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Abstract 

In this paper, we extend hidden Markov modeling to speaker-independent phone recognition. 
Using multiple codebooks of various LPC parameters and discrete HMMs, we obtain a speaker-
independent phone recognition accuracy of 58.8% to 73.8% on the TIMTT database, depending 
on the type of acoustic and language models used. In comparison, the performance of expert 
spectrogram readers is only 69% without use of higher level knowledge. We also introduce the 
co-occurrence smoothing algorithm which enables accurate recognition even with very limited 
training data. Since our results were evaluated on a standard database, they can be used as 
benchmarks to evaluate future systems. 
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1. Introduction 
At present, the most popular approach in speech recognition is statistical learning, and the 

most successful learning technique is hidden Markov models (HMM). HMM's are capable of 
robust and succinct modeling of speech. Furthermore, efficient maximum-likelihood algorithms 
exist for HMM training and recognition. Hidden Markov models have been successfully applied 
to various constrained tasks, such as speaker-dependent recognition of isolated words [Averbuch 
87], continuous speech [Chow 87], and phones [Schwartz 85], as well as small-vocabulary 
speaker-independent recognition of isolated words [Rabiner 85], and continuous speech [Rabiner 
88]. In each case, extremely good results were achieved. In this study, we extend this list by 
applying HMM's to speaker-independent phone recognition in continuous speech. 

There are several motivations for attempting speaker-independent phone recognition. Good 
phonetic decoding leads to good word decoding, and the ability to recognize the English phones 
accurately will undoubtedly provide the basis for an accurate word recognizer. Based on the 
success or failure of this study, we can predict whether large-vocabulary word recognition based 
on phonetic HMM's is viable. Also, by evaluating our system on a standard database, we 
provide a benchmark that allows direct comparison against other approaches. 

One of these approaches is the knowledge engineering approach. While hidden Markov 
learning places learning entirely in the training algorithm, the knowledge engineering approach 
attempts to explicitly program human knowledge about acoustic/phonetic events into the 
recognizer. Whereas a HMM-based search is data-driven, a knowledge engineering search is 
typically heuristically guided. 

After years of research, many knowledge engineering researchers [Haton 84, Cole 
86a, Thompson 87] are now building speaker-independent speech recognizers using knowledge 
engineering techniques. These knowledge engineering techniques integrate human knowledge 
about acoustics and phonetics into a phone recognizer, which produces a sequence or a lattice of 
phones from speech signals. Currently, knowledge engineering approaches have exhibited 
difficulty in integrating higher level knowledge sources with the phonetic decoder. This will 
hopefully be overcome by more accurate phonetic decoding. It is, therefore, extremely 
important to evaluate the phonetic accuracy of these systems. Although different results have 
been published, they were based on different tasks, databases, or languages. 

The recently developed TIMIT database [Lamel 86, Fisher 87] is ideal for evaluating phone 
recognizers. It consists of a total of 6300 sentences recorded from 630 speakers. Most of the 
sentences have been selected to achieve phonetic balance, and have been labeled at MTT. We 
will evaluate our HMM phone recognizer on this database. Our results can be used as a 
benchmark to evaluate other systems. 

We trained phonetic hidden Markov models using 2830 TIMIT sentences from 357 
speakers and tested on 160 TIMIT sentences from 20 speakers. We used multiple codebooks of 
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LPC-derived parameters as output observations of discrete density HMM's. Recognition was 
carried out by a Viterbi search that used a phone-bigram language model. With context-
independent phone models, we attained a recognition rate of 64.07% for 39 English phones, and 
with right-context-dependent phone models, the recognition rate improved to 73.80%. We are 
very encouraged by this result since expert spectrogram readers at CMU are able to recognize 
phones without lexical knowledge with only a 69% accuracy [Weide 88]. Our results also 
compare well with other approaches to speaker-independent phone recognition. 

