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Abstract 

We examine several formulations of the common practice of jumping to conclusions when actions demand 
decisions but solid knowledge fails. This practice permeates artificial intelligence, where systems assume 
many conclusions automatically as defaults simply because the questions they decide are known to occur 
frequently, and where other assumptions are formulated and adopted only when ignorance stalls action. 
After developing the motivations and general nature of these inferences, we introduce a formal basis 
for describing them. This formulation allows separate introduction of the several ideas involved, and so 
facilitates characterization of some important combinations and some previous proposals. Initial results 
are proved about these theories, including the aptness of the formal notions with respect to the intuitive 
motivations. Benefits of this formulation include an indication of the ways notions from logic and 
metamathematics can enter into psychologies without subscribing to all of logic or metamathematics, 
an indication of the importance of conservation of mental states in the description of psychologies, and 
formal and intuitive relations between the approach of reasoned assumptions and its popular alternatives, 
deductivism and Bayesianism. 
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Note to the Reader 
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symbols used are collected and glossed at the end of the paper. The headings DEFINITION, THEOREM, 
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Meditation 

Ging heut morgens iibers Feld, 
Tau noch auf den Grasern hing; 
Sprach zu mir der lustge Fink: 
„Ei, du! Gelt? Guten Morgen! Ei gelt? Du! 
Wird's nicht eine schone Welt? schone Welt!? 
Zink! Zink! schon und flink! 
Wie mir doch die Welt gefallt!" 

Auch die Glockenblum am Feld 
Hat mir lustig, guter Ding 
Mit dem Glockchen kling, kling, 
Ihren Morgengruss gescbellt: 
„Wird's nicht eine schone Welt? schone Welt!? 
Kling! Kling! Schones Ding! 
Wie mir doch die Welt gefallt! Hei—a!" 

Und da fing im Sonnenschein 
Gleich die Welt zu funkeln an; 
Alles, alles, Ton und Farbe gewann in Sonnenschein! 
Blum und Vogel, gross und klein! 
Guten Tag, guten Tag! Ist's nicht eine schone Welt? 
Ei du! Gelt? Sch6ne Welt!? 

Nun fangt auch mein Gliick wohl an?! 
Nein! Nein! Das ich mein, mir nimmer bliihen kann! 

G. Mahler, Lieder tints fahrtnden Gesellen 

Vadoration de la terre; 
Le sacrifice 

I. Stravinsky, Lt Sacrt du Printemps 

Ich will nur dir zu Ehren leben, 
Mein Heiland, gib mir Kraft und Mut, 
Dass es mein Herz recht eifrig tut. 
Starke mich, deine Gnade wiirdiglich und mit Danken zu erheben. 

J. S. Bach, Weihnachts-Oratorium 
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L Introduction 

§1. Recently, increasing attention has been directed toward problems of providing mathematical 
formulations and semantics for some of the inferential systems developed in informal, practical terms 
within artificial intelligence. The mathematical approach has seldom been popular, for except in rare 
cases like the treatise of MlNSKY and PAPERT on perceptrons, 1 mathematical formulations have lacked 
force, have seemed mere importation of formalism without true understanding of the important problems 
to be addressed. Artificial intelligence has long been a field for formulation, where ubiquitous problems 
have defied stable statements. 2 In this setting it is natural that outsiders experience difficulties in looking 
for important problems, since the set changes with every observation! Fortunately, circumstances change, 
and the field has begun to develop its own mathematical formulations of some of these recognized but 
poorly articulated problems. These formulations may not yet be as comprehensive or compelling as 
those underlying the exact sciences, but they easily support optimism for more satisfying replacements 
in the near future. 

§2. Our subject here is a reexamination of several proposals concerning the mathematical formulation of 
certain non-deductive inference patterns common in artificial intelligence. Artificial intelligence systems 
draw many logically peculiar conclusions, and the question has been raised of whether there are coherent 
patterns among and justifications for these conclusions. Traditionally the nature of these non-deductive 
inferences has been hidden behind the slogan "heuristic," but realization of the widespread use of 
particular patterns has prompted their formulation and explication as important problems for the field. 
With the works of McDERMOTT, REITER, MCCARTHY and others advances have been made, but 
deficiencies in understanding persist. Motivationally, these efforts articulate some of the intuitions 
underlying the field's practice, but apparently not well enough to communicate these intuitions and 
their significance to some inside and many outside the field. Formally, these proposals exhibit some 
similiarities so that they all seem to approximate a single answer to a single problem, but they differ 
widely in detail, and no exact characterization of their differences or individual powers has been given. 
My purpose here is to pursue of the common project of these proposals by summarizing and extending 
the motivations underlying the subject inference patterns. I present a common mathematical basis in 
which I analyze, compare, and extend the previous proposals. Hopefully this effort will benefit several 
audiences: artificial intelligence theoreticians and practitioners interested in better understanding their 
systems of study, mathematicians and philosophers interested in the formalization and motivations of 
these novel inferential systems, and theoretical computer scientists interested in computational questions 
arising in artificial intelligence. 

Briefly, the problem is to formulate the common practice of jumping to conclusions when actions 
demand decisions but solid knowledge fails. This practice permeates artificial intelligence systems, 
where some assumptions are formulated and adopted only when ignorance stalls action, and where other 
conclusions are automatically assumed as defaults simply because the questions they decide are known 
to occur frequently. 

* [MlNSKY AND PAPERT 1969] 
2Compare [MlNSKY 1962). 
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BE. A Problem, an Approach, and a Solution 

§3. Life calls for action, and to act we must decide what to do in ignorance of our true circumstances, 
capabilities, and their consequences. We may decide using information about the consequences of our 
actions in our circumstances, but are our imagined circumstances our actual ones? Will the actions we 
perform be the ones we attempt? Will unforeseen interferences prevent the expected consequences? 

The skeptical challenge to the possibility of accurate knowledge of the world has never taken 
lives; neither does it halt work in artificial intelligence. One does the best one can. To do so, however, 
one must be able to admit and correct one's errors, and this consideration influences the design of 
artificial agents as well as the conduct of life. But in artificial intelligence, incompleteness of information 
looms larger than inaccuracy. Certainly to admit error requires one to judge oneself ignorant in the 
past, but in principle, as in politics, it still allows one to maintain an opinion on every subject and 
to assert correctness of all one's current opinions. Nevertheless, there are several severe obstacles to 
designing agents whose information about the world is complete, even if inaccurate. The first obstacle 
is that apparently accurate complete axiomatizations of the world may not exist. As in arithmetic, we 
may be able to state our basic premises, prove their incompleteness, and convince ourselves that any 
completion we attempt will involve inconsistencies. Since we expect error anyway, this need not be 
a strong deterrent, but it does suggest that completion for its own sake is unwarranted. The second 
obstacle, one far more serious, is the feasibility of using complete information even if we attain it. 
Present-day computation is recursive computation, and an undecidable complete axiomatization is no 
better than an incomplete axiomatization. Worse still, even decidable theories may be intractable, 
for short theorems may have very long shortest proofs, and answering single questions may involve 
exploring very many potential proofs. Since time will not stand still while the agent attempts to compute 
the answers it needs, theoretical completeness of the agent's information can be a practical fraud. 3 

The third obstacle is simple unavailability of complete axiomatizations of the world. Even looking to 
the sciences, one finds searches for new laws to fill old gaps, and artificial intelligence has spawned 
an entire discipline devoted simply to dieting all the facts about the world employed by experts but 
unseen in the literature. It seems methodologically unwise to postpone work on artificial intelligence 
until science completes its inquiry, unless one does not want artificial agents at all. 

§4. If we accept the challenge of acting without complete information, we must adopt some approach 
which allows both cognizance of incompletenesses and means for overcoming them. To act without 
awareness of one's clear limitations is blind stupidity, yet ignorance need not paralyze either. One 
approach out of several possible approaches has dominated work in artificial intelligence, and this is the 
practice of jumping to conclusions. Many of the beliefs assumed by default or for heuristic value in 
mechanized agents are cases of what WILLIAM JAMES called the "will to believe."4 JAMES was, like 
PASCAL before him,5 concerned primarily with questions of momentous, eternal import rather than the 
questions of mundane, temporal expediency common in routine thought and action, but the idea is the 
same. One judges, either at the moment or in advance, that it is better to adopt a stance on some issue 
and risk error than to take no stance at all. The position taken need not be precedential, for along 
with recognition of the possibility of error, we may also recognize that other or later circumstances 
raising similar questions may be decided differently. In TUKEY'S phrase, we often decide to act for 

3The importance of computational feasibility in artificial intelligence is easily underestimated. See [MlNSKY 1963], 
[MlNSKY AND PAPERT 1969], [MlNSKY 1975, APPENDIX], [RABIN 1974] and [GAREY AND JOHNSON 1979] 
for illuminating discussions of this issue. 

4[JAMES 1897] 
5[PASCAL 1662] 
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the time being as if something were the case, rather than simply deciding something is the case. 8 

But precedential or not, the approach of adopting stances carries with it a commitment to correcting 
mistakes when they come to light. As JAMES puts it, we might resolve to Believe Truth! and to Shun 
Error!, but the preceding suggests the latter resolve is best realized as conscientious correction rather 
than intellectual cowardice. 

The approach of jumping to conclusions finds many followers in artificial intelligence, but in 
other disciplines studying intelligent action other approaches attract the most attention. Of these, the 
most influential is subjective Bayesian decision theory. 7 There is much to be said about this alternative, 
but now is not our time to do so. For the moment, our task is laying out the motivations, nature, and 
formalizations of jumping to conclusions as it is practiced in artificial intelligence. Later we adduce 
some connections of this approach with subjective Bayesian decision theory which may illuminate their 
respective computational conveniences and difficulties. 

§5. Once we decide to face the problem of incomplete information by deliberately adopting stances 
when necessary, we must also face subsidiary problems: how can we tell when we should jump to 
conclusions, and which ones we should settle on? Once again, the practice of artificial intelligence 
supplies an approach to these problems, although possibly not the only or best one. This approach 
uses ratiocinative rules of thumb to guide the adoption of assumptions. These rules state which sorts 
of circumstances call for making assumptions, which assumption to try first, and when and how to 
revise one's opinion to other assumptions. That is, ratiocinative rules of thumb serve three functions: 
to enforce anti-agnosticism when appropriate, to indicate a sequence in which alternatives should be 
tried, and to recognize circumstances which might call into question one or more of the alternatives. 
These rules are often embodied as general or schematic "defaults" used in drawing conclusions, rules 
tolerant of exceptions in that specific conclusions are defeasible on a case-by-case basis without affecting 
the operation of the general rule itself.8 For example, one might decide to believe that ordinarily, every 
bird can fly. This decision might be carried out by a ratiocinative rule of thumb which infers of each 
individual bird considered that it can fly. This rule would continue to make such assumptions about 
newly considered birds even after particular flightless birds are recognized and their corresponding 
assumptions abandoned. 

§6. Ratiocinative rules of thumb form an approach, but in the absence of precise criteria for their 
application and interpretation are not themselves a solution to the problem of adopting assumptions. 
These rides guide inferences, but are not inference rules in the usual logical sense, since questions of 
soundness do not enter into the discussion. The point of the rules is, after all, to be unsound, to draw 
conclusions not strictly entailed by their grounds. We propose a solution based on interpreting these 
rules of thumb as expressions of ratiocinative desires, regarding actions of jumping to conclusions as 
actions satisfying the ratiocinative desires. In these terms we can cast the anti-agnostic, sequencing, and 
defeasibility functions of ratiocinative rules of thumb as components of the following "syllogism." 

6[TUKEY 1960] 
7See, for example, [SAVAGE 1972], [LEVI 1967], and [LUCE AND RAIFFA 1957]. 
^Widespread use of the term "default" follows MlNSKY'S influential discussion in [MlNSKY 1975]. [REITER 1978] 
identifies a variety of appearances of this notion in the practice of artificial intelligence. 
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I am in circumstances A. 

When I am in circumstances A, I prefer being decided about Q to being undecided 
about Q. 

When I am in circumstances A and am undecided about Q, I prefer, adopting stand 
C to adopting stand B. 

Therefore, I should adopt stand C. 

We combine and abbreviate the two implicative components of such syllogisms in rules written as 

A\\B\\-C, 

rules read as "A without B gives C" and informally interpreted as "if A obtains, and B does not, then 
adopt C." These rules are called reasons for their conclusions, and the conclusions drawn are called 
reasoned assumptions. This terminology diverges somewhat from standard usage, in which one calls the 
premises of the inference the reasons for the conclusion. We always refer to the premises as premises, 
hypotheses, antecedents, presuppositions, e tc , and reserve the term reason for the inference step that 
connects premises with conclusions. We do not insist on particular forms for what may enter into these 
rules; as well as logical statements of conditions, other sorts of mental components can be accommodated, 
as detailed in the following formal treatment. 

We base our interpretations of these encapsulated syllogisms on maximization of the utility of 
mental states. Utility maximization has, with some justification, gained a bad name as a descriptive 
theory of human behavior, but our purpose here is supplying normative theories where none exist, 
rather than attempting to accommodate logic to the behavior of some species of agent. Indeed, as 
we see later, many of the maximizations of interest are all small, independent, local decisions, easily 
implemented and suffering from few of the difficulties arising in the more comprehensive maximizations 
of subjective Bayesian decision theory. As is familiar from classical decision theory, there may be several 
distinct interpretations of maximal utility. Moreover, ratiocinative rules of thumb can conflict on cases. 
We hold all desires to be incomparable without "higher-level" desires which recommend satisfying one 
ratiocinative desire before another. This means we seek ways to live with conflicts rather than insist on 
their resolution, and that maximixing utility involves maximizing the set of ratiocinative desires satisfied 
by mental states. For example, suppose we choose to employ the two general rules 

Vx [Republican(x) \\ Pacifist(x) \\- -»Pacifist{x)\ 

and 
Vx [Quaker(x) || -i Pacifist(x) |(- Pacifist(x)]. 

The first of these says that Republicans should be assumed to be non-pacifists unless known to be 
pacifists. The second says that Quakers should be assumed to be pacifists unless known to be otherwise. 
When we learn that Richard Nixon is both Republican and Quaker, we can instantiate these general 
rules to the specific cases 

Republican(Nixon) \\ Pacifist(Nixon) ||— -> Pacijist{Nixon) 

and 
Quaker(Nixon) || -«Pacifi3t(Nixon) ||— Pacifist{Nixon). 

We cannot honor both preferences at once, so if we look to satisfy as many preferences as possible, we 
find two alternative coherent sets of assumptions: believing Nixon a Republican Quaker pacifist, and 
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believing him a Republican Quaker non-pacifist. Thus in accord with the interpretation of reasons as 
desires, we adopt a stand by picking one of these coherent sets as our set of assumptions or beliefs. 

Some might find it more reasonable to suspend judgement in cases of conflicting preferences, 
but under our interpretation that is a poor solution to the difficulty. In adopting these reasons, we have 
stated our preferences, and with no further information it is needlessly irrational to forgo all satisfactions 
simply because a trade-off is involved. If the decision were between consuming equally attractive donuts 
and bagels when there is money to purchase only one, few would counsel starvation. Nevertheless, behind 
the apparent questionableness of the above decisions lies an important point. Just as we may wish to 
state rules about when not to be agostic, we may also wish to state rules about when to be agnostic, 
and these may refer to otherwise conflicting preferences like those in the example. Toward this end 
we introduce the notion of defeasible reasons. Defeasible reasons allow inferences that can be defeated 
as a whole, rather than by simply challenging one of the particular presuppositions of the inference. 
One can encode defeasible reasons in reasons of the above form by introducing explicitly self-referential 
presuppositions (e.g. R = "A \\ B or R defeated ||— C"), but it is more elegant to simply interpret 
all reasons as containing a uniform presupposition of lack of challenges. With this modification to the 
interpretation, we can continue to base the interpretation on utility maximization while permitting rules 
of agnosticism. 

§7. This solution to the problem of adopting assumptions raises but does not address several subsidary 
problems. The first of these concerns the origins and justifications of those ratiocinative rules of thumb 
with which we choose to endow an agent or which an agent adopts of its own accord. There are several 
motivations for certain sorts of rules of thumb that immediately suggest themselves, and there may be 
more as well. The first motivation is the classical notion of statistical likelihood, where we might choose 
a rule of thumb because it calls for adopting the likeliest alternative. Another motivation is typicality, 
in which reasons specify the typical conclusion. Typicality might be the same as statistical likelihood, 
but there are ways of viewing it as a different notion. Another consideration in adopting a rule of thumb 
is the safety of error and ease of correction, that is, whether disastrous consequences follow from errors, 
and if not, whether the undesired consequences can be simply remedied. Finally, the weakest motivation 
is simple pragmatic utility, which often goes by the name of heuristic in artificial intelligence. In this 
case, one might adopt a ratiocinative rule of thumb simply because one is more successful by doing so. 

We propose no procedure for adopting ratiocinative rules of thumb, except for those which 
are themselves reasoned assumptions. Instead, we separate the issues of formulating, motivating, and 
adopting ratiocinative rules of thumb from the issue of interpreting them once adopted. The questions 
of formulation and motivation of these rules of thumb arise in other terms in the study of induction, 
learning, and philosophy of science, and v/e defer discussion to that literature. 9 

§8. A second subsidiary problem raised by adopting assumptions is that of how to revise mistaken 
assumptions, of how to honor the commitment to correcting errors as they are discovered. Freshly per­
ceived information can contradict previous beliefs, deductive inferences can bring hidden inconsistencies 
to light, and one sometimes decides to abandon or avoid certain attitudes because they prove embarrass­
ing or endanger mental stability. While some humans seem happy to hide their conflicting attitudes from 
themselves, some consciously endure their conflicts, and some die, the usual response to this problem 
is to give something up, either the new information or previous attitudes, in everyday life as well as in 
philosophy and artificial intelligence. But prudence counsels care in abandoning one's attitudes. Their 
acquisition takes time and effort, and they should not be abandoned needlessly. This conservative stance 

(See [MlNSKY 1963], [GOODMAN 1973], [QUINE AND ULLIAN 1978], [DACEY 1978], and [LEVI 1980]. 
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has been taken repeatedly in philosophy and in artificial intelligence. QuiNE christens it the "maxim of 
minimum mutilation," that is, when changes are necessary, one makes as small a change as possible. 1 0 

Less articulately, artificial intelligence practice exhibits this principle in many forms, with systems of 
differing levels of sophistication employing varying degrees of minimality and effectiveness in revising 
their attitudes. We pursue this idea as the notion of conservation of mental state, where conservation 
is equivalent in all but connotation to minimal mutilation. (I prefer the term conservatism to minimal 
mutilation, for I would rather be called a conservative or non-conservative than a mutilator of any 
degree.) Thus we view acceptable revisions of mental states to be the changes that in one way or 
other remedy the difficulty while preserving as much of the previous state as possible. We develop this 
topic formally in its own right elsewhere, as it appears many techniques from the practice of artificial 
intelligence can be conveniently described in these terms, with many concrete measures of "amount of 
change" characterizing the various practical systems. One class of systems, the so-called reason main­
tenance systems, minimizes the set of changed reasoned assumptions (see §46), but investigation of more 
refined measures is just beginning. 

10[QUINE 1970] 
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IIIf Formal Theories of Reasoned Assumptions 

§9. This chapter formalizes the intuitive notions, approaches, and solutions of the preceding. The 
principal problem in specifying interpretations of reasons is how they may be aggregated in spite of 
conflicts, and we formalize this as the problem of defining the admissible states of the agent holding the 
reasons. These admissible states constitute the "coherent" sets of interdependent reasoned assumptions 
sanctioned by the agent's reasons. Our method in formalization is to construct the set of admissible 
states from various assumptions about the constitution of the agent. Different theories of reasoned 
assumptions arise through the different constitutive assumptions we make (not to be confused with the 
reasoned assumptions made by the agent) about the agent's composition, the interpretation of individual 
reasons, and the aggregation of reasons and assumptions. Our first theories concern only the static side 
of the agent, but later we consider further constitutive assumptions about conservatism of the agent's 
state changes, and so arrive at evolutionary theories of reasoned assumptions. 

§10. We first suppose that there is a domain D of formal or structural elements such that each 
possible mental state of the agent can be decomposed into elements of D. Since we are concerned only 
with the structure of states vis-a-vis reasoned assumptions, we make no suppositions about the specific 
composition of D. Examples of domains from artificial intelligence include the set of all sentences in 
some logical language, the set of all LISP data-structures (S-expressions), and the set of all "mental 
agents" in MlNSKY and PAPERT'S society of mind. 1 1 As the latter example shows, we do not require 
that V has grammatical structure or is completely representational, and as the former examples show, 
"languages of thought" are acceptable as well. The set of admissible states JS is thus a subset of the set 
of all sets of mental components: in other words, / C P P . 

§11. Though we need make no suppositions about the nature of the arbitrary mental component, 
our second constitutive assumption is that some mental components can be interpreted as reasons, as 
specifications for the composition of the states in which the components occur. Formally, we assume an 
interpretation function I : D —• P P D which indicates the sets of components each component sanctions, 
so that a set S C V satisfies its component specifications just in case 5 G I{d) for each d-£ S. We define 
the class of component-admissible sets Q C P V to be those sets satisfying all their components, that is, 

Q = {scp\sef\ i{d)}. 
des 

Formalizing the notion of reasons as state specifications in this way involves several simplifications. 
First, rather than distinguish only some state components as reasons and leave the rest uninterpreted, 
we interpret every state component and give each non-reason d £ D the trivial interpretation 1(d) = P D 
that sanctions all potential states. Second, we interpret reasons as predicates of all sets of components 
rather than only as predicates of the admissible states, that is, to be subsets of P D rather than subsets 
of JS. This simplification is innocuous since we can always take the interpretation of every element to 
exclude all inadmissible sets. Third, we take the interpretation of components to be independent of the 
state containing the component. While the theories examined in this paper can all be captured within 
this limitation, we elsewhere consider ideas from artificial intelligence better suited by state-dependent 
interpretations which replace I : D -+ P P D with V : D X P V -+ P P D and Q with Q! = {S C V \ 

[MlNSKY 1980] 
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5 f | ( i € S I'(d, S)}. Finally, our fourth simplification is that each state component embodies at most one 
reason. The extension to multiple reasons is trivial, since conjoined specifications are interpreted by 
intersecting their interpretations. 

§12- Our third constitutive assumption is that all admissible states are component-admissible but 
that certain combinations of state components can never occur in admissible states even if they occur 
in some component-admissible states, or formally, that we can stipulate the set of admissible states jl 
to be some subset of Q, i.e. JS C Q. For example, if components are sentences of a logical language, 
we might require every admissible state to be deductively closed or to be consistent, even if none of 
its component sentences express non-trivial reasons. We introduce such general restrictions on the set 
of admissible states because interpreted components alone cannot express all interesting restrictions. 
Actually, nonemptiness of admissible states is the only restriction inexpressible by components alone, 
for though 0 is always component-admissible (it having no elements to rule otherwise), we can always 
replace I by I ' , defined so that for all d £ D, If[d) ~ jS, in which case Q = j& U {0}. 

In many cases of interest, as in the examples of deductive closure, consistency, and nonemptiness 
above, it is possible to decompose the specification of into the component restrictions and a general 
restriction on all sets. That is, one way of specifying yS C Q is to stipulate a general restriction on 
states Z C P D and define 

/S = QnR = {SeZ\sef) i{d)}. 
des 

Since JS C Q, we can always take JZ = when there is no independently interesting definition of JZ. 
If JS = Z, then the component interpretations add nothing to the general restriction. In particular, 
this circumstance holds whenever all component interpretations are trivial. On the other hand, if JZ = 
P D, then there are no general restrictions, and any restrictions on admissible states must be explicit 
in the states themselves. This circumstance recalls the current efforts in artificial intelligence towards 
constructing completely "self-descriptive" machines. 1 2 In the theories to follow, we will define JS either 
directly or in terms of JZ as convenient. 

§13. While the notion of admissible state captures an idea of states which specify their own structure, 
it says nothing about any form of inference. We introduce the idea of admissible extension as a 
formalization of the sets of conclusions or reasoned assumptions permitted within the structure of the 
agent's states. Just as the specification of admissible states involved both "local" ( / ) and "global" (JS 
or JZ) restrictions, so also does the definition of admissible extension. 

If S C D we define Exts(S), the set of extensions of or states extending S, to be the admissible 
states including S as a subset, or formally, 

Exts{S) = {E e JS | S C E}. 

If E £ Exts(S)} we also write S < E. Extensions are defined in the same way for all theories of reasoned 
assumptions. 

Just as the "psycho-logic" of mental states interprets (via J ) each state component as a 
restriction on the states in which it can occur, we also interpret components as restrictions on the ways 
they can be derived or occur in admissible extensions. That is, we assume a function J : D X~P D —• P P P 
that interprets each state component to find the extensions it sanctions for various sets of components. 

12[MINSKY 1965], [DOYLE 1980], [WEYHRAUCH 1980], [FRISCH AND ALLEN 1982], [SMITH 1982] 
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We define QExts(S), the component-admissible extensions of a set S C D, by 

QExts(S) = {E £ Exts{S) \ E £ f] J{d,S)}. 
d€E 

That is, E is a component-admissible extension of S just in case each element of E approves (via J) of 
the way it occurs in E relative to S. The admissible extensions AExts(S) are stipulated as a subset of 
the component-admissible extensions, or formally, AExts(S) C QExts(S) C Exts(S). If E £ AExts(S), 
we also write S <] E. 

Putting all these definitions together, we say that each choice of (D, I, JS,J, <]) (or alterna­
tively, each choice of (9,1,11, J, <])) describes the states and inferential structure of an autological 
agent. This appelation is meant to recall the ways the agent's constituents talk about their roles in the 
"logic" of the agent's states. 

§14. Merely having structures for admissible states and admissible extensions does not in itself support 
use of the term "logic," but we introduce a notion of psychological entailment to excuse this abuse of 
standard terminology. Let (D,I, J5,J, <3) describe an autological agent. If A, B, S C D, we say that A 
psychologically entails B in S (within the agent's psychology), written A \\=s B, iff B C E whenever 
AGE and E £ AExts(S). 

(14.1) THEOREM. A ||=5 B for every A,B C D iff AExts(S) = 0 or AExts(S) = {2?}. 

PROOF. Clearly, if AExts(S) is 0 or {P}, then A |(=5 B for every A,B C D, so suppose A \\=s B 
for every A, B C D and AExts(S) ^ 0 . Let E £ AExts(S). Then by hypothesis, 0 \\=s P, and since 
0 C E, we must have V C E, hence D = E. ^ 

A more specific notion plays a prominent role in the subsequent development where we say that d £ D 
is inevitable in S to mean that d £ E whenever E £ AExts(S), that 0 |f=s {d}. 

We introduced the notion of admissible extension to capture the notion of inference within 
the agent's psychology, but unfortunately, the correspondence between inference and entailment so 
important in mathematical logic does not obtain in the general psychology. We say that B is arguable 
from A in S, written A \\^s B, iff there is some E £ AExts(S U A) such that B C E. 

(14.2) THEOREM. If A \[~s B for every A, B C D, then S <J D. 

PROOF. Suppose A B for every A, B C P. Then in particular, 0 | |~5 D, so there is some 
E £ AExts(S) such that D C S , hence V = E and S <3 D. 1 

We say that d £ D is arguable in S iff there is some E £ AExts(S) such that d £ E, in other words, 
0 | h s {<*}• 

(14.3) C o r o l l a r y . IfACS, then A \\=s B iff 0 | ( = 5 £ ; and A B iff 0 \\~s B. 

