
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE ENFORCEMENT OF SECURITY POLICIES FOR COMPUTATION

Anita K. Jones
Carnegie-MelIon University

and

Richard J. Lipton
Yale University

May, 1975

Jones was supported in part by the National Science Foundation under
contract DCR 75-07251 and in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-73-C-0074)
which is monitored by the Air Force Office of Scientific Research;
Lipton was supported in part by the National Science Foundation under
contract DCR 74-24193 and in part by the Army Research Office under
contract DAHC04-72-A-0001.

ABSTRACT

Security policies define how information within a computer system is to

be used. Protection mechanisms are built into these systems to enforce secu­

rity policies. However, in most systems it is quite unclear what policies a

particular mechanism can or does enforce. This paper precisely defines secu­

rity policies and protection mechanisms in order to bridge the gap between

them with the concept of soundness: whether a protection mechanism enforces

a specific policy for a given program. Different sound protection mechanisms

for the same policy and program can then be compared (on the basis of complete­

ness) to determine if one outperforms the others. We also show that the union

of mechanisms for the same policy and program can be taken to produce a more

complete mechanism. Although a maximal mechanism exists it cannot necessarily

be effectively found.

In addition to developing a theoretical framework in which to discuss

security we introduce the surveillance protection mechanism and show both

that it is sound and that it is more complete than the commonly used high

water mark mechanism.

KEYWORDS AND PHRASES: access control, completeness, high water mark, negative

inference, observability, protection, protection mech­

anism, security, security mechanism, sound, surveillance

mechanism, violation notice

CR CATEGORIES: 2.11, 4.30, 4.31

I. INTRODUCTION

Within computer systems we distinguish between different kinds of informa­

tion based on a variety of reasons (for example, privacy of individuals which

the information describes, laws, cost of theft); in addition, we wish to con­

trol how each of the different kinds of information is used. This problem of

information control is analogous to one in society, where we wish to control

who obtains certain information, the time at which they obtain it as well as

which of their subsequent actions are influenced by having the information.

Such control of information is difficult to implement in society. The con­

trol of information dissemination has proved to be difficult to implement in

computer systems as well and is currently the subject of study by many research­

ers: [Bell], [Jones], [Lampson], [Popek], [Schroeder], [Walter], [Weissman],

[Wulf].

The need for precise and complete understanding of the basic questions is

mandatory. To illustrate this, compare security enforcement flaws to compiler

design flaws. When a compiler error occurs, the users complain and demand cor­

rection. On the other hand, when a security error occurs, the violator does

not disclose the system flaw that allowed him to perform prohibited actions.

Often in the case of information theft, no trace remains to show that one

user read information private to another. For these reasons precision and

proofs are not a luxury, but a necessity.

While precision and proofs are required, in order to be credible the basic

framework must be simple and clear. No one will believe an unstructured sys­

tem is secure; just as no one will believe that a formal proof is correct if

*A children's tale observes that if one person knows a secret, it's a secret
but l f two people know a secret, it's soon public knowledge. '

-2-

it is too long or poorly structured. The proof of security properties of a

computer system is especially sensitive to this issue because such properties

span the entire system, not merely a single module of the system. We conclude

that to be useful the basis of a theory in the security area must be very simple.

This paper presents a framework in which the underlying principles of secu­

rity can be investigated. We believe it to be both precise and yet simple.

The basic elements of our theory are: a precise definition of a security policy

of information control, simple enough so that the ramifications of the policy

are clear, and a protection mechanism whose purpose is to 'enforce* a given

security policy. Further, we relate these two in terms of soundness and com­

pleteness. These terms are discussed informally below.

A security policy, defining what information is to be protected, has a

non-procedural form. The definition of a protection mechanism, on the other

hand, is procedural.

A protection mechanism is sound provided it enforces the given security

policy. Thus soundness is the bridge between the non-procedural security

policy and the procedural protection mechanism. Currently this relation is

unclear in existing security systems. When a software designer is asked to

define the security policies his protection mechanism can enforce his answer

is phrased in terms of a procedural description of some of the possible state

changes of his mechanism. Such a description is insufficient. A security

policy must be expressed in a language such that the policy 1s author is con­

vinced it is what he intended.

While the above discussion suggests that soundness is a binary relation

between protection mechanisms and security policies, such is not the case.

It also depends on just what attributes of a program 1s execution are observable,

-3-

i.e. visible to outside observers. For example an outside observer may or

may not be able to detect the running time of a program's execution. Thus

there are protection mechanisms which are sound only provided running time is

not observable.

Completeness is a measure of how well a given protection mechanism per­

forms. Sound protection mechanisms abound; the key is to find those that are

complete in that they allow the user to do as much as possible. The impor­

tance of completeness is unclear in current literature; here it has central

importance.

One way to evaluate a framework such as the one developed here is to see

what results have come as a consequence of the theory. There are four prin­

cipal results. First, we have developed a new protection mechanism called

the surveillance protection mechanism. Second, we can faithfully represent

parts of actual security systems in this framework. Third, we can show that

the surveillance mechanism is more complete than several other existing pro­

tection mechanisms. Fourth, we can show that there exists a maximal protec­

tion mechani sm. Though the. union of mechanisms can be used to derive increas­

ingly powerful mechanisms, the maximal protection mechanism cannot necessarily

be effectively discovered.

