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Abstract: Much work in machine learning views learning primarily as a pro­
cess of representation. We propose instead to view learning as the rational 
interpretation of experience. This provides a unifying, precise framework that 
illuminates both the strengths and weaknesses of current learning methods and 
the possibilities for uniformly mechanizing different types of learning. 
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1 Introduction 
Considerable progress has been made recently on the problem of machine learn­
ing: as a practical technique for use in artificial intelligence systems, as a pre­
dictive psychological theory [Rosenbloom et al. 1987], and as a formal com­
putational theory [Valiant 1984]. Many diverse types of learning have been 
studied, and for each of these a great variety of techniques and processes have 
been proposed. To some extent, this great diversity in types and techniques of 
learning stems from the richness of the subject. But it also may indicate the lack 
of some unifying notion that makes clear how the aims of these many techniques 
relate to learning and to each other. Lack of a unifying concept will not prevent 
progress from being made, but it can divert attention to topics of little relevance 
or poor prospects for success. 

This paper restates the problem of learning in terms of the notion of ratio­
nality. This formulation has several advantages over earlier conceptions: it ties 
together several separate strands of research in a coherent view; it offers an 
explicit formal conception of and approach to learning rather than informal def­
initions; and it illuminates the sometimes severe limitations of some oft-studied 
techniques. We first present the rational conception of learning, and then discuss 
the strengths and weaknesses of some current approaches to similarity-based and 
explanation-based generalization from this perspective. Finally, we employ re­
sults from the theory of rationality to address the question of whether one can 
hope to uniformly mechanize the many approaches to learning. 

2 What is learning? 
At first glance, it seems surprising that there should be confusion about what 
learning is, as two good definitions are widely known. According to Simon 
[1983], learning "denotes changes in the system that are adaptive in the sense 
that they enable the system to do the same task or tasks drawn from the same 
population more efficiently and more effectively the next time." According 
to Minsky [1986], learning "is making useful changes in the workings of our 
minds." One can quibble with each of these definitions, but the quibbles are 
hard to pursue without making the definitions more precise. 

These definitions notwithstanding, many studies in machine learning appear 
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to be based on very different conceptions of learning. Some authors make no ex­
plicit statement of how the techniques they study constitute learning, while others 
seek more precise and specific definitions of learning than the above, but wind 
up with very different notions. Michalski [1986], for example, finds Simon's and 
Minsky's definitions too informal and promptly moves to redefine learning as 
"constructing or modifying representations of what is being experienced." This 
conception of learning is very different from the first two. Michalski tries to 
paper over the gulf between them, but does not really succeed, mainly because 
the third definition is a profoundly mistaken definition of learning, as we see 
shortly. Fortunately, this definition does not rule Michalski's technical work on 
learning: see, for example [Stepp and Michalski 1986]. But the conception of 
learning as representation has been extremely influential, both before and since 
Michalski articulated it, and characterizes much more of the literature than its 
competitors. 

