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COLLECTED PAPERS ON THE LEARNING AND RECOGNITION OF STRUCTURED PATTERNS 

PREFACE 

This collection of four papers presents many of the major findings in my research 
related to the representation, recognition, and learning of structured patterns. The papers 
have been assembled in one volume to facilitate the reader's task of pursuing these topics 
over several variations of focus. 

The first paper presents an introduction to the problems of representation and 
recognition of structured patterns and suggests several directions for further research. One 
of these suggestions concerns a distributed processing network for pattern recognition. In 
the second paper (co-authored by D. J. Mostow), such a network is developed for use as a 
syntax system for speech understanding. The last two papers are concerned specifically with 
the learning problems encountered in the framework of structured patterns. The first of 
these explains the use of the interference matching technique to abstract schemata from 
examples, hypothetical class characteristics (conjunctive sets of predicates) which should 
perform well in related problems requiring classification of novel test items. The last paper 
explains how such a learning technique may be extended for rule learning or grammatical 
inference. A computationally universal representation for production systems is introduced, 
and it is shown how the techniques developed in the previous paper can be generalized to 
solve learning problems involving the inference of such productions. 

In short, these papers provide an overview of a theory of learning and behavior which 
is more fully explained elsewhere.* While the theory is both intuitively plausible and 
demonstrably formally correct (over the problem domain defined by behaviors whose rules are 
representable as productions of this sort), its computational feasibility and practical utility 
have yet to be demonstrated. Several applications, including those discussed in the last paper, 
are now being undertaken. 

F. Hayes-Roth 

January 16, 1975 

* Hayes-Roth, F. Fundamental mechanisms of intelligent behavior: the representation, 
organization, acquisition and use of structured knowledge in perception and 
cognition. Unpublished doctoral dissertation. Ann Arbor: The University of 
Michigan, 1974. 
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REPRESENTATION OF STRUCTURED EVENTS 

AND EFFICIENT PROCEDURES FOR THEIR RECOGNITION 

Frederick Hayes-Roth 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

ABSTRACT 

Structured events are configurations of objects in logical, spatial, temporal or activity 
relations. A parameterized structural representation system for this class of events is 
discussed. Parameters in such representations are arbitrarily chosen symbols used to insure 
consistent references to the same object in diverse relations. All-or-none matching of two 
representations is the basis for pattern recognition. In this framework, descriptions of pattern 
or concept prototypes act as structural templates for stimuli. As a result, recognition can be 
performed in a natural and structural way and is unaffected by manipulations of irrelevant 
variables. Typical recognition procedures are reviewed and a variety of alternative 
approaches are considered in light of the potential combinatorial explosions which might arise 
in applications of these procedures. One alternative is proposed which can exploit both 
redundancy among partially matching templates and computational parallelism in exhaustive 
search (recognition) problems. Another possibility considered is to find special recognition 
procedures for particular recognition problems. For example, to accomplish word recognition 
in speech understanding systems, highly practical techniques exist to match many templates in 
parallel (simultaneously) using only simple bit string operations. In addition, both the 
possibility of additional heuristic approaches to general recognition procedures and the total 
abandonment of relational representations are also considered in this paper. 

INTRODUCTION 

Many prevalent questions in information science concerning perceptual, learning, 
classification, and retrieval functions share a common conceptual base. These functions all 
necessitate some more or less formal approach to the representation of information and 
techniques for comparing two or more information structures. In this paper, the notion of a 
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structured event, a discrete, integrated, relational information structure, is introduced. 
Structured events provide a desirable basis for the representation of a wide variety of 
knowledge. Further, transformations between events are easily described and can be used to 
represent general behavior rules. 

The bulk of this paper addresses two basic questions which, for the sake of 
concreteness, are cast in the area of visual perception: (1) How should a stimulus and a 
memory prototype (e.g. a Gothic capital letter "A") be represented? (2) How can a stimulus 
representation be matched to a memory representation to accomplish recognition? The 
answers to these questions will be easily seen to be generalizable to other problems involving 
the representation and comparison of information structures. Before proceeding to a detailed 
discussion of these questions, however, a brief review of previous approaches and an 
overview of the proposed structural representation theory are provided. 

PREVIOUS THEORIES OF REPRESENTATION AND MATCHING 

Established theories for the representation and recognition of patterns fall into four 
categories. These will be called the graphic template model, spatial model, feature model, and 
generative (syntactic) model. Each class is considered in turn. 

The graphic template model (see, for example, Lindsay & Norman, 1972) proposes a 
simple and seemingly desirable solution to both the representation and pattern matching 
problems. In brief, a memory prototype is a graphic template or replica of the type of item to 
be recognized. The representation of a Gothic capital "A" is conceived of as a stencil or 
photograph of that letter. Stimuli are recognized as "A"'s, roughly speaking, whenever the 
light which they emit is present where the template is light and absent where the template is 
dark. The advantages of such a system are that recognition is determined by a direct contact 
and comparison of homologous stimulus and memory structures and that all classification 
alternatives may conceivably be evaluated simultaneously. Its disadvantages are well known 
and are summarized by the statement that a template is an oversensitive representation and 
one which lacks any basis for generalization. Even insignificant deviations between the 
stimulus and template (e.g. differences in proportion, size, orientation, font) may completely 
inhibit proper recognition. 

Spatial models underlie scaling theory approaches, signal detection theory, dimensional 
representations, correlational methods, discrimination analysis, and most decision theory 
approaches. In brief, a spatial model proposes that a prototype of a pattern class be 
represented as a single point in an n-dimensional (usually metric) space where each dimension 
reflects some multivalued attribute which takes a particular value for each stimulus. Any 
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stimulus item is evaluated on each dimension and is represented by the point at the 
corresponding coordinates in the pattern space. A stimulus is matched to each memory 
prototype by some arbitrary distance function, and classification is usually performed by 
assigning the stimulus to thé class associated with the nearest prototype. 

These models have the simplicity of representation and matching operations as their 
outstanding qualities. Their primary disadvantages are a corollary of this simplicity. These 
models are generally incapable of representing criterial value dependencies among a subset of 
stimulus attributes. They are also unable to recognize that, although a particular set of 
features or feature values are relevant to one pattern class, those features may be completely 
irrelevant to the definition of other classes. One way in which this can be seen is by 
considering the pattern volume corresponding to each pattern class. In spatial models the 
procedure of classifying all stimuli close to one prototype to the corresponding class defines a 
non-empty volume of points around each prototype which corresponds to the related class. If 
particular features values were irrelevant to some class (as "amount of green paint" is 
irrelevant to the pattern class "Volvo"), a decision procedure should ignore "amount of green 
paint" in considering the potential classification of objects as "Volvo". The appropriate pattern 
volume in such a case would then be a zero-volume hyperarea of some dimensionality less 
than that of the entire pattern space (Hayes-Roth, 1973, 1974b; Michalski, 1973; Watanabe, 
1973). 

Feature models like that of Pandemonium (Selfridge, 1959) posit that each class is 
defined by the simultaneous presence of a particular set of feature values. A prototype is 
represented as a set of critical feature values and their necessary frequency of occurrence in 
a stimulus which is to be considered an element of the corresponding class. While these 
models solve the dependence and irrelevance problems attributed to spatial models, they too 
have difficulties. Chief among these is that stimuli possessing correct features in an 
inappropriate configuration are improperly recognized. This is a direct result of the matching 
process used with feature list representations. A measure of the degree of successful 
matching of stimulus and prototype is usually computed by determining the proportion of 
features prescribed by the prototype that are found in the stimulus. Classification is then 
performed by assigning the stimulus to the category associated with the best matched 
prototype. 

Generative models include grammatical approaches to representation and matching, 
including linguistic pattern recognition (Uhr, 1971; Shaw, 1972; Joshi, 1973; Thomason, 1973), 
analysis-by-synthesis (Neisser, 1967), and top-down language understanding systems 
(Winograd, 1973; Woods, 1970). These approaches employ syntactic and semantic rules to 
describe the kinds of stimuli that may be produced and encountered in the environment. A 
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prototype is represented or conceived of in terms of a list of productions, transitions, or 

transformations which must be employed to generate it from a meaningless starting symbol. 

Matching of stimuli and prototypes is usually done in two steps. First, the stimulus is 

synthesized or "forged"; the rules of grammar are employed in some arbitrary manner until a 

particular sequence of transitions is found which leads to the production of an acceptably 

close replica of the stimulus. Second, when the transitions can be given an iterpretation which 

is plausible in the problem domain, that interpretation is employed in some way to effect 

classification or understanding. One advantage of this type of approach is particularly 

noteworthy. Given sufficiently powerful grammars, the generative technique is capable of 

computing all definable recognition functions (Hopcroft & Ullman, 1969). In specific, any 

structural dependencies or feature irrelevancies can be appropriately incorporated into the 

rules of the grammar. On the other hand, the power of these approaches is intimately 

connected to their principal disadvantages. Among these is their usually enumerative, 

recursive, or non-deterministic searches of the space of possibilities (all sentences or stimuli 

which can be produced by the grammar). As a result of such search procedures, these 

programs do not provide plausible models of the apparently simple and immediate recognition 

that is apparently involved in the perception of a well known pattern like the letter "A". 

Furthermore, the performance of these systems is seriously degraded by any expansions of 

the possible set of rules applicable at each step. 

In some sense, generative models seem related to natural mechanisms of recognition in 

the way Turing machines are related to human cognition. In both cases the strength of the 

relationship rests primarily on the ability of one machine to effect input-output 

transformations of a complexity equivalent to that of the natural system. Beyond.that, there is 

little to support the notion that the machine provides a believable or otherwise promising 

model of the natural computations of interest. 

STRUCTURAL REPRESENTATION THEORY 

Because of the inadequacies of the preceding alternatives, several researchers have 

suggested the use of predicate-calculus or equivalent graph representations for pattern 

prototypes and stimuli (Evans, 1969; Narasimhan, 1969; Winston, 1970; Barrow, oi. aL, 1972; 

Hayes-Roth, 1973, 1974a, 1974b, 1974c). In general, while the details of their approaches 

vary widely, all of these researchers have proposed some representation for structured 

events and procedures for all-or-none matching of two event representations to effect 

recognition. One such representation and related matching algorithm are reviewed here which, 

because of their generality, subsume the previously proposed alternatives. 

Structured events (Hayes-Roth, 1973) are configurations of objects in logical, spatial, 
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temporal, or activity relations. To represent these configurations, several kinds of elements 

are used. A relation is a set composed of a predicate item and a number of named predicate 

object items. A predicate is any property that is asserted to obtain among one, two, or more 

objects. The functional role of each.item in a relation is identified by its prefix symbol, "p " for 

predicate, and completely arbitrary type names for the predicate objects. Parameters are 

arbitrarily chosen symbols which name objects and are necessarily introduced in these 

representations to permit consistent multiple references to an object in diverse relations. 

Finally, a parameterized structural representation (PSR) is a two-tuple containing a set of 

parameters and a set of parameterized relations which are simultaneously true and which 

constitute the description of a single event of interest. 

Although the current paper is primarily directed to the structure and formal properties 

of such representations, it will help to consider the concrete example in Figure 1, in which a 

Gothic capital letter "A" is illustrated and the eight parameters used in its description are 

indicated. The corresponding PSR is labelled A and is given below: 

A: ( {a, b, c, d, e, L I , L2, L3}, 

{{p:on, node:a, line:Ll}, 

{p:on, node:b, line:Ll}, 

{p:on, nodex, lineiLl}, 

{p:on, nodex, line:L2}, 

{p:on, node.d, line:L2}, 

{p:on, node.e, line:L2}, 

{p:on, node:b, line:L3}, 

{p:on, node.d, line:L3}}> (1) 

Each parameter in the parameter set {a, b, c, d, e, L I , L2, L3} identifies either a node (a 

terminus of a line) or a line, of the line drawing of the "A". The body of the PSR contains 

relations asserting that each of the first five parameters is a "node" in the graphic structure 

and that several nodes are incident "on" several lines. 

It is not claimed that the PSR (1) is an accurate model of what humans acquire when 

they learn the corresponding pattern. However, such a representation has several salutary 

Figure 1. Structural Template as Prototype. 
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F E A T U R E S . T H E R E P R E S E N T A T I O N I S I N S E N S I T I V E TO ATTRIBUTES OF AN " A " W H I C H A R E NOT E S S E N T I A L TO 

T H E B A S I C C O N C E P T . A S IM ILAR D E S C R I P T I O N WOULD B E TRUE OF A N Y " A " W H I C H R E F L E C T E D T H E S E 

STRUCTURAL D E P E N D E N C I E S R E G A R D L E S S OF ITS OR IENTATION, FONT, P R O P O R T I O N , ETC. A S A RESULT, T H E 

P S R L A B E L L E D A I S C O N S I D E R E D A STRUCTURAL TEMPLATE. IT D E S C R I B E S T H O S E P R O P E R T I E S — V I S U A L , I N 

T H E C U R R E N T C A S E — O F A N Y S T I M U L U S W H I C H ARE N E C E S S A R Y FOR IT TO B E C L A S S I F I E D A S A P R O P E R 

I N S T A N C E OF T H E C L A S S OF BLOCK CAPITAL " A M , $ . ALTHOUGH IT I S P O S S I B L E THAT ADD IT IONAL F E A T U R E S 

( U N A R Y R E L A T I O N S ) OR OTHER n -ARY RELATIONS ( Q = 2 , 3 , ...) M I G H T B E P R E S E N T I N A N Y E X E M P L A R OF T H I S 

C L A S S , ALL OF T H E S E M A Y B E C O N S I D E R E D S U P E R F L U O U S H E R E . B E C A U S E T H E N U M B E R OF E L E M E N T A R Y 

R E L A T I O N S I N A P R E D I C A T E CALCULUS R E P R E S E N T A T I O N OR I N A P S R M A Y M A K E THE IR C O M P L E T E L I S T I N G 

T E D I O U S , A C O M P A C T F O R M I S ALSO U S E D I N THIS P A P E R . I N THAT FORM RELAT IONS W I T H R E D U N D A N T 

P R E D I C A T E S A N D P E R M U T A B L E O B J E C T S ARE M E R G E D A N D R E P R E S E N T E D B Y THEIR S E T U N I O N . IF T H I S I S 

D O N E FOR P S R A FOR F I G . 1 , T H E FOLLOWING C O M P A C T P S R I S P R O D U C E D : 

A : ( {A, B , C, D, E , L I , L 2 , L 3 } , 

{ { P : O N , N O D E : A , N O D E : B , N O D E X , L INE .LL } , 

{ P : O N , N O D E X , N O D E : D , N O D E . E , L INE :L2} , 

{ P : O N , N O D E . D , N O D E : B , L I N E : L 3 } } ) ( 2 ) 

B E F O R E C O N S I D E R I N G T H E U S E OF STRUCTURAL T E M P L A T E S I N R E C O G N I T I O N , T H E G E N E R A L P R O P E R T I E S 

O F T H E P R O P O S E D STRUCTURAL R E P R E S E N T A T I O N S Y S T E M SHOULD B E E L A B O R A T E D . P R E D I C A T E S M A Y B E 

C H O S E N W I T H C O M P L E T E F R E E D O M W H E R E THE ONLY C O N S I D E R A T I O N N E E D B E T H E T A S K TO B E 

P E R F O R M E D . O B J E C T T Y P E N A M E S , S P E C I F I E D B Y THE PARTICULAR P R E F I X S Y M B O L S P R E C E D I N G O B J E C T S I N 

A R E L A T I O N , A R E ALSO ARB ITRARY A N D SHOULD B E C H O S E N TO SUIT THE S P E C I F I C TASK. S O M E P R E D I C A T E S 

M A Y B E A B L E TO A C C E P T M O R E O B J E C T S THAN ARE OF INTEREST AT A N Y M O M E N T , A N D T H E S E O T H E R S 

N E E D NOT B E S P E C I F I E D AT ALL. FOR E X A M P L E , O N E M I G H T C O N C E I V E OF A D IST INCT P R E D I C A T E FOR E A C H 

V E R B - S E N S E I N A L A N G U A G E A N D A S S O C I A T E D P R E D I C A T E O B J E C T S R E P R E S E N T I N G E A C H OF T H E C A S E S 

A S S O C I A T E D W I T H THAT V E R B - S E N S E , E.G. AGENT, INSTRUMENT, LOCATION, ETC. I N S O M E I N S T A N C E S , T H E 

O R D E R OF A RELAT ION ( T H E N U M B E R OF P O S S I B L E P R E D I C A T E O B J E C T S ) WILL NOT B E T H E N U M B E R OF 

D I S T I N C T O B J E C T P R E F I X E S . FOR E X A M P L E , A S Y M M E T R I C B I N A R Y ( S E C O N D O R D E R ) RELAT ION W O U L D H A V E 

T W O O B J E C T I T E M S W I T H IDENTICAL P R E F I X E S (E.G., {P .EQUAL, VALUE:X, V A L U E . Y } ) . 

A N Y S E T OF RELAT IONS M A Y B E N A M E D B Y A S S I G N I N G IT AN ARB ITRARY P A R A M E T E R S Y M B O L , A N D 

T H E C O R R E S P O N D I N G LABELLED E V E N T M A Y B E C ITED AS THE OBJECT OF S O M E P R E D I C A T E B Y R E F E R E N C I N G 

THAT S Y M B O L A S T H E A P P R O P R I A T E P R E D I C A T E OBJECT ( H A Y E S - R O T H , 1 9 7 3 C ) . T H I S I S P A R T I C U L A R L Y 

U S E F U L W H E R E A TOTAL CONF IGURAT ION C O M P R I S E S SEVERAL P E R C E P T U A L L Y OR LOGICALLY D I S T I N C T 

S U B E V E N T S W H I C H A R E RELATED AS UNITARY W H O L E S I N S O M E W A Y . E X A M P L E S OF S U C H 

R E P R E S E N T A T I O N S C A N B E F O U N D I N THE TRANSLATION OF A L INGUISTIC P H R A S E STRUCTURE T R E E INTO A 

C O R R E S P O N D I N G P S R , W I T H E A C H N O D E I N THE TREE A S S O C I A T E D W ITH A P A R A M E T E R R E P R E S E N T I N G T H E 

S E T OF D E S C E N D A N T S E M A N A T I N G FROM THAT N O D E . 
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Although the PSR's thus far described have employed only parameters as predicate 
objects, in some sense this is not essential. When all objects are parameters and all content 
words are restricted to use as predicates, the PSR's are considered to be in explicit form. 
Otherwise, they are in implicit form. The relationship between the two forms is evident in the 
following semantically equivalent PSR's for the sentence, "John who is a very tall adolescent 
likes Mary to run with him." 

( {t, u, v, w, x, y, z}, 
{{p.name, personiw, word:x},{p:name, person.y, word:z}, 
z:{{p:Mary}}, {p:tall, how much.v, who:w}, 
x:{{p:John}}, v:{{p:very}}, t:{{p:run}}, 
{p.adolescent, who.w}, u:{{p:do together, what.t, agent.w, agent.y}}, 
{p.like, agent.w, object.u}}) (3) 

( (u, w, y}, 
{{p:name, person:w, word:John}, {p.name, person.y, word.Mary}, 
{p:tall, how much.very, who:w}, {p:adolescent, who:w}, 
u:{{p:do together, what.run, agent:w, agent:y}}, 
{p:like, agent.w, object.u}}) (4) 

The advantage of an implicit form like (4) is that it is easy to read because the content 
words which actually represent predicates may be used as if they were constants within 
relations. The value of an explicit form like (3) is that it clearly identifies every proposition 
predicated about the event. As a result, the comparison of any two structured events is most 
easily performed on explicit PSRs because irreconcilable differences between two patterns 
will always result from some lack of correspondence between predicates and will therefore be 
easily interpreted. Thus, any stimulus whose representation contains corresponding relations 
to those of a template can be seen to match the template. On the other hand, when explicit 
representations are being partial-matched to generate abstractions which are potential 
pattern templates (Hayes-Roth, 1973, 1974a, 1974c), irreconcilable differences (residuals in 
the matching process) constitute sets which may be considered categories of constants. In 
any given recognition problem, the pattern template may specify that only members of 
particular categories may occur in particular relations. For example, a pattern template for 
recognizing the occurrence of a sentence in active voice for the active-to-passive rule of 
transformational grammar may require that the subject of the sentence be in the category 
noun phrase, one of whose members is required, in turn, to be in the category noun. 

The representation of programmatic rules of behavior in this framework is achieved 
through the use of transformations between contingency and response event PSRs The 
contingency PSR describes an internal condition or state of the computing system which must 



8 

B E S A T I S F I E D B E F O R E T H E TRANSFORMAT ION I S I N V O K E D A N D THE R E S P O N S E O C C U R S . T H I S V I E W OF 

C O M P U T I N G I S L IKE THAT I N P R O D U C T I O N S Y S T E M S ( M I N S K Y , 1 9 6 7 ; NEWELL , 1 9 7 2 ; B E C K E R , 1 9 7 3 ) , W E B 

G R A M M A R S (PFLATZ & R O S E N F E L D , 1 9 6 9 ) , A N D P A T T E R N - D I R E C T E D P R O C E D U R E I N V O C A T I O N ( H E W I T T , 1 9 7 2 ; 

R U L I F S O N , E L 1 9 7 2 ) . T H E R E S P O N S E P S R D E S C R I B E S C O N D I T I O N S W H I C H ARE TO O C C U R A S A RESULT 

OF T H E S U C C E S S F U L I N V O C A T I O N OF THE TRANSFORMATION. A C O M P U T I N G S Y S T E M W H I C H I S C O N S T R U C T E D 

I N T H I S W A Y I S CALLED I N T E R R U P T - D R I V E N OR S T I M U L U S - D R I V E N , B E C A U S E C O M P U T I N G I S D I R E C T L Y 

C O N T R O L L E D B Y T H E D E T E C T I O N OF C O N D I T I O N S OF I M P O R T A N C E . T R A N S F O R M A T I O N S W H O S E C O N T I N G E N C I E S 

A R E D E S C R I P T I O N S OF S T I M U L U S E N C O D I N G S A N D W H O S E R E S P O N S E S D E S C R I B E A P P R O P R I A T E 

C L A S S I F I C A T I O N OR R E C O G N I T I O N B E H A V I O R S ARE CALLED CATEGORICAL. S U B S T I T U T I O N T R A N S F O R M A T I O N S , 

W H I C H E M P L O Y O N E OR M O R E P A R A M E T E R S I N BOTH THE C O N T I N G E N C Y A N D R E S P O N S E P S R ' S W H I C H A R E 

C O M M O N B E T W E E N T H E M , R E P R E S E N T B E H A V I O R S I N W H I C H PARTICULAR V A L U E S ARE E X T R A C T E D F R O M A 

S T I M U L U S A N D A R E I N C O R P O R A T E D DIRECTLY INTO THE RELATED R E S P O N S E CONF IGURAT ION . 

T H E S E T W O T Y P E S OF T R A N S F O R M A T I O N S ALONE ARE SUFF IC IENT TO R E P R E S E N T ALL C O N C E I V A B L E 

P R O C E D U R E S . A L T H O U G H CATEGORICAL TRANSFORMAT IONS ARE REALLY S P E C I A L C A S E S OF S U B S T I T U T I O N 

T R A N S F O R M A T I O N S , T H E Y M A Y B O T H B E I N D U C E D B Y EFFECT IVE ALGOR ITHMS W H I C H A R E S O M E W H A T 

D I F F E R E N T I N T H E T W O C A S E S ( H A Y E S - R O T H , 1 9 7 4 A , 1 9 7 4 C ) . T R A N S F O R M A T I O N S H A V E B E E N I N T R O D U C E D 

AT T H I S P O I N T TO C O M P L E T E T H E STRUCTURAL R E P R E S E N T A T I O N STORY A N D TO FACILITATE T H E R E A D E R ' S 

A P P R E C I A T I O N OF T H E G E N E R A L I T Y OF T H E LATER RESULTS. 

E N O U G H DETAIL H A S N O W B E E N P R O V I D E D O N THE R E P R E S E N T A T I O N Q U E S T I O N TO P E R M I T T H E 

C O N S I D E R A T I O N OF A L L - O R - N O N E M A T C H I N G , THE LOGICAL B A S I S OF STRUCTURED P A T T E R N R E C O G N I T I O N . 

A L L - O R - N O N E M A T C H I N G : T H E L O G I C A L B A S I S O F R E C O G N I T I O N 

P R E S U M I N G THAT K N O W N PATTERN P R O T O T Y P E S ARE R E P R E S E N T E D B Y P S R ' S , T H E T A S K OF 

R E C O G N I Z I N G T H E O C C U R R E N C E OF A PATTERN E X E M P L A R I S THAT OF D E T E C T I N G W H E N A S T I M U L U S C O N T A I N S 

ALL OF T H E STRUCTURAL RELAT IONS S P E C I F I E D B Y THE P R O T O T Y P E . C O N S I D E R T H E E X A M P L E I N F I G U R E 2 OF 

M 1 " F I ' M2 L V M A ) 1 2 

U 

A I I - U R - I M O N E M A T C H I N G A S T I M U L U S A N D T E M P L A T E . 

D E T E R M I N I N G W H E T H E R T H E S T I M U L U S S M A T C H E S THE STRUCTURAL T E M P L A T E A P R E V I O U S L Y D E S C R I B E D 

( 2 ) . T W O P R O B L E M S A R I S E A S A D IRECT RESULT OF THE INTRODUCTION OF ARBITRARILY C H O S E N P A R A M E T E R 

S Y M B O L S INTO T H E R E P R E S E N T A T I O N S OF BOTH THE ST IMULUS A N D P R O T O T Y P E . T H E B I N D I N G P R O B L E M 
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concerns the determination of a distinct correspondent among the parameters in S for each 
parameter in the template A. Corresponding parameters represent objects which play 
equivalent roles in their respective patterns, those roles being defined by the relations in the 
template. In the current example it is intuitively apparent that each node or line in A 
corresponds to the node or line in S which occupies a similar locus in the drawings. The 
correspondences are denoted usa, v=b, wsc, xsd, yse, M1=L1, M2sL2, and M3=L3. 

The solution of the binding problem is, however, closely allied to a solution of another 
problem, the matching problem. The matching problem concerns the identification of a 
corresponding relation in S for each relation in A such that the two relations are completely 
comparable when the alphabetic differences between corresponding predicate object 
parameters are ignored. In the current example, it is clear that every relation in A is 
contained in S under the stated parameter equivalences. Thus S is said to match A, denoted 
S(*)A, and the interpretation is given that the pattern S contains the subpattern A. 

In short, having solved the binding problem, the matching problem is to determine 
whether every relation present in A is also present in S. On the other hand, a desirable 
solution to the binding problem must necessarily provide a complete solution to the matching 
problem, too. In the next section, two previously published all-or-none matching procedures 
are briefly reviewed so that the proposed alternatives may be more fully appreciated. 

PREVIOUSLY PUBLISHED PROCEDURES FOR ALL-OR-NONE MATCHING . 

The first algorithm, the interference matching procedure (Hayes-Roth, 1974a), is a three 
s tep serial procedure for simultaneously solving the binding and matching problems. The 
procedure is easily described in terms of the concept of models of two or more eveents . A 
model of a set of events with PSRs Ej, E 2 , E n comprises the following components: a set of 
parameter correspondences defining equivalent parameters in each of the E¡; an abstraction E 
which is a set of relations common to each of the E¡ when alphabetic differences between 
corresponding parameters are ignored; and a set of residuals, Rj, R2,..., R n which are sets of 
relations present in each original E¡, respectively, which are not represented in the common 
abstraction E. Distinct models of a stimulus and a template will describe alternative ways of 
matching the stimulus to the template (e.g. identifying more than one occurrence of a 
particular subpattern in a stimulus pattern). Distinct models of any set of events identify 
alternative ways in which each element in the set is similar to the others. The former 
interpretation will now be elaborated as the use of models in the all-or-none interference 
matching procedure for pattern recognition is explained. 

The three steps of the procedure as applied to the question of determining whether S 
matches A are as follows: 



1 0 

S T E P JL T H E S T I M U L U S A N D T E M P L A T E ARE R E P R E S E N T E D A S EXPL IC IT P S R S S A N D A , 

R E S P E C T I V E L Y . I N PARALLEL, ALL RELATIONS I N S ARE C O M P A R E D W ITH ALL RELAT IONS I N A . E A C H P A I R OF 

R E L A T I O N S F R O M S A N D A W H I C H C O N T A I N IDENTICAL OR SEMANT ICALLY E Q U I V A L E N T P R E D I C A T E S A R E 

M A T C H E D TO P R O D U C E A C O R R E S P O N D I N G M O D E L . T H E ABSTRACT ION I N TH IS M O D E L C O N T A I N S A S I N G L E 

R E L A T I O N OF T H E S A M E T Y P E AS I N BOTH C O M P A R E D RELATIONS. E A C H P A R A M E T E R I N T H I S R E L A T I O N I S 

A S S I G N E D A N E W S Y M B O L I C N A M E I D E N T I F Y I N G THE P A I R OF P A R A M E T E R S F R O M S A N D A W H I C H M U S T B E 

A S S U M E D TO C O R R E S P O N D I N T H E ORIGINAL P A T T E R N S TO ALLOW THE I N T E R P R E T A T I O N THAT T H E R E L A T I O N S 

A R E E X A C T L Y E Q U I V A L E N T . T H E R E S I D U A L S OF S A N D A I N THIS M O D E L ARE ALL R E L A T I O N S O R I G I N A L L Y 

P R E S E N T I N S A N D A , R E S P E C T I V E L Y , E X C E P T FOR THE M A T C H E D RELATIONS R E P R E S E N T E D I N T H E N E W 

A B S T R A C T I O N . I N E A C H M O D E L , T H E SET OF P A R A M E T E R C O R R E S P O N D E N C E S C O N T A I N S E A C H P A I R OF 

P A R A M E T E R S A S S U M E D TO C O R R E S P O N D B Y THE FORCED E Q U I V A L E N C E OF M A T C H E D R E L A T I O N S F R O M S A N D 

A . A T ALL T I M E S D U R I N G T H E I N T E R F E R E N C E M A T C H I N G P R O C E D U R E , ONLY M O D E L S W H I C H E N T A I L 

C O N S I S T E N T P A R A M E T E R B I N D I N G S ARE ALLOWED; THAT I S , E A C H P A R A M E T E R I N A C A N B E A S S I G N E D AT 

M O S T O N E C O R R E S P O N D E N T I N S . 