-4-

II. BASIC MODEL

The first concept to be defined is the concept of a computer program.

We define Q to be a program provided

Q: D..X.O.XD. -»E 1x...xE I k 1 n

where D. is the range of the i*"*1 input and E. the range of the output.

Q(x^, 0..,x^) denotes the n-tuple that corresponds to the input (x ^ . , , , x ^) ,

If Q(x^,...,x^) - y - | > . o . j y n we use Q^(x^,... ,x^) to denote y^ for i from 1

to n„

Programs defined here can be viewed in many different ways. A program

could be a 'cosine 1 subroutine with a single input parameter x^, specifying

an angle in degrees, and a real valued output cos(x.j). Alternatively, Q

could be an entire user job (perhaps composed of several processes) with

inputs x ^ j o . M x ^ ^ which are files and input x^ a stream of characters from

a terminal. Output could then be the files y-|»* #»»y n -| a n c * t^ i e terminal

output y ^ c An important feature, therefore, of this definition of program

is that it is independent of any particular model or grain of computation.

We now turn our attention to the study of protection mechanisms.

Definition. Suppose that Q: D.jX...xD k -> E 1x...xE n is a program. Then M is a

protection mechanism for Q provided M: D.jX...xD k -+ Ejx...xE^ and E | = E, U F

where F is disjoint from E i for all i, and for all X j , . . . , x k and 1 ^ i <> n

M i (x 1 . . s x R) « Q i (x 1 . . , x f c) or M i(x],...,x k) € F.

The set F consists of the violation notices of M.

-5-

A protection mechanism acts as follows: For input a and for each i

the mechanism decides whether or not to give the output value Q^(a). If it

decides not to allow this output, then the protection mechanism gives a viola­

tion notice from F. The key constraint on the protection mechanism M is that

it must act simply as a "gatekeeper" (see Figure 1) ; it can allow the normal

output or an output from F. Intuitively violation notices, i.e., elements

from F, can be thought of as alleged attempted violations. The definition of

protection mechanism is quite general in that the protection mechanism can

decide whether or not to output Q(a), based on any criterion at all. Note

that any program satisfying these constraints is a protection mechanism. We

make no assumption about whether it executes, interprets or even simulates the

program Q.

> output Q(x 1,...,x)

output violation notice(s)

Figure 1. A functional view of a protection mechanism for Q.

More concretely, suppose that a user submits a job to a computer system,

and then waits for his output from a line printer in a batch environment or

from an interactive terminal in a time sharing environment. In an unprotected

a denotes a
respec

otes a
1 » - - ^ a

k the actual input values for input variables x ,...,x
tively; the value of k will always be clear from the context] k

computer system the user will always receive Q (a) s that is, the result of

his computation* In a protected computer system he may or may not receive

Q(a): if his computations violated no 'rules', then he will receive Q(a);

otherwise, he will receive a violation notice.

It is important, to note that M always outputs something. This restric­

tion that M be total is an entirely practical one* In any real computer s y s ­

tem., programs are never allowed to run forever. Moreover, at the cost of

some complexity in our theory we could extend the concept of program to par­

tial functions, i.e. to programs that did not always halt. However, the cost

seems to outweigh the advantages; therefore, in this paper all programs will

be assumed to be total,

The purpose of protection mechanism is to 'control information flow 1;

in our framework this means to enforce security policies.

Definition. A s e cu r i t£j> o 1 ic£ I. for the j t n output of program Q: D x,..xD

E x. 9,xE is a subset of x,,*.*,^ « I n j k

We will refer to the set of security policies I , . . « , 1 for the outputs
I n

of a program co be the security policy I of the program.

Definition, The protection mechanism M is sound for program Q: D^x...xD k -»

E x.c.xE and security policy 1 provided for each output y, and associated
1 n J

policy I. « fx , c , , x \ there exists a program M ? : D, x...xDa -*E'x.. 8xE'
J M l V J-l J m 1 n i

such that

/ x , _ W x . M. (x.. , . . c ,x) = M'(x. ,...,x) .
1 K j I & J J -j J m

Intuitively the meaning of the security policy I, for an output variable

is: allow the output to depend on inputs from I, but not on any inputs which

-7-

lie outside of I . Therefore the protection mechanism M is sound for program

Q and security policy I provided that for each j , the output of M only

depends on inputs from I . We create a separate security policy for each

output variable since in many programs the otiputs are available in different

environments.

As an example, consider an accounting program, TAX, which accepts a tax­

payer identification file, NAME-ADDR, and another file (or set of files) FIN

describing the taxpayer 1s financial situation. TAX produces two outputs: a

bill for the taxpayer and a completed U.S. 1040 federal tax form. The tax­

payer receives both, but one copy of the bill goes to the author of the TAX

program. TAX is to be confined [Lampson] from disclosing to the author of

TAX any information private to the taxpayer, thus the bill is to depend only

on the name and address of the taxpayer, but not on his financial status.

(We assume that all bills for the use of TAX are for the same amount.)

