
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Meta-Device: An Object Based,
Non-Retained Graphical Layer

Dario Giuse
Lynn Baumeister

April 1988

CMU-CS-88-136^)

Abstract

The Meta-Device is a graphical interface tool developed as part of the Dante project at Carnegie Mellon
University. The Meta-Device provides device- and window system independent access to graphical
output operations in a workstation environment The Meta-Device uses an object-oriented model which
supports easily extensible handling of input events for application programs written in Common Lisp.
The system represents the lowest graphical level in the Dante system, and therefore it does not support
retained objects; rather, it provides efficient access to the primitive graphical operations of the host
window system.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976 under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, Ohio
45433-6543. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

i

Table of Contents
1. Introduction
2 . Meta-Device: System Architecture

2.1 Structure of the System
2.2 Functionality
2.3 The Object Structure
2.4 Environment

3 . Programming Interface to the Meta-Device
3.1 Common Parameter Values -

3.1.1 Coordinate Mappings
3.1.2 Drawing Modes
3.1.3 Line Styles
3.1.4 Orientation

3.2 Devices
3.2.1 Creation and Destruction
3.2.2 Status Information

3 J Viewports
3.3.1 Creation and Destruction
3.3.2 Status Information
3.3.3 Modifications
33 A Graphical Operations
33 . 5 Mapping Conversions

3.3.5.1 Converting Coordinates
3.3.5.2 Converting Dimensions

3.4 Text and Fonts
3.4.1 Creation and Destruction
3.4.2 Status Information
3.4.3 Drawing Text

3.5 Event Handling
3.5.1 Events
3.5.2 Defining Event Handling Methods

4. An Example
5. Summary
6. Acknowledgments

ii

iii

List of Figures
Figure 2-1: The Device and Viewport class hierarchy in the Meta-Device 3
Figure 3-1: An example of different coordinate systems 5
Figure 4-1: The two viewports in our example 17
Figure 4-2: Viewport ANOTHER-VP after several mouse clicks 18

1

1. Introduction
The Dante project [Giuse 86] [Kuokka and Giuse 88] is an investigation into various man-machine
interface issues. An important component of the system is the lowest-level graphical interface tool, which
is referred to as the Meta-Device and is described in this document.

The Meta-Device, which was originally implemented by Roy F. Busdiecker, is implemented in Common
Lisp [Steele 84] and provides efficient access to the low-level graphical operations and input handling of
the host hardware and window system. The Meta-Device uses the object-based paradigm extensively as a
means of guaranteeing independence of the application program from both the underlying hardware and
the particular window system.

Being the first layer of the graphical system, the Meta-Device does not provide retained graphical objects:
no storage is allocated for graphical entities, and no display list is kept Other layers in the system
provide this functionality, thus letting the Meta-Device specifically concentrate on the handling of
graphical output operations and input events.

The Meta-Device thus fills two important roles: The first is that of a building block for the rest of the
Dante tools, which use it to provide low-level graphical input and output The second role is that of an
efficient graphical layer for application programs which cannot afford the overhead of going through a
retained-object layer. Such applications may contain their own handling of retained objects, or they may
use a mixture of retained objects and direct calls to the Meta-Device for operations which must be
executed very efficiently.

The first section of this document presents the general principles behind the design of the Meta-Device
and its relationship with similar systems. The central portion describes in detail the functional interface to
the system and gives a complete specification of all the functions that comprise the interface. Finally, the
last section presents an example of actual usage of the system.

2. Meta-Device: System Architecture

This section briefly describes the structure of the Meta-Device and its functionality. After indicating the
class of application programs for which the system is best suited, we describe the object system on which
the Meta-Device is based and its paradigm for handling graphical output and input events.

2.1 Structure of the System
The Meta-Device is a Common Lisp library package. It does not depend on any other portion of the
Dante system; it does, however, require the presence of QLOS, the Common Lisp Object System
[Bobrow etaL 85].

The Meta-Device consists of two separate parts: a device-independent portion and a device-dependent
portion. The device-independent portion provides the interface to the application program, the
declaration of the main classes used by the system, and a variety of internal functions. This portion is
totally independent of the particular host hardware and window system.

The device-dependent portion specializes the system for a particular host window system and hardware.
This portion, also known as a device driver, takes care of encapsulating differences among different
window systems, for example, thus providing device independence. Porting the Meta-Device to a
different system requires the writing of a new device driver, whereas the generic portion would remain
unchanged.

2

The device-dependent portion can also be specialized to provide an interface to other than a window
system; for instance, it could generate output for a particular printer or file format Please note that the
only fully supported device driver is currently the one for the X window system [Scheifler and Gettys 86],
version 10.4; we are considering an extension to X version 11.

The interface from the device driver to the underlying window system is of course totally dependent on
the particular conventions of the window system. An application program, however, need never be
concerned about the details of this interface, which is totally hidden inside the Meta-Device.