The divergence between arguability and inevitability is seen more clearly in the particular subsequent 
theories. Indeed, the point of theories of reasoned assumptions is to set out the coherent sets of 
assumptions sanctioned by some set of reasons, and when there are several possible coherent sets of 
assumptions one has A\\^s B but not A\\=s B, a. reflection of the intended "unsoundness" of this sort 
of psychological inference. 
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§15. Even among the "unsound" conclusions sanctioned as reasoned assumptions, some conclusions 
are more sound than others. If E, E' £ AExts(S) are such that J? is a proper subset of Ef, then those 
conclusions in Ef but not in E are, in a sense, less sound than need be. Expedience might force jumping 
to conclusions, but it need not force profligacy. To avoid unnecessary unsoundness, we introduce the 
notion of strict arguability, arguability in minimal admissible extensions. 

(15.1) DEFINITION. If X is a set of sets, the minimization of X, \LX, is given by \iX = {x £ X | 
Vy £ X y C x >̂ x C y}. If f is a set function f : X —• P 7 , then the minimization of f is a function 
fif : X —• P Y such that for each x £ X 

(/./)(x) = ,x(/(x)) = {y € f{x) | V y ' 6 /(x) y' C y 3 y C y '} . 

Take care to note that /x finds the minimal elements of sets, not the minimums of sets, so that /x/(x) = 0 
if f(x) = 0. Note also that /iX can be empty even when X is not if X contains an infinite descending 
chain of sets. This will not happen in most of the theories we consider. One set function is AExts : 
P D —• P JS, and its minimization under set inclusion, written \iAExts, is defined for all S G D by 

fiAExts{S) = {E £ AExts(S) \ \f E* £ AExts(S) E' C E z> E C E'}. 

While this definition of minimization is specific, to set inclusion, we elsewhere treat these ideas in a more 
general setting by replacing set inclusion with more specific notions of relative information content. In 
that treatment, /i means minimization with respect to a quasi-order C on P D refined by C , that is, an 
order C such that x (Z y implies x C y but not necessarily vice versa. 

With the definition of minimization, we say that B is strictly arguable from A in S, written 
A m I H S B, iff there is some E £ fiAExts(S ( J A) such that B C E. In this way, strict arguability 
corresponds to arguability with as few assumptions as possible. Note that if fiAExts = AExts the two 
versions of arguability coincide. 

Corresponding to the notion of strict arguability in an agent, we also have the notion of minimal 
psychological entailment, psychological entailment in minimal admissible extensions. Specifically, we 
say A minimally psychologically entails B in S, written A fi\\=s B, iff B C E whenever AGE and 
E € fJ,AExts(S). Since fiAExts(S) C AExts(S), it is clear that A (JL\\=s B whenever A | f= 5 B. Unlike 
strict arguability, minimal psychological entailment does not play a significant role in the following 
theories of reasoned assumptions. It is discussed in more detail in §51 along with the logical notion of 
circumscription. 

§16. Several other inferential relationships are also worth naming. Let d,e £ D and S G D. We say 
d and e are cotenable in S if there is some E £ AExts(S) such that d,e £ E, or put another way, if 
0 ( I — 5 {d, e}. We say S is coherent if AExts(S) 7̂  0, and is incoherent otherwise. We say that d is 
assumable in S if 5 U {d} is coherent, and realizable in S if some S' D Su {d} is coherent. Clearly, 
S is coherent iff 0 | | — 5 S, d is assumable iff {d} \\—s {d}, and d is realizable iff for some AGO, 
A U {d} \)~s {^}- It is also easy to see that if d and e are cotenable in S, each is arguable in S; that 
if S is coherent and d is inevitable in S, d is arguable in S; that if S is coherent and both d and e are 
inevitable in 5 , d and e are cotenable in S; and that if S is coherent and A,BGS, then A ||—s B. 

If D has the structure of the set of sentences of an ordinary logical language, there is a 1-1 
function -< : V —> D taking elements to negations. For this important special class of domains, we 
introduce the following terms. We say d is doubtless in 5 iff - 1 d is not arguable in 5 . Similarly, d is 
conceivable in 5 iff ->d is not inevitable in S. Arguability and doubtlessness are thus dual notions, as 
are inevitability and conceivability. We say d is decided by S iff for every E £ AExts(S) either d £ E or 
- 1 d £ E, and that 5 is ambivalent about d iff d is not decided by 5 . We say S is arguably consistent if 
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there is some E £ AExts(S) such that for every d £ P, either d E or -> d E, and arguably inconsistent 
if for some d and E, d,-> d £ 2? £ yli£x2.s(S). We say 5 is inevitably consistent (or simply consistent) if 5 
is coherent and for every E £ AExts(S) and d £ P, either d £ £" or -> d £ £\ S is inevitably inconsistent 
if 5 is coherent but there is some d such that for every E £ AEx£s(S), d £ E and -< d £ E. It is clear 
that if S is consistent, S is arguably consistent; that if d and -> d are cotenable in S, S is inconsistent; 
that if d is doubtless in S yet decided by 5 , d is inevitable in S; and that if d is inevitable in S and e 
is arguable in 5 , d and e are cotenable in 5 . Note that these notions are weaker than the usual notions 
of consistency, for we have made no assumptions about iterated negations, that is we allow d £ S but 
- I -»d £ S. If P has the structure of the Lindenbaum algebra of sentences of a logical language, then 

-» is the identity. In this case it is clear that d is decided by S iff -> d is decided by S, and that S is 
ambivalent about d iff -> d is not decided by S. We pursue these more familiar notions later under the 
topic Logical theories. 

§17. As is usual with formal systems, we can construct bigger autological agents out of smaller ones. 
Two basic constructions are sum and product agents. Let (Pi, Ji , JSv J i , <h) and (P 2 , Ii> ft2> J21 <]2) 
describe two autological agents. The sum of these is an agent (P, I, /S, J, <]) such that 

(1) P = Di U P 2 , 

(2) 1(d) = {S C 1? I D £ ft D [ 5 H Pi £ I i ( D ) ] A D £ P 2 ^ [5 N D2 6 h(d))} 

(3) / = {S c P L 5 H Pi. £ A A s n P 2 £ / 2 } 

( 4 ) J ( D , 5 ) = { £ I D £ Pi ^[E n Pi £ A ( D , s n Pi)] A D £ p 2 Z > [ J G ? n P2• E ^ ( D , 5 n P 2)]} 

(5) o = { ( s , s ' ) | S n P i < 3 i 5 ; n P i A 5 n P 2 < a 2 s " n 0 2 } . 
The product of the two agents is an agent such that 

(1) 5 = P i X P 2 , 
(2) I{{di,dt)) = {S C D | 3Si 6 J^d i ) 3 S 2 E J8(<*a) S = S A X S 2 } , 
(3) S = { S C P | 3 S R G / x 3 S 2 <E 5 = Si X S 2 } , 

( 4 ) J{(dud*),S) = {E\3S1,ElCD1 3S2,E2 C P 2 

S = Si X S 2 A E = Ex X # 2 A 

S Si) A E2 £ J2{d2, St)}, 
(5) 0 = { ( S , S ' ) | 3Si ,S ' i C Di 3 S 2 ) S ' 2 C P 2 S = Si X S2 A S' = S I X S ' 2 A 

Si <iS2 A S ' i < ] 2 S 2 } . 

The sum construction appears quite frequently in artificial intelligence systems, which often divide into 
independent databases operating with different inferential schemes. 
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Elemental theories 

§18. The first theory of reasoned assumptions we consider is the theory of simple reasons. Simple 
reasons are so named because they involve what seem to be the weakest useful notion of reason, one on 
which all the following theories elaborate. This theory makes no assumptions about D, has no general 
restrictions on states, and interprets all components as (possibly trivial) "simple reasons," in contrast to 
the "defeasible reasons" defined in the next section. We split the definition into two parts due to some 
intervening subsidiary definitions. 

(18.1) D E F I N I T I O N ( S I M P L E R E A S O N S I). An agent's use of simple reasons is characterized by 
(P, J, ySy J), where 

(i) D is a set, 

(ii) For each d£ D, there are sets A,B,C C D such that 

I{d) = A || B |[- C = {S C P | A C S C Bc ^ C C S}, 

(Hi) JS = Q, 
(iv) For each d£ P and S C R, 

J(d,S) = {E\deE^>[deS V 3e£E 3A,B,C C P 
1(e) = A\\B\[-CAACECBcAde C]}. 

Recalling our earlier notation, we abbreviate the subsets of P P corresponding to reason interpretations 
as expressions of the form A || B j|— C, where A,B,C C P. The definition of I interprets reasons so 
that the "conclusions" C must be held if the "antecedents" A are held and none of the "qualifiers" B 
are held. Note that expressions like A \\ B ||— C are part of the metalanguage in which we discuss the 
agent. The agent's language of thought, if any, need not express reasons in the same way. The notation 
A || B |[- C also allows us to speak of the "same" reason even when we extend P to a larger domain, since 
if sl,B, C C P and D C we also have A,B,C C D'. This property greatly simplifies mechanizations 
of agents based on simple reasons expressed in this way, since the domain of state components can be 
extended indefinitely without necessitating changes in previously expressed reasons. Finally, observe 
that the expression 0 || 0 |f~ 0 means the trivial interpretation, the set P P. 

(18.2) D E F I N I T I O N . A reason with interpretation A || B |f- C is said to be valid in S iff its 
antecedent conditions hold, that is, iff A C S C JBc. 

In this way, component-admissible extensions are those extensions which locally appear "grounded" 
since each of the elements is in the initial set or is a conclusion of a valid reason. We base the general 
restriction giving admissible extensions on a notion of globally grounded extensions. 

(18.3) D E F I N I T I O N . A finite reason is an element d G D such that there are finite subsets A,B,C C 

D with J ( d ) = A\\B\[-C. 

(18.4) D E F I N I T I O N . E is a (finitely) grounded extension of S iff S < E and for each e G E there is 
a (finite) grounding set G C E and a well-ordering < G of G such that e G G and whenever d G G, either 
(1) d£ S or (2) there is some (finite) reason f G G and sets A, Bf C C D such that 1(f) = A \\ B ||- C, 
A C G, E C Bc, d G Cf and A <G f <G d. For each S C D, GExts(S) denotes the set of grounded 
extensions of S, and FGExts(S) the set of finitely grounded extensions of 5 . 
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(18.5) C O R O L L A R Y . If E is a grounded extension of S, e £ E; G is a grounding set of e, and 
d < G ? e, then {g £ G \ g < G d} 15 a grounding set for d in E, as is G itself. 

Grounding sets bear a remarkable similarity to open neighborhoods in a topological space, but I have not 
been able to make them into such since the intersection of two grounding sets need not be a grounding 
set. 

(18.6) C O R O L L A R Y . FGExts C GExts. 

(18.7) T H E O R E M . GExts C QExts. 

P R O O F . The claim is just that grounded extensions also appear locally grounded. Suppose E £ 
GExts(S) and e £ E. Then if e £ S, there is a grounding set G for e. But since e £ G and e £ 5, there 
is a valid reason supporting e in G, and hence in ^ as well. 1 

(18.8) D E F I N I T I O N ( S I M P L E R E A S O N S II). Grounded, finitely grounded, and locally grounded sim­
ple reasons agents are characterized respectively by AExts = GExts, AExts = FGExts, and AExts = 
QExts. 

For the sake of simplicity and practical relevance we normally discuss finitely grounded simple reasons 
agents, take AExts = FGExts, and explicitly state whenever we consider general grounded or locally 
grounded agents. 

E X A M P L E S . We adopt the convention that if -» : D —> D and A C D we write -«A to mean {-«a | 
a £ A}, and if S C 0, we write J*(S) to mean {/(d) | d £ 5 } . In all the examples, we usually assume 
A, B, C,D and their negations to be subsets of D composed of trivially interpreted elements, so if a £ A, 
then 1(a) = !(-> a) = 0 || 0 ||— 0. Comments, if any, follow the example to which they refer. 

(18.9) I*{S) = {0 || 0 |f- 0} , AExts{S) = {S} 
If 5 has only trivially interpreted elements, it is its own admissible extension. 

(18.10) I*{S) = {0 || 0 | j- A}, AExts{S) = {SUA} 
This sort of reason can be viewed as setting out unqualified premises. 

(18.11) J*(5) = {A || 0 |h A}, AExts{S) = {S} 
Note that SUA is a component-admissible extension of S, but neither a grounded component-admissible 
extension of S, nor a minimal component-admissible extension of S, nor a minimal extension of S. 

(18.12) /*(£) = {0 || - A \\- A}, AExts{S) = {SUA} 
This sort of reason is commonly called a normal default; a "default" since it sanctions an inference in 
which one draws a conclusion because one has no valid reason for drawing the opposite conclusion, and 
"normal" since this sort of default is so commonly useful in artificial intelligence. Note that S U ""»A is 
also a minimal extension of S, but is not component-admissible. 

(18.13) I*{S) = {0 || A |h A}, AExts(S) = 0 
Note that while S U A is an admissible state, moreover a minimal extension of S, it is not component-
admissible. 

(18.14) / * ( A ) = { 0 | | C | h £ } , /*(£) = {0 | | 0 11-0}, 
I*[C) = {0 || 0 |h D}, I*(D) = {0 || 0 |h C} 
AExts{A) = {AuB} 

Note that A U C U -D is a minimal component-admissible extension of A, but not a grounded extension 
of A. 

(18.15) 7*(S) = {0 || ->A ||- A, 0 || A | | - - . A } , AExta(S) = {5 U A, S u - A } 
This example exhibits the multiple admissible extensions of the motivating examples of §6. 

(18.16) I*{S) = {0 || A |h- A, 0 | | 0 | | - A } , AExts(S) = {S UA} 
In contrast to 18.13, the second reason supports A regardless of the incoherence of the first reason. 

(18.17) I*{S) = {0 || A | j - A, 0 | | 0 | | - - A } , AExta{S) = 0 
Since we have provided no connection between the interpretations of A and ->A, this example has the 
same basic structure as 18.13. 

(18.18) I*{S) = {0 || 0 | | - A , 0 | | 0 | h - ^ } , A£zfc(S) = { S U A U - A } 
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Since the agent has not been given logical structure, we draw no further conclusions from this inconsistent 
extension. 

(18.19) I*{JS) = {Q\\-iA\[-A, 0 | | - B | H £ , A\\0\\--<B, B || 0 | (- - A } , 
AExts(S) = { S u A u ^ B , SU^AUB} 

(18.20) I*(S) = {0\\^A\\-A} 0 | | - . J J | | - B , 0\\-iC\\-C, A | | 0 | f - - B , 
B | | 0 | h - C , C || 0 | h 
AExts(S) = 0 

(18.21) J*(5) = { 0 | | - y l | | - A 0 1 1 - i B l h B , 0 | | - C | | - C , 0\\^D\\-D, 
A | | 0 | | - - B , B | | 0 | H - C , C | | 0 | H - A P | | 0 | H - A } , 
AExts{S) = {SUAU^BUCU^D, Su^AuBU^CuD) 

Note how the parity of these cycles (even in 18.19 and 18.21, odd in 18.20) affects the existence of 
admissible extensions. 

(18.22) 7 * ( 5 ) = { 0 | | B | H A 0 | | 0 | f - - ^ } , AExts(S) = {S U A U ^A} 
Note that contrary conclusions cannot "push backwards" through reasons to support qualifiers. 

(18.23) Suppose {d t}£L 0 is a set of distinct elements of V such that for each i > 0, I{di) = 0 || 
0 ||— {di+i}. Then AExts({d{}) = {{dj \ j > t}}. Even though each set {d{} is finite, its admissible 
extension is infinite. 

(18.24) Let D = {<ft}£L0 and P = D © {e, / } , where for each i > 0, I[di) = 0 || 0 ||- R + i } , and 
where 7(e) = Z> || 0 ||— {/} and / ( / ) = 0 || 0 ||- 0. Let S = {d0)e}. Then GExts(S) = {2?}, but 
FGExts(S) — 0 since no finite argument for / exists. 

I apologize for several little white lies among these examples. These stem from the alternative 
expressions that some reason interpretations allow. For example, the expression A || 0 ||— A means 
the same set as does 0 || 0 ||- 0, namely P P. Further, the expression 0 || A ||— A means the same 
as does 0 H 0 ||— A. Thus it is wrong to call {0 || A ||- A} incoherent yet to call {0 || 0 |f- A} 
coherent. We expressed the examples as simply as possible for the sake of comprehension, but these 
difficulties can always be avoided by slightly more complex statements of examples. For example, if 
1(a) = 0 || {6} | H { C } , 7(6) = 7 ( C ) = 0 || 0 | H 0, and 1(d) = {c} || 0 | | - {&}, then the set {a,d} is 
incoherent, while {a, d, c} is coherent. 

In spite of their simplicity and practical significance, very little is known about the properties 
of simple reason agents. The few results which follow are merely indicative of the questions that remain 
to be answered. We first examine some alternate characterizations of the notion of admissible extension. 

(18.25) DEFINITION. Let S,E C D. Then (Aa) (a an ordinal), the levels from S in E, are defined 
for all ordinals by 

A0(S,E) = S, 

Aa+1{S,E) = Aau\J{C C D\3ee\a{S,E) 3A,BC D 
1(e) = A\\B\[-C A AC Aa(S,E) A EC Bc}, 

and for limit ordinals X, 

A X ( S , £ ) = U Aa(S,E). 

We also define A(S, E) = (Ja Aa{S, E) to be the sum of all levels. When no confusion is possible, we 
sometimes abbreviate Aa(S,E) by Aa andA(S,E) by A. 

(18.26) C o r o l l a r y . Ifa<p, then S C Aa{S, E) C A0{S, E) C A{S, E). 

(18.27) C o r o l l a r y . / / Aa{S, E) = Aa+1{S, E), then Aa{S, E) = A(S, E). 

- u -



(18.28) T H E O R E M . If a is the cardinal number \D\ + 1, then A(S,E) = Aa(S,E). 

P R O O F . Since D has fewer than a elements, it must be that for some /? 4 - 1 < a no new element is 
introduced in A^+i, in other words, Ap = A/j+i. But then Ap = A, and since C A Q C A, we have 
A = A a . I 

(18.29) D E F I N I T I O N . If E £ A(SyE), the rank of E in A(SyE) is the least ordinal a such that E £ 
Aa(SyE). If A C A(S,E), the rank of A in A(S,E) is the least ordinal not less than the rank of any 
element of A. 

(18.30) LEMMA. If S <E, then A(SyE) C E. 

P R O O F . Let S < E. Clearly Ao C E, so assume A/? C E for each (3 < a. If a is a limit ordinal, 
then by definition Aa C 2£. If a is a successor ordinal, say a = j3 + 1, let e £ A a . If e £ S, then e £ Ey 

and if e g S there is a d £ Ap with 1(d) = A \\ B \\- G, A C A/?, £ C B c , and e £ C. Since E is 
admissible, this means G C i?, so e £ hence A a C Thus A C E. fl 

(18.31) T H E O R E M ( S T R A T I F I C A T I O N ) . / / £ £ GExts(S) then A(5, # ) = i?. 

P R O O F . Suppose E £ GExts(S). Since 5 < by the preceding lemma we have ACE. To see 
that E C A, suppose e £ 1?. Since 1? is a grounded extension of 5 , there is a grounding set G C E for 
e from S m E. We show G C A by <G - induct ion. Let / £ G have no predecessors in < G - Clearly 
/ is the minimum of G, and by definition of G, we must have / £ 5 , hence / £ A. Now suppose that 
/ £ G and for each d <G f, either d £ 5 or there is a grounding subargument G ' C G for d. If / £ 5 , 
then / £ A, and if / g 5 , there is a d £ G such that J(d) = A || £ | | - G, A <G d <G /, E C Z?c, and 
/ £ G. By the inductive hypothesis, A C A and d £ A, so there is some ordinal OL such that A CZ Aa 

and d £ Aa. But then by construction G C A a + i , so / £ A. Hence E C A, so £ = A(SyE). Q 

(18.32) C O R O L L A R Y . / / S £ GExts(S) and a = \E\ + 1, tfien £ = A a ( S , S ) . 

(18.33) C O R O L L A R Y . / / £ " £ GExts(S) and a is its rank, then E = Aa(S,E). 

(18.34) C O R O L L A R Y . / / E £ FGExts{S), then E = A w (5 , # ) . 

P R O O F . Let E £ FGExts(S) and E £ E. Since e has a finite grounding set G, the.rank of e is at 
most |G|, hence e £ AW{S9E). Thus £ C A w (5 ,£ r ) , so by Lemma 18.30, E = A w (5 ,£ r ) . B 

(18.35) T H E O R E M ( F I X E D P O I N T ) . If E = A(5,#) , tfien # £ GExts(S). 

P R O O F . Suppose A = E. Since S C I A, S C I 2?. Let e £ E with 1(E) = A \\ B \\— G, and suppose 
A C. E. Then there is an ordinal a such that e £ A a and A C A Q , so by construction if E C Bc as well, 
then C C A a + i C £ . Thus E is admissible. We prove E is a grounded extension of S by induction on 
rank. Specifically, we prove that each element of E has a rank-preserving grounding set, a set G C. E 
such that ranfc(a) < rank(b) whenever a <Q b. Let E £ E have rank a. If a = 0, then E £ 5 and 
we are done since {e} is a rank-preserving grounding argument for e from 5 in E. Now assume that 
a > 0 and all elements of rank less than a have rank-preserving grounding arguments. By construction, 
there is some f3 < a and d £ A^ such that 1(d) = A \\ B \\- G, A C Ap, E C £ c , and e £ G. Then 
by inductive hypothesis each element of {d} U A has a rank-preserving grounding argument, so merge 
these arguments preserving rank-order, and add e to the end, so producing a rank-preserving grounding 
argument for e. Thus E £ GExts(S). B 

(18.36) C O R O L L A R Y . E £ GExts(S) iff E — A(S, E). 

- 1 5 -



(18.37) T H E O R E M . If every reason in D is finite, then E £ FGExts(S) iff E = Aw(SiE). 

P R O O F . Suppose every reason in D is finite. By Corollary 18.34, we need only show that = E 
implies E £ FGExts(S). Suppose A^ = E. We first show A ,̂ = A. Suppose, by way of contradiction, 
that A Ac,. Then there must be a least ordinal a > u such that for some e £ D, e £ A a + i — A Q . Since 
a is minimal, A ,̂ = A a , for otherwise A^ = A^+i and hence A^ = A. By construction, there is some 
/ £ A a , / ( / ) = A || B ||— Cy A C A a , E C Bc, and e £ C. Since A is finite, this means the rank of A is 
also finite. Thus there is some /? < u> such that A C A/? and / £ A/?, so e £ A / 3 + 1 C A^, a contradiction. 
Thus A = A w , and since Aw = by Theorem 18.35 E is a grounded extension of 5 . We see that E is 
finitely grounded by induction on rank. Clearly, if e £ Ao, then e £ 5, hence {e} is a rank-preserving 
grounding set. Now suppose the rank of e is a + 1 < u>. Then by construction there is some / £ A a 

with / ( / ) = A || B |f— C, A C A a , 2? C J5C, and e £ (7. By inductive hypothesis, each of / and A have 
finite rank-preserving grounding sets, so merge these preserving rank-order, add e to the end, and the 
result is a finite rank-preserving grounding order for e. fl 

(18.38) Q U E S T I O N . For each simple reasons agent, can one characterize those sets which have no 
admissible extensions? Unique admissible extensions? Multiple admissible extensions? Finitely many 
admissible extensions? Infinitely many admissible extensions? Only finite admissible extensions? Only 
infinite admissible extensions? Or, turning the order around, can one characterize simple reasons agents 
in which all sets are coherent or have finite or unique admissible extensions? 

(18.39) T H E O R E M ( G R O U N D E D M I N I M A L I T Y ) . GExts C pQExts. 
P R O O F . GExts C QExts by Theorem .18.7, so suppose E £ GExts(S), E1 £ QExts(S), and E1 C E. 

We first show A(S,#) C A(S,£") by induction. Clearly Ao(5,E*) C A 0 (5 , E') since each equals S. 
Assume Ap(S,E) C Ap(S,Er) for each /3 < a. If a is a limit ordinal, then by definition Aa(S,Ef) C 
A a ( 5 , E). If a is a successor ordinal, say a = /3 -f I , let e £ Aa(S,E). If e £ 5 , then e £ E', and if 
e £ S there is a d £ Ap(S, E) with 1(d) = A || B | | - C, A C A^(5, #) , # C B c , and e £ C. But since 
E* <Z E <Z Bc, this means e £ A a (S,E") . Hence A(S,#) C A(S,E'). But by Theorem 18.31 and Lemma 
18.30, E = A(5, # ) C A(5, ̂ ) C i? 7. | 

(18.40) C O R O L L A R Y . G ^ X T 3 = fiGExts and FGExts = pFGExts. 

(18.41) C O R O L L A R Y . IfS<D, then AExts(S) == {P}. 
P R O O F . Suppose S <\ D. Now if # £ AExts(S), then E C D, and since A#xte = pAExts by the 

previous corollary, this means i? = 2?.. 1 

(18.42) C O R O L L A R Y . If S < D, then A \\=s B for every A,B C D. 

(18.43) C O R O L L A R Y . 7/A | | ~ 5 B for every A,B QD, then A \\=s B for every A, B C D. 

Note that the converse does not hold if S is incoherent. 

(18.44) T H E O R E M ( T R I V I A L C O H E R E N C E ) . A trivially interpreted set is its own admissible exten­
sion. 

P R O O F . Suppose S C D, and for all d £ 5 , 1(d) = P P . Then S is admissible, and it is clearly 
finitely grounded, so AExts(S) = {S}. fl 

(18.45) D E F I N I T I O N . A monotonic reason is an element d £ D such that for some A,C C D, 
/(<*) = A || 0 | | - < 7 . 
"Monotonic" is used because extensions of a state cannot invalidate such a reason, so that the set of 
conclusions added by the reason is monotone nondecreasing with enlargements of the state. Note that 
all trivially interpreted state components are finite and monotonic. 
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(18.46) T H E O R E M ( M O N O T O N I C C O H E R E N C E ) . / / D contains only monotonic reasons, every 
subset of D has a unique grounded extension. 

P R O O F . Suppose all reasons are monotonic, and let S C. D. Consider E = A(S, 0). Since all 
reasons are monotonic, A(5, 0) = A(S,X) for each X C D. In particular, E = A(S, 0) = A(S,E), 
so by Theorem 18.35 E £ GExts(S). Now if E' £ GExts(S), then Ef = A(S,Ef) = E by the previous 
observation, so GExts(S) = {E}. fl 

(18.47) C O R O L L A R Y . / / D contains only finite monotonic reasons, every subset of V has a unique 
finitely grounded extension. 

As Example 18.24 shows, we cannot drop the finiteness restriction unless we allow infinite grounded 
arguments. 

(18.48) D E F I N I T I O N . Suppose S C D and deD. The set S mentions d iff for some e £ 5 , 1(e) = 
A || B |[- C and d £ A\J B\J C. Two sets A, B C D have disjoint mention sets iff A mentions no b £ B 
and B mentions no a £ A. A subset A C S is an isolated subset of S iff A and S — A have disjoint 
mention sets. 

Note that S and 0 are isolated subsets of S. 

(18.49) T H E O R E M ( D I S J O I N T S U M ) . Suppose ( f t ) ^ and {Ei)^0 (n < oo) are sequences such 
that for all i, 0 < i < n, ft C D and Ei = AExts(S{). Suppose further that for all i,j, ifO < i y£ j < 
n, then each E £ E{ and Ef £ Ej have disjoint mention sets. Then 

AExts(\JSA = {\J | <i?fc}^o € ft • 

P R O O F . Let E = \JkEk
 for some (Ek) £ nj?t-. We first check the admissibility of E. Let e £ E. 

If e is trivially interpreted, then E £ 1(e), and if e has a nontrivial interpretation, then e £ El for some 
/. Now El £ /(e) by hypothesis, and since the other parts of E are not mentioned by El, they also 
satisfy e} hence E is admissible. Now if e £ \}i Si, then it is in some El. By hypothesis, e has a finite 
grounding argument in El, and since it does not mention the rest of E, this same argument grounds e in 
E. Hence E is a finitely grounded extension of 5, so E £ Aifo£s(|Jt. ft). Now suppose E £ AZ?x£s(|Jt. ft)» 
and consider 2? f| U ^ T - N° element in this set mentions any other in |J Ej for j 7̂  i, so it must be that 
Er\(jEie AExts(S). 1 

(18.50) C O R O L L A R Y . S C. D is incoherent if S has an incoherent isolated subset. 

