model is an
appropriate description of the process by which
exermplars are generated.

REFERENCES

. F. Hayes-Roth. A structural approach to pattern learn-
ing and the acquisition of classiticatary power. Proe.
{ne Jv Confl Pattern Recognition (197 21,

2 R.S.Michalski AQVAL I-Computerimplementaton of
avariable-valued logic system VL, and examples of 1ts
application 1o pattern recognition. Prac. Int. Jt. Conf,
Putiern Recoynition (1973),

3. B.Sklarand O. E. Drummond. On the use of custom foa-
tures for pattern recognition. Paper presented at fur, Ji.
Cont. Patiern Recoguition (1973).

4. S Watanabe. Subspace method m pattern recognigion.

Proc. int. Jr. Conf. Parrern Recognirion 11973,

- F. Hayes-Roth. Mechamsms of abstraction in a SYstem
Jor the structural reprosentation af knowledge, with appli-
cations to knowledge acquisition and rroblem solring.
Michigan Mathematical Psyehalogy Program. Ann
Arbor 1 1973).

6. T.S. Ferguson. Marhematical siatistics. Academic Press,

New York (1967).

A

UNIFORM REPRESENTATIONS OF STRUCTURED PATTERNS
AND AN ALGORITHM FOR GRAMMATICAL INFERENCE 1,2

Frederick Hayes-Roth
Department of Compuier Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

Many events {patterns) may be described by structural (conjunctive relational)
representations, and general computational behavior may be represented in terms of a set of
grammatical rules (productions, transformations} relating two such event representations as
contingency and response components. Uniform representations and graphs of structural
descriptions and rules are introduced. An abstraction of a set of uniform representations

[

corresponds tc a common subgraph of the corresponding uniform graphs. Every rule F
LOYX | yoeepXpy} GOt Xy) =2 R{x,.0%,)] which can be induced from a training set 1 = {(C;, R)) : i
1, .., N} of continzency-respanse (input-output) pairs is identified with @ common subgraph of
the uniform graphs of the causal inferences C; => R.. A general learning problem is formulated

for which three cases are distinguishabte on the basis of if and how substitutions from input
to output patterns are to be made. Category (unary) and n-ary predicate learning in this
framework are discussed. Examples of rule learning applications are drawn from the domains
of transformational grammar and speech understanding. The properties (both desirable and
undesirable) of the proposed approach and the differences between it and previous
approaches are also considered.

1. INTRODUCTION

The current paper is motivated by the observation that ruies of behavior {e.g., rules of
transformational grammar, pattern classification, and general computation) may be directly
abstracted from examples of their use if appropriste restrictions are placed on the
representation of the rules amnd frairing examples. Specifically, if rules are restricted to the
form F = [(¥x;,.xn) Clipeexy) => Rbpeaxy)] where both Clxj,..x,) and Rix|,.x,) are
conjunctive products of variable forms of the predicate calculus, a graph representation exists

for which it is true that the rule F is a common subgraph of the graphs representing the
training examples. Many previously intractable learning problems can be solved in this way,
and examples in this paper include the induction of the equi-noun phrase deletion rule of
transformational grammar and a variety of rules for use in a real-time speech understanding
system. However, numerous details of the proposed representation and abstraction
procedures must be considered in solving this general learning problem. Nonetheless, the
essential ideas in this paper are easily stated: (1} a uniform graph representaticn exists for
any conjunctive clause of the predicate calculus which insures that one graph is a subgraph of
ancther one if and only if the associated clauses describe two patterns where the first is a
subpattern of the second; {2) training examples for the induction of an unknown rule can be
provided such that the graph representation of each example contains the unknown rule as a
subgraph; and (3} a previously published aigorithm for extracting abstractions
(subrepresentations} common to a set of graphs is thus effective for the induction of rules.
Before proceeding to consider general rule learning, the foundation is laid by reviewing
related research concerning the hypothesization of classification rules for non-metric data.

In recent pattern recognition research (Barrrow, et al, 1972; Shaw, 1972; Eden & Halle,
1962; Evans, 1968, 1969; Hayes-Roth, 1973, 1974a, 1974b; Michaiski, 1973; Watanabe, 1973;
Winston, 1970), an emphasis has been placed on the structural {relational) representation of
pattern prototypes and procedures for the recognition of stimuli which exhibit prototypic
structure. The assumption that cach pattern class is identified by one or more prototypic
structural descriptions has been called the characteristic model {Hayes-Roth, 1974a) to
distinguish it from the more traditional gpatial or multidimensional pattern recognition model.
In addition, algorithms have been described which efficiently search the space of plausible
pattern characteristics (prototypes), i.e., the set of ali structural representations manifested by
the training exemplars of a pattern class {Hayes-Roth, 1974a; Stoffel, 1974). If there are N
mutually exclusive patlern classes (or responses} Ry, .., Ry and the training exemplars of R,
these algorithms are developed from the following two observations.

- IF. r
are Ii = lEl,l’ y E?,ﬂ,-"

(1) Each proposition P which is true of some exemplars in I
classification of any novel item Y for which P(Y) is true as a member of R. Of course, the
plausibility of (confidence in, support for) the ruie [(¥Y) P(Y} => ¥ ¢ R;] should be a strictly
increasing function of the pasitive frequency of P in I, which is defined as [I;/P| = HEi,j : Ei,j ¢
I & F’(Ei,j)}}, and a strictly decreasing function of the negative frequency of P in I, {I;’/Pl =
I{Ek"j : Ek,j Cl & kAT & P(Ek,;)}l. In words, the greater the frequency with which the
proposition P ig true of positive instances “i) of R; and the less the frequency with which P is
true of non-instances (ii’) of R, the higher the probability that P is a characteristic of (criterial
for) class R, (2) If all of the propositions which are true of each exemplar are given as the
description of the exemplar, thoze schemata (conjunctive sets of propositions) which occur

is a potential basis for

most frequently among the descriptions of exemplars of a single class are likely to be

plausible hypothetical class characteristics.

An understanding of the details of such pattern learning programs requires onty a small
amount of additional terminology. Define an absiraction of several exemplar propositional
descriptions as any proposition which is directly implied {(contained) by each of them.
Abstractions are identified by computing conjunctive sets of propositions which are
consistently present in (subsets of) the conjunctive sets of propositions describing several
exemplars of the same pattern class. The plausibility of each such abstracted schema as a
pattern characteristic is then evaluated by compuling an appropriate measure which is an
increasing function of its positive and negative frequencies in I and 17, respectively (Hayes-
Roth, 1973, 1974a; Stoffel, 1974}, Of course, if the abstraction procedures produce a schema
which is manifested (matched) by every exemplar in li and none in Ii” and if the undertying
pattern is equivalent to a conjunctive concept (Bruner, et al, 1956), the abstraction is a
plausible candidate for the class characteristic {see, for examples, the concepts learned in
Winston, 1970 and Hayes-Roth, 1973).

The purposes of the present paper are three: first, to introduce & uniform
representation for structural descriptions of events {e.g., visual or acoustic pattern:, semantic
or syntactic structures, efc.) which is designed to insure that all schemata which are
manifested by each of a set of exemplars can be identified by any procedure which, in effact,
can identify a common subgraph of several undirected, labelled graph reprecentations
associated with each of the exemplars; second, to generalize the previously published learning
techniques to problems involving the induction of universaily quantified rutes of the predicate
cafculus like those of web grammar (Pfaitz & Rosenfeld, 1969) or transformational grammar
(Friedman, 1971} and third, to illustrate this learning technique by applications to several
current problems arising in the speech understanding research at Carnegie-Mellon University.

The remainder of the paper is organized as follows. Section 2 presents the essential
details of the structural representation of patterns, first in terms of typi'cai predicate calcuius
(list-based}) forms and subsequently in terms of equivalent (set-based}) relational
representations. Difficulties arise in all such systems both from the necessity to abstract m-
ary relations which are implicit in (contained by) n-ary relations (n > m) and from the desire to
allow many-to-onc object correspondence mappings from stimulus to template patiern
representations; these problems are discussed and motivate the uniform representations which
are then proposed. This scheme ic then extended to cover the representation of grammatical
rules (substitution productions). In Section 3, a formal statement of the learning problems
addressed by the present paper is provided. A solution to any particular problem will require
one of three distinct sorts of inference mechanisims depending on the nature of the unknown
rule and the amount of information provided. Sections 4, 5, and 6 provide detailed solutions to
problems of each of the three lypes. Section 7 briefly discusses methods for discovery of a
particularly uscfut sort of unary predicale corresponding to a category, a set of mutually

exclusive elements which oceur as alternatives in particular structural contexts within learned
rules. Also, the correspondence between learned patterns and novel n-ary predicates is
discussed. Section & illustrates some of the problems in our speech understanding research
which are being approached with the proposed learning procedures. The last section
discusses the relation of these learning probiems, procedures, and results to related research,
obstacles to the widescale implementation of such learning procedures, and directions for
future research.

2. STRUCTURAL REPRESENTATIONS
Figure 1 illusirates two paiterns representing {(A) a triangle and (B) two lines. These

patterns could be represented by typical conjunctive predicate calculus picture descriptions in
terms of a binary symmetric predicate line as in A| and By, below.