2.2 Functionality
The Meta-Device provides a device- and window-system independent graphical interface for application
programs. It is not by itself a window system, although it does provide a standardized interface to most
window system operations.

The functionality of the Meta-Device falls into four categories:
• Window management
• Graphical output operations.
• Input handling.
• Redisplay/reshape handling.

Window management includes operations like creating and destroying viewports, modifying the shape
and position of existing viewports, and obtaining information about the current status of the system. It
also includes operations on a device, such as creating a new device or finding out the status of all the
viewports that arc currently active. The Meta-Device translates all requests in this category into whatever
commands are required by the underlying window system.

Graphical output operations include the drawing of graphical entities in a viewport of a given device,
clearing the contents of a viewport, outputting text in different fonts, etc. This category is probably the
most straightforward of the four. Since the Meta-Device does not support retained graphical objects, all
output operations are performed only once, at the time a request is issued. The Meta-Device itself does
not keep any track of what graphical output operations were performed in a viewport,

Input handling enables an application program to define handlers for all input from the user. Such input,
typically from a keyboard or a mouse, consists of a sequence of input events, where each input event is
thought of as an elementary action. Examples of input events are a single keystroke from the keyboard,
or a movement of the mouse from its previous position.

Redisplay/reshape handling enables an application program to be notified whenever one of the viewports
it controls is modified by the user through window system commands. The Meta-Device relays this
information to the application program as an asynchronous event; the application program is then
responsible for handling the event in the appropriate way.

2.3 The Object Structure
The most important concepts in the Meta-Device are the device and the viewport. These two concepts are
implemented by hierarchies of object classes and subclasses, following the object-oriented paradigm.
Class hierarchies allow considerable sharing of functionality among different instances of a class and
among different levels of a hierarchy. When defining the output handlers for a new device, for instance,
it is often possible to inherit much of the functionality from a higher level in the device hierarchy. This
simplifies the incorporation of new devices into the system while reducing the total size of the system via
sharing of informatioa

3

Figure 2-1: The Device and Viewport class hierarchy in the Meta-Device

Figure 2-1 illustrates the main class hierarchy, which includes devices and viewports. The top-level of
the Meta-Device class hierarchy is the device class. A device object, i.e., an instance of the device class,
represents a connection from the Meta-Device to a particular device (such as a display screen) under a
particular window system. An example is indicated in Figure 2-1 as DEVICE-1.

The creation of a device object initiates any hand-shaking required between the Meta-Device and the
specific hardware and/or operating system being worked with. Currently the only fully supported device
class is the sub-class x-device, which works with the X Window System [X 86]. Each device sub-class
can be used to create one or more instances, each of which corresponds to an actual device of that class.

Parallel to the device class is the viewport class. Viewport objects define sub-regions of a device object,
much like windows define sub-regions on a screen. Typically an application first creates an instance of a
device class and then creates viewports on that device object Viewports act as the basic unit of display
area which can receive graphical output commands and can process input events. The Meta-Device, for
instance, provides a sub-class of viewport called x-viewport which is compatible with the x-device class.
Applications define sub-classes of the viewport class by adding new fields and methods; viewports sub­
classes inherit the properties and methods of their parent class. Instances of these sub-classes can then be
created which stand for actual viewports on actual devices. An example of this is the viewport
VIEWPORT-1 shown in Figure 2-1.

The Meta-Device defines methods on each viewport class to handle input and exposure events. These
methods are called automatically and asynchronously when the events are received. Most of the default
event-handling methods provided by the Meta-Device receive an event but take no action. These defaults
methods are inherited by a sub-class of x-viewport unless alternative event-handling methods are
supplied. Generally, an application defines exposure methods on viewport sub-classes to update the
contents of a viewport upon reception of an exposure event, and input methods to determine action based
on mouse and keyboard input

The Meta-Device also provides graphical output methods which enable an application program to draw in
a viewport. By defining input event handling methods which invoke graphical output methods, an
application is of course free to alter the display in a viewport based on the input events it receives.

An important feature of the Meta-Device is that it allows for each viewport object to have its own
coordinate system, referred to as a mapping. For example, a viewport that handles text could have a
mapping within which units are relevant to a font, and another viewport could have a mapping within
which units are equivalent to a centimeter.

4

2.4 Environment
The Meta-Device is implemented in CMU Common Lisp [McDonald, Fahlman, and Wholey 87], which
runs on the IBM RT workstation under the Mach operating system [Mach 86]. The system uses the
Common Lisp Object System, CLOS [Bobrow et al. 85], to provide support for class specialization and
the object-based interface to the application program.

The only device driver which is currently fully supported is for the X window system, version 10.4;
development of the driver for X version 11 is currendy underway. The Meta-Device interfaces to the
window system through a system dependent foreign-function call mechanism.

3. Programming Interface to the Meta-Device

This section describes the programming interface of the Meta-Device in full detail. Functions are
documented using the same conventions as in [Steele 84]. Note that generic function is the CLOS name
for an object method, i.e., a function which may be invoked on objects that are instances of potentially
many different classes.