Graphically TAX can be depicted

NAME-ADDR FIN
i L

^ output y is the 1040 form

output y 2 is the bill to
the taxpayer

•

output y^ is a copy of the taxpayer's
bill which goes to the author of TAX

For this program there are three security policies

1 1 = {NAME-ADDR, FIN},

1 2 = i = {NAME-ADDR}.

- 8 -

Thus a n c * a r e t o depend only on the NAME-ADDR file, presumably the name

and address of the taxpayer. A sound protection mechanism for TAX and (I^9I^9I^)

need only insure that neither copy of the bill depends on information in FIN.

We are defining a theory of security, a subject about which we have many

intuitive notions, so it is important to cover the very large class of secur­

ity policies that one might reasonably wish to enforce using a protection

mechanism in a computer system. We distinguish between 'access control 1 policies

which specify whether a particular access operation to manipulate an object con­

taining information is permitted and the more general 'information control'

policies which restrict the use of information. For example, enforcing an ac­

cess control policy which specifies that the operation READFILE(F) cannot be

performed on the object F, is not the same as insuring that the information in

F is not extracted. There may be a sequence of operations (excluding READFILE(F))

which in effect extracts the information encoded in F. Access control policies

do not take into account the semantics of the operations permitted and prohibit­

ed, and thus are a proper subset of the information control policies.

To illustrate the difference by an analogy, consider a painter (analogous

to a program) who is to paint a picture (the output) without green paint. This

could be enforced by an access control protection mechanism in the framework

we have already defined, provided all the green paint were in a known set of

pots. A sound protection mechanism would simply not allow the painter to

dip his brush into those pots.

However, the policy of forbidding the use of green paint is not an access

control policy; it is an information control policy; for if the painter is

simultaneously able to obtain blue and yellow paint, he can mix green paint

and use it, violating the original policy to be enforced. Most protection

-9-

mechanisms found in extant programmed systems, particularly operating sys­

tems, are capable of enforcing some subset of the access control policies

and not the more general information control policies. We have not restrict­

ed our framework to access control policies, though we could alter it to do

so. Instead we consider a subset of the larger class of phenomena the

information control policies. This should become evident in the presenta­

tion of the surveillance protection mechanism in the next section.

The definition of sound is central to our theory. Is it correct? More

exactly, does the mathematical definition of sound correspond to our intui­

tive notion of what it should be? Since this is an extra-mathematical ques­

tion, no proof can be found. However, we believe that it does correpond to

our intuitive notion provided the Observability Postulate is valid. The

Observability Postulate states that:

'All observable attributes of a program are actual outputs.'

That is, all ways a program can communicate information to an outside observer

are a priori specified. Two examples should help demonstrate the importance

of the Observability Postulate. Consider first the case of programs which

have as output a single computed value, available outside the program after

termination of the program's execution. In this case the Observability

Postulate is easily shown to be violated: The following program M that always

outputs '1' would appear by our definition to be sound for any security policy:

-10-

(START)

no

1 r
Loop for
1 0 3 steps

0
r

y «- 1

r
f HALT J)

Note that the argument that M is sound for any policy is based on the fact

that M is a constant function. However, we can simply observe the running

time of M and conclude whether x^=0 or x ^ O . This failure of our notion of

sound stems not from any failure in our definitions, but from the fact that

the Observability Postulate was violated. M ! s running time was an implicit

output.

The above example is compatible with our framework as follows: Let us

agree that programs will output not just computed output value(s), but a sum­

mary of their entire computational history. In this case, they will also

output a single variable T (standing for ftime', the only computational history

observable) which is the elapsed real time, the elapsed compute time or the

number of steps executed. Now, the Observability Postulate is no longer vio­

lated. In the above program M is no longer a constant function: the length of

its computation depends upon x^; hence, M is not sound for the security policy

I = (x 2) or I = { } \

\ } denotes the empty set.

-11-

By the nature of computer systems, there are a set of attributes of

computation which may be observed. The pattern of sound waves produced by

printer hammers hitting a revolving print chain may be sufficient for an

eavesdropper with some sound equipment to detect what is being printed.

Heat radiation of computer components may be detectable. The pattern of tape

movements can encode information visably detectable by someone in the computer

room. Even patterns of a program's use of operating system resources may be

detectable by other programs. This, too, constitutes a (potential) output.

Before a sound protection mechanism for a program can be defined, all

these observables must be specified as outputs of that program. In the

'worst case', the program will be defined to output Sn,...,S where is
U m U

the initial state of the program, S is the final state and S. , follows
m l-l

directly from for i=0,...,m-l. What comprises the state has been determined
by what a priori is known to be observable.

One further example should reinforce the subtlety and importance of

the Observability Postulate. Let our programs have inputs that are placed

on a linear 1-way read only tape (automata theorists read Turing tape; non

automata theorists read magnetic tape) with the read head initially at the

leftmost character:

x1 x 2 K 3 • • •

Consider a protection mechanism M and the security policy I = {^2}' W e a s s e r t

that M can never both read x 2 and also be sound as long as our programs output

their entire computational history. This follows since in order for M to get

-12-

to the part of the tape where x 2 is stored it must move across . Even

if M does not 'look at x^ 1, it will encode the length of x^ into the

computation sequence of M; hence, M will not be sound. Now we see that our

definition of sound is quite correct in not allowing M to be sound. However,

suppose that we wish to be able to allow inputs to be on linear tapes; how

can we avoid this problem? One answer is to add a new operation, say, tab(i).

