
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Introduction to Object Oriented Programmi
Inheritance and Method Combination

Bruce L. Horn
1 January 1988

CMU-CS-87-127,

Abstract
Object oriented programming, introduced in the 1960's by Simula, has become an important

programming framework for large software systems. Among the attractions of object oriented
programming languages is the potential for software reuse through inheritance.

Inheritance allows the programmer to define a new class of objects which inherit the procedures and
state descriptions of an existing class. The programmer may then modify and extend the behavior and state
of the base class. Because state information is static, subclassing state is straightforward: simply append
new state information. However, behavior is dynamic; the problem of subclassing behavior is a bit more
complicated, since it may not be correct to simply concatenate the behaviors of the superclass and the
subclass and execute them sequentially. This issue is referred to as the method combination problem.

In this paper, an overview of object oriented programming will be presented, with a description of the
philosophy of object oriented programming. The different approaches to inheritance will be compared,
followed by a discussion of the method combination problem.

«r^SKS^r **- ̂ < D O D

>' ™ o *
Avionics Laboratory
Air Force Wright Aeronautical Laboratories
Aeronautical Systems Division (AFSC)
Wright-Patterson AFB, Ohio 45433-6543

Agency or № . Gov^menT' ^ °
f "*

 A d v a n c e d

Inheritance and Method Combination 2

Introduction

Object oriented programming, introduced in the 1960's by Simula [Dahl66], has
become an important programming framework for large software systems. Among the
attractions of object oriented programming languages is the potential for software reuse.
Programming environments such as the Smalltalk-80 environment [Goldberg83] provide
programming tools and examples in a set of pre-defined system classes, similar to a
software library. Programming in such a system consists of directiy using existing classes
by creating instances of classes (new objects), writing new classes from scratch, or
creating derived classes by subclassing existing ones.

Subclassing, or inheritance, allows the programmer to define a new class of objects
which inherit the procedures and state descriptions of an existing class. The programmer
may then modify and extend the behavior of the base class, and add new state information,
if desired. Because state information is static, subclassing state is straightforward: simply
append new state information. However, behavior is dynamic; the problem of subclassing
behavior is a bit more complicated, since it may not be appropriate to simply concatenate
the behaviors of the superclass and the subclass and execute them sequentially. This issue
is referred to as the method combination problem.

1.0 An Overview of Object Oriented Programming

The main difference between object oriented programming and traditional programming
is that object oriented programs are composed of objects, packages of data and related
procedures. Typically, a programmer using an object oriented language thinks primarily of
the data structures, followed by the procedures that act upon those structures. Traditional
programs are composed of a collection of procedures which are independent of the data and
related only by convention; programmers using traditional languages often consider first
the procedures, and then the data structures.

Typically procedures act only on certain types of data; for example, the procedure
Drawstring (str) expects a String as its argument, and DrawRectangle (rect)
expects data of type Rectangle. Although compilers can check to see if the arguments
are correctly typed, it is still up to the programmer to determine which procedure is the
correct one to use in each case. By closely relating data and the procedures that act upon
the data, object oriented languages alleviate this problem. For example, in an object
oriented system, drawing a string could be done by executing Draw (str, location),
and drawing a rectangle by executing Draw (rect, locat ion); finding the correct
procedure to execute is handled by the support system of the language1 and is based on

Inheritance and Method Combination 3

procedure's actual parameters. This seems like a minor advantage, but having language
support for choosing the appropriate procedure contributes strongly to the usability of the
language, and allows the programmer to focus on the semantics of the expression, rather
than the appropriate syntax.

Object oriented programming has been used traditionally in simulation systems, due to
the ease of describing simulation entities and their relationships as objects. More recently,
user interface systems, including window managers, have been successfully designed
using object oriented languages and programming styles.

1.1 Terminology

Object oriented programming is infamous for introducing new terminology, and there
are many different terms that are used for similar concepts in different languages.
Smalltalk-80 [Goldberg83] is one of the earliest and most successful object oriented
systems; for consistency throughout this paper the Smalltalk-80 terms, usage, and syntax
will be used. However, the syntax of program examples will diverge slightly from true
Smalltalk syntax for readability.

An object is the fundamental data structure in object oriented languages. In a
homogeneous system such as Smalltalk or Oaklisp, everything in the system is an object.
However, most object oriented systems are not homogeneous. Flavors [Moon85]
CommonLoops [Bobrow85], and CommonObjects [Snyder85] are implementations of
object oriented programming added to CommonLisp, an existing language; in these sytems
programming can be a mix of object oriented, procedural, and functional styles2.

A description of the structure and behavior of a set of objects is called a class. The
class describes those aspects of its instances which are shared. Objects are created from
classes through instantiation in most languages, but they can also be created by cloning a
prototypical object (in Actor [Agha86], for example). An object of a given class is called
an instance of that class. While instances share the class structure and behavior, each
instance may have different state.

The physical structure of an object is defined by its instance variables. These are the
slots in the object which may be filled with values or references to other objects. Object
behavior is defined through methods, procedures which are run in response to a message
sent by another object Methods may directly access the instance variables of the receiver,

În a typed language, this can often be determined at compile time, while typeless languages such as
Smalltalk must rely on a run-time lookup.
^Functional programming does not allow side effects, while procedural programming does. Object oriented
programming manipulates local state as well as (possibly) global program state.

Inheritance and Method Combination 4

the object to which the message was sent. The receiver is the entity which, along with the
message name, determines the correct method to run.

Messages may have arguments which are passed along to the method. In the previous
example, executing Draw (s t r , l o c a t i o n) would consist of sending the message
Draw to the object s t r , the receiver, with the argument l o c a t i o n .

In most cases only the receiver and the message are used to determine which method to
run. Some systems, such as CommonLoops, may use the classes of all of the arguments
to the message to find the correct method.

The syntax of message sending varies from language to language. Sending the
message f i l l with arguments c o l o r and mode to the object myRectangle is done in
several different languages as follows:

myRectangle fill: color transfer: mode Smalltalk

(fill myRectangle color mode) Oaklisp, CommonLoops

(=> myRectangle :fill color mode) CommonObjects

Note that "Sending the message f i l l to the object m y R e c t a n g l e " means "run
my Rec tang le ' s method named f i l l on itself." This terminology is unfortunate in that
it implies objects may concurrentiy execute methods along with other objects, which is
quite uncommon in object oriented languages3.