3.1 Common Parameter Values
Since some details of the programming interface are repeated in several places with exactly the same
meaning, we present them here once and for all. These are typically sets of admissible values for certain
parameters that are common to many functions. The rest of this document will then freely refer to them
by name whenever needed.

3.1.1 Coordinate Mappings
A MAPPING determines the coordinate mapping used for a device or a viewport. Note that in all the
default mappings the Y coordinate increases dawn the device or viewport. A MAPPING should be one of
the following values:

• n i l specifies the default mapping, which is rectangular and maps the top-left comer to (0.0,
0.0) and the bottom-right corner to (1.0, 1.0). Positions within a device are interpreted as
normalized device coordinates (N D Q .

• : p i x e l maps the top-left comer to (0,0) and the bottom-right comer to {width - 1, height -
1), where width and height are the width and height of the region in pixels.

• a font object (see below) specifies a mapping similar to . -p ixel except that each unit is the
size of an average character in the specified font

• a vector of four numbers, where the first two numbers define the coordinates of the left-top
comer and the next two define the width and height of the region.

To clarify the meaning of a MAPPING a bit further, consider the example in Figure 3-1. The figure shows
a device, a viewport (VIEWPORT-3) and a nested viewport, i.e., a viewport whose parent is another
viewport.

Since the device was defined with the default mapping (i.e., n i l) , its coordinates are normalized, with
the point (0.0,0.0) at the top-left comer and the point (1.0, 1.0) and the bottom-right comer. The position
of viewport VIEWPORT-3, which is a child of DEVICE-1, is thus specified in normalized device
coordinates. Its upper-left comer, for example, is at (0.07, 0.1) in the parent's coordinate system.

The mapping for VIEWPORT-3, however, was specified as : p i x e l , which means that the viewport's
own coordinate system is expressed in pixels rather than normalized device coordinates. Consequently,

5

10.0, 0.0
0.07, 0.1

ft IJTSPlftY YIEWPQRI

100, 100

450. 230

0.5, 0.95
1.0, 1.0

DEVICE-1
mapping: NIL
parent: NIL

VIEWPORT-12
mapping: NIL
parent: VIEWPORT-3

VIEWPORT-3
mapping: :PIXEL
parent: DEVICE-1

Figure 3-1: An example of different coordinate systems

the position of VIEWPORT-12 (which is a child of VIEWPORT-3) is expressed in the coordinate system
of the parent, which is in pixels: the bottom-right comer, for instance, is at (450, 230). This coordinate
system is, of course, relative to the parent viewport.

3.1.2 Drawing Modes

A MODE determines the function to be used when drawing graphical objects on devices that are capable of
rendering objects in different ways. Some of these modes may only apply to certain graphical operations.
The value of a MODE should be one of the following:

• : draw : the object is drawn in an opaque color different from the color of the background.
• : e r a s e : the object is drawn in the same color as the background.
• : or : destination := source OR destination
• : xor (the default): destination := source XOR destination.
• : and destination := source AND destination
• : r e p l a c e : destination := source
• : nor : destination := NOT source OR destination
• : xnor : destination := NOT source XOR destination
• : nand : destination := NOT source OR NOT destination
• : not : destination := NOT source

3.1.3 Line Styles

A THICKNESS determines the thickness of graphical objects with a line component, such as straight lines
and circles. The actual interpretation of this parameter depends on the drawing capabilities of the
underlying device. The value should be one of the following:

• : v e r y - t h i n (the default)
• : t h i n
• : medium
• : t h i c k

6

• : v e r y - t h i c k

A PATTERN specifies the general appearance of graphical objects with a line component, i.e., whether the
line should be continuous or have different dot-dash renderings. The actual interpretation of this
parameter depends on the drawing capabilities of the underlying device. The value should be one of the
following:

• : s o l i d (the default)
• : d o t t e d
• : d a s h e d

3.1.4 Orientation
The ORIENTATION parameter applies to circles and filled circles. It is used to specify how to compute the
radius of a circle in the case when the mapping of a viewport is not the same in the horizontal and vertical
directions, i.e., the mapping is not "square" . In this situation a radius specification would have different
effects depending on whether the radius is to be measured horizontally or vertically. The value should be
one of the following:

• : h o r i z o n t a l (the default): the radius of the circle is considered specified in the horizontal
direction, and thus is half the 4 'w id th" of the circle.

• : v e r t i c a l indicates that the radius is specified in the vertical direction.

3.2 Devices
The Meta-Device provides sub-classes of the device class to interact with specific hardware/software.
Currently the only fully supported sub-class of the device class is the x-device, an interactive device
which uses the X Window System.

3.2.1 Creation and Destruction
m a k e - i n s t a n c e class-name &key : m a p p i n g [genericfunction]

Returns a device object that communicates with the display specified by the given class-name. For the X
window system, this corresponds to the display defined by the Unix environment variable 4 4 DISPLAY".
Most applications will never need more than one instance of x-device.

