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Abstract 
This article describes an integrated architecture for combining natural language processing with 
speech understanding in the context of a dialog system. We use constraints derived from dialog 
knowledge, pragmatics, semantics and syntax to restrict the words which can be recognized in a 
large vocabulary, speaker independent continuous speech recognition task. These knowledge 
sources are derived by analyzing user goals, strategies, objects in focus and database responses. 
Their use by the speech recognition system is enabled by • combining the traditionally 
independent modules of a word matcher and parser. The integration of these knowledge sources 
allows the system to significantly reduce the search space for words in the speech signal in a 
dynamic manner without imposing unnatural restrictions on the user. 
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1. Introduction: The Need to Integrate Speech and Natural Language 
For many years, problems in speech recognition and natural language processing have been 
studied independently of one another. For the most part, the work done on dialogs, intentions, 
goals and problem solving behavior has never been applied to speech. This is surprising, since 
current speech recognition technology is far from perfect and could much benefit from more 
knowledge based constraints. In this manuscript, we will both describe a recently implemented 
speech understanding system which uses knowledge based constraints early in the speech 
recognition process and report the resulting performance improvements. 

The primary problem in analyzing connected speech is the enormously large and complex search 
space. In connected speech, word boundaries are not clearly identifiable. Additionally, word 
pronounciations are influenced by context, and frequently syllables are combined and omitted. 
Problems are compounded by the fact that words have many alternate pronounciations and 
different speakers display different accents. Thus, when using a large lexicon, or more than a 
few hundred words, one muyst deal with an enormous search space. Feature based recognition 
systems, such as the ANGEL system at CMU (Adams and Bisiani, 1986) locate features of the 
signal to form a network of possible segmentations. These segments are then associated with 
phonemic labels. Finally, a network composed of alternate word pronounciations is matched 
against all parts of the phonemic net for all words in the lexicon. This results in the generation 
or many hundreds of words candidates for every word actually spoken. A second class of 
recognition systems relies on time based processing to analyze the input speech signal. Again, 
the search space is enormous. To evaluate the many choices generated at each point in 
processing, speech systems assign likelihood values to their hypotheses. Due to lack of 
constraints, incorrect possibilities are often chosen over corect ones. 

The search space problem is further complicated when people speak naturally. Normal speech is 
imperfect. It contains misspoken words, incomplete sentences, restarts and both silent and noisy 
pauses. For this reason, current speech processing efforts have focused on recognizing isolated 
sentences read by a speaker. Unfortunately, even speaker dependent systems1, which generally 
exhibit better performance than speaker independent systems, currently have significant error 
rates when evaluated on prepared sentences read aloud by a speaker. 

Fortunately, the speed and accuracy of speech recognition systems is a function of the size of 
their search space. As the search space is constrained, both speed and accuracy improve 
(Kimball, 198o; Erman and Lesser, 1980; Lowerre and Reddy, 1980) . Hence, it seems only 
reasonable to exploit natural, knowledge based constraints which exist in a spoken environment 
to reduce search space and improve speech recognition accuracy. 

Work in the natural language community has shown that natural communication is highly 
structured and contains many natural constraints at the level of dialogs and problem solving. 
Tasks are conducted with a particular set of goals or problems in mind. The structure of plans 
and problem solving spaces has been long studied (]Newell and Simon, 1972; Sacerdoti, 1974; 
Fikes and Nilsson, 19/1). Hierarchical planning and problem solving is a powerful mechanism 
for representing the importance of goals and their interrelations, and for understanding 
unexpected information in text and dialog (Wilensky, 1978, 1983; Cohen and Perrault, 1979; 
Allen and Perrault, 1980; Litman and Allen, 1987; Grosz and Sidner, 1986). Grosz (1977) has 
shown how the notion of a user focus in problem solving dialogs is related to a semantic 
partitioning of a problem solving space. Such partitioning can assist in disambiguating input, 
particularly referent determination and pronominal anaphora (Sidner, 1979). 

Given these natural constraints on goal directed, problem solving behavior, it is only logical to 
examine ways in which these knowledge sources can be used to intelligently reduce search space 
and improve speech recognition accuracy. This entails looking at spoken language in a realistic 
problem solving context. We will describe a portion of a working speech understanding system, 

speaker dependent recognition systems are trained on many utterances spoken by a single speaker. 
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MINDS, where users must solve naval resource management problems with the aid of a 
database. The system uses natural constraints to dynamically limit the search space used to 
recognize spoken utterances. These constraints are computed following each utterance and 
database response and applied early in the signal processing procedures to provide maximal 
effectiveness. 

1.1. Current Speech Recognition Research: Use of Knowledge Based Constraints 
The speech recognition literature shows several different approaches to limiting search space. 
The most commonly applied constraints are syntactic and semantic restrictions on individual 
sentences . These constraints have been shown to significantly reduce search space and improve 
recognition performance (Lowerre and Reddy, 1980; Erman and Lesser, 1980). Most speech 
recognition systems use semantic and syntactic constraints in some form of semantic network 
(Lea, 1980; Kimball, Price, Roucos, Schwartz, Kubala, Chow, Haas, Krasner and Makhoul, 
1986; Borghesi and Favareto, 1982). This network is the basis for a parsing module and does not 
change from one utterance to the next. All reasonable constraints about the structure and content 
of single sentences are embedded into the network. 

A second approach emphasizes semantic structure over syntactic constraints, as exemplified in 
caseframe parsing of speech (Hayes, Hauptmann, Carbonell and Tomita, 1986). The results of 
this work provide two important insoghts into the speech recognition problem, are demonstrated 
in this work. First, like other systems emphasizing semantic structure over syntactic constraint 
(Gatward, Johnson and Conolly, 1986) this system leaves too much ambiguity in the syntactic 
combination possibilities and consequently shows poor recognition results. However, more 
importantly, their work demonstrates the need to apply constraints earlier in the recognition 
process than at the parsing level, as the bottom up processing of speech signal input resulted in 
the generation of far too many word hypotheses for effective parsing. 

Pragmatics and dialog level constraints have been mostly ignored in speech recognition systems. 
While several speech recognition systems claim to have dialog, discourse or pragmatic 
components (Lea, 1980), they only use knowledge above the sentence level like a typed natural 
language system to disambiguate and interpret a parse. The knowledge sources are not used to 
constrain the speech recognition process. Two notable systems use knowledge beyond the level 
of single sentences. 

Barnett (1973) describes a speech recognition system which uses a "thematic" memory. It keeps 
track of previously recognized content words and predicts that they are likely to reoccur. In 
addition, Barnett refers to a dialog structure which limits possible sentence structures in different 
dialog states. Unfortunately, no actual results are reported. 