The names of messages sent to objects, called message selectors, are the object's
interface to the outside world. The important aspect of a message selector is that it is only a
name for the desired action, describing what the programmer wants to happen, not how it
should happen. Dan. Ingalls, one of the creators of Smalltalk, states that "The message
sending metaphor provides modularity by decoupling the intent of a message embodied in
its name from the method used by the recipient to carry out the intent." [Ingalls80]

The Smalltalk syntax is quite different than the different Lisp dialects; the receiver is
first, followed by the message and arguments in infix form. The full message selector in
the Smalltalk example is f i l l - . t r a n s f e r : ; the arguments appear after keywords that
terminate with colons.

The set of messages that can be handled by a particular object is defined by the object's
class, and is called a message protocol. A given class may implement several protocols,
for drawing in windows, writing to and reading from streams, accessing state, and so on.
•̂ For an interesting exception see [Agha86].

Inheritance and Method Combination 5

Many different classes may share a message protocol, but define different methods to
execute the messages. For example, operations such as < may be defined in several
different classes: The class I n t e g e r would provide a method to implement a standard
integer comparison, while the class S t r i n g would provide a method to implement a
lexicographic ordering. Such an operation, which can be defined over a set of different
classes, is called a polymorphic operation.

Polymorphism also occurs with parameterized classes. Some languages, notably
Trellis-Owl, support the concept of parameterizing a class over another class; for example,
a n O r d e r e d L i s t may have elements of any kind as long as they are all uniform:
O r d e r e d L i s t of I n t e g e r or O r d e r e d L i s t of R e a l . In this instance,
O r d e r e d L i s t is the parameterized class, and I n t e g e r and R e a l are the parameters
which are used to determine the class of the elements of the O r d e r e d L i s t . These
classes, once parameterized, are considered completely separate classes; however, they
still implement the same message protocols, and are therefore polymorphic 4 , 5. Ada
generic packages provide similar functionality.

Subclassing is the procedure by which refinement of the descriptions of objects is
accomplished While a class defines the structure and behavior of a set of objects, a
subclass of that class inherits the structure and behavior, and may extend or modify it as
well.

1.2 Encapsulation

Encapsulation describes techniques which minimize dependencies of modules on each
other by defining interfaces which are used for communication. Effective encapsulation
allows programmers to make compatible changes within modules without fear of changing
other behavior outside of the module.

In object oriented systems, the message selectors provide the object's interface, while
the instance variables and methods define the object's implementation. The use of
encapsulation provides the ability to hide an implementation of a class of objects while
exporting an interface to them. Some languages, notably Smalltalk, allow only the
methods defined by the receiver to access the receiver's instance variables directly.
Methods in other classes that want access to the state of an object that is not the receiver
must send a message to the other object This restriction supports encapsulation for objects
in the system.
4 In systems like Smalltalk which look up methods at runtime, OrderedList can hold entries of differing
types, as long as they implement the messages required to be in an OrderedList (< and =, typically).
5 See [Schaffert86] for an example of parameterized types.

Inheritance and Method Combination 6

This protection mechanism promotes modularity in that clients need not know the
object's implementation, just the message protocols it supports (e.g. its interface).
Programmers unfamiliar with object oriented programming may say that they can do the
same thing by defining a data structure with access procedures. This works as long as the
convention of manipulating the structures only with the access procedures is followed; as
soon as the data is directly manipulated in any place in the system, the modularity is
broken. Similarly, modules with private variables provide the same kind of protection as
object oriented programming, but the programmer is usually restricted to a single instance
of the module within a system; since the set of private variables is owned by the module
itself, it is impossible to have more than one set of the private variables6.

Being required by the system to send a message to an object to find out something
about the object's state is generally considered expensive. Simula and C++ [Stroustrup86]
allow the programmer to partition a class's instance variables into public and private
segments; public instance variables may be read and written by anybody, while the private
variables are accessible only through the object's methods. Similarly, CommonObjects and
Flavors allow the programmer to specify initable, gettable and settable instance variables
which provide clients direct access to the object's state. Trellis/Owl [Schaffert86] allows
the programmer to define fields of an object to be directly accessible.

1.3 Localization of Behavior

Factoring system functionality into classes and derived classes allows the programmer
to define certain shared behaviors in only one place. For example, sorting can be done by
comparison of objects (< and =). If a method is defined in an Array class that implements a
sorting routine using < and = on the objects in the array, any group of objects may be
sorted as an array as long as they understand (e.g. implement methods for) the messages <
and =. The sorting routine need not exist anywhere else in the system 7 ' 8. This ability
to localize functionality contributes to the compactness and ease of maintenance of object
oriented systems9.

6The Mesa language is an exception which provides for multiple instantiations of module state.
^Of course, if the collection is not homogeneous, there is the problem of determining whether, for
example, a number is less than a picture. Surprisingly, this kind of comparison does occur in user
interface systems.

^ Where parameterized typing is available, such as in Trellis/Owl, one would generally define a
SortedArray that takes a type as a parameter. That type would then be required to provide the appropriate
comparison operators (<, =), and the availability of the operations could be determined at compile time.
^ It may be useful to generalize this concept further, by parameterizing the sorting operation over the
comparison operator. In this way any operator may be provided that compares two objects; for example,
you may want to reverse the sorting order by providing the > operator instead.

Inheritance and Method Combination 7

1.4 Programming in an Object Oriented System

Programming in an object oriented system is a modeling process. The programmer
describes, through classes, the objects that make up the program, and defines the messages
and methods that will be used to communicate among the different kinds of objects.
Objects are built up from other objects, and a natural construction hierarchy can be made,
from low level objects to high level ones. Along another dimension, classes are refined
through subclassing, thus localizing the structural and behavioral differences between each
subclass and making it simpler to maintain the system.

1.5 An Example Class: w i n d o w

Object oriented systems have been shown to be useful in simulations and in building
user interfaces. A typical class defined for a graphical user interface might be structured in
the following way:

Class: Window
SubclmssOf: Object
Instanc«Vari: visible, title, topLe£tr botRight, scrollBar, pen
Messages: show, hide, draw, height: ht width: wd,

moveTo: point, bringToFront
Methods:
show [.. .code for show here...]

hide [... code for hide here...]

This description of a window says that each instance of window has five parts
(v i s i b l e . .pen) , and can respond to seven messages (show. . b r i n g T o F r o n t) . In
fact, windows will have more parts and be able to respond to more messages, depending
on what is inherited from O b j e c t . Each part of a Window will typically be another
object: v i s i b l e might be a B o o l e a n object, t i t l e a S t r i n g object, and so on.
Usually all that is required is that each part be able to respond to the messages used (draw
for S t r i n g , and so on).

Inheritance and Method Combination 8

Objects are instantiated in Smalltalk by sending the message new to the class 1 0 . The
following is an example of creating a window and then setting the window's size:

myWindow <- Window new.
myWindow height: 200 width: 400.