This operation in one step causes the read head to jump directly to the input

part of the tape corresponding to x^. Now we can indeed have a protection

mechanism that can read x^ and is sound. But a new problem arises: is the

Observability Postulate still valid? Perhaps tab(i) takes time dependent on

the length of X- 9•.* 9x. 1 > and moreover perhaps this time is observable.

This is the crux of the problem and there seem to be two answers: (1) run

tab(i) so that it uses constant time or (2) apply our methods recursively to

tab(i).

In general we can always attempt to make the problem of constructing a

protection mechanism easier by causing execution attributes to be made non

observable, i«e,, by limiting the range or even the existence of outputs. For

instance the program M in the first example is sound for I = (^2) o r 1 = ^

if it is run in a batch environment where its running time cannot be determined

by the user who submitted the program to be run.

While soundness is the key bridge between protection mechanisms and secur­

ity policies, the central issue is not just to construct sound protection mech­

anisms. The protection mechanism that always outputs some fixed violation

notice is certainly sound -~ it is also useless. (It's equivalent to pulling

the computer's plug out of the walll) We are therefore led to consider the

concept of how 'complete 1 a protection mechanism is.

-13-

1 2
Definition. Suppose that M and M are protection mechanisms for the same

1 2 1 2 program Q and policy I. Then M is as complete as M (M > M) provided for

all inputs a,

if M ^ a) £ Q (a) ~ , then M 2(a) Q (a)

1 2 1 2 1 2 Also M is more complete than M (M > M) provided M > M and for some a,

M ^ a) = Q(a) and M 2 (a) ^ Q (a) .

The relation > is a partial ordering on the protection mechanisms for

a given program and policy. Also, > is a practically motivated ordering:

1 2
Consider a single output program with two protection mechanisms M and M .
1 2 1 2

M > M implies that M never gives a violation notice when M does not.
1 2 This implies that the utility of M is at least as high as that of M , for

one is only interested in getting non-violation notices. Note, however, that
1 2

if M > M for a multi-output-variable program and both give a violation

notice given the same input a, that violation notice may not be for the same

output variable.

We can show how to 1 join 1 two sound protection mechanisms to form a

new sound one which is as complete as each of the other two.

1 2
Definition. Suppose that M and M are protection mechanisms for Q. Define
1 2

M U M to be the protection mechanism M defined by

[Q(a) provided 3i, M 1 ^) = Q(a) 9 ± e (] > 2)

jM 1(a) otherwise

The key property of union is that if either M 1(5) or M 2(5) i s the s a m e output

M 7(a) Q(5) if t h e r e i s a n y o u t p u t M l (S j € F_

- 1 4 -

a s Q (i) , then so is the union, M 1 U M 2 (D . Otherwise since both M 1 (a) and
.1 .. -2 2 - i M (a) include at least one violation notice so does M U (a).

1 2
Theorem 1. Suppose that M and M are sound protection mechanisms for program

1 2

Q and security policy I. Then M U M is a sound protection mechanism for Q

and I. Moreover, M 1 U M 2 > M 1 , M 1 U M 2 > M 2 , M 1 (J M 2 > M 2 U M 1 and M 2 U M 1 >

M 1 U M 2 .
Proof. Immediate from the definitions.

We can easily generalize Theorem 1 to show that from the sound protec-

1 2

tion mechanisms M ,M ,... we can form one all encompassing sound protection

mechanism M = M^ U M 2 U . •. such that M > M*. Indeed it can easily be shown

that the sound protection mechanisms form a lattice; however, we shall not

need this observation in the sequel.

Theorem 2. For any program Q and security policy I there exists a sound protec­

tion mechanism M for Q and I such that M is maximal. That is, for all sound

protection mechanisms M 1 for Q and I, M > M 1 .

Proof. Let M = (M 1 |M! sound for Q and i) . Let M then be

Nei

Then as in Theorem 1, M is a sound protection mechanism for Q and I. Clearly,

as in Theorem 1, M > N for any sound protection mechanism M; hence, M is maximal.

We have established that the maximal protection mechanism always exists;

however, as we shall show in Section V, they cannot always be constructed.

-15-

Therefore the central problem is: given a program Q and a security policy

I, find a sound protection mechanism M that is as 'high 1 as possible under

the completeness ordering. In the next two sections two protection mechanisms

are presented. Later in Section v these and other mechanisms are compared

under the > ordering.

III. SURVEILLANCE PROTECTION MECHANISM

This section both illustrates a new protection mechanism and the frame­

work developed in the preceding section. In order to define this mechanism

we will first restrict our programs to be flowcharts with a single output.

We will then show how to assign to each flowchart and security policy a pro­

tection mechanism called the surveillance protection mechanism. This protec­

tion mechanism is then proved to be sound in Theorem 3.