' bl b2
A £~y a2 B e _!
\ -~/ /"\IM

/‘/"

A/

b3

\ a3
a’l(Y] b

Figure 1. A triangle (A) and two lines (B) described in
terms of relations on nodes in the line drawings.
Ay =line(al,a2) & line(al,ad) & tine(a2,a3) &
line{a2,al) & line{a3,al) & line(a3,a2) D

By = line(b1,b2) & line(b2,b1} & line(b3,b4) & line(b4,b3) (2)

These representations, aithough extremely simple, suffice to illustrate most of the essential
strengths and weaknesses of structural representations. Each term such as line(al,a2) is an
instantiated form (or instance) of the variable form fine(x,y); the object names such as al, a2,
and a3 which name nodes (termini) in the line drawings are called parameters because,
although they are equivalent to constants in the predicate calculus, only the alphabetic
equality or inequalily of two parameters is relevant to pattern description and recognition
(Héyes—Roth, 1974d). If each parameter of Ay or By is considered to be a universally
quantified variable, the associated quantified conjuctive variable form is a structural template
which may be used for patlern recognition. Specifically, the structural representation S of
some stimulus matches the structural representation T of some template if there is some
correspondence between the parameters of S and T which insure that every form in the
template T is also present in S, Symbolically, S matches T if there is a one-one {1-1) mapping

f {a parameter hindinz function) from the set of parameters of T, P5({T), ta that of G, PS(S},
(i.e, f(1-1}: PS(T) = PS(5) such thal every form in T also occurs in S if the atphabetic
differences between bound parameters are ignored {i.e, if it is assumed that (Yt ¢ PS{T) t =
f(t)) (Barrow, et al, 1972; Hayes-Roth, 1973, 1974b). When S matches T under f, this is
denoted S(*)fT or simply S{#)T. Furthermore, any representation T which is matched by S is
called an absiraction (subpattern, subrepresentation) of S. If both S{(#)T and T{%}S, S = T.

Notice, however, that Bl’ the representation of two lines, is not an abstraction of Ay,
the representation of a triangle. This is because the only way the two lines of B can be
placed in respective correspondences with two lines of A is if two distinet nodes in B are
forced into correspondence wilh a single node in A, Only if some many-to-one binding
function such as f* = {{bl,al), (b2,82), (b3,a3), {b4,a3)} were permissible, would il he true that
A(%)pBy. Furthermore, the reader sheuld note that it is not obvious on a priori grounds
whether Ay should match By under these circumstances. For example, if unrestricted many-
to-one bindings are to be allowed, it would follow that a stimulus containing one line would
match any template containing any number and any pattern of lines. A proposed solution to
this multiple parameter correspondence problem will be momentarily deferred while an
alternative representation scheme is introduced which facilitates the exposition of a second
problem, that of implicit predicates.

A parameterized structural representation (PSR) Q is a two-tuple of the sart (PS((),
body(Q)) where PS(Q) is the set of parameters used to refer to objects in Q and hody(Q) is a
set of M relations ry, .., ryy which correspond to the M predicate forms in an equivalent
predicate calculus structural representalion, For example, the PSRs Ay and Bo, are
tepresentationally equivalent to the representations A and B, respectively:

Ay = (1al,a2,a3},
{{pidine, node:al, node:a?2},
ipiline, nocle:a2, node:al},
ipiline, node:al, node:a3}}) {3)

B, = ({b1,b2,h3,b4},
{ip:line, node:b 1, node:b?2},
{p:tine, node:b3, node:ha}}). {4)

Each instance of an n-th order predicate in a predicate calculus conjunctive form is
represented by one predicate item of the form pipredicate and n object items of the form
object type;obiect valug; (i = 1, ., n). Here, because line is a binary symmetric predicate,
each of its two objects is of the same type, namely of type pode. More details on PSRs and
their comparative advantazee can be found in Hayes-Roth (1974c, Ap. IV). Becausc they are

equivalent to the conjunctive variable forms of predicate calculus, they are only introduced
here to facilitate the exposition. Note that in the framework of PSRs, S(x}T <=> f(body(T)) ©
body(S), where f(body(T)) is defined to be the body of T with every occurrence of each
parameter t ¢ PS(T) replaced by f(t), its correspondent under f in PS(S).

The foregoing definition of an abstraction as a subrepresentation which is contained by
some "larger” representation fails, however, fo capture the intuitive idea that each n-ary
relation such as ry{ = {piine, node:al, node:a2} actually represents (is equivalent to) a set of
predicate relations which are implicit in (implied by} it. For example, any PSR containing r
surely contains at least two distinct nodes and thus should match any template which asserts
propositions about the existence of one or two nodes whether or not it aiso asserts the
existence of a line joining both of them. One principal weakness of alt previously proposed
structural representations is just this failure to represent the fact that the n-ary relation v =
{p:g, objjxy, .., Obj,ix,} should match any m-ary relation r’ = {pq, Objil’xil’ o objim:xim}
where {i}, ., iy} € {1, ., n}. Simply stated, it is desirable that r(x) if r and r’ are relations
and r’ is contained in r. For example, one would desire that both Ax(*)C and By(+)C, if C
represented "the dot and the line™

C = ({cl,e2,£3},
{{p:line, node:cl, node:c2},
{piline, node:c31}). (5}

Both the multiple parameter correspondence and the implicit relation problems have
natural sotutions if each PSR Q is converted before matching to an equivalent uniform
representation LLQ) = (PS{U(Q)), body(L(Q))), as follows:

Step 1: Each object reference (every occurrence of a parameter) in body(Q) is replaced
by a new, unique parameter symbol. The set of these symbols is the parameter set of KQ),
PS{U(Q.

Step 2: Each object item type:x in a relation with predicate item piq is used to generate
a unary uniferm relation {(gtype)x’} in the body of W(Q), where X’ is the unique parameter in
PS(U(Q)) generated from this occurrence of x in body(Q). The two-tuple (qg,itype) is called a
property of x> and the predicate of the unary relation.

Step 3: If two distinct parameters, x* and x™ in PS(UQ)) were both generated from a
single parameier % in PS(Q) and the intention of the PSR is to require that bath x™ and x” must
be assucrned a single correspondent in any matching pattern, the binary uniform same

parameter {SP) relation {SP, x’, x} is added to body{LXQ)).

Step 4: Similarly, if two distinct parameters y* and 2’ in PS{(Q)) were generated from
two different parameters, y and z, in PS(Q) and it is the intention that any matching pattern
must assign a distinct parameter correspondent to each of these, the binary uniform different
parameter (DP) retation {DP, y°, 2’} is added to body((Q)).

Step 5: For each pair of parameters y* and 2 in PS(U(Q)) which were generated from
two object items occurring in the same relation in body(Q), the binary uniform same set (SS)
retation {SS, y’, 2°} is added to body(L{(Q)).

If these five steps are applied to the PSRs Ao (3) and By (4), the following uniform
representations are obtained:
Ag = UAy) = ({al’al”,a2",a2”,a3,a3"},
{{line,node),al’}, {lline,node),al™},
{{line,node),a2’}, {(line,node),a2”},
{(line,node},al3’}, {(line,node),a3”},
15S,a1%a2%}, {$5,a27,a3}, {55,a3",a1"},
{SP,al"al™}, {SP,a2’,a2"}, {SP,a3",a3"}} u
HOPX X0l 1 (Vi=1,2) x; ({al’al™,a2",a2”,a3",a3"}
& {SPx|xp} ¢ bady(Aq)}) (6)

Bz = WUBy) = ({b1"b2°,b3"ba},
{illine,node),b 1"}, {(line,node),b2’),
{tfine,node),b3’}, {tline,node),bd’},
{SS,b1°,b2°}, {5S,b3"ha),
{DP,b1°,h27}, {DP,b1"h3'}, {DP,b1" b4,
{DP,b253%}, {DP,b2°,b4°},{DP,b3"b4"1}). (7)

(B2), of course, represents unambiguously two disjoint lines comprising four distinct
nodes. If the actual intention for B in Figure | had been to represent two distinct but not
necessartly disjoint lines, the appropriate uniform representation would be:

By = ({bl",b2",b3" b},
{{ltine,node)b 17}, {(line,node),b2’},
{{line,nadc),b3’}, {{tine,node)b4a'},
{SS,b 1,027, {SS,b3" b4},
{DP.b1%b2}, {DP,b1°,h3}, {DP,b1"b4%),
{DP,b2",b3"}, {DP,b3,bA’1}). (&)

While it is still true that (Af) Aglx)iBg, nevertheless under the binding rule
f={blal"), (b2°,a2"), (b3",a3"), (ba,a27)} {(9)

http://dlfiexe.nl

it can be seen that As(+)By’, because f(body(By')) < body(Az) ie, B3 = “two lines which
may share al most one node in common” is a subpattern of Ag = "a triangle.”

Given any uniform PSR Q = (PS(Q7), body(Q)) of a PSR Q, the carresponding uniform
graph G(Q) = (XQ,AQ,PQ) is produced in a straightforward way. The node set XQ = PS(Q"). The
arc (edge) set Aqg = {{hy 2’} ¢ {hy’z’} € body(Q) & h ¢ [SS,SPDP} & y* ¢ Xg & 27 ¢ Xgh
Finally, the property set PQ = {PQ(y’) RVARN¢ XQ & {(a,type) ¢ PQ(y’) if and only if {(gtypel)y’} ¢
body(Q’)}. The interpretation of a uniform graph is as follows. Each original reference to an
object y in a PSR relation, such as {p:q, typety, ...}, results in a distinct node y’ in the graph,
and vy’ has a set of properties PQ(y’) attached to it such that the property {q,type) ¢ PQ(y‘).
Furthermore, each binary uniform relation of type h ¢ {S5,5P,DP} between parameters y’ and
2> is reflected by an undirected arc connecting nodes y* and 2° which is labelled h. If two
PSRs S and T are such that U(S) (+); W(T), it follows (Hayes-Roth, 1974c) that &T) = (X1,AT,PT)
is a subgraph of G(S} = (Xg,Ag,Pg), meaning that: (VE CXT) (VP € Xp) f(t) ¢ Xg & Pr(t} « Pglt(1)
& [{htt'} ¢ Ap] => [{h, HILH)] € Ag) As an iliustration, the two uniform graphs for Ag and
By™ are shown superimposed in Fig. 2 according to the node bindings specified by f (39). Thus
a uniform graph G(T) is a subgraph of another, G(S}, if there is some 1-1 node binding function
f for which it is true that all node properties and labelled edges in G(T) are also in G{S). This
is denoted G(T) c*¢ G(S) or simply G(T) cx G(S).