P R O O F . Suppose A C S C P, A is isolated in 5, and yl£a;ts(A) = 0. Then AEtos(A) X AExts(S -
A) = 0, so by the disjoint sum theorem, AExts(S) = 0. 1 

(18.51) C O R O L L A R Y . Suppose S = U , - f t ; where for each i, AExts(Si) = A N D 2 / J ^ t, . E T -

A N D have disjoint mention sets. Then AExts(S) = {[jiEi}. 

P R O O F . Since each Si has a unique extension, there is only one sequence in the product of the 
extension sets, so the claim follows by the disjoint sum theorem. 9 

(18.52) C O R O L L A R Y . Suppose S — U T ft andifj 7̂  i, Ei and Ej have disjoint mention sets. Then 
\AExts(S)\ > 1 if for some i, \AExts(Si)\ > 1. 

P R O O F . Suppose ft has several admissible extensions. Then the product of the extension sets 
contains several sequences. The unions of these sequences cannot be identical, since by the disjointness 
of mention sets this would mean the supposedly distinct extensions of Si were identical. Thus by the 
disjoint sum theorem, the union of the sets has several admissible extensions. 3 
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(18.53) COROLLARY. S is coherent iff every isolated subset of S is coherent 

(18.54) COROLLARY. S has a unique extension iff every isolated subset of S has.a unique extension. 

(18.55) DEFINITION. A set S C D is called simple iff S has no isolated subsets other than itself 
and 0. 
For example, if P = {a}, then D is simple, and if D = {a, 6} where both elements have trivial 
interpretations, then D is not simple, since each of {a} and {6} is. 

(18.56) LEMMA. There are incoherent simple sets. 

PROOF. As before, if I{a) = 0 || {6} |f- {c}, 1(6) = 1(c) = 0 || 0 |f- 0, and 1(d) = {c} || 0 |f-
{&}, then {a, d} is simple but incoherent. I 

(18.57) THEOREM. For each n G N there is a simple set S C D with \AExts(S)\ = n. 

PROOF. If n = 0, the simple set must be incoherent, and the preceding lemma applies. If n > 0, 
let D and E be two disjoint sets with \D\ = \E\ = n, D = {d*}?^ and E = {c i}? = 1 . For each i, 
1 < i < n, let I(d t-) = 0 || - {e t} |f- {e t} and J(e t ) = 0 || 0 |[- 0. Then each d{ mentions E, so D 
is simple. But clearly, AExts(D) = {DU {e t} | 1 < i < n}. Hence \AExts(D)\ = n. 1 

Rather than pursue this structure theory further here, we merely mention the possibility 
of deriving sufficient conditions on coherence from McDERMOTT'S termination theorem for RMS. 1 3 

(RMS is an artificial intelligence system for maintaining a database by means of reasons. It is discussed 
in §46.) 

By a finite agent we mean one with finite domain D. Necessarily, all reasons of a finite agent 
are finite as well. Suppose for the time being that (D, I) characterizes a simple reasons agent and |2?| == 
n < a;. We then have 1 1 \ = 0(n2), and the following results. 

(18.58) THEOREM. IS S e ft? can be computed in time 0(n2). 

PROOF. Checking the interpretation of each element of S requires 0(n) steps, and S can have up 
to n elements. fl 

(18.59) THEOREM. Is E e Exts(S)? can be computed in time 0(n2). 

PROOF. Checking EDS requires 0 ( | ^ | + |5|) = 0(n) steps, and checking admissibility of E 
requires 0(n2) steps as above. 1 

(18.60) THEOREM. Is E e QExts(S)? can be computed in time 0(n2). 
PROOF. Checking E G Exts(S) requires 0(n2) steps, as above. We can check component-admissibility 

of E at the same time by marking the consequences of each valid reason encountered in checking the 
admissibility of E, and when done scanning E to see if all unmarked elements are in 5 . This is also 
0 ( n 2 ) . 0 

1 3 [ C H A R N I A K , R I E S B E C K , A N D M C D E R M O T T 1980] 
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(18.61) THEOREM. IS E G FGExts(S)f can be computed in time 0 ( n 3 ) . 
PROOF. Consider the following algorithm. 

1. A 0 <- 5, i «- 0 
2. While At ^ A t--i do 

3. i « - i + 1 
4. A< - A,_i 
5. For each e G A t _i do 

6. 7(e) = A || JB | h C 
7. If A C A t _ x and E C Bc then A; <- A, UC. 

8. Return £ =?A, . 
The algorithm clearly answers E G FGExts(S)i since by Corollary 18.36 E G FGExts(S) iff # = A, and 
A t = A whenever At = A,-+i. Steps 1, 4, 6, 7 and 8 cost 0(n). The iteration of step 5 may run 0(n) 
times, so the cost of 5-7 is 0(n2). Now note that since \D\ = n, the loop of step 2 can run at most n -f* 1 
times, so the total cost is 0(n) + 0(n) • (0(n) + 0(n 2)) = 0(n 3 ) . | 

(18.62) THEOREM. Find E G Exts{S)f is in P, Find E G QExts{S)! and Find E G FGExts(S)! are 
in NP, and Count Exts(S)!, Count QExts(S)!, and Count FGExts(S)! are in #P. 

PROOF. V G Exts(S) for every S (as we observe later in Theorem 20.1), so finding an extension is 
trivial. The other five problems may all be computed by guessing sets E C V and accepting iff the 
desired condition is true, all deterministic polynomial computations from the above theorems. 3 

(18.63) CONJECTURE. Find E G QExts(S)! is NP-complete. 

(18.64) QUESTION. IS Find E G FGExts(S)? NP-complete? 

(18.65) THEOREM. IS E G fiExts(S)?, Is E G }iQExts(S)?, and Is (j,QExts(S) = 0 ? are in co-NP. 

PROOF. We see E 0 fiExts(S) is in NP by first checking E G Exts(S) deterministically as above., then 
guessing a proper subset E1 of E, checking if it is in Exts(S) as well, and accepting if either E Exts(S) 
or E' G Exts{S). The case of E G fiQExts(S) is the same except for testing E,Ef G QExts(S). For the 
last question, we guess E ~D Sy check if E G QExts(S), and accepting if so, since fjiQExts(S) will be 
nonempty iff QExts(S) is empty. | 

(18.66) CONJECTURE. The following problems are NP-hard: Is E G pExts(S)?, Is E G fiQExts(S)?, 
Is fiQExts(S) = 0 9, and Find E G f^QExts(S)! 

The development of efficient algorithms for deciding these questions is still the subject of study. The 
most studied question is that of constructing an admissible extension of a set if one exists. This is 
one of the tasks of RMS and its relatives. The hard case of course is when no admissible extension 
exists. The known algorithms typically discover this by exhaustive failure. If a suitably mechanizable 
characterization of coherence was known, more efficient algorithms might be possible. 

(18.67) QUESTION. Are there interesting classes of simple reasons agents for which construction of 
admissible extensions is tractable? 

We now drop the supposition that D is finite and replace it with the notion of a finite 'Virtual" domain 
with respect to some subset of P. 

(18.68) DEFINITION. The universe U(S) of a set S is the smallest set containing S and containing 
the mention sets of each of its elements, that is, S C U(S) and if d G U(S) and 1(d) = A \\ B |f- C, 
then A,B,C C U(S). 

Note that if D is finite, then every S C D has a finite universe; that if S has a finite universe, then all 
reasons in S are finite; and that two sets with disjoint universes have disjoint mention sets, though the 
converse need not be true. 
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(18.69) CONJECTURE. Ia U(S) finite? for finite S is undecidable. 

(18.70) Lemma. If E e FGExts(S), then E C U{S). 
PROOF. Let E G FGExts(S). Then E = A W (S ,# ) , and we prove C U(S) by induction. Since 

A 0 = S,AQC U(S), so suppose A a C U(S) and consider Aa_|-i. Any e G Aa_}-i —A a is supported, and 
hence mentioned by a valid reason in A a , so A a +i C U(S) too. Thus Ac = E C £/(£). I 

(18.71) THEOREM. 7 / 5 has a finite universe, then admissible extensions of S are decidable. 

PROOF. Compute U{S), check E C 2/(5), and check E G FGExts(S) by the earlier methods for 
finite P. | 

(18.72) COROLLARY. If S U {d} has a finite universe, then both the arguability and inevitability of 
d in S are decidable. 

(18.73) THEOREM. If D is recursively enumerable and the set of nontrivial reasons in D has a finite 
universe, then the finite admissible states are recursively enumerable. 

PROOF. Let U be the universe of the set of all nontrivial reasons. By the previous methods the 
admissible states S C U are enumerable. Also, all finite subsets of D — U are enumerable, so we can by 
composition enumerate the sets S\jU, where S C U, S G j£, and U C. D — U, and so exhaust the finite 
elements of jS. B 

§19. Our second theory of reasoned assumptions modifies the simple reasons theory by interpreting 
state components as defeasible reasons. To do this, we suppose a function Defeated : D —• D and interpret 
the element Defeated[d) to mean the reason d has been defeated and cannot support conclusions. This 
is achieved by trivializing the interpretation of d in the presence of Defeated[d)y specifically, for each 
d G D having 

1(d) D{SCD\ Defeated(d) G S}. 

In effect, we interpret d in different ways depending on whether the state containing it also contains 
Defeatea\d) or not. 

(19.1) DEFINITION. Defeasible reasons agents are characterized by the following additions to the 
requirements on simple reasons agents: 

(i) There is a 1-1 function Defeated: D —• D, 
(ii) For each d G D if 1(d) = A\\B\\-C, then Defeated(d) G B. 

Thus if I(d) = A || J 3 + |J— C, where B^ = B U {Defeatea\d)}} we have by simple rewriting 

ACS C ( J5 + ) c ^ C C 5 i f f [ A C S C B c A Defeatea\d) <£S]^C C S 
iff Defeatea\d) £ S =>[A C S C Bc ^ C C 5], 

which is the desired condition of triviality. 
EXAMPLES. We adopt the convention of eliding most mentions of Defeated elements in reasons by 

use of a superscript + to refer to the appropriate element. We omit for brevity most previous examples, 
since they are basically unchanged by the introduction of defeasible reasons. 

(19.2) I*(S) = {0 || 0+ |h A}, AExts(S) = {5uA} (as before) 
(19.3) I*[S) = {0 || - |f- A}, AExts(S) = {SuA} (as before) 
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(19.4) I*(S) = {0 || 0+ |f- A, 0 || 0+ |h - -4}, AExts(S) = (5 U A U - A) (as before) 
(19.5) 5 = {a, 6}, 7(a) = 0 || 0+ ||- A, 7(6) = 0 || 0+ | | - {£e/eafed(a)}, 

AExts(S) = {S U {De/ea*ed(a)}} 
Note how the challenge defeats the otherwise valid reason. 

(19.6) S = {a,6,c), J(a) = 0 || 0+| | -A, 7(6) = 0 || 0+ ||- {Defeated^)}, 
7(c) = 0 || 0+ |h {Defeated!^)} 
AExts(S) = {5 U A U {£e/eaied(6)}} 

Here the first challenge is defeated by the second, so the initial reason's conclusions are unaffected. 

As one might suspect, the innocuous reinterpretation of reasons lets us extend any simple 
reasons theory to a defeasible reasons theory without important changes of meaning. 

(19.7) T H E O R E M ( D E F E A S I B L E E M B E D D I N G ) . Suppose that 9 and I characterize a simple reasons 
agent. Then there is a defeasible reasons agent (P', 7') such that 9 C 91 and if S C 9, the admissible 
extensions of S in {9,1) are exactly the' admissible extensions of S in ( P ' , / ' ) . 

P R O O F . Let (P, 7) describe a simple reasons agent. We define the desired defeasible reasons agent 
(P', 7') as follows. Let P' = Pi © P 2 , where P = P t = 92. We always say d G 9 to mean d G Pi, 
and write the corresponding element of 92 as a". If d G 9 and 7(d) = A || B |f- C, define 7 ;(d) = A || 
B\j{d'} |f- C. If d! G P', define 7'(d') = 0 || {d} |f- 0 (the trivial interpretation). Now suppose S C 9 
and E C 91. We claim £ G AExts(S) iff ^ G A£zfc'(S). First, suppose E G AjSta^S). Then E C. 9 
and 2£ PI P2 = 0> so for each d £ E, E £ 7'(d), hence Z? G /?. But clearly all grounding arguments in 
9 then translate directly into grounding arguments in P', so E G A £ W ( S ) . Second, suppose instead 
that E G AExts (S). Clearly d' cannot occur in E unless d! G S, which is not the case, so E f| 92 = 0. 
Because of this, 7'(d) = 7(d) for each d £ E, so E € JS, and every grounding argument in E translates 
directly into a grounding argument in 9, so E G AExts[S). fl 

(19.8) T H E O R E M ( M O N O T O N E E M B E D D I N G ) . Suppose (P, 7) characterizes a simple reasons agent, 
and that (Si)™^ (n < u) is a sequence of subsets of 9. Then there is a defeasible reasons agent (9', V) 
and a sequence (S^)£_ 0 of monotone nondccreasing subsets of 9f such that for each i there is a 1-1 
correspondence f between the admissible extensions of Si and Sf

{ such that E = f{E) fl P whenever 
Si <\E. 

P R O O F . Suppose (P, 7) characterizes a simple reasons agent, and that (St)JL_0 ( n < a;) is a sequence 
of subsets of P. We define the desired defeasible reasons agent (P', 7') as follows. Let P ' = P 0 (P X 
(w -f 1)). We use the elements (d, n) for finite n to encode the addition or removal of the element d as 
follows. 

For each d G P, Defeated(d) = (d, a;), Defeatea\(d, w)) = d, and for each k G N, Defeatea\{d, 2k)) = 
(d, 2A; + 1), and Defeatea\[d, 2k + 1)) = (d, 2fc). 

For each d G P, if 7(d) = A || B \\- C, then 7'(d) = A\\B\J {(d, w)} |f- C. Also, 7'((d, w)) = 
0 || {d} |f- 0 (the trivial interpretation), 7'((d,0)) = 0 || {(d, 1)} |f- {d}, and for each A; G N, 
7'((d, 2k + 1)) = 0 || {(d, 2k)} |h 0 and 7'((d, 2k + 2)) = 0 || {(d, 2Jb + 3)} |f- {(d, 2fc + 1)}. 

Let S'Q = 5 0 X {0}, and if 0 < i < n, let = 5{ U {(d,2fc + 2) | d G ft A ft+i A fc = 
max{j I (d, 2j) G 5^}}. Obviously, the sequence (S , ')J l

= = 0 is nondecreasing, and for each 1 , fl P = 0. 
We claim for each 1 , 0 < i < n, |Ai?££s(ft)| = |A2?xfo,(S(-)|. Clearly, no elements of P X {u;} can ever 
occur in admissible extensions of Sf

{ since no reasons have th^m as conclusions. Now the element (d, 0) 
will be defeated iff the last change with respect to d was its removal, so if Si contains d, (d, 0) will be 
undefeated in every extension of and so include d. These elements then reproduce the extensions of 
the original set. Since the elements of P mention no elements of P X (u + 1), if E G Afixts^S'i), then 
En9 G AExts{Si). I 
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§20. While the ideas of simple and defeasible reasons play important roles in the practice of artificial 
intelligence, they have important limitations in the sorts of state specifications they can express. The 
most obvious of these is the inability to exclude any state component from admissible states. 

(20.1) THEOREM. D is admissible in the simple reasons theory. 

PROOF. For all d £ D, there are sets A,B,C C D such that 1(d) = A\\ B \\- C, and for all sets 
A, B, C C D, C C D, and hence A C K B ^ C C P , is always true. | 

Noting this obvious inexpressiveness, it is natural to ask exactly which state spaces JS are expressible in 
the simple reasons theory. As we noted before, the empty set cannot be excluded. 

(20.2) THEOREM. 0 is admissible in the simple reasons theory. 

Beyond such trivialities, the expressive capabilities of the simple reasons theory are largely unknown. 
Yet if we return to the unrestricted theory, we have clearer expressive powers. 

(20.3) THEOREM. Let JS C P D. Then I can be chosen so that Q = JS U {0}. 
PROOF. Define I so that for each d £ D, 1(d) = JS. I 

Since the general theory has unlimited but practically unusable expressive capabilities, while 
the simple reasons theory is somewhat inexpressive in spite of its demonstrated practical utility, we look 
for additions to the simple reasons theory which increase the expressive capabilities in useful ways. The 
most obvious candidate addition is the notion of denial. 

(20.4) DEFINITION. An agent's use of simple reasons and denials is characterized exactly as in the 
simple reasons theory, except that D = P + © D", where for each d £ 2? + there are sets A,B,C C D 
such that 

1(d) = A || B | h C = {S C D | A C S C Bc
 D C C S}, 

and for each d £ D~ there is some (necessarily unique) e £ D such that 

1(d) = {S C D | e g S}. 

Note that this theory is just like the simple reasons theory except that some state components, the 
denials, can rule out the presence of specific elements. To make this ability uniform, we need only 
assume the existence of a 1-1 function -> : D —• D~ such that for each d£ D} J(-> d) = {5 C D \ d S}. 
This augmentation of the theory adds expressive power, but again we have no characterization of exactly 
which state spaces are so expressible. 

(20.5) THEOREM. If D is infinite, then not every state space can be attained with only finite reasons 
and denials. 

PROOF. If \D\ = w, then the number of possible finite reasons is OJ, as is the number of possible 
denials. Hence the number of possible interpretation functions is (a; -+• w) w = a;w. But the number of 
possible state spaces is 2 2 , and a/** < 2 2 . | 

One should not confuse the nature or uses of denials with the qualifiers of simple reasons or 
the defeaters of defeasible reasons. Their natures differ in that the former sort of element absolutely 
rules out some conclusion from appearing in any admissible extension, while the latter sorts of elements 
permit the reasons's conclusions to appear if supported by other reasons. The uses of these notions 
differ as well. Inclusion of a denial in a set rules out some element with no recourse, and for "no reason" 
other than the denial itself. In contrast, the other notions permit reasoned retraction of assumptions, 
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defeating an assumption for a reason, and possibly later restoring the assumption if the defeating reason 
itself is defeated. 

One special case to consider is when the agent admits self-denials or contradictions. Such are 
elements denying themselves, and are necessarily inadmissible, since 1(d) = {S C P \ d S}. Such 
elements are useful in practice, as we see later. 

(20.6) T H E O R E M . Every agent using simple reasons and denials can be realized within an agent 
using only simple reasons and a single self-denial. 

P R O O F . Suppose P = P + © and I characterize an agent's use of simple reasons and denials. 
Let ± be some object not in P. Let P ' = P U {i .} . Define V for each d £ P ' by 

(1) J ' ( J L ) = 0 , 

(2) If d £ P + , then I'(d) = I(d), 
(3) If d£ V- and 1(d) = {S CD\e£S}} then I'(d) = {e} || 0 |f- {_L>. 

Let JS and be the respective sets of admissible states. We claim JS = JS1. Clearly, _L £ S for each 
S £ JSkso both JS and JS* are subsets of P P . Suppose d £ P + . Then by definition, 1(d) C J'(d). 
Suppose d £ P~ is a denial of e G P. Then I'(d) = {e} || 0 |f- {_!_} = {S C P | e G 5 J. G 5 } = 
7(d) U {5 C P' | J L G 5} D J(d). Thus if d G P, 7(d) C 7'(d), and if 5 C P, N D € S Hd) Q ddes J'(d)> 
so 5 G / only if 5 G Suppose 5 G Then _L 0 5, so if S G J'(ci), 5 G 1(d), hence S £ JS. Q 

(20.7) T H E O R E M . L E I JS C.T? D, X£D, and D' = D\J {±}. Then JS U { 0 } W realizable as the set 
of admissible states employing simple reasons P and contradiction ± if a distinct'representative can be 
chosen from each set in P P — ^ — { 0 } . 

P R O O F . I f S G P P - / - { 0 } , let R(S) e S be the selected distinct representative. Define I so that 
1(d) = P P if d is not one of the representatives, and 1(d) = S \\ D - S \\- {±} if d = R(S). We claim 
5 C P is admissible ifF S G / U { 0 } - Now I(R(S)) = P P ' - {S}, since S C I C ( P - S p l G X 
is false only when X = S. Thus S is inadmissible, since R(S) E S £ I(R(S)), so 5 is inadmissible 
whenever S £ JS U { 0 } . Now 0 is admissible as usual, so suppose d £ 5 £ I f d i s not a selected 
representative of any set, S £ 1(d) by definition. But if d = R(Sf), then 5 ^ 5 ' , so 5 £ /(d). Hence in 
either case, 5 £ 1(d), so 5 is admissible. 3 

Unfortunately, the complete expressivity of the theory of simple reasons with a contradiction is useless 
in practice, since the system of distinct representative of the nontrivial inadmissible states is little more 
than a list of all the inadmissible states, and that is about as useful as the list of all admissible states 
used in the interpretations of Theorem 20.3. 

(20.8) T H E O R E M . If d is a denial, but not a self-denial, then {d} is admissible. 

P R O O F . Suppose 1(d) = {5 C P | e g S} and e ^ d. Then {d} £ 7(d), so {d} is admissible. | 

Note that if d is a denial of e, and e a denial of d, then any element c such that 1(c) = 0 || 0 ||— C 
with d, e £ C is effectively a self-denial. 
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Logical theories 

§21. The theories of simple and defeasible reasons capture the essence of reasoned assumptions, yet 
are quite general since little restriction was placed on the nature of possible state components. Indeed, 
though it would divert us too much here, one can develop these theories as theories of reasons invariant 
under arbitrary bijections of domains. Since the structure of a logical language need not be preserved 
under arbitrary automorphisms, we see that the general theories are more widely applicable than ones 
formulated in terms of logical languages. But logical languages play an important role in artificial 
intelligence, since most mechanized agents constructed to date are explicitly representational, so we 
continue the development of our theories by examining the special case of representational domains. By 
representational we mean domains isomorphic with logical languages, that is, systems invariant under 
all bijections which preserve the logical structure of state components. Since we allow arbitrary re-
representation, we may choose a particular logical language as our reference language for the purpose of 
setting out the special logical theories of reasoned assumptions. This we do shortly, but first we treat 
an important non-linguistic notion that also enters into logical systems. 

§22. The theory of reasoned assumptions with deductively closed states adds to the simple reasons 
theory the constitutive assumption that all states be closed with respect to a "deducibility" relation 
and that admissible extensions allow "deductions" in grounding arguments as well as valid reasons. The 
notion of deducibility we employ is more abstract than the familiar one of deducibility in logic. 

(22.1) DEFINITION. A deducibility relation in D is a relation h o n P P x P P satisfying 
(i) A \ - A (reflexivity) 
(ii) If A C B and AT- C, then B h- G (monotonicity) 
(iii) If A\-B and AH C, then A h BljC (additivity) 
(iv) If AH B and B V- C, then A h C (transitivity) 
(v) If AH {e}, then C H {e} for some finite C C A . (compactness) 

We say S C D is deductively closed if B C S whenever A C S and A |— B. 

Agents whose admissible states must be deductively closed can be thought of as agents which regularly 
perform some inferences automatically in addition to the inferences involved in making reasoned assump­
tions, whose problematic character sometimes demands less automatic, more deliberate consideration. 
By defining deductive closure at this level of abstraction, we allow a wide range of deducibility relations 
which we can use to characterize a variety of agents with limited automatic inferencing powers. For ex­
ample, if we take h to be 3 , so that AH B iff A D B, then all sets are "deductively closed," and we have 
again the simple reasons theory. This corresponds to an agent with no (automatic) inferential resources 
at all. Even without logical structure for D, the theory of data-types can be cast in terms of deducibility 
relations. 1 4 In these theories, sets of components represent partial data-structures, and deductive closure 
amounts to filling in missing but implied "fields" to further complete the data-structure. If D has the 
structure of an ordinary logical language, we might define A H B to hold whenever for each b G B, either 
6 G A or b is a ground instance of some a G A. In this case, the deductive closure of a set of wffs is just 
the wffs plus all their ground instances. This corresponds to agents who can automatically instantiate 
formulas but not combine them. One can go on like this in many ways, for instance capturing agents 
who can automatically apply Modus Ponens but not instantiate schema or universal statements. 

(22.2) THEOREM. D is deductively closed. 

PROOF. Suppose A C D and A f- B. Then by definition B C D, so D is deductively closed. 1 

14[SCOTT 1982] 
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(22.3) LEMMA. If every S G S is deductively closed, then f| S is deductively closed. 

PROOF. Suppose A C f]S and Ah- B. Then for every S G S, A C S, and since S is deductively 
closed, A C S . But then B Cf\S. | 

(22.4) DEFINITION. Th(S). the deductive closure of S C V, is given by 

Th(5) = f){S' \S C S' and S' deductively closed}. 

The elements of Th(0), if any, are called tautologies. 

(22.5) COROLLARY. Th(5) is the smallest deductively closed superset of S. 

(22.6) Theorem. If AC B C D, then 
(i) Th(yt) C Th(B), and 
(ii) Th(Th(A)) = Th(A), and 
(Hi) A is deductively closed iff A=- Th(A). 

PROOF, (i) Since A C B C Th(B), Th(B) is a deductively closed superset of A, so by definition, 
Th{A) C Th(B). 

(ii) Since every set is its own superset, and since Th(A) is deductively closed, by definition we have 
Th(Th(A)) C Th(A). But also by definition we have Th(A) C Th(Th(A)), so Th(A) = Th(Th(A)). 

(iii) (if) Immediate since Th(A) is deductively closed, (only if) Since A is its own superset, Th(A) C A. 
But A C Th(A), so A = Th(A). | 

We also introduce interdeducibility equivalence classes into D by defining [ ] : D —• P D for all d G P so 
that 

[d] = { e G P | { d } H { e } A { e } h { d } } . 

Here we write [d] instead of []{d). When D has logical structure, the ranges of [] are called Lindenbaum 
algebras. 

(22.7) DEFINITION. E is a (finitely) grounded extension of S iff S < E and for each e G E there is 
a (finite) grounding set G C E and a well-ordering KG of G such that e G G and whenever d £ G, either 
(1) d G S or (2) there is some (finite) reason f G G and sets A,B,C C V such that 1(f) = A || B |(— C, 
A C G, E C Bc, d G C, and A <G f <G d, or (3) there is some (finite) set A C G such that A <Q d 
and A i— {d}. For each S C P, GExts(S) is the set of grounded extensions of S, and FGExts(S) is the 
set of finitely grounded extensions of S. 

Note that this definition of groundedness differs from the earlier definition only by allowing grounding 
sets to include deductive arguments as well as "axioms" and valid reasons. Indeed, the definition is 
exactly the same as before if we choose f— to mean D, so this notion extends the earlier one. 

(22.8) DEFINITION. An agent's use of finitely grounded simple reasons in deductively closed states 
is characterized by the axioms for simple reasons agents with the following modifications: 

(i) Y- is a deducibility relation in D 
(ii) Z = {S C D\S = Th(5)} 
(iii) For each d G D and SCO, 

J(d,S)={E \deS V E-{d}\-{d} V 3eeE 3A,B,C C D 
1(e) = A || B \\- C A d G C A A C E C Be} . 

Again, this definition extends that of simple reasons agents, for if h- is D, then R = P V and E — {d} \ / 
{d}, reducing J to the earlier definition. 
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(22.9) T H E O R E M . GExts C QExts. 