2.0 Inheritance

Inheritance is the main concept that supports refinement and software reuse in object
oriented languages. The ability to inherit state structures and behavior from an existing
class allows the programmer to define new objects in the system not only in terms of
existing objects, but also by modifying and mixing the descriptions of existing classes.
The goal of object oriented programming is, in general, to factor into separate modules the
different implementation details and behavior of abstract types; the goal of inheritance in
particular is to support refinement of classes into derived classes, or subclasses.

The pioneering object-oriented language Simula [Dahl66] introduced the concepts of
class and inheritance. A class may be prefixed by a superclass, thereby inheriting its
description, and virtual procedures or methods defined in the superclass can be specialized
by procedures in the subclass. In Simula (as well as C++), procedures must specifically be
declared virtual so that they may be overridden by subclasses. Taking this concept to the
limit, languages such as Smalltalk and Oaklisp make all methods virtual and overridable.

There are many advantages to inheritance in programming languages. Thomsen
[Thomsen86] states them as follows:

- Better Conceptual Modelling. Since specialization hierarchies are very common in everyday life,
direct modelling of such hierarchies makes the conceptual structure of programs easier to comprehend.
- Factorization. Inheritance supports that common properties of classes are factorized - that is,
described only once and reused when needed. This results in greater modularity and makes complicated
programs easier to comprehend and maintain since redundant description is avoided.
- Stepwise Refinement in Design and Verification. Inheritance hierarchies support a technique where
the most general classes containing common properties of different classes are designed and verified
first, and then specialized classes are developed top-down by adding more details to existing classes.
- Polymorphism. The hierarchical organization of classes provides a basis for introduction of
parametric polymorphism in the sense that a procedure with formal parameter of class C will accept
any C-object as actual parameter, including instances of subclasses of C.

^In Smalltalk, classes are also objects, and are themselves instances of a metaclass. Sending a message
like new allocates memory for the instance and can initialize the instance variables as well.

Inheritance and Method Combination 9

2.1 What is Inherited?

A class inherits instance variable declarations as well as methods from its superclass. If
an instance were to be created from the derived class immediately after subclassing, it
would act exactly as an instance of the superclass, since its behavior is completely
inherited. By adding new instance variables and new methods, and by overriding or
augmenting superclass methods, the new class's attributes may be refined using the
superclass as a base. In Smalltalk, class variables are also inherited; these variables are
maintained by the class itself and shared by all of the instances of the class, as well as
instances of subclasses.

Some systems allow the programmer to decide which methods are allowed to be
inherited for use by subclasses, and which methods are visible outside the class by users.
In Trellis/Owl, private operations are not inheritable at all, and are invisible to users of the
class. Public operations are both inheritable and visible to users, while subtype-visible
operations may be inherited but are invisible to users. These distinctions help to add clarity
and type safety.

When a method is redefined by a subclass, usually it is a specialization of the
superclass method, providing additional code to be run in some order. As noted in
[Kristensen], most object oriented languages only provide for a redefinition of the
superclass method, with method combination facilities to explicitly run the superclass
method from the subclass. Although this is extremely flexible, forcing the programmer to
explicitly execute the superclass method can lead to errors; it would be more desirable if
the language supported the specialization of methods automatically. Simula provides this to
a certain extent with its inner construct—code for methods in subclasses is textually
surrounded by code in the superclass, with the insertion point given by the programmer as
an i n n e r statement (A disadvantage of this scheme is that the superclass must know that
it is going to be subclassed, and what kinds of refinement are expected.) These kinds of
facilities will be discussed in detail later in the paper.

2.2 How is Inheritance Used?

Inheritance is used in several different ways. A subclass can be modified to provide
different or additional behavior from its superclass. For example, creating subclasses
Rectangle, Oval, and Polygon from the class GraphicalOb ject allows the
programmer to specialize existing methods for GraphicalOb ject such as display,
resize, erase, and move. A class such as GraphicalOb ject, which would never

Inheritance and Method Combination 10

have instances itself, is called an abstract class, and is designed explicitly to define an
interface to a particular kind of object; the actual implementation of that interface must be
defined in subclasses. More typically, subclassing is used to extend a particular class with
additional functionality; one might create a FramedWindow from an existing class
Window as follows:

Class: FramedWindow
SubclaasOf: Window
InitanctVarf: frameWidth
M« • s a gm m : frameWidth, frameWidth: width
Methods:
frameWidth [...code to return the frameWidth here...]

frameWidth: width [... code to set the frameWidth here and update the display. ..]

draw [. . .code to specialize the draw method in Window here...]

FramedWindow defines two new messages, f rameWidth (to read the width) and
frameWidth: w i d t h (to set it), and overrides the draw method of Window to provide
the new behavior of drawing a frame. Since FramedWindow is still a window, instances
of FramedWindow have all of the instance variables defined in Window as well as the
new instance variable frameWidth . Clients of FramedWindows can send all of the
window messages, as well as the two new messages for setting and reading the frame
width.

2.3 Inheritance Structures

2.3.1 Hierarchical Inheritance

The simplest and'most widely used inheritance structure is a strict hierarchy in which
classes may inherit only from a single superclass. Most current object oriented languages,
such as Smalltalk and C++, support only hierarchical inheritance. For many applications
this is sufficient; for example, the entire Smalltalk-80 system was written with only
hierarchical inheritance. The mechanism is simple, efficient, and straightforward, but
limited in expressibility: some desired relationships are impossible to describe in a
hierarchy. Extended mechanisms such as multiple inheritance provide more functionality,
at the expected cost of increased complexity.

The following is a part of the Smalltalk-80 class hierarchy, including the top-level class
Object and two of its immediate subclasses, Magnitude and Collection, and some of their
subclasses. From examining the inheritance hierarchy, it is reasonably straightforward to
discern what the attributes and messages defined in each class might be.

Inheritance and Method Combination 11

Object

C o l l e c t i o n

Sequenceab leCol l ec t ion Bag Set

Magnitude

Dale Time Number

^ArrajreoX^

Array Bi tmap S tr ing

Integer F l o a t Fract ion

2.3.2 Inheritance by Delegation

In some languages, such as Actor [Agha86], objects are created by cloning an existing
object In this case, both the instance variables and the current values of those variables are
inherited. If the new object changes the value of one of the inherited variables, it makes a
copy of the instance variables for its own use, and no longer references its parent object's
variable.