S T E P 2 , I N PARALLEL, ALL P A I R S OF CONS I STENT A N D M E R G E A B L E M O D E L S A R E C O M B I N E D TO F O R M 

N E W , M O R E I N F O R M A T I V E M O D E L S . T W O M O D E L S ARE CONS I STENT IF THEIR P A R A M E T E R C O R R E S P O N D E N C E S 

A R E JOINTLY C O N S I S T E N T I N T H E P R E V I O U S L Y D E S C R I B E D S E N S E . T H E Y ARE M E R G E A B L E IF ALL R E S I D U A L S I N 

E A C H M O D E L C O N T A I N T H E A B S T R A C T I O N OF THE OTHER M O D E L . THAT I S E A C H M O D E L TO B E M E R G E D M U S T 

R E D U C E T H E U N E X P L A I N E D R E S I D U A L S OF THE OTHER B Y I D E N T I F Y I N G S O M E RELAT IONS W H I C H A R E C O M M O N 

TO B O T H A N D W H I C H A R E C O M P L E M E N T A R Y TO T H O S E ALREADY IDENT IF I ED . W H E N T H E S E C O N D I T I O N S A R E 

S A T I S F I E D , T H E M O D E L S A R E C O M B I N E D B Y FOLLOWING T H E S E S I M P L E RULES: T H E S E T OF P A R A M E T E R 

C O R R E S P O N D E N C E S OF B O T H M O D E L S ARE M E R G E D B Y F O R M I N G THEIR S E T U N I O N ; A N D E A C H R E S I D U A L I N 

T H E N E W M O D E L I S T H E S E T I N T E R S E C T I O N OF THE C O R R E S P O N D I N G R E S I D U A L S I N T H E ORIG INAL M O D E L S . 

S T E P & E A C H M O D E L W H I C H C O N T A I N S A NULL RES IDUAL FOR T H E T E M P L A T E P A T T E R N A I D E N T I F I E S 

O N E O C C U R R E N C E OF T H E P A T T E R N A I N THE ST IMULUS S . E A C H DISTINCT M O D E L R E P R E S E N T S A U N I Q U E 

O C C U R R E N C E OF A I N S . T H E C O R R E S P O N D E N T I N S FOR E A C H P A R A M E T E R I N A I S S P E C I F I E D B Y T H E 

A P P R O P R I A T E E L E M E N T I N T H E M E R G E D SET OF P A R A M E T E R C O R R E S P O N D E N C E S . 

A L T H O U G H IT I S A P P A R E N T THAT THIS P R O C E D U R E I S EFFECT IVE , TWO ADDIT IONAL P O I N T S S H O U L D B E 

M A D E . F I R S T , E V E R Y P O S S I B L E O C C U R R E N C E OF THE T E M P L A T E A I N T H E S T I M U L U S S I S D E T E C T E D A N D 

R E P R E S E N T E D B Y A C O R R E S P O N D I N G M O D E L . S E C O N D , THIS ALGORITHM I S I N S O M E S E N S E O P T I M A L FOR 

T H E T A S K OF I D E N T I F Y I N G E V E R Y O C C U R R E N C E OF A I N S . T H I S C O N C L U S I O N I S A D I R E C T RESULT OF T H E 

FACT THAT O N L Y T H O S E M O D E L S W H I C H M A Y LEAD TO A SOLUTION ARE E V E R M A N I P U L A T E D , A N D 

M A N I P U L A T I O N S C E A S E A S S O O N A S SUFFIC IENT E V I D E N C E I S O B T A I N E D THAT A N Y FURTHER O P E R A T I O N S WILL 

B E FUTILE. F U R T H E R , T H E P R O C E D U R E RAP IDLY R E D U C E S THE SET OF M E R G E A B L E M O D E L S B Y R E D U C I N G 

R E S I D U A L S W H E N E V E R A M E R G E O C C U R S A N D , THEREFORE, I S G U A R A N T E E D TO HALT. 



1 1 

T H E S E C O N D ALGOR ITHM I S CALLED T H E S U C C E S S I V E R E F I N E M E N T P R O C E D U R E ( B A R R O W , e± sL, 

1 9 7 2 ) . IT S O L V E S T H E B I N D I N G A N D M A T C H I N G P R O B L E M S B Y S U C C E S S I V E L Y I D E N T I F Y I N G F E W E R A N D 

F E W E R P O S S I B L E S P A R A M E T E R C O R R E S P O N D E N T S FOR E A C H P A R A M E T E R I N A A N D T H E N E N U M E R A T I V E L Y 

C H E C K I N G E A C H P O S S I B L E B I N D I N G FUNCTION ( A S S I G N I N G O N E S P A R A M E T E R TO E V E R Y A P A R A M E T E R ) TO 

S E E IF IT E N T A I L S A C O M P L E T E M A T C H B E T W E E N T H E RELATIONS OF A A N D S . T H E P R O C E D U R E B Y W H I C H 

P O S S I B L E S C O R R E S P O N D E N T S FOR E A C H A P A R A M E T E R ARE H Y P O T H E S I Z E D I S TO C O M P U T E F E A T U R E S OF 

E A C H A A N D S P A R A M E T E R A N D TO C O N S I D E R A N Y P A R A M E T E R Q I N S W H I C H E X H I B I T S ALL T H E F E A T U R E S 

OF A P A R A M E T E R R I N A A S A P O S S I B L E C O R R E S P O N D E N T OF R. T H E P O S S I B I L I T I E S A R E S U C C E S S I V E L Y 

R E F I N E D ( R E D U C E D ) B Y C O M P U T I N G M O R E A N D M O R E C O M P L E X F E A T U R E S ( S U C H A S W H E T H E R R O C C U R S I N 

A R E L A T I O N { P T B I G G E R , L:R, 2 : W } , W H E R E W I S A P A R A M E T E R W H O S E F E A T U R E S I N C L U D E F J A N D F2>. 

IF S U C C E S S I V E R E F I N E M E N T S IDENT IFY A N A P A R A M E T E R W I T H N O P O S S I B L E C O R R E S P O N D E N T S , 

R E C O G N I T I O N T E R M I N A T E S I N FAILURE. I N A N Y OTHER C A S E , IT M A Y C O N T I N U E UNTIL S U C H T I M E A S A 

C O M P L E T E B I N D I N G F U N C T I O N B E T W E N T H E P A R A M E T E R S OF A A N D S I S G E N E R A T E D C O N S I S T E N T W I T H T H E 

C U R R E N T R E F I N E M E N T A N D A TEST FOR M A T C H I N G RELATIONS I S P E R F O R M E D . 

S T R U C T U R E D P A T T E R N R E C O G N I T I O N : P R O B L E M S A N D P O S S I B I L I T I E S 

B E C A U S E T H E A L L - O R - N O N E M A T C H I N G P R O B L E M I S E Q U I V A L E N T TO T H E G R A P H M O N O M O R P H I S M 

P R O B L E M ( B A R R O W , G L AL* 1 9 7 2 ) A N D BOTH ARE M E M B E R S OF T H E CLASS OF C O M P L E T E P R O B L E M S 

( P R O B L E M S S O L V A B L E I N P O L Y N O M I A L T I M E ONLY, A P P A R E N T L Y , B Y N O N - D E T E R M I N I S T I C P R O C E D U R E S ) , IT I S 

P O S S I B L E THAT N O D E T E R M I N I S T I C ALGORITHM FOR STRUCTURED E V E N T R E C O G N I T I O N E X I S T S W H I C H D O E S NOT 

R E Q U I R E A N A M O U N T OF T I M E W H I C H G R O W S EXPONENT IALLY W ITH T H E N U M B E R OF P A R A M E T E R S A N D 

R E L A T I O N S I N T H E T E M P L A T E A N D S T I M U L U S ( K A R P , 1 9 7 2 ) . FOR E X A M P L E , AS T H E N U M B E R OF S T I M U L U S 

R E L A T I O N S W I T H P R E D I C A T E on I N C R E A S E S I N THE P R E C E D I N G E X A M P L E , T H E N U M B E R OF S T E P 1 M O D E L S 

I N C R E A S E S I N P R O P O R T I O N TO T H E PRODUCT OF THE N U M B E R OF T H E S E W I T H T H E N U M B E R OF 

C O R R E S P O N D I N G T E M P L A T E RELATIONS. W O R S E YET , I N PRACTICAL P R O B L E M S T H E N U M B E R OF P A T T E R N 

T E M P L A T E S I S Q U I T E LARGE (E.G. , A 1 5 0 0 W O R D V O C A B U L A R Y I N T H E C A R N E G I E - M E L L O N U N I V E R S I T Y 

S P E E C H U N D E R S T A N D I N G S Y S T E M , M O S T OF W H I C H R E Q U I R E N U M E R O U S ALTERNAT IVE P R O N U N C I A T I O N 

T E M P L A T E S ) A N D E A C H T E M P L A T E M U S T B E S E P A R A T E L Y M A T C H E D TO T H E S T I M U L U S . 

T H U S , T H E R E A R E FOUR DISTINCT A V E N U E S OF A P P R O A C H FOR FUTURE W O R K : ( 1 ) A L G O R I T H M S L IKE 

T H E I N T E R F E R E N C E M A T C H I N G A N D S U C C E S S I V E R E F I N E M E N T P R O C E D U R E S M A Y B E H E U R I S T I C A L L Y 

I M P R O V E D ; ( 2 ) T H E C O M P U T A T I O N W H I C H T H E Y P E R F O R M M A Y B E O R G A N I Z E D A N D P E R F O R M E D I N PARALLEL 

OR I N S O M E O T H E R E F F I C I E N T W A Y ; ( 3 ) SPEC IAL ALGORITHMS M A Y B E D E V E L O P E D FOR R E S T R I C T E D C L A S S E S 

OF P A T T E R N S T R U C T U R E S ; OR ( 4 ) LESS POWERFUL ( G E N E R A L ) PATTERN R E P R E S E N T A T I O N S M A Y B E U S E D . 

E A C H OF T H E S E P O S S I B I L I T I E S I S C O N S I D E R E D I N TURN. 

( 1 ) S E V E R A L H E U R I S I T C S FOR FAST PATTERN M A T C H I N G (OR G R A P H M O N O M O R P H I S M ) H A V E A L R E A D Y 
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been tried (Barrow, e l âU 1972; Hayes-Roth, 1973). These usually involve reducing the 
search space of possible binding functions or stimulus-template relation correspondences by 
computing additional features of the possible correspondents. Both of the procedures 
presented above employ such heuristics. Additional research may yield more practical 
procedures than those currently available. For example, the interference matching procedure 
can be exogenously constrained to consider at most M models and to introduce additional 
relations into existing models in such a way as to minimize the potential combinatorial 
explosion of alternative models (e.g., the next predicate type from the template for which 
stimulus correspondents are enumerated by generating Step 1 models is chosen to be the one 
with fewest possible stimulus correspondents). Some of the desirable properties of such 
space limited interference matching (SLIM) procedures are discussed elsewhere (Hayes-Roth, 
1974b, 1974c). 

(2) Alternative organizations of the computing required for pattern matching may be 
sought which can reduce the computing time or steps required. For example, for real-time 
control, very fast recognition is desired, and it is interesting to inquire whether any algorithm 
could solve the recognition problem with a template of N relations in k, k*N, or 
s teps (for some k or f(N)) and how this procedure would be affected by increasing numbers of 
templates or stimulus components. 

For example, one possible recognition system for a set of M templates, Tj , T 2 , T ^ 
which can be economically organized to allow partial results of matching the stimulus to one 
template to be retained and used when other similar (partially matching) templates are 
subsequently evaluated is as follows. Let each template Tj be represented as a set of explicit 
relations R: 1 , R; n (i.e. all objects of R: : are parameters). Further, let each n-th order 
stimulus relation wih the same predicate Q be considered as a separate instance of a first 
level template Q ( x 1 , x n ) . Thus, the k instances of the template Q ( x j , x n ) may be identifed 
as Q[ l ] = (aj J, a 1 > 2 > a 1 > n ) , Q[k] - ( a k j , a^ n ) , meaning that a ( j is the parameter 
occurring as the j-th predicate object in the i-th distinct stimulus relation of predicate type Q. 

The recognition of each template Tj is effected by forming a network whose nodes 
correspond to conjunctions of relations (a level m node Q in the network for Tj corresponds to 
the conjunction Q(xj, x n ) = Rj j and R | > 2 and ... and R j > m). Each node Q is associated with a 
memory M(Q) whose k elements are M(Q)[1], M(Q)[k] such that M(Q)[j] « ( a y , a^ n) is the 
list of n argument values corresonding to the j-th instance in the stimulus of the pattern 
represented by Q(xj, x n ) . The arcs in this network connect a level m node Q to a level m-1 
node A(Q) and a level one node B(Q) whose conjunctive product is equivalent to Q. Thus a 
template Tj with nj relations is represented by a binary tree of nj levels. Finally, recognition 
of template Tj is effected by iteratively computing all instances of each level m node Q from 
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the instances of A(Q) and B(Q), for m - 2, 3, nj. Notice that several templates Tj , T^, .»> 
T: might share a common subpattern (a subset of equivalent relations), and this can be 
reflected by their sharing a common subtree with root Q in the recognition net. As a result, a 
minimal amount of computing can be done and all stimulus instances of the common subpattern 
Q stored in M(Q). 

These notions can be formalized as follows. The i-th element of any list L is denoted 
L[i], so the j-th argument value of the i-th instance of the template represented by Q is 
M(Q)[i][j]. the length of L is denoted length(L). Each node Q is actually a list (A(Q), B(Q>, M{Q), 
N(Q), S(Q), D(Q), E(Q)), as follows: 

A(Q) and B(Q) are the two nodes conjoined at Q; 

M(Q) is the memory stack of all argument lists (instances) satisfying Q; 

N(Q) is the number of argument values extracted from A(Q) and B(Q) instances and 
placed into the M(Q) stack as an instance of Q; 

S(Q) is a list of two-tuples (i,j) which mean that any instance of Q must derive from a 
pair of argument lists, one from each of M(A(Q)) and M(B(Q)) with the requirement that the i-th 
argument from A(Q) must be the same CS") as the j-th argument fropn B(Q). As an example, if 
Q2 represents ({p:on, node:a, line.Ll} and {p:on, node.b, line.Ll}), then if each argument list 
from Ql (the node for all instances of {p:on, node:x, line.y}) is a list of the form (node, line), 
we will require that LI = LI by putting (2, 2) in S(Q2); 

D(Q) similarly is a list of index pairs (P,j') requiring that the i'-th argument from A(Q) be 
different ("D") than the j'-th from B(Q). Continuing with the preceding example, since a is not 
equal to b, (1, 1) is in D(Q2); 

E(Q) is a list of length N(Q) of pairs (A!OR!B, index) which say where the argument 
values for M(Q)are to be derived from. If E(Q)[k] = (A(Q), m), the k-th argument value for M(Q) 
is extracted ("E") from whatever argument was in the m-th location of the argument list used 
from A(Q). Similarly, if E(Q)[k] = (B(Q), m), it is taken from B(Q). 

Given this network representation, a highly parallel algorithm which can be used for 
recognition is as follows. It is written in a slightly extended form (allowing the simple type of 
list indexing used above) of LEAP (Feldman & Rovnar, 1969; Feldman, 1972) which is itself an 
extended ALGOL compiler. It should be noticed that all blocks of code at the same level 
between the identifiers parbegin and parend ("parallel" begin and end) and all instantiations of 
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the blocks within the iterative parfor ("parallel" for) and p•rforf^h^:^ra l^ , , , breach) can be 
executed in parallel. Thus, the entire procedure for computing all instances of Q from 

instances of A(Q) and B(Q) could conceivably be computed in three time steps and a template 

with N relations recognized in 3*N steps. 

procedure eval (list Q); 

begin "evalQ" 

comment Let Q^AtQ^WQJMQJiWQ^QWQ^Q)) ". 
and let each of these component names be a macro which compiles into 

Q[k] for the appropriate k (e.g., A(Q)=Q[1]). Similarly, let 

s!item=(i,j) and d!item=(P,f) and let i,j,i',j' be macros 

similarly expanded; 

integer array test!count[l:length(M(A(Q))), l:length(M(B(Q)))]; 

integer m, n, N(Q), i, j, i', j'j 

list slitem, dlitem, A(Q), B(Q), M(Q), E(Q); 

comment test!count[m,n]*k implies that the m-th instance of 

A(Q) and the n-th instance of B(Q) satisfy k of the total number 

of same/different tests on argument values specified by S(Q) and 

D(Q). If k=length(S(Q))+length(D(Q)), these two instances 

can be combined and the appropriate argument values (specified by 

E(Q)) extracted and placed in a list in M(Q) as an instance 

of Q; 

begin "step 1 " 

comment initialize test!count to zero; 

parfor rm-l step 1 to length(M(A(Q))) do 

parfor n<~l step 1 to length(M(B(Q))) do 

test!count[m,n]<-0; 

end "step 1"; 

begin "step 2" 

parbegin "step 2a" 

comment Evaluate each requirement in S(Q) in parallel 

over all pairs of instances of A(Q) and B(Q) in parallel; 

parforeach slitem such that slitem in S(Q) do 

parfor m<-l step 1 to length(M(A(Q))) do 

parfor n<-l step 1 to length(M(B(Q))) do 

test!count[m,n]<-test!count[m,n] + 

(if M(A(Q))[m,i] - M(B(Q))[n,j] then 1 else 0); 
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comment s.item is iteratively bound to each element 
in s(Q), a list of two elements, which simultaneously binds 
i and j; 

parend "step 2a"; 

parbegin "step 2b" 
comment As in "step 2a" for requirements in D(Q); 
parforeach d!item such that d.item in D(Q) do 
parfor rm-1 step 1 to length(M(A(Q))) do 
parfor n«-l step 1 to length(M(B(Q))) do 

test!count[m,n]<-test!count[m,n] + 
(if M(A(Q))[m,r] - M(B(Q))[n,j'] then 0 else 1); 

comment d.item is iteratively bound to each element 
in D(Q), a list of two elements, which simultaneously binds 
i' and j'; 

parend "step 2b"; 
end "step 2"; 

begin "step 3" 
comment Find all pairs of instances of A(Q) and B(Q) 

which have satisfied Q; 
parfor m«-l step 1 to length(M(A(Q))) do 
parfor n<-l step 1 to length(M(B(Q))) do 

if test!count[m,n>length(S(Q)Hength(D(0» then 
put extract(M(A(Q))[m], M(B(Q))[n]) in M(Q) 

before 1; 
comment extract(alist,blist) constructs an instance of Q 

(a list of N(Q) elements) from alist (an instance of A(Q)) 
and blist (an instance of B(Q)) according to E(Q) and 
put x in L before 1 places the element x 
in the first position (at the head) of list L; 

end "step 3"; 
comment Now M(Q) contains all instances of the pattern which 

Q(xj, x n ) represents; 
end "evalQ"; 

In sum, the proposed organization and algorithm have two major advantages: (1) they 
exploit redundancy during the recognition of multiple templates sharing common subtemplates 
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B Y O N L Y C O M P U T I N G I N S T A N C E S OF T H E S E C O M M O N S U B P A T T E R N S A S I N G L E T I M E A N D S T O R I N G T H E M I N 

C O R R E S P O N D I N G M ( Q ) LISTS THROUGHOUT T H E NETWORK; ( 2 ) T H E Y ALLOW FOR E X T E N S I V E A M O U N T S OF 

P A R A L L E L I S M D U R I N G R E C O G N I T I O N P R O C E S S I N G . W H E T H E R OR NOT T H E S E P R O V E V A L U A B L E D E P E N D S 

CRIT ICALLY O N T H E AVAILAB IL ITY OF A P P R O P R I A T E PARALLEL S Y S T E M S A N D T H E N U M B E R OF I N S T A N C E S OF 

E A C H S U B P A T T E R N , S I N C E T H E P O S S I B L E N U M B E R OF I N S T A N C E S OF Q I S 

L E N G T H ( M ( A ( Q ) ) ) * ^ N G T H ( M ( B ( Q ) ) ) . 

( 3 ) A V E R Y P R O M I S I N G D I R E C T I O N FOR R E S E A R C H I N STRUCTURED P A T T E R N R E C O G N I T I O N I S T H E 

D I S C O V E R Y OF S P E C I A L R E P R E S E N T A T I O N A L C A S E S W H E R E S I M P L E R ( L E S S G E N E R A L ) R E C O G N I T I O N A L G O R I T H M S 

WILL S U F F I C E . A N E X A M P L E F R O M OUR CURRENT S P E E C H U N D E R S T A N D I N G R E S E A R C H WILL M A K E T H I S P O I N T 

C L E A R . O N E OF T H E M A J O R P R O B L E M S I N S P E E C H U N D E R S T A N D I N G I S W O R D R E C O G N I T I O N . T H I S I S 

D IFFICULT FOR M A N Y R E A S O N S , TWO OF W H I C H ARE THAT E A C H W O R D H A S N U M E R O U S P O S S I B L E 

P R O N U N C I A T I O N S ( P H O N E T I C S P E L L I N G S ) A N D I N A N Y G I V E N I N S T A N C E A P H O N E M E M A Y B E M I S S I N G 

( U N D E T E C T E D ) OR A N EXTRA P H O N E M E M A Y B E I N S E R T E D ( INCORRECTLY D I F F E R E N T I A T E D F R O M ITS 

T E M P O R A L L Y A D J A C E N T N E I G H B O R S ) . F U R T H E R M O R E , AT A N Y PO INT I N T I M E , T, T H E C O M P U T A T I O N A L 

S U B S Y S T E M THAT I S U S E D TO I D E N T I F Y P H O N E M E S P R E S E N T I N T H E S P E E C H I N P U T M A Y H Y P O T H E S I Z E 

N U M E R O U S A L T E R N A T I V E S H(T) « ( P ^ , P ^ 2 > PT ,N^ - ^ N E PARTICULARLY E F F I C I E N T S T R A T E G Y FOR 

P E R F O R M I N G R E C O G N I T I O N I N TH I S E N V I R O N M E N T I S N O W P R O P O S E D . 

F R E Q U E N T L Y , T H E N U M E R O U S P H O N E T I C SPELL INGS FOR E A C H W O R D C A N B E E F F I C I E N T L Y 

R E P R E S E N T E D B Y A F IN ITE STATE TRANS IT ION NETWORK WITHOUT C Y C L E S , B E C A U S E T H E M U L T I P L E S P E L L I N G S 

RESULT F R O M T H E I N D E P E N D E N T C O M B I N A T I O N S OF P H O N E T I C ALTERNAT IVES AT V A R I O U S T E M P O R A L 

P O S I T I O N S I N T H E W O R D . F O R E X A M P L E , T H E FOLLOWING E IGHT P R O N U N C I A T I O N S ( S P E L L I N G S ) OF " A M E R I C A " 

C A N B E E F F I C I E N T L Y C O D E D B Y T H E LIST EQU IVALENT T ^ I N ( 4 ) C O R R E S P O N D I N G TO T H E N E T W O R K OF 

F I G U R E 3 : ( AX ,M ,EH ,R ,AX ,K ,AX ) , (AX,M,EH,R,AX,K,AH), (AX,M,EH,R, IH ,K ,AX) , ( A X , M , E H , R , I H , K , A H ) , 

( A H , M , E H , R , A X , K , A X ) , (AH,M,EH,R ,AX ,K ,AH) , (AH,M,EH,R, IH,K,AX), (AH,M,EH,R,AH,K, IH) , 

T J = ( (AX ,AH) ,M ,EH ,R , (AX , IH ) ,K , (AX ,AH) ) ( 4 ) 

AX 
M EH 

AH 

F I G U R E 3 . A TRANSIT ION NETWORK FOR T H E 8 P R O N U N C I A T I O N S OF 

" A M E R I C A . " 

G I V E N N U M E R O U S H Y P O T H E S I Z E D P H O N E M E S H(T) AT E A C H T I M E T=L,2, . . . ,N A N D N U M E R O U S W O R D 
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templates T j , T 2 , T M as in (4), an efficient recognition procedure exists which can examine 
all templates and all alternative pronunciations in parallel using only bit string logical products 
(and) and sums (or). For each phoneme p, several inverted bit strings s(p,j) « b l ^ - b ^ are 
computed and permanently stored in a dictionary, as follows: bj*l if p occurs as an alternative 
in the j-th arc (or in the j-th sublist) of Tj, where j-l,2,...,L and L is the length of the longest 
word template (list); bj~l if the length of Tj is less then j ; in any other case, bj«0. If any 
selection of phonemes p k , P^+i, », PK+L -1 * r o m ^ temporally adjacent hypothesized se ts h(k), 
h(k+l), h(k+L-l) matches a template Tj, then the i-th bit, bj, of the bitwise logical product B 
- s ( p k , l ) and s ( p k + 1 , 2 ) and ... and $(Pk+L-l>L) w i l 1 b e Moreover, if the logical sum (bitwise 
or) of the inverted strings s(p k + j ,n) for j«l,2,...,length(h(k)) are called C(k,n) (for each n - 1 , 2, 

L), the i-th bit dj of D(k) * C(k,l) and C(k,2) and ... and C(k+L-1,L) is 1 if any such selection 
of phonemes entails recognition of Tj starting at t»k. 

The preceding extremely efficient parallel search of all word templates is adequate only 
when there is a perfect match between the sequences of hypothesized phonemes and a word 
template. However, there is a simple elaboration which makes it suitable for the cases of at 
most r insertions or deletions. Instead of the preceding sorts of computations, we use 
inverted bit strings y(p,j) of length M*L, where L bits are assigned successively to each word 
template T j , T 2 , T^, and the j-th bit of the L bits for word template Tj is 1 if phoneme p 
occurs in the j-th sublist of Tj or if j exceeds the length of Tj. Let the L bits corresponding to 
Tj (those starting at position (i-l)*L+l) in such a string B be denoted Z(B,i). The preceding 
algorithm could be recast in terms of such strings y as follows. Let C(k,n) be the bitwise 
logical sum of all strings y(p^j>n) as before, and let D(k) • C(k,l) or C(k+1,2) or ... or C(k+L-
1,L). Then Z(D(k),i) « 111....1 m)1- only if some selection of temporally adjacent phonemes 
matches Tj starting at t=k. In this case, the number of 1 bits In Z(D(k),i), count(Z(D(k),i)), is 
equal to L. 

Now suppose a single deletion occurred in word Tj at time t=k+m (m in {1,2,...,L-1}). 
Then the first m bits of Z(D(k),i) will be 1 but the rest will probably be 0. On the other hand, 
the last L-m-1 bits of Z(D(k-l),i) will all be 1, Similarly, if a single insertion occurred at time 
k+m, the last L-m bits of Z(D(k),i) will probably be 0 but the last L-m-1 bits of Z(D(k+l),i) will 
be 1. Thus, an efficient way to recognize Tj at time k allowing at most 1 insertion or deletion 
or both is to determine whether count(Z(D(k-l) or D(k) or D(k+l)),i) > L-2. In general, to 
recognize Tj with a maximum of r insertions or deletions the recognition algorithm is "accept Tj 
if count(Z(convolve(k,r),i)) > L-r-1," where convolve(k,r) « D(k-r) or D(k-r+l) or ... or D(k+r). 

In sum, in the special case of word recognition, a very powerful yet simple technique 
exists for evaluating many templates (with errors) in parallel and obviates a more general, 
combinatorial procedure. Such techniques may possibly occur in other limited recognition 
problem domains and are clearly worth seeking. 
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( 4 ) F INALLY, L E S S G E N E R A L PATTERN R E P R E S E N T A T I O N S C A N B E U S E D . F O R E X A M P L E , T H E 

P R E C E D I N G F R A M E W O R K FOR W O R D R E C O G N I T I O N M I G H T B E C O N S I D E R E D A F E A T U R E R E P R E S E N T A T I O N S I N C E 

R E C O G N I T I O N C O U L D B E P E R F O R M E D O N B IT STR INGS W H E R E I N E A C H B IT C O R R E S P O N D S TO A P A R T I C U L A R 

A T T R I B U T E OF T H E S T I M U L U S . T H E N E E D TO C O N S I D E R A B A N D O N I N G G E N E R A L STRUCTURAL R E P R E S E N T A T I O N 

A N D M A T C H I N G WILL N E C E S S A R I L Y A R I S E W H E N E V E R , I N S P E C I F I C C O N T E X T S , A C O M B I N A T O R I A L E X P L O S I O N I N 

A L L - O R - N O N E M A T C H I N G ACTUALLY O C C U R S . I N GENERAL H O W E V E R IT I S NOT P O S S I B L E TO D E T E R M I N E T H I S 

O N A P R I O R I C O N S I D E R A T I O N S A N D , A S A RESULT, NOTH ING FURTHER WILL B E S A I D H E R E . 

C O N C L U S I O N S 

R E A L - W O R L D P A T T E R N R E C O G N I T I O N P R O B L E M S A P P E A R TO R E Q U I R E RELATIONAL ( G R A P H ) 

R E P R E S E N T A T I O N S . G E N E R A L A L L - O R - N O N E M A T C H I N G P R O C E D U R E S FOR S U C H P R O B L E M S W E R E D I S C U S S E D . 

T H E P O S S I B I L I T Y E X I S T S THAT T H E S E P R O C E D U R E S WILL R E Q U I R E C O M P U T I N G T I M E W H I C H I N C R E A S E S 

E X P O N E N T I A L L Y W I T H P A T T E R N C O M P L E X I T Y . T H U S , S P E C I A L A P P R O A C H E S A I M E D AT P R E V E N T I N G T H I S 

P R E D I C A M E N T A R E N E C E S S A R I L Y SOUGHT. FOR E X A M P L E , THE AVAILABIL ITY OF PARALLEL P R O C E S S O R S A N D 

E X T E N S I V E M E M O R Y COULD M A K E T H E P R O P O S E D R E C O G N I T I O N N E T W O R K A N E F F I C I E N T , G E N E R A L 

P R O C E D U R E . O N T H E OTHER H A N D , A N A N A L Y S I S OF THE P R O B L E M D O M A I N (E.G., W O R D R E C O G N I T I O N ) M A Y 

Y I E L D S P E C I A L L Y TA ILORED, E X T R E M E L Y EFF IC IENT P R O C E D U R E S FOR R E C O G N I T I O N . I N G E N E R A L , IT I S 

A P P A R E N T THAT C O N T I N U E D R E S E A R C H INTO STRUCTURED PATTERN R E C O G N I T I O N I S W A R R A N T E D A N D 

P R O M I S E S TO Y I E L D PRACTICAL T E C H N I Q U E S W H I C H M A Y , INCIDENTALLY, P R O V I D E V A L U A B L E I N S I G H T S I N T O 

T H E I N T E R E S T I N G R E L A T I O N S H I P B E T W E E N REPRESENTAT IONAL A N D C O M P U T A T I O N A L C O M P L E X I T Y . 
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AN AUTOMATICALLY COMPILABLE RECOGNITION NETWORK 

FOR STRUCTURED PATTERNS1 

Frederick Hayes-Roth and David J. Mostow 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

A B S T R A C T 

A new method for efficient recognition of general relational.structures is described and 
compared with existing methods. Patterns to be recognized are defined by templates 
consisting of a set of predicate calculus relations. Productions are representable by 
associating actions with templates. A network for recognizing occurrences of any of the 
template patterns in data may be automatically compiled. The compiled network is economical 
in the sense that conjunctive products (subsets) of relations common to several templates are 
represented in and computed by the network only once. The recognition network operates in 
a bottom-up fashion, in which all possibilities for pattern matches are evaluated 
simultaneously. The distribution of the recognition process throughout the network means 
that it can readily be decomposed into parallel processes for use on a multi-processor 
machine. The method is expected to be especially useful in errorful domains (e.g.. vision, 
speech) where parallel treatment of alternative hypotheses is desired. 