Fink arid Biermann (1986) and Biermann, Rodman, Ballard, Betancourt, Bilbro, Deas, Fineman, 
Fink, Gilbert, Gregory and Heidlage (1983) implemented a system that used a "dialog" feature to 
correct errors made by a small vocabulary, commercial speech recognition system. Their 
system, like Barnett's, was strictly history based. It remembered all sequences of previously 
recognized sentence meanings and builds a finite state dialog network. If the currently analyzed 
utterance looked similar to one of the stored sentence meanings, the stored meaning was used to 
correct any recognition errors in the new utterance. Significant improvements in sentence and 
word error rates were found when a history based prediction could be applied. The history 
constraint was only applied after a word recognition module had processed the speech, in an 
attempt to correct possible errors. It was not used to aid in the initial recognition process. 

1.2. Innovations of the MINDS System . . , * u u 
The MINDS system represents a radical departure from the principles of most other speech 
recognition systems and attempts to move beyond the limits of other systems. We believe that 
we can exploit the knowledge about users' problem solving strategy, their soals and focus as 
well as the general structure of a dialog to constrain speech recognition down to the signal 
processing level. In contrast to Fink and Biermann's (1986) system, we do not only correct 



3 

misrecognition errors after they happen, but apply our constraints as early as possible during the 
analysis of an utterance. Our approach uses "predictions" derived from the problem-solving 
dialog situation to limit the search space at the lower levels of speech processing. At each point 
in the dialog, we assess the possible states a user could logically progress toward in the next 
utterance. These states include both subdialogs about database responses as well as further 
progress towards a goal. Associated with each state is a static set of concepts which may or may 
not be applicable during a specific problem solving session with the system. Thus, the concepts 
associated with each state are evaluated in light of the current context and the constraints derived 
from previous dialog information to dynamically create a set of concepts that may be expressed 
in the next utterance. For example, a state may permit a user to ask about any ship capabilitily. 
However, prior constraints limit the ship to be a frigate and the concepts to include only radar 
and sonar. We call this set of concepts a "prediction". The list of concepts in theprediction set 
is combined with a set of syntactic networks for possible sentence structures. Trie result is a 
dynamically constructed semantic network grammar, which reflects all the constraints derived 
from all our knowledge sources. Thus, a new grammar is created after each utterance/database 
response pair. 

Since prior research has pointed out the importance of constraining the search space as early as 
possible, we have developed an intergrated parser and word matcher. As described earlier, word 
matchers are responsible for hypothesizing words from the acoustic phonetic input. The 
integration of the word matcher with the parser permits the parser to use the dynamic semantic 
network grammar for guiding the word matching process. Specifically, the parser requests the 
word matcher to only search for words in specific semantic categories at given points in the 
speech signal. Thus, only a very restricted set of word choices is possible at each point in the 
signal. This reduces the amount of search necessary and cuts down on the possibility of 
recognition errors due to ambiguity and confusion between words. 

In the next section, we present an overview of the entire MINDS system indicating the domain 
and the flow of control in the system. The following sections focus on the generation and use of 
predictions. Finally, we report the results of an experiment to evaluate the effectiveness of our 
predictions in both reducing search space and improving speech recognition accuracy. 

2 . Overview of the MINDS System 
Our research on integrating speech and natural language work is being done in the context of a 
multimedia interactive dialog system called MINDS. The MINDS system provides a robust user 
interface to a database which is used to solve limited resource problems in the naval domain. It 
is capable of: 

• interpretting ambiguous user queries; 
• interpretting queries using a model of the database; 
• performing multiple database queries and evaluations in response to a single 

question; 
• intelligently filtering database output. 

Users of the system have important advantages primarily related to the ability of MINDS to 
process information from three input media (speecn, typing or pointing). This provides a natural 
and habitable environment for the user (Martin, 1973; Shneiderman, 1980; Legett and Williams, 
1984). Additionally, use of the input media can be interspersed. For example, a user may make 
references to displayed information using a mouse while speaking. The system then resolves this 
into a complete query. The system also has many means of communicating with the user 
(displays, speech, menus, questions), and can choose the media most appropriate. 

In using MINDS, system users perform tasks such as finding least impact solutions to problems. 
For example, in dealing with the problem of broken equipment in the naval domain, user must 
assess the impact of the problem and determine whether to delay a mission to repair the vessel or 
to find replacement ship which will least impact other on-going missions. The database used by 
the problem solver is an unclassified version of the United States Navy's FRESH database. It 
contains information about task forces, ships, and their dynamic and static characteristics such as 



4 

missions, fuel, current location, speed, radar, weapons, ability to deal with various threats, any 
current problems (CASREPS), etc. Additionally, the domain also covers screen manipulation 
commands. 

As depicted in Figure 1, the flow of information in the MINDS system begins with input being 
passed to an input manager. Spoken and typed inputs are sent to the parsing module, while 
pointing information is sent directly to the completion module. The completion module takes the 
parser output and information about items pointed to and integrates these into a meaningful 
representation. However, as it is not always possible to unambiguously interpret input, the 
completion module can initiate a clarification dialog with the user. The completion module 
communicates with the focus module. Once a representation is complete it is passed to the focus 
module which updates goals and focus and creates abstract database queries when appropriate. 
Queries are passed to an "expert" database interface which contains a representation of the 
database and has the ability to take abstract queries, transform them into the required number of 
database queries and intelligently filter the database output to provide useful query responses. 
The database interface creates SQL statements and communicates with the Informix database 
management system (Informix, 1986). Database output is passed to the focus module, which 
evaluates the answer to derive implications for further user queries. Finally the focus module 
generates predictions to guide processing of further input and calls the multi-media output 
manager to communicate the information to die user. 

3. An Overview of Predictions 
Our approach to limiting the search space in the processing of speech relies upon the dynamic 
construction of semantic network grammars and lexicons which reflect the constraints derived 
from assessing the user's specific (sub)goals, options and strategies. These constraints are used 
to create five types of predictions. The predictions are described, below along with the important 
features of the modules responsible for tneir creation and use in the speech recognition system. 

3.1. Types of Predictions 
The predictions are derived from the set of concepts which the user could logically mention to 
further either progress toward their current (sub)goal or their understanding of prior answers. 
From this information, we try to infer as much information as possible so as to maximally reduce 
the search space for words m the speech signal. Hence, we have come up with five types of 
predictions: dialog or problem solving stage, semantics and pragmatics of dialog phase, 
restrictions on active concepts, anaphoric restrictions, and ellipsis restrictions. 

• Dialog or Problem solving stage predictions define the current place within a 
general dialog script. In pur domain this implies assessing the problem, finding a 
replacement ship, changing the screens, etc. These constraints are very general and 
analogous to the constraints used in prior dialog systems such as GUS (Bobrow, 
Kaplan, Kay, Norman, Thompson and Winograd, 1977). Dialog stage information 
can eliminate some complete categories of semantic and syntactic information. 
Each of the dialog or problem solving stages has an associated set of goal trees, 
which are used to derive the semantic and pragmatic dialog phase predictions. 

• Semantic and pragmatic dialog phase predictions are characterized as concepts. 
These concepts are contained in the AND-OR trees associated with a dialog stage. 
These trees define alternate goals and subgoals as well as traversal options. States in 
the trees can be optional, required, single or multiple use. The traversal options as 
well as the concepts associated with any one state change as function of the 
constraints discovered during the problem solving session. These constraints are 
propagated from prior queries and database responses, the paths and strategies 
selected by the user as well as what subproblems the user has solved. The concepts 
associated with a problem solving phase are represented in static domain knowledge 
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Figure 1: The Components of the MINDS System 
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base which contains information about the concepts and their interrelations. 

