
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Fast Parallel Algorithm to Determine
Edit Distance

Thomas R. Mathies
April 1988

CMU-CS-88-130^

This research was sponsored by a National Science Foundation fellowship under grant
number RCD 8758040.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
National Science Foundation or the US Government

A Fast Parallel Algorithm to Determine
Edit Distance

Thomas R. Mathies

April 1988

Abstract
We consider the problem of determining in parallel the cost of convert

ing a source string to a destination string by a sequence of insert, delete
and transform operations. Each operation has an integer cost in some
fixed range. We present an algorithm that runs in <9(logmlogrt) time and
uses mn processors on a CRCW PRAM, where m and n are the lengths
of the strings. The best known sequential algorithm [MP83] runs in time
0(n2/ log n) for strings of length n, indicating that our parallel algorithm
(with time-processor product equal to 0(mn log m log n)) is nearly optimal.
An instance of the edit distance problem is represented as a graph. The
algorithm finds the shortest path in the graph using a path doubling method
with efficient pruning due to the structure of the problem.

Extensions of the algorithm solve approximate string matching and
local best fit problems. The problem of finding the largest common sub-
matrix of two matrices is considered and shown to be NP-hard. Finally
we present an algorithm for exact two-dimensional pattern matching that
runs in OClog2 n) time using n2 processors for a n x n search matrix.

1 Introduction
The edit distance problem is to determine the cost of transforming a source string
of characters into a destination string. Given two strings, a = a\a2...am and
b = • • • bn> over an alphabet E = { < T I , <T 2 , . . . , cr/}, three different operations
are used to edit string a into string b. There is a cost associated with each
operation:

1

• Deletion. Delete character a, appearing in string a. The cost is denoted
Dar

• Insertion. Insert character bj appearing in string b. The cost is denoted

• Transformation. Transform character a; appearing in string a to character
bj appearing in string b. The cost is denoted Taijbj.

Solving this problem has a number of applications including redisplay al
gorithms for video editors [Gos81], the study of bird songs, speech recognition
and comparing genetic sequences. See [SK83] for an extensive treatment of this
problem.

Sequentially this problem can be solved using a dynamic programming tech
nique in 0(mn) time for input strings of length m and n. (Sankoff and Kruskal
[SK83] cite nine papers in several fields that present this algorithm. Foulser
[Fou86] offers two more.) Masek and Paterson [MP83] solve a slightly re
stricted problem in 0(n2/ log n) time for strings, each of length n and indicate
that (using one method of determining running time) their algorithm is more
efficient for strings with 262,419 characters or more.

A special case of the edit distance problem is to find the length of the
longest common subsequence (LCS) of two strings. The LCS consists of those
characters that are preserved by the least cost sequence of edit operations using
the following costs: all deletions and insertions cost one; Tah<Fi = 0 V/; and
Tau<y. > 2 Vi ^ j (in effect disallowing transforming one character into a different
character). For example, an LCS of "acbacbba" and "bcabbacc" is "bcbba.Ml

We will compute the length of the LCS (also showing that an LCS could
simultaneously be determined) and then show how the edit distance can similarly
be computed.

An instance of the LCS problem can be depicted as a graph. Given strings
a = a\G2...am

 2 and b = b\b2...bn we construct a directed graph G(V,E) as
follows:

V = {0 , l , . . . ,m} x {0 , l , . . . , / i }
E = { ((^ , (U + l) > | / G { 0 , l , . . . , m } A 7 G { 0 , l , . . . , n - l } } | J

1The LCS is not necessarily unique: "cabba" and "babba" are also solutions.
2For simplicity of presentation, we assume m is a power of 2.

2

{ ((/ , /) , (I + l,j)} |i 6 {0 ,1 , . . . ,m - 1} Ay € {0, 1,..., «}} (J
{((/ - l,j - 1), \ai = bj A i e {1,2,. . . , m} A j € {1 ,2 , . . . , n}}

An edge in the graph of the form ((i - 1,/ - 1), has a cost of zero. Every
other edge has a cost of one.