.mapping refers to the 2-dimensional coordinate system used within the rectangular display area of the
device, and should be aMAPPlNG as described in Section 3.1.1.

d e s t r o y device [generic function]

Cleans up and makes device unusable.

3.2.2 Status Information
The following methods can be used to determine the properties of a device. When more than one value is
mentioned, the functions return multiple values. Values which represent position or size information are
always expressed in the current coordinate system of the object.

l e f t device [generic function]

7

Returns the coordinate position along the x-axis of the upper left-hand comer of the device.

t o p device [generic Junction]

Returns the coordinate position along the y-axis of the upper left-hand comer of the device.

w i d t h device [generic Junction]

Returns the dimension of the device along the x-axis.

h e i g h t device [generic function]

Returns the dimension of die device along the y-axis.

m a p p i n g device [generic function]

Returns the current mapping of the device, which is a MAPPING as described above. This methods is
SETF-able, allowing an application to change the mapping of the device at any time.

Returns a list of the children of the device, i.e., a list of all the meta-device viewports that are currently
mapped to the device.

3.3 Viewports
All devices supported in the Meta-Device protocol have some representation of a rectangular display area
with a two-dimensional coordinate system. A viewport defines a region within that display area and a
coordinate system for that region. Viewports may be arranged hierarchically, that is, not only may the
region be within the display area of a device, but also within the display area of another viewport.

3.3.1 Creation and Destruction

m a k e - i n s t a n c e class-name &key : p a r e n t : l e f t : t o p [function]
: w i d t h : h e i g h t : b o r d e r : m a p p i n g : r e v e r s e - v i d e o : v i e w a b l e
: t r a c k - m o u s e - m o v e d

Creates a viewport. Most, but not all, of the properties can be altered after the viewport has been created.
Properties that are immutable are noted in the documentation below.

Any of the : l e f t , : t o p , : w i d t h , and : h e i g h t arguments may be specified as the keyword
: a s k - u s e r (the default), which indicates that their numerical value will be based on user input at run
time. The : a s k - u s e r value is only available when parent is an instance of the device class. When any
of those arguments are : a s k - u s e r , the user will be prompted to draw out a viewport and the
corresponding keyword argument will be given values based on the position and size of the freshly drawn
viewport. The viewport will possibly change size and/or location after it has been drawn out, to match
whichever of the dimensions and coordinates were originally given numerical values.

The &key parameters have the following meaning:

c h i l d r e n device [generic junction]

: p a r e n t Must be specified. It should be either an instance of device or another viewport, and
determines the area within which the viewport will be created. This cannot be altered

8

once the viewport has been created.
: l e f t Coordinate value along the x-axis of the upper left-hand comer of the viewport This

value is relative to the mapping of the parent
: t o p Coordinate value along the y-axis of the upper left-hand corner of the viewport This

value is relative to the mapping of the parent
: w i d t h Dimension of the viewport along the x-axis. This value is relative to the mapping of

the parent
: h e i g h t Dimension of the viewport along the y-axis. This value is relative to the mapping of

the parent
: b o r d e r May either be true or n i l , specifying whether the viewport should have a border.

This property cannot be altered once the viewport has been created.
: m a p p i n g specifies the mapping to be used in the viewport, and it should be a MAPPING as

described in Section 3.1.1.
: r e v e r s e - v i d e o

may be either true or n i l . The default will be whatever is specified in the user's
window system customization files, or n i l if no default value was specified.

: v i e w a b l e may be either true or n i l . True, the default specifies that the viewport is visible on
the screen immediately upon creation. Note that a viewport's children will never be
visible if their parent is not visible, regardless of their own viewable state.

: t r a c k - m o u s e - m o v e d
Determines whether or not the viewport is listening for mouse-moved events. The
default value is n i l , in which case no input events are generated when the mouse is
moved.

: t i t l e specifies what string gets displayed in the upper left-hand comer of the display when
the user is being prompted to draw a viewport The default string is * 'Meta-Device
viewport'*.

3.3.2 Status Information
The following methods can be used to query a viewport about its status.

l e f t viewport [genericJunction]

Returns the viewport's coordinate value along the x-axis of the upper left-hand comer in the mapping of
the parent This method is SETF-able.

t o p viewport [generic function]

Returns the viewport's coordinate value along the y-axis of the upper left-hand comer in the mapping of
the parent This method is SETF-able.

w i d t h viewport

Returns the viewport1s dimension along the x-axis.
method is SETF-able.

[generic function]

The return value is in the mapping of the parent. This

h e i g h t viewport [generic function]

Returns the viewport's dimension along the y-axis. The return value is in the mapping of the parent. This
method is SETF-able.

9

mapping viewport

Returns the mapping property of the viewport. This method is SETF-able.

f o n t viewport

Returns the font object of the viewport. This method is SETF-able.

v i e w a b l e viewport

Returns the viewable status of the viewport. This method is SETF-able.

r e v e r s e - v i d e o viewport
Returns the reverse-video status of the viewport. This method is SETF-able.