• Restrictions on active concepts are used to create additional predictions for limiting 
search space. These predictions restrict values of specific concepts which are active 
at a particular goal tree node. Our predictions only list restrictions on goal tree 
nodes the user could "visit" in their next utterance. These restrictions originate from 
both users and database responses in prior dialog phases. For example, once a user 
concentrates on solving a problem involving a certain ship's impairment, we can be 
certain all statements using shipnames in the damage assessment stage will refer to 
the damaged ship. 

• Anaphoric predictions restrict the kinds of anaphoric referents available at each 
dialog phase. The possible anaphoric referents are determined by user focus. From 
the current dialog phase, focus selects previously mentioned dialog concepts and 
database answers which are important at this point. These concepts are the 
referential content of anaphora in the next utterance. Similarly, these restrictions 
apply to references available for pointing. The referential predictions include 
distinctions between plural and singular pronoun referents. 

• Elliptic predictions limit the kinds of elliptic substitutions we can expect at a given 
point. Elliptic utterances are predicted when we expect the user to ask about several 
concepts of the same type, after having seen a query for the first concept. Thus the 
ellipsis predictions indicate whether an ellipsis would be appropriate and if so, the 
concepts which could be mentioned elliptically. 

Initially, the system establishes a set of predictions which expect the user to either state some 
problem or find out the most recently reported problems in some area of the world. Within a few 

3uestion/answer cycles, this information allows us to infer the user's top level goal. Throughout 
le dialog session, predictions are constantly updated as events occur. 

3.2. Generation of Predictions: An Overview 
Three system modules are responsible for generating predictions, expanding them into potential 
linguistic surface forms and employing them to limit the search space for words when processing 
the speech input signal. 

1. The focus module generates all conceptual predictions by tracking and modifying 
focus, dialog phase, and user strategies. This module receives two types of input: 
a semantic representation of the user's query from the completion module and 
database responses from the database module. When user input is received from 
the completion module it updates focus, dialog phase, and user strategy. Then it 
creates a database query. When database responses are received the module 
updates history and evaluates the response relative to the goal states, modifying the 
goal trees when appropriate. Finally, it creates a new set of predictions and passes 
them to the completion module. For example, when a user query is received, the 
module records the path selected by the user and infers the information the user 
wishes from the database from the active concepts associated with the user's 
current dialog state. When the database response is received, the focus module 
evaluates the response in search of additional constraints. These are propagated 
and the module finally assembles a list of possible next states and applicable 
concepts associated with the states. 

2. The completion module is responsible for creating a new grammar and lexicon 
from the predictions. It takes the concepts from the predictions, finds the nets 
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associated with the conepts and generates a new grammar for the parser module. 
The grammar it creates is expressed as a set of recursive transition networks 
containing semantic word categories on their transition arcs. The completion 
module is the primary interface to the parser module. It also has the task of 
integrating mouse clicks into a query, resolving pronominal references and dealing 
with incomplete or confusing input. 

3. The parser module uses the dynamically constructed lexicon and grammar to 
control the search for words in the acoustic phonetic latice of alternate 
segmentations and features. Thus its input is both the network of phonemes 
produced by the front end, ANGEL (Adams and Bisiani, 1986) and the lexicon and 
grammar. It uses the grammar to compute the semantic word categories which 
could appear in a certain segment of speech and expanding these concepts into 
words which are contained in the dynamically generated lexicon. Then the parser 
accesses all the word models for those words and selectively calls the word 
matcher with word models and locations in the speech signal. In this manner, the 
parser forms a rank-ordered set of phrase hypotheses to span the utterance. 

The algorithms employed by the three modules important for the generation, expansion and use 
of predictions are described in the next three sections. 

4. The Focus Module 
Two functions performed by the focus module are central to the generation of predictions for the 
parsing module. They are: 

1. Tracking goal states 

2. Identifying objects and classes currently in focus 
These two functions are generally responsible for generating the semantic/pragmatic and 
syntactic predictions, respectively. 

4.1. Representing and Tracking Goal States: Dialog stage, Dialog phase and 
Restrictions of Active Concept Predictions 

The focus module identifies a user's goal and tracks the user's progress and paths through a 
problem solving space (Newell and Simon, 1972). The use of plans and goal trees has been 
widely studied m the context of problem solving, planning (Sacerdoti, 1974; Fikes and Nilsson, 
1971; Sussman, 1975) learning (Cheng and Carbonell, 1986, Laird and Newell, 1983; 
Rosenbloom and Newell, 1986), text (Young, 1984, 1985) and dialog (Grosz, 1977; Robinson, 
1978; Levy, 1979; Allen, 1979; Allen and Perrault, 1978; Hobbs and Evans, 1980). Like most 
goal trees, ours are formulated as AND-OR trees. States can be optional, required, mutually 
exclusive, ordered, single or multiple use. It is important to note that our states are not 
independent of each other. Like most limited resource problems (Fox, 1983; Sacerdoti, 1974) 
constraints derived from prior activities are propagated among later states. In our 
implementation, these constraints are represented at multiple levels of abstraction which enables 
us to represent the users actions in the manner of least commitment planning techniques (Fox, 
1983). Each state in our goal trees has a set of associated concepts which are limited and 
modified by the constraints propagated earlier. These concepts are represented in a separate 
domain knowledge base. As the user progresses through a task, further constraints are interred, 
the goal trees are dynamically modified by restricting the concepts assocaited with any one state 
as well as by generating new states based upon the constraints derived previously. 

Four elements of the goal tracking process allow us to narrow the semantic content of utterances 
the user could speak next: 
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1. Paths through the goal tree 

2. Semantics/pragmatics of the goal itself 

3. Interaction of goal state with knowledge base semantics 

4. Constraints placed by earlier goals on a current goal 

To illustrate how each of these attributes restricts what may come later in a dialog, we will use 
an example problem which is commonly pursued by users of the MINDS system. The 
exemplary problem is to find replacements for a disabled ship. This goal has a number of 
subgoals: 

• determining if the disability affect the ship's ability to perform its mission 

• determining the important attributes of the disabled vessel, particularly in 
relationship to its mission 

• finding other ships which have the requisite capabilities and which are available 

• determining which replacement possibilities will least affect other missions (finding 
the least impact solution) 

• issuing orders to a particular ship or set of ships 

4.1.1. Constraints derived from the goal tree 
By maintaining representations of goal trees, states visited and current state, we can determine 
the states a user could visit next. Smce each state has an associated set of concepts, which may 
or may not be restricted from prior information, it is rather straightforward to list these concepts 
for use in creating a new grammar. However, the task is not quite so simplistic, because the 
constraints derived from database responses, prior information and context restrict permissible 

?aths. Furthermore, user strategy can influence choice of path when multiple paths are available, 
or example, if a user encounters an impasse where no available ships have a required attribute, 

the user might try to substitute a similar attribute or decide to use a combination of replacement 
ships. Either alternative is available, however, it is possible that prior experience with a user 
indicates the user is most likely to "go for the next best thing". Similarly, if a user is focusing on 
ship capabilities and has akeady addressed a number of them, and the database responses have 
not eliminated the need to ask for more capability information, we can predict a constrained set 
of capabilities the user is likely to ask about next If the database response eliminates the need to 
ask for more information about capabilities, we can predict the other types of information the 
user will ask by moving up a level m the search tree and looking for information not yet covered, 
e.g. mission ratings or ability to perform on different types of missions. 