Because most of this paper is addressed to questions concerning the identification of
rules of grammar {productions) through the extraction of abstractions of training exemplars, it
is necessary to extend the notions of PSR, uniform PSR, and uniform grapit to the
representation of productions. Define a rule {(production, transformation) as any formula of
the form F = [(¥x, ..x,) Clxy,..x,) => R(xl,...,xn)] where C(xy,.,Xp) {the cantingency} and
R(X | ¥ py) (the response) of the rule F are both conjunctive products of variable forms over

the variables xy, .., ¥ Thus, the rule F is like a production of a web grammar ¢’ - R, where

n
the conjuncts of C(xl,...,xn} are represenied by a web {graph) C’ and those of R(xl,...,xn) by
the web R’. Specifically, the formalism of Pfaltz & Rosenfeld can be immediately generalized to
aliow such representations of rules by permitting labeis on arcs, properties on nodes, and null
embeddings. Then, the rule F can be represented by letting C’ and R’ be the uniform graphs

of the PSR equivalents of Clx,.,x,) and Rix X}, respectively.

It is possible, moreover, to obtain a single uniform representation of any rule F, and
such a representation will greatly simplify the problem of abstracting rules from examples.
Given F, it is clear from the foregoing how the uniform PSRs C' = {PS(Cbody{C)) and R =
(PS(R’),body (R corresponding to the conjunctive forms Clx [Xy} and Rixjyxp) are
generated. Notice though ihat the parameter sets PS(C’) and PS(R’) are necessarily disjoint

because every occurrence of each parameter x; in C(xl,...,xn) and R(x|,..,xn) has been replaced

http://iiesp_on.se

oh
& ° aeh
W o 80
'év\ﬂ - \'.\\.\0
o> Sp)
O o°
é)
8 o N\ c oP
Q r.c,? © =)
Dp
a2’=b2’ {{line,node)} 23" ((line,node)}
$ g
Op
sP o Sp
'aZ’; ba® (I q)’} S5 a3’=b3" {(line,node)}
= ine,node
oP

Figure .2. Two superimposed uniform graphs for a triangle

(G(Ag)) and two lines possibly joined at one

node(G(By Hunder the binding function f of equation (9).

The arcs of G(Ag) are drawn with smooth iines, while those

of G(B3') are drawn with wavy fines,
by a new, unigue parameter (see Step | of the procedure to generate uniform PSRs). Thus, a
need exists for additional SP relations between any y* ¢ PS(C’) and 2’ ¢ PS(R’) where vy’ and 2’
are parameters which were generated from fthe same original parameter X; occurring once in
C(xl,...,xn) and once in R(xl,...,xn). Simply, the uniform PSR of the rule E is defined as U(F) =
(PS(C”} u PS(R?), body(C) u body(R) u {{SP,y",2°} : {(Ix) y’ is a parameter in C and 2 is a
parameter in R” which replaced one occurrence of X; tn Clx {,..,x,} and R(X {1mXpy)y respectively}
U {{"Chy'Y t v CPSIENY U {MR"Z') 27 ¢ PS(R)). Only the last two sets in the union which
constitutes the body of U(F) need explanation. Basically, these sets assign the additianal
property "C" to each "contingency” parameter y* ¢ PS(C’) and "R" to each response patameter
2’ ¢ PS{R") and serve fo distinguish the contingency and response parts of the integrated rule
representation,

10

As an illustration of such a rule F, consider the egui-noun phrase deletion (END) rule of
transformational grammar (TG) (Chomsky, 1967; Langendoen, 1969) shown in panel (a) of

Figure 3 with two examples,

(a) F=[(),.0.,x9) C(XT1,000,%9) o R(X1,e.s,x7)]

sixl & x2=x6

vp:ix3 ,.__>

. np:x2 sx5 np:x2
vixq

np:x6 vp:x7

sisl & npl =np2

vp:vp} >

vp:Vp2

drink

the boy drink

{2 E2 = (Cz, Rz)
sis4 & np3 =np4

—>

s:55

s:156

np:np3 vpvp7’

inf:inf2

? vpivp6

v
planned go skiing
in Vermont

the tall girl the tall girl

) . vp:vpb
planned

the tall girl go skiing

in Vermont
Figure 3. Two examples, E| = {C{RpY = {(*The boy wants
[that] the boy drink™, ”The boy wants to drink™) and Ep =
(Co,Rp) = ("The tall girl planned [that] the talt girl go skiing
in Vermont”, “The tall girl planned to go skiing in

11

Vermont™), in panels (b} and (¢), of the equi-noun phrase
deletion rute F in panel (a).

E; = (Cl,Rl) and B, = (CB,Rz), related by F shown in panels (b) and (¢). Non-uniform PSR
equivalents C, R’, Cyh Ry Co’, and RE’ corresponding to C(xl,...,xn), R(xl,...,xn), Cy, Rl, Cz, and
Ro, respectively, are given helow:
C7 = (0 1,x2,x3,x4,x5,x6,%7,x8,x9},

{{p:sinp,vp), name:x1, npx2, vpx3),

fprvplv,s), name:x3, vix4, s:xbi,

{prlnp,vp), namexB, npix6, vpx 7},

{prequal, what:x2, what:x611) (10)

R = ({x1,x2x3x4,x5,x6,x7 x8,x93,
{{pisinp,vp), namax7, npix2, vpx 8},
{Pvplv,infvp), name:x8, vixd, inf:x9, vpix7},
{p:"to", name:x9}}) (Ln

Cy = {{slinpl,vplvl s2,np2,vp2},
Hpslnpwp), name:st, npinp, vpivpll,
{p:"the boy", name:mnpi},
ip:vp(v,s), namewvpl, vivl,sis2},
{p:"wants”, namcwv 1},
{p:s(np,vp), name:s2, hp:inp?2, vp:vp2},
{p:"the boy", name:np2],
p:"drink", namevp2},
{piequal, what:npl, whatinp2}}) (12)

Ry’ = {({s3,np L,vpB,v1,inflvp2},
{ips{ap,vp), namc:s3, npmpt, vpivp3l,
{p:"the boy", name:mnpl},
{pvplv,infvp), name:vp3, vivi, infinfl, vpivp2},
{p"wants", namev]},
{p:"te", name:infl},
ipdrink”, namevp21) (13)

Cp’ = ({s4,np3,vpb,v2,55,np4,vp6),
t{p:s(np,vp), name:sd, npimnp3, vp:vpS5),
ip:the tall girl", namecinp3},
{pvplv,s), name:ps, vive, s:sb),

{p:"planned"”, namew2?,

12

{p:s(np,vp), name:sB, np:npd, vpivpbl,

{p"the tall girl®, name:np4},

{p:"go shiing in Verment", namewpb},

{p:equal, what:np3, what:inpdl}) {(i4)

Ry’ = ({s6,np3,vp7,v2,inf2,vpb},
{{pis(np,vp), name:sh, npinp3, vpivp?},
{p:"the tall girl", name:np3},
{pwplv,infvp), namewp?, vivz, infiinf2, vpvpbl,
{p:"planned”, name:v2},
{p:"to”, name:inf2},
{p:"go skiing in Vermont", name:vp6}}) (19)

Figure 4 illustrales the uniform graph G(F) for the rule F derived by cenverting C* (10}
and R* {11) into uniform PSRs, combining these, and supplementing the union of their bodies by
all appropriate SP relations establishing equivalences between parameters {e.g. x2’ and ¥2™
for the parameter x2) occurring both as a contingency and a response variable.

Before proceeding to the next section, the reader should be. convinced that the graph

G(F) in Fig. 4 is a satisfactory (equivalent) representation of the rule F and, moreover, that the
graphs G(F) and G(F o) corresponding to the rutes F1 =
[Ci(slinplvplyvis2np2,vp2,s3,vp3, infl) => R ’(sl,npl,vplivl 32 np2,vp2,s3,vp3,infl)} and Fo
= [Co¥s 4,np3,vpo,v2,s5,npdvp6,sb,yp7,inf2) => Ry'(sd,np3,vp5,ve, s5,npd,vpb6,s6,vp7,inf2}]
satisfy the subgraph relations: G(F) cx G(F) & G{F} cx G(F,). The fact that G(F) is a subgraph
both of G(F) and G(F3) or, equivalently, that F is a subrule (abstraction) of both F; and F5 is
the basis for the plausible inference that F is the common rule manifested by E| = (C[,R|) and
= (Co,Rp). This inference fechnique is fully clarified and exploited in solving general

induction problems in the subsequent sections.
3. A GENERAL LEARNING PROBLEM

The type of learning problem to be solved in this paper is formally defined as follows.
Let T = {{C,R).(CppRpP} be lraining information comprising N contingency-response {input-
output) pairs of structured representations which manifest some {(unknown) rule F = [(¥x,.,
Xp) ClX X)) => R{X | Xy 1], where Clx X} and R(X 5Xpy) are conjunctive variable forms
over the variables xj, .., X Each ; = (C,R) manifests F in the sense that (¥i = 1, ., N) (3f})
G (*)f Clx g, W) &R (i—)f RO Xy). The interpretation of this condition is that although the

’(rammsj pairs might contaln much superfluous information (relations not present in GOy)

or R(X{;.%p) and lherefore not criterial), they must contain relations corresponding to each

oV
<" R
k(\ 1 e L \
((\ h]
. ar?
- WP
2 :
‘.C'“
A
n (\HPW‘ ¥
+*
™y
P 7 p{‘\’ ‘s'),‘,ﬂ\ C
& W
~
N
Ana™e
apNP
1 & st
dc‘.i
)P h
\ » fLelop P
~ / }uc“}
\ N w7 stopphvPh

/\.
///

i2”{(equar,what),"C"})

X6
6 {(EQUa!,Wha“..C,,}

Figure 4. The uniform graph G(F} of the END rule of TG

corresponding to Fig. 3 (a) and equations (10-11). Here

SP arcs appear as broken lines while S$S arcs appear as

solid lines. No DP arcs are represented since all pairs of

nodes not connected by SP arcs presumably have DP arcs

between them.
criteriai term in the conjunctive sets Clx)Xy} and R{X|,oXp) The [earning problem is to
define an effective procedure for computing the rule F given 1.