We suggest that a more illuminating definition is that learning is interpreting 
experience by making rational changes of mental state or operation. This means 
rationally deciding how to interpret one's sensory events as facts about what is 
going on, and then rationally deciding whether to change one's mental state in 
light of this information, and if so, in what way. This definition is still very 
general, but in this case precise, well-developed theories are available for each 
of the elements in the definition. For the notion of rationality we employ (for 
the moment) the standard notion from decision theory, according to which an 
action is said to be rational for an agent at some instant if it is of maximal 
expected utility according to the agent's beliefs and preferences about current 
and future events, where the agent's preferences may be a function of its goals 
and plans. We will not repeat the formal theory here as good expositions are 
readily available (e.g. [Jeffrey 1983]). The other element of the definition is 
the agent's fixed constitution or architecture, which sets out the possible states 
and changes through which learning takes place. We do not have space to 
elaborate any examples here. See, for example, [Minton 1988], which presents 
a system that knows enough about its own architecture to allow it to make 
essentially rational changes in its search strategies on the basis of its search 
experiences. In addition, precise definitions of many other sorts of architectures 
are extant, ranging from automata theory and programming languages to the 
more interesting conceptions of Bayesian agents [Jeffrey 1983] and knowledge-
level architectures (e.g. [Genesereth and Nilsson 1987] and [Doyle 1988a]). 
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3 Memorization and generalization 
To see the advantages besides precision offered by viewing learning in terms 
of rationality, it helps to examine some of the learning techniques commonly 
studied. We begin by considering the simple case of rote memorization of ex­
perience. This certainly counts as learning according to the representational 
definition. But the plain fact is that most things are not worth memorizing. 
For most things one experiences, such as the shape of the 20,000th tree leaf 
one sees, rote memorization is irrational, simply wasting resources and clogging 
memory. Similarly, memorization of the logical consequences of one's knowl­
edge as they occur to one is also not genuine learning in most cases, because 
most consequences are not worth remembering either, whether because they are 
unlikely to ever be used, or because they are too easy to derive. That is, for 
most logical consequences of what one knows, memorization offers at best no 
utility (the memories do not help) and at worst negative utility (time and space 
are consumed in memorizing them and in discarding them when retrieved). The 
only cases in which remembering logical consequences is commonly considered 
learning is when the computational cost of deriving the consequence is too high, 
so that making the conclusion explicit makes its use, retrieval, or derivation 
economic. This is the motivation behind explanation-based learning (see be­
low), and underlies some modern number-theoretic cryptographic schemes. In 
these, knowledge of the coding method, of number theory, of the language of the 
message, and of the coded message logically entails the identity of the uncoded 
message. But carrying out this inference is too costly unless the encryption key 
is known explicitly, so discovering the key is really learning something. 

We next consider the problem of learning a concept from examples. This 
problem has been widely studied by researchers in artificial intelligence and 
theoretical computer scientists, not to mention mathematicians, psychologists, 
and many others. We will consider two main approaches: similarity-based 
generalization, and explanation-based generalization. 

3-1 Similarity-based generalization 
In Valiant's [1984] formulation of learning a concept from examples, one at­
tempts to find a boolean characteristic function for a concept by examining a 
sample of the concept's extension (small errors are allowed). Here the concept's 
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extension is a fixed target, and the ideal result of learning is a small boolean 
predicate that exactly characterizes the concept. This view of generalization is 
clearly representational learning, because it seeks to logically represent the mean­
ing of a concept. It is called similarity-based generalization because the concept 
learned attempts to capture the similarities among the observed instances. 

Since merely memorizing the items of experience and their logical conse­
quences is not learning, concept learning must go beyond the agent's current 
information to make assumptions not entailed by current knowledge. The gen­
eralization itself may be such an assumption, or it may be derived as a logical 
consequence from separate assumptions in conjunction with experience. Ordi­
narily the agent's knowledge is incomplete, in which case there are many possible 
completions and extensions of the knowledge consistent with the evidence. Nat­
urally, if one does not know whether P or -«P holds, one might assume either, 
but cannot consistently assume both. Generalization thus involves a selection 
of which assumptions to make out of the many possible sets of consistent as­
sumptions. As Mitchell [1982] puts it, generalization is a search process whose 
product is the right generalization. 