The graph is basically a grid with some diagonal edges:
b c a b b a c c

\ \
\ \ \

\ \ \ \
\ \ \

\ \ \ \ k k Intuitively, horizontal edges (directed to the right) correspond to insertions. Ver
tical edges (directed downward) correspond to deletions. Diagonal edges (di
rected downward and to the right) correspond to preserving a character (trans
forming a character into the same character). Transformations of one character
to a different character are not represented as the same result can be achieved by
an insertion followed by a deletion. Vertices represent positions in the strings
and are referred to by ordered pairs of integers. The upper left vertex is (0,0);
the circled vertex above is (4,3).

A path from the origin (upper left vertex) to a vertex in the graph represents
a sequence of edit operations that edits a prefix of string a to a prefix of string
b. For example, any path from the origin to the circled vertex represents edit
operations that take "acba" to "bca." It should be clear that the least cost path
corresponds to the least cost sequence of edit operations. It should also be
clear that such a path contains as many diagonal edges as possible. Further, the
number of diagonal edges on this path is the length of the LCS.

In this paper, a parallel algorithm to compute to length of the LCS is pre
sented. We then show how the algorithm can be modified to solve the edit dis
tance problem and present two other problems that can be solved by modifying
the algorithm: approximate pattern matching [LV86] and local best fit [ES83],

3

which are defined later. We then investigate extending the problem to two di
mensions and show that finding the largest common submatrix of two matrices
is NP-hard. Finally we outline a solution to the problem of two-dimensional
(exact) pattern matching.

The model we use for parallel computation is the concurrent read, concurrent
write (CRCW) parallel random access machine (PRAM). Such a machine has p
synchronized processors each with access to a common memory. Simultaneous
read and write access to the same memory location is allowed with the stipulation
that two processors writing to the same memory location must write the same
value.

2 Algorithm to compute the length of the LCS
To rephrase, the problem is: given a directed grid graph with some diagonal
edges and all edges directed downward and/or to the right, find the path from the
upper left corner to the lower right corner containing the most diagonal edges.

Consider a path P from vertex to vertex (p, q) and suppose there are d
diagonal edges in this path. This path is defined to be a critical path if there is
no path from vertex (1,7) to vertex (p, q — 1) that contains d diagonal edges. If
P is a critical path, we call vertex (/?, q) a critical point for vertex (1,7).

We use a "row hopping" technique. Initially all rows of vertices are "active"—
considered still useful for the computation. The algorithm proceeds in 0(logm)
stages. After the kth stage, rows 0,2*, 2 • 2*, 3 • 2*, . . . , m — 2* are active and
all other rows are inactive. At each vertex (1,7) of an active row /, the critical
points to row i + 2* are remembered. This is done by defining fk(ij\ d) (for
d = 0 , 1 , . . . , 2*) to be the critical point for the critical path from vertex (ij~) to
row 1 + 2* that contains d diagonal edges, i.e., vertex (1 + 2*, q) for some q?

The use of the critical points is indicated by the following lemmas:

lemma 1 Suppose P is any path in G from vertex (i,j) to vertex (i + 2*, q) and
contains d diagonals. Then there exists a path P in G from vertex (i,j) to vertex
(1 + 2*, q) containing d diagonals that passes through fk~\(ij\ 0) or /*_i(/,7,1)
or ... orfk-i(ij\2k~l).

3 The critical paths could be remembered as well in order to produce a longest common
subsequence rather than its length. See remark at the end of this section.

4

Proof. Path P passes through at least one vertex in row i + 2*"1. Let this be
vertex (i+2*"1, r). Let P1 be the portion of P from vertex (/,/) to this vertex and
let P" be the remainder of P. Suppose P* contains t diagonal edges. Let P9 be the
path from vertex (i,j) through critical point fk~\(i,j, 0 and then (horizontally)
to vertex (/ + 2*~*, r). This is possible by the definition of critical point and the
construction of the graph. Then P = PP" satisfies the lemma.

lemma 2 Suppose P is a critical path from vertex (i,j) to row i+2k and contains
d diagonal edges and passes through vertex (i + 2k~l,p) = fk-\(ij, s) for some
s. ThenMiJ,d)=fk-i(i + 2k~\p,d- s).