4.1.2. Use of semantic/pragmatic information about a goal state in creating predictions 
Goals at different levels of the goal hierarchy have semantic information and constraints 
associated with them. For example, if a user is pursuing a subgoal of inquiring about the purpose 
of a disabled ship to a particular mission, all queries will involve either the single ship or the 
mission. No other ships will be relevant. Similarly, only a certain set of the damaged ship's 
attributes will be important, namely those having to do with its ability to perform its role in the 
mission. However, if we are considering a set of ships as possible replacements for the damaged 
ship, attributes such as availability, length of current deployment and importance of current 
mission are relevant Thus pragmatic and semantic information is stored both in the domain 
knowledge base as well as in the goal tree states. Since these states are hierarchically organized, 
the information is appropriately inherited. 
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4.1.3. Use of knowledge base information in creating predictions 
While the structure of the goal tree and its associated semantic and pragmatic information place 
constraints on what is reasonable to ask, a second class of constraints are propagated from the 
knowledge base information which further restrict the content of utterances. 

The knowledge base constraints are applied when concepts are activated by either user mention 
or being included in a database response. One of the clearest examples of a knowledge base 
constraint comes from problem identification. Each problem is unique in some ways. 
Differences in specific problems or specialization of a more general problem can be used to 
dynamically modify the goal tree and hence the predictions generated. For example, ship 
capabilities are a large class. However, this class is semanticafly limited by ship type. Only 
carriers have airplanes. If a frigate (i.e. a relatively small ship) is disabled, the capabilities 
associated with airplanes would be eliminated from any searches for that ship's critical 
capabilities. Other problem specific constraints act similarly. For example, the responsibilities 
of a disabled ship also limit which capabilities are important. A search and rescue mission has 
different needs than a space craft recovery or surveillance mission. Hence, problem specific 
information narrows or modifies the general structure of the goal tree by restricting the concepts 
associated with specific states and by generating new states which contain the appropriate 
constraints. 

4.1.4. Constraints formed by the dialog sequence 
Earlier we described how constraints derived from the knowledge base are propagated in the 
goal trees. Similarly, goal trees are dynamically modified by constraints discovered in earlier 
states. One example in the problem scenario described is the constraint imposed by a damaged 
ship's critical capabilities on the search for replacement ships. These constraints, like those from 
the knowledge base reduce or modify the set of concepts which would otherwise be associated 
with a particular state in a goal tree. For example, if a disabled ship has three important 
capabilities which enable it to perform its mission, any replacement ship will need to have either 
the same three capabilities or an equivalent set. Hence, when generating states associated with 
the search for required capabilities for a replacement ship these constraints will be used to 
generate states and evaluate database responses. Similarly, other solutions to the problem can be 
derived from prior information. For example, if a user knows that a certain class of ships has all 
the required capabilities, the user need only ask about those ship classes and can omit any 
discussion of specific required capabilities. 

4.2. Identifying Focus: Syntactic Predictions 
The MINDS system not only generates predictions about the content most likely to be expressed 
in following utterances, it also generates certain syntactic predictions. These predictions enable 
us to place restrictions on concepts and their bindings, determine objects available for definite 
reference, mouse clicking and pronominal reference and to determine whether concepts can be 
refered to with elliptic utterances. This information is determined by maintaining a 
re^3^entation °^ ^ ° ^ e c t s c u r r e n t t y * n f001^ (Sidner, 1979; Grosz, 1977; McCue and Lesser, 

To illustrate the types of predictions generated from the focus mechanism consider thè following 
examples: 

• The user is informing the database about a disabled ship: The focus mechanism 
would predict that no anaphoric referents could be used since no context has been 
provided. 

• The user is inquiring about a disabled ship: The focus mechanism predicts that only 
single anaphoric referents can be used to refer to ships since a single ship is in 
focus. Also, only shipnames with the value of the ship in focus can be used during 
this dialog stage. 
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• The user has already asked about capabilities and the database response indicates 
that the user will continue seeking information about capabilities: The focus module 
predicts that the user could use an elliptical utterance to refer to one of the set of 
active capabilities. 

• A set of ships satisfying all the requirements has been identified (perhaps they are 
not deployed and are frigates). The user could ask additional things about the set or 
an individual ship. The focus module would predict that plural anaphoric referents 
or definite reference to specific ships could be used but that elliptical utterances 
would be unlikely. Also, the module predicts shipnames to be limited to the ships in 
the set. 

• The user has isolated a group of ships with certain required capabilities and 
availability, and needs to choose the best of these. Furthermore, the user has just 
asked about the speed of one of them. The focus module predicts that the user could 
ask about the speed of the remaining ships in the group (plural anaphora) or could 
ask about the speed of a particular ship but not by using a single anaphoric referent. 
Also, the user could use an ellipsis and specify only a shipname. Again, shipnames 
are limited to those in the group of ships. 

As illustrated by the above examples, determining the objects and attributes which are in focus 
and generating predictions about possible linguistic forms requires access to knowledge about 
the current goal, objects which have been identified and the context in which the identification 
was made. Furthermore, one must also consider the user's strategy. User strategy interacts with 
maintaining focus. The answer to a question has entirely different implications for focus with 
two opposing strategies. For example, a user may first determine the necessary attributes for a 
replacement ship and then successively apply these constraints to narrow the set of possible 
replacements. We call this a a successive narrowing strategy. A set of ships with one of the 
capabilities of interest is defined. Ships are successively eliminated as each of the remaining 
capabilities is specified. Hence, a successive narrowing strategy implies that previously suitable 
ships which do not have a capability currently in focus need to be eliminated from the objects 
under consideration. In contrast, a user could begin by applying all possible constraints and then 
gradually loosen restrictions. 

Our algorithm for determining what is "in focus" and can thus be used for definite reference is 
based on the interaction of user strategy with location in the goal tree. We keep track of the goal 
state active when a concept is first mentioned, either by the database or the user, like most other 
systems. If a state is still active, the object referenced in that state can be used for definite 
reference. By maintaining more than one active state, we can usually deal with user strategies in 
this manner. However, the user strategy can also place restrictions on what would otherwise be 
available for reference, and these constraints restrict what would otherwise be admissible. 

To determine the attributes and objects which can be referenced elliptically, we must keep track 
of both focus and prior utterances. More specifically, we need to know what level in the goal 
tree was accessed by a previous question and the possible goal tree states the user could move to 
on the subsequent utterance. If both the prior and subsequent goal states are both "children" of 
some parent state, then elliptical utterances would be expected by the prediction module. 