In fact, taking a broader view, learning involves making many choices in 
addition to selection of what conclusions to draw from the selected evidence. It 
can involve selection of the subject about which things will be learned; of the 
sources of evidence to be employed; of the criteria for determining relevance of 
potential evidence; of which bits of evidence are true and which are noise; of 
which differences among evidence are significant and which are insignificant; of 
how much evidence to seek; and of when to stop. Because it ignores these many 
choices, similarity-based generalization strikes many people outside the field as 
sterile, having little relevance to generalizations as they appear in everyday life. 
Scientific generalizations provide a good example, especially those appearing 
in debates about public policy. The most obvious fact about these debates is 
that the generalizations made depend on the debater's aims. In the first place, 
the opposing parties may differ on what evidence is relevant to the case. But 
even when they agree on the evidence, they may differ on how to interpret it 
and on what extra assumptions to use in making generalizations. For example, 
the same economic statistics and theories that incriminate President Reagan's 
economic policies in the arguments of Democrats may exonerate his policies in 
the arguments of Republicans. (Bukharin, whose economic policies incriminated 
him in Stalin's court and exonerated him in Gorbachev's, should have been so 
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lucky.) In the scientific debates associated with these policy debates, the parties 
may have aims other than to find the truth of the matter. They may seek to smear 
reputations, to win elections, or to muddy public opinion so much that a purely 
political decision can be made. In real-life generalizations, what conclusions one 
draws can depend on one's aims. But perhaps work on aimless generalization 
in artificial intelligence should not be faulted much. As Truesdell [1984] points 
out, most theories in the philosophy of science are similarly aimless, and the 
ideas on learning in artificial intelligence have been strongly shaped (sometimes 
unwittingly) by theories in inductive logic and the philosophy of science. (See 
also [Grabiner 1986]). 

In contrast to everyday generalizations, Valiant's procedure is clearly not 
rational, as it generalizes in a fixed way independent of the domain or context 
in which the agent operates. The concept learned is independent of any con­
clusions the agent might desire to reach, and independent of any preferences 
about assumptions the agent might entertain. It embodies a fixed criterion of (or 
bias about) what the "right" conclusions are. In some cases this criterion may 
match up with the agent's preferences, so that its conclusions are rational, but 
in other cases this obliviousness to the agent's situation can prevent or delay 
the agent from learning what it needs to know, since generalizations are not 
always useful. For instance, most people who purchase a camera do not want 
to know the principles by which it operates, merely the specifics of how to use 
it. Determined salespeople or enthusiastic relatives who try to "explain" how 
to use the camera by explaining how cameras work are just asking for trouble. 
"Forget the theory, just tell me how to work it" is an eminently rational attitude 
for most people, for the generalization is irrelevant, merely cluttering memory 
and slowing down learning now and use later. 

3.2 Explanation-based generalization 
Explanation-based generalization differs significantly from similarity-based gen­
eralization by using knowledge to reduce the number of examples that must be 
examined. For concreteness we will refer to the EBG procedure of [Mitchell 
et al. 1986], which uses domain knowledge to transform a "non-operational" 
target concept definition into an "operational" subconcept definition. To do this, 
it uses examples of the concept to find the specific knowledge relevant to the 
transformation, and uses a formal criterion of "operationality" of concepts to 
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tell when it has completed the transformation. In brief, EBG constructs finds a 
proof from operational items of knowledge that the example satisfies the target 
concept, and then combines and generalizes the hypotheses of the proof to yield 
an operational definition of a subconcept. 

Like Valiant's procedure, EBG does not learn rationally. It does not address 
the question of how the agent selects what to learn, and likewise assumes a 
fixed target concept which it never abandons. Instead, it limits its explanations 
to deductive proofs, which make the learned concepts logical subconcepts of 
the target. This means that EBG cannot handle exceptional instances that lead 
people to change their definitions (e.g. egg-laying mammals). This is not an 
essential limitation of EBG, but the fact is that deductive proof is too narrow a 
conception of explanation for general use, since replacement of concepts can be 
justified or rationalized as rational calculations, even if not as deductive proofs. 
In this regard EBG is sometimes even less rational than Valiant's procedure, 
since approximations to concepts can sometimes be more useful than the exact 
definition. 

Even when one limits attention to learning subconcepts of the target, EBG 
does not learn rationally. EBG's central concern is using a notion of operational­
l y as a guide to learning. EBG offers no theory of how to choose operationality 
criteria, only a requirement that such criteria express properties of the linguistic 
or representational form of the concepts. Unfortunately, there is no operationality 
criterion which expresses rationality, since rationality is a substantial condition 
applying to the new definition as a whole, not a formal one applying to the 
particles of the definition. Consider, for example, the case of visual learning. 
An example image of a cup might be reduced to millions of operational bit-
predicates on a retina, but the resultant definition of "cup," with its millions 
of conjuncts, can hardly be called operational. Moreover, even if a simpler 
operational definition was possible, EBG has no way to choose between them. 