I N T R O D U C T I O N 

The work described in this paper was motivated by certain problems involved in the 
task of recognizing structured patterns, especially the problem of parsing continous spoken 
speech. From the point of view of the language parser, an essential quality of speech is its 
errorful nature. Ambiguities in acoustic segmentation, phonetic labelling, word 
hypothesization, and semantic interpretation necessitate understanding systems which can deal 
efficiently with multiple alternative hypotheses about each portion of the input (Newell, et al., 

^This work was supported in part by Advanced Research Projects Agency Contract F 4 4 6 2 0 -
73-C-0074 to Carnegie-Mellon University. 
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1973). The usual methods of dealing with such multiple hypotheses typically entail an 
expensive search through a combinatorial space, since they consider only one hypothesis for 
each portion of input at a time, and then exploit contextual relationships to eliminate certain 
combinations of adjacent hypotheses as impossible. The data structure and associated 
recognition procedure described in this paper can be thought of as effectively reversing this 
process by first exploiting context — thereby eliminating all but a few combinations from 
consideration — and then testing contextually related hypotheses for adjacency. Since the 
contextual information is statically embedded in the data structure itself, comparatively little 
work needs to be done at recognition time. This work requires only the computation of a few, 
simple operations rather than a complex search. Moreover, the method provides an efficient 
way to handle the spurious insertions, deletions, and repetitions characteristic of speech. 

T E M P L A T E G R A M M A R S 

In this section, we define template grammars for recognizing relational structures. We 
then define a L t̂Xiptalo. normal form (TNF) for template grammars and describe an algorithm for 
translating a given template grammar into an equivalent TNF grammar which is economical in 
that it maximally exploits repeated subtemplates in the original grammar. The construction of 
an automatically, tommlahle. recognition network (ACORN) from a TNF grammar is 
straightforward and is described in the next section. 1 The definitions we use are tailored to 
natural language understanding, but are immediately generalizable to other applications (e.g., 
vision). 

A relation r(t j , t2> x j , x n ) is an n-ary predicate corresponding to some element or 
pattern in the language. For example, the relation telKtj, t'2> holds if the word "tell11 occurs in 
the input utterance beginning at time tj and ending at time t 2 . In general, tj and t 2 are 
temporal arguments specifying the time interval containing a recognized occurrence of the 
relation, and x j , x n are selected arguments and features of the occurrence. A relation is 
called primitive if it corresponds to a primitive element (terminal symbol) of the language, non-
primitive if it corresponds to a pattern of elements (non-terminal symbol), and top-level if it 
corresponds to a complete pattern (sentential form). 

A template T is a Boolean combination of relations rj, i=l, |T|, restricted as follows. It 

In actuality, our compiler will compile the input grammar directly into a recognition network, 
without the intermediate step of translation into TNF. For the purposes of this 
discussion, however, we have divided ACORN compilation into the two phases of 
translation into TNF and construction of the recognition network from the TNF 
grammar. 
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must be either a disjunction 

rl ( tl> t2 I xl» -»xn> ^ r2(tl> *2; xl> "> xn> ^ • • ^ rd(tl» *2; xl» -» xn>> lTl = d -

or a conjunction 

ofit r

D+l ( tl i ; x l i»-' xn .)'and'... ̂ ndniit rJti , t 9 ;y, , xn Wq>p>l). P + 1 1 p-4-1 '-p*l Ap+1 np+l q lq» ' nq *i r 

In the first case (disjunction), the symbolic arguments (tj, t2; xl» •••» xn^ a r e *'ie s a m e f° r e a c ' 1 

rj, i = 1, d. In the second case, a weaker condition must be satisfied: the relations must 
have enough symbolic arguments in common for the template to be connected, that is, for any 
partition of the ptq relations rj, rp + q into two non-empty sets A and B, there must exist 
relations rA\\ ,U;X| , xn ) < A and rh(t i, , to, ; x i , xn, ) ( B such that a Ja â Aa na u Ab b̂ Ab nb 
{ti , t 2 } n { t h , t 2 

la â Ab ch 

A template grammar, is a set of mies. of the form [<template> => <relation>; <action>]. 
The action optionally associated with each rule specifies what should be done in the event 
that an instance of the template is recognized in the input and the rule is invoked. Thus a 
template grammar is actually a production system of the sort described by Newell (1973). 

Table I. Sample Grammar (G p̂) 

1. [ Fordttj, t 2) «> TOPIC(tlf t2; expr); expr̂ 'FORD" ] 
2. [ Rockefeller ,̂ t2) px Rocky(t1, t2) => TOPICSj, t2; expr); expr ̂ -"ROCKEFELLER" ] 
3. [ KissingerSj, t 2) -> TOPICS j , t25 expr); exprf-"KISSINGER" ] 
4. [ or(tj, t2) and TOPIC(t2, t3; expr) => TOPIC*(tj, t3; expr); ] 
5. [ TOPIC(t j , t2; expr j) and TOPIC*(t2, t3; expr2) => 

TOPIC*(tj, t3; expr); expr *- exprj U expr2 ] 
6. [ UTTERANCES j , tq) and about<t2, tg) and TOPIC(tgf t4; expr) => 

TOPIC*(t3, t45 expr); ] 
7. [ UTTERANCES j , t6) and telKtj, t2) and me(t2, tg) and 

nothing(t3, t/j) and aboutSzj, t5) and TOPIC*S5, tg; expr) => 
REJECTS j , t6; expr); SUPPRESS(expr) ] 

8. [ UTTERANCES j , t6) and tell(t l f t2) and me(t2, tg) and 
nol nothing(t3, t/j) and aboutS/j, tg) and T0PIC*(t5, tg; expr) => 

REQUESTS j , t6; expr); RETRIEVE(expr) ] 
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As.an example, consider the sample template grammar G A p (Table 1) which is part of a 
much larger grammar for analyzing spoken queries to a wire-service news retrieval system 
(Frost, 1974). G A p's top-level relations are REQUEST and REJECT. A sample instance of 
REQUEST is the utterance "Tell me all about Rocky." An instance of REJECT is the utterance 
"Tell me nothing about Ford, Rockefeller, or Kissinger." The primitive relation 
UTTERANCE^}, {2), used in rules 6, 7, and 8, simply signifies that the entire utterance spans 
the time interval [ t j , t 2 ] ; this makes the beginning and ending times of the utterance 
accessible as arguments to other relations, without violating the framework of the template 
grammar. Rule 2 illustrates the use of features and actions. The feature, expr, of TOPIC is the 
semantic expression eventually passed to the actual news retrieval routine. The action of Rule 
2 gives expr the value "ROCKEFELLER." Rule 5 is an example of recursion. It handles phrases 
of the form "topicj, topic2, topic n _j, or topicn." The action of Rule 5 forms a compound 
semantic expression from the expressions associated with its individual constituents. Thus the 
instance "Ford, Rockefeller, or Kissinger" of the relation TOPIC* has expr = {"FORD", 
"ROCKEFELLER", "KISSINGER"}. Rule 6 shows how context sensitivity can be embedded in a 
template grammar. It states that any instance of TOPIC which occurs at the end of an 
utterance, and whose left context is ABOUT, constitutes an instance of TOPIC*. Rule 8 
illustrates the use of negation. It states that any utterance of the form "Tell me ... about X" is 
a request for information about X unless the gap "..."contains the word "nothing." Thus "Tell 
me about Ford," "Tell me all about Ford," and "Tell me everything you know about Ford," are 
all instances of REQUEST. This illustrates the capacity of a template grammar to ignore 
redundant portions of the input. 

A template grammar is in template normal form (TNF) if the following conditions are 

satisfied: 

(1) The template of each rule has one of the following types: 

<relation 1> or <relation2> o r . . . . ql <relationd>, d>l (disjunctive type) 
<relation 1> and <relation 2> (conjunctive type) 
<relationj> and Qoi <relation2> (negative type) 

The relations in a disjunctive template have the same symbolic arguments; the relations in a 

conjunctive or negative template are connected. 

(2) Every non-primitive relation appears on the right side of exactly one rule. Hence we can 
define the \ym of a relation to be the type of its unique defining template; a primitive relation 
is simply said to be of primitive type. 
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It is clear that any template grammar G can be translated into an equivalent grammar G* 
in TNF by means of adding new relations and rules. The task of the automatic translator is to 
do this in such a way as to minimize the number of new relations added. 

Let G = {[Tj ••=> rj*, Aj] : i = 1, |G|} be a template grammar. Define U(G) to be the set 
of rules in G which fail to satisfy condition (1) of TNF, Lê  U(G) = {T < G : T is a conjunction of 
relations and |T| > 2}. Define N(G) = ^> ,'(|T1 - 2). Then N(G) = 0 iff U(G) = 0 iff G satisfies 
condition (1). Moreover, N(G) is a how far off G is from satisfying (IV We are 
now ready to describe the algorithm for translating the input grammar G into an equivalent 
TNF grammar G*. 

Step & Let G0 - G and set j«-0. 

Step L If N(Gj) = 0, go to Step 2. Otherwise, find a pair of relations <rj, r2> such that 
r l ^ [ t *2 ; xl> xn* m<& (not) r2(t3, t̂ ; y y m ) is a connected subtemplate of at least one 
template T < U(Gj), i,e.,, one for which {tj, t2} n {t3, t̂ } ? 0. Define the new relation r n e w to 
be this subtemplate. Replace the subtemplate by r n e w wherever possible in Gj, and add a 
new rule 

[r 1<t j , t2; xj, xn) aod (oot) r2(t3, t4; y l f y m ) => r n e w ( t 5 , tg; Zj, z k);]. 

(A later example will illustrate the criteria used in selecting the arguments tg, tg, zj, ...,ẑ  of 
the new relation from the arguments tj, t2, t3, t/j, Xj, xn, yj, ym of its constituent 
relations rj and r2.) Call the resulting equivalent grammar Gj+j. Let j«-j+l and go to Step 1. 

Note that N(Gj + j) < N(Gj), since each iteration of Step 1 shortens at least one template 
in U(Gj). Hence Step 1 must terminate after J < N(G) iterations, giving a Gj such that 

• N(Gj) = 0. The heuristic we use in an effort to obtain a minimal Gj (L£M to minimize J) is 
simple: each iteration through Step 1, choose the subtemplate which occurs the greatest 
number of times in U(Gj), LQ„ the pair of relations which will give the maximum reduction in 
ISKGj). 

It remains to satisfy condition (2). This is done by 

Step 2* For every relation r which appears in the grammar Gj on the right side of d > 2 
rules [Tj => r; Aj], i = 1, d, rewrite each rule [Tj => r; Aj] as [Tj =>.r$ Aj], where Tj is a 
unique new relation, and add the new rule [r j QL r 2 ... QL r̂  => r;]. Call the resulting 
grammar G*. By its construction, G* is equivalent to Gj, and satisfies conditions (1) and (2). 
Therefore G* is the desired TNF grammar equivalent to G. 
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A S A N E X A M P L E , C O N S I D E R THE APPL ICAT ION OF THIS TRANSLATION ALGOR ITHM TO T H E S A M P L E 

G R A M M A R G A P . T H E T E M P L A T E S T J , T 2 , A N D T 3 OF RULES 1 , 2 , A N D 3 A R E D I S J U N C T I O N S , A N D 

LT/,1 - ) T 5 | - 2 , S O U ( G 0 ) = U ( G A P ) - { T 6 , T 7 , T G } , A N D N ( G Q ) = | T 6 | - 2 + | T 7 | - 2 + | T G | -

2 = 1 + 4 + 4 = 9 . T H E RELATION P A I R W H I C H OCCURS THE G R E A T E S T N U M B E R OF T I M E S I N U ( G Q ) I S 

< U T T E R A N C E , ABOUT>, W H I C H O C C U R S I N T G , TY,. A N D T G . H O W E V E R , ALL T H R E E O C C U R R E N C E S OF T H I S 

P A I R FAIL TO S A T I S F Y T H E C O N N E C T I V I T Y COND IT ION, S I N C E { T J , T^} N { T 2 , T 3 } = 0 I N T G A N D 

{ T J , T G } N {T^J, T G } = 0 I N Jj A N D T G . B E C A U S E SEVERAL RELATION P A I R S O C C U R T W I C E , A R B I T R A R I L Y 

C H O O S E T H E P A I R <TELL, M E > , W H I C H OCCURS I N Jy A N D T G , FOR R E P L A C E M E N T . A C C O R D I N G L Y , T H E 

F O L L O W I N G RULE I S A D D E D TO T H E G R A M M A R : 

9 . [TELL (T L F T 2 ) A N D M E ( T 2 , TG) = > T E L L * M E ( T J , TG);]. 

R U L E 9 S T A T E S THAT IF T H E W O R D "TELL" OCCURS I N THE T I M E INTERVAL [ T J , T 2 ] I N T H E S P O K E N I N P U T , A N D 

T H E W O R D " M E " O C C U R S I N T H E INTERVAL [ T 2 , TG] , T H E N THE RELATION T E L L + M E O C C U R S I N T H E 

C O N C A T E N A T E D INTERVAL [ T J , TG] . W E R E W R I T E RULES 7 A N D 8 AS 

7 * . [ U T T E R A N C E ( T 1 , T 5 ) A N D T E L L . M E ( T 1 , T 2 ) A N D 

N O T H I N G S 2 , T G ) A N D ABOUT(TG, T 4 ) A N D T O P I C * ^ , T 5 ; E X P R ) = > 

R E J E C T S J , TG); S U P P R E S S ( E X P R ) ] 

8 * . [ U T T E R A N C E ( T J , TG ) A N D T E L U M E S J , T 2 ) A N D 

POT N O T H I N G ( T 2 , TG ) A N D ABOUT(TG, T/J) A N D T O P I C * ( T 4 , T 5 ; E X P R ) = > 

R E Q U E S T ( T l , T 5 ) ; R E T R I E V E ( E X P R ) ] . 

N O T E THAT N ( G 1 ) - N ' ( G 0 ) - 2 = 7. 

N O W R E P E A T S T E P 1. A C H O I C E M U S T B E M A D E A M O N G S E V E R A L RELATION P A I R S W H I C H O C C U R 

T W I C E ; A R B I T R A R I L Y C H O O S E T H E P A I R <ABOUT, T O P I C * > , A D D THE N E W RULE 

1 0 . [ A B < W T ( T L F T 2 ) A N D T 0 P I C * S 2 , T 3 ) = > A B O W V R O P I C * ^ , TG);], 

A N D R E W R I T E R U L E S 7 * A N D 8 * AS 

7 * * . [ U T T E R A N C E S J , T^J) A N D T E L L * M E ( T J , T 2 ) A N D 

N O T H I N G ( T 2 , T 3 ) A N D A B 0 U T * T 0 P I C * S 3 , T/,; E X P R ) = > 

R E J E C T S T/,); S U P P R E S S ( E X P R ) ] 

8 * * . [ U T T E R A N C E S J , T 4 ) A N D T E L L + M E S J , T 2 ) A N D 

POT N O T H I N G ( T 2 , T 3 ) A N D A B 0 U T * T 0 P I C * S G , T^; E X P R ) « > 

R E Q U E S T S J , T 4 ) ; R E T R I E V E ( E X P R ) ] . 
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As a result, N(G2) = N(Gj) -2=5. Note that the minimization heuristic rules out the choice of 
the relation pair <nothing, about> for replacement; to do so would reduce N(Gj) by only 1, 
since the relation nothing is negated in Tg but not in T 7 . 

Again, Step 1 allows a choice among relation pairs occurring twice; arbitrarily choose 
the pair <UTTERANCE,TELL*ME>. At this point, care must be exercised in defining a new 
relation. In previous applications of Step 1, relations were simply concatenated. Here, 
however, relations overlap. When UTTERANCES j , t̂ ) and TELL*ME(t|, t 2) are conjoined into a 
new relation, t j as well as t 2 and t̂  must be retained, since tj appears elsewhere in rules 7** 
and 8** (as an argument of REJECT and REQUEST). Previously, such a problem did not arise, 
because the argument shared by the pair of relations appeared nowhere else in the rule, and 
consequently could safely be omitted from the new relation. In the case at hand, the 
translator adds a new rule 

11. TELL*ME(t j , t2) and UTTERANCESj, t3) => TELL*ME-UTTERANCE(t2, t3; tj);] 

and rewrites rules 7** and 8** as 

7***. [TELL*ME-UTTERANCE(t2, \# \ { ) and nothing(t2, t3) and 
ABOUT*TOPIC*(»3, t/,; expr) => 

REJECTŜ , t/,); SUPPRESS(expr)] 
8***. [TELL*ME-UTTERANCE(t2, tA; \ { ) âûd Dût nothing(t2, t3) and 

ABOUT*TOPIC*(t3, tqs expr) => 
REQUESTS j , t/j); RETRIEVE(expr)], 

with the result that N(G3) = N(G2) -2 = 3. In our mnemonic convention for naming new 
relations, the 'V in "TELL+ME-UTTERANCE" denotes concatenation, and the "-" denotes 
overlapping. 

There is now only one relation pair which occurs twice,' namely <TELL*ME-
UTTERANCE, ABOUT*TOPIC*>. The translator adds a new rule 

12. [TELL*ME-UTTERANCE(t2, t4; tj) and AB0UT*T0PIC*S3, t4; expr) => 
TELL*ME-UTTERANCE-ABOUT*TOPIC*S2, t3; tj, t4, expr)] 

and rewrites rules 7*** and 8*** as 

7****. [TELL*ME-UTTERANCE-ABOUT*TOPIC*(t2, t.3; tj, tflf expr) and nothing(t2, t 3) => 
REJECTS], 1̂ );' SUPPRESS(expr)] 
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8****. [TELL*ME-UTTERANCE-ABOUT*TOPIC*(t2, tg; tj, \q expr) ând Dût nothing(t2, t 3) «> 
REQUESTSj, t4); RETRIEVE(expr)]. 

Since |T7****| = |Tg****| = 2, we now have U(G4) = {Tg} and N(G4) = N(G3) -2 = 1. 

At this point, there are two connected pairs of relations, each occurring once in Tg. 
Arbitrarily, choose the pair <about, TOPIO. In conjoining about(t2, t 3) and TOPIC(t3, t̂ ; expr), 
the translator discards t2, since it appears nowhere else in rule 6, but must retain t 3, which 
appears as an argument of the relation TOPIC*. Accordingly, it adds the new rule 

13. [aboutt^, t 2) and T0PIC(t2, tg; expr) => (ABOUT)TOPIC(t2, tg; expr);] 

and rewrites rule 6 as 

6*. [UTTERANCES j , tg) and (ABOUT)TOPICS2, tg; expr) -> TOPIC*S2, t3; expr);]. 

In our naming convention, the parentheses in "(ABOUT)TOPIC" are a mnemonic for context 
sensitivity, indicating that an occurrence of TOPIC with about as its left-hand context 
constitutes an occurrence of (ABOUT)TOPIC. At this point, |Tg*| « 2, U(G5) « 0, and N(G5) = 
N(G )̂-1 = 0, so G5 satisfies condition (1) of TNF. 

Now apply Step 2 to Gg. The only relations which occur on the right side of more than 
one rule are TOPIC, which occurs on the right side of rules 1, 2, and 3, and TOPIC*, which 
occurs on the right side of rules 4, 5, and 6*. The translator rewrites rules 1, 2, and 3 as 

1*. [ Ford(tlf t2) => TOPIC/IS^ t2; expr); expr̂ TORD" ] 
2*. [ Rockefeller ,̂ t2) or Rocky(t1, t 2) «> T0PIC/2(t1, t2; expr); expr«-MROCKEFELLERM ] 
3*. [ Kissinger^, t 2) «> T0PIC/3<flf t2; expr); expr̂ KlSSINGER" ] 

and adds the new rule 

14. [TOPIC/1 (t l f t2; expr) or T0PIC/2(tlf t2; expr) on T0PIC/3<tlf t2; expr) => 
TOPICS}, t2; expr);]. 

Similarly, .rules 4, 5, and 6* are rewritten as 

4*. [ oKtj, t 2) and T0PIC(t2, t3; expr> => T0PIC*/4(tA, t3; expr); ] 
5*. [ TOPICS j , t2; expr j ) and T0PIC*S2, tg; expr2) *> 

T0PIC*/5(t j, t3; expr); expr <- expq U expr2 ] 
6**. [UTTERANCES j , tg) and (AB0UT)T0PIC(t2, tg; expr)>> T0PIC*/6S2, tg; expr);] 
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and the following new rule is added: 

15. [TOPIC*/^, t2; expr) or T0PIC*/5S1( t2i expr) ox T0PIC*/6(t1( t2; expr) =•> 
TOPICS j , t2; expr);]. 

The resulting grammar GAp*, shown in Table 2, is in TNF. 

Table 2. Sample Grammar in TNF (GAp*) 

1*. [ FordS] , \ 2 ) -> TOPIC/l{t1( t2j expr); expr«-TORD" ] 
2*. [ Rockefellers j , t2) Px Rocky(t1, t2) => T0PIC/2S1( t2; expr); expr<-"ROCKEFELLER" ] 
3*. [ KissingerSj, t 2) «> T0PIC/3(tj, t2; expr); expr«-"KISSINGER" ] 
4*. [ or(tlf t 2) and TOPIC(t2, t3; expr) => T0PIC*/4(tj, t3; expr); ] 
5*. [ TOPICS J, t2; oxpr j ) and TOPIC*(t2, t3; expr2) => 

TOPIC*/5(tj, t3; expr); expr <- exprj U expr2 ] 
6**. [ UTTERANCES j , tg) and (ABOUT)TOPIC(t2, t3; expr) => TOPIC*/6(t2, t3; expr); ] 
7****. [ TELL*ME-UTTERANCE-ABOUT*TOPIC*(t2, t3; tj, t4, expr) add nothing(t2, t3> => 

REJECTS j , \Ay, SUPPRESS(expr) ] 
8****.[ TELL*ME-UTTERANCE-ABOUT*TOPIC*S2, t3; tj, t4, expr) and nol nothmgS2, t 3) => 

REQUESTS |, t̂ ); RETRlEVE(expr) ] 
9. [tell(t1>t2)aûçlme(t2,t3)=>TELL.MES1,t3);] 
10. [ aboutS j , 12) and TOPIC*(t2, t3) => AB0UT.T0PIC*(t1( t3); ] 
11. [ TELL.MES], l2) and UTTERANCES j , t3) => T£LL*ME-UTTERANCES2, t3; tj); ] 
12. [ TELL*ME-UTTERANCE(t2, t4; tj) aM AB0UT.T0PIC*S3, t4; expr) => 

TELL+ME-UTTERANCE-AB0UT*T0PIC*S2, t3; t j , t4, expr); ] 
13. [ aboutd j , t2) and TOPICS2, t3; expr) => (AB0UT)T0PICS2, t3; expr); ] 
14. [ TOPIC/1 S j , t2; expr) px TOPIC/2(tlt t2; expr) QX TOPIC/3(t1( t2; expr) => 

TOPICS j , t2; expr); ] 
15. [ TOPIC*/4S j , t2; expr) px T0PIC*/5(tj, t2; expr) px T0PIC*/6(t1( t2; expr) => 

TOPICS 1 ( t2; expr); ] 

THE RECOGNITION NETWORK1 

Given a template grammar in TNF, a corresponding recognition network (ACORN) is 
constructed as follows. For each relation r appearing in the TNF grammar, there is a unique 

The recognition network used here is based on the structure described in Hayes-Roth 
(1974b). 
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node, node(r), in the network. (Hence minimizing the number of relations in the TNF grammar 
is equivalent to minimizing the number of nodes in the network.) For every rule [T => r; A], an 
arc is drawn from node(sj) to node(r) for each relation s f in the template T. Each node(sj) is 
said to be a constilyeni of node(r), and node(r) a derivative of node(Sj). A node may have* 
zero, one, or more derivatives. The recognition network for the sample grammar G A p , 
constructed from the TNF grammar G^p*, is shown in Figure 1. 

Node(r) contains various information: its type (Le,, the type of relation r); the action A in 
the rule [T => r; A], if any; and the correspondence between the arguments of relation r and 
the arguments of its constituent relations Sj. This correspondence consists of two parts, a set 
of tests and a generator. The tests represent any requirements for agreement between the 
arguments supplied by the constituents node(sj). The generator is a list of the arguments 
which are to be supplied in turn to the derivatives of node(r). The arguments are encoded 
according to a canonical numbering scheme best described by an example. Consider 
node(TELL*ME). Its constituents are node(TELL), which supplies arguments t j f t 2 , and 
node(ME), which supplies arguments t 3 , t^. Let L be the concatenated argument list 
( t j , t 2 , *3> Then node(TELL*ME) can specify its arguments by their indices in L. Thus 
node(TELL+ME)'s only test is L(2) = L(3), denoted by "2:3" below node(TELL+ME) in the 
network. (See Figure 1.) Similarly, node(TELL*ME)'s generator is the list ( L(l), L(4) ), denoted 
by "(1, 4)" above node(TELL*ME) in the network. Arguments which are not supplied by a 
node's constituents but instead originate at the node itself are specified by negative indices. 
For example, node(T0PIC/2)1s generator is denoted by "(1, 2; -1);" the -1 specifies the 
argument expr, which originates at node(T0PIC/2). The action stored in node(T0PIC/2) assigns 
this argument the value "ROCKEFELLER". 

All of the recognition network components described so far are static. There is also 
associated with each node(r) a dynamic instance list IL. Each instance in the instance list of 
node(r) represents a single recognized occurrence (instantiation) of the relation r in the input 
utterance. An instance has four components: a unique identification number I; the time interval 
[ t t 2 ] containing the occurrence; the values xj , x n of selected arguments and features of 
the occurrence; and a support set SS containing one or two instance identification numbers. 
An instance is denoted I:(tj, t 2 ; xj , x n ; SS). During the recognition process, instances are 
created and deleted dynamically. 

The recognition process is bottom-up, as follows. Initially all instance lists are empty. 
A lexical analyzer is invoked and begins to scan for occurrences of primitive relations in the 
input utterance. Since the lexical analyzer receives imperfect, incomplete information from the 
phonetic labelling routine, the best it can do is to identify possible occurrences. When it finds 
a possible occurrence of a relation r, it adds a new element to the instance list of node(r) 
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(3, 4; 5) 
REJECT 
1:6 
2:7 

(3, 4; 5) 
REQUEST 
1:6 
2:7 

(1, 4; 3, 2, 6) 
TELL.ME-UTTERANCE-ABOUT.TOPIC* 
2:5 

(2, 4; 1) 
TELL.ME-UTTERANCE 
1:3 

(1, 4; 5) 
ABOUT.TOPIC* 
2:3 

(1, 2) 
nothing 

Rockefeller Rocky 
(1, 2) 
Kissinger 

Figure 1. Sample Recognition Network (an ACORN). See text for an explanation of the tests i:j 
below the nodes and the generators (ij, \>£ ¡ 3 , i k ) above them. 
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containing the appropriate information. To understand the recognition process, imagine each 
node(r) as having a demon. The node(r) demon continuously monitors the instance list of each 
constituent node(sj) of node(r). Whenever a new instance is added to the instance list of 
node(Sj), the node(r) demon adds a reference to this new instance to its node(Sj) aclci sjgi. 
Similarly, whenever an existing instance of Sj is deleted, the node(r) demon saves a copy of it 
in its node(sj) clelete set.. Add sets and delete sets are referred to collectively as change 
sets.* The demon then activates (wakes) node(r) itself by invoking code stored in node(r). ^ 

When node(r) is activated, it updates its instance list according to the information in its 
constituents' instance lists and change sets. If node(r) can derive (construct) any new 
instances from instances of its constituents, it does so, adding the new instances to its 
instance list. The support set of each instance contains the identification numbers of the 
instances from which it has been derived. Node(r) deletes from its instance list any instances 
supported by (derived from) the defunct instances listed in its constituents' delete sets. The 
exact way in which all this is done depends, of course, on the type of node(r). 

If node(r) is disjunctive, then it has d constituents node(sj), node(scj). For each 
instance I:(tj, t2; *i> ...» x n ; SS) in a node(sj) add set, node(r) adds a new element 
I n e w : ( t j , t 2; Zj, ẑ ; {I}) to its own instance list, computing zj,..., ẑ  from the values of 
xj, xn according to the generator stored in node(r). I n e w ' s support set is {1} because the 
instance I n e w of r is derived from (supported by, dependent on) the instance I of r's 
constituent relation Sj. For each defunct instance I in a node(sj) delete set, node(r) deletes all 
instances I0ld:^* 1» *2; zl» "> zk ; ^ ) supported by I, Le* such that I ( SS. (Actually, for 
disjunctive r, all instances of r will have support sets of size one, so I( SS iff SS = {I}. 
However, for conjunctive r, |SS| = 2; hence the set notation). 

If node(r) is conjunctive, then it has exactly two constituents, node(sj) and node(s2), 
with respective instance lists ILj and IL2, add sets ASj and AS2, and delete sets DSj and DS2. 
First node(r) deletes any of its instances IQ|d:(ti, t2; Z j , z k ; SS) which were derived from 
instances in DSj or DS2, L£u ^ose for which SS n (DSj U DS2) ^ 0. Then node(r) looks for 
new instance pairs I^(tj, t2; xj, xn; SSj) in ILj and I2:(t3, t4; yj, ym; SS2) ip IL2 such 
that (tj, t 2; xj, xn) matches (t3, t̂ ; yj, ym) according to the tests stored in node(r). For 

Demons and change sets are already used in the Hearsay II system (Lesser, et al., 1974). 

One of the major virtues of the recognition network is that all the nodes contain similar code; 
in an actual implementation the differences between nodes would be 
parameterized and only the parameters stored in the nodes. For clarity of 
presentation, however, we treat nodes as autonomous entities. 



