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appears in learning, and of the notion of conservatism as it appears in reasoning. 
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to a central notion of the formal theory of rationality. These connections indicate 
how the structures of similarity judgments and conservatism can arise naturally 
in agents which rationally govern their own representation and reasoning. 
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1 Introduction 
The subjects of learning and reasoning are often fairly distinct in artificial in­
telligence, with learning focusing on acquiring new knowledge and reasoning 
focusing on using old knowledge. Of course, learning may involve reasoning 
(consider explanation-based generalization [Mitchell et al. 1986]), and reason­
ing may involve learning (consider SOAR's chunking [Laird et al. 1987]). But 
by and large, the different aims of learning and reasoning in the eyes of most 
researchers have led to separate theories. 

In this paper we attempt to connect the concept of similarity prominent in 
many discussions of learning with the concept of conservatism prominent in 
some theories of reasoning. The best examples within artificial intelligence of 
the notion of similarity concern learning by analogy and clustering of data. In 
making analogies, one considers two situations and identifies as similar some 
of the objects and relationships present in one situation with objects and re­
lationships present in the other. There are always many such identifications 
possible, and it is common to compare analogies, saying that one analogy is 
better than another. For example, Winston [1975] described a distance mea­
sure between analogies, with better analogies involving smaller distances, and 
Carbonell [1983] employed such a measure to guide heuristic search for analo­
gies. In clustering data, one seeks to classify the differences between items as 
either significant or insignificant, in order to group together all similar (insignif­
icantly differing) items as instances of the same event or concept. For example, 
[Michalski and Stepp 1983] cluster data by using neighborhood-dependent dis­
tance functions on points. On the other hand, in conservative reasoning, by 
which we mean conserving as much mental state as possible over time, not po­
litical opinions or aversion to risk, each mental state of the reasoner is similar 
to its predecessors, or more similar than alternative states. Similarity and con­
servatism have previously been intimately connected in the derivational analogy 
method of learning proposed by [Carbonell 1986], in which the arguments for 
a new concept are chosen to be as similar as possible to the arguments for an 
earlier concept. Here we view similarity and conservatism formally, and indicate 
how they arise naturally from the more fundamental notion of rationality. 
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2 Similarity 
Similarity has been studied in its own right more thoroughly in psychology 
than in artificial intelligence. Tversky [1977], for example, summarizes a large 
literature and introduces a formal theory of similarity. His idea is that judgments 
of similarity are based on the differences in the sets of features of the items under 
consideration. Thus if a and b are objects characterized respectively by feature-
sets A and 5, the degree of similarity of a and b, written s(a, b), is a function of 
the sets of shared and unshared features of a and b, namely AnB, A—B, and B—A. 
With such a function, one can compare degrees of similarity, so that s(a, b) > 
s(c. d) means that a is more similar to b than c is to d, a comparison very familiar 
from Evan's and Winston's treatments of analogies. This view of similarity 
recognizes the asymmetry of some judgments, and also how common elements 
can sometimes outweigh differences, or vice versa. However, Tversky's axioms 
place strong requirements on similarity judgments, requirements sufficient to 
guarantee the existence of essentially unique continuous real-valued functions s 
for representing degrees of similarity. In the following, we focus on a somewhat 
more general conception, concentrating on the central notion of comparison of 
similarities, whose qualitative theory is simpler than Tversky's strong numerical 
theory. 

Studies of similarity also appear in philosophy in the analysis of counter-
factual statements such as "if it had not rained, the crops would have failed." 
For example, Lewis [1973] employs the notion of similarity to say that a coun-
terfactual is true if its conclusion is true in those possible worlds most similar 
to the actual world, thus viewing counterfactuals as making analogies between 
the actual world and "possible worlds" in which the hypothesis is true instead 
of false. Of course, if the counterfactual is not an ordinary entailment, there 
are always possible worlds in which the hypothesis is true but the conclusion is 
false: hence the requirement that the alternative world be as similar as possible 
to the actual one, in order to make the interpretation nontrivial. 