P R O O F . Suppose E G GExts(S) and e £ E has grounding set G. Then by the definition of finite 
grounding sets, either e G S, or there is an A C G such that e A and A h {e}, hence i? — {e} I— {e}, 
or some valid reason in E supports e. | 

(22.10) D E F I N I T I O N . Let S,E C D. Then [Aa) (a an ordinal), the levels from S in E, are defined 
for all ordinals by 

A0(S,E) = S, 

A Q + 1 ( S , £ ) = T H ( A A ) U L J { C 7 C D | 3 E G A Q ( 5 , ^ ) 3A,BCP 

1(e) = A\\B\\-CAAC A A ( 5 , E)AEC BC}, 

and for limit ordinals X , 

A X ( S , 2 ? ) = | J Aa{S,E). 

We define A(S,E) = \JaAQ(S,E) to be the sum of all levels. 
Note how the levels of a deductively closed agent include the deductive closures of the preceding levels 
of inference via valid reasons. Not surprisingly, we can extend the previous results for simple reasons 
agents to the deductively closed case. The reader is invited to skip to Corollary 22.29 while we perform 
this chore. 

(22.11) C O R O L L A R Y . Ifa<pt then S C Aa(S,E) C A^S^E) C A ( S , # ) . 

(22.12) C O R O L L A R Y . If A a ( 5 , E) = A a +i (S , E)t then Aa(S, E) = A(5, E). 

(22.13) T H E O R E M . If a is the cardinal number \D\ + 1, then A(S,E) = Aa(S,E). 

P R O O F . Since D has fewer than a elements, it must be that for some /? -f 1 < a no new element is 
introduced in A/j+i, in other words, Ap = Ap+i. But then A^ = A, and since A^ C A a C A, we have 
A = A a . 1 

(22.14) D E F I N I T I O N . If e £ A(S,E), the rank of e in A(S,E) is the least ordinal a such that e G 
A^SjE). If A C A(S,E), the rank of A in A(S,E) is the least ordinal not less than the rank of any 
element of A. 

(22.15) L E M M A . For every S,E C D, A(S,E) = Th(A(5, E)). 

P R O O F . Suppose A C A. A has rank, say a, so if A I- B, then B C A a +i C A. Q 

(22.16) L E M M A . If S < E, then A{S,E) C E. 
P R O O F . Let S < E. Clearly A 0 C E, so assume Ap C E for each (3 < a. If a is a limit ordinal, 

then by definition Aa C E. If a is a successor ordinal, say a = /? + 1 , let e £ Aa. If e G 5, then e G E, so 
suppose e £ S. If e G Th(A^), then e G E since E is deductively closed. If e g Th(A^) there is a d G Ap 
with J(d) A\\ B \\- C, A Q Ap, E Q Bc, and e G C. Since E1 is admissible, this means C Q E, so 
e G E. Hence A a C E , s o A C E . | 
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(22.17) T H E O R E M ( S T R A T I F I C A T I O N ) . If E £ GExts(S) then A(S, E) = E. 
P R O O F . Since S <\ E, by the preceding lemma we have A C E. To see that EGA, suppose e £ E. 

Since E is a grounded extension of S, there is a grounding set G G E for e from: S m E. We show 
G C A by < G - m d u c t i o n . Let / £ G have no predecessors in < G - Clearly / is the minimum of G, 
and by definition of G, we must have / £ S, hence / £ A. Now suppose that / £ G and for each 
d <G ft either d £ S or there is a grounding subargument G' C G for d. If / £ 5 , then / £ A. If 
{ a £ G | G < G / } h - {/}, then / £ A since A is deductively closed. Otherwise there is a d £ G such 
that 1(d) = A\\ B \[- C, A <G d <G f, E C Bc, and / £ G. By the inductive hypothesis, A C A and 
d £ A, so there is some ordinal a such that A G Aa and d £ A a . But then by construction C C Aa_|_i, 
so / £ A. Hence E C A, so E = A. | 

(22.18) C O R O L L A R Y . 7/ J S ? 6 GExts(S) and a = | # | + 1, t/ien == AQ(S,E). 

(22.19) C O R O L L A R Y . 7/ £ G GExts(S) and a is its rank, then E = Aa(S,E). 

(22.20) C O R O L L A R Y . 7/ # G FGExts(S), then E =? A^(5, # ) . 

(22.21) T H E O R E M ( F I X E D P O I N T ) . If E = A(S,#), tfien # G GExts(S). 

P R O O F . Suppose A = E. Since S C A, S.C E. Let e G E with 7(e) = A || B \\- C, and suppose 
A G E. Then there is an ordinal a such that e £ AQ and A C A a , so by construction if E G Bc as 
well, then C C A A + I C E. Similarly, if A h J B , A C A, and A has rank a, then B C A A + I C A. Thus 
E is admissible. We prove E is a grounded extension of S by induction on rank. Specifically, we prove 
that each element of E has a rank-preserving grounding set, a set G G E such that rank(a) < rank(b) 
whenever a < c b. Let e £ E have rank a. If a = 0, then e £ 5 and we are done since {e} is a 
rank-preserving grounding argument for e from S in E. Now assume that a > 0 and all elements 
of rank less than a have rank-preserving grounding arguments. Necessarily, a is a successor ordinal, 
since no elements are introduced at limit ordinals, so suppose a = /3 4 - 1. I f e £ Th(A^), then there is 
some G C Ap such that G f- {e}, and otherwise there is some d £ Ap such that 7(d) — A \\ B ||— G, 
A G Ap, E G Bc, and e £ G. Then by inductive hypothesis each element of G or {d} U A has a 
rank-preserving grounding argument, so merge these arguments preserving rank-order, and add e to the 
end, so producing a rank-preserving grounding argument for e. Thus E £ GExts(S). | 

(22.22) C O R O L L A R Y . E £ GExts{S) iff E = A(S,E). 

(22.23) T H E O R E M . If every reason in D is finite, then E £ FGExts(S) iffE = A w ( 5 , £ ) . 

P R O O F . Suppose every reason in V is finite. By Corollary 22.20, we need only show that Aw = E 
implies E £ FGExts(S). Suppose A^ = E. We first show A^ = A. Suppose, by way of contradiction, 
that A A ^ Then there must be a least ordinal a > w such that for some e £ D, e £ A A + I — A a . Since 
a is minimal, A w = Aa, for otherwise Aw = Aw 4_i and hence Aw = A. If e £ Th^V^,) then there is some 
G G Aw such that G \- {e}. Since 1 — is compact, there is a finite Gf G G such that G' f- {e}. But then 
the rank of G' is finite, say /?, so e £ A p + I , a contradiction. If e 0 Th(Aw), then by construction, there 
is some / £ A w , 1(f) = A || B \\- C, A G Aw, E C B c , and e £ G. Since A is finite, this means the 
rank of A is also finite. Thus there is some /J < w such that A C Ap and / £ A/j, so e £ Ap+\ GJ A^, 
a contradiction. Thus A = A w , and since Aw — Z£, by Theorem 22.21 is a grounded extension of S. 
We see that E is finitely grounded by induction on rank. Clearly, if e £ Ao, then e £ S, hence {e} is 
a rank-preserving grounding set. Now suppose the rank of e is a + 1 < u>. If e £ Th(A a), then there 
is a finite G C A Q such that G I — {e}. If e £ Th(A a), then by construction there is some f £ Aa with 
/(/) = A\\ B \[- C, A G Aa, E C £ c , and e £ G. By inductive hypothesis, each of G or / U A have 
finite rank-preserving grounding sets, so merge these preserving rank-order, add e to the end, and the 
result is a finite rank-preserving grounding order for e. | 
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(22.24) Theorem (Grounded Minimality). GExts C pQExts. 
PROOF. GExts C QExts by Theorem 22.9, so suppose E £ GExts[S)t E' £ QExts(S), and C E. 

We first show A(5,£') C A(S,£") by induction. Clearly A0(S,E) C A 0 (S ,£ ' ) since each equals S. 
Assume Ap(S,E) C Ap(S,E') for each (3 < a. If a is a limit ordinal, then by definition Aa(S,Ef) C 
Aa(S, £"). If a is a successor ordinal, say a = /? + 1, let e 6 Aa(S, # ) . If e £ 5 or e £ Th(Ap(S, E)), then 
e £ and otherwise there is a d £ Ap(S,E) with 7(d) = A || B | | - C, A C Ap(S,E), # C B c , and 
e £ C. But since Ef C E C B°, this means e £ A Q ( S , £ ' ) . Hence A(S, # ) C A(S,E'). But by Theorem 
22.17 and Lemma 22.16, E = A(5, E) C A(5, # ' ) C | 

(22.25) COROLLARY. G£xte = pGExts and FGExts = ixFGExts. 

(22.26) Corollary. If S <\D, then AExts(S) = {P}. 

(22.27) COROLLARY. If S <D, then A | ( = 5 £ /or every A , B C P . 

(22.28) COROLLARY. If A j | ~ 5 # /or every A,B CD, then A \\=s B for every A,B C D . 

(22.29) COROLLARY. Let d,e e D be such that Th({d,e}) = P. Tfcen if both are cotenable in S, 
everything is arguable, that is 0 ||—s B for every BCD, and if both are inevitable in S, then everything 
is inevitable, in fact A \\=s B for every A,B C P. 

PROOF. If S <\ E and d,e £ E, then E = P, so by definition 0 £ for every BCD. If 
5 is incoherent, everything is inevitable by Theorem 14.1, and if 5 is coherent and both d and e are 
inevitable, they are cotenable, so AExts(S) = {P} and again Theorem 14.1 applies. | 

This result holds special interest later when, in logical language domains, we consider state components 
p, - I p such that Th({p, -»p}) = P. 

(22.30) DEFINITION. The deductive reduction (P ; , I', h-') o/ a deductively closed agent (P, J, h-) w 
an ayeni suc/i that (1) D1' = P, ^ /or eac/i de D, if 1(d) = A || 0 |f- C, i/ien I'(d) = P P, otherwise 
I!(d) = 7(d), and ̂  f~; w £/ie /eas£ deductive closure relation on D such that (a) A \-' B whenever 
AV-B, and (b) for each d £ P, if 1(d) = A || 0 | | - C, then {d} U A h ' C . 

(22.31) THEOREM. 7/(P, I ' , I-') W i/ie deductive reduction of(D, I, h-), J/ien = fi, J1 = J, and 
A£zte' = A#xte. 

PROOF. First note by definition that V D I and Th' D Th, so 2' 2 2 and £ ' C J?. 

( / ' = / ) Suppose S £ Then 5 £ so 5 £ £ . Now if d £ S is non-monotonic, then 
5 £ 1(d) by definition, and if 1(d) = A || 0 | | - C and A C 5 , then C C 5 by deductive closure, 
so 5 £ J(d). Thus 5 £ 5 , hence 5 £ Now suppose 5 £ Then 5 £ 2 , so 5 £ Clearly 
5 C Th'(S), yet if A j - ' B and A C S , then A h-' B is generated by some deductions in f- and some 
reasons. But since 5 £ Q, these reasons must be satisfied, and produce the necessary conclusions, so 
B C 5 as well. Thus S £ so 5 £ 

(Jr = J) By the preceding, J&cte = £x*s', so let d £ P and S,E C D. If d £ 5 , then E 
satisfies both J(d, S) and J'(d, 5) , so suppose d g 5 . First, if J57 e J(d, 5) , and if E - {d} h {d}, then 
E - {d} h-' {d}, and if ^ - {d} | / {d}, then there is an e £ E, 1(e) = A \\ B \\- C, A C E C Bc and 
d £ C. If 5 7̂  0 , this e satisfies J'(d, S) too, and if S = 0 , then E - {d} h ' {d}. Hence E £ J'(d, 5). 
Second, suppose E £ J'(d, 5). If some valid reason supports d in E, it also does so for J(d, S). E no 
valid reason supports d in E, then E — {d} h ' {d}. In this case, if E — {d} ^ { d } , there is a monotonic 
reason which supports d for J(d, 5). Hence E £ J(d, 5), and Jf = 7. 

(AExtsf = AExts) By the preceding, Q&rte' = QExts. First suppose 2? £ FGExts(S). Then 
each d £ E has a grounding argument G, which is also a grounding argument in the deductive reduction 
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under reinterpretation of the steps. Thus E £ FGExts'(S). Second, suppose E £ FGExts'(S). Then 
each d £ E has a grounding argument G. But the steps of G can each be reinterpreted as several steps in 
the unreduced agent, so G is also a grounding argument there. Thus E £ FGExts(S), so AExts1 = AExts. 

(22.32) C O R O L L A R Y ( N O N - M O N O T O N I C I N C O N S I S T E N C Y I S S E M I - C L A S S I C A L ( R E I T E R ) ) . If 
A ||—s B for every A,B C D, then Th'(S) = P in the deductive reduction of the agent. 

P R O O F . Suppose A | | ~ 5 B for every A, B C P. By Theorem 14.2 this means S <] P, hence 
AExts(S) = {P}. By the previous theorem, AExts'(S) = {P}, so P £ FGExts(S). Since no non­
monotonic reasons can be valid in P, by the definition of groundedness and the transitivity of deducibility, 
this means S h ' {d} for each d £ P, hence P = Th'(S). B 

§23. The invertible reasons theory is an augmentation of the deductively closed simple reasons theory 
in which all state components have negations, and in which contradicted conclusions can be passed 
backwards through reasons to contradict antecedents or raise qualifications. Intuitively, this theory 
recalls a logical structure for reasons in which A || B j|— G really means AA~>B^ G, S O that when 
asserting - I G, ->AvB can be inferred. Of course, A \\ B ||— G cannot really be AA~-< B D G, for then 
the normal default 0 || -* C |f— G becomes G D G. This is equivalent to simply G, so that under 
this rewriting defaults are pure axioms rather than rules which may or may not introduce reasoned 
assumptions. We escape this absolute triviality by making the notion of admissible extension more 
complex, allowing individual reasons to be used in different ways in different circumstances. Instead of 
at most contributing its conclusions G, a reason A \\ B ||— G in this theory can also be used to infer 
elements of -> A or B on occasion. Unfortunately, as we shall see soon, even this more involved reading 
of invertible reasons trivializes theories of reasoned assumptions, albeit in a different way. 

(23.1) D E F I N I T I O N . An agent's use of invertible reasons is characterized by (P, J , JZ, J, <]) together 
with relations -» and h- such that 

(i) D is a set, 
(ii) -> : P P is 1-1, 
(iii) \- is a deducibility relation such that for each d £ D, [d] = [-»->d]; 

(iv) For each d £ P, there are sets A,B,C C P such that 

1(d) = A | | B |[- G = {S C P | A C 5 C Bc
 3 G C 5} 

ft,; £ = {5 C P | 5 = Th(S)}, 
(vi) For each d £ P and S C P, 

J(d,S) = { £ | d £ 5 V £ - { d } h - { d } V 3 e £ £ 3 A , 5 , G C P 
1(e) = A || 2? |f- C A 

[(d £ G A A C E C SC)V 
( d £ J 3 A A C £ ' A ^ n B = { d } A E n - G ^ 0 ) V 
(c/ = - . d / £ - ' A A A — E — {a} A E C. Bc A E n - G ^ 0 ) ] } 

F I M J A^xis = FGExts, where E £ FGExts(S) iffS<E and for each e £ E there is a 
finite grounding set G C E well-ordered by <G such that e £ G and whenever d £ G, either (1) d £ S, 
or (2) there is some f £ G and A, 22, C C P suc/i that f <G d, 1(f) = A || S ||- G and either (a) 
d £ C, A C. G, A <G d, and E C Bc, or (b) d £ B, A C G, A < G d, E fl £ = {d}, and /or dome 



ceC, both -«c G G and->c <G d, or (c) d = -Id' G -> A, A - E = {d'}, (A-E) <G d, E C J5C, and 
for some c G C, 6o£A -> c G G and -»c <<s d, or (3) there is some A <G d such that A f- {d}. 

The definition of groundedness means that every element in an admissible extension of S must either be 
an element of S itself, follow deductively from other elements of the admissible extension, or contribute 
to the satisfaction of some reason in the admissible extension, where the satisfaction of the reason and 
the circumstances of the other elements it mentions necessitate introducing the element in order to make 
the appropriate condition true or false. Unfortunately, invertibility guts the notion that reasons express 
preferences about what assumptions to make, leaving only statements of anti-agnosticism. 

(23.2) THEOREM. If 1(a) = {0 || |(- {6}} and 7(6) = 0 || 0 |f- 0, then AExts({a}) = 
{Th({a,6}), Th({a,-6})}. 

PROOF. Each of these sets is clearly an extension of {a}, with Th({a, 6}) an admissible extension as 
usual. Th({a, -» 6}) is also a finitely grounded extension, since -» 6 has the sequence (a, - I 6) which satisfies 
condition (2)(b) of the definition. 1 

(23.3) CONJECTURE (INVERTIBLE TRIVIALITY). In the theory of invertible reasons, AExts = 
fiExts. 

§24. We now finally specialize the theory to one involving a logical language in the linguistic reasons 
theory. Where previously we have not cared how state components express reasons, the idea of the 
linguistic reasons theory is to express reasons in logical syntax. Since reasons refer to sets of state 
components, some of which may be other reasons, we must choose the language so that formulas may 
refer to sets of other formulas. The techniques for accomplishing this are well known, if tedious. It is 
sufficient for our purposes to restrict all sets of formulas to explicit presentations, to only finite sets, 
and no quantification over sets or the arguments of || |f— allowed. (One can, of course, allow such 
quantification and thus make the language at least weak second order.) In summary, we take the 
language L to contain the || |[— symbol and to be a metalanguage of itself using the quasi-quote notation 
[ ] for naming formulas and finite sets of formulas. A prime use of these expressions are in stating 
schematic or quantified reasons, for example 

vx[r{P(x)}i ii Mx)}} ih r«*)}ii. 

Here an expression like [{p(2:)}l represents an open term built up out of the name-constructing functions 
and the free variable x. For readability, we omit most explicit uses of quasi-quotes in the following since 
their use should be clear. 

(24.1) DEFINITION. An agent's use of linguistic reasons is characterized by the axioms for simple 
reasons in deductively closed states, where 

(i) D is the set of sentences of a language L as above, 
(ii) I— is ordinary deducibility 
(iii) For each d G D, 

D\ACSCBC^CCS} ifdis closed and d = \A] || \D] \\- \G\, 
otherwise. 

Since states are deductively closed sets of sentences and universally quantified formulas imply all their 
closed instances, quantified reasons are interpreted as shorthand for all their closed instances. Note that 
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local groundedness becomes trivial in this theory. Because [d] = [-> -> d], if 5 is a deductively closed set 
of sentences, S — {d} \- {d} for each d G 5, so QExts = iJxte. 

E X A M P L E S . In addition to our earlier conventions, we assume that P and Q are ordinary closed 
wffs of £. 

(24.2) 5 = {0 II { - P) L H {P}h AEMS) = {Th(S U {P})} 
(24.3) S = {0\\{P}\\-{P}h AExts{S) = 0 
(24.4) S = {0\\hP}\[-{P}, 0\\{P}\\-{-P}}, 

AExU{S) = {Th(S U {P}), Th(5 U {- P})} 
(24.5) 5 = {0\\{-P}h{P}, 0 | | { - Q } l h { Q } , -iPAQ)}, 

AExts{S) = {Th(5 U {i 3}), Th(S U {Q})} 
(24.6) S = {0\\A\\-{P}, 0 | | B | J - { Q } , -'{P A Q)}, 

AExts(S) — 0 
(24.7) S = {Vn G N [0 || {-p(n)} | | - {p(n)}], Vn € N p(n + 1) D - p (n )} , 

4£xfs(S) = {Th(S U (p(n) | n = 2m}), Th(5 U {p(n) | n = 2m + 1})} 
(24.8) 5 = { V n G N [ 0 | | ( -p(n)} | | - {p(n)}]( 

Vn > 0 p(n) ^ 3 m < n -»p(m), Vn > 0 -»p(n) >̂ 3 m < n p(m)}, 
This has an uncountable number of admissible extensions, one for each pattern of alternating p-ness and 
-<p-ness. That is, for every sequence of positive integers N I , N 2 , R I 3 , . . . there is one admissible extension 
that contains 

p ( 0 ) , . . . , p(n x - 1 ) , - " P C N I ) , p(n x + n 2 - 1 ) , p ( N I + N 2 ) , . . . 

and another admissible extension that contains the negations of all of these. 
(24.9) S = {3xp(x), V*[0 | | {p (x)} fh{-P(x)}} 

This has a different admissible extension for each equivalence class [p(t)\ for closed terms t, namely 

Th(5 U {p(t)} U { ^ p ( 0 | t' a closed term and [p(*')] 7^ fa(*)]})> 

as well as an extension 

Th(5 U {~>p{t) | t a closed term}), 

in which the p-object has no name in the language. 
( 2 4 . 1 0 ) S = {3xp(x), Vx[0 || {p(x)} | | - {-p(x)}, Vx(x = a V x = b)} 

AExts(S) = {Th(5 U {p(a), - p(6)}), Th(5 U {- p(a), p(6)})} 
( 2 4 . 1 1 ) S = {Vn G N [{Zat(n + 1 ) } | | { - lot{n)} |f- {lot{n)}]9 

Vn E N [ { - I lot(n)} \\ {lot(n + 1 ) } | | - {-. Zo*(n + 1 ) } ] , 
Vn G N [lot(n) ^ lot(n + 1 ) ] , 
- Z o * ( 0 ) , Z o t ( 3 ) } 

AExts{S) = {Th(5 U O O I ( L ) , lot{2), ...}), 
T h ( 5 u { - M L ) , Z o * ( 2 ) , . . . } ) , 
Th(5 U lot{l), - fot(2), lot{3), ...})} 

The first axiom says that if n - F - 1 is a lot, presumably so is n. The second says if n is few, presumably 
so is n + 1 . The third says that more than a lot is also a lot. Note that there is a distinct admissible 
extension for each choice of the boundary between a few and a lot. 

( 2 4 . 1 2 ) C O R O L L A R Y ( N O N - M O N O T O N I C I N C O N S I S T E N C Y I S S E M I - C L A S S I C A L ) . If S is incon­
sistent and contains no nontrivial monotonic reasons, S is classically inconsistent, that is, Th(5) = £. 

P R O O F . This just restates Corollary 2 2 . 3 2 for the case of a deductively reduced linguistic reasons 
agent. fl 

( 2 4 . 1 3 ) D E F I N I T I O N . A normal reason is an element d G D such that for some A,G C D, 1(d) = 
A\\^C\\-C. 
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(24.14) T H E O R E M ( O R T H O G O N A L I T Y O F E X T E N S I O N S ( R E I T E R ) ) . If E,F e AExts(S) contain 
only normal reasons and E 7 ^ F, then E ( J F is inconsistent. 

P R O O F . Suppose E,F G AExts(S) contain only normal reasons, and that E 7 ^ F. Now E. = 
Aw(5,£'), F = A W (S,F) , and A0(S,E) = AQ(S,F) = S, so there must be a least a > 0 such 
that Aa+i(S,E) j£ A Q + 1 ( 5 , F ) while Aa(S,E) = A Q (5 , i ? ) . Without loss of generality, suppose e € 
A a + 1 ( 5 , E) - A t t + i ( 5 , F) . Then there is a d G Aa such that 7(d) == A || -> C |f- C, A C Aa, E C C)c, 
and e G C. In fact, C C E. But since e ̂  Aa+i(S'j-/',)> there is some ~> / G " 'C with —«/ G JP. Thus 
/ G £ and -> f £ F, so E \J F is inconsistent. | 

(24.15) T H E O R E M ( N O R M A L R E A S O N S ( R E I T E R ) ) . If L is restricted so that all reasons are nor­
mal, then every S C L is coherent 

P R O O F . Suppose every reason is normal. If Th(5) = L, then S <] L, so suppose Th(5) 7 ^ £. We 
construct an extension E. Let EQ = S, and for i > 0, let T t be a maximal set of closed wffs such that (1) 
E{ U Ti is consistent, and (2) if u G T t , then for some e G 1(e) = A || C \\- C, u G C, C C T t , and 
A C Ei. Define = Th(# t ) U T{, and E = ( J £ L O We prove that for each 1 > 0, E{ = A{(S,E), 
hence A„(S, # ) = S , and S <\ E. 

Clearly, EQ = AQ = 5 , so assume 2£t- = A*. We claim 2? t+i = A t + i . 

( ^ T + i =̂ A t+i) Let e G Ei+\. If e G Th(2£t), then e G At-+i, and if e £ Th(Z£t-) there is some 
/ G Ei, 1(f) = A \\ \[- C, A C. Ei, f £ C, and C C T t . But since # , + 1 C ^ is consistent, 
# C ( - 1 C)c, hence C C A t- u so e G S T + i -

( A T - J - i C Ei+i) Let e G A t +i. If e G Th(A t), then e G Ei+±, and if e 0 Th(A t) then there is an 
/ G At-, / ( / ) = A || - C | h (7, A C A t, JS? C ( - 1 C) c , C C A i + 1 , and e G C. Now if e {£ by the 
maximaUty of Ti we know Ei U U {e} is inconsistent, so Th(.Z?t-) U Ti U {e} is inconsistent, so Ei+i U {e} 
is inconsistent. But since Z ? l + 1 C J£, this means E U {e} is inconsistent. Since clearly E = Th(E), we 
must have ->e £ E, contradicting E C ( - 1 C) c . Hence e G JS?T+i> so Ai+i C Ei+\. Thus A t+i = 
and 5 < J£. B 

Results are also known concerning the decidability of coherence, arguability, and inevitability 
in the linguistic reasons theory, but they are less satisfying than those of the simple reasons theory. 
Where previously a finite universe ensured com put ability, the connection inherent in this theory between 
arguability and logical consistency puts most problems beyond the bounds of recursiveness. 

(24.16) T H E O R E M ( R E I T E R ) . (J AExts(S) is not recursively enumerable in S. 

(24.17) C O R O L L A R Y . Coherence is not decidable. 

(24.18) T H E O R E M ( C H U R C H ) . Consistency is not decidable. 

For some special cases, such as finite sentential and monadic sets, arguability and inevitability appear 
decidable. But rather than continue this topic here, we refer to the discussions in [ R E I T E R 1980], 
[ M C D E R M O T T A N D D O Y L E 1980], and [ D A V I S 1980]. 
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Attitudinal theories 

§25. In the previous theories of reasoned assumptions, there was no commitment to what state 
components signified, other than reasons. Elements of the domain were not in themselves any familiar 
psychological organization, but merely the components from which to build mental states. As building 
blocks, the statements of logical languages can be used to encode versions of beliefs, desires, and 
other common psychological notions, but they are not beliefs or desires by themselves without further 
constitutive assumptions. It is tempting, of course, to phrase attitudinal theories directly in terms of 
logical theories, for attitudes are often taken to be attitudes towards propositions, and languages are the 
usual way of expressing propositions. However, such direct phrasing can hide fundamental ideas about 
attitudes among masses of particular linguistic details. To seek clarity, we temporarily retreat from 
logical theories, and work back up to logical forms after starting once again with the simple reasons 
theory. 

§26. Pick an attitudinal ontology for a psychology, and we can cast its elements directly in the simple 
reasons theory. In the following, we assume for simplicity that the agent's attitudes divide into three 
classes: beliefs (Bel), desires (Des), and intentions (Int). We also assume each particular attitude among 
these classes is a possible state component, that is, Bel, Des, In t C D. This leaves open the possibility 
that D may contain non-attitudinal components. For example, we can take the set of reasons (Rsn) 
to be outside the sets of attitudes. In such a formulation, we make explicit in reasons the connections 
between the agent's attitudes, but we need not assign special import to the attitudes themselves. That 
is, we might assume that 1(a) = P D for each a G Bel U Des U Int . Of course, in an ecological theory of 
the agent we would wish to interpret these attitudes substantively, so that beliefs, say, indicate sets of 
possible worlds in which they are true. But here our concern is with narrow theories of the agent, and 
we can ignore all substantive interpretations except those of reasons. 