Definition. A flowchart F with input variables x 1 > • • • > \ Program variables
v 1,...,v m and output variable y is a finite connected directed graph whose

nodes are boxes of the form:

1. START BOX:

2. DECISION BOX:

ASSIGNMENT BOX:

4. HALT BOX:

{ START

FALSE TRUE

E(w)

(HALT ^

(B(w) is a predicate)

(E(w) is an expression
and v is a program or
output variable)

Since „e are concerned with eKecuti„ 8 program e x p r e s s e d a s f l „ „ c h a r t s >

»e assure ourselves t„at t h e observability Postulate Is vallo. W e „ m

- 1 6 -

assume that each flowchart F defines a program Q as follows:

Q: t s lX . . . x f \ s] - (M X M)

k copies

where k is the number of input variables of F and is the set of natural

numbers (i.e. fN = (o,1,..,^).

Suppose now that a is an input for Q. Then Q(a) is a pair, the first

component of which is the computed output and the second component of which is

the number of steps executed. We ascribe to the flowchart F the usual seman­

tics: There is exactly one start box; execution begins there by initializing

x to a, and r and y to 0 and 0 . C is defined to be the program counter of F, a

variable which contains the name of the next box to be executed. C is initi­

alized to contain the successor of the start box. Execution then follows the

logic of the flowchart; at a decision box the path corresponding to the predi­

cate's truth value is taken. The predicates in the decision boxes and the ex­

pressions in assignments are assumed to be interpreted in the sense of schemata

theory [Manna]; however, no specific assumptions are made about what predicates

and expressions are allowed. Note that inputs do not get assigned during a

computation*

A halt box is executed by making available to the external world an ordered

pair consisting of the value of y and the number of steps executed.

Definition. Suppose that Q is a flowchart program. Associate with each

Therefore we will be encoding running time. We might have chosen number of
page faults, kilowatt-hours consumed, or the sequence of boxes executed. How­
ever, we have arbitrarily selected running time as a representative attribute
of execution that is observable.

** 1 flowchart program Q' is a shorthand for 'flowchart that defines the pro­
gram Q 1 .

-17-

variable v of Q (input, program, output) a new boolean valued

variable v called the surveillance variable of v. Suppose further that I is

some security policy for Q. Then the surveillance protection mechanism M cor­

responding to Q and I is the flowchart program that is constructed as follows:

The surveillance variables are program variables of M; the input, program

and output variables of Q have the same role in M. M follows from Q by the

following transformations :

1. Insert directly after the START box assignments that set v to true

if v is an input not in I and false otherwise.

2. Replace the assignment box in Q

L_
v <- E (w ,... ,w)

I D

T
by the following

TRUE

A is a new symbol.

1

. . V W J > —

FALSE
f

1 f

v «- E(w r...,w) v «- A"

1 f r

v «- false v <- true

1

«—
1 >

- 1 8 -

3. Replace the decision box in Q

by the following

(HALT)

Where a flowchart program Q has a range (|)s| X fy\J), the surveillance pro­

tection mechanism for that flowchart and any security policy has a range

((| Y J U (A}) X [K|)* The surveillance mechanism can produce a computed output

A, which can be called the fnull output 1. A violation notice for the surveil­

lance mechanism is of the form (A,i) where i 6

Theorem 3. If M is the surveillance protection mechanism for the flowchart

program Q and security policy I,, then M is sound for Q and I.

A detailed proof is omitted. However, an easy induction argument shows

that no input variable v not in I is ever used in any assignment or decision

box that is executed. In order to show that M is sound we need only show it

is equal to M F where M 1 is the same flowchart as M except that all occurrences

of v not in I are replaced by some new 'dummy 1 variable.

In order to illustrate the surveillance protection mechanism, consider

the flowchart program :

-19-

Ç START

TRUE

loop A F O R 1 Q 3 s t e p £

C HALT *)

where A is some computation that loops for some large, but bounded number of

steps. Now Q 1 ^) always halts with y=l ; however, Q 1 ^) = (1 ,n) where n is

the number of steps executed in computing Q 1(x^) clearly depends on x^. Now

let us consider the surveillance protection mechanism M 1 for Q 1 and the secur­

ity policy I = ^ T h e n M*' is

(^~START)

1

^ +- true

r

y *- false

For any X l , m'cx,) = (A,5)\ That output which is a violation notice indicating

that five steps were executed, i s independent of x , . Thus the surveillance

r e l y ™ L^inU - r i a b l e T ' 7 l n d l « t l n * t h a t computed output should

-20-

protection mechanism always outputs the same answer in the same time and

theie is no way to infer from the output of anything about the value of in­

put x.j.

A pertinent question is: how can one implement the surveillance protec­

tion mechanism? First, the surveillance protection mechanism could be imple­

mented as part of an interpreter. Since surveillance variables are boolean

valued, this would use only a fairly small amount of space, However, the

time required would likely be large. Second, the surveillance protection mech­

anism could be implemented as part of a compiler. One could have a compiler

generate either in line code or procedure calls to update and test the surveil­

lance variables as required. It is likely that such an implementation would

execute more rapidly than the interpreted version. Third, the surveillance

protection mechanism could be implemented in hardware. Each boolean surveil­

lance variable could easily be represented in microcode at the cost of one bit

per variable.