Two additional points are now made to motivate the proposed approach. First, the
context in which this learning problem originally occurred was the following: Suppose a
learner is provided with structural representations Sy (t=1,2,..) of the successive internal

14

states (a data base of semantic, syntactic, perceptual, and response-producing predicates) of
s6me machine M to be modelied. Furthermore, suppose the behavior of M is determined by a
finite set of independent productions which correspond to k rules, Fy,.., F of the same sorl as
F above. At any point in time, t, the transition from Sy to Sy 1 may be accounted for in terms
of a set of rules F(t} which, because their contingencies were satisfied {(matched) by Sy, were
invoked and caused specific response structures to enter Si,.y. in such a case {fully general,
of course), an effeclive algorithm for identifying rules in F{t) would be adequate for the task
of inducing a behavior model of M.

The second point to notice is that, while there can be no solution which is error free
after any finite time to grammatical induction problems which require the inference of the
relevant underlying phrase structures (Gold, 1967), the current restricted statemant of the
learning problem is .one which does afford, with appropriate training information and
acceptability criteria, cerfain solutions. This certainty is oblained at the expense of requiring
each training input-output exemplar to manifest directly the underlying rule. Whether or not
this requirement can be considered a serious weakness of the proposed approach depends
principally on the power of this restricted procedure to solve important and general problens.
This point is considered in some detail in the last section. At this point, however, the reader
should realize that the proposed learning mechanisms are primarily relevant to problems
where the space of plausible rules is implicitly determined by a predefined set of predicates
all of whose relevant instances are provided directly to the learner. The learner’s task--find
the relevant conjunctive predicate structures--is then adequately constrained so that an
effective procedure is straightforward.

Given the training information I = {£; = (C;R} : 1 = i, .., N}, any F manifested by each E;
is, by definition, a plausible hypothetical rule underlying L In order to further usefully
constrain the space of plausible rules, one would also frequently like to exploit the idea of
negalive instances or counjfrex,amplg:; of a rule When provided to a learner, the negative
training information I = {E;" = (C/R; B , N’} for any F satisfies the condition: (Vi) (Hf
such that C; (4)f C¥ X g 1) not[R; (*)f R(xl, Xl Thatis, £ *is a counterexample of F if C
matches the conhnoency structure of F but R}’ does not match the response structure of F.
An example would be the pair {C|’ Ry’ } where Cl is the structural description of some input
sentence which matches the contingency pattern of the END rule, but where R’ is a rejated
output sentence representation which fails 1o match the response pattern of that rule. In
other papers {Hayes-Roth, 1974a, 1974c), the quantitative use of such negative information in
the evalualion of alternative plausible rules is formally considered. For the present purposes
however, the following assumption will necessarily suffice: given the training scts b and T for
an unknown rule £ and any hypothesized rule £, the function WP, [I/F° T/E°D = VE™) will be
taken to be the performance (utility, value, plausibility) of the rule F’, where V(F") necessarily

15

is an increasing function of the positive frequency of F* in 1 (I/F’h and a decreasing function
of the frequency of negative instances of F* in I {|I'/F’l). The functions to compute these
frequencies and V(") will be assuimed to be exogenously provided. Nate that, as staled above,
the learning problem requires that |I/FYf = |I] = N for all hypothesized rules F°. The
generalization of this case fo those where [I/F°] < N is discussed in detail in Hayes-Roth
(1974a) and briefly in the fast section of this paper.

The three special cases of the rule learning problem are defined as follows. Case ! -
Categorical Rule Learning: The response R(xyp %) Of the unknown rule F is categarical, ie., it
is unchanged regardiess of variations among inputs C;. For example, the response might be
"red" or "ciass 2" or any constant semantic structure. Case 2 - Substitution Rule learning
Given Exogenously Delermined Centingency and Response Parameter Correspondences: The
rules to be learned allow for general substitutions (forced equivalences) between any
contingency and response paramelers, and these are manifested by SP relations supplied by
the trainer. The repetition of several parameters {e.g. npl, vl, vp2) in both Cy 112} and Ry
(13) for the training example £y = (Cy,Ry) of the END rule is an example of such exogencusly
provided input-output parameter correspondences, and the rule F described by {(10-11} and
Figs. 3(a) and 4 is an exampie of such an inferrable substitution rule. Case 3 - Substitution
Rule Learning Without Exogenously Supplied Input-Cutput Parameter Correspondences: This
case refers to problems where fraining examples like those in the preceding case are supplied
except that parameters in each C; are necessarily distinct from those in Ri. The learner in this
case must, in addition to hypothesizing rules, also hypothesize equivalences (substitutability)
between contingency and response paramelters. Each of these cases is treated in turn in the
subsequent sections.

The remainder of this section briefly addresses the issue of feature extraction or
predicate coding, the production {computation) of the predicate instances upon which inference
of rules by the learner is to be based. It should be clear that actually encoding a stimulus

pattern as a structural representation is a non-trivial task. Moreover the current statement of
the learning probicni requires every {Cj)R;} exemplar pair to manifest the unknown rule F.
Thus, if the trainer (as well as the learner) is "in the dark® as to what predicates are c¢riterial
to the rule F, the learning procedures defined herein will be guaranteed to succeed onty if the
trainer provides the actual values of all potentially relevant predicates and features as input
to the learner. While it is generally understood how instances of unary predicales (feature
values) are computable, the goodness of alternative procedures for computing instances of n-
ary predicales snems to be heavily dependent upon the actual nature of the pattern< involved
(see, for examples, Evans, 1968; Barrrow, et al,1972; Newell, 1972; Rulifson, et al, 1972:
Hayes-Roth, 1974¢; Hayec-Roth, 1974d; Hayes-Roth & Mostow, 1975). All that will be said
here is that the tearnins precedures operale by abctracting commonalities from sufficiently

16

described exemplars and, as a result, all relevant predicate instances nged to be supplied to
the learner by the trainer. Later, in section 7, possible methods are discussed for expanding
the set of predicates upon which rule learning may occur by the discovery of novel unary and
n-ary predicates.

4. CASE 1: CATEGORICAL RULE LEARNING

Rules to be learned in this case are characterized by constant The solution to the
general categorical rule learning problem requires three basic operations: (1) a mechanism to
compute C*, the set of plausible contingency patterns for the unknown rule F; {2) a mechanism
to identify R¥, the set of all plausible response patterns; and (3) a mechanism to evaluate the
performance of each plausible rule F* = [C => R], where C ¢ c* and R ¢ R*. In the current
case, steps (1) and (2) may be completely separated, because in categorical rules no
substitution of the name of an input object which is found to correspond to a contingency
parameter is. made to an associated response parameter; i.e. the contingency and response
structures are independent. An example of such a learning problem would be that of
abstracting the pattern characteristic "hree lines and three angles” (Ao in (3) as the
contingency of a rule whose response pattern is “triangle.”

The essential step. in this problem then is: Given I = {E; = (C;, R si=1, N} and I =
(£ = (G R+ 1 = 1, .y N, compute CF = Cy * .. & Cpy and R* = Ry # .. ¥ Ry, the set of
abstractions {C; : i = 1, ., N} and {Ry ¢ = 1, N3, respectively. By the definition of the
learning probler, each E manifests the unknown rule F and, therefore, C("lv"’"n) and
R(x 1 pesXpy) must correspond to common abstractions of {Cl,...,CN} and {Ry,Rybs respectively.
The operator # (star) is called the interference product or partial majching operator (Hayes-
Roth, 1974a, 1974b). The set of abstractions of a set of {(presumably uniform) PSRs {C; : i = 1,
o, N} with covrresponding uniform graphs {G(C))} is the set of PSRs {Aj cj o= 1,2, .} with
graphs {Gj} such that (¥j) [Gj cx G(ICp) & .. & Gj cx G(Cyl A previously published
interference matching (IM) procedure {Hayes-Roth, 1974b) effectively and efficiently computes
all abstractions {A;} of the set {C;}.

The IM procedure is best understood in terms of the concepts of one-one bindihg
relations and models. A one-ope correspandence binding relation B on the cross-product
space P = PS(C) X .. X PS(Cy) of the parameter sets of {C;} is defined to be any subset of P
which assigns to each parameter x; ¢ PS(C;) at most one correspondent X from any other
PS(CJ-). Symbolically, B © P is a one-one binding refation if [(Yij}Vb ¢ BXYb® ¢ B) (b). = (b7 =
x; & (b)j = X; & (b‘)j = xj’] => % = xj’, where (b); is the i-th element (a)) of the N-tuple b =
(al,...,aN). Given any one-one binding relation B, a model M of {C,:i= 1, .., N} camprises an

abstraction A and a set of residuals {R(C)) 11 = i, .., NI, where A contains all relations common

17

to each C; when lhe alphabetic differences between bound correspondent parameters (all x;,
X] such that {3b < B) by =% & (b)j = xj) are ignored and R(C}) contains all retalions in the
body of C; which are not accounted for in A. What the IM procedure does is efficiently
enumerate all distinet binding relations and models which entail a non-null abstraction.