§27. Rather than resting content with the simple attitudinal theory, we can define .further theories of 
reasoned assumptions by stipulating that states are composed exclusively of attitudes. In terms of the 
sets we introduced earlier, we assume D = Bel 0 Des © Int . But since reasons are sta^te components, 
that is, Rsn C D, we must also say how reasons appear among the attitudes. Our initial motivations 
and formulations of reasons suggest two possibilities, namely Rsn C In t and Rsn C Des. (The 
possibility Rsn C Bel is not considered because our theories take reasons to be prescriptive, rather than 
merely descriptive.) Reasons act as specifications to be satisfied by states containing them, and such 
definite specifications might be thought of as intentions of the agent about its own construction. Taking 
Rsn C In t produces what we can call the ratiocinative intention theory of reasoned assumptions. In this 
theory, we assume that if the agent has a state at all, it has satisfied all the intentions concerning that 
state expressed in that state, although we do not require that in achieving that state it satisfied earlier 
intentions about what to do. We produce yet another theory, that of ratiocinative desires^ by assuming 
Rsn C Des. In this theory, we interpret reasons not as definite specifications for mental states, but as 
preferences for states satisfying certain conditions over states not satisfying those conditions. Here we 
take preferences to be desires to attain one alternative in every situation presenting a specified set of 
alternatives. How do we take such desires to be satisfied? Consider states in which as many ratiocinative 
desires are satisfied as possible, that is, states in which changes that would satisfy some unsatisfied desire 
would result in failures to satisfy some currently satisfied desire. (Notions much like this are familiar in 
economics as Pareto optimality, but pursuit of this connection here would digress too far.) It turns out 
that these states of maximal utility are exactly the admissible states as we have defined them. We see 
this formally as follows. 
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(27.1) DEFINITION. A set S C D is satisfaction optimal iff for each d G S, if S £ 1(d) then for 
each S' G 1(d) there is some df G S with S G I(d') but S ' $ I(a"). 

(27.2) THEOREM. If S is admissible, S is satisfaction optimal. 

PROOF. Trivially, since if 5 is admissible, there are no elements d G S such that S £ 1(d). 1 
(27.3) THEOREM. There is an inadmissible satisfaction optimal set. 

PROOF. Let D = {d,e}, S = {d}, 1(d) = {S}, and 7(e) = {D}. Then D is inadmissible because d G D 1(d). But D is satisfaction optimal since d is the only unsatisfied element in D, S is the only set in 1(d), and e G D, D G 1(e), and S <£ 1(e). | 

(27.4) THEOREM. In the simple reasons theory, if S is satisfaction optimal, S is admissible. 

PROOF. We prove the contrapositive. Suppose S C D is inadmissible, that is, for some d G D, d G S g 1(d). Now by Theorem 20.1, D G 1(d), but for all e G S, D G 7(e) as well, so 5 is not satisfaction optimal. | 
(27.5) COROLLARY. In the simple reasons theory, sets are admissible iff they are satisfaction op­

timal. 

(27.6) QUESTION. Can interesting parts of the general theory be developed in terms of satisfaction 
optimality rather than admissibility as we have defined it? Or is the simple reasons theory the weakest 
theory of any interest? 

Another notion within the simple reasons theory similar to satisfaction optimality is validity optimality. This stems from a focus on ratiocinative desires which manage to make their objective inferences instead of on the mere satisfaction of specifications by either success or disqualification. We first recall the definition of validity. 
(27.7) DEFINITION. An element d G S is valid in S iff 1(d) = A \\ B \\- C and A C S C Bc. 

Otherwise, d is invalid in S. We write V(d) to mean the set of all S C D such that d is valid in S. We 
write V(S) to mean the set of all d G S such that d is valid in S, and V(S) to mean S — V(5), the set 
of all d invalid in S. 

Note that even invalid elements can be satisfied. 
(27.8) DEFINITION. A set S is validity optimal in S CP D iff for each d G D, if Sf

 G S validates d 
but S does not, then there is some e valid in S but not valid in Sf. Alternatively, S is validity optimal 
in S iff for each deS, if S <£ V(d) then for each S' G V(d) fl S there is some a" G S with S G V(d) but 
S' £ V(d'). 

(27.9) COROLLARY. If SI D 5 2 and S is validity optimal in Si, then S is validity optimal in 5 2 -

(27.10) THEOREM. There are admissible sets not validity optimal in . 
PROOF. Let D = {d}, and 1(d) = YD. Then both 0 and D are admissible, D validates d, but 0 validates no element not in D, so 0 is not validity optimal in j&. 1 
(27.11) THEOREM. There are inadmissible sets validity optimal mPJ. 
PROOF. Let D = {d, e}, 1(d) = 0 || {d} |h {e}, and 7(e) = 0 || {e} |h {d}. Then JS = {0, D} ̂  P D, but every set in P V is validity optimal, since no set validates any element. fl 
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Our intuition is that validity optimality captures the fundamentals of the orthogonality of admissible 
extensions of a set, of what appears in the linguistic reasons theory as inconsistency of alternative 
admissible extensions of sets of normal defaults. That is, this notion shows we can sensibly speak of 
psychological incompatibility without requiring notions of logical inconsistency. 

(27.12) T H E O R E M . In the simple reasons theory, if S <] E, then E is validity optimal in AExts(S). 

P R O O F . Suppose, by way of contradiction, that E G AExts(S) and that there is Ef G AExts(S) such 
that d is valid in Ef but not valid in E, yet no e valid in E is not valid in E1. That is, there is a d G E\ 
d valid in E and either d g E or d invalid in E', and V(E) C V[E'). The element d shows E ^ E1, so 
by the minimality of E and E' among QExts(S), E - Ef 0. Let e G E - Ef. Since S C e g 5. 
But since E G QExts(S), there must be some / G E, f valid in E, and e a consequence of / . But then / 
is valid in Ef as well, so e G E1, a contradiction. Thus 2? must be validity optimal in AExts(S). 9 

(27.13) Q U E S T I O N . / / J? is validity optimal in AExts(S), is E G AE.rte(S)? 

(27.14) D E F I N I T I O N . A set S is strongly validity optimal in S C P D iff for each d G D,. if S' G S 
validates d while S invalidates d, then there is some e valid in S but invalid in S*; in other words, if 
V(S') N T(S) ^ 0, then Y ( S ' ) N V(S) ^ 0. 

(27.15) C O R O L L A R Y . If S is strongly validity optimal in S, then S is validity optimal in S. 

(27.16) T H E O R E M . If S <\ E in a finite simple reasons agent, then E is strongly validity optimal 
in AExts(S). 

P R O O F . Suppose S <\ E in a finite simple reasons agent and E is not strongly validity optimal. 
Then there is Ef G AExts(S) and d G E such that d is valid in Ef but invalid in E, and if e is valid 
in E, then either e £ Ef or e is valid in Ef as well. The differing properties of d show E 7 ^ Ef

f so 
by the minimality of E and £" in QExts(S), E- E' 7 ^ 0. Now E = AW(S,E), £" = A W (S ,£ ' ) . 
and 5 = I{Q(S,E) = Ao(S,E,)y so there is a least a > 0 such that Aa+x(S,E) 7 ^ A Q + i ( 5 , J & ' ) but 
AA(S, E) = A A ( 5 , EF). Without loss of generality, suppose e G A a + i ( I 9 , i£) — Aa+i(S, Ef). Then there is 
some / G A Q with 1(f) = A\\B |f- C, A C Aa, E C # c , and e G C. Since e g A a + 1 ( 5 , Ef), there must 
be some g £ E' f) B, so f is invalid in E*'. This contradicts the previous conclusion that since / is valid 
in E, either / £ Ef or / is valid in Hence J£ must be strongly validity optimal in AExts(S). 0 

§28. As promised, we now consider propositional attitude theories of reasoned assumptions. To do 
this, we simply take the linguistic reasons theory and assume among the unary predicates of its language 
are symbols Bel, Des, and Int. Thus the classes Bel, Des, and Int are the ground wffs of the form, 
respectively, Bel(-), Des(-), and Int(-). The content of these attitudes is expressed by naming formulas 
of the language, for instance Bel(|"2 -f 2 = 4]). The theories of ratiocinative intentions and desires can 
then be had by only allowing reasons to occur as intentions or desires, respectively, as Int([A || B |f— C]) 
or Des(|\A || B |(— C]). That is, we now count expressions of the form A \\ B ||— C as terms rather 
than as formulas, so that no sentence has the form A j | B ||— C. To make up for this we interpret these 
particular sorts of intentions and desires specially, respectively by 

J(Int([A || B I I - CD) ={SCD\ACSCBC^CCS} 

I(Des(\A || B |f- CD) = {S C V \ A C S C Bc => C C S}. 

With these encodings, we can consider three new theories. The first is the deductively closed 
beliefs theory, in which we require the set of believed formulas to be closed under the deducibility relation 

- 3 5 -



I-. That is, we take 

£ = {S C D | 5 = Th(5) A 3 6" C P [ S ' = T h ( S ' ) A Vd E P [d € S ' = BEL(fcf l ) € 5]]>. 

The second theory involving propositional attitudes is the self-omniscient theory, in which we 
assume the agent has complete and correct beliefs about its own attitudes. That is, we take 

* = {S C P | S = Th(5) A Vd G P [d G 5 = B E L ( [ d ] ) £ S A d £ S = - B E L ( f d l ) G 5]}. 

Naturally, if 5 G £ is nonempty, it is infinite, containing reflection upon reflection of its own contents. 

The third theory involving propositional attitudes combines these two into the deductively 
self-omniscient theory. Unfortunately, if h- is the ordinary deducibility relation of logic, the theory 
is inconsistent, that is, there are no agents whose states satisfy all these requirements. Proving this 
here would digress too far from our main concerns. M O N T A G U E proves it in some generality, and 
T H O M A S O N discusses its significance for attempts to define notions of "semantic competence" of agents, 
notions corresponding to those of "grammatical competence" common in linguistics. 1 5 

1 5 [ M O N T A G U E 1963], [ T H O M A S O N 1979] 
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Evolutionary theories 

§29. Our initial discussion of problems of acting with incomplete information focussed on adopting 
and abandoning assumptions, but the preceding sections made little mention of such activities. Rather, 
the task was to set out the admissible states of the agent, so that actions in which the agent changes 
its state may be better understood. With a wide assortment of structures for states now available, we 
return to the question of state changes and actions. 

The notion of reasoned assumptions was developed to treat reasoned adoption and reasoned 
abandonment of assumptions, hi reasoned adoption of assumptions, the agent acts to adopt a new 
assumption by adding a reason to its state whose conclusion is the new assumption and whose antecedents 
and qualifiers may indicate the considerations involved in the decision to adopt the assumption. But just 
adding a reason to an admissible state will not in general yield another admissible state, so we must find 
some other way of effecting the change. To do this, we interpret the new reason as the agent's partial 
specification of its next state. We may not wish to accept just any new state satisfying the reason, 
for such might abandon all of the previous state. If not, we can employ the idea of conservation and 
require that the new state should be an admissible state satisfying the new specification, one as "close" 
as possible to the previous state. Similarly, in reasoned abandonment of assumptions, the agent acts to 
rid itself of some unwanted assumption. This can be done either by removing from the state the reason 
supporting the assumption, or by adding to the state a new reason which defeats the assumption. But 
as before, the removal of a reason from an admissible state may not yield another admissible state, so 
we again may employ conservation in moving to a new admissible state which satisfies the new reason. 

However useful might be reasoned adoption and abandonment of assumptions, one cannot 
always escape the need for forced or unreasoned adoption and abandonment of state components. The 
notion of forced adoption of state components might be used as a very crude way of viewing some effects 
of non-mental parts of a human on its state of mind, for example changes made by the perceptual 
and motor systems. Other effects, such as physiological changes in the body which affect the nervous 
system, seem ill-suited to this view, and require some other means of formulation, conceivably that of 
state-dependent interpretations, although I suspect other ideas are necessary as well. We do not explicitly 
treat forced adoption or abandonment of assumptions in this paper. On the other hand, forced changes 
of assumptions have a long history in artificial intelligence as the technique of backtracking, and we give 
a straightforward treatment of them later. 

§30. Let (D, If JS, J, <]) describe an agent and let £ be a set of "environments." We suppose the 
basis for the agent's state changes to be described by a "kernel" transition function d : j$ X £ —• P D 
which for each admissible state and environment yields the (partial) specifications for the next state. 
The role of this kernel as specifications for the next state is ensured by requiring the next state to be 
an extension of the kernel, since extensions of a set satisfy all the specifications represented by that 
set. In fact, we require A(5 , e), the admissible transitions from S in e, to lie among the admissible 
extensions of the kernel, that is, A(S, e) C AExts(d(S, e)). As with the notions of admissible states and 
admissible extensions, we capture different agents by stipulating A as different restrictions of AExts o d. 
However, while the earlier sorts of restrictions separated into local and global restrictions, here we only 
treat global restrictions on transitions, as formalization of interesting local restrictions involves other 
notions beyond the scope of this paper. 

§31, Of possible sorts of global restrictions on admissible transitions, three occupy our attention in the 
following: those of strictness, of conservatism, and of their combination, strict conservatism. In spite of 
such labels, these notions have nothing to do with New Englanders. 
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Strictness we have seen previously in the form of strict arguability. In a strict agent, A = 
pAExtsod. As usual, this is just AExtsod if the previous theories are used to supply AExts, since in those 
\iAExts = AExts. Strictness requires that successor states stay as close as possible to the specifications 
of the kernel, giving up any part of the previous state not derivable from the kernel alone. This sort 
of agent captures the operation of RMS quite well, as explained in §46, in which the agent maintains a 
set of fundamental or kernel reasons, and regularly reconstructs the complete state when this kernel is 
modified by additions or emendations. 

Where strictness requires successor states to be as close as possible to the kernel specifications, 
conservatism requires successor states to approximate their predecessors as closely as possible. Of course, 
different notions of approximation are of interest in different circumstances, so we require only certain 
abstract properties of approximation comparisons to define conservatism. We express approximation 
comparisons in terms of a relation ^ on transitions, a quasi-order whose minimal elements include the 
null transitions. That is, we read ( S I , ^ 2 ) ^ (Sz,S±) as saying that the transition from S I to S 2 is not 
larger than the transition from S 3 to S 4 , and insist ^ be reflexive, transitive, and order no transition 
properly smaller than a null transition. Formally, •< is a relation o n ( ^ X JS)X(JS X JS) such that for 
all admissible states, 

(i)(S,S')<(S,S'), 
(ii) I F (Si, Si) < (S2,S'2) and (S 2 ,S ' 2 ) < (S3,S'3), then {SuS'J < (S3,S'3), (iii) (S)S)<(S,S')) (iv)(S',S')<(S,S'). 

We define the admissible transitions of conservative agents in terms of ^-minimal transitions. In analogy 
with /i, we use the operator v ("nearest") to indicate transition minimization, ff-5 E / and X C JS, 
we define 

u(s,x) = {xex\\/yex (s,y)<(s,x)^(slx)<(s,y)}, 
and abuse the notation by writing uf as shorthand for \ S . * / ( S , / ( S ) ) , so that A = vAExts o d means 
that A(S, e) = u(S', AExts(d{S', e))) for each S E JS and e E £. As with / X , v{S,X) = 0 if X = 0, so 
v{S, AExts{d(S, C ) ) ) = 0 if AExts{d{S, e)) = 0. * 

Several comments on this definition are in order. First, we only require ^ to be a quasi-order 
rather than a partial order. That is, we do not stipulate antisymmetry, so that x ^< y and y ^ x need 
not imply x = y. This is made clear in the examples to follow. Second, as in partial orders, it can 
happen that both x y and y ^ x. In our usage, if AExts(d(Sy e)) contains two incomparable states 
but no common smaller state, then A(5,e) will contain both states, and the system (^,<f, A) will be 
nondeterministic. This too is illustrated below. Third, minimal mutilation has been formalized in the 
philosophical study of counterfactual conditionals using the notion of comparative similarity relations 
on s tates . 1 8 Here we note only that every order ^ on transitions induces a (not necessarily interesting) 
comparative similarity relation on JS\ and vice versa. Read X ^ Y as "X is as close to Z as is Y.n The 
connection between these relations then obtains by defining 

( S I , £ 2 ) 1̂  ( £ 3 , 5 4 ) hT Si = 5 3 and S2 ^ S± or S 2 = S± and S I ^ S 3 . 

Conservative agents need not pass along sets of fundamental reasons in d, but can instead 
simply specify changes and let the ^-minimization conserve as much of the previous state as possible. 
In agents whose admissible extensions are not strict, for example locally grounded agents (AExts = 
QExts), this can lead to retention of mutually supportive bu* ungrounded complexes of elements in 
the successor state. Indeed, many discussions of belief revision in the philosophical literature propose 
versions of conservative agents, as do proponents of the deductivist approach to artificial intelligence. In 
this approach, D is the set of sentences of a first-order logical language, / is the set of all deductively 
closed and consistent sets of sentences, and admissible extensions are just minimal extensions (and so just 

1 6 S E E [ L E W I S 1973], [ T U R N E R 1981]. 
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deductive closures if consistent), that is, AExts = pExts. Here d produces "inputs" to or observations by 
the agent, new sentences possibly contradicting current beliefs, and A moves the agent to some extension 
of d(Sy e) as close as possible (by some measure) to S , for example, to Th(AU d(S, e)) for some maximal 
subset A of S consistent with d(Sy e). 

Finally, one can combine the notions of strictness and conservatism into strict conservatism. 
Here we define the admissible transitions by A = vpAExts o d. This sort of agent moves to admissible 
extensions of the kernel which first are closest to the kernel, and second are closest to the preceding 
state. 

Each of these sorts of agents calls for study, as they may be appropriate for different applica­
tions. Systems doing more or less thorough analysis of domains small in comparison to the whole world 
(such as electronic circuit analysis and other expert tasks) might always require strictness, or better 
yet, strict conservatism. Systems whose focus ranges over the whole world (general agents and natural 
language users) probably have too many uncertain interrelated assumptions to think of any subset as 
"the axioms," and so must settle for simple conservatism in spite of the logical faux pas this sometimes 
entails in those special cases in which the axioms are distinguished. These restrictions might be combined 
in other ways as well. Artificial intelligence systems often divide into many small subsystems. One might 
organize the agent so that each small subsystem is strictly conservative, while the large collection as a 
whole is merely conservative. 

§32. Let us look at an example of a strictly conservative agent. For simplicity, we assume £ = {e} and 
omit all mention of this constant environment. We begin with an agent described by the simple reasons 
theory, and want some notion of relative size of transitions. Since states are sets of state components, 
perhaps the simplest indication of the amount of change involved in going from state S I to state S2 is 
the symmetric difference 5 I A 5 2 = ( S I - S2) U (S2 - S I ) = ( S I U S2) - ( S I D S2). The set S I - S2 

reveals how much of the initial state is lost in the new state, and the set S2 — S I , shows how much of the 
new state is gained relative to the old. Together these sets indicate the degree of conservation (or lack 
of it) involved in the change. Thus one way of comparing two transitions is to define ( S I , So) ^ (S3, S4) 
iff S I A S2 C S3 A S4. Since the symmetric difference of any set with itself is empty, and since C is a 
quasi-order on sets with 0 as its minimum element, this definition yields the required properties of 

Now suppose the agent starts in the empty state S O = 0 and d(So) = { 0 || A |[— B, 0 || 
G |(— D}. Properly speaking, of course, this is 7 * ( < 9 ( S O ) ) , but we drop the interpretation notation without 
confusion here. d(So) has a single admissible extension, so S I = d(So)uB\jDy the conservation condition 
being satisfied trivially. Suppose next that d ( S I ) = d(S0) U { 0 || J3-||— A, 0 || D \\- G}. By itself, 
this kernel is very ambiguous, with the four admissible extensions < 3 ( S I ) - H A\jC', A\jDy B\jCy B\jD. 
But of these, one is closest to S I , namely S 2 = d(Si) \JBUD. Next, suppose d(S2) = d(Si) U { 0 || 
E ||— G}. Now the kernel has only two admissible extensions, namely d(S2) + A (J Cy B U G. But 
of these, again one is closer to S2 than the other, so S3 = d(S2) U B U G. Finally, suppose d(Ss) = 
^(S2) U { 0 || F |[— G, 0 || G | F - F}. There are now again four admissible extensions of the kernel, 
< 9 ( S 3 ) + A U G U F} i U C u G , B U C U F, B U G U G, and of these, two are incomparable nearest 
neighbors of S 3 , namely d ( S 3 ) U B u C U ^ a n d d ( S 3 ) U B U G U G. Thus A ( S 3 ) contains both of these 
states. 

If this agent were merely strict, rather than strictly conservative, the admissible transitions 
would be different. For instance, S I would remain the same, since it is the only admissible extension of 
< 9 ( S O ) , but S 2 could be any of the four admissible extensions of d(Si)y since the transition is not required 
to be ^-minimal. 

To exhibit the difference between conservative and strictly conservative agents, suppose that 
S = {a,b,c,d,e}, where 1(a) = {c} \\ 0 | ( - {d}, 1(b) = {d} || 0 \\- {c}, 1(c) = 1(d) = 0 || 0 | ( - 0 , 
and 7(e) = 0 || 0 |f— {c}. According to the simple reasons theory, S is admissible, and is an admissible 
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extension of its subset {a, 6, e}. Now suppose d(S) = {a, b}. This has two component-admissible 
extensions in S, namely {a, 6} and {a, 6, c, d}. Since the former is grounded, it is the only admissible 
extension of d(S) in the strict simple reasons theory. However, the latter extension is closer to S, and 
so would be chosen by the symmetric difference relation if admissible extensions were not required to be 
grounded. 

Besides this notion of closeness based on symmetric difference, there are many others that are 
more appropriate in other circumstances. For example, one might define one transition smaller than 
another if the components conserved in the first include those conserved in the second, that is (Si, S2) ^ 
(S3, S4) iff Si fl S2 2 S3 H S4. Or instead of considering sets, one might use their cardinalities, as in 
(Si,S2) ^ (S3,S4) iff I Si A S2I < I S3 A S4I. There are many other possibilities for closeness relations 
based on tolerances, topologies, metrics, and measures, but we cannot treat these here . 1 7 

§33. Let us summarize the discussion. 

(33.1) DEFINITION. Plain, strict, conservative, and strictly conservative agents are characterized 
by (9,1,$, J, <\) as before, together with a set of environments £, a kernel transition function d : 
yS X £ —• P D, and an admissible transition table A : j& X <f P ft such that for each S £ ft and 
e (E <f, A(S,e) C AExts(d(S, e)). In a plain agent, A = AExts o d; in a strict agent, A = \iAExts o d; 
in a conservative agent, A = vAExts 6 d, where v is minimization with respect to a quasi-order ^ 
on transitions whose minima include the null transitions; and in a strictly conservative agent, A = 
V[iAExts o d. 

(33.2) COROLLARY. If AExts = fiAExts, plain agents are strict, and conservative agents are strictly 
conservative. 

(33.3) QUESTION. Are there interesting cases in which strictness and conservation interact, for 
example (1) S C S', S" and(S,Sf) < (S,S") implies S' C S", or (2) S C S ' , S " and S' C S" implies 
(S, S') (S, S")? What can be concluded about monotone kernel agents, that is, agents in which 
<^(St,et) C d(St + i , e t+ i ) at every successive step (as suggested in the monotone embedding theorem)?' 

The question of computational complexity is particularly vexing, for while much work has been 
done on practical systems that seem to revise simple reasons states in acceptable times, the precise actions 
and costs of these algorithms are not yet known. 1 8 The principal practical difficulty to be investigated 
is whether the two sorts of minimization can be efficiently mechanized separately and in combination. 
RMS and its relatives operate as finitely grounded, hence strict, agents, and they attempt to approximate 
conservation. On the other hand, the strictness of RMS was in part a reaction to earlier, more purely 
conservative systems which did not observe the prudence of strict inference needed in some axiomatic 
systems, so it may be that conservative agents are efficiently mechanizable as well. I suspect that some 
strictly conservative agents have acceptably efficient mechanizations, but I have no algorithms or proofs 
to offer. 

In general, however, it appears that strict conservatism may be more difficult to realize than 
either strictness or conservatism separately. Let us again suppose the agent finite, that (Si, S2) ^ (S3, S4) 
is deterministically computable in time polynomial in the sizes of the states involved, as is the case for 
the symmetric difference comparison. We again assume and ignore a constant environment, and suppose 
that d(S) is deterministically computable in time polynomial in the size of S. 

1 7See [QUINE 1953], [RESCHER 1964], and [GARDENFORS 1980]. 
1 8See [DOYLE 1979], [STALLMAN AND SUSSMAN 1977], [LONDON 1978], [McALLESTER 1980], [CHARNIAK, 

RIESBECK, AND McDERMOTT 1980], [THOMPSON 1979], [MARTINS 1983], [GOODWIN 1982], and [MC-
DERMOTT 1982B]. 
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(33.4) THEOREM. / / ( / , A) is a plain simple reasons agent, then Is E G A(5)? is in P. 

PROOF. First compute d(S), and check, as before, E G QExts(d(S)) or E G FGExts(d(S)), depending 
on whether the agent is locally grounded or finitely grounded. Each of these steps is in P, so their 
combinations are also. | 

(33.5) THEOREM. If (ft, A) is a strict finitely grounded simple reasons agent, then Is E G A(5)? 
is in P. 

PROOF. Since pF GExts = FGExts, the previous theorem applies. fl 

(33.6) THEOREM. If {ft, A) is a strict locally grounded simple reasons agent, then Is E G A(S)? is 
in co-NP. 

PROOF. This is just the question Is E G fiQExts(d(S))? Since d is in P, by Theorem 18.65 these 
strict extensions are in co-NP. fl 

(33.7) THEOREM. Ifi/5, A) is a conservative simple reasons agent, then Is E G A(S)? is in co-NP. 

PROOF. We see Is E £ A(5)? is in NP for locally (resp. finitely) grounded agents as follows. First 
compute d(S), and accept if E £ QExts(d(S)) (resp. E $ FGExts(d{S))). If E G QExts(d{S)) (resp. 
E G FGExts(d{S))), pick E' G QExts(d(S)) (resp. E' G FGExts(d(S))) and accept if (S, E') < (S,E) but 
(S,E)7<(S,Ef). fl 

(33.8) THEOREM. If(jS,A) is a strictly conservative finitely grounded simple reason agent, then Is 
E G A(S)? is in co-NP. 

PROOF. Since fiFGExts = FGExts, the previous theorem applies. fl 

(33.9) THEOREM. If(j£,A) is a strictly conservative locally grounded simple reasons agent, then Is 
E G A(S)? is in n?. 

PROOF. By putting the previous proofs together, wre see that E £ v(S', fj,QExts(d(S))) is in NP given 
verifications, each co-NP, of E G fJLQExts(d(S)). fl 

(33.10) CONJECTURE. If(jS,A) is a conservative simple reasons agent, then Is E G A(S)? is 
NP-hard. 

(33.11) QUESTION. Are there interesting conservation notions which are efficiently and incremen­
tally computable? That is, if symmetric difference conservation means intractability, are there less strin­
gent notions which admit good algorithms? Is the "standard reason enumeration" technique employed 
in RMS a good approximation to symmetric difference? 

Also deserving attention are special cases of these agents and approximate algorithms. Most 
practical systems, for example, base their claims of efficiency by requiring that only coherent sets are 
manipulated. I have grown increasingly suspicious of such restrictions of attention, but the question 
deserves proper treatment. Even if the complexity of strictly conservative agents is demonstrably 
intractable, there may still be approximate algorithms of reasonable efficiency. Since the whole practice 
of reasoned assumption-making is based on correcting errors, we can afford in practice to be tolerant of 
occasional imprudences in jumping to conclusions. Unfortunately, one cannot hope to measure degrees of 
approximate correctness in terms of the number of poor assumptions in a state, since just one mistakenly 
included assumption can have arbitrarily many uncontroversial but mistaken consequences. Instead, one 
must look to the relative frequencies of correctly to incorrectly computed extensions among the entire 
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set of such computations, that is, one must treat the question of approximation as a question about 
probabilistic algorithms. 