The lemma follows from the definition of critical paths.

lemma 3 Suppose Q is a critical path from vertex to row i+2k and contains
d+1 diagonal edges and passes through vertex fk-i(ij\ t) for some t. Then there
exists a path P from vertex (1,7) containing d diagonal edges that ends at fk(ij\ d)
and passes through fk-\(ij\ s)for some s < t.

Proof. Suppose not. Suppose s > t for any suitable s. Then the paths Q and P
must intersect at some vertex since fk(ij\ d) is to the left of fk(ij\d+ 1). Call
this vertex (/ ' ,/). Let Q! be the portion of path Q from vertex (i,j) to (/',/) and
let <2" be the remainder of Q. Define P* and P" similarly. Then the number of
diagonal edges in Q must be less than the number of such edges in P' otherwise
Q! could be used to reach fk(ij\ d). Then the path FQ" contains more diagonal
edges than path Q. Hence Q is not a critical path containing d + 1 edges, a
contradiction.

Note fk(ij\0) = (1 +2*,y) for any k. Initially each vertex has one
processor, pij9 assigned to i t It is easy to see that we can find/o(/,/, 1) in
<9(log n) time by using recursive doubling to find in each row the first diagonal
edge to the right of each vertex. In the diagrams, critical points for vertex
are indicated by heavy lines from (1,7) to each critical point:

5

b c a b b a c c

"Row hopping" from stage k=l to stage k=2

In each stage of the algorithm, the number of active rows is halved. Criti
cal points are found for vertices in the remaining active rows. These newly
found critical points are associated with critical paths that span twice as many
rows as those paths associated with critical points found in the previous stage.

After log n stages, the algorithm terminates having computed the endpoints
of the critical paths from vertices in the top row to the bottom row. The length
of the LCS is the number of diagonals on the highest critical path (i.e., the one

6

with the most diagonal edges) from vertex (0,0) to the bottom row.
We now describe stage fc+1 of the algorithm. Let h = 2k. Rows 0, h, 2h,..., m—

h are active. In this stage, processors Pij,Pi+\j,... ,A+2/i-ij are assigned to each
vertex (i,j) in rows 0,2h, Ah,..., m — 2h. For each of these vertices (/,/) we do
in parallel:

Step 1. Find the highest critical path from vertex (/,/) to row i+2h: compute
for eachfk(ij, s), 0 < s < h, the sum of

• s (the number of diagonals in a critical path from vertex (ij") to ftihj, s))>
and

• the number of diagonals in the highest critical path from fk(i,j\ s) to row
i + 2h.

The maximum of these sums yields the number of diagonals in the highest
critical path from vertex (/,/) to row z+2/i by Lemmas 1 and 2. (This maximum
can be computed by processors Pij,Pi+\j,...,Pi+2h-ij in constant time using a
bucket sort technique (Rudolph86).)

Step 2. Suppose the highest critical path found in Step 1 from vertex (/,/)
to row i' + 2/x contains d diagonal edges and passes through vertex ft(ij\ q)- We
wish to compute critical points ft+i(ij\ t\ 1 < t < d. First these critical points
are partitioned into intervals (sets of consecutive critical points), I0,Ii,...,Iq,
such that a critical path to a critical point in Is passes through critical point
fk(ij\s). Lemma 3 assures us that such intervals exist. Once these intervals are
found, the critical points can be quickly computed.

Let Ix,^ denote an interval such that a critical path from to a critical
point in this interval passes through one of the critical points ft(ij\ y),x <y < z.
Let Ix,„z.first and Ix,„z.last denote the first and last critical points in interval Ix,„z.

We find the intervals using a divide-and-conquer approach in <9(log n) sub-
stages. The initial interval is Io_q.