Fourth, a new protection mechanism functionally equivalent to the surveil­

lance mechanism could be defined. It would be in the form of a compiler which

mapped a program and a security policy into a new program which would be iden­

tical to the surveillance mechanism for that program with all computation on

surveillance variables evaluated at compile time and thus removed. The example

program would be mapped to

1 r
y -• 1

1 I
I HALT J

At the cost of possibly generating programs larger than the original flowchart

programs the compiler mechanism could allow specification of security policies

to be postponed at the time of program invocation.

-21-

IV. HIGH WATER MARK PROTECTION MECHANISM

In the last section the surveillance protection mechanism was presented;

here we will present a second protection mechanism called the high water mark

protection mechanism. It is essentially the basis for some government, par­

ticularly military, information systems; it is also an abstraction of the pro­

tection mechanism used in the ADEPT-50 operating system described in [Weissman].

The high water mark protection is included here for two reasons: (i) the fact

that we can represent it demonstrates the power of our framework; (ii) it is

both sound and unsound 1 The reason for the latter requires some further

explanation that depends on the Observability Postulate.

The high water mark mechanism is sound only in the case that the observ­

ables do not include certain attributes of the computational history of pro­

grams. If flowchart programs output their history, for example their running

time as in Section III, then the high water mark protection mechanism is un­

sound. Essentially it is unsound since it cannot detect that a program is

leaking information by varying the run time (as we will later show).

On the other hand, suppose that we modify the definition of flowchart programs

so that they only output their computed output variable values. Then we can

prove that the high water mark protection mechanism is sound. It is interest­

ing to note that our framework is general enough to allow a mechanism to be

both sound and unsound under varying specifications of observables.

In order to define the high water mark protection mechanism, let Q be a

flowchart program and let I be a security policy (for the moment we will not

specify whether or not Q outputs its computational history as well as its

computed output variable). We further assume that we are given a set F

-22-

linearly ordered by > and a function from the variables of the flowchart

Q to the set F. We also assume that there exists an element p in F such that

for any v in I and any w not in I,

We intuitively interpret this as follows:

1, F is a set of 'classifications 1 such as 'top secret', 'secret',

'confidential', 'public' which are ordered so that

top secret > secret > confidential > public.

2. Initially all the variables in a security policy I are given some

classification equal to or lower than p; all other variables are

given some classification higher than p.

As in the construction of the surveillance protection mechanism we associate

with each variable v of Q a new variable v: v has values in F. The high

water mark protection mechanism M is constructed by the following local trans­

formations on Q:

1. After the START box initialize all variables v to F Q (v) .

2. Replace the assignment box

F n(w) > p ;> F.(v) .

i
v «- E (w 1» • • • 9

by

a a b if a > b or a = b.

-23-

A A l i

v <- WjU. . .Uw Uv* n

i
v E(w 1 , • • • ' V

3. Replace the decision bo

by

T R U E „ FALSE

where C is the variable which

FALSE

we associate with the program counter

4. Replace any HALT box by

TRUE

1 f
HALT

FALSE
y «- A HALT y «- A —0 HALT

where A is the null output value introduced earlier.

Theorem 4. When flowchart programs only output their computed output variables

then the high water mark program mechanism is sound.

For a,b Ç F: a U b = maximum under the order

program,

-24-

A detailed proof is omitted. The idea of the proof is contained in the

name fhigh water mark'. The sets v simply keep track of all assignments to

v. Note in the assignment v *- f(w) s v is replaced by v and w; thus, the sets

v are 'monotone': once an element is placed into them it must remain there.

Finally a violation notice (L e . A) is given if either the output y or the

program counter contains any a £ F which is of higher classification than p

when the halt box is executed.

In contrast to Theorem 4 we can see that the high water mark protection

mechanism is unsound when programs output their running time. It suffices to

again consider the following program 0:
START J

F A L S E R « o > ™ ? E
1 - i — h pTo(

—1JL:
loop for

3

J y - 1

(^~HALT~)

The high water mark protection mechanism M for Q always outputs a violation

notice in the form (A,i) However, the length of the computation sequence of

M depends directly on x 1: if x] = 0 it is 4 ; if x] / 0 it is 10 + 4 . There­

fore, in this case the high water mark protection mechanism is unsound.

We stated earlier that the Observability Postulate must always be valid •

all potential outputs of a program must be known. This discussion provides

one illustration of a protection mechanism which is ineffective or unsound

when those observables ara of a certain class, i.e. running time.

-25-

V. COMPARISON OF PROTECTION MECHANISMS

In the last two sections the surveillance and high water mark protection

mechanisms were presented and both were shown to be sound under the assumption

that programs output only their final states. As noted earlier, sound is only

part of the story; here their ordering with respect to completeness is con­

sidered. While soundness is all or none we will see that with respect to

completeness there is indeed a spectrum of possible values.

First let us consider the surveillance and high water mark protection mech­

anisms. In order to make this comparison meaningful we assume as before that

programs only output their computed values. Suppose that M is the surveil-

lance protection mechanism for some flowchart Q and security policy I and M

is the high water mark protection mechanism for Q and I. It is easy to see
S H

that M > M is always true. The following simple flowchart and the policy
f \ S H
\^2J s h ° w s that M > M is possible:

f START ^

r

y «- x 1

i i
y «" x 9

I HALT)

S H In this case M always outputs the value of y, but M outputs A. Intuitively

surveillance is better here since it allows 'forgetting' while, high water mark

does not. A more impressive example of forgetting is the follox^ing:

Suppose that during a program Q's computation it must use a block

of memory that earlier held 'sensitive data 1. Surveillance will al­

low Q(a) (a = the input value), provided Q correctly 'zeroes 1 out

- 2 6 -

the block of memory; the high water mark mechanism will never out­

put Q(a), even after this zeroing.