Not only have complexity questions remained unstudied, but even the appropriate complexity 
measures still require proper formulation. The usual measures of time and space on a RASP are of 
course important, but so are some specific natural measures. One can ask how many state components 
are reconsidered or examined in the transition process. This is simply expressed in terms of the sum 
of the sizes of the mention sets of all elements against which the state is checked. When reasons are 
represented as graph structures, as in existing mechanizations, this measure corresponds to the number 
of edges traversed by the algorithm. In addition to average and worst-case measures, the complexity 
relative to the number of elements changed also holds interest. Folklore has it that any algorithm must 
be arbitrarily bad with respect to this measure, in that one can choose transitions requiring unbounded 
numbers of element reappraisals, but which lead to only a bounded number of changes. 

§34. We now turn from individual transitions to the global perspective of trajectory spaces. The 
trajectories of an agent are finite or infinite sequences" of admissible states that observe the transition 
table; formally, sequences ( S ^ J J ^ Q (n < UJ) such that ST- G $ if 0 < i < n, and if i -f 1 < n, then 
Si+i G A ( S j , e ) for some e £ £. The trajectory space T(jS,£1 A ) is the set of all trajectories of the 
agent (jS, £, A ) . This for simplicity assumes the world obeys no laws other than the agent's transition 
table. In the general case, we must consider the agent as part of an isolated system, with the world 
having admissible states JSW C JS X £, and a given trajectory space Tw Q {/Sw*). In this case, 
the agent's trajectory space will be the projection of Tw onto J&*, onto a subset of T(/8,£, A ) . We 
employ the notation T; T' to mean concatenation of two trajectories, so that if T = (So, . . . , S m ) and 
Tf = ( S Q , ...9S'n), then T;Tf = (So, . . . , S m , S o , . . . , S ^ ) . Of course, T need not be closed under 
concatenation. If S G jl, we write S; T and T; S to mean, respectively, (S); T and T; (S). 

Many standard questions about dynamical systems arise here, such as reachability, the existence 
of trajectories connecting two states; the existence of limit sets or attractors to which all trajectories 
from some neighborhood eventually lead; the existence of cycles (closed trajectories); the existence of 
limit cycles; stability of limits; the complexity of computations; and more. At the moment, results are 
lacking concerning most of these questions, so we cannot treat them further here. But these questions 
call out for study, since some of them are intimately tied up with familiar psychological questions. For 
example, if one's trajectories are defined by some sort of learning or searching procedure, then the 
existence and reachability of limit sets corresponds to the learnability of certain concepts or skills, or to 
the solvability of certain goals. This is all familiar from popular treatments of hill-climbing, where the 
learning or searching procedure is a gradient vector field on the state space. Furthermore, the complexity 
or length of trajectories to these limits might shed light on power laws or laws of diminishing returns, 
since diminishing returns indicate the existence of limit states unreachable by finite trajectories, and 
power laws are just particular shapes for curves of diminishing returns. The structure of trajectory 
space T ( / ? , £, A ) is also closely connected with the structure of the state space $ , since many of the 
questions previously addressed about assumability and realizability can be cast directly as questions 
about reachability by monotone kernel trajectories. Trajectory space also serves as a model for various 
modal or temporal logics concerned with the evolution of properties of elements or states (arguability, 
coherence, etc.). We must forgo discussion of most of these topics. In the following, we treat only two of 
the topics connected with the global viewpoint: the connections between catastrophes and backtracking, 
and the construction of "subjective probabilities" from trajectory space. 

§35. The preceding development has focussed on reasoned changes of state, in which the agent decides 
what shape its next state should take, specifies those qualities via d, and then solves the specifications 
in one way or other to move to a new state in A . But unless we ensure that all transition specifications 
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have admissible solutions, it can happen that there are no potential successors in A. The incoherence 
of d(S, e) may be accidental, or it may be deliberate. For example, if d includes a contradiction in the 
specifications for the next state after 5 , it ensures A ( 5 , e) = 0 . In this use, the contradiction acts as 
an admission that "I can't go on like this!" But how should we take such accidents and admissions? As 
natural death and suicide? While those are possibilities, another is to take these incompetences of A as 
occasions for other sorts of state changes. We treat the former possibilities elsewhere, and pursue the 
latter here. We add to our store of constitutive assumptions for characterizing agents by introducing 
the extended transition table E : T(/8, £, A) X £ —• P j&, which we require to agree with A whenever 
A is nonsingular, that is, for every trajectory T E T(JS, £, A), if T = S and A(S,e) 7̂  0, then 
E(T, e) = A(S,e) . With this new constitutive assumption, agents are characterized by choices of 
( P , 7 , / , J, <],<f,d,A,E). 

The most trivial choices for E are E(T; S, e) = A(S , e), in which case T ( / # , £ , E ) = T(Jf, £, A ) 
and there is not much to say, and E(T; S, e) = if A(S , e) = 0, in which case the agent executes a 
random walk through trajectory space when it is not following A. Some more interesting choices for 
E involve the traditional notion of backtracking. Backtracking originated as a means for outwitting 
pursuers. One travelled leaving an obvious trail until a stream or other natural trail-obscuring obstacle 
v/as reached. One then carefully walked backwards over the path just travelled, placing feet in the 
footsteps just left, until one reached a point at which one could take off in a new direction, leaving the 
actual trail chosen to be unobvious when compared with the false trail. This technique was adopted in 
artificial intelligence to elude the hounds of failure, by keeping track of the choice points encountered 
during a search of a space, and upon failure of one search path, resuming the search with one of the 
alternate paths indicated in the choice points. We reproduce this idea formally as follows, where we for 
simplicity assume an isolated agent. Let T = {S ,

t)£ : = 0 (n < a;) represent the trajectory of the agent, 
where Si is the state at instant i. We define Ali{T, i + 1), the alternatives in T at instant i + 1, by 
Alt(Ty i + 1) = A(S t ) — {S t +i} if A(5i) 7̂  0. These then are the states that could have been pursued 
but were not. We get two backtracking regimes by assuming the agent falls back to any or the closest 
alternative state when necessary, that is, by defining E(T: S) to be A(S) whenever A(S) 7̂  0, and to 
be Alt(Tf k) or i/Alt(T, k) otherwise, where k = max{j < i | Alt(T,j) 7̂  0 } . Call these chronological 
backtracking and conservative chronological backtracking. Conservative non-chronological backtracking 
(also known as "dependency directed" backtracking) arises by taking E(T; S) at singular points to be 
v \Jj<iAlt(T,j). These definitions are simpler than those commonly employed since they do not remove 
explored paths from the set of alternatives. 

To return to the example of §32, suppose S 4 = S(S 3)U fiUCU F. We then have Alt((S0i St)) = 
AU({So, Si, S 2 » = Alt{{S0, Si, S 2 , S 3)) = 0 and Alt[(S0, Su S 2 , S 8 , S4}) = 3(S 8) U B U C U G. 

§36. One way of understanding the nature of backtracking is in terms of the notion of catastrophe. 
(The following remarks are more suggesive than substantive at present. I hope to justify them rigorously 
elsewhere.) For our purposes here, a catastrophe is a "discontinuous" jump in a trajectory. Each time 
A is multi-valued, we have the possibility of trajectory space branching into two "sheets." Actually, 
not all multi-valued occurrences of A need produce bifurcations in trajectory space if the alternatives 
are all reachable from each other by ordinary trajectories. But a "true" bifurcation is introduced if the 
resulting states are mutually unreachable in T(/8 f £, A). If an ordinary trajectory comes up to the edge 
of one of these sheets, the only way to proceed is by means of a jump to a state on another sheet, a 
"discontinous" change in the sense that the ordinary transition table provides no direction, which one 
might interpret as lack of a "derivative" with which the agent might predict its possible actions. There 
are many ways of embedding the ordinary trajectory space in larger spaces that have no discontinuities, 
and we have seen a few of these in the extended transition table E. If the agent is conservative, it 
might jump to one of the closest points on the other sheets. Alternatively, it might jump to a point 
corresponding to an alternative future, a point at the same time but on a different sheet among those 
bypassed along the actual trajectory. One might call this "sidetracking" instead of "backtracking." 
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In any event, rules for continuing all trajectories beyond singularities have the effect of pasting all the 
edges in trajectory space back into the space. This results in a complex shape for the enlarged trajectory 
space, just as pasting all the edges of a sheet of paper together in the right way produces a sphere, a 
torus, or a Klein bottle, surfaces with no edges. 

The most important quality of a catastrophe in a psychology is that, from the agent's point 
of view, it "just happens." While we may design agents to suffer catastrophes in certain ways, the 
actions involving the agent's own deliberation and choice are all captured by d and A, and changes not 
involving those are beyond its powers. Of course, an agent may deliberately place itself in a position 
where, it knows, a catastrophe is inevitable, so as to chance some action not normally doable, just as one 
might lead one's self into the depths of despair, thinking that either death or a jump to some redeeming 
faith are the only possible paths, in spite of calm inability to believe. This difference in the quality of 
these sorts of actions has never admitted clear articulation in artificial intelligence before. In my own 
work on RMS, I always thought that the two processes of reason maintenance and backtracking were 
different, but could not say why. McALLESTER developed ways of mechanizing them with a uniform 
procedure, and I thought that wrong. Instead, I was wrong, in that however one best mechanizes the two 
processes, by two mechanisms or by one, the processes still are different as far as the agent is concerned. 
Before, I had no clear way of distinguishing the agent and its actions from its realization and the changes 
that happen to it. The distinction between these processes lies in the former realm, McALLESTER'S 
unification in the latter. 



Probabilistic theories 

§37. With exact characterizations of theories of reasoned assumptions and their revision, we can 
connect artificial intelligence treatments of uncertainty with standard probabilistic treatments. These 
connections divide into two parts, one static, one dynamic. Just as theories of reasoned assumptions 
divide into characterizations of the set of admissible states and characterization of the temporal evolution 
of the agent's state, probabilistic theories divide into characterizations of particular states as probability 
distributions and characterization of the effects of actions as the evolution of the agent's probability 
distribution. We treat both parts below. 

Drawing theoretical connections between these two approaches to uncertainty is not simply 
an abstract mathematical exercise. Instead, these connections yield two valuable benefits. The first 
benefit is the possibility of justifying the claimed methodological superiority of the artificial intelligence 
treatment over standard probabilistic treatments. Several authors in artificial intelligence have explained 
their abandoning probability theory in terms of the unpleasantly large amounts of information and 
computation required to apply the probabilistic theories. 1 9 With exact connections between the formal 
theories, we can begin to justify (or refute) these intuitions rigorously with the methods of computational 
complexity. The second benefit is that probability theory, whatever its computational disadvantages, 
offers certain sorts of information often useful but not present in the preceding theories of reasoned 
assumptions. In particular, probability theory allows one to summarize one's uncertainty about some 
question with a simple description, a number, and to compare degrees of uncertainty by comparing these 
numbers. The exact connection between the two theories permits us to recover degrees of certainty when 
desired even if we base the structure and action of systems on reasoned assumptions. 

§38. The basic idea underlying the connection between reasoned assumptions and degrees of certainty 
is to make the degree of certainty of some state component e with respect to a set S of reasons 
depend on how e appears in admissible extensions of S. There is no distinguished way of defining this 
dependence, but instead a variety of possible measures. For example, one might ask how likely is e to 
occur in a randomly selected admissible extension, or how many arguments there are for e, or how many 
assumptions e depends on, etc. Each of these captures different intuitions about the meaning of "degree 
of certainty," and may be preferred in different circumstances. 

These measures may be motivated in two ways. In the first, we view the nondeterministic 
theories of reasoned assumptions presented earlier as incomplete specifications of deterministic agents, 
whose indeterminism we interpret probabilistically in terms of how likely our incomplete specifications 
are to predict the actual behavior among the predicted possible behaviors. Alternatively, we can treat 
these measures as specifications for probabilistic algorithms. 2 0 The problem of acting prudently is too 
difficult or even impossible to solve exactly, so the agent makes a series of random choices (of admissible 
assumptions rather than numbers) and then decides what to do by exact means. These random choices 
may lead to error, so the task of the agent is to constrain the range of possible sets of choices (by using 
ratiocinative rules of thumb) so that the expected probability of success is high. This latter view seems 
well-suited to the mechanization of artificial agents. 

§39. Perhaps the simplest way of measuring how the agent holds some state component is to assign 
a weight to each state the agent might be in, a weight representing how likely the agent is to be in that 

See [SZOLOVITS 1 9 7 8 ] , [DOYLE 1 9 8 3 B ] , and the discussion below. 

' [ R A B I N 1 9 7 6 ] 
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state, and then to sum the weights of all states containing the element. That is, if w(S) is the weight of 
state S, then the measure of how e occurs in S C yS is just 

ses 

Weight functions like this are ordinarily expressed as measure functions on sets of states, as non-negative, 
additive functions m : P JS —• R, where w(S) = m({5}). Nonnegative, as usual means that m(S) > 0 

for every S C ft, and additive means that for every S, S* C we have m(S U S ) = m(S) -f m(Sf) — 
m(5 fl S ). Actually, technical complications make this definition adequate only for the case of finite JS, 
but that is enough for most of our purposes. Later we comment on interesting cases of infinite yS. 

For example, one natural measure function is the counting measure that gives every state 
equal weight, i.e. m^(S) = \S\. This measure corresponds to making L A P L A C E ' S assumption, that 
every possible state of the agent is equally likely to occur. With this measure, the degree of certainty of 
a state component in a set of admissible extensions is just the percentage of them in which it appears. 

Another natural measure function is the specificity measure m* that weights states by how 
"specific" they are, namely m*({S}) = 2 ~ ~ ' 5 L One way of looking at this measure is to think of states 
as partial descriptions of all the sets of components extending them, and to weight states proportionally 
to the number of possible supersets. From this point of view, we would define ™>*'[{S}) = 2 ^ I " ~ I 5 L 
This, of course, simply multiplies all of the specificity weights by the constant 2'^' , and so changes none 
of the comparative relations between weights of states. 

Yet another measure function is the selection measure m ! that weights states as selections of 

elements from the domain, namely ml({S}) = (j^j) . We make no important use of this measure in 
the following. 

§40. For each theory of reasoned assumptions and measure function m, we define the "degree of 
certainty." 

(40.1) D E F I N I T I O N . Let S\A = {S e S \ A C 5 } for S C Then the extent £{A,S) of a set 
A C D relative to a set S C D is given by 

£{A, S).= m{AExts{S)\A)/ m{AExts{S))f 

where £(A, S) = 1 whenever AExts(S) = 0. 
Thus the extent of a state component e is just the relative measure £({e}, S) of those admissible 
extensions containing e. 

(40.2) C O R O L L A R Y . If AC. D is not arguable in S, then £{A,S) = 0, and if A is inevitable in S, 
then £{A,S) = 1. 

(40.3) D E F I N I T I O N . If S is coherent, d, e G D, and £({d},S) > 0, then C£{e \ d,S), the conditional 
extent of e given d in S, is 

C£(e | d, S) = £({d, e}, S)/£({d}, S) 
= m{AExts(S)\{d, c})/ m{AExts{S)\{d}). 

I am not sure what approach to take for incoherent S. If S is coherent but £({d}, S) = 0, the 
situation here has analogies to the situation in Bayesian probability theory that motivates so-called 
Popper functions, but I leave treatment of that case to future studies as well. 
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(40.4) T H E O R E M ( B A Y E S ) . / / {di}JL.o ™ a stL^se^ °f & s u c ^ exactly one d{ occurs in every 
admissible extension of S, then 

(40.5) C O R O L L A R Y . / / at most one di occurs in every admissible extension of S, then 

CS{e\dj,S)'£{{di},S) 
CS(di | e,S) < T,^C£(e\di,S)'£{{di}lS) 

Linguistic reasons agents are of special interest here, for their formulation involves many of the 
same assumptions as does subjective Bayesian decision theory. Because state components have logical 
form in this theory, we can examine the relations between extents of components with related forms. 

(40.6) T H E O R E M . Let S C D. Then 
(i) If S is not inevitably consistent, then for each x £ D, £(x,S) = 1, 
(ii) S is inevitably consistent iff for each x £ D, £(x,S) + <?(-»x, S) < 1, 
(iii) For each x, y £ D, £(x A y, S) < £(x, S) + £(y, 5) , 
(iv) For each x, y £ D, if x'^> y is inevitable, then £(x, S) < £(y, 5), and 
(v) If S y£ {D}, then for each x,y £ D, £(x, S) > £(x AyyS)+ £(x A - 1 y, S). 

P R O O F . Let S Q D and 5 = AExts(S). (i) If S is incoherent, then <f(x, S) = 1 by definition, and 
if 5 is inevitably inconsistent, S = {D}, so again £(x,S) = 1 for every x £ D. (ii) follows immediately 
from this last observation, (iii) Since {x Ay} is interdeducible with {x, y}, S\{x A y} C S\{x} U .5\{y}. 
(iv\ If S = 0, the claim follows trivially. If S ^ 0, then S\{x} C S\{y} since {x, x 3 y} h- {y}. (v) 
If 5 {/?} then each S £ 5 is consistent. Since {x,z} and {xA>z} are interdeducible, we must have 
5\{x, y} f| 5\{x, y} = 0. Since 5 ^ 0 , the claim follows. | 

Since arguability is different from assumability, we introduce a parallel notion to conditional 
extents, namely a posteriori extents. 

(40.7) D E F I N I T I O N . Let d,ee D and S C D. If S U {e} is coherent, then A£{d \ e, S), the a 
posteriori extent of d given e in S, is 

A£{d\e,S) = £{{d},Su{e}). 

Unfortunately, I do not know how to treat the case of incoherent S U {e}. There also seems to be 
no general way to relate conditional and a posteriori extents. This weakness of the theory is to be 
expected from the complexity of the ways in which the sets of admissible extensions may change under 
the addition of new information. Stronger theories may be possible for restricted sorts of agents, but by 
and large these are unexplored. 

§41. Let us examine some examples to see how these measures differ. We work within a simple reasons 
agent with D = {ct, -i cu c 2 , -• c 2 , ru r 2 , r 3 , r 4 , r 5 , r 6 } , where J ( C I ) = J ( ~ - C I ) = I ( C 2 ) = !(-> c 2 ) = P D, 
and where J ( n ) = 0 || { - C J | |- { < * } , J ( r a ) = 0 || {ct} | H J ( r 8 ) = {ex} || C 2 } | H { C 2 } , 
J ( R 4 ) = { C I } II { C 2 } | H { - C 2 } , J ( r 5 ) = 0 | | {^c 2 } | F - { C 2 } , and J ( r 6 ) = 0 | | { C 2 } | H { - C 2 } . 
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Let S = { r 1 . r 2 . r 3 , r 4 } and Sf = {^1, r2» 5̂> ^e}- Then S has three admissible extensions 

# i = S U { - c i } , 
^ 2 = 5 U {c i , c 2 } , 
£ 3 = S U {c i , - i c 2 } , 

and 5 ' has four admissible extensions 

F 1 = = S ' U { c i , c o } , 
F2 = S ' u { c i , - c 2 } , 
iT 3 = S"u { ^ c i , c 2 } , 

J F 4 = = 5 ' u { - c i , - c 2 } 

We then have the following extents and conditional extents. 

£(x,S) m * m ! 

C l ' 2/3 1/2 JO + 
-^Ci 1/3 1/2 .29 + 
c 2 1/3 1/4 .35 + 

- c 2 1/3 1/4 .35 + 
1 1 1 
0 0 0 

m * t 
m' 1/2 1/2 1/2 

1/2 .1/2 1/2 
1/2 1/2 1/2 

-i c 2 1/2 1/2 1/2 
f l 0 0 0 

1 1 1 

In the following, entries represent (m*, m*). 

Ay -•Cl C2 ->C 2 n 
Cl (1,1) (0,0) (1,1) (1,1) (2/3,1/2) 

-<Ci (0,0) (1,1) (0,0) (0,0) (1/3,1/2) 
C2 (1/2,1/2) (0,0) (1,1) (0,0) (1/3,1/4) 

->C 2 (1/2,1/2) (1,1) (0,0) (1,1) (1/3,1/4) 
ri (1,1) (1,1) (1,1) (1,1) (1,1) 

(0,0) (0,0) (0,0) (0,0) (0,0) 

Constructions similar to the above were first proposed by C A R N A P in his theory of probability 
as "degrees of entailment." 2 1 While the ideas are similar, there are important differences between the 
two approaches. Let D = {a, -» a, b -< 6, r, -»r}, 5 = {a, r } , and define 1(a) = /(-> a) = 1(b) = I[p b) = 

2 1 [ C A R N A P 1 9 5 0 ] , [ K Y B U R G 1 9 7 0 ] 
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P D, J ( R ) = {a} || { I R } | |- { 6 } , and / ( - . R ) = 0 || { 6 } | [ - { - . 6 } . In this case, S has the sole admissible 
extension {a, r, 6 } , so all extents and conditional extents are either 1 or 0 , no matter which measure 
function is chosen. But let us consider a posteriori extents. Here we have the table, again independent 
of choice of measure function, 

x £(xiS) A£(x\y, S) : a - > A b -*b r - > R 
A 1 1 1 1 1 1 1 

- A 0 0 1 0 0 0 0 

6 1 1 1 1 1 1 0 

- ^ 6 0 0 0 0 1 0 1 

R 1 1 1 1 1 1 1 

- « R 0 0 0 0 0 0 1 

Note here that while £ ( 6 , S) = 1 and £ 6 , 5) = 0 , we have A£[b | r, 5) = 0 and >?<f (-» 6 | -. r, 5) = 1 , 
so accepting -»r involves "learning" -« 6 and "unlearning" 6 , no matter which of the measure functions we 
use. This ability to learn and unlearn things is quite different from the standard sorts of learning theories 
studied by C A R N A P , and even in common cases, the differences in what objects are measured permits 
"inductive learning" with any of our measure functions, something not true of C A R N A P ' S theories. 
Unfortunately, we cannot pursue this topic here. 

§42. One extension to the above constructions is to allow measures of how a state component appears 
in the admissible extensions of a set of reasons to depend on the element as well as on the admissible 
extensions. For example, if we want to weight components by how many arguments warrant their 
presence in a state, we cannot use a pure measure on states, for that would treat every element in 
the same way. To permit the wider class of measures of "certainty," we allow measure functions 
dependent on subsets A of P, subject to the additivity requirement that if A , B C D and S C JS, then 

. ™AUB{S) = TTIA(S) - F mB(S) — mANB{S). 

In effect, we replace measure functions on P JS by measure functions on P J X P / . Thus we might 
define a simplistic argument counting measure byrri( c}({5}) = \{d £ S \ d i s a valid reason for e in 

§43. With probabilistic constructions on sets of reasons, we can recast the description of the agent's 
evolution in time in terms of these constructions. To make the new constructions easier to grasp, we 
first treat the ahistorical, isolated system ( ^ , A) and then extend the construction to history-dependent, 
non-isolated systems ( ^ . f ^ E ) . 

The basic idea of the probabilistic treatment of an agent's state-evolution is to view the 
"nondeterministic" transition table A instead as an incomplete specification of a probabilistic transition 
table. For example, under a Laplacian assumption, we could take each transition Sr G &{S) to be 
equally likely among the possible transitions from 5 . Alternatively, we could assume transitions to 
simple states are more likely than transitions to more complex states. In fact, each measure function m 
o n P / such that m( / <?) > 0 gives rise to a probabilistic interpretation of A by defining the probability 
of moving from S £ $ to S1 £ A(5) to be rn({S'})/ m(A(S)). (For the time being, we assume that 
A(5) is nonempty for every S £ $.) This interpretation recalls the relation between the standard and 
many-worlds interpretations of quantum mechanics, but we cannot pursue that here . 2 2 

2 2 1 
D E W I T T A N D G R A H A M 1 9 7 3 ] , [ V A N F R A S S E N 1 9 8 0 ] 
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With assumptions about transition probabilities captured in measure functions, we can describe 
the temporal evolution of an agent (yS, A) in terms of the probability that the agent will be in state S at 
time t. We assume initial probabilities of being in a state for time t = 0, and then apply the transition 
probabilities to determine the probabilities for times t > 0. The instantaneous functions assigning 
probabilities to states are called density functions, and are simply measure functions / o n P / such that 
f(yS) = 1, that is, functions that say that the agent must be in some state. As above, every nontrivial 
measure function m such that m(/S) > 0 induces a density function by defining f[X) = m(X)/ m(/8). 
Thus beginning with an "initial state function," for example 

S0£X 

s0ex' 
we look to calculate the sequence of density functions { / o , / i , / 2 > •••) describing the evolution of the 
system (yS, A) with respect to m. 

Note first that the set of all density functions on JS is a convex set. That is, if fx and f2 are 
density functions, and if wi + w2 = 1, then w\f\ + w2f2 is a density function as well. 

Successive density functions for a system are computed by combining the probability that the 
system is in a particular state with the probability of moving from that state to specific other states. 
We add up the probabilities of reaching a state, and we have the new density function. Formally, we 
define ft+i for each S E JS by 

The resulting function / t+i is a density function since by induction J2xE/g /*({ x}) = 1 a n c ^ ft+i 18 the 

convex combination of density functions gx{{S}) = m(A(z) fl {5})/m(A(x)). 
As in the instantaneous case considered previously, we can extract "degrees of belief" from 

the successive density functions by defining, for A C D, ct{A) = ft(yS\A) as the probability that the 
system is in a state containing the components A. As before, these projections of state probabilities onto 
components need not be unitary, since in a linguistic reasons agent we might have ct({d}) + ct({~* d}) < 1. 

We extend this construction to the case of nonisolated, possibly singular, extended transition 
tables as follows. Let (yS ,£,!£) describe the agent. In the general case, transition probabilities may 
depend upon the full history of the agent, and we represent some of these with a measure function F 
on T X £ X T, interpreting F({T}, {e}, {T'}) as the probability of moving to trajectory T' given the 
previous trajectory T and environment e. Ideally, we would get F by projecting probability measures 
on the world's transitions in (ySw)* X {/8\y)*> on^ w e ^° n o ^ ^ r e a ^ ^ n a ^ most general case here. We 
assume F is normalized so that 

£ F({T},{e},T;S) = l 
SeE(T,e) 

for every T E T and e E £, thus making the probabilistic interpretation possible. We construct a 
sequence of density functions ft on £ * X T from the transition probabilities so that ft(e,T) represents 
the probability of the agent having traversed trajectory T in response to the sequence of environments 
e E £*. The initial density function /o is given, and we define / t+i so that 

/«+!(*;«, T ) = J2 ft(Z,T')-F(T',e,T). 
T'eT 

These density functions on T can be projected onto JS to give the probabilities of the agent being in 
specific states by defining <£t(e, S) for every t, e, S to be 

* t 0 , 5 ) = £ ft(e,T;S) 
T;SeT 
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§ 4 4 . Many researchers in artificial intelligence have abandoned the direct use of probabilistic repre­
sentations on the basis of several intuitions. Briefly, they are (1) One usually has only fragments of 
information about a few questions. Coming up with a complete matrix of conditional probabilities for 
all questions is not feasible, while incrementally formulating rules of thumb for generalities, exceptions, 
etc., is quite feasible. Much of the work in "knowledge acquisition" focusses on elicting and subsequently 
editing rules of thumb, though sometimes with "certainty factors" whose close values are recognized to 
be meaningless. (2) One usually has only a few known goals or desires, augmented occasionally by 
problem-oriented reasoning, rather than a complete utility function. (3) It is easier to work by adding 
and removing individual statements from a database or subdatabase than to continually recompute 
probability distributions. (4) When errors of information are revealed, or when new sorts of events are 
formulated, one must completely revise one's system of conditional probabilities. But these revisions 
must be based on some qualitative considerations, to which the numerical probabilities are merely fit. 
(See [ D O Y L E 1983B] for another discussion of these.) These intuitions can be summarized by saying 
that the usual Bayesian approach, while a fine system for formulations of decisions post hoc, or for 
mechanization of thoroughly explored, stable, narrow decisions, is both information ally and computa­
tionally infeasible in broad, changing systems. Bayesianism simply says nothing about the problems of 
incrementally formulating systems of probabilities, which are the main practical difficulties facilitated 
by the artificial intelligence approach. If these prejudices are justified, then the constructions presented 
previously offer the consolation that even if one abandons probabilities in direct use, one can always 
recover them when necessary, that artificial intelligence practice is not contradicting the Bayesians so 
much as being forced to work with less. 