[generic function]

[generic function]

[generic function]

[generic function]

track-mouse-moved viewport [generic function]

Tells whether or not the viewport is listening for mouse-moved events. This method is SETF-able.

s t a t u s viewport [generic function]

Returns as multiple values the status of the viewport in this order: l e f t , top , width, h e i g h t ,
mapping. This method is not SETF-able.

parent viewport

Returns the parent of the viewport. This method is not SETF-able.

[generic function]

c h i l d r e n viewport

Returns a list of the children of the viewport. This method is not SETF-able.

[generic function]

3.3.3 Modifications

Most of the status methods in the previous section can be used as place arguments to SETF; for example,
one can change the position of a viewport with (s e t f (l e f t my-viewport) 0.5). Used in this
manner, status methods become attribute modification functions for viewports. In addition to the
individual modification functions, the methods below are also provided for convenience. These methods
are potentially more efficient than separate calls to the individual modification functions.

modify viewport & key : l e f t : top rwidth : h e i g h t snapping [generic function]

Modifies the viewport to correspond with the specified arguments. Arguments not specified will not be
altered.

m o v e viewport xy [generic function]

10

Repositions a viewport in the parent coordinate system so that its new top-left comer is at (x, y).

d e s t r o y viewport [genericfunction]

Cleans up and makes the viewport unusable.

c l e a n u p - v i e w p o r t s viewport [genericfunction]

Destroys all Meta-Device viewports.

33.4 Graphical Operations
The following output methods draw in viewports. Many of these methods may be invoked with style
descriptor keyword arguments, such as MODE, THICKNESS and PATTERN, which control subtler aspects of
the graphical operation. As described in Section 1, all drawing operations are ephemeral and application
programs are responsible for maintaining the drawings in a viewport.

c l e a r viewport [generic function]

Erases any drawings in the viewport.

f l a s h viewport [genericJunction]

Does something to attract attention to viewport, leaving it in its original state.

p o i n t viewportxy &key :mode : t h i c k n e s s [genericfunction]

Makes a small mark ("draws a points") in viewport at (x, y). The values of :mode and : t h i c k n e s s
should be as indicated in 3.1.1 for MODE and THICKNESS, respectively.

l i n e viewportxOyO xl yl S k e y :mode : t h i c k n e s s : p a t t e r n [generic function]

Draws a straight line in viewport from (xQ, yO) to (xl, yl). The keyword attributes determine the
appearance of the line and default to : i n v e r t , : v e r y - t h i n , and : s o l i d respectively.

r e c t a n g l e viewport left top width height &key .-mode : t h i c k n e s s [generic function]
: p a t t e r n

Draws a hollow rectangle in viewport with its left-top comer at (left, top).

f i l l e d - r e c t a n g l e viewport left top width height &key : mode [generic function]

Draws a filled rectangle in viewport with its left-top comer at (left, top).

c i r c l e viewport xy radius &key :mode : t h i c k n e s s r p a t t e r n [generic function]
: o r i e n t a t i o n

11

Draws a hollow circle in viewport centered at (x, y). The : o r i e n t a t i o n argument, whose admissible
values are : h o r i z o n t a l (the default) or : v e r t i c a l , is as explained in Section 3.1.1.

f i l l e d - c i r c l e viewportxy radius &key :mode : o r i e n t a t i o n [genericJunction]

Draws a filled circle in viewport centered at (x, y).

33.5 M a p p i n g Convers ions

33.5.1 Converting Coordinates
The following methods convert a coordinate pair from one viewport's coordinates to another's.

m a p - c o o r d i n a t e s - t o - p a r e n t viewportxy [genericJunction]

Takes x and y, which should be in the mapping of the viewport, and returns equivalent values in the
mapping of the parent

m a p - c o o r d i n a t e s - t o - d e v i c e viewport xy [generic function]

Takes x and y, which should be in the mapping of the viewport, and returns equivalent values in the
mapping of the device which is associated with the viewport.

m a p - c o o r d i n a t e s - t o - v i e w p o r t source-viewport destination-viewport xy [generic function]

Takes x and y, which should be in the mapping of the source-viewport, and returns equivalent values in
the mapping of the destination-viewport.

m a p - c o o r d i n a t e s - f r o m - p a r e n t viewport xy [generic function]

Takes x and y, which should be in the mapping of the parent, and returns equivalent values in the mapping
of the viewport.

m a p - c o o r d i n a t e s - f r o m - d e v i c e viewport xy [generic function]

Takes x and y, which should be in the mapping of the device, and returns equivalent values in the
mapping of the viewport.

33.52 Converting Dimensions

m a p - d i m e n s i o n s - t o - p a r e n t viewport width height [generic function]

Takes width and height, which should be in the mapping of the viewport, and returns equivalent values in
the mapping of the parent.

m a p - d i m e n s i o n s - t o - d e v i c e viewport width height [generic function]

Takes width and height, which should be in the mapping of the viewport, and returns equivalent values in
the mapping of the device.