Lewis formalized the notion of similarity in a comparative similarity relation 
over possible worlds. In essence, this is a ternary relation between worlds A, B, 
and C, written B < C, which states that B is more similar to A than C is to A. 

A 

(The corresponding notion in Tversky's theory is expressed by s(A. B) > s(A. C).) 
Formally, if U is the set of all possible worlds (including the actual world), then 
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for all A,B,C,D€ U, 

1. A x S, 
A 

2. B<B, and 
A 

3. If fl :< D and D <C, then B ^ C. 
/4 4 A 

The first of these conditions says that the most similar world to a world is itself. 
The second and third conditions say that for each world A, the relation < is a 
reflexive and transitive relation, that is, a quasi-order over U. Lewis's notion is 
actually more involved than just these three axioms, but his extra conditions are 
not important here. 

To use comparative similarity relations for describing analogies, let M be the 
class of all sets of items and relations, that is, of all model-theoretic structures 
over some universe. Let U be the class of all analogies between elements of 
M, that is, the class of all homomorphic mappings of structures in M. Then 
comparison of analogies can be captured as a comparative similarity relation 
over U. We pretend that M C U by identifying each A G M with its identity 
mapping idA G U. We then write B -< C just in case B : A —> A' and C : A —• A" 

A 

are two analogies starting from A and B is a better analogy than C. 
Note that these comparisons need not be complete, in that neither B -< C 

nor C •< B need hold. This means that this formulation is more general than 
using a single numerical function to measure degree of similarity. In that case, 
we would define B -< C iff s(A*B) < s(A,C). We sav that a measure function 

A 

s is compatible with ^ iff s(A, B) < s(A. C) whenever B < C. The possible 
incompleteness of -< means that in general, many different measures s will be 
compatible with the comparative similarity relation. Incomplete orders arise 
when distances can be measured along several distinct dimensions, so that one 
must compare vectors of dimensions rather than a single number. Most practical 
systems, however, have been required to offer complete judgments. Thus in 
Carbonell's [1983] multidimensional comparison of analogies, and in Michalski 
and Stepp's [1983] clustering of points in a multidimensional space, the need to 
make overall comparisons leads to combining all the different dimensions into 
a single function, as in Tversky's treatment of similarity. 
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3 Conservatism 
[Doyle 1983] developed a formal notion of conservatism identical to the formal­
ization of similarity considered above to describe the programs for reason main­
tenance (RMS) and dependency-directed backtracking (DDB) described (under 
the name TMS) in [Doyle 1979], using a comparative similarity relation to com­
pare states of the reasoner. In RMS, changing assumptions requires updating 
their consequences. Though RMS recorded and traced reasons to perform the 
update, its intent is better described as seeking to revise as few conclusions 
as possible. In DDB, contradictions are resolved by tracing reasons as well, 
but again the intent is better expressed as removing contradictions with as few 
consequences as possible. 

In formalizing RMS, we view states as sets of nodes (representing proposi­
tions or reasons) drawn from a universal set X>. We write J to mean the set of 
all states of the agent, so that S C V for each S € X. The operation of reason 
maintenance can then be viewed as starting with a state S and a "kernel" set 
K of new assumptions and then moving to a new state S' which contains the 
new assumptions, that is, K C S'. Define I(K) = {X € 1 \ K C X}, and define 
S' < S" to hold iff S A S' C S A S", where X A Y is the symmetric difference of 

s 
X and Y, that is (X — Y) U (Y — X). Since the aim of reason maintenance is to 
make as small a change as possible, we pick S' € J(AT) so that S' x S" for every 

s 
S" G X(AT), thus minimizing the set of changed elements. For reasons that are 
not relevant here, RMS failed to reliably achieve this ideal, but it is nevertheless 
a natural way to view its operation. 