We also introduce a novel smoothing algorithm, Co-occurrence smoothing. Without 
smoothing, the HMM output parameters may be very sparse and some probabilities may be 
zeroes because the corresponding codewords were never observed. Co-occurrence smoothing 
determines the similarity between every pair of codewords from all phones, and the smooths the 
individual distributions accordingly. With co-occurrence smoothing, we are able to obtain 
reasonable results with only 16 sentences of training from two speakers. 

In this paper, we will first describe the database and the task used in this study. Then, we 
will explain our HMM training and recognition algorithms. Finally, we will present results, 
comparisons with other speaker-independent phone recognizers, and some concluding remarks. 
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2. The TIMIT Database 
The TIMIT (TI - MIT) acoustic/phonetic database [Lamel 86, Fisher 87], was constructed 

to train and evaluate speaker-independent phone recognizers. It consists of 630 speakers, each 
saying 10 sentences, including: 

• 2 "sa" sentences, which are the same across all speakers. 

• 5 "sx" sentences, which were read from a list of 450 phonetically balanced sentences 
selected by MIT. 

• 3 "si" sentences, which were randomly selected by TI. 
70% of the speakers are male. Most speakers are White adults. 

We have been supplied with 19 sets of this database, where each set consists of sentences 
from 20 speakers, for a total of 380 speakers, or 3800 sentences. For our experiments in this 
study, we have designated 18 sets as training data (TID1 - TID6, TED 8 - TID19) and 1 set (TID7) 
as testing data. We chose not to use the "sa" sentences in training or recognition, because they 
introduce an unfair bias for certain phones in certain contexts, which would lead to artificially 
high results. This leaves 2880 sentences from training, and 160 for testing. However, some of 
the speech data and labels were missing due to problems in reading the tape. Therefore, we 
actually used 2830 sentences by 357 speakers for training data, and 160 sentences by 20 speakers 
for test data. Table 2-1 enumerates the 160 test sentences. 

SPEAKER SENTENCES 
f dmyO 311197 -b 8i567-b 3i714-b 8x117-b 8x207-b 3x27-b 3x297-b sx387-b f jlrO 311231 -b 8ll861-b 8i601-b sxl51-b sx241-b 3x331-b 3x421-b sx61-b fkdwO si.1207 -b 8il891-b 8i577-b 8x127-b 8x217-b 8x307 -b 3x37-b 3x397-b fntbO 811203 -b 8l573-b 8i679-b 8x123-b 8x213-b 3x303-b 3x33-b 3x393-b fsemO 811198 -b 3il828-b 8l568-b 3x118-b sx208-b 8x28-b sx298-b 3x388-b futbO 311204 -b 8il330-b 8ll834-b 8x124-b 8x214-b 8x304-b 3x34-b sx394-b xnbjvO 811247 -b 3il877-b 8l617-b sxl67-b 8x257-b sx347-b 8x437-b 8x77-b 
mdexnO 811868 -b 8l608-b 8l800-b 8x158-b 8x248-b 8x338-b 8x428-b 8x68-b 
XQCLIHIO 811234 -b 8il864-b 8l604-b 8xl54-b sx244-b 8x334-b 3x424-b sx64-b 
mdssO 311881 -b 3l2087-b 8l621-b 8xl71-b sx261-b sx351-b sx441-b 3x81-b 
xnajsO sil240-b 8il870-b 8i610-b 8x160-b 3x250-b 8x340-b 8x430-b 3x70-b 
mfwkO 3ll249-b 8ll879-b 8l619-b sxl69-b sx259-b sx349-b sx439-b sx79-b 
mjeeO 811237--b 8ll867-b 8i607-b 8xl57-b 8x247-b 8x337-b 3x427-b sx67-b 
mpamO 811189--b 3il819-b 8ll961-b 8x109-b sxl9-b sxl99-b 3x289-b 3x379-b 
mpfuO 811258--b 8ll888-b 8l628-b 3x178-b sx268-b 8x358-b 3x448-b 3x88-b 
mrlrO 3ill96-b sil826-b 3l566-b 8x116-b 8x206-b 3x26-b 3x296-b 3x386-b 
mslbO 8lll93-b 8il823-b sl563-b sxll3-b 3x203-b 3x23-b 3x293-b 3x383-b 
mt jsO 811192--b 3ll822-b 8l562-b 3xll2-b 3x202-b 3x22-b 3x292-b 3x382-b 
mtkdO 3ill87-b 3il817-b •1630-b 8x107-b 3xl7-b sxl97-b 8x287-b 3x377-b 
xxttwhO 8lll90-b 8ll629-b 8ll820-b 3x110-b 8x20-b sx200-b 8x290-b sx380-b 