In short, the IM procedure is effective for the task of computing all possible
absiractions of any cel of uniform PSRs, including C* and R¥. Thus, each rule F* = [C => R),
where C ¢ C* and R « R¥, which is a plausible solution to this induction problem may be
effeclively compuled. Qf course, the performance measure V induces an ordering on the
plausible rules: F* is preferred o F” if V(F’} > V(F”). On the other hand, it is clear that at any
time t during the traming prograr, a less preferred rule F may be identical to the unknown
correct rule, and only additional counterexamples to momentarily more preferred rules F7 will
tend to eliminate them by reducing their plausibilities, A program for performing the
computations required for categorical rule learning in limited space {and time)} exists and is
described in detail in Hayes-Roth (1974a),

One of the advantages of uniform representations, in addition to their providing
assurance that the IM procedure will be effective for categorical rule learning (formatly
proved in Hayes-Roth, 1974c), is that alf possible rules F” = [C => R} may be computed at the
same time if the abstraction operator () is applied directly to the uniform reprecentations
D)) of the rules 0; = [C| => R;} (i=1,.,N) representing causal inferences that each training
exemplar contingency pattern (prior event) caused or predicts the related response pattern
(subsequent event). In the rules D;, there are no substitution SP relations connecting any of
the parameters of C; with those of Ri, because there are no substitutions in categorical rules.

If the training information I is simply converted into the uniform rule reprewentations
{U(D))], it follows that the unknown rule F which is manifested by each E, ¢ T'is an abstraction
(subrule) of each Dy, i.e, the uniform representation U(F) ¢ U(Cl=>Rl) LI U(CN=>RN). While
the ability to ascociate each plausible rule F* with a particular element of the set of
abstractions

[F = UDy)) * . = LDy (16)
and to assert that
(IFcI P =F {17y

fnay seem to be of only incidental interest for rule learning of the first case, under cerlain
interpretations the truth of equations (16-17) holds for each of the other cases too and, thus,
these equations can be censidered a complete solution to the learning problem. Bacause ca.n
2 can be considered {o subsume case 1 and because of the generality of (16-17), a mare
detailed illustration of rule learning will be deferred until the next section.

18

5. CASE 2: SUBSTITUTION RULE LEARNING GIVEN INPUT-OUTPUT PARAMETER
CORRESPONDENCES

Rules to be learned in this case reflect the substitution of arguments from contingency
to response patterns by the use of the same parameter in both parts of the rule. In the
current case, the training information 1 will necessarily exhibit the repetition of the same
parameters in C and R; wherever the same object occurs in both the input and oautput
patterns. For example, each training exemplar (C,, R} for learning the TG END rule F (Fig. 3)
would necessarily repeat the parameter symbols (such as npl, vi, vp2 in Cy and Ry} which
name the noun phrases, verbs, and verb phrases, resp_ectively, corresponding to the phrase
structures named x2, x4, and «7 in F which are substituted from C to R when F is applied.
Thus, the training set I = {E}, Enl comprising the representations (12-18) for the sentences in
panels b and ¢ of Fig. 2 manifest F in the way required for case 2.

~ On the other hand, it is useful o consider the training information for case 2 rule
learning problems to be redefined as [= (E; = (C,R,Q} where C; and R; are uniform PSRs
whose parameter sets are completely disjoint but where Qis a set of exogenously provided
substitution SP relations, such that Q contains one relation {SP, x’, x”} for every contingency
parameter x’ from G, and response parameter x” from R tor which it is true that x* and x"
name the same object occurring both in C; and R Under this condition, each exemplar E; in I
must manifest F in the following sense: There mus! exist a one-one parameter binding function
f; from the parameters of the uniform representation U(F) to those of UW(C;=>R) such that
every relation in U(F) occurs in U(C=>Rp or if the alphabetic differences between bound
correspondent parameters x and f(x) is ignored. That is, if WD;) is defined to be

U(Di) = (PS(Ci) u PS(R'I), body(U(Ci=>Ri)) U Ql) (18)

E. manifests F if and only if (3(1-1) : PSR = PS(UD) (¥r} ¢ body(kFN) filrp) €
body{(L(D}}), where fi(rj) is the retation r with each parameter x replaced by fi{x}.

As a result of the fact that each U(D,) contains U(F) as an abstraction, the same
techniques that were applicable for case 1 (16-17) are equally applicable for the current case.
However, while it is true that (3P CHF =UDy) * . * Uy F = F, it is not true that every F’
¢ H* is a well-formed rule. Thus, white H* may be computed by the IM {or other subgraph
extraction) procedure, the set I* of plausible well-formed rules is a particular subsel of HX. A
hypothetical rule F7 < L with uniform representation UFY) is well-formed if every set A of §P-
connected response parameters is SP-connected fo at most one set B of SP-connected
contingency parameters and no parameter in A is SP-conpected to a contingency parameter
which is not in B. Two paramelers, X and vy, are sP-connected in W(F) if {SPx,y} ¢ hody (U(F™)%
a set of parameters is SP-connected if every pair of parameters in the set is gP-connected;

two sets are SP-connected if their union is SP-cannected.

19

Thus, the solution to the case 2 learning problem is provided by the following program:

Step 1: Compute WD) by adding the set Q; of substitution SP relations to 1le body of

Step 2: Compute the set of plausible subrules H* = UDy) * .. « UDy) by the IM
procedure (or other subgraph exiraction procedure).

Step 3: Compute the set of all plausibie and well-~formed rules |* = {UF) : LKF) ¢« HY &
F*is a well-formed rule). Fach such rule F’ ¢ I* is consistent with the training information 1
and since. 1 manifests F, (G UFY ¢ 1N FF = F. A simple, formal proof of the effectiveness of
such a program is provided elsewhere {Hayes-Roth, 1974c).

As an example, consider again the illustration in Fig. 3 of the END rule F of TG and the
examples E, and Eo of its application. The exogenously determined input-output parameter
correspondences Q; appear .as identities between some parameters {e.g. npl) which occur both
in C; and Ri. Thus,

(Vi=1,2) U(D;) = W(C;=>R,) Gy, UIF), (19)
where
f1 = {xl,s1), (x2.npl), (x3,vpl), {x4,v1),
{xB,52), {x6,np2), (x7,vp2), (x8,vp3}, (x9,inf1}} (20)
and
fo = {(x1,54), (x2,np3), {x3,vp5), (x4,v2),

(x5,¢5), (xB,npA), (x7,vp6), (x8,vp7), (x9,inf2)}. (21)

In other words, if the IM procedure were applied to the set {U(Dl), UD5)}, one abstraction
that would be produced would be F, under the parameter correspondences in the one-ane
relation B = {(<],c4), (np1np3), {vpl,vp5), (vl,v2), (s2,55), (np2,npd), (vp2,vp6), {vp3,vp7),
(infl,inf2)} ¢ PS(D,) X PS{D2) (or the equivalent but more numerous I-1 correspandences
which would obtain amonz the appropriately expanded parameter sets of the uniform
representations Dy) and D).

Because of the relatively weak nature of the constraints on plausible rules, F will in all
probabiitty be just one of many plausible and well-formed rules which are thus generated.
Examples of reasonable (hut heuristic) constraints which might be exploited successfully in
some task environments are: (1) "Consider any F* which has one or more counterexamples ta
be implausible” or (2) "Find oniy the one rule F* which has the maximal similarity to (the mo-t
relations in common with) each ()" In general, however, the practical application of fearning
procedures will be in real probiem contexts where neither of these heuristics will prodice

20

consistently desirable effects, Further discussion of the nature of and selection among
probabilistically vaiid rules can be found in Hayes-Roth (1974a, 1974¢). For the present
purposes, all considerations related to the relative desirabilities of alternative rules with
various combinations of positive and negative support are relegated to the “exogenously
provided” performance measure V.

To conclude this section, it seems desirable to characterize briefly the type of
environment in which problems of case 2 {and the subsumed case 1) will occur. The essential
character of case 2 learning problems is that training information completely describes the
correspondences (identities) between objects in input-output pattern pa'irs. Such information
is frequently known in the sorts of problems to which one would like to apply practical
abstraction procedures. Several of these probiems are considered in detail in Section 8. For
the present, however, a useful test which may be employed to decide if a particutar learning
problem falls into case 2 and can be solved by the program above is this: If an unknown rule
F is operative in transforming one configuration of a specific set of identifiabie objects into
another and if the identities of the objects are known, the rule may be found by the methods
of case 2. All of the rules of TG {Langendoen, 1969), for example, are thus inferrable from
training examples like those in Fig. 3. To date, it ts the author’s experience that every
problem of practical interest satisfies the preceding test. Nonetheless, it is conceivable that
other researchers may encounter probiems where the identities of objects are not known.
For example, one might wish to induce the nature of a rute which presumably accounts for the
transformation of each of several (input) chemical structures into corresponding (outpul)
structures, where the identities of every one of numerous hydrogen atoms in both structures
are confusable with one another. To accommodate such possibilities, the solution of problems

of this sort is considercd in the next section.

6. CASE 3: SUBSTITUTION RULE LEARNING WITHOUT EXOGENQUSLY SUPPLIED INPUT-OUTPUT
PARAMETER CORRESPONDENCES

Rules to be learned in this case are of the same sort as in the previous case but le<s
information is provided fo the learrer. Rule learning problems of the third case are the most
general and, in terms of the amount of necessary computation, potentially the most ditficult,
An example of such unrestricted rule learning would be the probtem of inducing the END rule
in Fig. 3 (a) from the cxamples in panels (b) and (¢} if each parameter q in G and r in R had
been disfinctively renamed C;.q and Ryr, respectively. That is, any correspondences between
contingency and response parameters would necessarly be interred by the learner at the
same moment at which il inferred the contingency and respanse patterns of the unknown rule

F.

21

One possible brute-force solution to the problem would be as follows. Let Uo,) =
U(Ci=>Ri) and compute 1% as in (16). Then for any abstracted rule F’, the learner is free to add
any desired substitulion SP relations which establish cantingency-response parameter
correspondences as long as the modified rule remains well-formed. Such a procedure, if
exhaustively applied, will surely identify F.