12

m a p - d i m e n s i o n s - t o - v i e w p o r t source-viewport destination-viewport [generic Junction]
w i d t h h e i g h t

Takes width and height, which should be in the mapping of the source-viewport, and returns equivalent
values in the mapping of the destination-viewport.

m a p - d i m e n s i o n s - f r o m - p a r e n t viewport width height [generic Junction]

Takes width and height, which should be in the mapping of the parent of the viewport, and returns
equivalent values in the mapping of the viewport.

m a p - d i m e n s i o n s - f r o m - d e v i c e viewportwidth height [genericJunction]

Takes width and height, which should be in the mapping of the device, and returns equivalent values in
the mapping of the viewport.

3.4 Text and Fonts
A font is used to specify the appearance and size of a piece of text drawn on a device. A font is a
collection of "pictures", where each picture represents a particular character. Fonts in the Meta-Device
are at the top of a hierarchy separate from the device hierarchy. Currently, the only fully supported font
sub-class is x-font, which uses fonts available through the X Window Manager.

3.4.1 Creation and Destruction
m a k e - i n s t a n c e class-name &key : s t y l e : f a c e : s i z e [genericjunction]

Returns a font object The font descriptors are analogous to style descriptors for graphical operations.
Font descriptors are considered to be hints; the returned font may or may not match all of the specified
font descriptors, depending on what is available in the device. The following are the admissible values
for the keyword parameters:

: s t y l e : f i x e d , the default specifies that the font uses fixed spacing.
: f a c e one of r r o m a n , : i t a l i c , or r b o l d .

: s i z e one o f : v e r y - s m a l l : s m a l l rmed ium : l a r g e : v e r y - l a r g e .

d e s t r o y font [generic function]

Cleans-up and makes the font object font unusable.

3.4.2 Status Information
The following methods return the keyword values of the specified font descriptor. An application may
use these to test the properties of a font object These methods are not SETF-able.

s t y l e font

Returns the style property of the font.

[generic Junction]

13

f a c e font [generic function]

Returns the face property of \hcfont.

s i z e font [generic function]

Returns the size property of the font.

d e s c r i p t o r s font [generic function]

Returns, as multiple values, the s t y l e , f a c e and s i z e of the font.

3.4.3 Drawing Text
t e x t viewport x y string & k e y : f o n t : mode [generic function]

Draws string horizontally in the viewport, with the left-top comer of the bounding box of string at (x,y).
The default for the : f o n t keyword is the f o n t currently associated with the viewport.

Returns the width of the string in the mapping of the viewport. Again, the default font is the one
currently associated with the viewport.

Returns the height of an average character from the font in the current mapping of the viewport.

3.5 Event Handling
The Meta-Device provides input and exposure methods defined on the viewport sub-classes. These
methods are called automatically and asynchronously when an event is received; the method is then free
to handle the input event in any way it pleases. Most of the default methods provided by the Meta-Device
receive the event but take no action; exceptions are enumerated below. Applications are expected to
specialize the viewport class and define their own event-handling methods, unless they intend to inherit
the default event-handling provided by the Meta-Device.

3.5.1 Events
An event is an internal structure whose fields get reassigned each time a new event is received. Hence
any application wishing to keep a state of the event structure should make a copy of any information it
wishes to keep around, since the event will be overwritten when the next event arrives.

Functions are provided to query an event about its fields. Note that for efficiency reasons these are actual
Common Lisp functions, as opposed to CLOS generic functions. Also note that not all fields make sense
for all types of events. A return value of n i l means that the particular information is not available for
that kind of event. For instance, requesting the height of a region-exposed event makes sense, while
requesting the height of a button-pressed event does not. The event querying functions are:

s t r i n g - w i d t h viewport string ^ o p t i o n a l f o n t [generic function]

f o n t - h e i g h t viewport font [generic function]

file:///hcfont

14

x - e v e n t - x event [function]

Returns the x coordinate of the mouse position at the time the event happened.

x - e v e n t - y event [function]

Returns the y coordinate of the mouse position at the time the event happened.

x - e v e n t - b u t t o n event [function]

Returns which button was used. Possible values are : l e f t , : m i d d l e , and : r i g h t , n i l is returned if
the event did not involve a mouse button.

x - e v e n t - c h a r a c t e r event [function]

Returns which character was typed. This will be, in general, a Common Lisp character object.

x - e v e n t - l e f t event [function]

Returns the coordinate along the x-axis of the upper left-hand corner of the regioa This and the
following functions only make sense for events which involve a region, like : v i e w p o r t - e x p o s e d and
: r e g i o n - e x p o s e d .

x - e v e n t - t o p event [function]

Returns the coordinate along the y-axis of the upper left-hand comer of the region.

x - e v e n t - w i d t h event [function]

Returns the dimension along the x-axis of the region.

x - e v e n t - h e i g h t event [function]

Returns the dimension along the y-axis of the region.