Because there is no concept of class, Actor provides inheritance through delegation.
This means simply that each object is responsible for both choosing which messages it will
handle, and for choosing an object to handle those messages that it is not prepared to
handle. This is a very flexible mechanism which can simulate other kinds of inheritance,
but the programmer must define the inheritance behavior himself. Other languages without
the class concept (such as Object Logo) instantiate objects in the same way as Actor, by
cloning a prototype, but handle the inheritance behavior automatically.

Note that objects that inherit from a prototype in the Actor style end up sharing the
values of the instance variables of that prototype. Again, this is extremely flexible and
useful in some circumstances, but not typically what is desirable. In the building of
programming systems it is necessary to provide both rigor and flexibility. Although
inheritance by delegation and prototyping are powerful new ways to handle method lookup
and inheritance, they may not provide enough inherent structure to support the design of
large, maintainable systems. Therefore, this paper will focus on more traditional,
structured, class-based languages.

Inheritance and Method Combination 12

2.3.3 Inheriting from Multiple Superclasses

The ability to inherit from multiple superclasses can be quite useful in certain
circumstances; these circumstances, and the consequences and problems that arise from
this functionality, will be discussed in detail later in the paper. A more ambitious and
flexible scheme is Boolean classes [McAllister86], where any boolean combination of
classes can define a class. There have not been any systems yet built that implement this
concept, so it will not be considered in this paper.

2.4 Encapsulation Issues with Inheritance

Since a subclass inherits the instance and class variables of its superclass, it will often
be convenient for a method to operate on them. However, it is important that the subclass
only access the superclass through the messages defined by the superclass, just like any
other client; directly accessing the variables can cause problems. For example, Smalltalk
allows subclasses to directly access all instance variables. In Smalltalk, if a programmer
removes an instance variable from a superclass, all subclasses will need to recompile their
methods since they access their own instance variables by offset from the beginning of the
object An even more serious problem occurs when a subclass method actually uses the
deleted instance variable: since the subclass was dependent on the implementation of the
superclass, the method will have to be recoded.

By forcing objects to access their instance variables defined by their superclass through
the defined interface, these problems do not occur. However, it may be necessary to define
special methods for accessing superclass state from the subclass which may not be
appropriate for other clients of instances of that class. One solution is to be able to declare
these subclassed methods as special as in the Trellis/Owl private methods, so that they do
not appear in the external message protocols of the superclass1 1; Simula provides this
capability as well with the h idden attribute.

2.5 Typing Issues with Inheritance

Although inheritance has primarily been considered a programming convenience,
providing a nice way to reuse and refine existing code, it may also be considered to be part
of a typing system [Schaffert86]. For example, in Simula, if a class FramedWindow
inherits from Window, instances of FramedWindow may be used anywhere a Window
o
°C++ provides a mechanism, called protected, to accomplish this. Hiding the superclass implementation
from subclasses is an important aspect of the design of CommonObjects. An excellent discussion of these
issues can be found in [Snyder86].

Inheritance and Method Combination 13

may be used, since FramedWindows can be expected to have at least the behavior of a
. Window. A slot or parameter whose type is set to be Window may actually be any

subclass of window. Clients then can use their knowledge of the class hierarchy (e.g. that
FramedWindow is a kind of Window) in the use of the code.

Unfortunately, viewing inheritance on the one hand as a type system, and on the other
hand as a programming convenience, is somewhat problematic. Client code that uses
knowledge of the class hierarchy can cause problems. Snyder [Snyder86] says

If the use of inheritance is part of the external interface, then changes to a class definition's use of
inheritance may affect client code. For example, consider a class that is defined using inheritance.
Suppose the designer of that class decides that the same behavior can be implemented more efficiently
by writing a completely new implementation, without using the previously-inherited class. If the
previous use of inheritance was visible to clients, then this reimplementation may require changes to
the clients. The ability to safely make changes to the inheritance hierarchy is essential to support the
evolution of large systems and long-lived data.

For example, if a programmer changes FramedWindow to inherit from a different
class, say F a s t w i n d o w (with a different message protocol than Window), code which
assumed that FramedWindow was a specialization of Window might not pass a type-

12
checking procedure . The use of the knowledge that FramedWindow was a subclass of
Window in the type hierarchy breaks the encapsulation.

Clearly, if the behavior of FramedWindow matches the behavior required by the client
of FramedWindows, the use should be allowed by the type system regardless of class
inheritance. Separation of the concepts of type and class, by using message protocols to
denote the type of a class independent of the inheritance structure, is a possible solution.
The w i n d o w i n g protocol, implemented by FramedWindow as well as Window, might
be the message set [s h o w , h i d e , d r a w , w i d t h : h e i g h t : , m o v e T o ,
br i n g T o F r o n t] ; the declaration of this protocol as implemented by FramedWindow
would allow FramedWindows to be used anywhere a w i n d o w i n g protocol is required.
This approach has been implemented in the Emerald system [Black86]. Subclassing and
refining protocols is also possible but is beyond the scope of this paper.

Encapsulation and typing issues with inheritance are discussed in detail in [Snyder86].

l^This would be a problem if the system checked types based on the names of the classes, rather than the
actual message protocols supported by those classes.

Inheritance and Method Combination 14

3.0 Multiple Inheritance

The ability to inherit from more than a single superclass is called multiple inheritance.
In contrast with the simple design and implementation of hierarchical inheritance, multiple
inheritance raises quite a few design issues concerned with message dispatch, combination,
and typing.

3.1 The Need for Multiple Inheritance

Hierarchical inheritance has been shown to be very powerful and useful in the design of
programming systems [Goldberg83]. However, in many cases this restricted inheritance
cannot model common system structures as nicely as a multiple inheritance scheme could

Our classes Window and FramedWindow can be used to illustrate this problem. Say
a new subclass of Window, Tit ledWindow, is created. TitledWindow defines
additional state and behavior for displaying a title on the window, and inherits everything
else from window. The class hierarchy looks as follows:

Window

TitiedWindow FramedWindow

Now, we would like to create a window that is both framed and titled. In a hierarchical
inheritance system, since we are restricted to inheriting from a single superclass, we are
forced to choose one of the two branches to subclass and copy the code from the other
branch to implement its behavior

Window

TitledWindow FramedWindow

I
FramedTitledWindow

Since we copied the code from FramedWindow, we now have two places which
define the framing specialization of window. We have lost the localization of the behavior
of framing. An additional disadvantage is that a FramedTitledWindow is not a
specialization of a FramedWindow, and therefore cannot be accepted as implementing at
least FramedWindow behavior in a type-checking system.