Thus, the generation of syntactic predictions requires that the focus module keep track of all 
inputs. A dialog task implies constant change and the MINDS system in particular allows a user 
to input information in many distinct input modes. Proper interpretation of input and database 
output is a function of goals, history and any user strategies as well as the input material itself. 
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5. The Completion Module: Expanding Predictions into Dynamic Networks 
Once conceptual predictions are generated by the focus mechanism, they must be expanded into 
possible linguistic surface forms by the completion module for use by the parser. Since the 
predictions are abstract representations, they must be translated into word sequences with that 
conceptual meaning, in effect reversing the classic understanding process by unparsing the 
conceptual representations into all possible word strings which can denote the concept. It also 
uses tne information about objects and attributes in focus to place restrictions on the semantic 
word categories which are contained in the predicted subnets. 

5.1. Use of Semantic Subnets 
In addition to the individual concepts, which usually expand into noun phrases, we also have a 
complete semantic recursive transition network grammar that has been partitioned into subnets. 
A subnet defines allowable syntactic surface forms to express a particular semantic content. For 
example, all ways of asking for the capabilities of ships are grouped together. The arcs in the 
network constrain semantic categories mstead of just words. Certain categories are "variable", 
the membership in the category may vary with predictions. For example, ship capabilities may 
be limited to various types of radar only, due to the focus predictions. The parser is then told that 
for the variable ship-capabilities only the fillers associated with radar types are allowed. While 
each subet constrains a set of semantic information, the subnets themselves are grouped 
according to semantic categories. Hence, there is more than one subnets for each combination of 
semantic categories. This permits multidimensional indexing of subnets. Subnets are pre­
compiled for efficiency. 

5.2. Syntactic Subnet Partitioning 
In addition to partitioning by semantic content, the task grammar is also partitioned along the 
syntactic dimensions addressed by the focus module. Thus we have separate subnets for ellipses 
and expressions involving anaphora. This grouping is orthogonal to the semantic subnet clusters 
mentioned above. Hence, we classify the semantic content as well as the syntactic form of each 
grammar subnet. 

5.3. Dialog State Subnets 
Each of the dialog states in a script is associated with a series of semantic/syntactic subnets. 
While individual subnets are frequently associated with multiple dialog states, by eliminating 
certain subnets from consideration during a dialog phase, we reduce ambiguity. The subnet 
restrictions placed by dialog state generally do not restrict the objects which can be talked about, 
but limit the sentence types used during this dialog phase. Thus declarative sentences are not 
relevant when we expect queries about ships. They are relevant when information is given to the 
database within certain parts of the script. Interrogatives and imperatives are also matched with 
some dialog states. Thus, dialog state places general restrictions on the subnets which 
correspond with to specific features in a dialog state. For example, commands to alter the 
organization of the display windows are only appropriate in certain dialog states. Furthermore, 
natural use of language dictates the use of fairly rigid kinds of syntactic structures to refer to the 
screen objects and their manipulation. You would never hear a passive request such as 'This 
window should be enlarged by me" but rather something like "Enlarge this window" or "I want 
to remove this ship from the display". 

5.4. Translating Predictions into Surface Forms 
As illustrated above, the grammar is multidimensionally segmented into subnets. Our algorithm 
for using this information to translate the predictions from the focus module into a form usable 
by the parser is as follows. First we examine only the subnets that are relevant to a particular 
dialog state. Next we restrict this set to include only those subnets which contain one or more of 
the predicted semantic concepts. Forms that violate predictions on ellipsis or anaphora are 
pruned from this set Once the set of subnets is defined, we look for all the "variable1 semantic 
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concept categories, and check if their membership has been reduced by the predictions from the 
focus module. The module then forms an active lexicon list and grammar based on the resulting 
subnets and restrictions derived from this algorithm. 

6. The Parser Module: Speech Parsing with Strong Constraints 
Once the parser is notified that a new prediction set has been released from the completion 
module, it processes the active lexicon and grammar for use with subsequent input. The parsing 
module deals with both spoken and typed input Since typed input presents fewer of the 
problems we have to deal with in speech understanding, we will focus on the processing of 
spoken input. 
The parsing module is composed of an integrated set of parsers and word matchers. When a user 
speaks an utterance, the ANGEL (Adams and Bisiani, 1986) front-end produces a network of 
pnonetic labels from the speech signal. A set of independent locators is used to segment the 
speech. These locators look for features in the signal indicating events like stops, fricatives, 
closures, etc. The segments form a network, in that there are alternate paths through the same 
area of speech. Once the speech is segmented, the segments are labelled A vector of phoneme 
labels with a probability for each is assigned to the segment. 

The parser module takes as input the network of phonemes produced by the front end and 
eventually forms a set of phrase hypotheses. The phonemes allow words to start and end at just 
about any point in an utterance. These points do not necessarily correspond to the start and end 
points of real words in the utterance. The word matcher must take the lattice of phonemes and 
create a lattice of words. This is a difficult network to network matching problem. For each 
word in the lexicon, the word matcher has a number of different word models representing 
alternate pronounciations. These alternate pronounciations are generated by applying a set of 
rules a baseform phonemic transcription of the word (Rudnicky, 1987). These word models are 
represented as a network of phonemes. Normally, the word matcher will try to find match all 
word models against all portions of the acoustic phonemic network. Then the parser takes the 
lattice of words generated by the word matcher and tries to form meaningful phrases from the 
most likely word candidates (Ward, Hauptmann, Stem and Chanak, 1988; Stem, Ward, 
Hauptmann and Leon, 1987). 

In contrast, the MINDS system integrates the traditionally separate modules of parser and word 
matcher. By integrating the parsers and word matcher and dynamically generating new 
grammars and lexicons, we can significantly reduce the search space for words in the acoustic 
phonetic signal and hence reduce the complexity of the speech recognition nroblem. There are 
two important reasons why the search space for words is greatly reduced. First, only the words 
that are contained in the currently active lexicon are considered by the word matching routine. 
As a result the word matcher generates far fewer word candidates in the word lattice than if 
predictions were not used to limit the words which could be matched. Secondly, the parser uses 
the subnet grammars to direct the operation of the word matcher. It does this by telling it which 
words to look for in a specific portion of the phoneme lattice, giving it either a start or end 
position. More specifically, in the process of extending phrases to span an utterance, the parser 
produces a set oi categories that could extend a specific phrase. These categories are derived 
from the predicted set of subnets. These categories are expanded into words, but only the words 
in the lexicon are included in the list (recall concepts can have restrictions on their "fillers"). The 
parser then asks the word module to search for the set of word models in the adjacent area of the 
phoneme network. Thus, the parsing module uses the semantic and syntactic predictions to 
restrict which words can be matched m a specific region of speech. These restrictions not only 
eliminate many alternatives, improving the probability of a successful match, but they also 
frequently eliminate acoustically confusable words from consideration. 