13 

each such matching pair, node(r) adds a new element I.new:(tii *2; zl> zk ; 1̂» *2^ '° " 5 

instance list, using its generator to select Z j , z ^ from x j , x n , yj, ym. It is sufficient to 
check only those pairs of instances Ij, I2 of which one or both are new, or more formally, 
such that either I| <• ASj and I 2 < IL2 or Ij ( ILj and I 2 < AS2. For example, suppose the 
input utterance is "Tell me nothing about Rockefeller," and the lexical analyzer finds an 
instance lj:(0, IS;...) of tell and an instance I2:(18, 23; ...) of me. Then the test stored in 
node(TELL+ME) becomes 18 = 18, which is true, so node(TELUME) adds a new instance 
I n e w : (0 , 23; ;{Ij, I2}) to its instance list to represent the occurrence of "tell me" in the 
concatenated time interval [0, 23]. (Time is measured in centiseconds since the beginning of 
the utterance.) Now suppose the lexical analyzer mistakenly identifies the syllable "fell" in 
"Rockefeller" as the word "tell," and adds an instance Ig:(257, 269; ...) to node(fell)'s instance 
list. This may happen, for example, if the phonetic labeller correctly identifies the "F" in 
"Rockefeller" as an unvoiced consonant but can't tell if it's an "F," a "T," or a "P." No harm is 
done, however, since when node(TELL*ME) matches I3 against I2, the test 269 = 18 fails, and 
no new instance of TELL*ME is derived from Ig. This example shows how the ACORN 
automatically weeds out spurious instances hypothesized by the lexical analyzer on the basis 
of incomplete phonetic information. 

Finally, if node(r) is negative, then it has two constituents, node(sj) and node(s2), where 
r = (sj and not s2). Let ILj, IL2, ASj, AS2, DSj, DS2 be the instance lists, add sets, and delete 
sets of node(sj) and node(s2). First node(r) deletes any of its instances 
*old:^l> *2> zi> "* zk ; SS) derived from defunct instances in DSj, those for which 
SS 0 DS} ^ 0. Then node(r) looks for any instance pairs IjKtj, t2; xj, xn; SSj) in ILj and 

m; S S 2 ) in AS2 such that (tj, t2; xj, xn) matches (tg, t̂ ; yj, ym) 
according to the tests stored in node(r). For epch such pair, node(r) deletes all of its 
instances I0ld:^ 1» *2; zl> -> *k; SS) which depended on Ij, such that Ij ( SS. This is done 
since each such I0|(j, previously an instance of (ŝ  and QQl s2), is now invalidated by a new 
instance of s 2. Adding instances of node(r) is also a bit tricky, and proceeds as follows. First 
node(r) constructs the set IS of all instances Ij ( ILj which match some I 2 in D S 2 . Then 
node(r) looks for all instances I|:(t^, t2; xj, xn; SS|) in ASj U IS which match none of the 
instances in 1L2. For each such Ij, node(r) adds a new instance l n e w.(t | , t2; Zj, ẑ ; {Ij}) to 
its instance list. 

To illustrate this, let us continue with our sample utterance. Suppose that at some point 
the lexical analyzer has recognized all the words in the utterance except the word "nothing," 
and node(TELL*ME-UTTERANCE-ABOUT*TOPIC*) has I/j:(23, 41; 0, 274, "ROCKEFELLER"; ...) on 
its instance list. Since the instance list of node(nothing) is empty, node(REQUEST) will have an 
instance I5:(0, 274, "ROCKEFELLER", {I4}) on its instance list. Now suppose that the lexical 
analyzer finally recognizes the word "nothing," and puts the instance Ig:(23, 41; ...) on 
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node(nothing)'s instance list. This activates both of node(nothing)'s derivatives. Node(REJECT) 
matches Ig against 1̂ , tests 23 = 23 and 41 = 41, and accordingly adds a new instance 
I7:(0, 274; "ROCKEFELLER"; {I/,, I6}) to its instance list. Node(REQUEST) matches Ig against I4, 
tests 23 = 23 and 41 - 41, and accordingly deletes I5:(0, 274; "ROCKEFELLER"; from its 
instance list.. This example shows how information is accumulated and corrected dynamically 
during the ACORN recognition process. It also illustrates the ACORN's state-saving nature and 
its sharing of information between top-level nodes. 

Once node(r) has examined its constituents' change sets and, if appropriate, revised its 
own instance list, it goes back to sleep. Meanwhile, the demons sitting on the derivatives of 
node(r) have been watching its instance list and, when changes occur, activate their nodes. 
This chain reaction continues, fuelled by new instances generated by the lexical analyzer, until 
the lexical analyzer has stopped, all nodes are asleep, and all change sets are empty. 

At this point each instance I:(tj, t2; xj, xn; SS) of a non-primitive node, node(r), may 
be interpreted as a partial parse of the interval [tj, t 2], with relevant syntactic and semantic 
features given by xj, xn. For example, when the recognition of our sample utterance 
terminates, the instance I:(41, 274; "ROCKEFELLER"; UabOUT' 'TOPIC*̂  o f ABOUT+TOPIC* may 
be considered to be a partial parse of the input interval [41, 274] containing "about 
Rockefeller." Parse trees can easily be reconstructed from the information contained in the 
support sets, especially if an appropriate scheme is used for assigning identification numbers 
to instances. Specifically, an ACORN assigns the unique number <node(r), i> to the i^ 
successive instance of node(r). This is easily implemented by storing a counter for i in each 
node. Moreover, this scheme insures that each node can assign identification numbers to its 
instances independently, without worrying about numbering conflicts, a property which is 
desirable for the implementation of the recognition network on a multi-processor machine. 
Parses of the entire utterance are given by instances of top-level nodes. Thus the instance 
I7:(0, 274; "ROCKEFELLER"; {I4, I6}) of REJECT constitutes a total parse of the sample 
utterance, and supplies the semantic feature, expr, required by the action SUPPRESS(expr). 

RELATIONSHIP TO EXISTING PARSERS AND PATTERN-MATCHERS 

The original motivation which led to the ACORN concept was the development of a 
general automatic recognition system for spoken utterances, visual scenes, and other 
structured patterns in which context is a fruitful source of information. Since the speech 
understanding ACORN treats an utterance as a relational structure, it is related both to natural 
language parsers and to general pattern-matching mechanisms. 

The ACORN's closest relative among natural language parsers is PARRY (Colby, 1974), a 
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program which simulates a paranoid individual being interviewed by a psychiatrist. PARRY 

uses the following methods to interpret its unrestricted idiomatic English input. Given an input 

sentence, e.g.. "Tell me what is your current primary occupation," PARRY replaces each word 

by a canonical synonymic form, dropping any words it doesn't recognize, such as "current" in 

this example. This results in ( TELL ME WHAT BE YOU MAIN JOB ). PARRY then breaks up the 

sentence into short phrases, using function words such as "what" as reliable phrase boundary 

indicators. This method of segmentation yields (( TELL ME ) ( WHAT BE YOU MAIN JOB )). 

PARRY tests each phrase against a large library of stored templates. If no match is found for a 

phrase, PARRY omits one word at a time from the phrase, and tests each shortened version. 

Thus if ( WHAT BE YOU MAIN JOB ) is not in PARRY's library of patterns, it tries ( BE YOU 

MAIN JOB ), ( WHAT YOU MAIN JOB ), ( WHAT BE MAIN JOB ), and ultimately ( WHAT BE YOU 

JOB ), which matches a stored pattern. If there is still no match, PARRY assumes the phrase is 

unimportant and ignores it. Having reduced the input sentence to a few templates, PARRY 

attempts to match the pattern of templates against a library of such patterns. If necessary, it 

ignores some of the templates in order to get a match. Finally, an action associated with the 

matched pattern tells the response routines how to react. PARRY manages to handle 

teletyped input in unrestricted English fast enough (1 second response) and accurately enough 

to perform impressively on Turing's imitation test. 

While the approach underlying PARRY is very successful with typed input, it appears to 

be too risky for spoken input. Unlike the "perfect" typed input which PARRY receives, the 

input to the syntax routine of a speech understanding system such as Hearsay II (Lesser, et 

al., 1974) is highly imperfect. For example, often the best that Hearsay IPs phonetic labelling 

routine can do is, in effect, to say "this phone is an unvoiced consonant, probably F, T, or P." 

Each level of the system must be able to handle multiple alternative hypotheses about each 

portion of the input, and hope that other levels will be able to rule out most of the 

hypotheses on various grounds. PARRY can say, with confidence, "this portion of the input is 

such-and-such (e_.g,t the word "oh"), so I'll ignore it;" Hearsay II can only say "Lf. this portion of 

the input is "oh," I can ignore it; but if it's really the word "no," then I'll need it." Thus in order 

to be used in a speech understanding system, PARRY's techniques must be implemented in a 

non-deterministic fashion. .An ACORN can be thought of as a non-deterministic version of a 

PARRY-liKe system in which all possibilities are followed simultaneously in parallel. 

Woods' augmented transition network (ATN) (Woods, 1970) is a mechanism for parsing 

natural language. It works top-down, uses backtracking, and produces a formal parse of the 

input sentence. In contrast, an ACORN works bottom-up, does no backtracking, and dispenses 

with a formal parse, extracting only those features of the utterance which are relevant to the 

particular application. Both structures are augmented with actions and consequently have the 

power of a Turing machine. An ACORN can be thought of as a bottom-up version of an ATN. 
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Miller (1974) has proposed a parser for spoken English which builds multiple partial 
parse trees representing alternative hypotheses about portions of the input utterance. In 
order to assemble the partial parse trees into a complete parse tree, Miller's parser performs 
a complicated and heuristic search for legal combinations of hypotheses. An ACORN differs 
from Miller's parser in handling all combinations simultaneously rather than sequentially, and in 
the simplicity of the matching operations it uses. 

Current artificial intelligence programming systems such as PLANNER (Hewitt, 1972), QA4 
(Rulifson, 1972), and SAIL (Feldman & Rovnar, 1969) can match a given relational template 
against a data base. However, the method they use is an exhaustive iterative search: one 
relation of the template is instantiated, and the data base is searched for instances of that 
relation which are consistent with the rest of the template. For example, SAIL, in matching the 
template ( COLOR ® ?X = RED ) and ( SHAPE * ?X = SPHERICAL), might look at all objects in its 
data base which have RED as the value of the attribute COLOR, and test the SHAPE attribute of 
each one in turn for a value of SPHERICAL, finally finding the object BALL which satisfies both 
conditions. If several templates are to be matched against the data base, they must be 
matched one at a time. In contrast, the associative matching operation performed by ACORNs 
effectively tests all the relations of all the templates simultaneously. 

The ACORN's nearest ancestor among general pattern-matching methods is hierarchical 
synthesis (Barrow, et al., 1972). Consider the task of matching an input against a template. 
For example, the template might be a schematic representation of a building, and the input 
might be a set of line segments. Certain substructures, such as rectangles, may occur at 
several places in the template. A recognition algorithm employing hierarchical synthesis would 
replace the single, many-component template for "building" with a hierarchy of templates. The 
top-level template might define a building in terms of doors, windows, and walls. These 
components would in turn be defined by lower level templates, and so on. The lowest-level 
templates (^^ "rectangle") would be defined in terms of line segments. The recognition 
algorithm would proceed by locating all instances of low-level templates such as "rectangle," 
grouping them into (or "synthesizing") higher-level templates such as "door" and "window," 
and so on up to "building." Barrow, et al., have noted that Using hierarchical synthesis speeds 
up recognition considerably. Hierarchical synthesis is efficient for two reasons. First, it can 
exploit the repetition of subtemplates by recognizing all instances of a single subpattern just 
once. Second, before considering whether or not the entire pattern specified by a template is 
present, it can insure that all necessary subpatterns are present. 

However, hierarchical synthesis as described by Barrow, et al., depends on a hierarchy 
defined a priori by the user. This limitation is transcended by the interference matching 
method (Hayes-Roth, 1974a), which does hierarchical synthesis in parallel in all possible 
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directions, thereby obviating the need for a predefined hierarchy. In interference matching, a 
template is represented as a set of relations. Each relation is a predicate with one or more 
symbolic variables. "line(a, b)" asserts that there exists a line segment joining the points 
a and b. The input is also a set of relations, whose arguments are constants. A partial match 
consists of an assignment of input constants to the symbolic variables of a subset of the 
relations in the template such that all of the relations in the subset hold true. Interference 
matching works by finding partial matches and combining them into complete matches. 

Like interference matching, the ACORN method is an improved version of hierarchical 
synthesis in that it requires no predefined hierarchy. The ACORN compiler itself determines 
an economical hierarchy, and embeds it in the form of a recognition network. Hierarchy 
selection can be factored out into a separate compilation phase because the choice of 
hierarchy depends only on the templates and not on the individual input utterance. In 
interference matching, on the other hand, hierarchy selection depends on the input pattern, 
and is therefore a part of the recognition process. Thus the ACORN method combines the 
convenience of automatic hierarchy selection with the efficiency which comes from using a 
predefined hierarchy in the recognition process. 

In real-world applications, input is matched against several top-level templates. Current 
methods of hierarchical synthesis (Barrow, et al., 1972) and interference matching (Hayes-
Roth, 1974a) involve matching the input against one template at a time. Such an approach is 
clearly undesirable for tasks such as speech recognition, which may involve large numbers of 
templates. The ACORN compiler takes a whole set of templates and produces a single, unified 
recognition network for it; common subtemplates are shared not just wJlhin top-level 
templates, but also between them. An instance of a subtemplate is recognized just once - - not 
separately for each top-level template in which it occurs. Hence recognition time depends not 
on the total number of templates, but just on the number of templates which are matched by 
some portion of the input. Therefore we expect recognition time to be very much sublinear in 
the size of the template set. This property is encouraging, since the number of templates 
required to recognize a significant subset of English would probably be several thousand. 

In sum, an ACORN can be looked at as a bottom-up version of an ATN, a parallel 
implementation of a non-deterministic version of a PARRY-like system, a powerful pattern-
matcher for efficient associative retrieval, or an improved mechanism for hierarchical 
synthesis , with automatic hierarchy selection and subtemplate sharing between templates. 
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A P P L I C A T I O N S , IMPL ICAT IONS , A N D EXTENS IONS 

In order for an ACORN to be efficient, the templates and input data characteristic of the 
chosen problem domain should tend to be asymmetric, so that a template will usually match a 
given portion of the input in at most one way. Let us illustrate with a negative example. 
Suppose the template we wish to match is K5(a, b, c, d, e), the complete graph on five 
vertices, represented by the conjunction of relations line(a, b) and line(a, c) and ... 
and line(d, e). Then any occurrence of Kg (as a subgraph, say) in the input corresponds to 
5! = 120 instances of T, since there are 5! different ways to bind the variables a, b, c, d, e to 
the five vertices of the Kg in the input. For symmetries on a larger scale, the problem grows 
combinatorially worse. Clearly, an ACORN would be inefficient in such a domain, since it would 
insist on finding all instances of every template. 

Fortunately, many interesting applications do not have this bothersome property. 
Speech, in particular, is highly asymmetric, partly because it is embedded in a one-dimensional 
ordered temporal domain. If tell(tj,t2) is true, then tj < t2, so tell(t2, tj) cannot be true. 
Symmetries at a higher level can occur only if there is more than one syntactically and 
semantically valid way to group the input words into phrases, if the input is inherently 
ambiguous. In the presence of sufficient semantic and contextual information, most natural 
language utterances are fairly unambiguous, or at worst have a small number of possible 
meanings (Lê , two or three rather than 120). Hence speech should be amenable to recognition 
by ACORN. 

What are the advantages of ACORNs for speech understanding? The bottom-up 
template-oriented approach is especially conducive to handling natural, idiomatic, 
conversational natural language robustly. Consider the problem in spoken speech of spurious 
insertions such as "oh," "urn," "er." We wish to treat them the same as silences. We do this by 
adding rules like [oh(tj, t2) => SILENCE(tj , t2);] to our template grammar, and inserting the 
relation S I L E N C E in the templates between every two adjacent relations whose occurrences in 
input are likely to be separated by spurious insertions. This solution is not as expensive as it 
may seem. Since spurious insertions are recognized automatically, it is not necessary to test 
for each possible spurious insertion at each point in the input, which would indeed be 
expensive, and would be the only apparent solution in a top-down system such as an ATN. 

This example also illustrates the reason for non-deterministic application of Colby's 
methods in a speech understanding system. Even if a spurious insertion is recognized, the 
corresponding portion of the input must not be discarded, since it may have been recognized 
incorrectly. If an ACORN recognizes an instance of "oh" in the interval [tj,t 2], it puts the 
instance (t(, t2; ...) on the instance list of S ILENCE, without discarding any information. That 
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way, if the interval actually contains the word "no," it is still there for the lexical analyzer to 
find. In contrast, when PARRY ignores information, it throws it away altogether. 

Another phenomenon common to conversational speech is the idiomatic expression, e^, 
"How are you?" Using ACORNs, we can simply include explicit template rules for such 
expressions, e.g., 

[howare+youUj, t2) => GREETINGS j , t2); REPLY("Fine, how are you?")], 

thereby short-circuiting the detailed syntactic parse which would be attempted by a more 
formal system such as Woods1. 

The two techniques just described can be combined. Certain idioms such as "by the 
way" carry essentially no useful information and can be treated as spurious insertions by 
rules like 

[by(tlf t 2) and the(t2, t3) and way(t3, t4) => SILENCER, t4);]. 

Some expressions occur either as meaningless idioms or as meaningful phrases, depending on 
context. Consider, for example, the utterance "I see, could I see the midnight digest?," which 
occurred in an actual experimental protocol. The first occurrence of "I see" is idiomatic and 
can be ignored; the second is crucial to the meaning of the utterance. An ACORN, in 
processing this utterance, would recognize both occurrences as instances of SILENCE, without 
discarding any information. The first occurrence would be ignored, as desired, but the second 
one would still be available to match other templates. PARRY can also ignore a spurious 
occurrence of an ordinarily meaningful expression, but only by omitting elements in the input 
one at a time and attempting a match each time. The ACORN is in effect performing this 
operation in parallel rather than iteratively. 

Spurious deletions can also be handled by ACORNs. To handle spurious deletions, we 
want to permit partial matching of templates. We can do this within the ACORN framework 
simply by adding extra templates corresponding to commonly occurring partial matches of the 
original templates. The obvious weakness of this method is that it requires a prjoxi knowledge 
of which deletions are likely to occur. The success of the method would require many 
iterations over a large corpus of test utterances, with hew templates added as needed. 
Hopefully this process would converge, after a reasonable number of such iterations, to 
acceptable performance with respect to handling spurious deletions. (This method of "massive 
iteration" seems to have.worked successfully for Colby.) 
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Partial templates could, be used for another purpose as well. Although the bottom-up 

approach has several advantages, as described above, it is useful to have certain properties 

associated with top-down processing. One such property is the ability to focus the attention 

of lower-level modules on critical portions of input. Another is the ability to hypothesize 

words from above, for lower-level modules to confirm or reject. Although we earlier referred 

to a lexical analyzer which finds all instances of primitive relations (words) in the input 

utterance, this would in practice be too expensive. The actual Hearsay II system seeks to 

constrain hypothesization as much as possible; to do this it applies high-level information to 

cut down the number of possible words considered for each portion of the input. Thus it is 

desirable to have a speech understanding ACORN generate intermediate partial information 

telling the lower level modules which portions of the input they should concentrate on 

processing, and which words are likely to occur at a given place in the input, on the basis of 

the already recognized portions of the surrounding context. 

This top-down extension to the basic bottom-up mechanism requires knowledge about 

the predictive value of partial templates. For example, we know that "What time" often occurs 

in the phrase "What time is it?" We can incorporate this information in an ACORN by including 

a rule 

[ whatttj, t 2 ) aod time(t2, t 3 ) -> WHAT*TIME(t j , t 3); TEST(t 3, t a n y ; "is it") ], 

where TEST is the action invoked upon recognition of the template. The effect of the TEST is 

to look for the missing instance of "is it" starting at the time t 3 in the input utterance. If it is 

found, it is added to the instance list for "is it," leading to the desired completion of the full 

template "What time is it." 

In the above example, a partial template was used to predict downwards in the network. 

Partial templates can also be good upward predictors. For example, given an instance of the 

partial template Tj = "time is it," the probability P(T 2|Tp that it occurs as part of the 

template T 2 = "What time is it" may approach certainty. If P(T2|Tj) is high enough, say .99, 

we may wish to save processing time by simply assuming that T 2 does in fact occur. We could 

obtain values for the various Bayesian probabilities P(Tj|Tj) by using the network to recognize 

a large set of utterances and collecting appropriate data automatically. The ultimate extension 

of this is a learning system, which would modify its Bayesian probabilities continously and add 

nodes for new partial templates when appropriate. 

Note that the utility of upward predictors derives from the redundant nature of speech. 

Upward prediction offers a robust method of dealing with unintelligible portions of an 

utterance by making reasonable guesses about what they contain. A system which insisted on 
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making a complete parse of the input utterance would necessarily give up in failure when 

confronted with an unintelligible fragment. 

EVALUATION AND CONCLUSIONS 

A full evaluation of the ACORN method must of course await implementation, which is 

currently in progress. In the meantime, there are several properties we expect the method to 

have. 

Efficiency 

The expected efficiency of ACORNs derives from several sources. Since the recognition 

process is organized so that contextual constraints are evaluated before adjacency constraints 

in the search through the space of combinations of hypotheses (see Introduction), a maximum 

of information is precomputed and stored statically in the network structure itself. Moreover, 

the state-saving nature of the recognition process eliminates most of the potentially costly 

recomputation which would be done by an equivalent top-down system such as an ATN. 

Finally, information sharing between templates reduces both time and memory costs. We 

expect recognition time to be considerably sublinear in the number of templates, which is 

crucial for any system which must handle hundreds or thousands of templates. This sharing of 

information between templates will provide a significant improvement over alternative methods 

which test templates separately. 

Robustness 

Using an ACORN makes it possible to dispense with a formal parse. This informality 

should contribute both to efficiency — e.g., by permitting the immediate recognition of idioms 

like "how are you" and to robustness with respect to ungrammatically, spurious insertions, 

and unintelligibility. Even when an ACORN cannot fully parse an utterance, it still provides a 

partial parse. Lg-, if ACORN expects a complete sentence but is given an utterance consisting 

only of a noun phrase, it will recognize the noun phrase (assuming that the noun phrase is an 

instance of some node in the network). A top-down system like an ATN could also do this -~ 

but only by adding noun phrase as a special case of a sentential form. When one considers 

the multitude of sentence fragments which commonly occur as utterances in conversational 

speech ( e ^ , "Where did you go?" "Out." "What did you do?" "Nothing."), it appears that some 

sort of bottom-up approach is necessary to handle them all efficiently. 

Simplicity and Decomposability 
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ACORNs are organized so as to factor recognition processing into simple, universal 
operations performed at the nodes. This should make them fairly easy to implement; in 
particular, a large ACORN shouldn't be much more complicated to build and maintain than a 
small one. Moreover, the fact that each operation is performed locally, involving only a node 
and its constituents, means thai ACORNs should be readily decomposable for implementation on 
parallel processing machines. Since little inter-process synchronization will be required, the 
speed-up factor should be good. 

Flexibility 

To expand an ACORN to handle new cases, one need only add appropriate new rules to 
the template grammar and recompile the recognition network. Of course, since compilation will 
be an expensive process, we plan to implement facilities for editing an already-compiled 
network. This should make ACORNs quite flexible to work with. 

Generality 

Finally, we expect ACORNs to have a broad range of applications, since they seem well-
suited to recognizing any sort of relational pattern which embodies little symmetry and much 
contextual structure. Both spoken utterances and real-world scenes appear to be in this 
class. At present, we are implementing an ACORN to handle syntax and semantics for 
Hearsay II. We hope that our ACORN will do this efficiently. If it does, the ACORN method 
may be indicated as an effective overall organization for general recognition systems. 
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Abstract—The necessity arises in a variety of tasks to classify items on the basis of the presence of one 
of a number of criterial sets of co-related feature values. Such sets are called class characteristics. Because 
such classification problems require the identification of characteristics on the basis of limited training 
information, they entail a difficult search problem. Consideration of the differences between the theoretical 
models underlying characteristic and volume pattern generators suggests a schematic approach. Sche­
mata, sets of commonly co-occuring features values, are probabilistic indicators of class membership 
whenever the characteristics are unknown but the characteristic model prevails. Formal and algorithmic 
solutions to the classification problem when exemplars are simple (consist only of M feature or attribute 
values) are described. The relevance of these procedures to problems involving general (relational) data 
structures is also indicated. 

Classification Nominal Non-spatial Characteristic Interference Matching Schema Attribute Relation Performance. 

INTRODUCTION 
Several researchers11-4> have recently argued for the 
necessity in many problem contexts to identify differ­
ent sets of features, as well as distinct sets of feature 
values, associated with each of several alternative pat­
tern classes. For example, in classifying a test item X 
as an element of one of the classes C,, C 2 , C v , the 
simultaneous presence in X of all values prescribed by 
a schema St might be criterial for the choice C„ where 
St = {sn, si2, sini) is a set of required feature values. 
Such a schematic approach to classification problems 
is to be distinguished from more typical volume 
approaches in which each test item is located at a point 
in M-dimensional space determined by its values on 
each of M feature dimensions and classified as an ele­
ment of that class to whose exemplars it is most "proxi­
mate" in one of a variety of arbitrary ways. 
Clearly both sorts of techniques may have advan­

tages. Volume approaches are characterized by a 
simultaneous dependence on each of a common set of 
feature dimensions and a corresponding inability to 
recognize the irrelevance of some features for some 
classes. In the language of volume approaches, a 
schema of m features would correspond to an m-
dimensional hypcrplane in .V/-space.,4) The greatest 

* This study was supported in part by National Institutes 
of Health Grant GM-01231 to The University of Michigan. 

advantage of the volume approach is the simplicity of 
the related solution: each test point can occur in at 
most one pattern volume and the associated classifica­
tion response is trivial. In the schematic approach, 
however, a test item may match (contain) the schemata 
of a number of alternative classes, and the classifica­
tion decision is not obvious. 

The current paper provides a detailed description of 
the schematic approach to classification problems. In 
the next section two knowledge models, spatial and 
characteristic, are introduced which, it is suggested 
constitute the underlying theoretical bases for the 
volume and schematic approaches, respectively. Consi­
deration of the differences between the models illu­
minates the relative advantages and suitability of each 
approach for a specific task. Following that, simple 
(non-relational) and general (relational) schematic clas­
sification problems are defined. Both a complete for­
mal solution and an efficient heuristic solution to the 
simple classification problem are then presented. A for­
mal solution to the more general relational classifica­
tion problem is available elsewhere.15* Finally, the 
optimal properties and desirability of the schematic 
solutions are considered. 

KNOWLEDGE MODELS UNDERLYING CLASSIFICATION PROCEDURES 
A knowledge model is a theory describing the way 

in which feature values of pattern exemplars are gener-
105 
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ATED. FOR EXAMPLE, A MODEL OF COMPUTER PROGRAM MAL­
FUNCTIONS WOULD RELATE ERRATIC PROGRAM BEHAVIOR TO THE 
KINDS OF BUGS WHICH COULD CAUSE IT. A KNOWLEDGE MODEL 
UNDERLYING CLASSIFICATION PROCEDURES MUST RELATE THE 
KINDS OF COMMONALITIES ONE FINDS IN THE FEATURE VALUE 
SETS OF EACH EXEMPLAR TO THE PROCESS WHICH GENERATES 
THEM. 

ONE PROMINENT CLASS OF VOLUME CLASSIFICATION TECH­
NIQUES ASSOCIATES ALL ITEMS WHOSE VECTOR REPRESENTATIONS 
ARE CLOSELY TOGETHER IN A/-DIMENSIONAL SPACE AS LIKELY 
ELEMENTS OF THE SAME CATEGORY OR CLASS. THE OBVIOUS 
KNOWLEDGE MODEL, THE spatial model, WHICH UNDERLIES 
THIS IS THAT EXEMPLARS OF A GIVEN CLASS TEND TO SHARE ALL 
FEATURE VALUES IN COMMON AND DEVIATIONS .FROM THE 
CLASS CENTRAL OR MEAN VALUES ON EACH DIMENSION ARE 
STOCHASTICALLY GENERATED BUT SEVERLY CONSTRAINED. ALSO, 
THE ASSUMPTION OF INDEPENDENCE OF THE DEVIATIONS ON 
EACH DIMENSION IS USUALLY MADE, ALTHOUGH IN SOME 
CASES, PAIRWISE LINEAR CORRELATIONS OF THESE DEVIATIONS 
ARE CONSIDERED. IN SHORT, THIS SPATIAL MODEL POSTULATES 
THAT EXEMPLARS ARE BALLISTICALLY PRODUCED, AND ALL 
EXEMPLAR FEATURE DEVIATIONS FROM THE TARGET POINT (THE 
IDEAL) ARE. IN A SENSE, PROBABILISTIC ERRORS. 

THE MODEL UNDERLYING SCHEMATIC CLASSIFICATION IS THE 
characteristic model. IT POSTULATES THAT A GIVEN CLASS, SAY 
d o g . IS DEFINED BY A CHARACTERISTIC, A SET OF MANDATORY-
FEATURES AND THAT ANY OTHER FEATURES PRESENT OR ABSENT 
(E.G. COLOR OF EYES OR SHAPE OF TAIL) ARE IRRELEVANT TO THE 
CLASS CONCEPT. EMPLOYING SUCH A MODEL, ONE WOULD 
PREDICT THAT ALL EXEMPLARS OF EACH CLASS WOULD MANIFEST 
THE CORRESPONDING CLASS CHARACTERISTIC AND THAT ALL NON-
CRITERIAL FEATURES WOULD OCCUR PROBABILISTICALLY. 

A GENERALIZATION OF THIS SINGLE CHARACTERISTIC MODEL 
WOULD PERMIT A NUMBER OF DISTINCT CHARACTERISTICS TO 
DEFINE THE CLASS CONCEPT DISJUNCTIVELY. FOR EXAMPLE, AN 
EXEMPLAR A' OF THE CLASS OF periodicals WOULD NECESS­
ARILY REFLECT AT LEAST ONE OF THE FOLLOWING CHARACTERISTICS: 
"A IS A NEWSPAPER," "A IS A MAGAZINE." OR "A IS A SCHO-
LARH JOURNAL.** THIS GENERALIZED CHARACTERISTIC MODEL IS 
ASSUMED TO UNDERLIE THE SCHEMATIC CLASSIFICATION PRO­
CEDURES DEVELOPED LATER IN THIS PAPER. 