Inheritance and Method Combination 15

With multiple inheritance, a different class hierarchy is possible:

Window

Tit ledWindow FramedWindow

FramedTitledWindow

In this case, the behaviors of F r a m e d W i n d o w s are fully factored; no code is
duplicated, and the specialization of FramedTit ledWindow from its two superclasses is
clear.

3.2 Factorization of Orthogonal Attributes

Multiple inheritance allows factorization of the behavior and state in a system, and
provides for factoring non-shared attributes, as shown above, in a simple way. Classes
may inherit from more than one superclass, resulting in a class description that includes the
descriptions of all superclasses (instance variables as well as method definitions).

Subclassing is typically used to refine the implementation of a superclass, by adding
new behavior, restricting or modifying old behavior, and adding state. When the ability to
inherit from more than one superclass is provided, programmers often inherit orthogonal
behavior and state to provide special functionality. For example, given a class L i n k e r
which links instances together and has the standard linked-list traversal functions, any class
can inherit state and behavior from L i n k e r to result in a class which instantiates objects
which can be put in a linked list This type of class, used to provide completely orthogonal
behavior, is often called a mix-in. As with abstract classes, mix-ins are not instantiated,
only inherited.

In the window inheritance example, where there are special attributes having to do with
framing and titling windows to add to the basic window class, it would make sense to
make the attributes available through Framed and T i t l e d mixins:

Inheritance and Method Combination 16

Window

FramedTitiedWindow

Message protocols are often defined by mix-ins, since a mix-in implements a certain
kind of behavior that is orthogonal to the other behaviors of the class. In the previous
examples, L i n k e r - M i x i n would implement the l i n k a b l e protocol, while T i t l e d -
Mixin would implement w i n d o w - t i t l e a b l e . Currently, mix-ins seem to be the only
constructs that actually provide support for the concept of message protocols in object
oriented languages. They may be sufficient to implement message protocol structures, but
making a new language construct that supports the idea of protocols apart from inheritance
may be a superior alternative.

4.0 Method Dispatch

How is the correct method chosen when an expression is executed in an object oriented
program? A complicated process may be required to find and combine behaviors from
various classes, due to the fact that the behavior of an object depends on every class from
which it inherits. What determines the method that is expected to run? These questions
often may be answered at compile time, but cases exist where it is impossible to determine
the exact class of an object, and therefore the correct method to execute, until run time 1 3 .
For example, one might have a collection of GraphicalOb jects which are created at
runtime and then displayed by running through the collection, sending the draw message
to each element. The system cannot know when the code is compiled what the collection
consists of; it may be a Rectangle, followed by a Polygon, followed by a Circle,
each with their own different draw method.

4.1 Discrimination on the Class of the Receiver

One of the simplest schemes for method dispatch is to determine the method to run
based on the class of the receiver. As is true for many design issues in object oriented
programming, this is sufficient for most cases, where the message arguments do not
change the meaning of the operation. Methods can then be stored in the receiver's class,
^However, type safety may still be checked.

Inheritance and Method Combination 17

and accessed using a simple message->method lookup mapping.

Unfortunately, many binary operations are symmetric and polymorphic relative to both
the receiver and its argument. For example, 3 . 0 + 4 . 0 is interpreted in Smalltalk as
sending the message + to 3 . 0 , which is of class F l o a t , with the argument 4 . 0 . As long
as the argument is also a F l o a t , floating point addition is correct The difficulty begins
when the argument is not a float, say an integer. 3 . 0 + 4 can no longer be handled by the
standard F l o a t addition method, and the code in the F l o a t + method must handle this
case specifically, first noting the type of the argument as I n t e g e r , and then coercing it to
an instance of F l o a t .

C++ supports user-defined type conversion for just this problem. In the F l o a t +
example, the programmer would supply a F l o a t constructor that would create an
instance of a floating point number given an integer. Because a F l o a t was expected on
the right hand side of the +, and because a constructor exists to convert the I n t e g e r to a
F l o a t , the C++ compiler automatically generates code to do the conversion.

4.2 Discrimination on Multiple Arguments

CommonLoops can take all of the arguments into consideration when looking up a
method for a given message. This mechanism encourages the implementor of the program
to consider the message to be an operation based on a set of argument classes, rather than
an index to a method defined by the receiver. To handle the addition problem with Integers
and Floats, it is a simple, if tedious, task to define four different methods: + [I n t e g e r ,
I n t e g e r] , + [I n t e g e r , F l o a t] , and so on.

Discrimination on multiple arguments can be simulated easily by checking the
classes of the arguments explicitly in the method, but this solution is less modular1 4.

4.3 Method Dispatch with Hierarchical Inheritance

Method dispatching is quite simple with hierarchical inheritance and discrimination on
the receiver. If the message has a defined method in the receiver's class, that method is
run; otherwise, the system searches for the method in the receiver's superclass. If no
method is found anywhere up the superclass chain, a runtime error occurs ("Message not
understood").

For a clean solution to this problem using only discrimination on the receiver, see [Ingalls86].

Inheritance and Method Combination 18

If discrimination on multiple arguments is used, the process is more complicated if the
method is not found immediately; there is no unique superclass to check next, and so all
possible superclasses of the arguments must be tried in some order in the expectation that
some set of classes will be a key to a defined method. This is quite similar to the multiple
inheritance method dispatch problem.

4.4 Method Dispatch with Multiple Inheritance

Choosing a method to run in a multiple-inheritance language is not simple. Say the
receiver's class doesn't implement the message; where does the system look next? Since
multiple superclasses may implement it, there must be a scheme by which a particular
method is chosen from a set of possible inherited methods. A typical solution is to enforce
a linear class ordering. Oaklisp simply performs a depth-first search of the superclass tree,
while Flavors and CommonLoops attempt to flatten the inheritance graph. A depth-first
search is simple and efficient, but it doesn't always work well.

The way that Flavors flattens the inheritance graph can be described with three rules:

1) A class always precedes its inherited classes.
2) The local ordering of inherited classes is preserved.
3) Duplicate classes are eliminated from the ordering.

To make the ordering, we walk through the graph from the most specific class in depth
first order, adding classes to the list. If we can place each new class in the list without
violating one of the rules, we add it, otherwise we move to the next node. If we walk
through the whole graph without adding all of the classes to the list, we walk through again
and add the remaining classes by applying the rules. It is possible that no ordering can be
made that obeys all three rules; an error is signaled in this case, and the programmer must
re-structure his classes or write his own method dispatch mechanism.