Table 2-1: List of the 160 test sentences. 

There were a total of 64 possible phonetic labels. From this set, we selected 48 phones to 
model. We removed all "Q" (glottal stops) from the labels. We also identified 15 allophones, 
and folded them into the corresponding phones. Table 2-2 enumerates the list of 48 phones, 
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along with examples, and the allophones folded into them. Among these 48 phones, there are 
five groups where within-group confusions are not counted: { s i l , c l , v c l , e p i } , { e l , 1}, 
{en, n } , {sh, z h } , {ao, a a } , { i h , i x } , {ah, a x } . Thus, there are effectively 39 phones that 
are in separate categories. This folding was performed to conform to CMU/MTT standards. We 
found that folding closures together was necessary (and appropriate) for good performance, but 
folding the other categories only led to small improvements. 

Phone Example Folded Phone Example Folded 
iy beat en button 
ih bit ng sing eng 
eh bet ch church 
ae bat jh judge 
ix roses dh they 
ax the b bob 
ah butt d dad 
uw boot ux dx (butter) 
uh book g ZO% 

ao aboutt P pop 
aa cot t tot 
ey bait k kick 
ay bite z zoo 
oy boy zh measure 
aw bough v very 
ow boat f fief 

1 led th thief 
el bottle s sis 
r red sh shoe 

y yet hh hay hv 

w wet cl (sil) (unvoiced closure) pcl,tcl,kcl,qcl 
er bird axr vcl (sil) (voiced closure) bcl,dcl,gcl 

m mom em epi (sil) (epinthetic closure) 

n non nx sil (silence) h#,#h,pau 

Table 2-2: List of the phones used in our phone recognition task. 
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3. The Phone Recognizer 

3.1 Speech Processing 
The speech is sampled at 16 KHz, and pre-emphasized with a filter whose transfer function 

is 1 - 0 .97Z" 1 . Then, a Hamming widow with a width of 20 msec is applied every 10 msec. 14 
LPC coefficients are computed for every 20-msec frame using the autocorrelation method. 
Finally, a set of 12 LPC-derived cepstral coefficients are computed from the LPC coefficients, 
and these LPC cepstral coefficients are transformed to a mel-scale using a bilinear transform 
[Shikano 85]. 

These 12 coefficients are vector quantized into a codebook of 256 prototype vectors of LPC 
cepstral coefficients. In order to incorporate additional speech parameters, we created two 
additional codebooks. One codebook is vector quantized from differential coefficients. The 
differential coefficient of frame n is the difference between the coefficient of frame n+2 and 
frame n-2 . This 40-msec difference captures the slope of the spectral envelope. The other 
codebook is vector quantized from energy and differential energy values. 

The use of multiple codebooks was first proposed by Gupta, et ai [Gupta 87]. We will also 
present comparative results using alternative methods of incorporating knowledge, such as a 
composite distance metric [Shikano 86a] that combines multiple feature sets in one codebook. 