In order to produce a rank ordered set of possible phrase hypotheses, all possible utterances must 
be scored. The word module evaluates each hypothseized word by giving it a score based on the 
scores for the individual phonemes matches as well as the overall goodness of the word model 
match. Phrase hypotheses are assigned a score based on the scores of their component words. 
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Those below a relative threshold quality are pruned. The extensions continue until all phrases 
span the utterance (or were pruned). Thus, the parser produces a rank-ordered set of phrase 
hypotheses that span the utterance. 

6.1. Two Alternate Parsing Strategies: Island Driving vs Left-to-Right 
We are currently experimenting with two basic parsing strategies, Left-to-Right and Island-
Driving. The left-to-right parser starts with a partial hypothesis which is the start token, since 
neither the beginning or end of a speech signal is clearly identifiable. The candidates for the 
start token are derived from using the word matcher to detect any word which could begin a 
Ehrase included in a predicted subnet in the region of speech. The left-to-right parser forms new 

ypotheses by adding words to the end of current ones, extending only to the right. As described 
above, the parser looks for the semantic categories of words which could follow any of the 
reasonable scoring word hypotheses. It expands these categories into words contained in the 
active lexicon and then calls the word matcher on the list of words. 

The island-driven parser forms a set of words which are all words that can appear in any position 
in the currently active subnets. These words are constrained in the currently active lexicon, 
derived from the predictions. The phoneme net is scanned for matches of these words. A 
threshold match score is set. Word matches that have a score better than the threshold are kept as 
islands, and others are pruned. All islands that can juncture, or could reasonably follow one 
another given considerations of the speech signal, are joined to form larger islands. Thus, 
islands are joined when the same word is added to the right of one and left of another. The 
parser then seeks to extend islands to the right and left, as explained above. 

The two parsing strategies described above have complementary strengths and weaknesses. The 
left-to-right parser is more efficient than the island-driving parser in that it can use all 
grammatical and lexical constraints in a single pass. The minimal set of words is used at each 
point. However, it is less robust than the island-driven parser when words are misrecognized. 
Word matches can be missed because of mispronunciations, noise, front end errors, incorrect 
word models, etc. In this case, the correct word has a very bad score while other word 
hypotheses in the same position may have much better scores. A left-right beam-search parser 
will exhibit garden path behavior here if it prunes tightly enough that the extension with the 
misrecognized word is deleted, while an the island-driven parser will not. 

6.2. Dealing with Ill-Formed Input: Bad Parses and Misrecognized Words 
Thus far, we have concentrated on deriving predictions which constrain what a user could 
reasonably say, and the use of these predictions by a large vocabulary, speaker independent 
speech recognition system. However, an interactive dialog does not merely consist of repeated 
question answer cycles. We define a cycle as a satisfactory, complete pair of user request and 
system response (i.e. the system receives a correct, legitimate request and provides an answer or 
action in response). However, due to both the complexity of the speech recognition problem and 
the tendencies of users to be incomplete, ambiguous and misspeak, the system must deal with 
ill-formed input (Weischedel and Black, 1983) . Thus, before processing a user query, there is 
often a need to engage in a a series of interactions between the system and user to clarify, 
disambiguate or correct the request. 

Our system uses three techniques for dealing with ill-formed user input: 
1. Evaluating the semantic content of questionable information 
2. Requesting user verification 

3. Initiating a clarification dialog 
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6.2.1. Evaluating Possibly Incorrect Information 
One feature of the parsing module is that scores are assigned to words and phrases which reflect 
the system's confidence that the item is correct. Parses with bad scores must be treated as 
questionable by the system. Fortunately, the system can determine the semantic category of poor 
scring information and determine its relative importance to the interpretation of the utterance by 
using the subnet grammars. If poor scoring words do not contain important semantic content, 
system may proceed without interruption. Since the partitioning of networks and interpretation 
of input is semantic, all words neea not be correctly recognized for the system to fulfill the 
request. The appropriate subnet must be determined and the content words must be correctly 
recognized. Misrecognition of other words in the surface forms does no harm. The system must 
recognize that the user asked about a specification for a ship, that the specification was SPEED 
and that the ship was KENNEDY. It is irrelevant whether the user said "Please show me" or 
"What's the" as the request form. Grouping of subnets according to meaning allows us to focus 
speech recognition on these content words and de-emphasize filler words. 

6.2.2. Verification 
When the parser detects that an important content word is questionable but is the most likely to 
have been said by the user, the verification strategy is employed. Before the state of the system 
changes and an time-intensive database query is initiated, we verify that the speech was correctly 
parsed by displaying a paraphrase of the system's interpretation of the utterance as text, as wen 
as speaking it. The user may acknowledge this by.clicking on a "pop-up" menu, typing or 
speaking a confirmation or disconfirmation. The parser also uses a suonet to parse this. 
Alternatively, unless the user rejects the interpretation of the input within a few seconds, the 
system assumes an affirmative response. 

6.2.3. Clarification 
A clarification dialog is initiated when the parser cannot form a good guess about what the user 
said. This will happen when a content word could not be recognized from the speech signal, 
when a content word was mistyped or when an utterance was produced which does not match 
one of the currently predicted subnets. It could also occur if anaphoric referents could not be 
resolved. The standard procedure there is to ask the user a question about the intended utterance. 
In addition, a "pop-up" menu appears on the screen. The items in the "pop-up" menu come from 
the parser. The parser produces a set of phrase hypotheses instead of a single best one. Thus the 
user must select a phrase interpretation taken from alternate phrase hypotheses or reject the parse 
completely. The user is then nee to speak, type or click the clarification. The phrase hypotheses 
contained in the menu are derived using many strong constraints.. These constraints originate 
from both the predictions as well as from partially recognized input. Thus, there are usually very 
few in the menu alternatives to choose from. Should there be many alternatives, the system also 
contains precompiled canonical expressions used for querying the user about specific concepts or 
intended meanings of utterances. 

7. Evaluation 
Prior research indicated that if we could effectively reduce the search space involved in 
processing a speech signal, we would be able to improve recognition performance. Therefore, 
we attempted to derive a circumscribed set of concepts which could be mentioned in a 
subsequent utterance. This set of concepts excluded information which appeared unreasonable, 
repetitive or non-productive. The set was derived from tracking a user s progress through a 
problem solving task. 
To evaluate the effects of integrating dialog, goals and focus into a speaker-independent, 
continuous speech recognition system, we assessed 

• the size of the search space for words 

• recognition accuracy 
with and without the use of our added knowledge based constraints. Thus we evaluate the 
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system using only syntactic and semanitc constraints at the individual sentence level and contrast 
these findings with the system using both the individual sentence constraints and all of the dialog 
level knowledge described earlier 

7.1. System Impact on Search Space 
To measure the effectiveness of the predictions in reducing the search space of the parser/word 
matcher module we employed two measures, average branching factor and perplexity. Average 
branching factor indicates how many chioces the speech recognition system is faced with when 
trying to identify a word. Generally, lower branching factor indicates higher constraint and 
better recognition because the system has fewer choices to make. This results in fewer errors in 
the speech recognition process. Perplexity is another related measure derived from information 
theoiy. It is calculated as 2 raised to the power of the entropy of the grammar. Entropy is the 
average of the log of the number of branches or the possible words which could occur at each 
point in a sentence (Roucos, 1987; Brown, 1987). Perplexity is the standard measure used when 
evaluating the performance of speech recognition systems. The identical system will increase its 
recognition performance as it employs grammars which decrease perplexity. While a system 
grammar may have a large branching factor or perplexity, a more meanin gful measure is often 
the test set branching factor or perplexity. These measures evaluate the difficulty of the actual 
sentences parsed. A test set branching factor is computed by tracing the path of each utterance 
through the nets and averaging the branching possibilities encountered during a correct parse. 
Test set perplexity is the perplexity for the nodes actually traversed during a particular utterance. 