An example modified from [Moon85] shows how each of these rules is used. We are
given the following class definitions:

Pie SubciassOf: Apple Cinnamon
Apple SubciassOf: Fruit
Cinnamon SubciassOf: Spice
Fruit SubciassOf: Food
Spice SubciassOf: Food

Inheritance and Method Combination 19

The inheritance graph is as follows:

Food

Fruit S p i c e

Apple Cinnamon

We start with P i e , the most specific class in the graph, and traverse the graph to
Apple and F r u i t :

(Pie Apple Fruit)

The next class is Food , but adding F o o d would make it precede Cinnamon and
S p i c e , which are both F o o d s . Skipping this class, we re-traverse the graph, adding
Cinnamon and S p i c e , and finally Food:

(Pie Apple Fruit Cinnamon Spice Food)

and now we have a complete ordering.

This ordering, where the most specific class is listed first is called b a s e - f l a v o r -
l a s t order, where the base-flavor is the most general class (class Food in our example).
This allows a class to override methods described in superclasses. The opposite ordering,
b a s e - f l a v o r - f i r s t , is used in some circumstances to order the execution of methods
in least-to-most specific order when combining them; see [Moon85] for details.

Flavor's method for flattening the inheritance graph can be quite complicated and subtle
in places, and any method for flattening inheritance graphs, including depth-first search,
will introduce "ghost" superclasses; for example, although F r u i t does not inherit from
Cinnamon, the ordering is such that Cinnamon could end up providing a method that
F r u i t did not implement. These problems often are symptoms of poor structuring;
however, it is more desirable to have the system help prevent these occurrences.

Trellis/Owl doesn't use any implicit method inheritance mechanism. Instead, when a
class inherits a method definition from more than one superclass, the programmer must
explicidy specify which definition is wanted, or write a new definition in the subclass.

Inheritance and Method Combination 20

5.0 Method Combination in Multiple Inheritance

Method combination is a critical part of the design of a multiple inheritance language.
Inheriting state structure in such a language is straightforward: structure is static, and can
be accessed in any order by the object's methods. Name conflicts in structure are easily
handled; the programmer only names his own fields in his subclass definitions, and access
to superclass fields must be done by message passing 1 5. Subclasses just merge their
additional state with the state of their superclasses. On the other hand, inheritance of
methods is a little more difficult Since methods are executed sequentially, inheriting a
method and refining it in a subclass may require a special ordering or control structure to
provide the right behavior.

Method combination provides the ability for objects to use specific parts of inherited
behavior in combination with new behavior. For example, say FramedWindow inherits
from the class Window. Objects of these classes can display themselves in response to a
message draw. If the object being drawn is in fact a FramedWindow, the draw method
might invoke the draw method for Window first, followed by code in FramedWindow's
method for drawing the frame.

5.1 Method Combination Issues

There are several issues involved in designing a method combination mechanism.
Sometimes the default behavior of a class (the implementation of the method in the
superclass) needs to occur as well as some additional behavior, as in the FramedWindow
example. Instead of rewriting or copying down the code in the superclass' method, a form
of method combination can be invoked.

What determines the unit of behavior in method combination? In most object oriented
systems, entire methods are taken from the object's class and appropriate superclasses and
put together into a combined method to be run. It is important that these methods not be
accessible individually if they each only define part of an object's behavior for a given
message. For example, if you send a message draw to a FramedWindow, and the
superclass Window sets up a clipping region before drawing and restores it afterwards, it
should not be possible for the programmer to execute the window's draw method in
isolation, without executing the clipping code.

1 5 N o t e that Smalltalk allows direct access to superclass instance variables, so name conflicts are still a
problem

Inheritance and Method Combination 21

Another issue is whether behavior defined in a superclass method should be guaranteed
to be run when a subclass defines a method of the same name. Typically, this is what is
desired; rarely does a subclass method completely replace the code in the superclass, and
in most cases it would indicate poor factorization of code. However, one very useful case
exists where this is required: that of default behavior. For example, in Smalltalk, all
objects inherit a default p r i n t method which is invoked only if the subclasses do not
define their own p r i n t . In this way, complex objects like Windows which are virtually
unprintable are printed as "A window". Simpler objects for which printing makes sense
define their own print methods (a Complex number might print as " 3+4 i "). Because this
case is so useful, it is important in a method combination scheme to be able to support this
behavior.

5.2 Inner

The original method combination technique was introduced by Simula. A special
keyword, i n n e r , was used in a superclass method definition to indicate that subclass
methods defined for this message should be run at that location in the superclass method.
This facility allowed the superclass to run code both before and after code from the
subclass was executed, but required the programmer to structure his code top-down so that
subclasses would have access to the superclass's method. In most other languages this
need not be pre-determined; any superclass methods that are needed can be used at will,
and in any combination.

Inner requires that the programmer understand the superclass that he is deriving code
from. This can either be considered a feature or a problem, depending on the point of view
of the programmer.

Consider the method for draw in class Window. In window management systems it is
often necessary to set up a graphics clipping region before drawing and restore it
afterwards. The method for draw using i n n e r would be written as follows:

Window methods:
draw [. . .set up clipping region. . .

inner
...restore clipping region...]

This structuring would allow subclasses to automatically inherit the setting and
restoring of the clipping regions; their code would be executed at the location of inner in
the draw method.

Inheritance and Method Combination 22

Often the code can be merged at compile time, as with Simula, if the method structures
are completely determined. Only when the procedures are virtual will there need to be a
run-time lookup.

Inner cannot be overridden; when a message is received, code in superclasses is
guaranteed to be run when they define the corresponding message. This behavior has
advantages as well as disadvantages, as expected: subclass behavior and side-effects will
more closely resemble that of their superclasses, since the code will always be run. On the
other hand, sometimes subclasses are designed to completely redefine messages inherited
from their superclasses, as with default behavior. This is impossible using the standard
definition of i n n e r .

To solve this problem, i n n e r could be defined to return a value. In the previous
example, the default p r i n t method in Objec t could be written as follows:

Object methods:
print

["First invoke subclass definition, if any"

printResult » inner.
if printResult !- nil then return printResult
else return "A " + self className.]

The subclasses would then implement their own p r i n t method, returning its result. If
there was no method defined, i n n e r would return n i l , and the superclass would provide
the default printing behavior.

5.3 Super and Self

In single inheritance systems, such as Smalltalk, the special message receiver super is
provided to allow methods defined in superclasses to be explicitly executed. In effect, a
message is sent to the receiver as if it were an instance of its superclass, restarting the
method lookup one class level higher. Another special receiver self is provided as well,
to send messages to the current object.

In our example Window classes, the draw method in FramedWindow might invoke
Window's draw method before drawing the frame:

Inheritance and Method Combination 23

FramedWindow methods:
draw [super draw. . . .code to draw the frame here. ..].