EBG is an important procedure, but to perform well its inputs must be 
selected rationally and its outputs must be evaluated rationally. In fact, DeJong's 
[1983] original criteria for explanation-based learning concerned utility of the 
result much more than operationality of the definition's elements. Keller [1987] 
also recognizes the limitations of formal operational criteria and proposes to 
redefine operationality to be usability plus utility (by which he seems to mean 
expected utility), with both usability and utility continuously variable in degree 
and dynamically changing. This is a step in the right direction. But it seems 
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odd to call this combination "operationality." It would seem more natural to 
separate the apparently always binary but possibly changing notion of usability 
from the potentially changing and continuous notion of utility, calling the first 
a condition of operationality and the second a condition of rationality. 

In addition to limitations stemming from using only deductive explanations 
and formal criteria of operationality, EBG also has no way to handle incomplete 
or inconsistent domain knowledge. EBG's authors recognize these limitations, 
and since they intend EBG to be a truly general procedure for learning, they 
suggest ways in which it might be extended to overcome them. These directions 
are worth pursuing, but we indicate in section 5 how handling incomplete and 
inconsistent knowledge poses profound problems that may forever limit the 
generality of EBG and other learning procedures. 

4 Judging rationality 
While it is easy to criticize some sorts of memorization and generalization as 
irrational, it is not always so easy to judge whether some form of mental reorga­
nization is rational or not. The difficulty arises because judgments of rationality 
are very sensitive to the perspective of the judgment. 

In the first place, even a nominally irrational learning method may be ap­
propriate in the context of systems designed for specific purposes. Even if a 
learning method is irrational in the sense that it ignores the agent's preferences, 
it can nevertheless be rational for us to employ it as a part of the system's design 
if we expect that the agent will serve our purposes as well using it as using any 
other method, even methods more rational according to the agent's perspective. 
For example, there is a perspective (one which ignores certain computational 
costs) from which the chunking method of [Rosenbloom et a l 1987] is rational, 
in that systems employing it move along a demonstrated learning curve. Chunk­
ing itself, however, is an entirely mindless operation parasitic on a supposedly 
rational reasoner. 

Secondly, the rationality of an action depends on the time frame over which 
we evaluate it. It is commonplace that actions rational in the short run may be 
irrational in the long run, and vice versa. In overall judgments of rationality, 
the agent must amortize its costs and benefits, taking into account the present 
value of future consequences of its actions. How this is done depends crucially 
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on the agent's time preferences, on how much the agent prefers satisfying its 
goals now to satisfying them at different times in the future. 

Thirdly, the basic theory of rationality involves only the notions of expec­
tations and utilities, and ignores the familiar notions of goals and plans. As 
noted above, an agent's preferences may depend on its goals and plans, so that 
actions rational in the context of one set of goals may be irrational in another. 
For example, improving one's performance of routine actions is usually rational 
and so an aim of learning. But if the agent is under threats contingent upon 
completion of the actions, improving one's performance is no longer rational. 
Recall how Penelope slowed her weaving when her suitors demanded she admit 
Ulysses dead. 

Finally, the definition of rationality mentions only the results of the action 
taken, not how it came to be taken. Thus rational learning does not mean that the 
agent must calculate what is rational to do. Of course, mechanization of rational 
learning can involve calculation of how to change the agent's mental state. This 
is the natural way to view the long-studied hill-climbing methods. It also serves 
as a basis for the bucket-brigade algorithm [Holland 1986] and for Minton's 
[1988] strategy learning system, which collects statistics to estimate expected 
utilities. Explicit rationality of learning is also reflected in the goal-dependent 
preference order on generalizations employed by [Stepp and Michalski 1986], 
in the similarity order on analogies employed by [Carbonell 1983, 1986], and 
in the preferences guiding shift of bias employed by [Russell and Grosof 1987]. 
(See [Doyle 1988c] for more on the relation between rationality, similarity, and 
shift of bias.) 