3.5.2 Defining Event Handl ing Methods

When defining an event handling method for a sub-class of viewport, the method must have a lambda-list
that is congruent with pre-defined event handling methods. The pre-defined methods all take two
arguments: (1) an object of class viewport, or subclass thereof, and (2) an event.

Methods for particular input events are defined with d e f m e t h o d , so an application program which has
defined a sub-class m y - v i e w p o r t - c l a s s could specify a handler for mouse buttons in all viewports
of the sub-class by the following code fragment:

(d e f m e t h o d b u t t o n - p r e s s e d ((v p m y - v i e w p o r t - c l a s s) e v e n t)
; ; i n s e r t c o d e h e r e t o h a n d l e t h e b u t t o n - d o w n
; ; e v e n t .
)

15

See the last section of the document for examples of event-handling code. The event-handling methods
for a viewport are:

b u t t o n - p r e s s e d viewport event [generic Junction]

Default: no action. The event contains information about the x and y of the mouse position, the
m o d i f i e r s used, and which button was pressed.

b u t t o n - r e l e a s e d viewport event [generic Junction]

Default no action. The event contains information about the x and y of the mouse position, the
m o d i f i e r s used, and which button was released.

k e y - p r e s s e d viewport event [generic Junction]

Default: no action. The event contains information about the x and y of the mouse position and which
character was typed.

m o u s e - m o v e d viewport event [generic Junction]

Default no actioa the event contains information about the x and y of the mouse position and the
m o d i f i e r s used.

r e g i o n - e x p o s e d viewport event [generic function]

Default action: clear the regions of the viewport that were exposed. The event contains information about
the coordinates and dimensions of the exposed region. If several regions of the viewport are exposed at
once, the Meta-Device tries to generate as few r e g i o n - e x p o s e d events as possible.

v i e w p o r t - e n t e r e d viewport event [generic Junction]

Default action: changes the viewport border from gray to the opposite of the background.

v i e w p o r t - e x i t e d viewport event [generic function]

Default action: changes the viewport border back to gray.

v i e w p o r t - e x p o s e d viewport event [generic function]

Default: no actioa The event contains information about the coordinates and dimensions of the exposed
region.

4. An Example

This section contains examples of a few very simple operations using the Meta-Device, and is organized
as the transcript of an interactive session. Please note that this example was created by typing expressions
to the top level read-eval-print loop in Lisp, and therefore an actual Lisp program would look rather

16

different

User input is preceded by the Lisp prompt (a *, in this case); the return value of each expression is also
shown, even though in most cases it is not particularly relevant Comments have been freely added to the
transcript of the session, and are marked by three semicolons at the beginning of a line.

;;; NOTE: loading instructions are specific to CMQ Common Lisp.
f r r

* (load "meta-davice: dante-loadar")

; make all meta-device functions directly available.
* (use-package nMETA-DKVICZ")
T

; Create an instance of the x-davice class.
* (setf d (make-instance 'x-device))
#<Console X-Device>

; Define a sub-class of x-viewport.
* (defclass new-vp (x-viewport) ())
NIL

;;; Create a viewport to work with, use device "d" as the parent.
; Make the viewport an instance of the new class.

* (setf v (make-instance 'new-vp :parent d
:left 0 . 0 3 :top 0 . 2 :height 0 . 3 :width 0 . 3
:reverse-video nil))

#<X-Viewport #17105092>

; Create a viewport within viewport "v", use reverse video.
* (setf sub-v (make-instance 'new-vp :parent v

:left 0.4 :top 0.4
:width 0 . 5 5 :height 0 . 2 5
:reverse-video T))

#<X-Viewport #17170627>

;;; Define a handler for input keystrokes for our viewports. This
;;; inverts a rectangle when "i" is typed and clears the viewport when
;;; "c" is typed.

* (defxnethod key-pressed ((vp new-vp) event)
(case (x-event-character event)

(#\c ; Clear the whole viewport,
(clear vp))

(#\i ; Invert a rectangle in the viewport,
(filled-rectangle vp 0 . 1 0 . 1 0 . 5 0 .87 :mode .-invert))))

NIL
•
At this point, let us imagine that the user moves the cursor over viewport v, i.e., the exterior viewport,
and types the single key "i". The two viewports will now look as shown in Figure 4-1 .

The exterior viewport corresponds to the variable v in the example. Its background is white, and the

17

Figure 4-1: The two viewports in our example

input event handler which was invoked when the user typed the key "i" caused a black rectangle to be
drawn. This rectangle is partially covered by the viewport s u b - v p , which is wide and short. Notice that
since s u b - v p was created with - . r e v e r s e - v i d e o equal to T, its background is black. Neither
viewport has a title.