TWO TYPES OF SCHEMATIC CLASSIFICATION 
PROBLEMS 

THE simple SCHEMATIC CLASSIFICATION PROBLEM ENTAILS 
THE IDENTIFICATION OF THOSE SCHEMATA (FEATURE SETS) WHICH 
ARE COMMON TO EXEMPLARS OF EACH PATTERN CLASS AND THE 
APPLICATION OF THOSE SCHEMATA TO EFFECT CLASSIFICATION OF 
TEST ITEMS. EACH CLASS C,. C : C V IS ASSOCIATED WITH 
A REFERENCE SET R { = ¡£,/.7 = 1-2 |/?,-|J OF KNOWN 
EXEMPLARS OF Cr EACH EXEMPLAR E t j IS AN ORDERED SET 
OF FEATURE VALUES, E u = {f,jL:k = 1.2,..., A/,', WHERE fijk 

IS AN ELEMENT OF F k , THE FINITE SET OF ALL POSSIBLE VALUES 

OF THE A:TH FEATURE OR ATTRIBUTE DIMENSION. IN ADDITION, 
SOME ASSUMPTIONS REGARDING THE SAMPLING PROCEDURE 
USED TO GENERATE THESE REFERENCE SETS MUST BE MADE. IN 
THIS PAPER THESE ASSUMPTIONS ARE: ( 1 ) EACH REFERENCE SET 
Ri REPRESENTS A RANDOM SAMPLE OF SIZE |R,| TAKEN WITH 
REPLACEMENT FROM A MUCH LARGER POPULATION P, OF 
EXEMPLARS OF C, ; AND (2) THE RELATIVE CARDINALITIES 
(POPULATION SIZES) OF P x . P 2 P I V ARE 

AND THAT IN RANDOM SAMPLES TAKEN FROM 

1 = 1 

FOR TEST CLASSIFICATION, EACH CLASS TYPE WILL OCCUR WITH 
FREQUENCY DETERMINED BY THE MULTINOMIAL DISTRIBUTION 
WITH CORRESPONDING PARAMETERS />,, p 2 , . . . , p N . THE P, 
MAY BE ASSUMED KNOWN OR MAY BE ESTIMATED FROM THE 
CARDINALITIES OF THE REFERENCE SETS R,. 

EACH PATTERN CLASS C, IS ASSUMED TO BE DEFINED BY AN 
UNKNOWN NUMBER OF CHARACTERISTICS C i n p m = 

1, 2,|C,|. EACH CHARACTERISTIC IS A SIMPLE SCHEMA OF 
THE FORM C I M = [ c i m k : k = 1,2,..., M \ WHERE EACH c i m k IS 
EITHER A FEATURE VALUE IN Fk OR IS <f> (nil), INDICATING THE 
IRRELEVANCE OF THE /AH FEATURE VALUE TO THE CHARACTERISTIC 
Cim. EACH CHARACTERISTIC Cim IS ASSUMED TO PREDICT 
MEMBERSHIP IN CLASS C, IN THE SENSE THAT EVERY ITEM IN 
C, MUST MANIFEST ONE OF THE ASSOCIATED CLASS CHARACTER­
ISTICS Cim, AND ITEMS IN ANY OTHER CLASS C, SHOULD MANI­
FEST SUCH CHARACTERISTICS ONLY BY THE CHANCE COMBINA­
TION OF THE COMPONENT FEATURE VALUES. CLASSIFICATION OF 
A TEST ITEM A IS THUS PERFORMED BY FINDING WHICH 
CHARACTERISTICS Cim ARE MATCHED BY A AND CHOOSING THE 
CLASS C, ASSOCIATED WITH THE STRONGEST OR BEST PREDICTOR. 
THE DETAILS OF SUCH A PROCEDURE ARE CONSIDERED AFTER THE 
MORE GENERAL SCHEMATIC PROBLEM IS INTRODUCED. 

THE general (RELATIONAL) SCHEMATIC CLASSIFICATION 
PROBLEM IS SIMILAR TO THE SIMPLE PROBLEM JUST DISCUSSED 
IN ALL WAYS BUT ONE. IN THIS PROBLEM, THE EXEMPLARS OF 
EACH CLASS MAY BE SETS OF OBJECTS OR EVENTS DESCRIBED 

FIG. 1. A TYPICAL EXEMPLAR IN A GENERAL SCHEMATIC CLASSIFICA­
TION TASK. 
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I N TERMS OF BOTH SIMPLE FEATURE VALUES AND RELATIONS 

AMONG OBJECTS, ACTIONS, SUBPATTERNS. ETC. A N EXAMPLE 

OF THE SORT OF EXEMPLAR WHICH MIGHT BE ENCOUNTERED IN 

A GENERAL CLASSIFICATION PROBLEM IS THE FOLLOWING para­
meterized structural representation ( P S R ) FOR THE CON­

FIGURATION IN FIG. 1: 

({p = SQUARE, 0, = a\, [p = SQUARE, ox = b\, 

[p — CIRCLE, 0, = c], [p — SQUARE, 0, = d), 

[p = CONTAINS, O, = a. o2 = b\, [p = CONTAINS, 

O, = C, o2 = d), 

[p = ABOVE, 0, = A, 0, = b,o2 = c,o2 = d), 

{p = SAME, ox — a,ox = 6, O, = d)). ( 1 ) 

I N THIS REPRESENTATION, THE SYMBOLS, a. b, c AND d ARE 

CALLED parameters, BECAUSE THEIR ONLY FUNCTION IS TO FACI­

LITATE CONSISTENT REFERENCE TO OBJECTS OCCURRING IN 

SEVERAL RELATIONS. EACH RELATION IS REPRESENTED AS A SET 

COMPRISING A PREDICATE (p) AND THE ORDERED PREDICATE 

OBJECTS (OI AND o2) WHICH IT RELATES. T H E PREDICATES USED 

IN THIS EXAMPLE CARRY THEIR ORDINARY ENGLISH INTERPRE­

TATIONS. 

SUPPOSE THAT THIS ITEM WERE AN EXEMPLAR OF THE CLASS 

C , DEFINED BY THE FOLLOWING CHARACTERISTIC: **C, CON­

TAINS ANY ITEMS WHICH CONTAIN AT LEAST FOUR GEOMETRIC 

FIGURES WITH TWO VERTICALLY ORGANIZED PAIRS OF NESTED 

FIGURES SUCH THAT THE INTERIOR FIGURES IN BOTH PAIRS ARE 

THE S A M E " TH I S CHARACTERISTIC IS EASILY REPRESENTED IN 

TERMS OF THE FOLLOWING P S R : 

({P = FIGURE, ox — a), [p = FIGURE, O, = b')t 

{p = FIGURE, O, = C'|, [P = FIGURE, 0, = d'}, 

{p = CONTAINS,ox = a,o2 = b'), [p = CONTAINS, 
O, = C\ o2 = d')y 

{p = ABOVE, ox = a\ ox = b\ o2 = c, o2 — d'), 

[p — SAME, ox = b\o2 = d'\). (2) 

IT IS CLEAR THAT THE ITEM IN FIG. 1 DESCRIBED BY (1 ) 

MATCHES THE CHARACTERISTIC (2). T H I S FOLLOWS FROM THE 

FACT THAT EACH PARAMETER (E.G. a) IN (1 ) CORRESPONDS TO 

THE SIMILAR PR IMED PARAMETER (E.G. a) IN (2) AND THAT 

EACH RELATION IN (2) IS MATCHED BY A CORRESPONDING RELA­

TION IN (1). HERE, HOWEVER, MATCHING IS A MORE GENERAL 

PHENOMENON. T H E RELATION \p = SQUARE, O, = a] 

MATCHES [p = FIGURE, ox = a \ BECAUSE THE FORMER I M ­

PLIES THE LATTER IF THE EQUIVALENCE OF a AND a' IS ASSUMED. 

T H E SAME IS TRUE OF THE MATCHING RELATIONS \p — SAME, 

O I = A, 0, = /), 0, — d) AND \p = SAME. 0, = b\ ox = 

ct\ UNDER THE ASSUMED PAIRWISE EQUIVALENCES \b.b'\ 
AND d'\. 

PROCEDURES FOR THE GENERATION OF APPROPRIATE SCHE­

MATIC REPRESENTATIONS OF CHARACTERISTICS AND FOR MATCH­

ING A TEST ITEM TO A SET OF POSSIBLE PREDICTIVE CHARACTER­

ISTICS OF THIS GENERAL SORT ARE COMPLEX AND BEYOND THE 

SCOPE OF THIS PAPER. BOTH ARE DISCUSSED IN HAYES 

R O T H , U AND FULLY DETAILED IN HAYES-ROTH. < 5 ) FOR THE 

CURRENT PURPOSES, HOWEVER, IT WILL SUFFICE TO NOTE THAT 

BOTH THE SIMPLE AND GENERAL CLASSIFICATION PROBLEMS ARE 

IDENTICAL IN THEIR FORMAL STRUCTURES. THAT IS, IN BOTH 

CASES, SCHEMATA WHICH ARE ESSENTIALLY FREQUENT SUBRE-

PRESENTATIONS OF EXEMPLARS OF EACH PATTERN CLASS ARE 

IDENTIFIED AND THEN USED TO CLASSIFY MATCHING TEST ITEMS. 

I N THIS PAPER, DETAILED SOLUTIONS ARE PROVIDED ONLY FOR 

THE SIMPLE PROBLEM. HOWEVER, BECAUSE OF THE SIGNIFI­

CANT SIMILARITY BETWEEN THE SIMPLE AND RELATIONAL PRO­

BLEMS, THE GENERALITY OF THE PROVIDED SOLUTIONS IS I M ­

MEDIATELY APPARENT. 

A F O R M A L S O L U T I O N T O T H E S I M P L E 
S C H E M A T I C P R O B L E M 

A FEW DEFINITIONS MUST BE GIVEN BEFORE PROCEEDING. 

A schema S IS ANY SET *Jk:k = 1,2, ....A/ ] SUCH THAT 

fk e Fk OR fk = (p. T H E order OF 5, o{S). IS THE NUMBER OF 

NON-NIL fk IN S. T H E null schema <t>Si
 = *Jk'.fk = </>, k = 

1,2 M) IS OF ORDER ZERO AND IS MATCHED BY ANY 

SCHEMA OR EXEMPLAR. T H E INTERPRETATION GIVEN A 

SCHEMA S IS THAT IT REPRESENTS A SUBSET OF FEATURES (THOSE 

NOT EQUAL TO (p) WHICH ARE CO-RELATED, OCCUR SIMUL­

TANEOUSLY, IN ONE OR MORE EXEMPLARS OF A PATTERN CLASS. 

T H E SCHEMA T IS A subschema OF THE SCHEMA 5 IF S 
MATCHES 7, AND THIS IS DENOTED S{*)T. S(*)T WHENEVER 

EACH NON-NIL FEATURE VALUE IN T ALSO OCCURS IN S. T H E 

NOTATION R, S DENOTES THE SET OF ALL ELEMENTS Ei} IN THE 

REFERENCE SET OF C, WHICH MATCH 5. R DENOTES THE UNION 

U 
i= 1 

AND Ri DENOTES THE SET OF EXEMPLARS OF ALL CLASSES 

OTHER THAN C , : R( = R — R{. A S AN EXAMPLE OF THIS 

NOTATION. \RL-S\ DENOTES THE NUMBER OF EXEMPLARS 

OF CLASSES OTHER THAN C, WHICH MATCH THE SCHEMA 5. TO 

DENOTE THAT X IS AN EXEMPLAR OF THE PATTERN CLASS C, (OR 

AN ELEMENT OF THE CORRESPONDING POPULATION P,) X E C, 

IS WRITTEN. 

G I V E N THESE DEFINITIONS, THE SCHEMATIC CLASSIFICATION 

PROBLEM IS FORMALIZED AS FOLLOWS. CONSIDER ALL POSSIBLE 

SCHEMATA S , . 5 : Sk MATCHED BY A TEST ITEM A'. 

WH ICH OF THESE IS THE BEST, INDICATOR OR STRONGEST PREDIC­

TOR OF MEMBERSHIP IN A SINGLE CLASS C, AND WHICH CLASS 

IS SO INDICATED? 

T H E SOLUTION PROPOSED HERE RESTS ON A PARTICULAR IN­

TERPRETATION OF "BEST INDICATOR." A SCHEMA 5 OF X IS 

SAID TO INDICATE OR PREDICT A CLASS C,. DENOTED S=>Cr 

TO THE EXTENT THAT THE <J posteriori CONDITIONAL ODDS THAT 

X IS AN ELEMENT OF THE CORRESPONDING POPULATION P (. 

Pr[X e C,\X(*)S] PrlX ~ C(\A'(*)S]. EXCEED 1. T H E per-
for mane e VALUE OF S AS AN INDICATOR OF C,, i'{S >C,), IS 
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a w e i g h t e d s u m o f t h e e x p e c t e d n u m b e r o f c o r r e c t l e s s 

i n c o r r e c t c l a s s i f i c a t i o n s ( e x p e c t e d g a i n ) : 

L ' ( S = > C , ) = £ [ ^ . ( n u m b e r o f c o r r e c t c l a s s i f i c a ­

t i o n s o f C , i n d i c a t e d b y S) — 

^ . ( n u m b e r o f i n c o r r e c t c l a s s i f i c a ­

t i o n s o f Ci i n d i c a t e d b y 5 ) ) 

= a c £ ; \ f ( S = > Q ; - awE[Xw(S^Ci)}i 

(3) 
w h e r e a, a n d aw d e n o t e t h e r e s p e c t i v e s i g n i f i c a n c e s o f 

c o r r e c t a n d w r o n g c l a s s i f i c a t i o n s . £ d e n o t e s t h e 

e x p e c t a t i o n o p e r a t i o n . A " t . ( S = 5 > C , - ) a n d A ' M . ( S = " > C , - ) 

d e n o t e t h e n u m b e r o f c o r r e c t a n d w r o n g c l a s s i f i c a t i o n s 

o f t e s t i t e m s a s m e m b e r s o f C , i n d i c a t e d b y S. I n b r i e f , 

t h e c l a s s i f i c a t i o n r u l e u s e d i s t o c l a s s i f y A * a s a n e x e m ­

p l a r o f t h e c l a s s C , o n l y i f t h e r e e x i s t s o m e /* a n d /' s u c h 

t h a t X[*)Sj a n d l ' ( S , = > C f ) > L'{Sk=>Ch) f o r a l l k s u c h 

t h a t X{*)Sk a n d f o r a l l h a n d i e [ 1 , 2 N). 
U(S=s>Cj) c a n b e c o m p u t e d i n a s t r a i g h t f o r w a r d 

w a y . T h e a priori p r o b a b i l i t y d e n s i t i e s . P'[X e C , ] ^ 

R [ 0 . 1 ] ( a s s u m i n g / > , . u n k n o w n ) . P ' [ A ( * ) S | A e C , ] -

R [ 0 . 1 ] a n d P ' [ A ( * ) S | A $ C , ] - R [ 0 . 1 ] r e p r e s e n t o u r 

i n i t i a l u n c e r t a i n t y a b o u t t h e t r u e p r o b a b i l i t i e s , r e s p e c ­

t i v e l y , t h a t a n y i t e m d r a w n a t r a n d o m w i l l b e a n 

e x e m p l a r o f C , . t h a t a n y e x e m p l a r o f C , w i l l m a t c h S . 

a n d t h a t a n y n o n - e x e m p l a r o f c l a s s C , w i l l m a t c h S. 

[ R [ 0 . 1 ] i s t h e r e c t a n g u l a r ( u n i f o r m ) d e n s i t y f u n c t i o n 

o v e r a l l v a l u e s i n t h e i n t e r v a l f r o m 0 t o 1 . ) T h e 

r e f e r e n c e s e t s R , a n d R , c a n b e c o n s i d e r e d s a m p l e s 

w h i c h p r o v i d e , a d d i t i o n a l i n f o r m a t i o n a b o u t t h e s e 

p r o b a b i l i t i e s a n d . w h e n c o m b i n e d w i t h t h e s e p r i o r 

d i s t r i b u t i o n s , y i e l d p o s t e r i o r d e n s i t y d i s t r i b u t i o n s f o r 

t h e v a r i a b l e s o f p r i n c i p a l i n t e r e s t . 

B r i e f l y , e a c h v a r i a b l e c a n b e c o n s i d e r e d a b i n o m i a l 

p a r a m e t e r a b o u t w h i c h t h e u n c e r t a i n t y a t t h e o u t s e t 

r e f l e c t e d b y t h e d i s t r i b u t i o n R [ 0 . 1 ] . i s m a x i m a l . T h e 

e s t i m a t i o n o f t h e p o s t e r i o r p r o b a b i l i t y P " [ A e C , ] . 

w h e n Pi i s u n k n o w n , m a y b e c o n s i d e r e d a s a n e x a m p l e . 

T h e n u m b e r o f s a m p l e d e x e m p l a r s w h i c h a r e e l e m e n t s 

o f C ; i s s i m p l y ! R y i . T h o s e w h i c h a r e n o t c o n t a i n e d i n 

C , a r e e l e m e n t s o f R , , a n d t h e i r n u m b e r i s | R , | . T h e p o s ­

t e r i o r d e n s i t y d i s t r i b u t i o n f o r P " [ A e C , ] i s t h e n 

P ' T A e C , ] - Be{\ + \Rtl 1 + \R,\i ( 4 ) 

(7) 

F r o m t h e s e f a c t s , t h e f o l l o w i n g r e s u l t s a r e i m m e d i a t e l y 

d e r i v a b l e : 

£ ' ( \ f ( S = > < : , ) ; = ElF'lX^SlXeCJPTXeCJ) 

1 + 1R,-| 1 + \Rt/S\ 
2 + I R J + I K J 2 + | K J 

= 1 + \Rj 1 + \RJS\ 
2 + 1 / 1 , 1 2 + | R | •• 

ElXJiS^Cft = £ ! P T A ( * ) S | A ^ C J P W C J 

= i + \r^s\ i + m 
2 + | R , | 2 + | R , . | + | R , - | 

= 1 + | R , | 1 + | R , - / S | 

2 + I U J 2 + | R | • 

t h e B e t a d i s t r i b u t i o n w i t h p a r a m e t e r s 1 + | R , f a n d 1 + 

\R,\ ( F e r g u s o n ' * ' ) . S i m i l a r l y , t h e o t h e r p o s t e r i o r 

d e n s i t i e s o f i n t e r e s t a r e : 

P ' T A H S I A e C , . ] 

- Be(\ + \RL<Sl 1 + | R , | - | R , S | ) ; ( 5 ) 

P " [ A ( * ) S | A e C , ] 

- Be(\ + \KL;S\. 1 + | R , | - | R , 5 | ) . ( 6 ) 

( 8 ) 

1 + l * , / S | 

2 + I R . - I 

•aw(\ + \RA) 
l ( S = > C , ) = 

1 + \Ri/s\ 
2 + | R , | 

2 + | K | 
- ( 9 ) 

T h i s g e n e r a l s o l u t i o n i s p r o v i d e d f o r c a s e s i n w h i c h 

t h e t r u e p o p u l a t i o n p r o p o r t i o n s p-t a r e u n k n o w n . W h e n 

t h e Pi a r e k n o w n h o w e v e r , t h e t e r m s ( 1 + | R , | ) / ( 2 + * 

| R | ) a n d ( l + | R , | ) / ( 2 + | R | ) a r e r e p l a c e d b y p , a n d ( 1 -

Pi), s o t h a t 

U { S ^ C i ) = a < P i ^ m 

- ^ ( l - p , ) 1 * ' * ^ . ( 1 0 ) v 2 + \Rt\ V ' 

T h e e s s e n t i a l t e r m s i n t h e s e e q u a t i o n s , | R , / S | a n d \RJSl 
a r e c a l l e d t h e positive a n d negative s a m p l i n g f r e q u e n ­

c i e s o f 5 i n R , . r e s p e c t i v e l y . 

A C O M P L E T E A L G O R I T H M I C S O L U T I O N 

T O T H E S I M P L E S C H E M A T I C P R O B L E M 

T h e r e i s o n e o u t s t a n d i n g p r o b l e m i n a p p l y i n g t h e 

r u l e s u g g e s t e d i n t h e p r e c e d i n g s e c t i o n f o r c l a s s i f i c a ­

t i o n d e c i s i o n s . T h e n u m b e r o f n o n - t r i v i a l s c h e m a t a 

m a t c h e d b y X = J . v , Xst\ i s 2 M - 1 w h i c h , f o r 

m o s t r e a l i s t i c p r o b l e m s , i s v a s t l y t o o m a n y t o c o n s i d e r . 

O n e m a j o r a l g o r i t h m i c a p p r o a c h t h a t s u g g e s t s i t s e l f 

( M i c h a l s k i ( 2 > ) i s t o l o o k f o r a s m a l l n u m b e r o f l o w -

o r d e r s c h e m a t a w h i c h a r e m o d e r a t e l y d i a g n o s t i c f o r 

t h e r e f e r e n c e s e t o f e a c h c l a s s . I n t h i s a p p r o a c h , e a c h 

a d d i t i o n a l s c h e m a i s e s p e c i a l l y c h o s e n f o r i t s d i a g n o s -

t i c i t y w i t h r e s p e c t t o t h o s e e x e m p l a r s n o t y e t e x p l a i n e d 

b y ( m a t c h i n g ) t h e p r e v i o u s l y c h o s e n s c h e m a t a . T h e 

f u n d a m e n t a l p r o b l e m w i t h s u c h a n a p p r o a c h i s t h a t i t 

file:///RJSl
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is not very robust.The choice of most desirable sche­
mata is likely to be overly dependent upon the exem­
plars encountered, especially when the size of the refer­
ence set is small in comparison to the number of fea­
ture values and or characteristics associated with that 
set. Consider what must be done if a high-order 
schema occurs frequently throughout one reference set. 
Any particular lower-order subschema chosen to 
represent the higher-order one is likely to perform 
badly whenever the entire set or some other subset of 
co-related features in the original schema is actually 
criterial. 

Rather than following the typical sequential pro­
cedures which essentially assemble high performing 
schemata by addition of one feature at-a-time. the 
approach considered here operates simultaneously on 
the entire sets of features composing each exemplar 
and avoids choices among alternative schemata which 
are potentially correct representations of criterial 
characteristics. The SIMPLE INTERFERENCE MATCHING (SIM) 
algorithm solves the classification problem by first 
generating a MAXIMAL DECOMPOSITION of each reference 
set RI as follows. A maximal abstraction of simple 
exemplars EN, EI2 EIH. denoted 

J = I 

is the schema representing the set of feature values 
common to all of them. Thus. 

n*EU = EN*EL2* ...*EIH = <FK:FK=FIJK 

if FNK = FNK = .. • = FIHK. otherwise FK = <£. K = 1. 
2 M). The operation denoted by * and /7* is 
called the INTERFERENCE PRODUCT because of its similarity 
to physical interference processes. A maximal abstrac­
tion CLUSTER in the reference set R, is a set of exemplars 
in RJ with a unique non-null maximal abstraction not 
matched by any other exemplar in RR That is H = 
{£uv EIR EHH>

 i s a cluster in K, if EIJNERI {N = 

1 HI 

n 
n = 1 

and for noye ¡1, 2 |/?,-|| - (JIJ2. ... ,JH ] is it true 
that 

1 

Finally, the maximal decomposition of RT. denoted D,-, 
is the set 

D, = \AIJ-.AIJ is the maximal abstraction of a cluster 
RI/ATJ IN RHJ•= 1,2 |D,.||. (11) 

The decomposition D, is very significant. It repre­
sents the minimal complete set of non-redundant 
(highest-order) schemata which occur in R, with dis­
tinct frequencies. Consider any NIH order schema AU in 
DJ. The number of non-trivial lower-order schemata 
which it matches is 2" — 2. Such schemata may be en­
tirely redundant with AU with respect to the number 
of exemplars in R, which match them. Let T be a sub­
schema of.4,; so that T represents a SUBMAXIMAL abstrac­
tion of the exemplars in R,, ATJ. Then, if any exemplar 
ELK matches AI}. it also matches T. Furthermore, if there 
is any EIK. which does not match AN but does match 
T, there must be some other lower-order maximal 
abstraction AMEDL and associated cluster RT AIN such 
that .4,„(*)7and \R{ .4 J > \RVAI}\. Thus, every schema 
Tis either redundant with some A(J in DT in the sense 
that it is a lower-order schema with the same positive 
sampling frequency or is itself an element of D. with a 
larger associated cluster RT T. 

Because the formal solution given in the previous 
section requires the identification of schemata with 
greatest performance measures, the maximal decom­
position D, is an extremely useful structure. The perfor­
mance of a schema AIJEDI as an indicator of C„ 
V(AIJ^>C{\ is an increasing function of \RT: AI}\ and a 
decreasing function of \R, A^L Any schema Twhich is 
redundant (in the above sense) with AU is such that |/?,•;' 
T\ = |R, AU\. in all probability [R, ATJ\ < |Rr T|, but in 
no case can it be that \RR T\ < IR^AU'L since X{*)AIJ im­
plies X(*)T. Thus, an algorithmic solution need only 
bother to identify (in the first phase) schemata in D,. 
Not only are these the highest performing schemata, 
but all schemata of non-zero frequency in R, not pres­
ent in D, are subschemata of at least one other schema 
in D,, 

A complete algorithmic solution to the first part of 
the simple schematic classification problem, identify­
ing the schemata with highest performance values, is as 
follows. For each I'= 1 to :V by 1, initialize the list £), 
to be empty, and for each / = I TO |R, by I. repeat the 
following two-step interference procedure. 

STEP 1. For each K: = 1 to iD,| by 1 (if D, list is not 
empty), compute a new schema S, a maximal abstrac­
tion, by the interference product 

^= IT* (12) 
E,KER, IA.SE,,) 

and if S€ D,, concatenate 5 to the D, list. 
STEP 2. Concatenate EI} to the DT list, unaltered. 
At the conclusion of this procedure, each schema 

AIK in D, is maximally performing and non-redundant. 
However, there may be some redundant lower-order 
schemata which will in fact be criterial for some 
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CLASSIFICATION TASKS ON NOVEL TEST ITEMS. SUPPOSE S , IS A 

REDUNDANT SUBSCHEMA OF A HIGHER-ORDER SCHEMA 5 AND 

AN ITEM A" IS TO BE CLASSIFIED. IT IS POSSIBLE THAT ALL OF THE 

FOLLOWING WOULD BE TRUE': NOT [ A ( * ) S ] . A"(*)S,. AND 

U S , M A X MAX L * ( . 4 = > Q . 
A. X(*\A /=! V 

I N SUCH A CASE. Sx IS A CRITICAL CHARACTERISTIC SCHEMA. 

ALTHOUGH SUCH SITUATIONS ARE VERY IMPROBABLE WHEN THE 

REFERENCE SETS ARE VERY LARGE AND CONFORM TO THE 

ASSUMPTIONS MADE EARLIER, FOR A COMPLETE SOLUTION EACH 

OF THE SCHEMATA IN D¡ SHOULD BE ITERATIVELY REDUCED 

(INFORMATIONALLY)BY SETTING SOME NON-NIL FEATURE VALUES 

TO o TO PRODUCE REDUNDANT LOW ER-ORDER SCHEMATA WHICH 

ARE CONCATENATED TO THE D¡ LIST IF NOT ALREADY CONTAINED 

IN IT. T H E ENTIRE EXPANDED LISL DENOTED D*. SHOULD 

THEN BE SORTED ACCORDING TO THE PERFORMANCE VALUE OF 

EACH CONTAINED SCHEMA. ALTHOUGH THIS PROCEDURE 

ULTIMATELY ENTAILS A CONSIDERATION OF MANY REDUNDANT 

SCHEMATA, THIS IS UNAVOIDABLE WHEN A COMPLETE 

SOLUTION IS REQUIRED. 

THE ORDERED LIST Df FOR EACH REFERENCE SET ANSWERS 

THE FIRST PART OF THE CLASSIFICATION PROBLEM. THE SECOND 

PART WHICH CLASS IS MOST STRONGLY INDICATED IS EASILY 

ANSWERED IN TERMS OF THESE SORTED LISTS. T H E CLASSIFICA­

TION RESPONSE TO A TEST ITEM A IS C WHENEVER, FOR SOME AijZD* SUCH THAT X(*)Aij. L'(.4 ¡ 7 C.) > 1(4^ = Ck) 
FOR ALL /. /'. k AND n SUCH THAT Aki£ D* IS MATCHED BY A . 

O F COURSE, ALL LISTS CAN BE SCANNED SIMULTANEOUSLY IF 

THEY ARE MERGED AND SORTED in toto BY PERFORMANCE 

VALUES: THEN THE FIRST Atj IN THE COMBINED LIST MATCHED 

BY A WOULD ENTAIL THE CLASSIFICATION DECISION Cr 

AN E F F I C I E N T SPACE L I M I T E D A L G O R I T H M FOR T H E 
S I M P L E P R O B L E M 

THERE IS ONE PRINCIPAL WEAKNESS OF THE COMPLETE 

SOLUTION JUST DISCUSSED. T H E NUMBER OF SCHEMATA IN 

EACH D* LIST IS LIKELY TO BE ASTRONOMICAL DUE TO THE RAN­

D O M PAIRINGS OF NON-CRITERIAL FEATURES IN EACH EXEM­

PLAR. NEVERTHELESS, WITH MINOR MODIFICATIONS, THE 

GENERAL S I M ALGORITHM PRO\IDES AN EFFICIENT AND DESIR­

ABLE PROCEDURE. 

T H E PRINCIPAL WAYS TO LIMIT THE EXTENSIVE PROCESSING 

INVOUED ARE: (LL LIMIT THE NUMBER OF SCHEMATA CON­

TAINED IN EACH D : (2} LIMIT THE TOTAL NUMBER OF SCHE­

MATA OVER ALL CLASSES TO THOSE n WITH HIGHEST PERFOR­

MANCE VALUES: OR (3) REJECT ALL SCHEMATA INDICATING C, 

WHOSE PERFORMANCE \ALUES ARE BELOW SOME \ALUE R,. I N 

GENERAL, THESE CRITERIA RESULT IN A LIMITATION ON MEMORY 

SPACES (ON THE NUMBER OF SCHEMATA IN EACH LIST D, OR 

OVERALL L AND. AS A RESULT, ON THE TIME OF PROCESSING. 

HENCE, THE RESULTING MODIFIED ALGORITHMS ARE CALLED space limited interference matching ( S L I M I PROCEDURES. 

T O PRODUCE A S L I M ALGORITHM, THE ONLY MANDATORY 

MODIFICATION TO THE PREVIOUS PROCEDURE WHICH IS NEEDED 

IS TO LIMIT THE NUMBER OF SCHEMATA HELD IN WORKING 

MEMORY ACCORDING TO THE SELECTED CRITERION, AND THIS IS 

STRAIGHT-FORWARD. AT EACH STAGE IN PROCESSING, MEMORY 

WILL BE OCCUPIED W ITH THOSE SCHEMATA SO FAR PRODUCIBLE 

ON THE BASIS OF EXEMPLARS SAMPLED WITH M A X I M U M 

EXPECTED PERFORMANCE VALUES. 