To measure the perplexity reduction provided by the various dialog knowledge sources we 
created three dialog scenarios which varied greatly in the types of questions asked and the level 
of detail employed. These dialogs shared few common words and visited different states in the 
task goal trees. One dialog was constructed to ask very high level information which yielded 
much information. This dialog thus provided less constraining context than the other two. The 
second dialog intermixed both high level and low level questions. High level questions were 
generally used except in places where more in-depth information would be more useful for 
finding an optimal solution. The third dialog asked many detailed questions, but by no means 
exhausted all the information which could be asked. The number of sentences in each of the 
dialogs was 10,21 and 30, for dialogs 1,2 and 3, respectively. 

The test set branching factor and test set perplexity were computed for each of the three dialogs. 
The test set measures did not include information from either verification states or clarification 
dialogs. Only the actual sentences produced as queries by the user were used for calculations. 

Complexity of the Recognition Task: Branching Factors 
Constraints used: sentence level dialog knowledge 

Combined Test Set B.F. 63.8 14.2 
Dialog 1 Test Set B.F. 63.2 14.4 
Dialog 2 Test Set B.F. 61.0 14.4 
Dialog 3 Test Set B.F. 66.0 14.1 

Table 7-1: Average test set branching factor for the actual utterances used in the 
evaluation dialogs 

As seen in Tables 7-1 and 7-2, the overall result of applying the dialog level constraints was to 
reduce average test set branching factor from an average of 63.8 to 14.2, and to reduce average 
test set perplexity from an average of 31.5 to 9.5. These averages were derived by multiplying 
the actual test set numbers for each dialog by the number of sentences in the dialog and dividing 
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Complexity of the Recognition Task: Perplexity 
Constraints used: sentence level dialog knowledge 

Combined Test Set Perpl. 31.5 9.5 

Dialog 1 Test Set Perpl. 32.0 10.7 

Dialog 2 Test Set Perpl. 29.1 9.7 

Dialog 3 Test Set Perpl. 33.0 9.0 

Table 7-2: Test set perplexity for the actual utterances used in the evaluation dialogs 

by the total number of sentences in all three dialogs. The results show that search space is most 
significantly reduced when dialog knowledge sources are used. The branching factor is cut to 
less than one fourth its value when sentence level syntax and semantics are used alone. 
Similarly, the dialog level knowledge is responsible for reducing the perplexity measure by a 
factor of three. Furthermore, these effects show little variability. When perplexity is measured 
using all predictions to constrain the search set, perplexity averages at 9.5, and ranges from 9 to 

To further assess the effects of the various types of predictions on the reduction in perplexity, we 
computed additional statistics. First we evaluated the effects of using dialog or problem solving 
stage alone. Since this type of knowledge has been used in die past, evaluating its effects will 
give us an idea of how much of the observed reduction is search space is attributable to the to the 
other four knowledge sources. When dialog state predictions are added to the restrictions placed 
by the grammar, perplexity is decreases to an average of 24.66, a reduction of 6.84. Thus, the 
other four knowledge sources jointly reduced perplexity from 24.66 to 9.5, or by 15.16. 

In order to determine the relative contributions of each of the four additional knowledge sources, 
we took each sentence and looked at the information predicted to occur by the grammar 
constrined by the dialog or problem solving stage knowledge and the information predicted by 
selectively turn on and off the other sources of prediction. Unfortunately, two effects complicate 
these measures. First, the knowledge sources used for prediction are not orthogonal. Different 
knowledge sources exclude the same information from inclusion in the dynamically generated 
grammar. This effect is most pronounced in the later stages of each dialog or problem solving 
stage, when there are few options left to the user, enabling the semantic and proagmatic 
knowledge of dialog phase to eliminate most possibilities. The second complication arises in 
sentences where .there all forms of anaphora and most ellipses are permitted. Because we wished 
to evaluate the effectiveness of each knowledge source independent of specific dialogs and 
problem solving situations, _we selected sentences where all five types of knowledge placed 
restrictions on the grammar. 

Our results show that all knowledge sources except predicting the types of pronominal references 
which could be used, significantly reduced perplexity. The semantic and pragmatic knowledge 
about dialog phases reduced perplexity by an average of 5.6. The restrictions on active concept 
bindings which scope objects for definite reference reduced perplexity by an average of 3. 
Restrictions on pronominal referents reduced perplexity by only 0.6. However, since pronominal 
references are most acoustically confiisable, we believe these restrictions did lead to an overall 
imporvement in recognition performance. Last, predicting when elliptical utterances can be used 
ana the objects which can be referred to elliptically reduced perplexity by 5.4. 

Finally, as seen in the tables, the three dialogs have roughly equivalent test set branching factors 
and perplexity measures. This implies that the three dialogs are equally difficult to recognize in 
a speech understanding system. 

Thus, the ability to intelligently circumscribe the set of semantic information which could 
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sensibly follow a given utterance results in significantly reducing the number of words a speech 
recognition system considers when processing a signal. 

7.2. System Impact on Speech Recognition Accuracy 
To test the effectiveness of the use of this knowledge in MINDS, 5 speakers (3 male, 2 female) 
spoke to the system. To assure a controlled environment for these evaluations, the subjects only 
spoke the sentences prepared in three sample dialog scripts, which contained 30, 21 and 10 
sentences each. As discussed earlier, the three dialogs differed in the number and specificity of 
the questions asked. Each speaker spoke all sentences in all three dialogs, yielding ol sentences 
per speaker, or a total of $05 sentences. To prevent confounding of the experiment due to 
misrecognized words, the system did not use its own speech recognition result to change state. 
Instead, after producing the speech recognition result, the system read the correct recognition 
from a file which contained the complete dialog script. Thus the system always changed state 
according to a correct analysis of the utterance. 

The system was only tested with a vocabulary of 205 words, even though the complete 
vocabulary is 1029 words. Since we were using an older, experimental version of the ANGEL 
front-end [1], our recognition results where substantially worse than for the current official CMU 
speech system. However, the point we wish to make concerns the relative improvement due to 
our knowledge sources, not the absolute recognition performance of the total speech system. 
Thus we present comparisons of speech recognition accuracy performance using two different 
levels of constraints: using sentential knowledge constraints only and using all the power of the 
dialog predictions. Thus each utterance was parsed with two different levels of constraint. 