The specific sort of state-similarity appearing in RMS's conservatism has 
close connections with the basic notions of Tversky's theory of similarity. As 
described earlier, in that theory similarity judgments are mediated through com­
parisons of sets of features, just as conservatism compares states of mind by 
viewing them as sets of mental elements. But more interestingly, the "mono-
tonicity" condition Tversky places on similarity measures is reflected in RMS's 
conservatism as well. Specifically, Tversky requires that s(a. b) > s{a. c) when­
ever 

1. AnB D An C, 

2. A - B C A - C, and 
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3. B-ACC-A. 

But since A A B = ( A - B ) U ( B ~ A ) , we see that Tversky's three conditions 
imply that A A S C A A C , so that s(a, b) > s(a, c) implies B <C under RMS's 

A 

definition of conservatism. 
Though DDB actually removed contradictions by tracing reasons and re­

moving "maximal" assumptions, we can use comparative similarity relations to 
capture its intent as well in the following way. If we write J + to mean the set of 
contradiction-free states in J , DDB seeks to conservatively remove contradic­
tions from a contradictory state S by picking a state S' 6 J + such that S' ^ S" 

s 
for every S" G J + . 

4 Rationality 
We have seen that the notion of comparative similarity relation appears nat­
urally in similarity and conservatism comparisons in learning and reasoning. 
The abstractness of the notion of comparative similarity relation seems justified 
because in some cases there are many plausible candidates for such relations. 
For example, RMS might be just as interesting if it minimized the number of 
changed elements than the set of changed elements. But it seems natural to ask 
if some sorts of comparisons have better motivation than others. To answer that 
question, we must know more about where these comparisons come from. We 
propose to view comparative similarity relations as stemming from the notion 
of rationality. For the notion of rationality we employ the standard notion from 
decision theory, according to which an action is said to be rational for an agent at 
some instant if it is of maximal expected utility according to the agent's beliefs 
and preferences about current and future events, where the agent's preferences 
may be a function of its goals and plans. (See, for example, [Jeffrey 1983]). 

The central notion of decision theory is that the agent may order its alter­
natives according to their expected utility. Expected utility is usually thought 
of as a numerical assessment of states, but this need not be so. One may also 
develop the theory in a "behavioristic" fashion from the choices a rational agent 
would make among different alternatives. Developed this way, the theory begins 
with a set of preferences among alternatives rather than probability and utility 
functions. If we let U stand for the set of all alternatives at an instant, then the 
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agent's preferences are comparisons of the form a < b for a, b 6 U, such that 
the combined preference relation < satisfies certain axioms of rationality, for 
example that preference is transitive. If we write a ~ b to mean that the agent 
does not prefer either alternative to the other, that is, that a <fi b and b a, 
then the equivalence classes induced in U by ~ can be identified as degrees of 
expected utility, and can be represented with a numerical measure of expected 
utility. 

We propose to understand the quasi-orders appearing in similarity and con­
servatism in terms of the preference and indifference relations < and ~ . In 
essence, we view s(a, b) > s(a, c) as meaning that choosing b is preferred or 
equivalent to choosing c when the decision is one of selecting the most similar 
alternative to a, that is, that c < b or b ~ c when these choices refer to a. 
Correspondingly, we view S' -< S" as meaning that in state S choosing to move 

s 
to state S' is preferred or equivalent to choosing to move to state S", that is, that 
S" < S' or S' ~ S" in state S. 