OTHER TECHNIQUES FOR PRODUCING MAJOR IMPROVE­

MENTS IN PROCESSING SPEED AND EFFECTIVENESS IN S L I M 

PROCEDURES INCLUDE: (1) LIMITED POSITIVE AND OR NEGA­

TIVE SAMPLING: (2) ELIMINATION OF NEGATIVE SAMPLING; (3) 

INTERSECTION MATCHING: (4) INVERSE ORGANIZATION OF THE 

Dj LISTS: AND (5) EFFECTIVE LIST PRUNING THROUGH COMPETI­

TION FOR SPACE BASED ON CONDITIONAL PERFORMANCE 

VALUES. EACH OF THESE IS DISCUSSED IN TURN. 

LIMITED POSITIVE SAMPLING RESTRICTS THE EXTENT to 
WHICH A NEWLY PRODUCED SCHEMA S IS EVALUATED FOR FRE­

QUENCY OF OCCURRENCE. R, S\. A SCHEMA S IS PRODUCED 

BY THE INTERFERENCE OPERATION APPLIED TO A NEWLY INTRO­

DUCED EXEMPLAR Etj AND A PREVIOUSLY COMPUTED 

ABSTRACTION .4 / K. RATHER THAN COMPUTING |R L ( S| BY CHECK­

ING EACH Eu FOR A MATCH WITH 5. A LIMITED SAMPLE 

R] C /<,CAN BE SO EVALUATED. TH IS SIGNIFICANTLY REDUCES 

THE NUMBER OF COMPUTATIONS WITHOUT BIASING THE 

RESULTS OR JEOPARDIZING ROBUSTNESS OF THE PROCEDURE. 

LIMITED NEGATIVE SAMPLING SIMILARLY RESTRICTS THE COM­

PUTATION OF IRi.Sl ALSO REQUIRED FOR THE COMPUTATION of 
L ' ( S = > Q . 

NEGATIVE SAMPLING CAN BE COMPLETELY ELIMINATED IN 

A REASONABLE WAY BY ASSUMING THAT THE FEATURE VALUES 

OCCURRING IN A SCHEMA S WHICH INDICATES C, ARE INDE­

PENDENTLY DISTRIBUTED IN Rr THE NON-EXEMPLARS OF C,. 

T H E VALIDITY OF THIS ASSUMPTION IS BOTH QUESTIONNABLE 

AND TESTABLE IN ANY PARTICULAR CASE. NEVERTHELESS, IF THIS 

ASSUMPTION IS MADE, THE FREQUENCY WITH WHICH S WOULD 

BE EXPECTED TO OCCUR IN R, IS SIMPLY COMPUTABLE AS THE 

JOINT PROBABILITY (PRODUCT) OF EACH OF THE MARGINAL PRO­

BABILITIES ASSOCIATED WITH EACH NON-NIL fk IN S. I.E. 

ESTIMATED \R, S! = J J (\RL ! / T I № ) X |R,|. (13) 

THE SIMPLICITY OF THIS COMPUTATION CAN AFFORD SIGNIFI­

CANT REDUCTIONS IN PROCESSING TIME COMPARED TO BOTH 

UNLIMITED AND LIMITED NEGATIVE SAMPLING. 

INTERSECTION MATCHING IS AN EXTREMELY EFFICIENT PRO­

CESS LOR COMPUTING THE SAMPLING FREQUENCY OF A SCHEMA 

5 IN A SET R. EACH FEATURE VALUE fk IS ASSOCIATED WITH A 

BIT STRING B[JK) = (/),. h2 /) ( K L J) SUCH THAT h} = 1 IF THE 

/AH FEATURE VALUE (./,",* I OF EXEMPLAR Et) EQUALS Jk: OTHER­

WISE hj - 0. THEN LIMITED OR UNLIMITED SAMPLING CAN BE 

EFFECTED BY ANDING THE CORRESPONDING BITS OF ALL STRINGS 

B{fk) OF NON-NIL fk IN S. IF UNLIMITED SAMPLING IS DESIRED, 

file:///alues
file:///alue
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the entire bit strings are anded. Limited sampling is 
performed by reducing the length of each B()k) to in­
clude only those exemplars in" a reduced subset R, of 
Rh In either case, the resultant /th bit is 1 only if £,•,<* )S. 
The cardinality of RJS or R] S is then the number of 
1 bits in the resultant bit string. Similarly, negative 
sampling can be effected by anding together the appro­
priate inverted bit strings from the set /?,-. 

A major processing savings may be achieved 
through an inverse organization of the D, lists, as fol­
lows. Each feature value fk is associated with a bit 
string dt{fk) such that the j i h bit is one only if the j i h 

schemata in the D, list contains the value fk. Because 
the SLIM procedure requires the evaluation and stor­
age of schemata only when they are not already in the 
D, list, these dt{fk) bit strings can be used to expedite the 
related searches. The and product dt{S) = d^f^)^ 

dkfi) ^ dkft) f°r aH non-nil f k e S would then 
identify all schemata in D{ matching a newly produced 
schema S. If. in addition, a bit string o,(0* which 
is one in bit / only if the /th schema in the D, list is of 
order r, is anded to d,(S), the resultant string is not 
identically zeroes only if S is in D, already. Such a 
search technique is desirable whenever the capacity of 
the D, lists is very large in comparison to the order of 
the schema S. 

Finally, the overall expected utility or total perfor­
mance of the D, list of schemata can be maximized (in 
expectation) and, conversely, redundant schemata can 
be eliminated through competition if schemata are 
dynamically ordered by conditional performance 
values. Two sorts of redundancy are necessarily con­
trolled. First, any schema S' which matches a lower-
order, higher performing schema S is assigned a null 
conditional positive sampling set (frequency zero). This 
assignment reflects the fact that whenever S' indicates 
class C h S indicates C, more strongly, because S'(*)S 

and X(*)S' imply X(*)S. Thus the simultaneous pres­
ence of both S and S' in a D, list is unnecessary, and 
5* is truly redundant with 5. A more complicated sort 
of redundancy arises when a schema 5 in D, matches 
a lower performing schema S'. This may occur 
whenever S is a characteristic of C, and the number of 
characteristics of C, exceeds one. Such a lower-order 
schema S' may be produced whenever an exemplar Etj introduced by the interference procedure contains a 
distinct characteristic Tand E,*S ~ </>M. To eliminate 
the possibility that schemata reflecting such accidental 
interference patterns proliferate (as they might if o(S) 
is large), the redundant lower-order schema S' is 
assigned the conditional positive sampling set defined 
by 

RJX = (R, - \jRi/Sk)/S' (14) 

where K = \k: [/(S^Q > L'(S'=> C,)and SK{*)S'). 
This conditional sampling set estimates the frequency 
with which the schema 5' occurs in exemplars of C, 
which do not also match S. Whenever a low-order 
schema S' is actually characteristic and not simply 
redundant with a higher performing schema, this will 
necessarily be reflected by a substantial number of ele­
ments in RLS' as defined by (14). Conversely, the empti­
ness of Rj/S' indicates that S' is completely redundant 
with higher performing schemata. 

If conditional performance values of schemata are 
computed as in equations (9) and (10) using, when 
appropriate, the conditional positive sampling fre­
quences defined above, the performance values so 
obtained estimate the net weighted gain of correct less 
incorrect classifications attributable to the correspond­
ing schemata in the presence of the higher performing 
current alternatives. That is, higher performing, lower-
order schemata preclude the application in classifica­
tion of a matching lower performing schema, and 
higher performing, higher-order schemata make less 
probable the necessity of a matched lower-order 
schema as an indicator of class C,. Competition for 
storage space on the D, list based on conditional per­
formance values then acts to preserve the overall maxi­
mally performing set of schemata at each moment in 
time. 

It is argued here that such a measure is the best to 
use for space allocation decisions. One principal alter­
native to this technique would be to define the condi­
tional positive sampling set as follows: 

R J S ' ^(Ri-LJRJSJVS' (15) 

where J = \j: U(SJ C,) > U(S' =>C,)J. Comparing 
this to (14), it can be seen that this alternative considers 
the predictive value of a schema only in marginal 
terms, that is. in terms of what predictive power it adds 
to the existing set of higher performing schemata re­
gardless of whether they match it or not. A simple 
example will betray the undesirability of such a tech­
nique. Suppose C, comprises four characteristics: 
C, = IF, =/,. F2 =/,!. C l 2 = \F2 =/2, F3 =/3l, 
C-3 = [F, = FA = /4J, C i X = [F, = j \ , FA = y4'„ 
where an element F} — f} signifies that the /th feature 
value must equal ]]. Although overlapping, these fea­
ture set characteristics are distinct. Evaluating perfor­
mance in terms of the sampling set defined by (15) 
would be disastrous in this case. At most two of the 
characteristics would be considered to have non-null 
positive sampling sets, and either the pair JC,-,, Ciy \ or 
the pair (C(2, Cj4! would be thus evaluated. Which 
pair would be assigned positive sampling frequencies 
greater than zero and which frequencies of zero would 
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be determined only by chance. The usefulness of the 
derived schemata for classification would then be ex­
tremely tenuous. Only if all test items presented mani­
fest one of the lucky two positively performing charac­
teristics would classification be successful, contrary to 
the assumption that any of the four characteristics 
ought to be criteria! for classification. Such errors do 
not arise if the conditional frequency is computed 
according to equation (14). 

In addition to maximizing the expected total perfor­
mance of the schemata in the D, list, making perfor­
mance values conditional upon higher performing 
schemata may be viewed as pruning unneeded sche­
mata from further consideration when more valuable 
alternatives are present. This view point is illustrated in 
the following example. 

An example 
Suppose Cj is associated with two characteristics. 

C n = ¡color = red. temperature = medium, pres­
sure = lowest! and Cl2 = ¡color = pink, pressure = 
low, size = largest] in a study involving exemplars 
comprising 100 values on attributes including size, 
color, temperature, and pressure. Suppose also that 
each attribute takes on 5 different values, so that the 
number of possible distinct schemata indicating mem­
bership in class Cx is (5+ l ) 1 0 0 - 1. Under the 
assumptions that C,, occurs with probability 2 3 in R¡. 
that C 1 2 occurs with probability 1 3 in R,. that each 
value is equiprobable on each non-criterial attribute 
dimension, and that C,, and Cl2 occur in R, only by 
chance combinations of the corresponding indepen­
dent random variables, it is possible to indicate the 
extreme efficiency of SLIM procedures. 

The probability of // chance (non-criterial) feature 
value matches among k exemplars randomly chosen 
either only from RiCn or only from Ri'Cl2 is 
approximately: 

^ p(,a) = ^ ( 1 5 ) ' , ( k - 1 ) [ l - (l/5)fc- 1 ] c > 7 - " . (16) 

For example, the probability that any (at least 1) 
chance matches occur among 7 exemplars is approxi­
mately: 

1 _ p{0j) = i _ [i _ (1/5)6]97 

= 97(1 5f = 0006. (17) 
After sampling about 20 exemplars from R,. there­

fore, it would be extremely unlikely that either C,, or 
C,2 would not have been produced. Even if space for 
schemata was limited to 5. say. it would be very improb­
able that all spaces would have been occupied by sche­
mata matching only C,,. Each time a new exemplar 
from R{ t n is interfered with an existing schema 

AljeDi which matches C M . either the new schema S 
(equation 12) is a lower-order schema matching C n or 
5 = Au. In the former case, the positive sampling fre­
quency of Ai} is reduced to zero to account for the 
redundancy between S and A¡¡: this makes Ai} the 
weakest competitor for space on the £>, list. In the lat­
ter case, no changes are made to the D, list. In short, 
until C M is produced by interference matching at most 
one high performing schema in D, is likely to match 
C n . The second highest performing schema is, simi­
larly, likely to be one matching Cl2. Because some ex­
tremely improbable sampling circumstances might 
make other schemata more prevalent than ones match­
ing either C n or Cl2. a few additional (here, 3) 
memory spaces might be required to produce a proper 
solution to the classification problem. 

In the future, simulations will be run to compute the 
actual performance of SLIM procedures under a var­
iety of constraints. For the present, however, it should 
be clear that only a small amount of redundancy in the 
storage used to hold alternative schemata is necessary 
to offset large differences in the positive sampling fre­
quencies of alternative characteristics. 

CONCLUSIONS 

A complete solution to the simple schematic classifi­
cation problem was developed using the simple inter­
ference matching technique. It produces a set of sche­
matic characteristics of the reference set R, of a pattern 
class C, by interfering the representations of all subsets 
of exemplars to identify clusters in R, and their corre­
sponding maximal abstractions. Each of these abstrac­
tions is a potential indicator of membership in C, by 
the assumptions underlying the characteristic model. 

A number of heuristics can be employed to design 
practical SLIM procedures whose results approximate 
the most useful results of the complete procedure. In 
such space limited procedures, the ranking of schemata 
by conditional performance values acts to maintain in 
memory schemata of the highest possible order relative 
to the large set of potentially redundant lower-order 
subschemata with similar positive sampling frequen­
cies. This, in turn, acts to increase the probability that 
subsequent interference of a newly sampled exemplar 
and a previously produced schema will result in the 
production and identification of a subschema which is 
in fact better performing, until the true characteristic 
schemata are so produced. Conversely, when higher-
order schemata match lower-order, higher performing 
schemata, the evidence is strong that the former are 
redundant with the latter in the sense that both match 
the same characteristic, and only the latter can poss­
ibly be applied to effect classification. By appropriate 
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reduction of the performance values of such redundant 
schemata. SLIM procedures insure that useless sche­
mata are pruned from overcrowded storage. 
Although these properties suggest that SLIM pro­

cedures may be optimal with respect to the overall per­
formance of the schemata produced given the particu­
lar storage constraint, the proof of such a claim would 
both require an excessive number of very strong 
assumptions (e.g. assumptions about the joint distribu­
tions and numbers of compatible and incompatible 
distinct characteristics in each exemplar and over each 
class) and be very complicated statistically. In the 
absence of such a proof, the importance of SLIM pro­
cedures is argued on the basis of their three obvious 
properties: they are associated with an important and 
reasonable underlying model and. therefore, are widely 
applicable; because they utilize as much information as 
possible at each stage of processing and avoid un­
necessary and arbitrary choices, they are apparently 
quite robust: and they are easily computed, primarily in 
terms of extremely efficient bit string logical products. 
It seems likely, therefore, that SLIM techniques will 

prove valuable wherever the characteristic model is an 
appropriate description of the process by which 
exemplars are generated. 
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ABSTRACT 

Many events (patterns) may be described by structural (conjunctive relational) 
representations, and general computational behavior may be represented in terms of a set of 
grammatical ruies (productions, transformations) relating two such event representations as 
contingency and response components. Uniform representations and graphs of structural 
descriptions and rules are introduced. An abstraction of a set of uniform representations 
corresponds to a common subgraph of the corresponding uniform graphs. Every rule F = 
[(Vx|,...,x n) C(xj,...,xn) => R(x|,...,xn)] which can be induced from a training set I = {(Cj, Rj) : i « 
1, N} of contingency-response (input-output) pairs is identified with a common subgraph of 
the uniform graphs of the causal inferences Cj => Rj. A general learning problem is formulated 
for which three cases are distinguishable on the basis of if and how substitutions from input 
to output patterns are to be made. Category (unary) and n-ary predicate learning in this 
framework are discussed. Examples of rule learning applications are drawn from the domains 
of transformational grammar and speech understanding. The properties (both desirable and 
undesirable) of the proposed approach and the differences between it and previous 
approaches are also considered. 

1. INTRODUCTION 

The current paper is motivated by the observation that rules of behavior (e.g., rules of 
transformational grammar, pattern classification, and general computation) may be directly 
abstracted from examples of their use if appropriate restrictions are placed on the 
representation of the rules and training examples. Specifically, if rules are restricted to the 
form F = [(Vx|,...,x n) C(xj,...,xn) => R(xj,...,xn)] where both C(x^,...,xn) and R(xj,...,xn) are 
conjunctive products of variable forms of the predicate calculus, a graph representation exists 
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for which it is true that the rule F is a common subgraph of the graphs representing the 
training examples. Many previously intractable learning problems can be solved in this way, 
and examples in this paper include the induction of the equi-noun phrase deletion rule of 
transformational grammar and a variety of rules for use in a real-time speech understanding 
system. However, numerous details of the proposed representation and abstraction 
procedures must be considered in solving this general learning problem. Nonetheless, the 
essential ideas in this paper are easily stated: (1) a uniform graph representation exists for 
any conjunctive clause of the predicate calculus which insures that one graph is a subgraph of 
another one if and only if the associated clauses describe two patterns where the first is a 
subpattern of the second; (2) training examples for the induction of an unknown rule can be 
provided such that the graph representation of each example contains the unknown rule as a 
subgraph; and (3) a previously published algorithm for extracting abstractions 
(subrepresentations) common to a set of graphs is thus effective for the induction of rules. 
Before proceeding to consider general rule learning, the foundation is laid by reviewing 
related research concerning the hypothesization of classification rules for non-metric data. 

In recent pattern recognition research (Barrrow, s i aL 1972; Shaw, 1.972; Eden & Halle, 
1962; Evans, 1968, 1969; Hayes-Roth, 1973, 1974a, 1974b; Michalski, 1973; Watanabc, 1973; 
Winston, 1970), an emphasis has been placed on the structural (relational) representation of 
pattern prototypes and procedures for the recognition of stimuli which exhibit prototypic 
structure. The assumption that each pattern class is identified by one or more prototypic 
structural descriptions has been called the characteristic model (Hayes-Roth, 1974a) to 
distinguish it from the more traditional spatial or multidimensional pattern recognition model. 
In addition, algorithms have been described which efficiently search the space of plausible 
pattern characteristics (prototypes), i.e., the set of all structural representations manifested by 
the training exemplars of a pattern class (Hayes-Roth, 1974a; Stoffel, 1974). If there are N 
mutually exclusive pattern classes (or responses) Rj, and the training exemplars of Rj 
are Ij = {Ej j , Ej n . } , these algorithms are developed from the following two observations. 
(1) Each proposition P which is true of some exemplars in Ij is a potential basis for 
classification of any novel item Y for which P(Y) is true as a member of Rj. Of course, the 
plausibility of (confidence in, support for) the rule [(VY) P(Y) => Y € Rj] should be a strictly 
increasing function of the positive frequency of P in Ij, which is defined as |Ij/P| = |{Ejj : Ejj c 
Ij & P(Ej j)}|, and a strictly decreasing function of the negative frequency of P in Ij', |Ij'/P| ^ 
| {E k j : E R j c I k & k / i & P(Ekj)}|. In words, the greater the frequency with which the 
proposition P is true of positive instances (Ij) of Rj and the less the frequency with which P is 
true of non-instances (Ij') of Rj, the higher the probability that P is a characteristic of (criteria! 
for) class Rj. (2) If all of the propositions which are true of each exemplar are given as the 
description of the exemplar, those schemata (conjunctive sets of propositions) which occur 
most frequently among the descriptions of exemplars of a single class are likely to be 
plausible hypothetical class characteristics. 
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An understanding of the details of such pattern learning programs requires only a small 

amount of additional terminology. Define an abstraction of several exemplar prepositional 

descriptions as any proposition which is directly implied (contained) by each of them. 

Abstractions are identified by computing conjunctive sets of propositions which are 

consistently present in (subsets of) the conjunctive sets of propositions describing several 

exemplars of the same pattern class. The plausibility of each such abstracted schema as a 

pattern characteristic is then evaluated by computing an appropriate measure which is an 

increasing function of its positive and negative frequencies in Ij and Ij\ respectively (Hayes-

Roth, 1973, 1974a; Stoffel, 1974). Of course, if the abstraction procedures produce a schema 

which is manifested (matched) by every exemplar in Ij and none in Ij' and if the underlying 

pattern is equivalent to a conjunctive concept (Bruner, e i aU 1956), the abstraction is a 

plausible candidate for the class characteristic (see, for examples, the concepts learned in 

Winston, 1970 and Hayes-Roth, 1973). 

The purposes of the present paper are three: first, to introduce a uniform 

representation for structural descriptions of events (e.g., visual or acoustic patterns, semantic 

or syntactic structures, etc.) which is designed to insure that all schemata which are 

manifested by each of a set of exemplars can be identified by any procedure which, in effect, 

can identify a common subgraph of several undirected, labelled graph representations 

associated with each of the exemplars; second, to generalize the previously published learning 

techniques to problems involving the induction of universally quantified rules of the predicate 

calculus like those of web grammar (Pfaltz & Rosenfeld, 1969) or transformational grammar 

(Friedman, 1971); and third, to illustrate this learning technique by applications to several 

current problems arising in the speech understanding research at Carnegie-Mellon University. 

The remainder of the paper is organized as follows. Section 2 presents the essential 

details of the structural representation of patterns, first in terms of typical predicate calculus 

(list-based) forms and subsequently in terms of equivalent (set-based) relational 

representations. Difficulties arise in all such systems both from the necessity to abstract m-

ary relations which are implicit in (contained by) n-ary relations (n > m) and from the desire to 

allow many-to-one object correspondence mappings from stimulus to template pattern 

representations; these problems are discussed and motivate the uniform representations which 

are then proposed. This scheme is then extended to cover the representation of grammatical 

rules (substitution productions). In Section 3, a formal statement of the learning problems 

addressed by the present paper is provided. A solution to any particular problem will require 

one of three distinct sorts of inference mechanisms depending on the nature of the unknown 

rule and the amount of information provided. Sections 4, 5, and 6 provide detailed solutions to 

problems of each of the three types. Section 7 briefly discusses methods for discovery of a 

particularly useful sort of unary predicate corresponding to a category, a set of mutually 
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exclusive elements which occur as alternatives in particular structural contexts within learned 
rules. Also, the correspondence between learned patterns and novel n-ary predicates is 
discussed. Section S illustrates some of the problems in our speech understanding research 
which are being approached with the proposed learning procedures. The last section 
discusses the relation of these learning problems, procedures, and results to related research, 
obstacles to the widescale implementation of such learning procedures, and directions for 
future research. 

2. STRUCTURAL REPRESENTATIONS 

Figure 1 illustrates two patterns representing (A) a triangle and (B) two lines. These 
patterns could be represented by typical conjunctive predicate calculus picture descriptions in 
terms of a binary symmetric predicate line as in Aj and Bj, below. 

Figure 1. A triangle (A) and two lines (B) described in 
terms of relations on nodes in the line drawings. 

Ai = Iine(al,a2) & Iine(al,a3) & Iine(a2,a3) & 
Iine(a2,al) & Iine(a3,al) & Iine(a3,a2) (D 

B2 = Iine(bl,b2) & Iine(b2,bl) & Iine(b3,b4) & Iine(b4,b3) (2) 

These representations, although extremely simple, suffice to illustrate most of the essential 
strengths and weaknesses of structural representations. Each term such as Iine(al,a2) is an 
instantiated form (or instance) of the variable form line(x,y); the object names such as al, a2, 
and a3 which name nodes (termini) in the line drawings are called parameters because, 
although they are equivalent to constants in the predicate calculus, only the alphabetic 
equality or inequality of two parameters is relevant to pattern description and recognition 
(Hayes-Roth, 1974d). If each parameter of Aj or Bj is considered to be a universally 
quantified variable, the associated quantified conjuctive variable form is a structural template 
which may be used for pattern recognition. Specifically, the structural representation S of 
some stimulus matches the structural representation T of some template if there is some 
correspondence between the parameters of S and T which insure that every form in the 
template T is also present in S. Symbolically, S matches T if there is a one-one (1-1) mapping 
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F ( A P A R A M E T E R BINJILOA. FUNCT ION) FROM THE SET OF P A R A M E T E R S OF T , P S ( T ) , TO THAT OF S , P S ( S ) , 

( I . E . , F ( L - I ) : P S ( T ) -> P S ( S ) ) S U C H THAT E V E R Y FORM IN T ALSO O C C U R S I N S IF T H E A L P H A B E T I C 

D I F F E R E N C E S B E T W E E N B O U N D P A R A M E T E R S ARE I G N O R E D (I.E., IF IT I S A S S U M E D THAT (VT ( P S ( T ) ) T = 

F ( T » ( B A R R O W , ET A U 1 9 7 2 ; H A Y E S - R O T H , 1 9 7 3 , 1 9 7 4 B ) . W H E N S M A T C H E S T U N D E R F, T H I S I S 

D E N O T E D S ( * ) F T OR S I M P L Y S ( * ) T . F U R T H E R M O R E , A N Y R E P R E S E N T A T I O N T W H I C H I S M A T C H E D B Y S I S 

C A L L E D A N A B S T R A C T I O N ( S U B P A T T E R N , S U B R E P R E S E N T A T I O N ) OF S . IF BOTH S ( * ) T A N D T ( * ) S , S = T . 

N O T I C E , H O W E V E R , THAT B J , THE R E P R E S E N T A T I O N OF TWO L INES, I S NOT AN A B S T R A C T I O N OF A J , 

T H E R E P R E S E N T A T I O N OF A TRIANGLE. T H I S I S B E C A U S E THE ONLY W A Y THE TWO L I N E S OF B C A N B E 

P L A C E D I N R E S P E C T I V E C O R R E S P O N D E N C E S WITH TWO LINES OF A I S IF TWO D IST INCT N O D E S I N B A R E 

F O R C E D INTO C O R R E S P O N D E N C E W ITH A S INGLE N O D E IN A . ONLY IF S O M E M A N Y - T O - O N E B I N D I N G 

F U N C T I O N S U C H A S V = { ( B L , A L ) , ( B 2 , A 2 ) , ( B 3 , A 3 ) , ( B 4 , A 3 ) } W E R E P E R M I S S I B L E , W O U L D IT B E T R U E THAT 

A J M P B J . F U R T H E R M O R E , THE R E A D E R SHOULD NOTE THAT IT I S NOT O B V I O U S O N A P R I O R I G R O U N D S 

W H E T H E R A J S H O U L D M A T C H B J U N D E R T H E S E C I R C U M S T A N C E S . FOR E X A M P L E , IF U N R E S T R I C T E D M A N Y -

T O - O N E B I N D I N G S ARE TO B E ALLOWED, IT WOULD FOLLOW THAT A S T I M U L U S C O N T A I N I N G O N E L INE W O U L D 

M A T C H A N Y T E M P L A T E C O N T A I N I N G A N Y N U M B E R A N D A N Y PATTERN OF L INES. A P R O P O S E D S O L U T I O N TO 

T H I S OIULUPLK. P A . L M E I E R C O R R E S P O N D E N C E P R O B L E M WILL B E M O M E N T A R I L Y D E F E R R E D W H I L E A N 

A L T E R N A T I V E R E P R E S E N T A T I O N S C H E M E I S I N T R O D U C E D W H I C H FACILITATES THE E X P O S I T I O N OF A S E C O N D 

P R O B L E M , THAT OF URIPIICIL. P R E D I C A T E S . 

A P J ) . L A M E T . E X I ? E D STRUCTURAL R E P R E S E N T A T I O N ( P S R ) Q I S A T W O - T U P L E OF T H E SORT ( P S ( Q ) , 

B O D Y ( Q ) ) W H E R E P S ( Q ) I S T H E SET OF P A R A M E T E R S U S E D TO REFER TO O B J E C T S I N Q A N D B O D Y ( Q ) I S A 

S E T OF M L£IATI.Q.NS. R J , W H I C H C O R R E S P O N D TO THE M P R E D I C A T E F O R M S I N A N E Q U I V A L E N T 

P R E D I C A T E CALCULUS STRUCTURAL R E P R E S E N T A T I O N . FOR E X A M P L E , THE P S R S A2 A N D B2 A R E 

L&JRLS$ENTATIORTA|JY, E Q U I V A L E N T TO THE R E P R E S E N T A T I O N S A J A N D Bj , R E S P E C T I V E L Y : 

A 2 = ( { A L , A 2 , A 3 } , 

{ { P : L I N E , N O D E : A L , N O D E : A 2 } , 

{ P : L I N E , N O D E : A 2 , N O D E : A 3 } , 

E A C H I N S T A N C E OF AN N - T H O R D E R P R E D I C A T E I N A P R E D I C A T E CALCULUS C O N J U N C T I V E F O R M I S 

R E P R E S E N T E D B Y O N E P L O D I C A L E I T E M OF THE FORM P : P R E D I C A T E A N D N O B J E C T I T E M S OF T H E F O R M 

O B J E C T T Y P E J I O H J E C T Y^UE.-, ( I = 1, N). H E R E , B E C A U S E LINE I S A B I N A R Y S Y M M E T R I C P R E D I C A T E , 

E A C H OF ITS T W O O B J E C T S I S OF THE S A M E T Y P E , N A M E L Y OF T Y P E N O D E . M O R E DETA ILS O N P S R S A N D 

T H E I R C O M P A R A T I V E A D V A N T A G E S C A N B E F O U N D IN H A Y E S - R O T H ( 1 9 7 4 C , A P . I V ) . B E C A U S E T H E Y A R E 

{ P : L I N E , N O D E T A L , N O D E : A 3 } } ) ( 3 ) 

( { B L , B 2 , B 3 , B 4 } , 

{ { P : L I N E , N O D E R B L , N O D E : B 2 } , 

{PTL INE, N O D E : B 3 , N O D E : B 4 } } ) . ( 4 ) 
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equivalent to the conjunctive variable forms of predicate calculus, they are only introduced 
here to facilitate the exposition. Note that in the framework of PSRs, S(*)fT <=> f(body(T)) c 
body(S), where f(body(T)) is defined to be the body of T with every occurrence of each 
parameter t (- PS(T) replaced by f(t), its correspondent under f in PS(S). 

The foregoing definition of an abstraction as a subrepresentation which is contained by 
some "larger" representation fails, however, to capture the intuitive idea that each n-ary 
relation such as rj = {p:line, riode:al, node:a2} actually represents (is equivalent to) a set of 
predicate relations which are implicit in (implied by) it. For example, any PSR containing rj 
surely contains at least two distinct nodes and thus should match any template which asserts 
propositions about the existence of one or two nodes whether or not it also asserts the 
existence of a line joining both of them. One principal weakness of all previously proposed 
structural representations is just this failure to represent the fact that the n-ary relation r = 
{p:q, obji:xi, objn:xn} should match any m-ary relation r' = {p:q, obj; :x: , obj: :x: } i i M M H n i m im 

where {ij, im} c (1, n}. Simply stated, it is desirable that r(*)r' if j and r' are relations 
and r' is contained in r. For example, one would desire that both A2WC and E^MC, if C 
represented "the dot and the line": 

C - ({cl,c2,c3}, 
{{p:line, nodexl, node:c2}, 
{p;line, node:c3}}). (5) 

Both the multiple parameter correspondence and the implicit relation problems have 
natural solutions if each PSR Q is converted before matching to an equivalent uniform  
representation U(Q) = (PS(U(Q)), body(U(Q))), as follows: 

Step 1: Each object reference (every occurrence of a parameter) in body(Q) is replaced 
by a new, unique parameter symbol. The set of these symbols is the parameter set of U(Q), 
PS(U(Q». 