On the other hand, the brute-force method fails to exploit the potentially useful
structural redundancies between each C; and Ri. A structural redundancy between C; and R; is
a common abstraction {substricture) of C, and R. In general, such redundancie« are highiy
indicative of substitutability of contingency and response parameters. For example, consider
the sentences Cyp and Ry in Fig. 3 (b) and the corresponding PSRs Cy” (12) and Ry (I3
Again, remember thal in the current case all parameter symbols have been prefixed by "Cp
or "R;." and, therefore, all response and contingency parameters are distinct.

Now, consider the set of abstractions El* =Cy * Ry and, in particutar, the abstraction A
¢ El* associated with the correspondence bindings in B = by = (Cl.npl,Rl.npl), bo =
(Cl.vl,Rl_vl), by = (Cl.vp2,Rl.vp2)} where

A = ({by,bo,bn},
{ip:"the boy", name:b | J,
p"wants™ name:bs},
{pdrink”, name:balh) (22}

The absiraction A identifies plausible loci of substitutions in F by locating phrase structures
which are repealed in bolh Cy and Ry. Thus, it would be reascnable to hypothesize
substitution SP relations for each set of related bindings in B; i.e. one could let Qp = i{5P,
Cix Rl.y} :{C R) ¢ B} and then proceed to induce F as if this were a problem in case 2.

Such an idea must be generalized, however, before this suggested procedure constitutes
a guaranteed solution to case 3 learning problems. The central question here is how to
enumerate all possible ways in which substitutions raight have occurred between C; and ki,

and an answer to this question requires a discussion of the semaplics of substitutabitity, whick

now follows. In any siven problem context, the structural representations used will permit
interpretations of substitutabilily between contingency and response parameters in possibly
varying and numecrous ways. In TG rules of the sort with which this paper has been
concerned, a substitulion between C,.q and R.ris plausible if the entire phrase tree structures
descendant from rool nodes Ci.q and Rp.r are identical. Thus any procedure, inciuding the 1M
procedure, which can identify such equivalences is a satisfactory mechanism for enurnerating
plausible continzency-recponce parameter substitutions. On the other hand, the serqantics of
substitutability may be differcent in other knowledge representations (other systems of
predicates) or other problem domains.,

22

In each case, however, an SP relation S = {SP, C;q, Rirtis called plausible if the PSR T
with body body(W(C;=R;)) v {S} is not impossibte in the sense that it represents the

simultaneous attribution of two mutually exclusive attributes {category elements) to the sawe
object (a pair of SP-connected parameters). In the case of TG rule learning for example,
every relation of the sort {p:".% name:q} which associates a specific word sequence with the
object named g is a mutually exclusive possibility; i.e. any parameter can name at mosi one
distinct word sequence. Similarly, at a higher level of abstraction, no parameter q which
occurs in the object item name:q of a noun phrase relation can simultaneousty occur as the
name of any other phrase type (or, for that matter, in the object item name:g of any relation
whose predicate item is different).

In the previously mentioned example of inducing a rule which transforms one chemical
structure into another, no SP relation is plausible which identifies a contingency parameter
identifying a carbon atom with a response naming a hydrogen atom. On the other hand, each
distinct SP relation § = {SP, C..q, Ri.r} where C.q and R.r are identical chemical elements or
compounds is plausible.

It is apparent, however, that the plausibility of hypothetical substitutions spans a range
of values belween the extremes of "totally plausible" and "totally implausible." For example,
objects may change in shape, color, structure, or other attributes under some transformations,
and while these aliributes may for some purposes constitute categories of exclusive
possibilities, it does not foliow that such parameter substitutions are impossible, only, in
general, that they are apparently less likely than others. The behaviors of a magician, for
example, are frequently of just such an imprabable sort: {{pired, name:x}, {p:handkerchief,
name:x}) o {{p:green, name:xj, {piscart, name:x}}. Thus, while one might reasonably hope to
infer from "x is red at time t" and "y is green at t+1" that x and y are different objects, this is

only probably vaiid.

The semantics of substitutabilily is thus seen to be dependent on what is known about
the problem domain, including especially the sorts of inferences that may be correctly made
about the probable identicainess of two objects occurring in different structural
representations, Thus, while the learning procedures for cases 1 and 2 and the proposed
brute-force method for case 3 were entirely syniactic in nature (were explainable without
reference io reality), any efficient solutions to case 3 problems which significantly reduce the
set of plausible subctitution SP relations which are considered must necessarily exploit what is
known about the livelihood that two differentty named objects having attribules which are

more or less similar are in fact the same.

In sum, a plausible SP relation is any which the real-word semantics do not disallow.

23

For example, if there is some category Y = {(qk,typek) i k=1, .. } such that the unary relation
{(qk,typek),x} implies nof[{{qka,fypekr),x}] for all K # k and (qka,typekv) C Y, the subsitution
defined by {SPxy} 'would not be plausible if x and y were parameters of C; and R,
respectively, and {{(qk,fypek),x}, {(qk»,typeka},y}} c body(U(Ci=>Ri)}. On the other hand, while a
consideration of degrees of plausibility and a strategy which prefers rules which are "more
plausibie” to those which are less may improve the performance of procedures which generale
plausible ruies by a best-first sort of search technique, a total enumeration of plausible rules
is required if a certain identification of Fis desired. If Q; is defined to be the set of ali
substitution SP relations which are plausible for the transformation of C; into R, then lhe
solution to the case 3 learning problem is provided by exactly the same three step rule
induction program presented in the preceding section. Thus, while induction of a magician’s
rutes of behavior, where object identicalness is highly uncertain, may take stgnificantly more
computing time that the induclion of the rules of TG, where every property of the sort
{g,name) which is true of an object x precludes any substitution SP retation which would entaii
the simultaneous assianment of a different property (q’name) to X, both inductions are
accomplishable by the came effective procedure.

7. PREDICATE AND CATEGQRY LEARNING

The purpose of this section is to indicate briefly some possible avenues of approach to
the problems of predicate and category learning. In the case of predicate learning, two points
will be made. First, as Winston (1970) notes, once any patlern over n parameters is learned
as the contingency of an induced rule, it may be used as an n-ary predicate to descrihe
patterns in a novel way. For example, if the template Ap (B) for a triangle (over the
parameters al, a?, a3) were induted in response to training, A2 would define a ternary
predicate and the relation {p:AZ, alx, a2:wy, aliz} could then be used to augment the
description of a scene in which the nodes x, y, and z were found to satisfy the relations
required of the three nodes of a triangle. Second, because heuristic methods may later be
used to generate and test the simplest, most plausible rules first, an encoding of training
information patterns in terms of such higher-order predicates may be useful (exactly as the
use of learned, higher-order phrase siruclure defining predicates like np or vp seem to be
useful in representing and inducing TG grammar rules). That is, while the number of possible
rules which may be inferrable from a set | of input-output line drawings described in terms of
individual lines might be very large, the number of rules which are inferrable from the same
data when encoded in torims of higher -order figure-descriptions s probably much smaller,
Again, the desirability of such approaches appears to be general but is obviously dependent
upon the real scinantice {i.e,, the nature of the rules to be learned).

With respcct 1o category learning, a similar type of observation can be made. A

24

category, defined to be a set of mutually exclusive alternatives, may be hypothesized lo
comprise cach of the various properties {unary unifarm relation predicates) which are found
to occur systemalically in pattern representations G matching some rule contingency
C(Xl,...,xn) but which are not criteral {not contained in C(xl,...,xn)). For example, when the END
rule F is inferred from the training examples in Fig. 3 {bc), any model of £ and Eo comprising
the abstraction A ¢ B * E5 which matches F will necessarly bind the parameters vl and v2 as
correspondents. As a result of this binding, the same mode! that contains A will also contain
the unary relations fp"wants”name:v1} and {p:"planned”, name:v2} in the assopciated residuals
of E; and Ep. Thus, while "wants" and "planned” are not the same predicate and cannot
therefore be included in this abstraction of £y and Ep, they are explicitly comparable because
they are alternative properties of otherwise corresponding objects (vl and v2).

As a result, one could reasonably hypothesize a new category, say v', and the

relationship that {"wants”, planned"} © v". Note that v’ is the name of the particular "place” in
the common ahstraction of £} and Ep where vl and v2 were bound but had different
properties; this place is identificd by the name x2 in the END rule F. Now, suppose several
more examples of this rule F were provided and the possible members of v' were found to
include "wants”, "planned”, "desired”, .., and "hoped." It would seem reasonable to canonize
this category, say as "verb of intention," and subsequently to produce the predicate instance
{p:verb of intention, name;x} whenever a word X oceurred which was a member of v
Moreover, the reader should note that such a predicate is in fact criterial to the conlingency
of the END rule, because the restriction of x4 (input verbs) to the category of verbs in
general is too weak to prevent inappropriate applications of the rute. Thus, while the
possibilities herc are only minimally understood, it appears that such a category learning
mechanism is potentially very powerful. Aside from providing a basis for refinement of
induced rules by adding such additionally restrictive predicates to opvergeneralized
contingencies, the learning of such categories of mutually exclusive elements plays the
additionally useful roie of providing semantic cues related to the plausibility of potential

substitutions, as previously described.
8. APPLICATIONS IN SPEECH UNDERSTANDING

While a need for brevity precludes a thorough discussion of the applications of these
learning procedures o many diverse probiems, an adequate appreciation may be gained by
consideration of several induction problems in the speech understanding domain whose
solutions are presently or will in the immediate future be attempted by procedures of the sori
presented in Ihis paper. In order fo expedite the presentation, each problem will be
described in terms of the conceplts of knowledge model, training data, induction alzorithm, and
solution acceptahilily criterion. While the meaning of the last three of these terms is self-

25

evident, some explanaiion for the first s necessary. A problem knowledge model is a lonse
description of the theoretical relationship betwen the unknown rule and the training data. In
particular, a knowledge model is a specification of a set of predicates and features the
conjunctive products of all instances of which wil; necessarily (in theory) manifest the
unknown rule. That is, the model comprises a set of tests to be performed on training data
which, when exhaustively applied, will identify every instance of each n-ary predicate which
may be criterial to an unknown rule.