These intuitions would likely profit from formal exploration. For instance, Bayesians are 
familiar with the notion of qualitative probabilities. Indeed, the foundations of statistics develops axioms 
for these qualitative probabilities, and one shows-that any consistent set of qualitative probabilities can 
be fit with a compatible system of numerical probabilities. One proves this fit unique given assumptions 
about the fineness and topological completeness of the qualitative probabilities. The artificial intelligence 
approach in effect concentrates on these qualitative probabilities, abandoning a priori fineness and 
topological completeness assumptions. 

More concretely, if we consider linguistic reason agents, we see the primary difference between 
the theory of subjective probability and the theory of extents turns on the question of completeness. For 
Bayesians, subjective probabilities are unitary, that is, the subjective probabilities of x and -> x sum to 
1 for each x. In contrast, in the present theory some admissible extensions of S may contain neither x 
nor -»x, so that <f(x, S) -f £(px, S) < 1. The theories could be brought into agreement if we required 
completeness of extensions, that is, added to Z the requirement that for each d G D and S G ft, either 
d £ S or -id E S. But this is a very peculiar requirement, for two reasons. First, the whole point 
of reasoned assumptions is to be able to complete one's set of beliefs with respect to some question 
when necessary, taking lack of information and incompleteness as normal. Requiring completeness of 
extensions is not in direct conflict with this motivation, but it does mean replacing every ordinary 
extension with the set of all possible completions of the extension. Second, it seems unwise to attempt 
to rule out paradoxical sentences at the outset. We can think about and phrase the Liar paradox, and 
some reasonable artificial agents should share our ability. But the character of paradoxical sentences 
is that neither they nor their negations may be part of a consistent theory, so if we want interesting 
languages of thought, we cannot accept the Bayesian requirement of completeness. 

Bayesianism stems from important motivations, but overidealizes. While the above construc­
tions indicate the naturalness and importance of the idea of strength of beliefs and other attitudes, it 
also casts doubts upon the Bayesian identification of degree of belief with subjective probability. The 
measure of degree of belief via extents is a perfectly good probability measure, but the projection of this 
measure onto the logical structure of states is not in general a probability measure without the specious 

- 5 1 -



axiom of completeness. As in quantum theory, the projected measure represents a lattice of possible 
events, and only represents a boolean lattice in the special case of complete s ta tes . 2 3 

Of course, the Bayesian might respond that our constructions do not capture subjective prob­
abilities, but simply lower bounds on subjective probabilities, as in the D E M P S T E R / S H A F E R theory of 
evidence. 2 4 While this reply does not address the difficulties posed by paradoxical sentences, it may offer 
a way of reconciling the views, but we cannot pursue that here . 2 5 Instead, we observe that whatever 
the attractions of the stronger Bayesian theory for more competent agents, in computationally realized 
agents, the "lower bounds" offered by our construction may be the only reasonable choices for "degrees 
of belief." We see this in two ways. The first is that extents arise naturally as the end result of the 
operation of probabilistic algorithms, and in this way are not so much computational approximations to 
ideal quantities as objective events observed by the agent (even though the events are part of the agent 
itself). The second point is that the dynamical form of extents, densities, arise naturally in consideration 
of revision of state, for example in backtracking. At singularities in a trajectory continued by means of 
plain chronological backtracking, the possible successors are just the successors of the previous state not 
taken. That is, if T = T'; S and A(5) = 0 , then E(T) = E(T') - {5}. In this case, densities in E(T) 
are approximately extents in the kernel of E(T'), and correspond to the resilience of state components, 
to the relative ease with which they may be avoided hi successor states. If some density is large, most 
successors will contain the component in question, so it is difficult to avoid. Indeed, we can adopt this 
view at every point of a trajectory, singular or not, by considering imaginary discontinuities, by asking 
how the agent would have to view things were the current view forbidden. In this way, densities in E(T) 
can always be taken as the resilience of state components. This interpretation of densities is particularly 
appealing since it applies to all components of mental states uniformly. For example, in attitudinal 
theories it provides measures not only of degrees of belief but of strength of desire and firmness of 
intent. Pursuit of this interpretation leads to an interesting non-Bayesian decision theory, but that is 
beyond the scope of this paper. 

If consideration of extents in trajectories provides motivations for some of the concerns of 
subjective Bayesian probability theory, it also helps understand Z A D E H ' S notion of fuzzy sets and 
concepts. 2 8 Statements like "Sue is tall" are considered vague because "tall" is not a well-defined concept; 
there are many heights Sue could reach and be thought tall. Z A D E H formalizes this notion by introducing 
a spectrum of truth-values for the sentence, a spectrum derived from a spectrum of tallness-values. One 
might instead develop a theory of fuzzy concepts in terms of extents. Rather than simply assuming 
tallness spectra, one could formulate exact theories of tallness and simply look to see what distribution 
these entail for particular statements. For example, one might require exact theories of tallness to specify 
exact intervals of height, and given this restriction look to the admissible extensions of the statement 
"Sue is tall." If there are many intervals saying one height is tall and fewer intervals saying another 
height is tall, then the first height will be "more tall" than the second. Example 24.11 can be read as a 
formal example of this idea in terms of the concept "is a lot." In that example, 0 is definitely not a lot 
(lot to degree 0), each n > 3 is definitely a lot (lot to degree 1), while 1 and 2 have intermediate values: 
2 is twice as much a lot as is 1 (lot to degree | versus degree | ) . 

If one approach is to have advantages over the other in practice, the advantages may depend 
far more on practical utility than on theoretical elegance. The two most important questions are how 
difficult it is to obtain the information required by each approach, and how costly are the computations 
involved. As [ D O Y L E 1983B] mentions, the Bayesian informational requirements are severe because one 
needs vast amounts of information, few bits of which are easily had from experts. The needed informa­
tion may be had much more easily in the form of ratiocinative rules of thumb. But complementing 

2 3 [B lRKHOFF 1 9 6 7 ] , [BELTRAMETTI AND CASSINELLI 1 9 8 1 ] 
2 4 [ S H A F E R 1 9 7 6 ] 
2 5 S e e [LEWIS 1 9 8 0 ] . 
2 8 [ Z A D E H 1 9 7 5 ] 
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this, the probabilistic constructions facilitate the use of information acquired as rules of thumb, since 
they permit comparison of relative strengths or certainties of state components. Since these measures 
reflect the overall structure of the set of admissible extensions of some kernel, they may be useful in 
summarizing that structure in lieu of analytical characterization of its branchings, alternatives, etc. 
Unfortunately, practical exploitation of these possibilities demands efficient algorithms for computing 
admissible extensions according to specified measure functions. At present, algorithms for this purpose 
are completely unstudied. Systems like RMS make arbitrary choices in constructing admissible exten­
sions, and while several authors have suggested making these choices depend on properties of the forseen 
resulting extensions, there is no known way of deriving the resulting measure on states from these 
intra-algorithmic choices, nor any known recipe for finding an appropriate algorithm when the final 
measure is specified. The mix of techniques used in practice will depend on the relative facilities and 
computabilities of the Bayesian and reasoned assumptions approaches. Reasoned assumptions facilitate 
some important operations, and Bayesianism facilitates others. Can one relate the total cost of working 
within one approach to the total cost of the other? 
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IV- R e l a t e d T h e o r i e s o f R e a s o n e d A s s u m p t i o n s 

§45. The previous chapter included both development of a theoretical framework for describing theories 
of reasoned assumptions as well as some first steps toward a mathematical development of the framework 
itself. The value of such a framework, if any, must begin with the power to clearly describe specific 
theories, rather than with the possibility of a mathematical theory based on the framework, although 
once the grounds of the theory are secured, mathematical analysis can reveal hidden structure. We have 
seen how the framework eased the introduction of the several constitutive ideas presented previously. 
In the following sections we further exercise these concepts by using them to analyze and summarize 
a variety of systems in artificial intelligence touching on notions related to reasoned assumptions. 
Unfortunately, since several of these systems have never been exactly formulated or described in the 
literature, or have been described only in terms of the behavior of a set of complex procedures, we 
cannot always rigorously justify our analyses. Instead, one of the benefits of the current approach is 
that it may allow authors to precisely specify the intended structure and behavior of their artificial 
intelligence systems, whether before, during, or after development of the systems. 

§46. The first analysis concerns RMS, a program developed by the present author, but standing 
among several related programs in historical order. 2 7 The purpose of RMS ("reason maintenance system;" 
originally in the literature as TMS, "truth maintenance system") is to record and revise a set of database 
entries, carrying out these activities at the behest of a substantive program. RMS performs these duties 
by recording and analyzing reasons or justifications for database entries in terms of other entries. 

As a good first approximation, we can characterize RMS in terms of finitely grounded simple 
reasons and contradictions, strict transitions, an approximation to symmetric difference conservatism, 
and non-chronological backtracking. We justify these in turn as best we can. See [ D O Y L E 1983c] for a 
short, self-contained characterization of RMS. 

The reasons or justifications of RMS are exactly of the form of finite simple reasons with 
singleton conclusions, that is, A j | B ||— {c}. In RMS, the first set of elements is called the inlist, 
the second the outlist, and the sole element of the third ^he conclusion. In RMS, as in the simple 
reasons theory, the nature of the domain from which state components are drawn is left unspecified. 
RMS assigns a name to each domain component as it is presented to the system, and subsequently 
operates solely in terms of the internal name. Usually, these internal names are state components 
with trivial interpretations, but some of these may instead be designated contradictions with the 
empty interpretation. The only other state components are the reasons proper, which have the usual 
interpretation. 

RMS constructs database states to be finitely grounded extensions of the current set of reasons 
exactly as in the simple reasons theory. 

RMS revises the current state to assimilate new reasons added to the current set of reasons. 
It does this by temporarily removing from the state all components which might be affected by the 
new reasons, and by then adding back in as many as possible when valid reasons can be found among 
those left for components in limbo. Unfortunately, I know not how to exactly characterize the actual 
performance of RMS. It clearly realizes strict transitions because of the finite groundedness ensured 
by the remove-and-restore algorithm. The intent of the program also appears to be to construct a 
minimal perturbation with respect to symmetric difference conservatism. The principal predecessor 
of RMS would completely rederive the entire state following every subtractive kernel modification.2 8 

2 7 [ D O Y L E 1 9 7 9 ] , [ D O Y L E 1 9 8 0 ] 

2 8 [ S T A L L M A N A N D S U S S M A N 1 9 7 7 ] 
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To avoid this, its successors employed "incremental" recomputation of just that state subset directly 
affected by the changes. Unfortunately, this does not mean RMS actually realizes symmetric difference 
conservatism, since its aim was never mathematically formulated, and its procedure makes on-the-fly 
choices that were hoped to approximate the above relations. Its approximations may in fact be good, 
since it always examines reasons for a particular conclusion in the same order, and so may reconstruct a 
previous extension subset if it had not really been affected by the perturbation, but the procedures are 
complex enough to make this difficult to verify, and I bet there are counterexamples. It may be possible to 
correctly minimize the symmetric difference by recording the previous statuses of state components and 
attempting to reproduce them whenever choosing some partial revision, but that remains to be explored. 
RMS is an excellent example of a program suffering from ill-articulated and possibly ill-realized aims, in 
spite of conscientious care and labor in its design. 

RMS employs non-chronological backtracking to avoid pursuing any state containing a con­
tradiction. RMS backtracks by finding an alternative extension of its current state; precisely, by 
finding a likely perturbation and letting the ordinary revision procedures assimilate the perturbation. 
Unfortunately, here too I have no simple exact characterization of the process actually realized by RMS. 
Moreover, contradictions are not absolute, in that if RMS cannot find any alternative extension without 
the contradiction element (specifically, if it cannot be removed by additions to the current set of reasons), 
RMS simply proceeds in a state still containing the contradiction. Another difference is that while RMS 
recognizes and treats incoherence due to contradictions, RMS blindly fails to operate when the set of 
reasons is otherwise incoherent. 

RMS also interprets some of its records as "conditional-proof justifications." These are coun-
terfactual justifications, as in "I believe P because I would derive a contradiction were I to believe -«P." 
These justifications can be formalized in terms of comparative similarity relations on states. We inter­
pret a conditional-proof justification (A \\ B |(— C) |f— D by saying that D must be in S if C C Sf 

for every Sf £ JS such that A C Sr C Bc and 5 ' is as similar as possible to S under the chosen 
notion of similarity of states. Formalized in thi3 way, conditional-proof justifications are "oracles," in­
volving difficult computational problems that RMS avoided by means of a complex half-measure. In any 
event, there are very interesting connections to be explored between the comparative similarity relations 
one might use in interpreting conditional-pro of justifications and the comparative similarity relations 
derived from conservation relations. Understanding these connections might aid the correct and efficient 
mechanization of conditional-proof justifications. 

§47. While our characterization of RMS suffered in accuracy due to the program's inarticulate 
development, our next application is much clearer. This is the logic of default reasoning as proposed 
by R E I T E R , which turns out to be related to the linguistic reasons theory. 2 9 In the logic of default 
reasoning, states are composed of two sorts of elements: logical formulas, and defaults. Formally, D = 
$i © &2i where D\ is the set of closed wffs of a first-order logical language L, D2 is another set, and I— 
is the ordinary deducibility relation on The elements of D\ are called statements, the elements of 
D2 defaults. All statements are trivially interpreted, and all defaults are interpreted as special sorts of 
simple reasons involving only statements, specifically, if a1 £ Di, 1(d) = P Dy and if d £ D2, there are 
(possibly open) wffs a, c £ L, B C L, such that 

1(d) = {a} || -< I? |f- {c} = f | {S C D | aa £ S C (~^aB)c ^ ac £ 5 } , 

where a ranges over the set S of all substitutions of closed terms for free variables. We write iS and 2 S 
to mean S fl Di and S fl P2 respectively. The only general restriction on states is that their statements 

2 9 [REITER 1 9 8 0 ] , [REITER AND CRISCUOLO 1 9 8 1 ] 
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be deductively closed, that is, 

Z = {SCD\XS = Th{xS)}. 

As before, AExts = FGExts where for every d G D and S C Dy 

j(d,s) = {E\deE^[des V E-{d}\-{d} V 

3 e G 2 ^ 3 a G E J(e) = {a} || - B | | - {c} 
A G C ( - 1 <rB)c A d = <rc]}. 

(47.1) DEFINITION. The Reiter-extensions of S C P arc sete E C Di such that Ys{E) = 2?, wftere 
/or eacft X C Ts(X) is the smallest set satisfying 

(i)iscrs(x) 
(2)Th(rs(x)) = rs(x) 
(3) For each de2S andae E, if I{d) = {a} \\ B | | - {c}, aa G TS{X), and a B f l X = 

0 , tfien (re G T 5 ( X ) . 
This definition rephrases in our language the definition of "extensions" given by REITER. The equiv­
alence of this notion with our notion of admissible extension is seen as follows. 

(47.2) THEOREM. S O E iff 2S = 2E and XE = Ys(iE). 
PROOF, (only if) Let S <3 E. Clearly, if e G 2Ey then e E S, since there are no reasons in D 

which support any elements of D2. Since S C E, this means 2S = 2E. Now note that E satisfies 
conditions (l)-(3) of the definition of Ys, so Y s(iE) C E, hence Ts{\E) C XE. Next, since each element 
in Pi is trivially interpreted, 2E U Y s(\E) G QExts(S). But by the minimality of E among QExts(S)y 

E C 2E U Ys{iE), hence XE = Ys{iE). (if) Suppose 2S = 2E and VE = YS(\E). Since each element 
of D is trivially interpreted, this means E G QExts(S), so A W (S ,# ) C Now Aw(SyE) satisfies (l)-(3) 
of the definition of Ys, so E C A w (5 , # ) , hence S = A ^ S , # ) and S < J?. 1 

Note that in the logic of defaults, statements of the object language may not refer to defaults, 
while no such restriction is present in the theory of linguistic reasons. 

§48. The next example is the logic of propositional deduction as cast by McALLESTER in his TMS. 3 0 

The principal motivation for this logic is the view that a reason A \\ B ||- C really means A A ~*B ̂  C, 
and that all sources for reasoned assumptions lie outside the ordinary logical system. This motivation 
is captured as follows as a special case of our formalization of REITER'S logic of defaults. As before, let 
L be a first-order logical language, and D = D\ © D2y where Di = D2 is the set of closed wffs of £.. If 
d G L, we write id for its occurrence in Dx and 2d for its occurrence in D2y and as before, we write iS 
and 2S to mean 5 D Di and S 0 D2 respectively. The elements of Di are called statements, the elements 
of A > defaults. If xd G Du I (id) = P D, and if 2d G D2y I {2d) = 0 || {-»id} I H Ud} = {S C D | - id £ 
S ^ id £ S}. In this special case of the logic of defaults, we have for each d G D and S C Dy 

J(dyS) = {E\deE^[d£S V E-{d}\-{d} V d G £ i A [ 2 d G 2 # A - d g £ ] } . 

This logic weakens the logic for default reasoning by removing all power of discussing assumptions and 
their motivations from the states themselves. 

3 0 [ M C A L L E S T E R 1 9 8 0 ] 
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While this simple logical system may reflect M C A L L E S T E R ' S intent for the logic of proposi­
tional deduction, he actually proposes a specific deductively weaker system, a modal logic of sorts. 
In that system, d\ is the set of ground formulas of a first-order language extended with a modality 
T R U E and D% is the set of all formulas of the form T R U E ( p ) or - » T R U E ( p ) , where p is a ground for­
mula of the non-modal first-order language. The idea is that reasons A \\ B |f— C are translated as 
T R U E ( > i ) A - » T R U E ( I ? ) ^ T R U E ( C ) , and this is carried out as follows. In contrast to the preceding, we now 
define admissible states to be sets of formulas closed under a complex set of inference rules, rules which 
together combine to produce something less than ordinary deducibility. Everything except deducibility 
is defined as before, and we define f- to be the deducibility relation generated by the following abbrevia­
tions (explained immediately below). 

1. © T R U E ( p V ? ) © T R U E ( p ) © T R U E ( g ) 

2. © T R U E ( p ) © T R U E ( p V g ) 

3. © T R U E ( g ) © T R U E ( p V g ) 

4. T R U E ( p A < ? ) © © T R U E ( p ) © © T R U E ( g ) 

5. © T R U E ( p A g ) © T R U E ( p ) 

6. © T R U E ( p A g ) © T R U E ( ? ) 

7. © T R U E ( p => q) © © T R U E ( p ) © T R U E ( g ) 

8. T R U E ( p 3 q) © T R U E ( p ) 

9. T R U E ( p => q) © © T R U E ( g ) 

10. T R U E ( - n p ) © T R U E ( p ) 

11. © T R U E ( - p ) © © T R U E ( p ) 

Here © and © are "meta-negation' and "meta-disjunction." Each of the above statements abbreviates 
several inference rules corresponding to the logical structure of the ineta-formula. For example, # 7 
above actually stands for the three rules 

7.a T R U E ( p ^ q), T R U E ( p ) f- T R U E ( g ) 

7.b T R U E ( p ) , -. True(g) h- -> T R U E ( p 3 q) 
7.c T R U E ( p => q\ T R U E ( ^ ) h T R U E ( p ) 

Note the weakness of this I— compared with ordinary deducibility, in that T R U E ( p ^ q), T R U E ( - « p ^ q) \/ 
T R U E ( p ) . As with RMS, the exact conservation relation realized by M C A L L E S T E R ' S TMS is not clear, 
but seems related to the symmetric difference relation defined previously. Otherwise, the accuracy of 
this characterization of the weak logic of propositional deduction is easy to verify, as the above formulas 
merely paraphrase the definitions and explanations given by M C A L L E S T E R , where we write T R U E ( p ) 

and - ' T R I I E ( p ) for his (pArue) and (p.false). 

§ 4 9 . O U R N E X T E X A M P L E R E S T A T E S N O N - M O N O T O N I C L O G I C , O N E O F T H E FIRST F O R M A L T R E A T M E N T S O F R E A S O N E D 

A S S U M P T I O N S . N O N - M O N O T O N I C L O G I C I S B A S E D O N T H E I D E A O F P H R A S I N G R U L E S F O R M A K I N G A S S U M P T I O N S I N 

T E R M S O F L O G I C A L C O N S I S T E N C Y O F A S S U M P T I O N S W I T H O T H E R B E L I E F S . T H I S I D E A T R A C E S B A C K T O M C C A R T H Y 

A N D H A Y E S , W H O I N T R O D U C E B U T N E V E R D E V E L O P M O D A L I T I E S N O R M A L L Y , C O N S I S T E N T , A N D P R O B A B L Y F O R 

U S E I N T H E R U L E N O R M A L L Y ( P ) , C O N S I S T E N T ( P ) H - P R O B A B L Y ( P ) . 3 1 L A T E R , M C D E R M O T T A N D T H E P R E S E N T 

A U T H O R D E V E L O P E D T H E I D E A B Y P R O V I D I N G A F O R M A L T H E O R Y I N V O L V I N G S T A T E M E N T S O F T H E F O R M P A ^ R , 

W H E R E M H E R E I S A M O D A L I T Y I N T U I T I V E L Y I N T E R P R E T E D A S L O G I C A L C O N S I S T E N C Y W I T H O T H E R B E L I E F S , T H A T I S , M P 

M E A N S - > P I S N O T A C O N S E Q U E N C E O F C U R R E N T B E L I E F S . 3 2 S I N C E T H E N T H E R E H A V E B E E N O T H E R D E V E L O P M E N T S B Y 

M C D E R M O T T , S T A L L M A N , G A B B A Y , A N D M O O R E . W E D I S C U S S T H E S E B E L O W A S W E L L . 

W E C A S T T H E I N I T I A L N O N - M O N O T O N I C L O G I C A S F O L L O W S . L E T D B E T H E S E T O F S E N T E N C E S I N A FIRST-ORDER 

L A N G U A G E E X T E N D E D B Y T H E U N A R Y M O D A L I T Y M . W E L E T H - S T A N D F O R O R D I N A R Y D E D U C I B I L I T Y , A N D D E F I N E 

£ = {S C D I S = Th(5) A Vd £ D [-^d £ S V Md G S]}. 

3 1 [ M C C A R T H Y A N D H A Y E S 1 9 6 9 ] 

3 2 [ M C D E R M O T T A N D D O Y L E 1 9 8 0 ] 
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We make no nontrivial interpretations of elements of D, so JS = £ . For each d G D and S C D we 
define 

J(d,S) = { £ | d G # ^ [ d G S V £ - { d } h { d } V 3 e G 2 ? - e £ # A d = Me]}. 

Finally, we let AExts = FGExts, where # G FGExts(S) iff for each e G i? there is a finite set G C E and 
a well-ordering < G of G such that e G G and whenever d G G, either d G 5 or there is a set A < G d 
with A h {d} or d = Mf for some / G Ee. 

(49.1) T H E O R E M . S<\EiffE = Th(5 U {Md | - d g #}) . 

P R O O F , (only if) Assume S <j By the admissibility of E, {Md | ^ ^ £ } C J J , since S < E, 
S C E, and since # = Th(E), Th(5 U {Md \ -*d £ E}) C E. But if e G E, then every grounding 
set G for e contains a proof of e from 5 U {Md | -•d g E}, so E C Th(5 U {Md | d £ # } , hence 
£ = Th(5 U {Md | -id 0 #}) . (if) Suppose # = Th(5 U {Md | - d g E}). Clearly E G QExts{S). 
Furthermore, if e G every proof of e from 5 U {Md | d £ i?} is a grounding set for e in E, hence 
E G FGExts(S). B 

Thus a simpler characterization of the admissible extensions of S is as the fixed points of deductively 
closing S together with all the "assumptions" of consistency not ruled out in the admissible extension. 
This characterization also shows the equivalence of our definition with that of M C D E R M O T T and 
D O Y L E , since this fixed-point formula is exactly their definition. 

(49.2) C O R O L L A R Y . AExts = pAExts. 
P R O O F . Suppose S <3 E, S O Ef, and E C E'. Let A = {Md | -. d g E} and A! = {Md | -»d g 

E'}. Since E C E\ A D A', so by the monotonicity of Th, E' = Th(5 U A!) C Th(5 U A) = E. Hence 

Unfortunately, this logic is too weak, in that it does not enforce the intuitive interpretation of 
M as consistency. For example, the set of axioms { - I P , M P } is perfectly consistent in this logic, and 
its sole admissible extension contains no pair of contrary sentences. We can strengthen the theory to 
capture the intent by adding interpretations for each d G D of / (Md) = {5 C P | - » d £ S ' = £ = P} . 
With this added requirement, we remove from $ all elements of Z presenting an incoherent but not 
inconsistent notion of consistency for M, but lose the simple characterization of admissible extensions 
given in Theorem 49.1. 

E X A M P L E S . Here we use the strengthened logic. 
(49.3) S = {MP o P } , AExts{S) = {Th({MP => P , P } (J {MP, . . .} )} 
(49.4) S = {MP, - P } , AExts{S) = 0 
(49.5) S = {-. P , M(P A Q)}, AExts{S) = 0 
(49.6) S = { M P 3 Q , - Q } , A£sfc(S) = 0 

(49.7) D E F I N I T I O N . A set S C P has default form if every formula in S is either non-modal or has 
only non-iterated occurrences o / M in the form pAMgi A . . . A M ^ n ^ r, for some non-modal formulas 

(49.8) T H E O R E M . If S has default form and S <J E, then for each d G P, Md G E iff d E. 

P R O O F . Suppose S has default form and 5 <J E. By the admissibility of E, Md G E if -i d £ E, so 
suppose Md G i£. Then Md must have a proof from 5 U {Me | -i e ^ JB7}. But since Md is not in default 
form, Md £ 5 , and similarly, Md cannot appear as a conclusion of Modus Ponens in such a grounding 
argument, hence Md must be an assumption, that is, -i d £ E. Q 
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Unfortunately, a default form set S can be incoherent even if its natural translation S' in the linguistic 
reasons theory is coherent. REITER'S example is the set S containing just 

pi A Mgi ^ qi P2 A M<?2

 3 92 Pz A M $ 3 ^ qz 
qi ^ P2 q2 3 P3 93 3 Pi 

91 3 92 92 3 "» 93 93 3 91 

The translation of this, Sf, is a set of normal defaults, and so is coherent by Theorem 24.15 with 
extension Th(5'). But S itself is incoherent. To see this, suppose S <1 E. If M<ji, M<j2, M<73 £ E> then 

9 i > 9 2 » 93 £ ^> but these must be ungrounded, hence at least one assumption must be in E. E 
cannot contain two or more of these assumptions, since each rules out the previous one: for instance, if 

9i £ By then M^i £ E, hence pi D 9i £ Ef hence - 1 93 D 91 £ Ey hence -»43 £ E. But E cannot contain 
just one of these assumptions either, since one does not rule out both of the other two, thus allowing a 
second. Therefore 5 cannot be coherent. 