Given an interval Ix„.2 the algorithm proceeds as follows. If x = z, then no
computation is done on this interval. If interval Ix,„z is empty, no computation is
done. Otherwise, z — * + 1 processors 4 are used to find critical point/*+i(/,y, d!)

4Since processors Pij,Pi+\j,... ,pi+2h-\j are available, we can assign two to each/*(z,y, s)9

0 < s < q- Each fk(i,j, s) might be used to find a path from (z,y) to at most two intervals where
computation is needed, namely and /,...* for some x and z since no computation is done on
an interval of the form Fs,^. Otherwise ft(ij, s) might be used to find a path from (/,/) to only
one interval, /x..x, where x < s < z.

7

(where d = \JJx...2-first+IXw2.lasi)/2\) using a technique similar to that employed
in step 1. (For each /*(/,y, s)> x < s < z, find where in row / + 2h a path from
(ijj) passing through fk(ij\s) and containing d diagonals ends. The left-most
of these endpoints is critical point fk+i(ij\ d').)

Suppose a critical path t o (/ , . / , (f) is found to pass through ft(ij\ y). Then
interval is split (at critical point (/,./, d)) into intervals Ix_y and Iy„.2.

As these intervals are found, all intervals of the form 1^ are merged to form
interval Ix. At most two intervals named Ix^ are formed in each substage so the
time bound is not changed by this merging.

The size of an interval is halved during each substage, thus there are 0(log n)
substages. Each substage takes constant time.

To find the remaining critical points in row i + 2h, we assign one processor
to find each^ +i(/,y, r), 1 < t < d. Using binary search and 0(logn) time we
find in which interval each of these critical points lies. By Lemma 2, once we
know that a critical path to critical point (/,./, t) passes through fk(ij\ s) we
can look up the value for fk+i(ij\ t).

Thus we halve the number of active rows in OQogri) time yielding an
O(logmlogrt) time algorithm using mn processors.

As indicated earlier, an LCS of the two strings can be determined by remem
bering diagonal edges of the critical paths. This is achieved by storing Lk+i(i,j\ t)
along with/^+i(/,y,r), where LM(ij\t) is a critical point/*(/,j\s) found above
in Step 2 to lie on a critical path to fk+\(ij\ t).

After the length of the LCS has been found, we can backtrack using L to
determine the intermediate critical points lying on the highest critical path from
the origin to row m. Among these intermediate critical points (there will be m
of them), those at which a diagonal edge ends yield an LCS of the two strings.
This follows from Lemma 2.

3 Extending the algorithm to compute edit distance
Suppose that horizontal and vertical edges have costs of zero and diagonal edges
have integer costs between -1 and some constant, — C, less than zero. Then the
algorithm just described can be readily modified to compute the least cost path
from vertex (0,0) to vertex (m, n). (Calculate up to C • h critical paths from
vertex to row i + h.) This observation is used to solve the general edit

8

distance problem.
The edit distance problem can be depicted as a graph in the same manner

as the LCS problem. Costs are assigned to the edges as follows: an edge of the
form ((/,./), + 1)) has cost 7 ^ ; an edge of the form (i + l,j)) has cost
DaM; and an edge of the form (i + 1J + 1)) has cost TaMibj+1.

A path through the graph will contain exactly one of the (horizontal or
diagonal) edges in a given column of edges. Thus we can change the cost of
each edge in a given column by the same amount without altering the critical
paths. Since all of the horizontal edges in a given column have the same cost,
we subtract this cost from each (horizontal and diagonal) edge in this column
yielding horizontal edges of cost zero. We do this for each column and likewise
for each row and the vertical edges.