5 Mechanizing rational learning 
Since decision theory is a general theory intended to cover all sorts of rational 
choices, it is natural to ask if it provides a uniform way of mechanizing learning. 
That is, instead of having different procedures for each type of learning, can we 
instead use a single procedure which makes rational changes in all aspects of 
mental organization? Unfortunately, this appears to be impossible because prac­
tical systems must make do with both more and less information than decision 
theory requires. 

The lesser of these problems is that the agents we construct do not have all 
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the information the theory of rationality requires. This incompleteness appears 
in both expectations and utilities. As informants, we often do not know what 
probabilities to assign to weird events, nor do we know the true costs of many 
actions. In particular, we often do not know in all cases how to assign value to 
time, and so cannot amortize costs and benefits. In practice, however, a number 
of techniques are available for ameliorating the consequences of incomplete 
information, including search, defaults, and adaptive estimation techniques. 

The more serious difficulty faced in mechanizing rational learning is incon­
sistency, the occurrence of conflicts among the preferences that the agent must 
use to select its assumptions and changes. The most obvious examples of such 
conflicts are manifest in the general maxims which scientists claim to use as 
guides to formulating theories, maxims like "seek as simple a theory as possi­
ble," "seek as general a theory as possible," and "seek as powerful a theory as 
possible." These maxims are mutually incompatible. The most general theories 
may not be very powerful, and powerful theories often are not very simple. In 
each circumstance the theorist must choose which criteria to favor and which 
to downplay. These choices in turn can depend on the theorist's aims. For 
example, scientists studying some subject are apt to aim for the most general 
theory, while engineers studying the same subject are apt to aim for the most 
powerful theory. 

Conflicts among a few general maxims may not be too hard to deal with, 
but multitudes of conflicting preferences arise naturally in coping with incom­
plete information. To make a long story short (see [Doyle 1988b] for a fuller 
treatment), it is quite rational to make routine assumptions by means of stereo­
types or default rules. These rules save time and effort in common situations, so 
most artificial intelligence systems employ hundreds of such rules in represent­
ing their knowledge. It is natural to interpret these default rules as preferences 
of the agent about what assumptions to make, preferences of exactly the same 
kind appearing in learning about what generalizations to make. However, the 
cost of making reasoning more efficient in common situations is that stereotypes 
and default rules can conflict in uncommon situations. Thus conflicting defaults 
represent conflicting preferences about assumptions. 

The prevalence and individual rationality of these conflicting rules has se­
rious implications for mechanizing rational learning. Each particular method 
for making assumptions (or for learning) based on default rules thus represents 
a way of resolving conflicts among preferences. But it is a standard result of 
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decision theory and economics (called Arrow's theorem) that no single method 
of resolving conflicts can be completely rational without being unreasonable in 
a certain sense. The upshot is that there is a multitude of ways of proceeding in 
such cases, and each way has advantages and disadvantages in different circum­
stances. The literature on political economy has analyzed a number of these, 
but only a fraction of the possible methods (see [Mueller 1979]). Applied to the 
case of rational learning, these considerations indicate that there is no universal 
or general learning procedure. Every specific method of learning will either be 
irrational in some way, or will have built-in biases which it will exhibit in the 
choices it makes. Conflicts among different possible biases are real, reflecting 
a "clash of intuitions" (in the phrase of [Touretzky et al. 1987]) about what 
should be learned from experience. 

6 Conclusion 
Viewing learning as rational interpretation of experience captures many of our 
central intuitions about what learning is. Indeed, something like this view of 
learning may be close to the psychological truth about human learning, for 
according to Gazzaniga [1985], the central function of our conscious mind is to 
compulsively interpret and explain experience. In addition, this view provides a 
precise unifying framework that explains, justifies, or criticizes many important 
structures and techniques employed in extant learning systems, and illuminates 
some of the inescapable limitations all learning systems must face. Though these 
limitations may leave little hope for finding a good general or universal method 
of learning, there is nonetheless much room for improving the rationality of 
methods for learning. 
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