While the unwanted admissible states can be removed from the original non-monotonic logic 
by the surgical addition of nontrivial interpretations for modal statements, the surgery leaves an ugly 
scar, in that we no longer have a simple characterization of the resulting states. Fortunately, MOORE 
has discovered a better solution, which, simply stated, defines admissible extensions of 5 as sets E such 
that 

E = Th(5 U {Md I -.<* g E} U { - 1 M - . d | d £ E}). 
(See [MOORE 1983].) This definition remedies the weaknesses of the original non-monotonic logic while 
retaining a simple characterization of admissible extensions. We reproduce this idea by redefining the 
general restriction Z so that 

Z = {S C D\S = Th{S) AWde D[deS = ^M^deS A d£ S = M^d£ S]} 

and by redefining J so that for each d £ V and S C D, 

J(dy S)={E\deE^[deSvE-{d}\-{d} 
V 3 e £ P d = MeA-^e£E, 
V3e£E d=^M^e}} 

with the corresponding redefinition of FGExts. If we read -»M-i as "in" and M~> as "out," we see 
that MOORE'S requirement is to make admissible states omniscient about their contents, in that every 
admissible state S completely encodes the "in" and "out" sets, since iSr = { e | - > M - > e £ 5 } and Sc = 
{e I M- ic £ S}. MOORE suggests renaming non-monotonic logic as "autoepistemic logic" to recognize 
this sort of self-omniscience. 

Other approaches were taken towards remedying the weaknesses of the initial non-mono­
tonic logic, but they introduced other problems and so are less attractive than MOORE'S solution. 
McDERMOTT tried strengthening the weak logic by adding axiom schema and inference rules for M 
similar to those seen in classical modal logic. 3 3 He considered systems corresponding to the modal logics 
K, T, S4, and S5, which employ the inference rules 

M P : p, p ^ q H 9 
Nec : p |— Lp 

(here L abbreviates -* M ->) and the axiom schema 

T a u t : L(t) for all tautologies t 
K: L(p^ q)^>(Lp^Lq) 
T: Lp 3 p 
S4: Lp 3 LLp 
S5: Mp 3 LMp 

3 3 [ M C D E R M O T T 1 9 8 2 A ] 
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The resulting system including Nec, Tau t , and K allows inference of M P from M(P A Q), something 
not possible in the weak logic, and these additions make M P and -> P inconsistent. But the incoherence 
of {MP, -> P } in the weak logic is seen as a lack of self-omniscience, so T, S4, and S5 are added in one 
at a time to give the logic a description of its own sense of provability. No convenient characterization 
of the power of the systems of non-monotonic T and S4 are known, and unfortunately in the extreme 
case, these additions trivialize the logic by making all reasons invertible in non-monotonic S5. That is, 
in the system with Nec, Tau t , K, T, S4, and S5 we can conduct the following proof: 

1. MP=>P hypothesis 
2. L (MP => P) Nec, 1 
3. LMP = L P K, 2, M P 
4. L - . P ^ P T 
5. P ^ M P 4, tautologies 
6. P ^ L M P 5, S5, M P 
7. P 3 L P 6, 3, M P 
8. P D - . M - - P 7, rewriting 
9. M - . P ^ - > P 8, tautologies. 

Because of this, we cannot use the axiom M P ^ P to express a preference that P should be adopted 
before -»P, since from this statement we can infer M~«P ^ -»P, the opposite "preference." In fact, the 
motivations for the additional axioms seems to be to allow the logic to invert all of its reasoning by 
allowing the discussion of proof steps within the language, and as we saw earlier, theories of invertible 
reasons are bound to be trivial (an observation only made following McDERMOTT'S work). 

Yet another approach toward strengthening the weak logic was explored by G ABB AY. 3 4 Rather 
than add in axioms specifically to remedy weaknesses, as in the modal logic extensions, GABBAY began 
with models for intuitionistic predicate calculus. In these models, the set of beliefs is viewed as a set of 
theorems monotone nondecreasing in number with the passing of time. At each temporal instant in such 
models, M P is interpreted to mean "it is consistent at this instant to assume that P is true." While 
these models permit a motivated development of natural axioms and inference rules, they unfortunately 
trivialize the logic, for M P ^ P is semantically equivalent with intuitionistic -»P V P . Because of this 
equivalence, stating a "reason" like M P ^ P does not express any preference, but only requires that 
every model of the axioms begin with one of P or -«P being held true, without saying which one. 

Realizing the inadequacies of. the modal logic extensions of the weak non-monotonic logic, 
and discerning the need for non-invertible reasons that express preferences, STALLMAN proposed an 
extension of non-monotonic S5 which employs a unary modality, S, interpreted as "should be a theorem" 
in contrast to L's reading as "is a theorem." 3 5 All of the inference rules and axiom schema of non­
monotonic S5 are assumed, as is the new inference rule Sp I— p. This allows expression of defaults as 
statements of the form Mp ^ Sp. 

It is unfortunate that STALL MAN'S thoughts have remained unpublished, for they are very 
insightful. The present author developed his ideas about ratiocinative desires as expressed in the 
attitudinal theories of reasoned assumptions above by the fortuitous simultaneity of his attempts to 
express the logic of reasoned deliberation in non-monotonic logic and his attempts to understand the 
varieties and possible improvements of non-monotonic logics, during which he realized the possibility 
of identifying the "should" modality of STALLMAN'S logic with the notions of ratiocinative intentions 
or desires. This identification led naturally to the idea that the formal constructions of non-monotonic 
logic might be plausibly motivated in decision-theoretic terms. 

3 4 [GABBAY 1 9 8 2 ] 
3 5 [STALLMAN 1 9 8 1 ] 
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§50. To back away from this preoccupation with logically structured agents, we consider some elements 
of M I N S K Y ' S K-line theory of memory. 3 6 Unfortunately, his theory involves many ideas beyond those 
we formalize, so our presentation is meager compared with his. One does not do justice to M L N S K Y ' S 

conceptions to suppose the following representative of more than the simplest elements of his theory. 

For M L N S K Y , the mind is composed of a set of "mental agents." Each mental agent can be 
either active or inactive, and states of mind are simply sets of active mental agents. We can identify the 
set of mental agents with the domain D of the agent, and consider sets S G JS to be the admissible sets 
of active mental agents. 

The two specific sorts of mental agents we formalize here are K-lines and cross-exclusion 
networks. K-lines are mental agents that, when activated, cause the activation of some set of other 
mental agents. We formalize this by interpreting K-line agents as monotonic simple reasons. Specifically, 
for each K-line KL there is some set A C D such that I(KL) = 0 || 0 |(- A. 

A purely monotonic agent is not terribly interesting, and one source of non-monotonicity in this 
theory is that of cross-exclusion networks. These are sets of mental agents which are mutually inhibitory. 
Further, cross-exclusion networks facilitate "conflict resolution" by disabling or ignoring all members if 
two or more manage to become active despite their mutual inhibitions. This disabling allows activation 
of "higher-level" mental agents which can consider and resolve the conflict. We might formalize this 
by letting CXN be the mental agent representing a cross-exclusion network, D — the set of 
mutually inhibiting members, E = {e t}J l

= = 1 the indicators of which competitor wins out, and -> CXN 
a mental agent representing the existence of an externally forced conflict. To get the desired behavior, 
we define l(CXN) = 0 || {-, CXN} |f- D, I(di) = 0 \\ E - {e t} |f- {e t} for each T , and assume the 
existence of a "watchdog" WD such that I (WD) = {S C D \ [3 i =^ j < n euej E S] D -» CXN £ S}. 
This interpretation of WD cannot be expressed as a single simple reason, although it can be expressed 
as a set of n(n — 1) simple reasons. 

Finally, states of mind persist until changes are forced by inputs. It is impossible to treat 
persistence in detail without first formalizing many parts of the theory too involved to discuss here, but 
we point out that persistence is closely related to conservation, and its formal treatment may well take 
the form of transition comparison relations for use by a conservative agent. 

§51. Our final subject among theories related to reasoned assumptions is M C C A R T H Y ' S notion of 
circumscription.^7 Circumscription has figured prominently in discussions of non-monotonic reasoning, 
for like theories of reasoned assumptions, it formalizes certain patterns of unsound inferences important 
in artificial intelligence. Unfortunately, previous discussions have never proved successful at satisfactorily 
relating the two notions, in spite of their common motivations and superficially similar formal treatments. 
This section attempts an explanation of this failure of understanding. We first present a description of 
circumscription in its own terms, as formulated by M C C A R T H Y . This is prelude to our main conclusion, 
that when closely examined, the notions of circumscription and reasoned assumption are almost entirely 
unrelated, both conceptually and formally. This need not be an unhappy conclusion, if one enjoys 
richness in one's subjects of study. We conclude the section by sketching some practical and theoretical 
aspects of agents in which the two notions are combined. 

The idea of circumscription is that for each predicate occurring in a set of sentences in a logical 
language, on3 can construct an axiom schema which states that the only truths involving that predicate 
are those which follow from the original set of sentences alone. Put another way, the circumscription of 
some predicate states those conclusions which hold in all minimal models of the original set of sentences. 
For example, if the set of sentences states solely that red and blue are colors, circumscribing the sentences 

[ M L N S K Y 1 9 8 0 ] 
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with respect to the predicate "color" produces a theory in which yellow is not a color. Since the sentences 
do not mention yellow, there are models of those sentences in which yellow is not a color. Some of those 
are models in which red and blue are the only colors, so one of the conclusions in the circumscription 
of the sentences is that yellow is not a color, indeed, that red and blue are the only colors. This sort 
of inference is non-monotonic because if the original sentences are augmented with the statement that 
yellow too is a color, the color-circumscription of the augmented set no longer contains the conclusion 
that yellow is not a color. 

(51.1) D E F I N I T I O N . Let A be a sentence (or conjunction of sentences) in a first-order language con­
taining a predicate symbol P(x) = P{xi} . . . , x n ) . Write A($) for the result of replacing all occurrences 
of P in A by the predicate expression Then Circ(P,A)f the circumscription of P in A(P), is the 
sentence schema 

A{$) A V 2.(*(2) P{x)) 3 V x.{P{x) ^ $(2)). 

We write A [iV-P q iff q € Th({Circ(PyA)}). 

M C C A R T H Y observes that this definition can be extended to circumscriptions on two or more predicates 
simultaneously. 

To illustrate this formalization, suppose we know only one red-haired person, our friend Jane. 
If we see someone looking like Jane in the crude sense of merely being red-haired, we might, via 
circumscription, assume that that person is Jane, she being the only person we know fitting that 
description. This inference is non-monotonic, of course, since if we now learn that Jane has an identical 
twin sister Joan, we can no longer conclude that anyone who looks like Jane is Jane. Expressed formally in 
terms of McCarthy's circumscription, this example might be translated as follows. We start with the set 
of axioms A = {red-hairea\Jane)} and circumscribe on the predicate "red-haired" The circumscription 
of this predicate in A is the axiom schema 

$(Jane) A Vx{$(x) red-hair.ea\x)) Vx(r?,d-haired(x) ^ <P{x)). 

If we now substitute our only known instance of a red-haired person into this schema, that is, if we 
substitute the formula x = Jane for #(x), we get 

Jane = Jane A Vx(x = Jane ^ red-hairea\x)) ^ V x(red-haired[x) ^ x = Jane). 

The first two parts of this formula are true, and simplifying it leaves the resulting assumption or 
"default" Vx(red-hairea\x) ^ x = Jane) which we can apply to any new person that looks like Jane 
(is red-haired). Yet this inference is non-monotonic, in that if we add the new axiom red-haired(Joan) to 
A, we can no longer draw any such identifying conclusion. At best, we can infer via another application 
of circumscription the less specific conclusion Vx(red-haired(x) ^>[x = Jane V x = Joan]). 

(51.2) D E F I N I T I O N . Let M(A) and N(A) be models of the sentence A. We say that M is a submodel 
of N in P, writing M <P N, if M and N have the same domain, all other predicate symbols in A 
besides P have the same extensions in M and N, and the extension of P in M is included in its extension 
in N. The model M is minimal in P iff N <P M only if N = M. The sentence A minimally entails 
q with respect to P, written A fi^=P q, iff q is true in all models of A that are minimal in P. 

( 5 1 . 3 ) T H E O R E M ( M C C A R T H Y - D A V I S ) . If A\L\-p q, thenAfi,\=p q. 

P R O O F . Let M be a model of A minimal in P. Let P' be a predicate satisfying the left side of 
Circ(PjA) when substituted for <£. By the second conjunct of the left side, P is an extension of Pf. 
If the right side of the instantiated circumscription schema were not satisfied, P would be a proper 
extension of Pf. In that case, we could get a proper submodel Mf of M by letting M' agree with M on 
all predicates except P and agree with P' on P. This would contradict the assumed minimality of M. 
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(51.4) T H E O R E M ( D A V I S ) . There are satisfiable sentences with no minimal models. 

P R O O F . Let A be the conjuction of the following four sentences. 
(1) Vx3y Succ(xyy) 
(2) 3yVx -i Succ(xyy) 
(3) V x, y, z [Succ(x, y) A Succ(x, z)'^y = z] 
(4) V i , y , 2 [Succ(y, x)AS ucc(zy x)^> y = z] 

Every model of A contains a submodel isomorphic to the natural numbers. But this submodel contains 
an infinite chain of sub-submodels corresponding to the sets of natural numbers exceeding k for each 
natural number k. Hence A has no minimal model. | 

(51.5) T H E O R E M ( D A V I S ) . There are A and P such that A p\=P q but not Ay.\-P q. 

P R O O F . Let A be the conjunction of the following set of sentences. 
(1) 3 x Zero(x) 
(2) Vx,y [Zero(x) A Zero(y) D x = y] 
(3) V x 3 y Succ(x, y) 
(4) V i , y [Succ(xyy) D -> Zero(y)] 
(5) V x, y [Zero[x) 3 Plus(xy y, x)] 
(6) V x, y, 0 , uy v [Plus(xj y, 2 ) A Succ(y, u) A Succ(z, v) 3 Plus(x, uy v)] 
(7) V x, y [Zero(y) 3 Times(x, y, y)] 
(8) V x, y, 2 , v [Times(x, y, 2 ) A Succ(y, u) A Plus(z, x, v) 3 Times(xy u, v)] 
(9) V x, y, z [(Zero(x) V Succ(y, x) V Plus(yy zy x) V Times(yy zy x)) 3 iVum6er(x)] 

It is easily seen that there is a unique minimal model of A, namely the standard model of arithmetic. 
Hence A A*t= T V U M D E R 9 iff 9 is a true sentence of arithmetic. But the elements of Circ(Number,A) are 
recursively enumerable, while the truths of arithmetic are not, hence there are circumscriptively true 
but underivabie sentences. G 

I have repeated these definitions and theorems virtually verbatim from their sources, both 
because they are worth knowing, and to emphasize the intimate connection they illustrate between the 
circumscriptive rule of inference and the notion of entailment in minimal models. This is important, 
for in my view circumscription is a natural and proper topic within the main tradition of mathematical 
logic. The heart of standard mathematical logic is the study of the entailment relation: When do the 
models of one set of sentences include the models of some other set of sentences? Analyzing these 
relations between sets of models leads naturally to analyzing the structure of the class of all models, and 
as in most mathematical fields, there are natural orders relating the objects of study. In model theory, 
the model-submodel relation is one such order, so circumscription arises naturally when one studies 
entailment from the viewpoint of the model-inclusion order. Circumscription would arise naturally in 
mathematical logic even if no one cared about psychology, even if no one cared to mechanize intelligence. 
The notion of circumscription is logical, not psychological. 

On the other hand, the notion of reasoned assumption is psychological, not logical, at least as far 
as standard mathematical logic is concerned. Consider the theory of simple reasons. This theory captures 
essentially all the principal motivations and characteristics of reasoned assumptions, but few logical 
notions are in evidence. Instead, the important notions are the psychological concepts of intention or 
desire, and of economic or decision-theoretic tradeoffs between simultaneously unsatisfiable ratiocinative 
desires and intentions. Questions of entailment and deducibility are not prominent; questions of utility 
and feasibility are. One can, of course, view state components as axioms and admissible extensions as sets 
of theorems, but the existence of interesting finite agents realizing these theories belies the identification, 
for no familiar logic has only a finite language, or has as little structure among its sentences as do some 
perfectly rigorous simple reasons agents. 3 8 

Indeed, from the viewpoint of psychology, even the formal notion of axiom acquires nonlogical force, since the word 
word "axiom" derives from the Greek axioma and azios, words for worth or value and things thought worthy or valued. 
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These disparate notions have been confused because of the circumstances in which they were 
developed. Theories of reasoned assumptions can take logical form, as seen in the linguistic reasons 
theory, and their first formal treatment was in non-monotonic logic, which as we observed previously, 
attempted to phrase reasoned assumptions in terms of logical consistency with sets of axioms. Since 
only logical terms appeared in that development, non-monotonic logic claimed logical status. Thus oh 
one side, the properly psychological notions masqueraded as logical notions. But on the other side, the 
properly logical notion of circumscription found billing as a psychological notion, at least in artificial 
agents. Circumscription, of course, has application in certain psychologies, but that no more makes it 
a principally psychological notion than does the prevalence of carbon-based chemistry in human brains 
fit carbon for psychological prominence. It is instructive to compare the case of Modus Ponens. From a 
psychological point of view, circumscription and Modus Ponens are equally relevant, and equally foreign. 
Both are concepts from mathematical logic whose mechanizations find application in implementing 
certain psychological functions in certain agents. In this respect, circumscription is at a disadvantage 
because it is less mechanizable than Modus Ponens, and because much less is known about how and 
when to fruitfully apply it. But discretionary use of these techniques in implementing psychological 
functions does not make them crucial for psychological problems or make them psychological notions 
per se. There is really no more (and no less) need to "explain" the connection between circumscription 
and theories of reasoned assumptions than there is to "explain" the connection between Modus Ponens 
and theories of reasoned assumptions. 

The issue is further complicated by the deductivists in psychology and the psychologists in 
logic. Deductivists are those who, in carciature at least, view all psychological problems as questions 
of formulating the appropriate logical axioms so that all mental activity can be phrased in terms of 
deductions from these axioms. As a claim about interesting psychologies, this view is either preposterous 
or trivial, depending on how one interprets it. As a methodology for how to conduct research in artificial 
intelligence, it is much less preposterous or trivial, but not without its problems. Psychologists in logic 
are those who, again in carciature, view logic as the study of the "laws of thought," a more general view 
than that taken in standard mathematical logic, and one which leads to all sorts of extensions of logic to 
incorporate psychological concepts. As a methodology, emphasizing logical investigation of psychological 
concepts, this view too has its merits, however distasteful the abuse of the term "logic" is to those with 
classical views. But as a thesis that there are laws including and beyond those of logic that must be 
common to the psychologies of all rational agents, the claim is unsubstantiated and very suspect, not 
only due to the diversity of imaginable psychologies, but also because the notion of a natural, universal 
standard of rationality is itself suspect. 

It is important not to misconstrue this discussion of the psychological or logical centrality of 
certain notions as an attempt to mark boundaries between these fields, or to require labelling of all 
notions in terms of recognized disciplines. Topics in one field metamorphose into topics in the other 
quite frequently. But psychology's main aim is to study agents, their minds and their actions, and 
standard logic's main aim is to study truth itself. The two should not be identified lightly. 

Let us turn from distinctions to connections. On the practical side, almost nothing is known 
about when to circumscribe (in advance? when stuck?), what to circumscribe (all of the agent's beliefs? 
just a few?), how to circumscribe (mechanize mathematical induction?!), and when and how to retreat 
from circumscriptively obtained conclusions. The ideas extant (but mostly untried) run as follows. The 
preferred way of organizing logically-based agents these days is in terms of multiple, mutually referential 
theories; in the extreme, separate theories for each component for each concept, purpose, and activity 
of the agent. 3 9 In these contexts, circumscription seems suited to the formulation of defaults, which are 
then treated by the methods of reasoned assumptions. For example, one constructs a logical theory 
axiomatizing some concept, say rowboats. This "definitional" theory is usually incomplete, say by 
stating that the boat either can be rowed or lacks oars. One might employ circumscription to complete 

See, for example, [WEYHRAUCH 1980], [KONOLIGE AND NlLSSON 1980], [DOYLE 1980]. 
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the theory, computing all the main conclusions that follow in which the boat lacks any problems. 4 0 

These conclusions, such as the presence of oars, the soundness of the hull, etc., can then be added to the 
definitional theory in the form of default rules, making the assumptions whenever not specifically ruled 
out. Similarly, one might use circumscription "on demand" in problem-solving situations by routinely 
taking the statement of the problem and using circumscription to compute all the basic facts, for example 
definite lists of all objects and all predicate extensions, making those not already believed to be reasoned 
assumptions whose qualification is that nothing new is learnt about the problem formulation (new in the 
sense of not entailed by the initial formulation and hence in contradiction to the assumptions). 

On the theoretical side, one can attempt to connect circumscription and reasoned assumptions 
in several ways. First, one can formulate the definition of something like inevitability in terms of 
circumscription. Here one has axioms stating the presence or absence of some state components, and 
other axioms giving the interpretations of state components and general restrictions (in other words, 
embedding the theory of reasoned assumptions in the agent's own language). Circumscribing these with 
respect to the "present" predicate on state components yields conclusions about what must hold in 
all minimal models of the axioms, about what components are inevitable given the initial components. 
Unfortunately, I do not know whether one can make this suggestion precise in any interesting way. 

(51.6) QUESTION. Assume a linguistic reasons agent is axiomatized in the suggested way, and sup­
pose S C L has admissible extensions {E\,.. -,En}. Is it the case that circumscribing the axiomatization 
with respect to "present in the state" implies (or even is equivalent with) f\E\\f . . . V A ? 

Another possible connection is to consider circumscribing a set of linguistic reasons with respect 
to all predicates at once. One expects this to contain more conclusions than the intersection of all 
admissible extensions, simply because the circumscription will try to complete all predicates, while the 
reasons in the state will only complete certain predicates with respect to certain instances. 

(51.7) QUESTION. Suppose S C L in a linguistic reasons agent is coherent. Does the circumscrip­
tion of S with respect to all predicates properly include all sentences in Q AExts(S) ? 

More generally, we can ask for characterization of those psychologies in which important 
psychological notions match interesting logical notions "in the limit." The obvious candidate is minimal 
psychological entailment, even though it is not terribly important in the preceding development. 

(51.8) QUESTION. In what sorts of logically based psychologies is minimal psychological entailment 
the same as minimal entailment? 

Note that these questions are still problems for correct formulation rather than simply resolvable 
conjectures. 

There are sometimes computationally tractable ways of doing this, see for example [REITER 1982], 
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V. Conclusions 

§52. We have come to the end of this story, even though there is still much to tell. In the preceding 
we explored the principal approach taken in artificial intelligence to the problem of acting with only 
incomplete information, that of employing rules of thumb for making and revising assumptions. We 
interpreted these rules of thumb as ratiocinative desires about when to be or not to be agnostic, how 
to resolve ambiguities, and when to abandon previous assumptions. We presented a mathematical 
framework in which each of the constituent ideas underlying applications of the approach could be 
individually introduced and analyzed. Within this framework we provided mathematical semantics for 
ratiocinative rules of thumb, which one might call "admissible state semantics" since the meaning of 
each reason is a set of sanctioned "admissible" states. The formal basis allows mathematical formulation 
and proof of many conceptions previously known only to folklore, and we stated and proved a number 
of these results. However, compared to the probabilistic approaches common in other fields, theories 
of reasoned assumptions are still near the beginnings of their development. I am acutely aware of the 
essential triviality of some of the results presented, but allow that a new field must begin somewhere. 
Nevertheless, some of the results are conceptually important, whatever their mathematical depth, for 
instance Theorem 27.16, the strong validity-optimality of admissible extensions. Hopefully the formal 
basis will permit deeper understanding of the issues involved, since now many questions of formulation 
can be treated technically rather than merely debated philosophically, and perhaps permit attack on 
the important practical questions about efficient mechanizations of conservative agents. 

Many topics have been left for treatment elsewhere, either receiving no mention or only pass­
ing mention in the preceding. Among these come a development of the evolutionary theory in terms 
of the global structure of trajectory space; treatments of the abstract notions of reflection and conser­
vatism used here concretely; relations of ideas discussed to C A R N A P ' S theory of probability, D A C E Y ' S 

theory of conclusions, L E V I ' S epistemic actions, S H A F E R ' S theory of evidence, and L E W I S ' S theory 
of counterfactuals; 4 1 and development of practical revision systems satisfying attractive conservation 
specifications. 

§53. While I have tried to draw connections between the methodologies of artificial intelligence and 
other fields, I have tried to avoid methodological debate within artificial intelligence itself, and hope a 
very few words of explanation will be tolerated. It is easy to misunderstand the work presented in the 
preceding, for its aims are somewhat different than those usual in artificial intelligence. The preceding 
does not attempt to solve a problem in the usual sense. It offers no new algorithms for realizing mental 
functions. Instead, its aim is to understand the problems and approaches already known. This involves 
the mathematician's methodological suspicion that the original formulation of a notion may not be the 
best one, and that better formulations may permit deep analysis where only complexity reigned before. 
I call this enterprise rational psychology, the investigation of psychology by reason alone, choosing this 
name after the example of rational mechanics. I say no more here, as details may be found elsewhere. 4 2 

4 1 [ C A R N A P 1 9 5 0 ] , [ D A C E Y 1 9 7 8 ] , [ L E V I 1 9 6 7 ] , [ S H A F E R 1 9 7 6 ] , [ L E W I S 1 9 7 3 ] 

4 2 [ D O Y L E 1 9 8 2 ] , [ D O Y L E L 9 8 3 A ] 
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Table of Symbols 

Symbols appearing in the text are listed below in three groups. First are ones in the roman al­
phabet (alphabetically), second are ones in the greek alphabet (alphabetically), and third are other sym­
bols. Some symbols appear more than once to avoid confusions about ambiguities of classification. The 
text also standardly uses the letters a, 6 , c, dy e, / , g to mean elements of V, the letters A, B, C, D, E, F, G, 
S to mean subsets of D, and E, S to mean sets of subsets of P. 

AS A posteriori extent 
AExts Set of admissible extensions 
Alt Set of alternative states in backtracking 
Be Complement of B in Dy i.e. D — B 
C£ Conditional extent 
D Domain of an agent's states 
£ Relative frequency of element in distribution 
Exts Set of extensions of a set 
E Extended transition function (Epsilon) 
FGExts Set of finitely grounded extensions 
GExts Set of grounded extensions 
I State admissibility interpretation function 
J Extension admissibility interpretation function 
L "Provable" modality 
L A logical language 
M "Consistent" modality 
m Measure function 
N Natural numbers 
NP Class of non-deterministic polynomial time computable functions 
0 Complexity order class 
P Power set 
P Class of deterministic polynomial time computable functions . 

#P Class of non-deterministic polynomial time countable functions 
Pr Probability 
Prh Probability of coming to hold a component 
<2 Set of component-admissible states 
QExts Set of component-admissible extensions 
R Real numbers 
Z Global restriction on admissible states 
s S T A L L M A N ' S "Should" modality 
JS Set of admissible states 
T Trajectory space of a system 
Th Closure of a set with respect to h-
U Universe of a set 
V Set of valid reasons 

d Kernel transition function 
A Full transition function 
A Symmetric set difference 
E Extended transition function 
A Elements generated by all ranks 

Elements generated by rank a 
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J* Minimization operator 
Circumscriptive deducibility relation 

/*h Minimal entailment relation 
H K Minimal psychological entailment 

Minimal psychological derivability 
V Transition minimization operator ("nearest") 
E Set of closed term substitutions 

< G Well-ordering of G 
Comparison of transition sizes 

-< 
S Comparative similarity relation about S 

A Symmetric set difference 
< Extensions of sets 
<] Admissible extensions 
n Quasi-quotes 
A\\B\y-C Reason interpretation 
h- Deducibility relation 

Circumscriptive deducibility relation 
h= Entailment relation 

Minimal entailment relation 
h Psychological arguability relation 
IN? Psychological entailment relation in S 

Psychological derivability relation 
Minimal psychological entailment 
Minimal psychological derivability 

e Direct (disjoint) sum 
X Direct (Cartesian) product 
e "Meta-negation," see §48 
o "Meta-disjunction," see §48 
#p Class of non-deterministic polynomial time countable functions 

I 
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