3.2 Context-Independent HMM Training 
We first trained context-independent phonetic HMM's. One model was created for each of 

the 48 phones. We use the HMM topology shown in the bottom of Figure 3-1 for all 48 phones. 
Each phonetic HMM consists of seven states, twelve transitions, and three output probability 
density functions (pdf s). Each output pdf is the joint probability of the three pdFs representing 
the three codebooks. Thus, each HMM has 12 transition probabilities, each of which is tied to 
one of three sets of output pdf s, as designated on the transitions in Figure 3-1. There are a total 
of 256 x 3 x 3, or 2304 output probabilities. These distributions are illustrated in the upper 
portion of Figure 3-1, which represents a HMM for the phone / d / . The codewords for cepstrum 
and power are sorted by power 1 . It can be seen that first distribution has much lower power, and 
represents the transition from the closure into / d / . The middle distribution has higher power 
and shorter duration, representing the / d / burst. The final distribution represents the transition 
out of / d / , and is much flatter than the other two distributions because of the variety of contexts 
it absorbed. This / d / model is well-trained and robust, as evidenced by the scarcity of zero 
probabilities in the output pdf s. 

^though power was not used in the cepstrum codebook, the power value for each cepstral vector was carried 
along in the codebook generation process for the purpose of sorting the codewords. 
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Begin Middle End 

0.19 0.08 0.20 

Figure 3-1: A phonetic hidden Markov model for phone /d/. The upper portion 
displays the 9 output pdf s, where the x-axis is the codeword index, sorted by 
power, and the y-axis is probability. The lower portions shows the HMM 
topology with transition probabilities. Transitions with the same label are tied to 
the same output pdf. 
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CP(/|y) = - ^ 1 < i = 1 

Uniform initialization is used for the transition probabilities, i.e., all transitions from a state 
are considered equally likely initially. The output probabilities are initialized from the 
segmented and labeled TTMIT sentences. For each codebook, a histogram for all codewords is 
accumulated and then normalized for each phone. All three distributions are initialized with the 
same normalized codebook histogram. This technique was first used by Schwartz, et al. 
[Schwartz 85]. 

Then, we ran three iterations of the forward-backward algorithm [Jelinek 76] over all 
training sentences. For each training sentence, we used the labels provided by MIT, but not the 
boundaries. The sequence of HMM's corresponding to the TIMIT phone labels are concatenated 
into a large sentence HMM, and forward-backward algorithm is run on the entire sentence 
HMM. After each iteration over all the sentences, the parameters are re-estimated. 

Finally, the output parameters are smoothed using a novel smoothing technique, 
co-occurrence smoothing. We define CP(i | y), the co-occurrence probability of codeword i 
given codeword y, as 2 : 

NP NDip) 
£ £ P(i\p,d)P(j\pyd)P(p)P(d) 
P=l /IN 

NC NP NDip) V ' 

III P(k\p,d)-P(j\p,d)-P(p)-P(d) 

where NP is the number of phones, NDip) is the number of output pdf s in the HMM for phone 
p , NC is the number of codewords in the codebook, and P(k\pyd) is the output probability of 
codeword k for distribution d in phone model p . Co-occurrence probability can be loosely 
defined as "when codeword j is observed, how often is codeword i observed in similar contexts". 
In our definition, "similar context" means the same output pdf. 

If P(k | p,<i), the output probabilities, are under-trained, as often is the case, the distributions 
will be sharp and many zeroes will be present. This will lead to poor results in recognition. We 
could use the co-occurrence probability (CP) to smooth the output pdf s (P) into a smoothed pdf 
(SP): 

NC 

SP(k\pyd) = JjCP(kI i)-P(i\p,d) (2) 

Although SP(k\p9d) does not suffer from sparseness, it may be too smooth. Therefore, a 
compromise can be reached by combining the two pdf s: 

MP(k\p9d) = XcP(k\p,d)Hl-K)SP(k\p,d) (3) 

Xc depends on c, the count of the distribution being smoothed A larger c implies that P(k \ pyd) 

2The co-occurrence probabilities can be more conveniently computed from the counts accumulated in forward-
backward by a simple transformation of the equation. 
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is reliable, and suggests a larger \ c . Xc can be automatically estimated using deleted 
interpolation [Jelinek 80]. In our implementation, Xc is estimated by running 100 iterations of 
deleted interpolation smoothing. A Xc is estimated not for a particular count, but for a range of 
counts. Figure 3-2 shows the effect of smoothing on a poorly trained pdf. 