A skeptical reader may reply that this example is artificial. Why not just re­

write Q so that no unneeded assignments are performed? But consider the case

of a program where early in the program a variable is assigned a value which

is never subsequently used before the variable is reassigned. This is indeed

reasonable: often in software that value would have been used had the inputs

been different.

While surveillance is more complete than high water mark it is not maximal,

i.e. it is not the mechanism that produces the fewest violation notices. In

order to see this consider the following program Q:

(START)

Let I = (x 2 } be the security policy. Then the surveillance protection mech­

anism M for Q and I always output A : M never even executes the decision box

since x 1 £ I. However, consider the following protection mechanism M1 for Q:

(START J

1

y - i

HALT

-27-

It is easy to see that M f is sound for Q and I. Since M f > M we see that the

surveillance protection mechanism is not maximal.

The reason that the surveillance protection mechanism performed poorly

on is that once we branched on x^ there was no way for surveillance to de­

tect that the assignment to y was independent of x^. For the remaining part

of this section we will investigate how to modify surveillance so as to make

it more complete. We will continue to assume that programs only output ex­

plicitly computed values. This is done only for definiteness; whether or not

programs also output their running time or any other attribute makes no dif­

ference in the following analysis..

As a step in the direction of improving surveillance suppose that we modi­

fied it so that it could detect flowchart occurrences of the form:

For these 1 îf then else' constructs could we make all future computations inde­

pendent of whether the then or the else path was taken so that the resulting

protection mechanism is still sound? The answer is yes and is demonstrated by

looking first at the example if̂ then else of Q:

FALSE

-28-

Clearly, the above is functionally equivalent to

w «- fCx^

where f(x) - if x = 1 then 1 else 2. Let us transform Q, into Q

(START)

k-f(*-,)

C HALT J

Now the surveillance protection mechanism for Q 1 and I = always gives the

output 1, just as M 1 did.

This example is just an instance of a general way to generate many dif­

ferent protection mechanisms: Given a program Q transform it to Q' where Q

and Q ! are functionally equivalent. Then apply the surveillance protection

mechanism to Q' to yield a sound protection mechanism for Q. The above 1 if

then else 1 transform is but one of many. For instance, we could create a

1 for loop 1 transform that operates on
i

in a way analogous to the jLf then else transform. Indeed transforms can be

created for all single entry and single exit structures.

Is the application of such transformations always advisable? Unfortunately

the answer is no. Consider the flowchart program Q:

- 2 9 -

(START

(HALT "*)

Let I = {x<^} be the security policy again. Let M be the surveillance protec­

tion mechanism for Q and I; also let M 1 be the protection mechanism that cor­

responds to the rf then else transform on Q. Clearly since M 1 is the surveil­

lance protection mechanism for the following program:

START

• . !
1 y ^ if x 2 = 1 then 1 else x

HALT ~)
M 1 always outputs A. On the other hand, M outputs 1 provided x^ = 1 ; hence,

M > M f . Thus, the danger is that since one does not know which branch was

taken one must assume the worst case.

In summary, whether to apply a transform or not is not a clearcut decision.

The optimal way to do this is yet unclear. Indeed we can prove that there is

no effective way to get the maximal protection mechanism.

Theorem 5. Given a flowchart program Q and a security policy I it is not ef­

fectively decidable if M is sound and maximal for Q and I.

Proof. Consider the following program Q and the security policy I that is the

empty set:

-30-

(START)

1 f

TRUE FALSE

(HALT

Let M be the maximal protection mechanism. We assume that A (x) is the result

of some arbitrary total function with A(0) = 0. Now clearly M(0) = 1 or A.

We now claim that

(1) M(0) = 1 if and only if Vx A(x) = 0.

Since I is empty, M must be a constant function. If Vx A(x) = 0, then M

always equal to 1 is clearly maximal. Now assume that A(b) j=- 0; we must show

that M(0) 1. Clearly, M(b) = 2 or A. Incase M(0) = 1, M cannot be constant;

hence, (1) is true.

Now (1) shows that if we can effectively construct M, then we can effec­

tively determine whether or not Vx A(x) = 0; this, however, is impossible. •

The fact that the maximal protection mechanism is not effectively construc­

tible should be contrasted with a similar result from capability theory

[Harrison]. Essentially it has been shown that one cannot effectively deter­

mine if a program will ever make an 1 illegal access 1. This results from the

fact that it is impossible to a priori determine which execution sequence a

program will take. In a sense, therefore, one cannot determine statically

-31-

(or at compile-time) whether or not a program will behave properly. On the

other hand, Theorem 5 demonstrates that it is impossible to determine whether

or not a program has obtained 'illegal information 1 even if the exact execu­

tion sequence is known. (Recall protection mechanisms can be completely

dynamic.)