This leaves a grid graph with horizontal and vertical edges all of cost zero
and diagonal edges with negative costs. (Any diagonals with positive costs can
be discarded as they will never be in the least cost path.) This is the case
discussed in the above observation5 and a least cost path through the graph can
be quickly found. The edit distance is determined by summing the cost of this
path and the sum of the horizontal and vertical edges.6

4 Other extensions of the algorithm
Global best fit. String a can be viewed as pattern (of length m) and string b
as text (of length n). We may ask, "what (contiguous) substring of b is closest
to a?" Landau and Vishkin [LV86] present a parallel algorithm that finds all
substrings in the text with up to k differences from the pattern. Their algorithm
uses m2+n processors and runs in 0(\ogm+k) time. The edit distance algorithm
presented above yields sufficient information to determine a substring of b that
is globally closest to pattern a. "Globally closest" means at least as close as any
other substring of b [Sel80].

In the process of computing the edit distance, we have also found the end-
points for all critical paths to the bottom row from each vertex in the top row
of the grid graph. Each such path corresponds (by its endpoints) to a substring

5This requires that edit costs be integers and bounded by some constant
6Namely, YlZiD* + h—just those costs that were subtracted to achieve costs of zero

for horizontal and vertical edges.

9

of b. We claim that one of thes substrings is the global best fit to a.
To see this, assume the global best fit starts at character j in string b. Consider

a noncritical point (m,/) and the nearest critical point (m,/0 to the left of
(m,/) in the graph. The least cost path to each of these has the same cost
(by definition). Let this cost be — c The cost of editing string a to substring
bj...bf is ESiD a. + Y?Ljhr Tte cost of editing string a to substring bj...by
is ESi D^ + I^jhn which must be less as / ' < f.

To find the global best fit then, the edit distance is calculated for each critical
path from the top row to the bottom row, (This can be readily done in parallel
since the Y*!* terms can be computed by a prefix sum algorithm.) The critical
paths with the least edit distance among all of these yields (by their endpoints)
the substrings of b globally closest to a.

Local best fit We write b1 C b if V is a substring of b. Let d(sx, S2) denote
the edit distance from string sx to string S2. String b' C b most resembles a
locally [ES83] if and only if d{ a , bx) < d(a , b') for all bx C V and d(a
, * 2) < r f (a , Z /) f o r a l l 6 , c f t 2 C b.

To find all such b\ again compute the edit distance for each critical path
from the top row to the bottom row of the graph. Then for each vertex in the
top row, retain only those critical paths from that vertex having the least edit
cost. Then do the computation "bottom up": compute the endpoints for critical
paths from the bottom row to the top row, compute the edit costs for these paths,
and for each vertex in the bottom row retain those critical paths having the least
edit cost. We claim bj...bf most resembles a locally if and only if vertex (0,y)
has a least cost critical path to (m,f) and vertex (m,f) has a least cost critical
path to (0,j).

Clearly the condition is necessary. To see that it is sufficient, suppose
bj...bf C bi...b^ C b with i < j a n d / < Then a critical path from (0, i) to
(m, i') must intersect a critical path from (Q,J) to (m,/). Suppose they intersect
at vertex (p,q). Then d(ap+x ...am,bq+x ...bf) < d(ap+x ...am,bq+x...by) since
the path from (0,y) to (mj'f) is a least cost path from vertex (0,/) to row m.
A similar argument (taking the "bottom up" view) yields d(ax ...ap,bj...bq) <
d(ax ...ap,bi...bq). Thus no substring containing bj...bf is closer to a. Like
wise we can argue that no substring contained in bj...bf is closer to a.

10

5 Largest common submatrix problem
The LCS problem may be extended to two dimensions. Given two matrices
and allowing deletions of rows and columns from each matrix, find their largest
common submatrix.

This problem is NP-hard and we show this with a reduction from the fc-clique
problem.

Suppose the graph G = (V, E) is given as an adjacency matrix, M, with 2's
on the main diagonal. (M^ = 2 Vi; Afy = 1 if (/,/) e E; and Af/j = 0 otherwise.)
To answer the question, "does G have a clique of size £?", find the largest
common submatrix of M and a kx k matrix with 2s on its main diagonal and
Is everywhere else. The largest common submatrix is of size k x k iff G has a
clique of size k.