Begin Middle End 

Original 

Begin Middle End 

Smoothed 

Begin Middle End 

Interpolated 

i^liJhiikiJll 
Figure 3-2: The effect of co-occurrence smoothing and deleted interpolation. 
The top pdf s represent the cepstrum codebook of the unsmoothed model for 
/ a e / (P), which was purposely undertrained. The second set of pdf s has been 
smoothed (SP). The third set represents the interpolated pdf s (MP) 
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Co-occurrence smoothing is an extension of the correspondence smoothing proposed by 
Sugawara, et ai [Sugawara 86]. Correspondence smoothing counts the frequency that two 
codewords are aligned against each other in DP matching between the same words. These 
counts are then normalized into a probabilistic mapping like CP, and are used to smooth the 
output pdf s. Co-occurrence smoothing is similar in that it measures the likelihood that two 
labels will occur in similar contexts, except it has several additional advantages: 

1. Co-occurrence smoothing works on continuous speech and does not require 
segmentation. 

2. Co-occurrence smoothing is text-independent; it is not necessary to say any fixed 
training text for smoothing. 

3. Co-occurrence smoothing operates directly on the output pdf s, and does not 
require DP. 

4. Co-occurrence smoothing is more relaxed than correspondence smoothing. Two 
codes don't have to be exactly aligned to train the CP matrix. So less training data 
is needed. 

5. Our use of deleted interpolation to combine the two matrices gives superior results 
than using either one alone. 

For context-independent HMM training, we divided the training data into two blocks during 
the final iteration of Forward-Backward, and then trained V s to interpolate: (1) HMM 
parameters, (2) co-occurrence smoothed HMM parameters, and (3) uniform distribution. A X 
was used for each pre-determined range of HMM parameter counts. 

3.3 Context-Dependent HMM Training 
Context-independent phone models assume that speech is produced as a sequence of 

concatenated phones, which are unaffected by context While we may attempt to produce speech 
in such a manner, our articulators cannot move instantaneously from one location for one phone 
to another for the next phone. Thus, in reality, phones are highly affected by the neighboring 
phonetic contexts. 

Context-independent models attempt to account for this effect by making the begin and end 
pdf s flatter, thereby increasing the weight for the stationary middle pdf. However, useful 
information in the boundary pdf s is destroyed by combining all contexts together. 

A context-dependent phone model [Schwartz 85] is one that is dependent on the left and/or 
right neighboring phone. With N phones, there are potentially N2 context-dependent phones if 
we model left or right context, and N 3 if we model both. We cannot hope to adequately train so 
many models. Fortunately, since we use phone models, we always have the better trained, but 
less accurate context-independent phone models. By interpolating the two, we will have models 
that are better trained than the context-dependent models, and more accurate than the context-
independent ones. Again, we can use deleted interpolation to combine the two estimates. 
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In our implementation, we use right-context dependent phone modeling. For example, the 
sentence /sil hh i x dx en sil m / would be transformed into /sil(hh) 
hh(ix) ix(dx) dx(en) en(sil) sil (m) / , where x (y) designates phone x 
with right context y. There were a total of 1450 right-context-dependent models. 

The context-dependent HMM's were initialized with statistics from the corresponding 
context-independent HMM's. We ran two iterations of context-dependent, forward-backward 
training. During the last iteration, training data were divided into two blocks, and context-
independent and context-dependent counts were maintained for each block. Context-
independent counts were obtained by adding together all corresponding right-context-dependent 
models of the phone. After these two iterations, deleted interpolation was used to interpolate: (1) 
right-context-dependent model parameters, (2) context-independent model parameters, (3) co­
occurrence smoothed context-dependent model parameters, and (4) a uniform distribution. 
These interpolated context-dependent models were then used for recognition. 