Being able to send a message to yourself is very convenient, and is used quite
frequently in the Smalltalk system. However, what determines who s e l f really is when
the current method running happens to be in a superclass of the initial receiver? Should the
method lookup begin as usual at the class of the receiver, or should it begin in the current
method's class? Arguments could be made for both sides: clearly the implementor of the
superclass method knows nothing about the subclass's existence, and expects s e l f to run
methods defined in its own class. On the other hand, if the subclass had refined the
message being sent to s e l f , it might be an error not to run the refined method. Smalltalk,
in fact, begins the lookup in the object's class and not the superclass; some languages
provide an additional construct r e c e i v e r to explicitly invoke this behavior.

When a class inherits from more than one superclass, choosing which method to run is
a difficult process if there are multiple definitions. This new definition may use the
superclass methods by directly naming the superclasses as qualifiers to the method
invocation (Window 1 draw instead of s u p e r draw), as with Trellis/Owl. Often this is
sufficient, but there are some cases in which more specific control is needed. In our
example class FramedTit ledWindow, the obvious method for draw would be

FramedTitledWindow methods:
draw [FramedWindow draw. TitiedWindow draw].

This is clearly a problem, since both FramedWindow and T i t i e d W i n d o w inherit
from Window, whose draw routine will be invoked twice. There are several solutions to
this problem; most involve taking the draw method apart in the superclass and making it
into several different methods, which are called separately by the subclass.

5.5 Before and After Demons

Special methods called demons are provided in the Flavors system for method
combination, b e f o r e and a f t e r demons, which are run before and after the primary
method in the superclass, can be defined in a subclass. Using demons, our window
example would look like the following:

Inheritance and Method Combination 24

FramedWindow methods:
after draw [self drawFrame]

TitledWindow methods:
after draw [self drawTitle]

FramedTitledWindow methods:
no method for draw required; inherited from Framed and Titled windows.

Note that because Flavors supports multiple inheritance, there may be more than one
before and more than one after demon which can be run for a given method. When a
method is chosen to be run, all of the applicable before demons are run in base-
f lavor-f irst order (as computed by the flavor ordering procedure), then the primary
method is run, then all the after demons in base-flavor-last order are run. This
arrangement ensures that the most general demons wrap around more specific ones, with
the primary method (by definition the most specific) in the middle.

This implicit ordering can be problematic. If the order of drawFrame and
drawTitle matter in the combined FramedTitledWindow method, it is possible that
the order determined by Flavors is incorrect. Ordering typically matters when both
methods side-effect shared state in the object itself, or count on the object being in a
particular state. The only way to handle this problem is to explicitly specify the order of
inheritance of the superclass methods in this particular method; there may be no correct
class-wide ordering; however, Flavors does not provide this capability.

5.6 Wrappers

Sometimes it is convenient to have code in a subclass method run both before and after
code in a superclass method. Flavors provides wrappers to allow the programmer to
"wrap" code around an existing method. Before and after demons are not sufficient,
because the sequential ordering of demons and main method is enforced. Sometimes it is
necessary that the main method not be run, or to have a more complicated control structure
than just a sequential ordering of the demons and primary method.

For example, consider a subclass of Window called BoldWindow, where every line
in the window is drawn twice as wide. BoldWindow could be implemented by a wrapper
that sets the pen width to two, calls the Window draw method, then restores the pen
width 1 6. Wrappers provide more execution structure than a super call in that they are

^This could also be done with demons, but there would have to be two separate demons, one before and one

Inheritance and Method Combination 25

combined in the same way as demons, and multiple wrappers on a method are nested
appropriately.

5.7 Programmer-Defined Combination

Even before and after demons and wrappers don't provide enough flexibility to
implement the kind of method combination desired in Lisp systems. Flavors allows the
programmer to define his own method combination facilities as well, with the full
generality of Lisp. Consider the following example, again modified from [Moon85],
where the class Army inherits from the class Military:

Class: Military
initanosVars : reserve-diesel-supply reserve-gas-supply reserve-coal-supply
mtftagta: totalFuelSupply
mathods:
—define totalFuelSupply as the sum of all totalFuelSupply results in all classes

generic totalFuelSupply: fuelType [methodCombination: sum]
totalFuelSupply: fuelType

[fuelType - diesel ifTrue: [reserve-diesel-supply]
fuelType - gas ifTrue: [reserve-gas-supply]
fuelType - coal ifTrue: [reserve-coal-supply]
0]

Class: Army
súbelassOf: Military
instanceVars : aux-diesel-supply, field-diesel-supply, aux-ga s - supply,

field-gas-supply
messages: totalFuelSupply
methods:
—Define this subclass's totalFuelSupply, to be added to superclass's result

totalFuelSupply: fuelType
[fuelType - gas ifTrue: [aux-gas-supply + field-gas-supply]
fuelType - diesel ifTrue: [aux-diesel-supply + field-diesel-supply]
0]

Sending the message totalFuelSupply to an instance of Military will return the
appropriate value in the Military structure, while sending it to an instance of Army will
add the Army's totalFuelSupply to that of the Military's, returning the sum. The
same effect could be achieved with a super call in the Army's totalFuelSupply
after, to accomplish the same thing as a single wrapper.

Inheritance and Method Combination 26

method, but if Army inherited from more than one superclass, a more complicated solution
would be necessary.

5.8 A Generalization of Inner: Alternation

The execution of methods with i n n e r may be considered to be a sort of alternation
between methods: first the superclass method is run up to the i n n e r statement, then
subclass methods are run to completion, finally returning to the superclass to finish its
method execution. In a hierarchical inheritance structure, i n n e r acts as a subroutine call
to the next method down in the hierarchy.

With multiple inheritance, i n n e r may be generalized to be a changeover point,
(denoted by a * in our examples), where another method is invoked to run until it either
terminates or hits a changeover point itself. This allows methods to interleave execution in
a powerful and general way. The mechanism is called alternation [Thomsen86].

In Thomsen's paper, alternation is part of a multiple inheritance strategy that includes
inheritance of data, procedure, and process in a unified framework. The main idea as
presented here involves providing a method inheritance hierarchy which is separated from
the data inheritance hierarchy, which gives the flexibility of ordering which is often needed
in subclass methods.

Alternation requires that methods state explicitly the superclass methods that they
refine. The order of methods listed determines the alternation order. For example:

Window methods:
draw inherits: ().

[A. . .set up clip, draw self. . .

* "Changeover point, just like inner"

B.. . r e s t o r e clip. ..]

FramedWindow methods:
draw inherits: (Window.draw)

[C. .. code for drawing the frame. . .)