6 Two-dimensional pattern matching
The problem of finding an exact match of a pattern in a text string (of length
n) has been considered by Galil [Gal84] and Vishkin [Vis85], each of whom
present optimal parallel algorithms using n/logn processors and running in
O(logn) time. The problem of finding in parallel an exact match of a pattern
matrix (of size m x m) in a search matrix (of size nx n) can readily be solved
using m 2 H 2 processors in 0(1) time. While considering the largest common
submatrix problem, we discovered a more efficient algorithm for this problem.

Baker [Bak78] shows that two-dimensional pattern matching can be reduced
to string matching. First the rows of the pattern matrix are matched against
the rows of the search matrix The pattern matrix is then represented as a single
column of integers and the search matrix is represented as a matrix of integers.
The pattern column is then matched against the integer search matrix. Thus the
algorithm has two phases.

In the first phase, the two matrices are viewed as a single string: rows of the
matrices are catenated and separated by some special symbol to prevent matches
from "wrapping around rows." Galil [Gal84] observes that the string matching
algorithm in [KMR72] can be parallelized with a time-processor product of
Ofalog 2 n). Specifically this can be done with n processors in ©(log2 n) time for
a search string of length n. This yields a set of equivalence classes: each distinct

11

row of the pattern is identified with an integer. If a substring of the search matrix
matches a row of the pattern matrix, then the corresponding integer is stored in
a new search matrix (in the position where the matched substring ends in the
original search matrix).

In the second phase of the algorithm, the pattern consists of a column of
integers associated with the rows of the pattern matrix and is essentially a pat
tern string. The columns of the new integral search matrix are catenated (with
separating symbols) and viewed as text string. One of the above optimal string
matching algorithms is then employed to solve the problem.

The first phase uses n2 processors and <9(log2n) time (assuming n > m).
These resources dominate those used during the second phase (n2/ log n proces
sors and O(logn) time).

References
[Bak78] Theodore P. Baker. A technique for extending rapid exact-match

string matching to arrays of more than one dimension. SIAM Journal
on Computing, 7(4):533-541, November 1978.

[ES83] Bruce W. Erickson and Peter H. Sellers. Recognition of patterns in
genetic sequences. In David Sankoff and Joseph B.Kruskal, edi
tors, Time Warps, String Edits, and Macromolecules: the Theory and
Practice of Sequence Comparison, chapter 2, pages 55-91, Addison-
Wesley Publishing Company, Inc., 1983.

[Fou86] David E. Foulser. On Random Strings and Sequence Comparisons.
Technical Report STAN-CS-86-1101, Dept. of Computer Science,
Stanford University, February 1986.

[Gal84] Zvi Galil. Optimal parallel algorithms for string matching. In Six-
teenth Annual Symp. on Theory of Computing, pages 240-247, 1984.

[Gos81] James Gosling. A redisplay algorithm. SIGPLANNotices, 16(6):123-
129, 1981.

[KMR72] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg.
Rapid identification of repeated patterns in strings, trees and arrays.

12

In Fourth Annual Symp. on Theory of Computing, pages 125-136,
1972.

[LV86] Gad M. Landau and Uzi Vishkin. Introducing efficient parallelism
into approximate string matching and a new serial algorithm. In
Eighteenth Annual Symp. on Theory of Computing, pages 220-230,
1986.

[MP83] William J. Masek and Michael S. Paterson. How to compute string-
edit distances quickly. In David Sankoff and Joseph B. Kruskal,
editors, Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparison, chapter 14, pages 337-349,
Addison-Wesley Publishing Company, Inc., 1983.

[Sel80] Peter H. Sellers. The theory and computation of evolutionary dis
tances: pattern recognition. Journal of Algorithms, 1:359-373, 1980.

[SK83] David Sankoff and Joseph B. Kruskal. Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison.
Addison-Wesley Publishing Company, Inc., 1983.

[Vis85] Uzi Vishkin. Optimal parallel pattern matching in strings. In Wil-
fried Brauer, editor, Automata, Languages and Programming, 12th
Colloquium, pages 497-508, Springer-Verlag, Berlin, 1985.

13