3.4 HMM Recognition 
Recognition is carried out by a Viterbi search [Viterbi 67] in a large HMM. For context-

independent phone recognition, an initial and a final state are created. The initial state is 
connected with null arcs to the initial state of each phonetic HMM, and null arcs connect the 
final state of each phonetic HMM to the final state. The final state is also connected to the initial 
state. This HMM is illustrated in Figure 3-3(a). 

For context-dependent phone models, each right-context-dependent model is only 
connected to successors that correspond to the appropriate right phone context. However, some 
legal right contexts are not covered in the training data, and no corresponding right-context 
model was created. Therefore, for all unobserved right contexts, we connect the context-
independent models to them. As a result, the network has one and only one phone-level path for 
any sequence of phones. This HMM is illustrated in Figure 3-3(b). 

The Viterbi search finds the optimal state sequence in this large HMM. At each time frame, 
the data structures are updated by finding the path with the highest probability to each state at 
this time. When the entire sentence has been consumed, a backtrace recovers the state sequence, 
which uniquely identifies the recognized phone sequence. Since the number of states is 
moderate, a full search is possible. 

The HMM's were trained to maximize P(Observations \ Model), while in recognition we 
need P(Model \ Observations). By Bayes' rule, 

D / W ; i x ^ u w x PiObservations\Model) P(Model) ( A , 
PiModel | Observation) = reservation) ( 4 ) 

Since the Observation is given, P(Observation) is a constant, and only the numerator need be 
evaluated. To evaluate the numerator, we need P(Model), or a language model, in recognition. 
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(a) (b) 
Context-independent Right-context-dependent 

Recognition Recognition 
Figure 3-3: HMM's used for context-independent (a) and right-context-
dependent phone recognition (b). For right-context-dependent phone 
recognition, / X / (Y) designates phone / X / in the right context of / Y / 

This probability would be multiplied by the acoustic probability every time a phone transition 
occurs. In this study, we use a bigram phone language model that estimates the probability of a 
phone given the previous phone. This bigram was estimated from the same TIMIT training set. 
This is the same language model used by [Schwartz 85]. 
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4. Results and Discussion 

4.1 Phone Recognition Results 
We tested our phone recognizer on the TIMIT database. As described in Chapter 2, we 

used 18 sets (2830 sentences by 357 speakers) to train our HMM's, and one set (TID7) (160 
sentences by 20 speakers) to test our system. Our phone recognition results are shown in Table 
4-1. With context-independent phone modeling, out of a total of 6061 phones, 3883 were 
correctly identified for a phone recognition accuracy of 64.07%. With right-context-dependent 
phone modeling, 4473 were correctly recognized, increasing the recognition accuracy to 73.80%. 
The number of correct, substituted, inserted, and deleted phones are computed by a DP match 
between the correct phone string and the recognized phone string. Substitutions within the 
following sets are not counted as errors: {sil, cl, vcl, epi}, {el, 1}, {en, n}, {sh, zh}, 
{ao, aa}, {ih, ix), {ah, ax}. Recognition rates for four broad classes (sonorant, stop, 
fricative, and closure) are reported in Table 4-2. For these experiments, a bigram phone-
language model is used, insertions are not counted as errors, and are held to less than 12% by 
appropriately weighing the language model and acoustic model probabilities. These conditions 
are identical to that used by Schwartz, et al. [Schwartz 85], 

Context-Indep. Context-Dep. 
Correct 64.07% (3883) 73.80% (4473) 

Substitutions 26.22% (1589) 19.62% (1189) 

Deletions 9.72% (589) 6.58% (399) 

Insertions 10.79% (654) 7.72% (468) 

Table 4-1: Phone recognition results with context-independent and context-
dependent models. 

Class Occurrences Context-Indep. Context-Dep. 

Sonorant 3027 53.68% (1625) 65.71% (1989) 

Stop 1014 58.09% (589) 69.92% (709) 

Fricative 736 66.03% (486) 78.40% (577) 

Closure 1284 92.13% (1183)) 93.30% (1198) 

Table 4-2: Phone recognition results by broad phone class. 