TitledWindow methods:
draw inherits: (Window.draw)

[D...code for drawing the title...]

Inheritance and Method Combination 27

Since FramedWindow draw inherits Window 's draw method, they alternate in
top-down order (Window. draw first, then FramedWindow. draw, etc.). When there is
no explicit changeover point, alternation occurs when the currently executing method
terminates.

With multiply-inherited operations:

FramedTitledWindow methods:
—Define an ordering for method combination for this method

draw inherits: (FramedWindow.draw, TitledWindow.draw)
[.. .no code required...]

In this case, the alternation order would be (Window, F r a m e d W i n d o w ,
T i t l edWindow, F r a m e d T i t l e d W i n d o w) , the breadth-first search of the method
inheritance tree (which can be different than the class inheritance tree). The code will be
executed in the topdown order A, C, D, B, with the alternation point providing the point of
specialization. No demons or other combination techniques are required, and the desired
behavior is accomplished.

Directly naming the methods inherited can bring up some of the same problems as are
encountered when directly naming superclasses: the knowledge of the names of the
superclasses inherited breaks the encapsulation, and changing a name could require method

17

recoding . Relative naming, such as s u p e r , is more flexible, but can allow errors that
would be less likely to occur with direct naming.

Inner and alternation both have the problem that it is hard to specify the state a subclass
method will encounter when it executes at an alternation or i n n e r point The superclass
maintainer is free to change his code, perhaps invalidating assumptions that the subclass
implementer made. However, this is no different from any inheritance situation where the
subclass changes or counts on state stored in its superclass variables; the state of the
superclass method itself, and the changes in state it has made up to the point of the i n n e r
statement, must be considered a part of the object state as well. Supporting behavior such
as in the window clipping example using s upe r is no better, because saving and restoring
the clipping state would have to be broken out into separate methods, to be called
individually by the subclass.

^However, one could argue that method recoding should occur, since the superclasses have changed
dramaticaUy enough to warrant a re-examination of the subclass code.

Inheritance and Method Combination 28

6.0 Conclusion

Object oriented languages derive much of their expressibility and power from the ability
to inherit state and behavior from superclasses. While inheriting state is straightforward,
inheriting behavior requires an external structuring mechanism to sequence the behavior of
the superclasses and subclasses in a useful way. With hierarchical inheritance the
constructs i n n e r and s u p e r are sufficient for most method combination requirements,
although the philosophies of use are different I n n e r requires that the methods for classes
be structured top down, since the programmer must provide the ability explicitly for
superclass methods to be refined. S u p e r does not require this, since any superclass
method can be invoked from a subclass; however, it is not possible for subclass methods
to be executed automatically within a single superclass method

When a language supports multiply-inherited classes, the issues of method dispatch and
combination become much more complicated. Quite a few mechanisms have been
developed, including extensions of i n n e r (alternation) and s u p e r . Flavors goes even
farther, providing demons for incrementally adding behavior before and after a primary
superclass method, as well as support for user-defined method combinations.

The alternation technique reflects a different programming philosophy than that of
demons and s u p e r . With alternation, the ordering of code inherited from superclasses
can differ from method to method. Also, the unit of combination can be less than an entire
method, and a single superclass method can wrap code around subclass methods. This is
quite convenient; programmers using languages without alternation would be forced to
write two different superclass methods, one to be executed before the subclass method and
one after. Unfortunately, these methods are available to other clients as well, and can be
executed in isolation, which could have undesirable results.

Any method combination can be used as long as it can express the different kinds of
refinement of behavior in a clean, highly encapsulated manner. Ultimately, choosing
among competing method combination techniques is a question of programming style. In
the Lisp and Smalltalk worlds, the ability to modify existing code as freely as possible is
important; method combination techniques which allow as much flexibility as possible are
desirable. In languages like Simula, the overall structure of the system is considered to be
important, and top-down mechanisms, such as alternation, are preferable.

Inheritance and Method Combination 29

References

[Agha86]
Agha, Gul: "An Overview of Actor Languages", SIGPLAN Notices V21 #10, October
1986

[Black86]

Black, Andrew, et aL: "Object Structure in the Emerald System", OOPSLA 1986

[Bobrow85]
Bobrow, Daniel, Kahn, Kenneth, et al: "CommonLoops: Merging Common Lisp and
Object oriented Prograrnming", OOPSLA 1986

[Dahl66]
Dahl, Ole-Johan, and Nygaard, Kristen: "Simula—an Algol-based Simulation
Language", ACM Communications 9:9 {Sept 1966], 671-678

[Goldberg83]
Goldberg, Adele, and Robson, David: "Smalltalk-80: The Language and its
Implementation", Addison-Wesley, 1983

[Ingalls86]
Ingalls, Daniel H. H.: "A Simple Technique for Handling Multiple Polymorphism",
OOPSLA 1986

[Kristensen] Kristensen, Bent Bruun; Madsen, Ole Lehrmann; M0ller-Pedersen, Birger;
and Nygaard, Kristen: "Classification of Actions, or Inheritance also for Methods",
(pre-release), Alhorg University Center, Alborg, Denmark

[Kristensen87]
Kristensen, Bent Bruun; Madsen, Ole Lehrmann; M0ller-Pedersen, Birger; and
Nygaard, Kristen: "The Beta Programming Language", to appear in Research
Directions in Object Oriented Programming, edited by B.S. Shriver and P. Wegner,
Spring 1987

[Lang86]
Lang, Kevin, and Pearlmutter, Barak: "Oaklisp: An Object Oriented Scheme with First
Class Types", OOPSLA, October 1986

Inheritance and Method Combination 30

[McAllister86]

McAllister, David, and Zabih, Ramin: "Boolean Classes", OOPSLA, October 1986

[Moon85]
Moon, David, and Keene, Sonya: "Flavors: Object Oriented Programming on
Symbolics Computers", Common Lisp Conference, December 1985

[Schaffert86]

Schafftert, Craig, et aL: "An Introduction to Trellis/Owl", OOPSLA 86

[Snyder85]
Snyder, Alan: "Object Oriented Programming for Common Lisp", Hewlett-Packard
Company, ATC-85-1, February 1985

[Snyder86]
Snyder, Alan: "Encapsulation and Inheritance in Object Oriented Programming
Languages", OOPSLA 1986

[Stroustrup86]

Stroustrup, Bjarne: "The C++ Programming Language", Addison-Wesley, 1986

[Thomsen86]
Thomsen, Kristine: "Multiple Inheritance, a Structuring Mechanism for Data,
Processes, and Procedures", Department of Computer Science, Arhus University,
April 1986