VI. PROTECTION MECHANISMS EXTENSIONS

The surveillance protection mechanism for flowchart programs is not suf­

ficient for practical computation. If possible, it should be extended to more

complex programs: programs that allow procedures, pointer variables, and

parallelism are possible candidates. Some of these extensions, as indicated

in Section V, will be straightforward. Others, however, may be difficult.

We wish to discuss a simple example of the difficulty of correctly extend­

ing the surveillance mechanism. Hopefully this example will show some of the

subtleties of the area of security enforcement.

As in Section IV we will for the rest of this section assume that pro­

grams only output their explicitly computed outputs. It is under this

seemingly simplifying assumption that we will present an example of the

difficulty of extensions to the surveillance mechanism.

A reasonable extension to the surveillance method is the following: Sup­

pose that R is a single entry and single exit part of a larger flowchart; for

example, R is

- 3 2 -

TRUE

1

v «- E(r)

Then let the surveillance method transform R into:

TRUE

(HALT)

FALSE

usual transformation of
the assignment

The rationale here is that since R is single entry and single exit soundness

can only be violated by executing the assignment; if the assignment is not

executed, then there seems to be no way to 1 remember 1 which branch of the deci­

sion box was taken. The claim would then be that this method is sound. This

method is attractive since it is higher under the > ordering than the surveil-

lance method. Unfortunately, this extension is not sound. In order to see

this consider the program Q and the security policy I = (x^ w h e r e Q i s :

It is not sound even in the presence of our assumption that only explicitly
computed values are output.

-33-

START ~)

The region inside the dotted lines is R. The surveillance protection mechanism

for Q and I always outputs A. On the other hand, the extension yields a pro­

gram that outputs A if x.j = 1 ; otherwise, it outputs 1. Clearly, this is not

sound.

Intuitively the above unsound extension overlooks what one might call a

'negative inference'. The extension operates fine when we explicitly set

y to 2 after testing x^; it fails when we do nothing to y after testing x^.

A classic negative inference is due to A. C. Doyle [Doyle].

Holmes: "Then there was the curious incident of the dog in the nighttime."

Watson: "The dog did nothing in the nighttime."

Holmes: "That was the curious incident."

-34-

VII. CONCLUSIONS

The security area currently lacks unity in its basic definitions and

terminology. A contribution of this work is the isolation and precise state­

ment of the key questions and concepts needed in any theory of security. It

appears to us that the following questions are central to any such theory:

1. What is to be enforced?

2. What is to do the enforcing?

3. Does it do the enforcing?

4. If it does, then how well does it do the enforcing?

5. What assumptions, if any, are made in answer (3)?

These questions are expressed precisely as follows in our theory:

1 1 . What is the security policy?

2'. What is the protection mechanism?

3'. Is the protection mechanism sound?

4 ! . How complete is the protection mechanism?

5'. Does the observability postulate hold?

Not only are these the key questions but our framework is general. It is not

biased toward any particular solution for providing security. For example it

can be used to model capability systems as well as surveillance.

ACKNOWLEDGMENTS

We would like to thank Bob Chansler for reading several versions of the

paper and Stan Eisenstat for several helpful suggestions.

­35­

RE FE REN СЕ S

[Allen] Allen, F., "Control Flow Analysis, 1

' Proc. ACM SIGPLAN Symposium on
Compiler Optimization, SIGPLAN Notices, Vol. 5, No. 7 (July 1970), 1­19.

[Bell] Bell, D. W., Secure Systems: A Refinement of the Mathematical Model,

The Mitre Corporation MTR 2547, Vol. Ill, April 1974.

[Doyle] Doyle, A. C , "Silver Blades," The Memoirs of Sherlock Holmes, 1874.

[Harrison] Harrison, M. A., W. L. Ruzzo and J. D. Ullman, On Protection in
Operating Systems (to be published).

[Jones] Jones, A. K., Protection in Programmed Systems, Ph.D Thesis, Carnegie­
Mellon University Technical Report, June 1973.

[Lampson] Lampson, B. W., "A Note on the Confinement Problem," CACM 16, 10
(October 1973).

[Manna] Manna, Z., Mathematical Theory of Computation, McGraw Hill, 1974.

[Popek] Popek, G. and C. S. Kline, "Verifiable Secure Operating System Soft­

ware," AFIPS (1974 NCC), 145­151.

[Schroeder] Schroeder, M. D., Cooperation of Mutually Suspicious Subsystems in
a Computer Utility, Ph.D Thesis, MAC TR­104, Massachusetts Institute of
Technology, 1972.

[Walter] Walter, K. G., W. F. Ogden, W. С Rounds, F. T. Bradshaw, S. R. Ames,
D. G. Shumuan, Models for Secure Computer Systems, Case Western Reserve
Technical Report 1137, July 1973.

[Weissman] Weissman, C., "Security Controls in the ADEPT­50 Time Sharing System,"
AFIPS (1969 FJCC) , 11 9­133о

[Wulf] Wulf, W 0 А ж > E. Cohen, W. Corwin, A. Jones, R. Levin, С. Pierson, R.
Pollack,"HYDRA: The Kernel of a Multiprocessor Operating System,"
С А Ш 17,6 (June 1974), 337­345.