4.2 Additional Experiments 
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4.2.1 The Phone Language Model 
One question that can be raised is the validity of using a bigram language model We 

believe that for some comparisons, it is certainly valid. For example, since Schwartz, et ai 
[Schwartz 85] used exactly the same model for speaker-dependent recognition, that comparison 

is clearly valid. We believe the bigram model is also fair when comparing against expert 
spectrogram readers, because they have far more knowledge about the likelihood of various 
combinations of phonetic events than bigrams. Also, they may subconsciouly use their lexical 
knowledge in spite of their attempt to suppress it. 

On the other hand, systems that use Bayesian classification implicitly assume the a priori 
distribution of the phones, which is equivalent to a unigram model. Some other systems might 
use no language model at all, or the zero-gram model. In order to validate these comparisons, 
we ran our system with bigram, unigram, and zero-gram laguage models, and present our results 
in Table 4-3. As expected, the use of simpler language models led to some degradations. 

Language Model Context-Independent 
Recognition Rate 

Context-Dependent 
Recognition Rate 

Bigram 64.07% 73.80% 
Unigram 60.91% 70.38% 

None 58.77% 69.51% 

Table 4-3: Phone recognition results with different phone language models. 

4.2.2 Utility of Additional Features and Codebooks 
In order to evaluate the utility and to justify the overhead of multiple codebooks and 

additional features, we ran a set of experiments where we used various combinations of the 
features with varying numbers of codebooks. Table 4-4 shows the results for context-
independent phone modeling. To use multiple feature sets in a codebook, inter-set distances are 
computed, and combined using a linear combination [Shikano 85]. The weights in the linear 
combination are optimized using a separate set of tuning sentences. 

We find that using only one set of the features in one codebook produced poor results. 
Linearly combining all three sets of a features in one codebook [Furui 86, Shikano 86b] led to a 
much better result. However, equivalent results could be obtained by discarding a feature set and 
adding a codebook, and much better results can be obtained by using all three sets of features in 
three individual codebooks. 

4.23 Utility of Co-occurrence Smoothing 
All of the above results were obtained with co-occurrence smoothing and deleted 

interpolation. We also tested our recognizer with no smoothing, and with floor smoothing 
(replacing all probabilities smaller than the floor with the floor). We used context-independent 
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Cep. DCep. Pow. Codebooks Recog. Rate 
X 1 49.78% 

X 1 46.11% 
X 1 31.91% 

X X X 1 58.62% 
X X 2 57.93% 
X X 2 57.99% 

X X 2 55.01% 
X X X 3 64.07% 

Table 4-4: Phone recognition results using context-independent phone models, 
and various combinations of features and number of codebooks. 

phone models for this experiment We found that 2830 training sentences, the results were not 
significantly different because the context-independent HMM's were very well trained, and did 
not require smoothing. To test whether co-occurrence smoothing would help when the amount 
of training data is inadequate, we ran a set of experiments where we reduced the amount of 
training data. The context-independent phone recognition results are shown in Figure 4-1. This 
illustrates that when we have insufficient training data, smoothing can result in dramatic 
improvements. Also, we see that co-occurrence smoothing is significantly better than floor 
smoothing. For example, the results from co-occurrence smoothing on two speakers is 
equivalent to floor smoothing on five or no smoothing on 15. 

4.3 Discussion 
Without using lexical or higher level knowledge, expert spectrogram readers could 

recognize phones from continuous speech with an accuracy of 69% [Weide 88]. Our HMM 
recognizer is already beyond that level of performance. This suggests that any approach that 
solely emulates spectrogram reading is unlikely to produce better results than those presented 
here. This is not to say that knowledge engineering approaches cannot do better, because the 
expert spectrogram readers evaluated are not as good as Victor Zue [Cole 80], and because 
spectrogram reading is only one of many kinds of human perceptual and speech knowledge. 