Step 2: Each object item type:x in a relation with predicate item p:q is used to generate 
a unary unifficm L&l.a.!iPH {(q>type),x'} in the body of U(Q), where x' is the unique parameter in 
PS(U(Q)) generated from this occurrence of x in body(Q). The two-tuple (q,type) is called a 
property of x' and the pi_e.cii£at& of the unary relation. 

Step 3: If two distinct parameters, x' and x" in PS(U(Q)) were both generated from a 
single parameter x in PS(Q) and the intention of the PSR is to require that both x' and x" must 
be assigned a single correspondent in any matching pattern, the binary ynLfoxm same 
parameter (SP) relation (SP, x\ x"} is added to body(U(Q)). 
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Step 4: Similarly, if two distinct parameters y' and z' in PS(U(Q)) were generated from 
two different parameters, y and z, in PS(Q) and it is the intention that any matching pattern 
must assign a distinct parameter correspondent to each of these, the binary uniform dlfiexe.nl  
parameter (DP) relation {DP, y', z'} is added to body(U(Q)). 

Step 5: For each pair of parameters y' and z' in PS(U(Q)) which were generated from 
two object items occurring in the same relation in body(Q), the binary uniform s_gme set iSS.l 
relation {SS, y', z'} is added to body(U(Q)). 

If these five steps are applied to the PSRs A2 (3) and B2 (4), the following uniform 
representations are obtained: 

A3 = U(A2) = ({aГ,al,',a2^a2",aЗ')aЗ,,}, 
{{(line,node),ar}( {(line,node),al"}, 
{(line,node),a2'}, {(line,node),a2"}, 
{(line,node),a3'}, {(line,node),a3"}, 
{SS,ar,a2,}) {SS,a2,,,a3,}) {SS,a3'>n, 
{SP,al\al"}, {SP,a2',a2"}, {SP,a3>3"}} U 

{{DP,x1,x2} : (Vi=l,2) XJ ( {ar,ar\a2\a2")a3\a3"} 
£ {SP.xj.xg} / body(A3)}) (6) 

B 3 = U(B2) ({bl')b2,,b3',b4,}) 

{{(line,node),br}, {<lioe,node>,fc>2'}, 
{(line,node),b3'}t {{line,node),b4'}, 
{SS,br,b2'}, {SS.bS'M'}, 
{DP,b 1 \b2'}, {DP,b 1 \by], {DP.b 1 ',b4'}, 
{DP,b2,,b3,}) {DP,b2,,b4,},{DP)b3',b4'}}). (7) 

U(B2), of course, represents unambiguously two disjoint lines comprising four distinct 
nodes. If the actual intention for B in Figure 1 had been to represent two distinct but not 
necessarily disjoint lines, the appropriate uniform representation would be: 

B 3 ' = ({bl\b2,,b3\b4,}1 

{{(line,node),bl'}, {(line,node),b2'}, 
{(line.node) '̂}, {(iine.nodê b̂ '}, 
{SS)bl

,,b2,}) {SS^bA1}, 
{DP,bl',b2,}) {DP.bl'.bS'}, {DP,br,b4'}, 
{DP,b2\b3,}) {DP.bS'.bT}}). (S) 

While it is still true that Qf) A3(*)fB3> nevertheless under the binding rule 
f = {(br.aT), (b2',a2,)f (b3',a3'), (b4\a2")} 

(9) 

http://dlfiexe.nl
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it can be seen that A3<*)fB3 ,

) because f fbody^')) c body(A3); i.e., B3 ' « "two lines which 
may share.at most one node in common" is a subpattern of A3 « "a triangle." 

Given any uniform PSR Q' = (PS(CT), body(Q')) of a PSR Q, the corresponding uniform 
graph G(Q) = (XQ,AQ,PQ) is produced in a straightforward way. The node set XQ ^ PS(Q'). The 
arx (edgel se t A Q = {{h,y\z'} : {h,y ,,z'} < body(Q') & h < {SS,SP,DP} & y ' c X Q & z \ c X Q } . 
Finally, the property set PQ = {PQ(/> : y' < XQ & (q,type) € PQ(y') if and only if {(q,type),y'} < 
body(Q')}. The interpretation of a uniform graph is as follows. Each original reference to an 
object y in a PSR relation, such as {p:q, type:y, ...}, results in a distinct node y' in the graph, 
and y' has a set of properties PQ(y') attached to it such that the property (q,type) c PQ(y'). 
Furthermore, each binary uniform relation of type h * {SS,SP,DP} between parameters y' and 
z' is reflected by an undirected arc connecting nodes y' and z' which is labelled h. If two 
PSRs S and T are such that U(S) (*)f U(T), it follows (Hayes-Roth, 1974c) that G(T) - (Xj ,A T ,P T ) 
is a subgraph of G(S) - (X S ,A S ,P S ) , meaning that: (Vt < Xj) (Vf « Xj) f(t) c Xg & Pj(t) c Pg(f(t)) 
& [{h,t,t'} c Ay] => [{h, f(t),f(t')} c A3]. As an illustration, the two uniform graphs for A3 and 
8 3 ' are shown superimposed in Fig. 2 according to the node bindings specified by f (9). Thus 
a uniform graph G(T) is a subgraph of another, G(S), if there is some 1-1 node binding function 
f for which it is true that all node properties and labelled edges in G(T) are also in G(S). This 
is denoted G(T) c*f G(S) or simply G(T) c* G(S). 

Because most of this paper is addressed to questions concerning the identification of 
rules of grammar (productions) through the extraction of abstractions of training exemplars, it 
is necessary to extend the notions of PSR, uniform PSR, and uniform graph to the 
representation of productions. Define a rule (production, transformation) as any formula of 
the form F = [(Vxj, ...,xn) C(x|,...,xn) => R(xj,...,xn)] where C(X|,...,xn) (the contingency) and 
R(xj,...,x n) (the iiesp_on.se) of the rule F are both conjunctive products of variable forms over 
the variables X|, x n . Thus, the rule F is like a production of a web grammar C -> R', where 
the conjuncts of C(xj,...,xn) are represented by a web (graph) C and those of R(xj,...,xn) by 
the web R\ Specifically, the formalism of Pfaltz & Rosenfeld can be immediately generalized to 
allow such representations of rules by permitting labels on arcs, properties on nodes, and null 
embeddings. Then, the rule F can be represented by letting C and R' be the uniform graphs 
of the PSR equivalents of C(xj,...,xn) and R(xj,...,xn), respectively. 

It is possible, moreover, to obtain a single uniform representation of any rule F, and 
such a representation will greatly simplify the problem of abstracting rules from examples. 
Given F, it is clear from the foregoing how the uniform PSRs C = ( P S ^ b o d y ^ " ) ) and R' = 
(PS(R'),body(R?)) corresponding to the conjunctive forms C(xj,...,xn) and R(xj,...,xn) are 
generated. Notice though that the parameter sets PS(C') and PS(R') are necessarily disjoint 
because every occurrence of each parameter Xj in C(X},...,xn) and R(x^,...,xn) has been replaced 

http://iiesp_on.se
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Figure ,2. Two superimposed uniform graphs for a triangle 

(G(A3» and two lines possibly joined at one 

node(G(Bg'))under the binding function f of equation (9). 
The arcs of GiA^) are drawn with smooth lines, while those 

of G(B3') are drawn with wavy lines, 

by a new, unique parameter (see Step 1 of the procedure to generate uniform PSRs). Thus, a 

need exists for additional SP relations between any y' ( PS(C') and z' c PS(R') where y ' and z' 

are parameters which were generated from the same original parameter Xj occurring once in 

C(x1,...,xn) and once in R(x|,...,xn). Simply, the uniform PSR oi I M cute E is defined as U(F) « 

(PS(C') u PS(R'), body(C') u body(R') u {{SP,y',z'} : (3XJ> y' is a parameter in C and z' is a 

parameter in R' which replaced one occurrence of Xj in C(xj,...,xn) and R(xj,...,xn), respectively} 

U { { " C V ) : y 1 < PS(C')} u { { " R V J : z' c PS(R% Only the last two sets in the union which 

constitutes the body of U(F) need explanation. Basically, these sets assign the additional 

property "C" to each "contingency" parameter y' i PS(C') and "R" to each response parameter 

7? C PS(R') and serve to distinguish the contingency and response parts of the integrated rule 

representation. 
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s:xl & x2 - x6 s:x7 

the boy drink 

(c) E 2 - ( C 2 , R 2 ) 

in Vermont 

Figure 3. Two examples, E{ = ( C^R^ « ("The boy wants 

[that] the boy drink" "The boy wants to drink") and E 2 = 

(C 2 ,R 2 ) = ("The tall girl planned [that] the tall girl go skiing 

in Vermont", "The tall girl planned to go skiing in 

As an illustration of such a rule F, consider the equi-noun phrase deletion (END) rule of 

transformational grammar (TG) (Chomsky, 1967; Langendoen, 1969) shown in panel (a) of 

Figure 3 with two examples, 

(a) F « [ (yxl , . . . , x 9 ) C ( x l , . . . , x 9 ) R ( x l , • . . , x7) ] 
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Vermont'1), in panels (b) and (c), of the equi-noun phrase 
deletion rule F in panel (a). 

Ej = (C^Rj) and E2 = (C2,R2)> related by F shown in panels (b) and (c). Non-uniform PSR 
equivalents C, R\ C±\ Rj\ C2', and R2' corresponding to C(xj,...,xn), R(x1,...,xn), Cj, Rj, C2, and 
R2, respectively, are given below: 

C = ({xl,x2,x3,x4,x5,x6,x7,x8,x9}, 
{{p:s(np,vp), name:xl, np:x2, vp:x3}, 
{p:vp(v,s), name:x3, v:x4, s:x5}, 
(p:s(np,vp), name:x5, np:x6, vp:x7}, 
{prequal, what:x2, what:x6}}) (10) 

R' = ({xl,x2,x3,x4,xS,x6,x7,x8,x9}, 
{(p:s(np,vp), name:x7, np:x2, vp:x8}, 
«[p:vp(v,inf,vp), name:xS, v:x4, inf:x9, vp:x7), 
{p:"to", name:x9}}) (11) 

Cj' = ({sl,npl,vpl,vl,s2,np2,vp2}> 

{{p:s(np,vp), name:sl, np:npl, vp:vpl}, 
{p:"the boy", name:npl}, 
(p:vp(v,s), namervpl, v:vl,s:s2}, 
{p:"wants", name:vl}, 
(p:s(np,vp), name:s2, np:np2, vp:vp2}, 
{p:"the boy", name:np2}, 
{p:"drink", name:vp2}, 
{p:equal, what:npl, what:np2}}) (12) 

Rj* - ({s3,npl,vp3,vl,infl,vp2}, 
{{p:s(np,vp), name:s3, np:npl, vp:vp3}, 
{p:"the boy", name:npl}, 
{p:vp(v,inf,vp), name:vp3, v:vl, inf:inf 1, vp:vp2}, 
{p:nwantsu, name:vl}, 
{p:"to", narne:inf 1}, 
{p:"drink", name:vp2}}) (13) 

C 2 ' = ({s4,np3,vp5,v2,s5,np4,vp6}, 
{{p:c>(np,vp), name:s4, np:np3, vp:vp5}, 
{p:Mihe tall girl", name:np3}, 
{p:vp(v,s), name:vp5, v:v2, s:s5}, 
{p:"planned", name:v2}, 
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(p:s(np,vp), name:s5, np:np4, vp:vp6}, 
{p:"the tall girl", name:np4}, 
{p:"go skiing in Vermont", name:vp6}, 
{p:equal, what:np3, what:np4}}) (14) 

R 2 ' = ({s6,np3,vp7,v2,inf2,vp6}, 
{{p:s(np,vp), name:s6, np:np3, vp:vp7}, 
{p:"the tall girl", name:np3}, 
(p:vp(v,inf,vp), name:vp7, v:v2, inf:inf2, vp:vp6}, 
{p:"planned", narne:v2}, 
{p:"toM, name:inf2}, 
{p:"go skiing in Vermont", name:vp6}}). (15) 

Figure 4 illustrates the uniform graph G(F) for the rule F derived by converting C (10) 
and R' (11) into uniform PSRs, combining these, and supplementing the union of their bodies by 
all appropriate SP relations establishing equivalences between parameters (e.g. x2' and x2v" 
for the parameter x2) occurring both as a contingency and a response variable. 

Before proceeding to the next section, the reader should be convinced that the graph 
G(F) in Fig. 4 is a satisfactory (equivalent) representation of the rule F and, moreover, that the 
graphs G(Fj) and G(F2) corresponding to the rules Fj 
[C|'(sl,npl,vpl,vl,s2,np2,vp2,s3,vp3,inf 1) => Rj,(sl,npl,vpl,vl,s2,np2,vp2,s3,vp3,infi)] and F 2 

[C2'(s4,np3,vp5,v2,s5,np4,vp6,s6,vp7,inf2) => R2'(s4,np3,vp5,v2,s5,np4,vp6,s6,vp7,inf 2)] 
satisfy the subgraph relations: G(F) c* G(Fj) & G(F) c* G(F2). The fact that G(F) is a subgraph 
both of G(Fj) and G(F2) or, equivaiently, that F is a subrule (abstraction) of both Fj and F 2 is 
the basis for the plausible inference that F is the common rule manifested by = (Cj,Rj) and 
E 2 = (C2,R2). This inference technique is fully clarified and exploited in solving general 
induction problems in the subsequent sections. 

3. A GENERAL LEARNING PROBLEM 

The type of learning problem to be solved in this paper is formally defined as follows. 
Let I = {(Cj,Rp,...,(C|vj,R|y|)} be training information comprising N contingency-response (input-
output) pairs of structured representations which manifest some (unknown) rule F = [(Vxj,..., 
xn) C(xlv..,xn) => R(x1,...,xn)], where C(x1>...,xn) and R(x1,...,xn) are conjunctive variable forms 
over the variables X | , xn. Each Ej = (Cj,Rj) manifests F in the sense that (Vi = 1, N) (3fj) 

Cj (*>̂ . C(xj,...,xn) S: Rj R(X|,...,xn). The interpretation of this condition is that although the 
training pairs might contain much superfluous information (relations not present in C(x̂  xn) 
or R(xi,...,xn) and therefore not criterial), they must contain relations corresponding to each 
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Figure 4. The uniform graph G(F) of the END rule of TG 

corresponding to Fig. 3 (a) and equations (10-11). Here 

SP arcs appear as broken lines while SS arcs appear as 

solid lines. No DP arcs are represented since all pairs of 

nodes not connected by SP arcs presumably have DP arcs 

between them. 

criterial term in the conjunctive sets C(xj,...,xn) and R(xj,...,xn). The learning problem, is to 

define an effective procedure for computing the rule F given I. 

Two additional points are now made to motivate the proposed approach. First, the 

context in which this learning problem originally occurred was the following: Suppose a 

learner is provided with structural representations S^ (t = l,2,...) of the successive internal 
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states (a data base of semantic, syntactic, perceptual, and response-producing predicates) of 
sCme machine M to be modelled. Furthermore, suppose the behavior of M is determined by a 
finite set of independent productions which correspond to k rules, Fj,..., Fk of the same sort as 
F above. At any point in time, t, the transition from St to St+| may be accounted for in terms 
of a set of rules F(t) which, because their contingencies were satisfied (matched) by Sj, were 
invoked and caused specific response structures to enter Sj+j. In such a case (fully general, 
of course), an effective algorithm for identifying rules in F(t) would be adequate for the task 
of inducing a behavior model of M. 

The second point to notice is that, while there can be no solution which is error free 
after any finite time to grammatical induction problems which require the inference of the 
relevant underlying phrase structures (Gold, 1967), the current restricted statement of the 
learning problem is >one which does afford, with appropriate training information and 
acceptability criteria, certain solutions. This certainty is obtained at the expense of requiring 
each training input-output exemplar to manifest directly the underlying rule. Whether or not 
this requirement can be considered a serious weakness of the proposed approach depends 
principally on the power of this restricted procedure to solve important and general problems. 
This point is considered in some detail in the last section. At this point, however, the reader 
should realize that the proposed learning mechanisms are primarily relevant to problems 
where the space of plausible rules is implicitly determined by a predefined set of predicates 
all of whose relevant instances are provided directly to the learner. The learner's task—find 
the relevant conjunctive predicate structures--is then adequately constrained so that an 
effective procedure is straightforward. 

Given the training information I = {Ej = (Cj,Rj) : i = 1, N}, any F manifested by each Ej 
is, by definition, a plausible hypothetical rule underlying I. In order to further usefully 
constrain the space of plausible rules, one would also frequently like to exploit the idea of 
negative instances or counterexamples of a rule. When provided to a learner, the negative 
training information P = {Ej' = (Cj\Rj') : i = 1, I\P} for any F satisfies the condition: (Vi) (3fj 
such that Cj' (*)f. C(xj,...,xn)) not[Rj' (*)f. R(x1,...,xn)], That is, Ej' is a counterexample of F if Cj' 
matches the contingency structure of F but Rj' does not match the response structure of F. 
An example would be the pair (CpRj') where is the structural description of some input 
sentence which matches the contingency pattern of the END rule, but where is a related 
output sentence representation v/hich fails to match the response pattern of that rule. In 
other papers (Hayes-Roth, 1974a, 1974c), the quantitative use of such negative information in 
the evaluation of alternative plausible rules is formally considered. For the present purposes 
however, the following assumption will necessarily suffice: given the training sets I and V for 
an unknown rule F and any hypothesized rule F, the function U(F', |I/F'|, |F/F|) - V(F') will be 
taken to be the PSJJSTLM&DSJL (utility, value, plausibility) of the rule F', where V(F') necessarily 
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is an increasing function of the positive frequency of P in 1 (|I/P|) and a decreasing function 
of the frequency of negative instances of P in V <|I""/F*|). The functions to compute these 
frequencies and'V(P) will be assumed to be exogenously provided. Note that, as stated above, 
the learning problem requires that |I/P| = |I| = N for all hypothesized rules P. The 
generalization of this case to those where |I/P| < N is discussed in detail in Hayes-Roth 
(1974a) and briefly in the last section of this paper. 

The three special cases of the rule learning problem are defined as follows. Case 1 -
Categorical Rule Learning: The response R(xj,..., x n ) of the unknown rule F is categorical, i.e., it 
is unchanged regardless of variations among inputs Cj. For example, the response might be 
"red" or "class 2" or any constant semantic structure. Case 2 - Substitution Rule Learning 
Given Exogenously Determined Contingency and Response Parameter Correspondences: The 
rules to be learned allow for general substitutions (forced equivalences) between any 
contingency and response parameters, and these are manifested by SP relations supplied by 
the trainer. The repetition of several parameters (e.g. npl, v l , vp2) in both Cj ' (12) and R j " 

(13) for the training example Ej = (C^Rp of the END rule is an example of such exogenously 
provided input-output parameter correspondences, and the rule F described by (10-11) and 
Figs. 3(a) and 4 is an example of such an inferrable substitution rule. Case 3 - Substitution 
Rule Learning Without Exogenously Supplied Input-Output Parameter Correspondences: This 
case refers to problems where training examples like those in the preceding case are supplied 
except that parameters in each Cj are necessarily distinct from those in Rj. The learner in this 
case must, in addition to hypothesizing rules, also hypothesize equivalences (substitutability) 
between contingency and response parameters. Each of these cases is treated in turn in the 
subsequent sections. 

The remainder of this section briefly addresses the issue of feature extraction or 
predicate £Odin£, the production (computation) of the predicate instances upon which inference 
of rules by the learner is to be based. It should be clear that actually encoding a stimulus 
pattern as a structural representation is a non-trivial task. Moreover the current statement of 
the learning problem requires every (Cj,Rj) exemplar pair to manifest the unknown rule F. 
Thus, if the trainer (as well as the learner) is "in the dark" as to what predicates are criterial 
to the rule F, the learning procedures defined herein will be guaranteed to succeed only if the 
trainer provides the actual values of all potentially relevant predicates and features as input 
to the learner. While it is generally understood how instances of unary predicates (feature 
values) are computable, the goodness of alternative procedures for computing instances of n-
ary predicates seems to be heavily dependent upon the actual nature of the patterns involved 
(see , for examples, Evans, 1968; Barrrow, el al.,1972; Newell, 1972; Rulifson, et aL, 1972; 
Hayes-Roth, 1974c; Hayes-Roth, 1974cl; Hayes-Roth & Mostow, 1975). All that will be said 
here is that the learning procedures operate by abstracting commonalities from sufficiently 
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described exemplars and, as a result, all relevant predicate instances n$ed to be supplied to 
the learner by the trainer. Later, in section 7, possible methods are discussed for expanding 
the set of predicates upon which rule learning may occur by the discovery of novel unary and 
n-ary predicates. 

4. CASE 1: CATEGORICAL RULE LEARNING 

Rules to be learned in this case are characterized by constant The solution to the 
general categorical rule learning problem requires three basic operations: (1) a mechanism to 
compute C*, the set of plausible contingency patterns for the unknown rule F; (2) a mechanism 
to identify R*, the set of all plausible response patterns; and (3) a mechanism to evaluate the 
performance of each plausible rule F' = [C => R], where C « C* and R a R*. In the current 
case, steps (1) and (2) may be completely separated, because in categorical rules no 
substitution of the name of an input object which is found to correspond to a contingency 
parameter is. made to an associated response parameter; i.e. the contingency and response 
structures are independent. An example of such a learning problem would be that of 
abstracting the pattern characteristic "three lines and three angles" ( A 2 in (3)) as the 
contingency of a rule whose response pattern is "triangle." 

The essential step, in this problem then is: Given I = {Ej = (Cj, Rj) : i = 1, N} and V = 
{Ef = (Cj\ Rj') : i - 1, N'}, compute C* = Cj * ... * C N and R* = Rj * ... * RN, the set of 
abstractions {Cj : i = 1, N} and {Rj : i = 1, N}, respectively. By the definition of the 
learning problem, each Ej manifests the unknown rule F and, therefore, C(X | , . . . ,x n) and 
R(xj,...,xn) must correspond to common abstractions of {Cj,...,^} and {Ri,...,Rjy|}, respectively. 
The operator * (star) is called the interference product or partial matching operator (Hayes-
Roth, 1974a, 1974b). The set of abstractions of a set of (presumably uniform) PSRs {Cj : i - 1, 

N} with corresponding uniform graphs {G(Cj)} is the set of PSRs {Aj : j = 1, 2, ...} with 
graphs {Gj} such that (Vj) [Gj c* G(Cp & ... & Gj c* G(CN)]. A previously published 
interference matching (IM) procedure (Hayes-Roth, 1974b) effectively and efficiently computes 
all abstractions {Aj} of the set {Cj). 

The IM procedure is best understood in terms of the concepts of one-one binding, 
relations and models. A one-one correspondence binding relation B on the cross-product 
space P = PS(Cj) X ... X PS(CN) of the parameter sets of {Cj} is defined to be any subset of P 
which assigns to each parameter Xj < PS(Cj) at most one correspondent X j from any other 
PS(Cj). Symbolically, B c P is a one-one binding relation if [(Vi,j)(Vb i B)(Vb' < B) (b)j. = (LV)j -
X j & (b)j = X j & (b')j - X j ' ] = > X j - X j ' , where (b)j is the i-th element (aj) of the N-tuple b = 
(a^,...^). Given any one-one binding relation B, a model M of {Cj : i = 1, N} comprises an 
abstraction A and a set of residuals {R(Cj) : i = 1, N}, where A contains all relations common 
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t o e a c h C j w h e n t h e a l p h a b e t i c d i f f e r e n c e s b e t w e e n b o u n d c o r r e s p o n d e n t p a r a m e t e r s ( a l l X j , 

X j s u c h t h a t ( 3 b ( B ) ( b ) j - Xj & ( b ) j = X j ) a r e i g n o r e d a n d R ( C j ) c o n t a i n s a l l r e l a t i o n s i n t h e 

b o d y o f C j w h i c h a r e n o t a c c o u n t e d f o r i n A . W h a t t h e I M p r o c e d u r e d o e s i s e f f i c i e n t l y 

e n u m e r a t e a l l d i s t i n c t b i n d i n g r e l a t i o n s a n d m o d e l s w h i c h e n t a i l a n o n - n u l l a b s t r a c t i o n . 

I n s h o r t , t h e I M p r o c e d u r e i s e f f e c t i v e f o r t h e t a s k o f c o m p u t i n g a l l p o s s i b l e 

a b s t r a c t i o n s o f a n y s e t o f u n i f o r m P S R s , i n c l u d i n g C * a n d R* . T h u s , e a c h r u l e F ' = [ C = > R ] , 

w h e r e C c C * a n d R ( R * w h i c h i s a p l a u s i b l e s o l u t i o n t o t h i s i n d u c t i o n p r o b l e m m a y b e 

e f f e c t i v e l y c o m p u t e d . O f c o u r s e , t h e p e r f o r m a n c e m e a s u r e V i n d u c e s a n o r d e r i n g o n t h e 

p l a u s i b l e r u l e s : F ' i s p r e f e r r e d t o F " if V ( F ' ) > V ( F " ) . O n t h e o t h e r h a n d , it i s c l e a r t h a t a t a n y 

t i m e t d u r i n g t h e t r a i n i n g p r o g r a m , a l e s s p r e f e r r e d r u l e F " m a y b e i d e n t i c a l t o t h e u n k n o w n 

c o r r e c t r u l e , a n d o n l y a d d i t i o n a l c o u n t e r e x a m p l e s t o m o m e n t a r i l y m o r e p r e f e r r e d r u l e s F ' w i l l 

t e n d t o e l i m i n a t e t h e m b y r e d u c i n g t h e i r p l a u s i b i l i t i e s . A p r o g r a m f o r p e r f o r m i n g t h e 

c o m p u t a t i o n s r e q u i r e d f o r c a t e g o r i c a l r u l e l e a r n i n g i n l i m i t e d s p a c e ( a n d t i m e ) e x i s t s a n d i s 

d e s c r i b e d i n d e t a i l i n H a y e s - R o t h ( 1 9 7 4 a ) . 

O n e o f t h e a d v a n t a g e s o f u n i f o r m r e p r e s e n t a t i o n s , i n a d d i t i o n t o t h e i r p r o v i d i n g 

a s s u r a n c e t h a t t h e I M p r o c e d u r e w i l l b e e f f e c t i v e f o r c a t e g o r i c a l r u l e l e a r n i n g ( f o r m a l l y 

p r o v e d i n H a y e s - R o t h , 1 9 7 4 c ) , i s t h a t a l l p o s s i b l e r u l e s F ' = [ C = > R ] m a y b e c o m p u t e d a t t h e 

s a m e t i m e if t h e a b s t r a c t i o n o p e r a t o r ( * ) i s a p p l i e d d i r e c t l y t o t h e u n i f o r m r e p r e s e n t a t i o n s 

U ( D j ) o f t h e r u l e s D j = [ C j = > R j ] ( i = l,...,N) r e p r e s e n t i n g c a u s a l i n f e r e n c e s t h a t e a c h t r a i n i n g 

e x e m p l a r c o n t i n g e n c y p a t t e r n ( p r i o r e v e n t ) c a u s e d o r p r e d i c t s t h e r e l a t e d r e s p o n s e p a t t e r n 

( s u b s e q u e n t e v e n t ) . I n t h e r u l e s D j , t h e r e a r e n o s u b s t i t u t i o n S P r e l a t i o n s c o n n e c t i n g a n y o f 

t h e p a r a m e t e r s o f C j w i t h t h o s e o f R j , b e c a u s e t h e r e a r e n o s u b s t i t u t i o n s i n c a t e g o r i c a l r u l e s . 

I f t h e t r a i n i n g i n f o r m a t i o n I i s s i m p l y c o n v e r t e d i n t o t h e u n i f o r m r u l e r e p r e s e n t a t i o n s 

{ U ( D j ) } , it f o l l o w s t h a t t h e u n k n o w n r u l e F w h i c h i s m a n i f e s t e d b y e a c h E j c I i s a n a b s t r a c t i o n 

( s u b r u l e ) o f e a c h D j , i .e., t h e u n i f o r m r e p r e s e n t a t i o n U ( F ) ( U ( C J = > R J ) * ... * U ( C f S j = > R ( \ j ) . W h i l e 

t h e a b i l i t y t o a s s o c i a t e e a c h p l a u s i b l e r u l e F ' w i t h a p a r t i c u l a r e l e m e n t o f t h e s e t o f 

a b s t r a c t i o n s 

I * = U D j ) * ... * U ( D N ) ( 1 6 ) 

a n d t o a s s e r t t h a t 

< 3 F ' c I * ) r = F ( 1 7 ) 

m a y s e e m t o b e o f o n l y i n c i d e n t a l i n t e r e s t f o r r u l e l e a r n i n g o f t h e f i r s t c a s e , u n d f l i * c e r t a i n 

i n t e r p r e t a t i o n s t h e t r u t h o f e q u a t i o n s ( 1 6 - 1 7 ) h o l d s f o r e a c h o f t h e o t h e r c a s e s t o o a n d , t h u s , 

t h e s e e q u a t i o n s c a n b e c o n s i d e r e d a c o m p l e t e s o l u t i o n t o t h e l e a r n i n g p r o b l e m . B e c a u s e c a s e 

2 c a n b e c o n s i d e r e d t o s u b s u m e c a s e 1 a n d b e c a u s e o f t h e g e n e r a l i t y o f ( 1 6 - 1 7 ) , a m o r e 

d e t a i l e d i l l u s t r a t i o n o f r u l e l e a r n i n g w i l l b e d e f e r r e d u n t i l t h e n e x t s e c t i o n . 
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5. CASE 2: SUBSTITUTION RULE LEARNING GIVEN INPUT-OUTPUT PARAMETER 

CORRESPONDENCES 

Rules to be learned in this case reflect the substitution of arguments from contingency 
to response patterns by the use of the same parameter in both parts of the rule. In the 
current case, the training information I will necessarily exhibit the repetition of the same 
parameters in Cj and Rj wherever the same object occurs in both the input and output 
patterns. For example, each training exemplar (Cj, Rj) for learning the TG END rule F (Fig. 3) 
would necessarily repeat the parameter symbols (such as npl, vl, vp2 in Cj and Rj) which 
name the noun phrases, verbs, and verb phrases, respectively, corresponding to the phrase 
structures named x2, x4, and x7 in F which are substituted from Cj to Rj when F is applied. 
Thus, the training set 1 = {Ê , E2} comprising the representations (12-15) for the sentences in 
panels b and c of Fig. 3 manifest F in the way required for case 2. 