• The "sentential level" constraints used the grammar in its most general form, 
without partitioning. The constraints found in the combined semantic network of all 
possible sentence structures were used. The network grammar was the same for all 
utterances in all dialogs. This only allowed recognition of syntactically and 
semantically correct sentences, but ignored any user goals, focus or dialog 
knowledge. In addition, we used all the word level constraints. These include 
knowledge of word pronunciation and coarticulation rules. The sentential level is 
the equivalent of all the knowledge employed by most existing speech systems, as 
discussed earlier. 

• Using all "dialog knowledge" constraints, we applied all the knowledge built into 
the system at every level. In particular all applicable dialog knowledge was added to 
improve performance of the system. The grammar was dynamically reconstructed 
for each utterance, depending on the dialog situation, user focus and goals. Thus the 
grammar was different for almost every utterance. Of course, the word and 
sentential level knowledge was also used. 

Tables 7-3 and 7-4 show the actual parsing results for each dialog, averaged across speakers, for 
each mode. Word accuracy refers to the percentage of spoken words which were recognized 
accurately by the system. Sentence accuracy refers to the percentage of sentences where the 
system reacted as if all the words had been understood correctly. Further analysis revealed that 
1.5% of these sentences contained small misrecognized words (such as "give" as opposed to 
"show"), but the resulting meanings and all references were correct. 

As seen in Table 7-4, overall average sentence accuracy for the 305 sentences increased 
dramatically, from 32.1 to 58.4 percent, when the dialog predictions limited the words which 
could be matched by speech recognition system. Similarly, as seen in Table 7-3 the dialog 
constraints yielded a significant increase in the accuracy of word recognition, increasing 
recognition rates from 44.6 to 66.3 percent overall. These increases in accuracy are also 
reflected in all individual dialogs. 

While the actual recognition accuracy numbers are dependent on the particular recognition 
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Speech Recognition Accuracy: Word Recognition 
Constraints 

Sentence Level Dialog Knowledge 

Dialog 1 43.9 66.6 

Dialog 2 49.7 68.8 

Dialog 3 36.3 60.1 

All dialogs combined 44.6 66.3 

Table 7-3: Recognition results are shown as percentage of words correct with and 
without dialog constraints from the MINDS system 

Speech Recognition Accuracy: Sentences Correct 
Constraints 

Sentence Level Dialog Knowledge 

Dialog 1 31.2 58.1 

Dialog 2 38.0 61.9 

Dialog 3 22.0 52.0 

All dialogs combined 32.1 58.4 

Table 7-4: Recognition results are shown as percentage of sentences correct with and 
without the dialog constraints from the MINDS system 

system used, the increased recognition accuracy due to the higher level constraints would be 
noticeable in any system. 

8. Conclusions and Future Directions 
Conceptualized and tested in this paper was a system designed to incorporate various forms of 
dialog level knowledge into a speech recogntion system. The system was designed to decrease 
search space and improve recognition performanceT The most salient feature of this system was 
introducing dialog level knowledge early in the recogntion process. This was enabled by the use 
of dynamically generated grammars. A new grammar was dynamically generated after each 
cycle of user request and system response. The test was successful in that it significantly 
reduced the search space for words in a speech signal and also significantly imporved speech 
recognition accuracy. 
Furthermore, it is important to note that the dynamically generated grammars used by the 
MINDs system are applicable to other speech recognition technologies which are not feature 
based. We initially began our experiements using a commercially available, speaker dependent, 
isolated word recognition system. While our approach to creating new grammars worked quite 
well, two problems discouraged us from pursuing our research with these tools. First, the 
commercially available system created new lexicons very slowly. This was true with mere 
creation of an active lexicon. Hence, we did not even try to provide new word lists for each 
individual word, which is one of the strengths of a network grammar. Secondly, using an 
isolated word recognition system prevented us from being able to study more natural speech 
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patterns. Thus, we opted for a system which would ultimately enable us to continue our research 
without major adaptation. Currently, we are also adapting a speaker independent, continuous 
speech system which uses hidden Markov modelling techniques (a time based system) to accept 
predictions from the MINDS system. Since hidden markov models currently provide higher 
levels of recognition than feature based models2, we expect that our performance will enable us 
to use the system on many untrained users. Thus, we claim that the techniques discussed in this 
manuscript are applicable to most all speech recognition technologies. 

The ability to intelligently circumscribe search space in a speech recognition task is also 
important because it will make investigating more natural speech phenomenon, such as 
misspeaking, restarting utterances, silent and filled pauses, more tractable. To date, connected 
speech recognition system aviod processing signals incorporating such phenomenon because the 
search space is already enormous. 

Based on these findings, we are currently investigating three important issues which emerged. 
First, we are investigating using additional knowledge sources to imporve our ability to predict 
what a user is likely to say. Thus, we are currently adding information about user background 
knowledge (semantic, not episodic) which should enable us to more efficiently partition the goal 
trees. For example, in our aomain, there are many classes of ships within each ship type. Snips 
within these classes tend to have similar functionality, although some may have newer versions 
of equipment than others. Persons with significant background knowledge will know this 
information and will not have to inquire whether its feasible to substitute a ship in one class for 
another in the same class. Similarly, the requirements of certain missions or operations are well 
known to experienced seamen. These users will know the effect of a malfunctioning piece of 
equipment on a mission have will ask different types of questions than a person without such 
information. On the other hand, a student with little exposure to a naval domain will not be 
familiar with the different types of equipment within a class and will be much more likely to ask 
about database answers. We believe that knowledge about user experience will enable us to 
further restrict the types of utterances likely to be aslced. Recent research has demonstrated that 
systems can automatically determine a user's level of expertise (Chin, 1988) and we believe 
models of individual users can be automatically developed to refine the expertise predictions. 

Secondly, we are investigating ways to eliminate any rigidity which may result from an over 
zealous use of predictions. Thus, we are currently implementing a version of the system which 
employs a multi layered set of predictions. The advantage of such a system is that predictions 
can constrain the search space more than in the current system by using knowledge of user 
expertise and strategy preferences while avioding the rigidity which could result. With this 
model we can gradually relax some of the constraints in me face of bad evidence in the spoken 
input. The idea is that the system first parses with the most restrictive set of constraints possible. 
Should the parse fail, we try again, looking beyond the immediate predictions and allowing other 
alternative expressions to occur. 

Finally, for this domain, the goal trees were hand-coded based upon detailed analyses of 
transcriptions of problem solving sessions. We are now looking into automating ways to analyze 
a preferred way of solving problems from user transcripts without strong predictions in place 
initially. As the patterns emerge clearly, the predictions also fall into place. 

We believe that the system introduced herein offers a substantial advantage to furthering speech 
recognition technology. The ability to intelligently circumscribe the search space for words will 
facilitate the study of both very large vocabulary systems and natural speech phenomenon such 
as pausing and restarted utterances. 

2at least as of the October 1987 DARPA meeting 
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