Comparison against other speaker-independent recognizers is more difficult, because of the 
different databases, training data, phone classes, and additional information used. For example, 
vowel recognition is considerably harder than phone recognition. The use of hand-segmentation 
eliminates the possibility of deletions and insertions, thereby increases recognition accuracy. It 
was precisely because of this lack of uniformity that we believe a our benchmark result would be 
useful. With this in mind, we now present the results of several other systems. 

The ANGEL Acoustic-Phonetic Group at CMU has been working on speaker-independent 
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Figure 4-1: Phone recognition results with context-independent models, using 
different number of training speakers and smoothing algorithms. 

phone recognition for several years. Their earlier results can be found in [Cole 86b]. The 
current recognition accuracy has been improved. On the same test set using a unigram phone 
language model, the ANGEL System achieved an accuracy of 55% [Chigier 88]. 

Nakagawa [Nakagawa 86] applied statistical pattern classification and dynamic time warp 
to speaker-independent phone recognition. He reported 5 1 % and 56% with these two approaches 
for 7 vowels, 7 1 % and 74% for 9 fricatives, and 57% and 55% for 9 stops and nasals. For this 
experiment, hand segmentation was used, and different classes were evaluated separately so that 
no between-class confusions could occur. No language model was used in this task. 

Leung and Zue [Leung 88] used artificial neural networks for the recognition of 16 vowels, 
and reported 54% for context-independent recognition, and 67% for context-dependent In this 
experiment, hand segmentation was used for training and testing. The correct context was 
provided for both training and recognition using context-dependent networks. 

Another interesting comparison is BBN's speaker-dependent phone recognizer [Schwartz 
85]. They reported phone recognition rates of 6 1 % and 79% for one very good speaker using 
context-independent and left-context-dependent models, respectively [Schwartz 85]. Our results 
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for speaker-independent phone recognition are not far from the BBN speaker-dependent results. 
This was made possible by several factors: (1) we benefited from much more training data that is 
available for speaker-independent tasks, (2) differential and power information are very useful 
for speaker-independent recognition, and (3) the use of multiple codebooks was a good way to 
combine multiple feature sets. With context-independent phone models, our results are actually 
significantly better. However, when context-dependent models were added, our improvement 
was much smaller. We attribute this to our use of differential parameters, which already 
accounted for some contexual variations by emphasizing stationary portions of phones. 

In spite of the high accuracy we achieved, we see many areas where we might get further 
improvements: (1) increase the amount of training, (2) modeling of left and right context 
[Schwartz 85], (3) use of continuous parameters [Brown 87, Rabiner 88], (4) use of maximum 

mutual information estimation [Brown 87], and (5) incorporation of additional knowledge 
sources, such as duration, or the output of a knowledge-based phone decoder. However, having 
demonstrated the feasibility of speaker-independent phone recognition, our future work will 
focus on the creation of a large-vocabulary speaker-independent continuous speech recognition 
system based on the methods used in this study. 
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5. Conclusion 
In this paper, we extended the currently popular hidden Markov modeling technique to 

speaker-independent phone recognition. This is the first time that HMM has been applied to this 
task. Using multiple codebooks of LPC-derived parameters, discrete HMM, and Viterbi 
decoding, we obtained a 73.80% speaker-independent phone recognition accuracy in continuous 
speech. Moreover, by using a novel smoothing technique, co-occurrence smoothing, we were 
able to get very respectable results from just a few training speakers. Our results are the best 
reported thus far on this database. 

We used the TIMIT database for evaluating our recognizer. This allows other researchers 
to evaluate their techniques on the same training and testing data. We believe this benchmark 
result will prove useful to other researchers, especially those using knowledge based approaches. 

We began this study with the hope of building a successful phone recognizer that could 
provide the basis for a speaker-independent continuous speech recognizer. We have shown good 
recognition results can be obtained for speaker-independent phone recognition, and are now 
working to extend this work to a large-vocabulary speaker-independent continuous speech 
recognition system [Lee 88]. 
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