On the other hand, it is useful to consider the training information for case 2 rule 
learning problems to be redefined as I = {Ej - (Cj,Rj,Qj)} where Cj and Rj are uniform PSRs 
whose pararr\e\er sets are completely disjoint but where Qj is a set of exogenously provided 
substitution SP relations, such that Qj contains one relation {SP, x', x"} for every contingency 
parameter x' from Cj and response parameter x" from Rj for which it is true that x' and x" 
name the same object occurring both in Cj and Rj. Under this condition, each exemplar Ej in I 
must manifest F in the following sense: There must exist a one-one parameter binding function 
fj from the parameters of the uniform representation U(F) to those of U(Cj=>Rj) such that 
every relation in U(F) occurs in U(Cj=>Rj) or Qj if the alphabetic differences between bound 
correspondent parameters x and f(x) is ignored. That is, if U(Dj) is defined to be 

U(Dj) = (PS(Cj) u PS(Rj), body(U(Cj=>Rj)) u Qj) (18) 

Ej manifests F if and only if (3fj(l-l) : PS(U(F)) -> PS(U(Dj») (Vrj < body(U(F») fjd'j) < 
body(LKDj)), where f;<rj) is the relation rj with each parameter x replaced by fj(x). 

As a result of the fact that each U(Dj) contains U(F) as an abstraction, the same 
techniques that were applicable for case 1 (16-17) are equally applicable for the current case. 
However, while it is true that (3F' c H* = UDj) * ... * U(DN» F' = F, it is not true that every F' 
£ H* is a well-formed rule. Thus, while H* may be computed by the IM (or other subgraph 
extraction) procedure, the set I* of plausible well-formed rules is a particular subset of H*. A 
hypothetical rule F' c H* with uniform representation U(F') is well-formed if every set A of SP-
connected response parameters is SP-connected to at most one set B of $P-cjpmected 
contingency parameters and no parameter in A is SP-connected to a contingency parameter 
which is not in B. Two parameters, x and y, are SP-connected in U(F') if {SP,x,y} <• bodydKF')); 
a set of parameters is SP-connected if every pair of parameters in the set is SP-connected; 
two sets are SP-connected if their union is SP-connected. 
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Thus, the solution to the case 2 learning problem is provided by the following prog 
program: 

UC^Rj). 
Step 1: Compute U^) by adding the set Q; of substitution SP relations to the body of 

Step 2: Compute the set of plausible subrules H* = U(Dj) * ... * U(DN) by the IM 
procedure (or other subgraph extraction procedure). 

Step 3: Compute the set of all plausible and well-formed rules I* = {U(F') : IKF1) < H* & 
F' is a well-formed rule}. .Each such rule F' ( I* is consistent with the training information I 
and since- I manifests F, (3 U(F') (• I*) F' = F. A simple, formal proof of the effectiveness of 
such a program is provided elsewhere (Hayes-Roth, 1974c). 

As an example, consider again the illustration in Fig. 3 of the END rule F of TG and the 
examples Ê  and E2 °f '*s application. The exogenously determined input-output parameter 
correspondences Qj appear.as identities between some parameters (e.g. npl) which occur both 
in Cj and Rj. Thus, 

(Vi = l,2) U(Dj) = U(Cr>Rj) (*)f. U(F), (19) 
where 

f 1 = {(xl,sl), (x2,npl), (x3,vpl), (x4,vl), 
(x5,s2), (x6,np2), (x7,vp2), (x8,vp3), (x9,infl)} (20) 

and 
f2 = {(xl,s4), (x2,np3), (x3,vp5), (x4,v2), 

(x5,s5), (x6,np4), (x7,vp6), (x8,vp7), (x9,inf2)}. (21) 

In other words, if the IM procedure were applied to the set {U(Dj), IKD2)}, one abstraction 
that would be produced would be F, under the parameter correspondences in the one-one 
relation B - {(sl,s4), (npl,np3), (vpl,vp5), (vl,v2), (s2,s5), (np2,np4), (vp2,vp6), (vp3,vp7), 
(infl,inf2)} c PS(D|) X PS(D2) (or the equivalent but more numerous 1-1 correspondences 
which would obtain among the appropriately expanded parameter sets of the uniform 
representations U(Dj) and 11(02». 

Because of the relatively weak nature of the constraints on plausible rules, F will in all 
probability be just one of many plausible and well-formed rules which are thus generated. 
Examples of reasonable (but heuristic) constraints which might be exploited successfully in 
some task environments are: (1) "Consider any F' which has one or more counterexamples to 
be implausible" or (2) "Find only the one rule F' which has the maximal similarity to (the mof;t 
relations in common with) each U(Dj)." In general, however, the practical application of learning 
procedures will be in real problem contexts where neither of these heuristics will produce 
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consistently desirable effects. Further discussion of the nature of and selection among 
probabilistically valid rules can be found in Hayes-Roth (1974a, 1974c). For the present 
purposes, all considerations related to the relative desirabilities of alternative rules with 
various combinations of positive and negative support are relegated to the "exogenously 
provided" performance measure V. 

To conclude this section, it seems desirable to characterize briefly the type of 
environment in which problems of case 2 (and the subsumed case 1) will occur. The essential 
character of case 2 learning problems is that training information completely describes the 
correspondences (identities) between objects in input-output pattern pairs. Such information 
is frequently known in the sorts of problems to which one would like to apply practical 
abstraction procedures. Several of these problems are considered in detail in Section S. For 
the present, however, a useful test which may be employed to decide if a particular learning 
problem falls into case 2 and can be solved by the program above is this: If an unknown rule 
F is operative in transforming one configuration of a specific set of identifiable objects into 
another and if the identities of the objects are known, the rule may be found by the methods 
of case 2. All of the rules of TG (Langendoen, 1969), for example, are thus inferrable from 
training examples like those in Fig. 3. To date, it is the author's experience that every 
problem of practical interest satisfies the preceding test. Nonetheless, it is conceivable that 
other researchers may encounter problems where the identities of objects are not known. 
For example, one might wish to induce the nature of a rule which presumably accounts for the 
transformation of each of several (input) chemical structures into corresponding (output) 
structures, where the identities of every one of numerous hydrogen atoms in both structures 
are confusable with one another. To accommodate such possibilities, the solution of problems 
of this sort is considered in the next section. 

6. CASE 3: SUBSTITUTION RULE LEARNING WITHOUT EXOGENOUSLY SUPPLIED INPUT-OUTPUT 
PARAMETER CORRESPONDENCES 

Rules to be learned in this case are of the same sort as in the previous case but less 
information is provided to the learner. Rule learning problems of the third case are the- most 
general and, in terms of the amount of necessary computation, potentially the most difficult. 
An example of such unrestricted rule learning would be the problem of inducing the END rule 
in Fig. 3 (a) from the examples in panels (b) and (c) if each parameter q in Cj and r in Rj had 
been distinctive ly renamed Cj.q and R-r, respectively. That is, any correspondences between 
contingency and response parameters would necessarly be inferred by the learner at the 
same moment at which it inferred the contingency and response patterns of the unknown rule 
F. 
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One possible brute-force solution to the problem would be as follows. Let U(Dj) -
U(Cj=>Rj) and compute I* as in (16). Then for any abstracted rule F', the learner is free to add 
any desired substitution SP relations which establish contingency-response parameter 
correspondences as long as the modified rule remains well-formed. Such a procedure, if 
exhaustively applied, will surely identify F. 

On the other hand, the brute-force method fails to exploit the potentially useful 
structural redundancies between each Cj and Rj. A structural redundancy between Cj and Rj is 
a common abstraction (substructure) of Cj and Rj. In general, such redundancies are highly 
indicative of substitutability of contingency and response parameters. For example, consider 
the sentences Cj and Rj in Fig. 3 (b) and the corresponding PSRs Cj ' (12) and Rj' (13). 
Again, remember that in the current case all parameter symbols have been prefixed by "Cj." 
or "Rj." and, therefore, all response and contingency parameters are distinct. 

Now, consider the set of abstractions Ej* = Cj * Rj and, in particular, the abstraction A 
<• E j * associated with the correspondence bindings in B = {bj = (Cj.npl,Rj.npl), b 2 = 
(Cj .v l ,Rj .v l ) , b 3 - (Cj.vp2,Rj.vp2)} where 

A = ( { b j , b 2 , b 3 } , 

{{p:"the boy", name.bj), 
{p:"wants", namc:b 2}, 
{p:ndrinkn, name:b3}}). (22) 

The abstraction A identifies plausible loci of substitutions in F by locating phrase structures 
which are repeated in both Cj and Rj. Thus, it would be reasonable to hypothesize 
substitution SP relations for each set of related bindings in B; i.e. one could let Qj = {{SP, 
Cj.x, Rj.y} : (Cj.x,Rj.y) ( B} and then proceed to induce F as if this were a problem in case 2. 

Such an idea must be generalized, however, before this suggested procedure constitutes 
a guaranteed solution to case 3 learning problems. The central question here is how to 
enumerate all possible ways in which substitutions might have occurred between Cj and Rj, 
and an answer to this question requires a discussion of the semantics Q ! substitutability, which 
now follows. In any given problem context, the structural representations used will permit 
interpretations of substitutability between contingency and response parameters in possibly 
varying and numerous ways. In TG rules of the sort with which this paper has been 
concerned, a substitution between Cj.q and R-.r is plausible if the entire phrase tree structures 
descendant from root nodes Cj.q and Rj.r are identical. Thus any procedure, including the 1M 
procedure, which can identify such equivalences is a satisfactory mechanism for enumerating 
plausible contingency-response parameter substitutions. On the other hand, the semantics of 
substitutability may be different in other knowledge representations (other systems of 
predicates) or other problem domains. 
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In each case, however, an SP relation S = {SP, C¡.q, R¡.r} is called plausible if the PSR T 

with body body(U(C¡^>R¡)) u {S} is not impossible in the sense that it represents the 

simultaneous attribution of two mutually exclusive attributes (category elements) to the same 

object (a pair of SP-connected parameters). In the case of TG rule learning for example, 

every relation of the sort {p:".:.", name.q) which associates a specific word sequence with the 

object named q is a mutually exclusive possibility; i.e. any parameter can name at most one 

distinct word sequence. Similarly, at a higher level of abstraction, no parameter q which 

occurs in the object item name.q of a noun phrase relation can simultaneously occur as the 

name of any other phrase type (or, for that matter, in the object item name:q of any relation 

whose predicate item is different). 

In the previously mentioned example of inducing a rule which transforms one chemical 

structure into another, no SP relation is plausible which identifies a contingency parameter 

identifying a carbon atom with a response naming a hydrogen atom. On the other hand, each 

distinct SP relation S « {SP, C¡.q, R¡.r} where C¡.q and R¡.r are identical chemical elements or 

compounds is plausible. 

It is apparent, however, that the plausibility of hypothetical substitutions spans a range 

of values between the extremes of "totally plausible" and "totally implausible." For example, 

objects may change in shape, color, structure, or other attributes under some transformations, 

and while these attributes may for some purposes constitute categories of exclusive 

possibilities, it does not follow that such parameter substitutions are impossible, only, in 

general, that they are apparently less likely than others. The behaviors of a magician, for 

example, are frequently of just such an improbable sort: {{p:red, name:x}, {p:handkerchief, 

name:x}} -> {{p:green, name:x}, {p:scarf, name:x}}. Thus, while one might reasonably hope to 

infer from "x is red at time t" and "y is green at t + 1" that x and y are different objects, this is 

only probably valid. 

The semantics of substituí ability is thus seen to be dependent on what is known about 

the problem domain, including especially the sorts of inferences that may be correctly made 

about the probable identicainesc of two objects occurring in different structural 

representations. Thus, while the learning procedures for cases 1 and 2 and the proposed 

brute-force method for case 3 were entirely syntactic in nature (were explainable without 

reference to reality), any efficient solutions to case 3 problems which significantly reduce the 

set of plausible substitution SP relations which are considered must necessarily exploit what is 

known about the likelihood that two differently named objects having attributes which are 

more or less similar are in fact the same. 

In sum, a plausible SP relation is any which the real-word semantics do not disallow. 
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For example, if there is some category Y = {(q^type^) ; k=l, ... } such that the unary relation 

{(qk>type|^),x} implies not[{(q^,type^),x}] for all k' / k and (q^',type^) ( Y, the subsitution 

defined by {SP,x,y} *would not be plausible if x and y were parameters of Cj and Rj, 

respectively, and {{(q^,typek),x}, *{(q^,type^),y}} c body(U(Cj=>Rj)). On the other hand, while a 

consideration of degrees Qi plausibility and a strategy which prefers rules which are "more 

plausible" to those which are less may improve the performance of procedures which generate 

plausible rules by a best-first sort of search technique, a total enumeration of plausible rules 

is required if a certain identification of F is desired. If Q«( is defined to be the set of all 

substitution SP relations which are plausible for the transformation of Cj into Rj, then the 

solution to the case 3 learning problem is provided by exactly the same three step rule 

induction program presented in the preceding section. Thus, while induction of a magician's 

rules of behavior, where object identicalness is highly uncertain, may take significantly more 

computing time that the induction of the rules of TG, where every property of the sort 

(q,name) which is true of an object x precludes any substitution SP relation which would entail 

the simultaneous assignment of a different property (q',name) to x, both inductions are 

accomplishable by the same effective procedure. 

7. PREDICATE AND CATEGORY LEARNING 

The purpose of this section is to indicate briefly some possible avenues of approach to 

the problems of predicate and category learning. In the case of predicate learning, two points 

will be made. First, as Winston (1970) notes, once any pattern over n parameters is learned 

as the contingency of an induced rule, it may be used as an n-ary predicate to describe 

patterns in a novel way. For example, if the template A2 (3) for a triangle (over the 

parameters a l , a2, a3) were induced in response to training, A 2 would define a ternary 

predicate and the relation {p:A 2, al:x, a2:y, a3:z} could then be used to augment the 

description of a scene in which the nodes x, y, and z were found to satisfy the relations 

required of the three nodes of a triangle. Second, because heuristic methods may later be 

used to generate and test the simplest, most plausible rules first, an encoding of training 

information patterns in terms of such higher-order predicates may be useful (exactly as the 

use of learned, higher-order phrase structure defining predicates like np or vp seem to be 

useful in representing and inducing TG grammar rules). That is, while the number of possible 

rules which may be inferrable from a set I of input-output line drawings described in terms of 

individual lines might be very large, the number of rules which are inferrable from the same 

data when encoded in terms of higher-order figure-descriptions is probably much smaller. 

Again, the desirability of such approaches appears to be general but is obviously dependent 

upon the real semantics (i.e., the nature of the rules to be learned). 

With respect to category learning, a similar type of observation can be made. A 
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category,* defined to be a set of mutually exclusive alternatives, may be hypothesized to 

comprise each of the various properties (unary uniform relation predicates) which are found 

to occur systematically in pattern representations C¡ matching some rule contingency 

C(x^,...,xn) but which are not criteral (not contained in C(xj,...,xn)). For example, when the END 

rule F is inferred from the training examples in Fig. 3 (b,c), any model of Ej and E2 comprising 

the abstraction A ( Ej¡ * E2 which matches F will necessarly bind the parameters v i and v2 as 

correspondents. As a result of this binding, the same model that contains A will also contain 

the unary relations {p:"wants",name:vl) and {p:"planned", name:v2} in the associated residuals 

of E^ and E2. Thus, while "wants" and "planned" are not the same predicate and cannot 

therefore be included in this abstraction of E^ and E2, they are explicitly comparable because 

they are alternative properties of otherwise corresponding objects (vl and v2). 

As a result, one could reasonably hypothesize a new category, say v', and the 

relationship that {"wants", "planned"} c v\ Note that v' is the name of the particular "place" in 

the common abstraction of E^ and E2 where v l and v2 were bound but had different 

properties; this place is identified by the name x2 in the END rule F. Now, suppose several 

more examples of this rule F were provided and the possible members of v' were found to 

include "wants", "planned", "desired", and "hoped." It would seem reasonable to canonize 

this category, say as "verb of intention," and subsequently to produce the predicate instance 

{p:verb of intention, narne:x} whenever a word x occurred which was a member of v \ 

Moreover, the reader should note that such a predicate is in fact criterial to the contingency 

of the END rule, because the restriction of x4 (input verbs) to the category of verbs in 

general is too weak to prevent inappropriate applications of the rule. Thus, while the 

possibilities here are only minimally understood, it appears that such a category learning 

mechanism is potentially very powerful. Aside from providing a basis for refinement of 

induced rules by adding such additionally restrictive predicates to overgeneralized 

contingencies, the learning of such categories of mutually exclusive elements plays the 

additionally useful role of providing semantic cues related to the plausibility of potential 

substitutions, as previously described. 

8. APPLICATIONS IN SPEECH UNDERSTANDING 

While a need for brevity precludes a thorough discussion of the applications of these 

learning procedures to many diverse problems, an adequate appreciation may be gained by 

consideration of several induction problems in the speech understanding domain whose 

solutions are presently or will in the immediate future be attempted by procedures of the sort 

presented in this paper. In order to expedite the presentation, each problem will be 

described in terms of the concepts of knowledge model, training data, induction algorithm, and 

solution acceptability criterion. While the meaning of the last three of these terms is self-
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evident, some explanation for the first is necessary. A problem knowledge LQOdel is a loose 

description of the theoretical relationship betwen the unknown rule and the training data. In 

particular, a knowledge model is a specification of a set of predicates and features the 

conjunctive products of all instances of which will necessarily (in theory) manifest the 

unknown rule. That is, the model comprises a set of tests to be performed on training data 

which, when exhaustively applied, will identify every instance of each n-ary predicate which 

may be criterial to an unknown rule. 

Given these four aspects of a learning problem, it is now easy to describe several 
prototypic problems in speech research. The problems described are actual cases arising in 
the continuing development of HEARSAY (Reddy, ei al., 1973; Lesser, g i aL, 1974). The three 
problems considered in turn are phonological rule, word phonetic spelling, and predictive 
syntax rule learning. 

Problem L Phonological Rule Learning.^ It is well known in speech work (e.g., Barnett, 
1974; Cohen & Mercer, 1974) that some phones spoken in the temporal context of (preceded 
or succeeded by) some phones tend to be transformed into sounds which appear to be other 
phones. This process might be represented as C]PC2 -» C j P ^ where the phone P in the 
temporal context of phones Cj and C 2 is converted to (perceived as) the phone P\ The 
learning problem is to induce rules of the sort^ F = [ C j P ^ -» CjPC2J from training data 
which can reliably predict when a perceived sequence like C j P X ^ may be reinterpreted as 
C j P C 2 . 

Knowledge Mp_dek The predicates currently employed in HEARSAY define the space of 

all possibly induced phonological rules and are typical of those used to represent phonetic 

data. These include temporal contiguity of phones, phone labels, membership in classes of 

phones sharing particular articulatory features (e.g. vocalic, fricative), indicators of the 

presence or absence of articulatory features, presence of local extrema in the amplitude 

function, indicators of relatively short, medium, or long duration, etc. Every phonological rule 

currently employed in HEARSAY is representable in terms of conjunctions of these predicates, 

l o i n l o s cJatiU Since each rule to be induced is of the form F = [CjPT^ -> C|PC 2 ] , the learning 

program is to be applied to all exemplars of perceived (automatically phonetically classified) 

phone sequences (CjP 'C 2 ) which actually occurred when the "true" phonetic sequence was 

CjPC2- That is, the positive exemplars of the class defined by the categorical response 

pattern C j P C 2 are the actual data observed when that pattern was theoretically correct. For 

any hypothetical abstracted rule, negative instances are occurrences in the data base of all 

utterances which match the inferred contingency C j P ^ but should not in fact be rewritten as 

C j P C 2 . 1QCJLIC1LO.Q AJg.CKJtliiu: Because the relational structure of all such rule contingencies is 

rigidly constrained to descriptions of the prior (first) context phone (Cj), the transformed 
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(second) phone (P') and the subsequent (third) context phone (C2), a simple feature-value 

representation (f i >i>-^i ) n^2,l>-^2,n^3,l> -^3,n^ °* e a c ^ t r a ' n ' n g exemplar may be used where 

fjj is the value of the j-th feature of the i-th phone. Then the induction of plausible 

contingency patterns may be performed by interference matching of the feature 

representations. This simplification of the representations insures that any rules which are 

reliable and satisfy the structure of the associated Knowledge model can be found without 

even performing the permutations required in graph matching (Hayes-Roth, 1974a). Buje 

Acceptability Criterion: Given the limited computing space and time for our speech system, we 

would like to find any rule F which is correctly applicable to no fewer than .05 percent of all 

utterances and for which the performance measure V(F) = [3(|I/F|> - K|r/F|)]/[3(|I/F|) + 
l(|r/F|)], which counts each positive instance of F three times as much as a negative instance 

of F in the training data, exceeds .80. 

Problem 2. Word Phonetic Spelling. It has been shown elsewhere (Hayes-Roth, 1974d) 

that extremely efficient parallel procedures exist for recognizing words (with tolerability for 

insertions and deletions) in sequences of hypothesized phones if the words are represented 

by templates which are equivalent to finite state transition networks with the interpretaton 

that each state is reachable by a number of alternative sequences of phones. Such a rule F 
for recognizing word w might be represented F = [(Pj, P 2 , P n ) -* w], where each Pj « {pj 

Pj ) m.} is a class of alternative phones which may occur in the i-th temporal position. 

Knowledge Model: The contingency of any such categorical rule F may be represented 

as a conjunction of features Fj Fj F n j , F n ^ where Fj ̂  is true only if an element 

of the k-th class P^ of phones is recognized at time t = i. The classes {P^} of confusable 

phones are defined exogenously: for example, P| = {AX(as in "but"), AH(as in "ma")}, P 2 = {AX, 

IH(as in "it")} are the only two classes needed to capture the eight alternative pronunciations 

of "America" as in F « [(Pj, {M}, {EH}, {R}, P 2 , {«}, P{) -> "America"] (Hayes-Roth, 1974d). 

Training Data: Each instance of the word w to be learned in the sample of training utterances 

is represented as a sequence of sets A j , A 2 , A ^ of hypothesized phones, where Aj = {a^p 

a; n } is the set of possibly occurring phones in the i-th temporal position. This sequence 

yields the feature representation E - (Fj j , F n ^) where Fj ̂  is a boolean variable which is 

true only if some aj s in Aj is also in P^ A negative instance of any hypothesized rule F' is 

any temporal sequence of sets of hypothesized phones which match the contingency of F' but 

should not be recognized as an instance of the word w. Rule Induction Algorithm, and 

Acceptability Criterion: As in problem 1. 

Problem 3: EVjLdictivg. Syntax. Rule Learning. A distinction between formal and predictive 

syntax rules is an important pragmatic consideration fn the design of real-time speech 

understanding systems. While it may be desirable for academic purposes to build an 
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understanding system which can fully and formally analyze an utterance, it is probably 
preferable in some contexts to exploit syntactic rules which, on the basis of some information, 
predict (hypothesize) values of other important variables and even, sometimes, suppress 
related concurrent but unfinished understanding processes. For example, in the HEARSAY 
news story retrieval task (keyword retrieval of wire service news stories) , a potentially 
useful predictive syntactic rule is F = [begin(tQ) & fetch-word(tj,t 2) & re-wordOg,^) & 
topic(t^, tg,expr) & end(tg) & (Vi<j) tj<tj => retrieve(expr)] which is interpreted as follows. 
The rule contingency is: ( 1 ) the beginning of the input utterance is at time \q> (2) any word 
which can mean fetch (e.g. "tell", "retrieve", "get", "fetch", "seek") has been recognized 
beginning at t j and ending at t 2 > (3) a word meaning re (e.g., "about", "concerning", "mention", 
"cites", "re") has been recognized between times tg and t/j, (4) a keyword expression (topic) 
coded as expr has been recognized between and tg (e.g. expr * "Nixon" & "Agnew") where 
( 5 ) the end of the utterance was at tg and (6) tj < tj for all i < j. The associated response of 
the rule requires the understanding system to assume the sentence is parsed and respond by 
retrieving the news stories which satisfy expression expr (e.g. all news stories mentioning 
"Nixon" and "Agnow"). This rule is predictive because it hypothesizes that nothing that occurs 
in the intervals *Q to tj or t 2 to tg adds anything essential to the understanding of the 
utterance. For example, it would not distinguish between "Please tell me about Nixon and 
Agnew" and "Would you kindly get for us any news stories which mention Nixon and Agnew" 
(or "Tell me nothing about Nixon and Agnew"). 

Knowledge Model: At the outset, the rule learning effort will be a modest one, due 
primarly to limited resources and specific goals. Thus, we will be seeking rules like F above 
which are essentially reliable (high performing) subrules of complete parse-to-response 
training examples. That is, the contingency F might have been abstracted from larger matching 
representations which include numerous other predicates occurring in a complete parse for 
each example such as worcJs(tQ,t j), s i l ence^tg) , verb(t 2 , t 3 ) , etc. From training pairs of such 
complete syntactic 

analyses of the utterances and related responses, abstractable subrules 
will be sought which, when invoked over the training data, produce reliably desirable results. 
Training, Dalai Examples of utterance analyses for each distinct sort of response. Rule 
Induction AlsQlithm; The IM algorithm will be used and the training data will be structured as 
in case 2. Rule AfXepJnbjUiy Catenom Because the specifications of the speech project 
require 9 5 percent semantic accuracy, at the outset only those rules which satisfy that 
criterion will be accepted. 

9. CONCLUSIONS 

This section attempts to provide a perspective on the paper's contibution in three ways-
(1) the current learning problem and solution are related to other previously studied ones; (2) 
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the principal potential obstacle to widescale use of the proposed solution, a combinatorial 
explosion of abstractable rules, is considered; and (3) the possible value of heuristics in rule 
learning as alternatives to exhaustive methods of abstraction is briefly discussed. 

The proposed approach to grammatical inference differs from previous approaches 
(Gold, 1967; Biermann & Feldman, 1973; Wharton, 1974) in the emphasis placed he&e on 
inducing rule representations by extracting commonalities from (deep) structural descriptions 
of events (sentences, scenes, behaviors) rather than using general heuristics to generate 
productions whose behaviors, hopefully, converge (statistically) toward the same sequential 
constraints exhibited by the surface descriptions provided for training. The current approach 
essentially eliminates the generation phase by requiring that every (Cj, Rj) training exemplar 
•manifest directly the rule of interest. In this case, simple algorithms for identifying common 
subgraphs (abstractions) can be used to generate hypothetical productions which may be 
statistically evaluated, if necessary, to determine their reliability and utility vis-a-vis 
counterexamples. On the other hand, the proposed representational framework is 
computationally universal (Hayes-Roth, 1974c) and the approach is capable of inducing highly 
complex rules (those with a large number of relations in their uniform representations) in the 
same way as very simple ones. In both cases, the goal is to produce all abstractions 
manifested by the training information so that each may be considered as a hypothetical 
solution to the rule learning problem. 

The validity of such an approach to learning must depend not only on its demonstrated 
ability to solve previously unsolvable induction problems, like that of inferring from examples 
the rules of TG, but also on the power of the approach to solve real-word problems of 
obvious value. While empirical testing and refinement of the proposed techniques will 
probably go on for years, intuitive sorts of evidence may be adduced to support the 
suggested approach. Two observations of this sort will be made. First, each of the major 
knowledge sources in our current speech understanding system is naturally representable as a 
set of rules of the sort considered here and, moreover, the current framework provides a 
much needed scheme for evaluating the performance of these rules alone and as well as in 
comparison to machine-generated plausible alternatives. Second, the proposed approach 
provides a basis for decomposition of knowledge and for step-by-step training of one rule 
after another. With a helpful trainer, the proposed algorithms can surely succeed in learning 
to imitate any behavior. This is the first learning technique known to this author for which 
this is true. 

(2) There are two chief obstacles impeding the widescale use of the proposed rule 
learning techniques which require the interference matching (IM) procedure. First, although it 
is logically simple, the IM procedure may require enormous amounts of i e r r i p o r a r y storage to 
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compute and store alternative models because of combinatorial possibilities. Second, the 
learning problem as described in this paper required that all training exemplars (Cj, Rj) in I 
manifest the desired rule F. If this requirement is relaxed, so that at least one (Cj, Rj) fails to 
manifest F, then the assumption must be made that each distinct subset of I may be sufficient 
for induction of the unknown F. This greatly expands the number of possibilities 
(abstractions) that must be considered. Such a situation would arise, for instance, if a machine 
were supposed to learn rules of TG and the input contained errors or incomplete structural 
descriptions. 

It appears that there can be no cheap and robust solution which eliminates all 
combinatorial problems and the attendant requirement for large amounts of storage. However, 
one desirable technique for reducing computing time and storage space is provided by the 
space limited interference matching (SLIM) procedure (Hayes-Roth, 1974a). As currently 
programmed (in PL/1 and in SAIL), SLIM is limited to non-relational event descriptions 
(feature-value descriptions), but the basic technique is immediately generalizable (see Hayes-
Roth, 1974c, Ap. I for details). SLIM is chiefly constrained by the number of models it may 
maintain in working memory. Within the limitation imposed on memory space, the procedure 
performs the following actions in sequence: it successively introduces exemplars from the 
training set and partial-matches them (using the IM procedure to generate abstractions) with 
previously introduced exemplars and previously produced abstractions to generate new 
maximally informative abstractions; it evaluates the performance or utility of each inferred rule 
on the basis of the related positive and negative instances; it reduces (conditionalizes) the 
utility of rules which are subrules of better performing rules already abstracted; and it 
eliminates from overcrowded storage rules with lowest conditional utilities. As a result, the 
procedure dynamically optimizes the expected overall performance of all rules in storage. (If 
sufficient storage is provided, all inferrable rules are computed and retained.) 

(3) Apparently reasonable, heuristics might be introduced into the plausible rule 
induction procedure. These might be of a best-first sort, where the best hypothetical rule is 
taken to mean the one whose uniform representaion is a maximal abstraction of the training 
exemplars. Search algorithms of this sort are described in Hayes-Roth (1973) and Anderson 
(1975) . On the other hand, for every situation where a heuristic can be shown to be 
desirable, there is usually another where it causes demonstrably undesirable effects. At this 
point, it is the author's intention to experiment with a variety of heuristics in each of our 
currently active learning projects so that the costs and benefits of each will hopefully come to 
be better understood. 

In sum, many researchers have made useful application of structural representations of 
patterns and rules. In the current paper, a general procedure capable of inducing such rules 
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from appropriate training data and methods for comparing alternative hypothesized rules were 
discussed. While the prospects for fruitful application of these techniques seem bright, 
problems of combinatorics loom large. For the present, however, it is the author's opinion that 
even very large amounts of off-line computing dedicated to the discovery of reliable rules will 
be justified by a significant gain in knowledge or an improvement in the performance of the 
rules which are actually used in important real-time applications like speech understanding. 
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