The nominal rationality of the comparative similarity relation is most appar­
ent in the case of conservatively updating the agent's state. Simply minimizing 
the set of changes made, as RMS does, is not always reasonable, for this criterion 
does not distinguish between guesses and gospel. Thus RMS can in some cases 
discard fundamental laws and keep trivial hypotheses. To avoid such senseless 
revisions, conservatism needs to be rational conservatism, rationally selecting 
the update of maximal expected utility with, for example, frequently employed 
fundamental beliefs counting much more than ephemeral assumptions. Russell 
and Grosof [1987] propose to use this sort of rational revision for the case of 
shift of bias in learning, but it is an idea applying to all updates, not just shift of 
bias. Similarly, DDB's choice of a "maximal" assumption to remove or replace 
in order to restore consistency is made with the expectation that this choice 
will lead RMS to find a consistent conservative revision. A better way of pro­
ceeding is to choose the assumption rationally so that the expected payoff is 
highest among all possible choices of assumptions to remove. Thus RMS and 
DDB achieve only weak approximations to rational conservatism and rational 
backtracking. 

Viewing similarity as stemming from rationality can be tricky. While it is 
easy to admit to having preferences about what to believe, it is less natural to 
think of observed similarities between objects as having anything to do with 
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rationality. To view similarity as arising from rationality, we must step back 
and recognize that the rational agent thinks rationally as well as acts rationally. 
That is, the rational agent economizes on its mental resources. Every repre­
sentation of information entails costs in memory and time: the memory needed 
to store the information, and the time needed to use it. There are well known 
tradeoffs between the succinctness of axiomatizations and lengths of proofs, and 
between expressiveness of languages and difficulty of finding proofs. These 
economic tradeoffs motivate different organizations for representation and rea­
soning, among them organizations of concepts according to similarity. In fact, 
Lakoff [1987] argues that many of the associations among concepts exhibited in 
human languages do not result from any fundamental connection of meaning as 
much as from the conceptual convenience these associations offer, and it is nat­
ural to interpret "conceptual convenience" as another phrase for rational choice 
of representation and clustering. 

Consider, for example, the case of prototypes in taxonomic hierarchies. Tver-
sky defines good prototypes to be those which (roughly speaking) maximize 
average similarity to the class of instances. But viewed more generally, this is 
just a special case of (or approximation to) maximization of expected storage 
costs. Hierarchies, of course, compress lots of data into simple descriptions and 
so offer dramatic (often exponential) economies of storage space. Some sorts of 
hierarchies are purely logical, with subconcepts entailing superconcepts, but in 
general the use of prototypes stem from economical rather than logical concerns. 
For example, say a prototypical concept is defined by a set or conjunction of n 
properties or aspects, and that objects satisfying any n - 1 of these properties 
are counted as instances of the concept, albeit exceptional ones. Suppose further 
that we wish to describe n + 1 individuals, one of which satisfies the concept 
perfectly, and n exceptional instances representing every possible exception. To 
describe these individuals in a system of prototypes and exceptions requires only 
3n + 1 statements: n to describe the prototype, a typing or IS-A statement for 
each instance (rt + 1 all together) and a statement of the exceptional property for 
each of the exceptional instances (n of these). But to make the same descrip­
tions using the ordinary logical connectives and implication requires rr + n + 1 
statements: n for the prototype, one implication for the perfect instance, and 
n statements, variations of the prototype's definition, to describe each of the 
exceptional cases, rr in all. Thus the nonlogical system of prototypes can be 
much more efficient than a strictly logical representation. Of course this exam-
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pie considers only storage costs and does not take into account either limits on 
storage resources or expectations about what sorts of questions will be asked 
during retrieval, or with what frequency. These may greatly change the form of 
rational representation, but that is a topic we cannot pursue here. 

5 Conclusion 
We have seen how similarity, an important notion in the theory of learning, is 
closely related at the formal level to conservatism, an important notion in the 
theory of reasoning. Each of these topics deserves attention in its own right, 
but both may be naturally interpreted as arising direcdy from the agent's ra­
tional choices about how to represent information and how to reason with it. 
Recognizing this sort of rational self-government, moreover, helps to understand 
and connect numerous other aspects of thinking which, through the global char­
acter of rationality, can influence judgments of similarity and the practice of 
conservatism. (See [Doyle 1988a, 1988b] for further discussions.) 
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