Given these four aspects of a learning problem, it is now easy to describe several
prototypic problems in speech research. The problems described are actual cases arising in
the continuing developrment of HEARSAY {(Reddy, et al, 1973; Lesser, et al, 1974). The three
problems considered in turn are phonoiogical rule, word phonetic spelling, and predictive
syntax rule learning.

Problem 1. Phonglogica Rule Lgaming.a It is well known in speech wark (e.g., Barnett,
1974; Coben & Mercer, 1974} that some phones spoken in the temporal context of {preceded
or succeeded by) some phones tend o be transformed into sounds which appear {0 be other
phones. This process might be represented as CIF’Cz - ClP’Ce where the phonc P in the
temporal context of phones Cy and €, is converted to {perceived as) the phone P. The
learning problem is to induce rules of the sortd F = [CIP’CZ - CLPC2] from training data

which can reliably predict when a perceived sequence like CyP’Cy, may be reinterpreted as
CyPCo.

Knowledge Model: The predicates currently employed in HEARSAY define the space of
all possibly induced phonologicat rules and are typical of those used to represent phonetic
data. These include temporal contiguity of phones, phone labels, membership in classes of
phones sharing particular articulatory features (e.g. vocalic, fricative), indicators of the
presence or ahsonce of articulatory features, presence of local extrema in the amplitude
function, indicators of relatively short, medium, or long duration, etc. Every phonological ruje
currently employed in HEARSAY is representable in terms of conjunctions of these predicates,
Iraining data; Since each rule 1o be induced is of the form F = [CIP’Cz = CPCs], the learning
program is to be applied to all exemplars of perceived (automatically phonetically classifiod)
phone seguences {CIP"Cz) which actualty occurred when the "true” phonetic sequence was
CiPCs. That is, the positive exem.plars of the class defined by the categorical responze
pattern CyPCs are the aclual data observed when that pattern was theoretically correct. For
any hypothetical abstracted rule, negative instances are occurrences in the data base of all
utterances which match the inferred contingency C|P°Cs but should not in fact be rewritten ac
CIPCZ' Induction Alzarithm: Recausze the relational structure of all such rule contingencies is
rigidly constrained to descriptions of the prior (first) context phone (C|), the transformed

26

(second) phone (P’) and the subsequent (third) context phone (Co), & simple feature-value
representation (fl,l’"vfl,n’f2,1’---’f2,n»f3,la ""fB,n) of each training exemplar may be used where
i
contingency patterns may be performed by interference matching of the feature

is the value of the j-th feature of the i-th phone. Then the induction of plausible

representations. This simplification of the representations insures that any rules which are
reliable and satisfy the-structure of the associated knowledge model can be found without
even performing the permutations required in graph matching (Hayes-Roth, 1974a). Rule
Acceptability Criterion: Given the limited computing space and time for our speech system, we

would like ta find any rule F which is correctly applicable to no fewer than .05 percent of all
utterances and for which the performarce measure V(Fy = [BUI/FD - WT/ER/ISN/FD +
1{|I’/F)], which counts each positive instance of F three times as much as a negative instance
of F in the training data, exceeds .80.

Problem 2. Word Phonetic Spelling. 1t has been shown elsewhere (Hayes-Roth, 1974d)
that extremely efficient parallel procedures exist for recognizing words {(with tolerability for

insertions and deletions) in sequences of hypothesized phones if the words are represented
by templates which are equivalent to finite state transition networks with the interpretaton
that each state is reachable by a number of alternative sequences of phones. Such a rule F
for recognizing word w might be represented F = [(P|, Po, v Py} - w), where each P, = {pi,l’
- p-‘,mi} is a class of alternative phones which may oaccur in the i-th temporal position.

Knowledge Model: The conlingency of any such categorical rule F may be represented
as a conjunction of features Fl,l’ .y Fi,N'"" Fn,l’ vy Fn,N where Fi,k is true only if an element
of the k-th class P, of phones is recognized at time t = 1. The classes {P}} of confusable
phones are defined exogenously: for example, Py = {AX(as in "but"), AH(as in "ma)}, Py = {AX,
TH(as in "it"™)} are the only two classes needed to capture the eight alternative pronunciations
of "America" as in F = [(Py, {M}, {EH}, {R}, P, K}, Pp) = “America"] (Hayes-Roth, 1974d).
[raining Data: Each instance of the word w to be learned in the sample of training utterances
is represented as a sequence of sets Ay, Ag, o Apg of hypothesized phones, where A, = {a-"l,
vy ai,ni} is the sel of possibly occurring phones in the i-th temporal position. This sequence
yields the feature representation £ = (Fi,l' et Fn,N) where Fi,k is a boolean variable which i=
true only if some aj . in A is also in P, A negative instance of any hypothesized rule F7 is
any temporal sequence of cets of hypothesized phones which match the contingency of ¥’ but
should not be recognized as an instance of the word w. Rule Induction Aeorithm and
Acceptability. Griterion: As in problem 1.

Problem 3: Predictive Synptax Rule Learning, A distinction between formal and predictive
syntax rules is an important pragmatic consideration in the design of real-fime speech
understanding systems. While it may be desirable for academic purposes to build an

27

understanding system which can fully and formaily analyze an utterance, it is probably
preferable in some contexts to exploit syntactic rules which, on the basis of some information,
predict {hypothesize} values of other important variables and even, sometimes, suppress
related concurrent but unfinished understanding processes. For example, in the HEARSAY
news story retrieval task (keyword retrieval of wire service news stories) , a potentially
useful predictive syntactic ruie is F = [begin(to) & fetch-word(tl,fz)' & re-worditat,) &
topiclty, tgexpr) & end{tg) & (Vi<j) ti<tj => retrieve(expr)] which is interpreted as follows.
The rule contingency is: (1) the beginning of the input utterance is at time toy (2) any word
which can mean fetch (eg. “tell”, "retrieve”, "get", "fetch”, "seek™ has been recosnized

w7

beginning at ty and ending at to, (3) a word meaning re (eg., "about”, “concerning™ "mention”,
"cites”, "re") has been recognized between times ty and tg (4} a keyword expression {topic)
coded as expr has been recognized between tg and tg (e.g. expr = "Nixon" & "Agnew") where
(5) the end of the utterance was at fg and (6) t; < tj for all i < j. The associated responce of
the rule reguires the understanding system to assume the sentence is parsed and respond by
retrieving the news stories which satisfy expression expr {e.g. all news stories mentfioning
"Nixon" and "Agnew™). This rule is predictive because it hypothesizes that hothing that occurs
in the intervals tg to t; or ts to tg adds anything essential to the understanding of {he
utterance. For example, it would not distinguish between "Piease tell me about Nivon and
Agnew” and "Would you kindiy get for us any news stories which mention Nixon and Agnew"
(or "Tell me nothing about Nixon and Agnew"),

Knowledse Model; At the outset, the rule learning effort will be a modest ong, due
primarly to limited resources and specific goals. Thus, we will be seeking rules like F above
which are essentiaily reliable (high performing) subrules of complete parse-to-respone
training exarples. That is, the contingency F might have been abstracted from larper matching
representations which iﬁclude humerous other predicates occurring in a complete parse for
each example such as words(to,fl), silence(f2,t3), verb(tz,ta), etc. From training paire of such
complete syntaciic analyses of the utterances and related responses, abstractable subrules
will be sought which, when invoked over the training data, produce reliably desirable results,
Training Data: Exampies of uticrance analyses for each distinct sort of response. Rule
Induction Alzorithm: The M afporithm will be used and the training data will be structured as
in case 2. Ruln Acceptabilily Crilerion: Because lhe specifications of the speech project
require 95 percont somantic accuracy, at the ouiset only those rules which satisfy that
criferion will be accopted.

9. CONCLUSIONS

This section attempts to provide a perspective on the paper’s contibution in three Ways:
(1) the current learning problem and solution are related to other previously studicd ones; (2)

28

the principal potential obstacle to widescale use of the proposed solution, a combinatorial
explosion of abstractable rules, is considered; and (3) the possible value of heuristics in rule
learning as alternatives to exhaustive methods of abstraction is briefly discussed. '

The proposed approach to grammatical inference differs from previous approaches
(Gold, 1967; Biermann & Feldman, 1973; Wharton, 1974) in the emphasis placed hege on
inducing rule representations by extracting commonalities from {(deep) structural descriptions
of evenis (sentences, scenes, behaviors) rather than using general heuristics to generate
productions whose behaviors, hopetfully, converge {statistically) toward the same sequential
constraints exhibited by the surface descriptions provided for training. The current approach
essentially eliminates the generation phase by requiring that every (Cj, R;} training exemplar
‘manifest directly the rule of interest. In this case, simple algorithms for identifying common
subgraphs (abstractions) can be used to generate hypothetical productions which may be
statistically evaluated, if necessary, to determine their retliability and utitity vis-a-vis
counterexamples. On the other hand, the proposed representational framework is
computationally universal (Hayes-Roth, 1974c) and the approach is capable of inducing highly
complex rules (those with a large number of relations in their uniform representations) in the
same way as very simple ones. In both cases, the goal is fo produce all abstractions
manifested by the lraining information so that each may be considered as a hypothetical
solution to the rule learning problem.