The second portion of the example creates yet another viewport, named a n o t h e r - v p . Since the call to
m a k e - i n s t a n c e does not specify any of the viewport dimensions, the user is queried for the position
and size of the viewport In the X window system, for instance, this will ask the user to draw the outline
of the viewport with one of the mouse buttons. We then define a handler for mouse clicks in the viewport
we have created, and finally move a n o t h e r - v p to a different position within the display.

; create a new viewport, let the user specify its size using the
;;; middle button.
* (set£ another-vp (make-instance 'new-vp .-parent d))
#<X-Viewport #17236162>

;;; Define a handler for mouse clicks:
;;; - pressing left-button should make a line appear;
;;; - pressing middle or right should display a filled-circle.

* (defmethod button-pressed ((vp new-vp) event)
(if (eq (x-event-button event) :left)

;; LEFT BUTTON clicked: draw a random line.
(let ((x (random 1 . 0))

(y (random 1 . 0)))
(line vp 0 0 x y :mode :draw))

;; MIDDLE/RIGHT: draw a circle centered around the cursor,
(filled-circle vp (x-event-x event) (x-event-y event)

0 . 1 -.mode :xor)))
NIL

;;; Move another-vp so it is halfway across the screen.
* (setf (left another-vp) 0 .5)
0 . 5

18

After this example, suppose that the user clicks the left button six times and the middle button once in
a n o t h e r - v p . The viewport would then look as in Figure 4-2. Notice that the lines arc drawn from the
top-left of the viewport (position 0,0) to a random point in the viewport The filled circle, on the other
hand, is always centered around the position of the cursor when the user clicks a button other than the left
one.

Figure 4-2: Viewport ANOTHER-VP after several mouse clicks

5. Summary

The Meta-Device implements the lowest layer of graphical input and output While it does not provide
for retained graphical objects, which are implemented by other layers above it, it gives application
programs a completely device- and window-system independent mechanism to describe graphical output
operations and to handle input from the user.

Because it does not provide retained graphical objects, the Meta-Device driver is ideally suited as a
building block for more elaborate layers and as a graphical interface for application programs which
cannot afford the performance and storage overhead of retained graphical objects. In addition, the Meta-
Device uses the object-oriented paradigm extensively in its programming interface, and thus makes it
very convenient for application programs to customize any particular device or viewport to their specific
needs.

The system is organized around a few central class hierarchies, such as the device hierarchy and the
viewport hierarchy. The device hierarchy is the basic mechanism through which implementors may port
the system to new devices. Class inheritance may be used to simplify the initial implementation of a new
device driver and reduce the size of the system via sharing of methods. The viewport hierarchy, on the
other hand, is the basic mechanism through which application program developers may specialize the
behavior of a particular device, in particular for handling input events in a powerful, flexible way.

The Meta-Device is entirely implemented in Common Lisp and uses CLOS, the Common Lisp Object
System, in its programming interface. This results in an interface which is very flexible and easy to
extend and modify as needed by the application program developer, while at the same time ensuring
complete portability of application programs to different hardware and window systems. The explicit
omission of retained graphical objects makes the system ideally suited for applications which do their

19

own object management and cannot afford the high overhead of going through a graphics layer which
duplicates that functionality.

6. Acknowledgments
We gratefully acknowledge the many contributions of Roy F. Busdiecker to the Meta-Device. He was
responsible for the initial implementation of the Meta-Device and its maintenance through several
changes of the underlying Lisp and CLOS systems. He was also the author of a preliminary version of
this document

20

References

[Bobrow et al. 85] D. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, F. Zdybel.
CommonLoops: Merging Common Lisp and Object-Oriented Programming.
In 9th International Joint Conference on Artificial Intelligence. 1985.

[Giuse 86] Dario Giuse.
Research in Uniform Workstation Interfaces - Research Proposal to DARPA
1986.

[Kuokka and Giuse 88]
Daniel R. Kuokka and Dario Giuse.
The Dante Application Interface.
In Proc. 2nd International Conference on Computer Workstations. February, 1988.

[Mach 86] R. Baron, R. Rashid, E. Siegel, A. Tevanian, M. Young.
MACH-1: A Multiprocessor Oriented Operating System and Environment.
New Computing Environments: Parallel, Vector and Systolic.
Siam, Philadelphia, 1986.

[McDonald, Fahlman, and Wholey 87]
David B. McDonald, Scott E. Fahlman, and Skef Wholey.
Internal Design ofCMU Common Lisp on the IBM RT PC.
Technical Report CMU-CS-87-157, Computer Science Department, Carnegie-Mellon

University, September, 1987.

[Scheifler and Gettys 86]
R. W. Scheifler and J. Gettys.
The X window system.

ACM Transactions on Graphics 5:79-109, April, 1986.

Guy L. Steele.
Common USP - The Language.
Digital Press, Burlington, MA, 1984.
James Gettys.
Problems Implementing Window Systems in UNIX.
In Proceedings of the Winter 1986 USENIX Conference, pages 89-97. January, 1986.

[Steele 84]

[X 86]