The validily of such an approach to learning must depend not only on its demonstrated
ability to solve previously unsolvable induction problems, like that of inferring from examples
the rules of TG, but also on ihe power of the approach to solve real-word problems of
obvious value. While empirical testing and refinement of the proposed techniques will
probably go on for years, intuitive sorts of evidence may be adduced to support the
suggested approach. Two observations of this sort will be made. First, each of the major
knowledge sources in our current speech understanding syster is naturally representable as a
set of rules of the sort considered here and, moreover, the current framework pravides a
much needed scheme for evaluating the performance of these rules alone and as well as in
comparison lo machine-generated plausible alternatives. Second, the proposed approach
provides a basis for decomposition of knowledge and for step-by-step training of one rule
after another. With a helpful trainer, the proposed algorithms can surely succeed in learning
to imitate any bchavior. This is the first learning technique known 1o this author for which

this is true.

(2) There are two chief obstacles impeding the widescale use of the proposed rule
learning technigues which require the interference matching (IM) procedure. First, although it
is logically simpte, the IM procedure may require enormous amounts of temporary storage to

29

compute and store alternative models because of combinatorial possibilities. Second, the
learning problem as described in 1his Paper required that all training exemplars (Cj, R} in [
manifest the desired rule F. If tiis requirement is relaxed, so that at least one (Cj, Ry fails to
manifest £, then the assumption must be made thal each distinct subset of 1 may be sufficiont
for induction of the unknown F. This greatly expands the number of possibilities
(abstractions) that must be considered. Such a situation would arise, for instance, if a machine
were supposed to learn rutes of TG and the input contained errors or incomplete structural

descriptions,

It appears that there can be no cheap and robust solution which eliminates all
combinatarial problems and the attendant requirement for targe amounts of storage. However,
one desirable lechnigue for reducing computing time and storage space is provided by the
space limited interference malching (SLIM) procedure (Hayes~Roth,_ 1974a). As currently
programmed (in PL/1 and in SAILY, SLIM is limited to ran-relational event descriptions
(feature-value descriptions), but the basic technique is immediately generalizable {(sce Hayes-
Roth, 1974¢, Ap. 1 for details). SLIM is chiefly constrained by the number of madels it may
maintain in working memory, Within the timitation imposed on memory space, the procedure
performs the following actions in sequence: it successively introduces exemplars from the
training set and partial-matches them {using the IM procedure to generate abstractions) wilh
previously introduced exemplars and previously produced abstractions to gencrate new
maximally informative abstractions; it evaluates the performance or utility of each inferred ryle
on the basis of the related positive and negative instances; it reduces {conditionalizes) the
utility of rules which are subruies of better performing rules already abstracted; and it
eliminates from overcrowded storage rules with lowest conditional utilities. As a result, the
procedure dynamically optimizes the expected overall performance of all rules in staorage. (If
sufficient storage is provided, all inferrable rules are computed and retained.)

(3) Apparently resconzhle heuristics might be introduced into the plausible rule
induction procedure. These righi be of a best-first sort, where the best hypothelical rule is
taken to mean the one whose uniform representaion is a maximal abstraction of the training
exemplars., Search algorithms of this sori are described in Hayes-Roth (1973) and Anderson
(1975). On the other hand, for every situation where a heuristic can be shawn to be
desirable, there i usually another where it causes demonstrably undesirable effects. At this
paint, it is the authors intention to experiment with 2 variety of heuristics in each of our
currently active learning projects so tha! the costs and benefits of sach will hopefully come to
be better underctood.

In sum, many researchers have made useful application of structural representations of
patterns and rules. In the current paper, a general procedure capable of inducing such rules

30

from appropriate training data and methods for comparing alternative hypothesized rules were
discussed. While the prospects for fruitful application of these techniques seem bright,
problems of combinatorics loom large. For the present, however, it is the author’s opinion that
even very large amounts of off-line computing dedicated to the discovery of reliable rules will
be justified by a significant gain in knowledge or an improvement in the performance of the
rules which are actually used in important real-time applications like speech understanding.

FOOTNOTES

1. This work was supported in part by National Institutes of Health Grant GM-01231 to
The University of Michigan and Advanced Research Projects Agency Contract FAa4620-73-C~
0074 to Carnegie-Mellon University.

2 1 would like to acknowledge the valuable assistance of many people who have read
various versions of this paper and the dissertation on which much of it is based: Lee Erman,
John Holland, Dave Krantz, Walt Reitman, Elaine Rich, and J. E. Keith Smith.

3. No distinction is made here between phonological and acoustic-phonetic rules,
although the HEARSAY system does reflect such a distinction. The current method is
applicable to both cases.

4, This formalizahoh does not reflect the full generality of actions such rules can
perform (e.g, in HEARSAY, some rules modify validity ratings and time boundaries of
hypothesized structures). Consideration of these actions and more general rule contingencies
is beyond the scope of this paper.

31

REFERENCES

Anderson, J. Computer simulation of a language acquisition system: a first report, In R. L.

Solso (Ed.), Informaton processing and cognition: The Laoyola Symposiur.
Washington: Lawrence Erlbaum, 1975 {in press).

Barnett, J A. A phonological rule compiler. Proceedings [EEE Symposium on Spesch
Recognition, 1974.

Barrow, HG, Ambler, AP, & Burstall, RM. Some techniques for recognising structures in
pictures. In S, Watanabe {Ed.), Erontiers of pattern tecognition. New York: Academic
Press, 1972,

Biermann, A. W, & Feldman, J. A, A survey of resuits in grammatical inference. In S. Watanabe
(Ed.), Erontiers of patiern recosnition. New York: Academic Press, 1972,

Bruner, J. 5, Goodnow, J. J, & _Austin, G. A, A study of thinking. New York: Wiley, 19586,

Cohen, P. S, & Mcrcer, R L. The phonological component of an automatic speech-recognition

system. Proceedings IFFE Syrposium on Speech Recognition, 1974,

Chomsky, N. Syplactic s truclures. The Hague: Mouton, 1967,

Eden, M., & Halle, M. Handwriting and pattern recognition. In E. E. David (Ed.), Special issue on
sensory information processing, |RE Transactions on Information Iheary, 1962, |1-8,
74-19].

Evans, T. G. A gramraar-controlled pattern analyzer. Proceedings IFIP Congress 68, 1968,

Evans, T.G. Descriptive paltern-anaiysis techniques. In A. Grasselli (Ed.), Automatic
interprefation and classificaljon of images. New York: Academic Press, [969,

Friedman, J. A compuler model of {ransformational grammar. New York: American Eleevier,
1971.)

Goid, M. Language identification in the limit. Information and Control, 1967, 10, 447-474.

Hayes-Rolh, F. A structural approach to pattern learning and the acquisition of classificatory
power. F’rOCeedinc;s of the First International Joint Conference on Pattern
Recognition, 1973.

32

Hayes-Roth, F. Schematic classification problems and their solution. Paltern Recognition,
19744, 6, 105-114.

Hayes-Roth, F. An optimal network representation and other mechanisms for the recognition
of structured events. Proceedings of the Second International Joint Conferencg on
Patiern Recognition, 1974b.

Hayes-Roth, F. Fundamental mechanisms of intelligent hehavior: the representation,

' organization, acquisition, and use of structured knowledge in perception and
cognition. Unpublished doctoral dissertation. Ann Arbor: The University of Michigan,
1974¢.

Hayes-Roth, F. The representation of structured events and efficient procedures for their
recognition. Pittsburgh: Department of Computer Science, Carnegie-Mellon
University, 1974d.

Hayes-Roth, F., & Mostow, D. J. An automatically campilable recognition network for structured
patterns. Pittsburgh: Department of Computer Science, Carnegie-Mellon University,
1975.

Hopcroft, J. E, & Ullman, D. D. Formal languages and their relation 1o automata. Reading,
Massachusetts: Addison-Wesley, 1969.

Langendoen, D. T. The study of ﬁyﬁj_gug. New York: Holt, Ringhart, Winston, 1969.

Lesser, V. R, Fennel, R. D, Errnan, L. D, & Reddy, D. R. Organization of the HEARSAY 1I speech
underslanding system. Proceedings IEEE Symposium o Speech Understanding,
1974

Michalski, R. S. AQVAL/L--computer implementation of a variable-valued logic system VL, and
examples of its application to pattern recognition. Proceedings of {he FEirst
International Joint Conference on Pattern Recognition, 1973.

Newell, A. A theoretlical exploration of mechanisms for encoding the stimulus. In A. W, Melton
& E. Martin (Eds.), Coding processes in human memory. Washington: Winston, 1972.

Pfaltz, JL., & Rosenfeid, A. Web grammars. Proceedings of the Eirst International Joint
Conference on Artificial Infeltizgence, 1969.

33

Reddy, D. R, Erman, L. D, Fennell, R. D, & Neely, R. B. The HEARSAY speech Qr\clerstanding
system: an example of the recognition process. Proceedings Third Interational Joint
Conference on. Artificial [nie tigence, 1973.

Rulifson, J. F,, Derksen, J. A, & Waidinger, R. J, QA4: a procedural calculus for intuitive
reasoning, Menlo Park: Stanford Research Instifute, 1972,

Shaw, A. C. Picture graphs, grammars, and parsing. In S. Watanabe (Ed.), Erontiers of pattern
recosnition. New York: Academic Press, 1972, '

Stoffel, J. C. A classifier decign technique for discrete variable pattern recognition problems.
[EEE Transactions on Computers, 1974, C-23, 428-441.

Watanabe, S. Subspace method in pattern recognition. Proceedings of the First International
Joint Canference on Pattern Recognition, 1973.

Wharton, R. M. Approximate language identification, Intormation angd Control, 1974, 26, 236-
255,

Winograd, T. A program for understanding natura language. Cognitive Psychology, 1972, 3,
1-191.

Winston, P.H, Learning structural descriptions from examples. AI-TR-76. Cambridge: MIT
Artificial Intelligence Laboratory, 1970.

