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Semantically Based Program-Design Environments: 

The Ergo Project in 1988 

1. Introduction. 

The research of the Ergo Project is aimed at improving the ability of programmers to develop 
and maintain provably correct, adaptable, and efficient software. Historically, programs have 
had both to describe executions and to provide information to the programmers who develop, 
analyze, and maintain them. The goal of good performance during execution usually conflicts 
with the human goals in program development of establishing clarity and structure, allowing 
adaptability and reuse, and easing analysis and verification. Current programming practice forces 
an unfortunate trade-off between these two types of goals and does not allow one to represent in 
the resulting program most of the crucial design decisions made during development. What is 
needed is an approach to software development in which the results of the development process 
embody, in a formal way, the wealth of design information that is now lost. To this end, we are 
pursuing a Design-Based Approach (DBA) in which not only are the specifications of problems 
and the implementations of their solutions recorded, but also the design decisions that link them 
are concretely represented and manipulated. 

Specifically, our research centers around exploration into inferential programming, which is 
our term for any DBA founded on formal methods and theoretical underpinnings (for the initial 
statement of our project goals see [SS83], and for earlier, relevant references see [CS77], [BD77], 
[BP77], [Tur82]). The Ergo Project's research in inferential programming over the last three 
years has resulted in valuable general insights into the nature of program design. For example, 
we have carried out, on paper, large formal derivations of several complex programs, in one 
case deriving an important extension of an algorithm in response to more general requirements 
(see [EP87] and the fuller description in the next section). 

These insights and experiences have been critically important in guiding our development 
of a reasonably large body of theoretical knowledge and software support for language-generic 
program manipulation and analysis. We believe this has placed the Ergo Project in a strong 
position to make significant advances in the area of design-based approaches to software devel
opment Hence, we are now taking first steps toward the creation of an integrated Experimental 
Program-Design Environment (EPDE) that provides specifically for the retention, formalization, 
and reuse of design information. This environment will support inferential programming, and 
will be adaptable to a wide range of languages, development styles and proof systems. 

In this report we describe the current state of research in the Ergo Project. First, we review 
the progress of our past work. Then, we present our thoughts and proposals for our research 
strategy for the next three years. 

1 



2 . Background and Accomplishments 

During the process of software development, a programmer makes many decisions. Conceptually, 
these decisions constitute a body of design information that describes how an implementation is 
related to the original specification or set of requirements. It should be clear that—represented 
in some form—this information is necessary for adaptation, analysis, verification, and other 
activities important for the software lifecycle. Unfortunately, descriptions of design decisions 
are not generally represented explicitly in programs, either as formal structures or informal 
comments, and thus are usually lost or forgotten. 

An undesirable consequence of this loss of information is that programmers are forced to 
rediscover for themselves much design information whenever a program is to be analyzed and 
adapted. This is a principal cause of the high cost of maintaining and adapting software— 
especially when the programmers involved are not the original developers. Also, at the present 
time very little of the explicit information now associated with one program can be directly 
applied to the development of other programs that have similar requirements. One of the reasons 
for this is the lack of detailed structures that would make reuse possible. Finally, the absence 
of design information makes it inherently difficult (if not impossible) to verify that programs 
meet their specifications—again because there are no links between the relevant features of the 
specification and the final program. Just as with adaptation, a posteriori program verification 
requires the rediscovery of much of this lost design information. The primary need is to capture 
design information at the appropriate points during program development, and then to show how 
to use this information in an effective way. 

The DBA meets this need, and thus has been the focus of research for many existing groups 
(e.g., [Bjo87], [BP77], [BD77], [CS77], [Dar78], [EP87], [Fea87], [Hog81], [Mas86], [Mol84], 
[SJW86], [Sch86], [Tur82], [Wil83]). In what follows, we describe more fully the DBA, outline 
the potential benefits of this research, and describe more fully the experience gained so far in 
the Ergo Project. Then, in Section 3 we delineate the specific proposed research for this project, 
which is centered around exploration into inferential programming. 

2.1. The design-based approach. 

Program development always involves making two transitions: first, from an informal description 
of requirements to a formal specification of what the problem is, and second, from a specification 
to an implementation, detailing how to solve the problem. These transitions are conceptually 
distinct, even if they are not distinct in process. Both transitions are made even if a specifica
tion is not explicitly expressed. Although both transitions are problematic, our research effort 
is concentrated on the what-to-how transition. Thus, when we say "design" we refer to the 
development of implementations that are consistent with specifications. 

How do implementations differ from specifications? First, they differ in their level of con-
creteness; specifications can be more abstract, since they can avoid giving an algorithm of how 
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to solve a problem. But, secondly, they also differ in their level of complexity, implementa
tions carry interdependences among their parts resulting from optimizations made for efficiency 
gains. Modularity and structure interfere with good performance. Specifications can have more 
comprehensible structure (i.e., less interconnection among their parts) since performance is not 
an issue. 

REVISION 
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Figure I: The design-based approach 

As Figure 1 shows, there are several different levels of language in the DBA. Requirements 
are expressed informally, and often contain conflicting objectives which must be resolved in 
formalizing the problem statement. Specifications express formally what the problem is, and 
generally avoid commitment as to how to implement a solution, e.g., they may be non-effective. 
Depending upon the specific development methodology chosen, however, specifications could 
be implementable, even serving as prototypes. In the transition from what to how, commitments 
are introduced; specifications are transformed into programs in a semantically clean language, 
these programs are further transformed to improve their efficiency, and ultimately they may 
be transformed into lower-level representations, such as well-known sequential implementation 
languages, parallel languages, or even VLSI masks. 

Figure 1 also illustrates the structure of the program design problem as viewed in the DBA. 
There is no intention here to dictate a particular design process, or methodology; a programmer 
might start at any node in the diagram and work towards other nodes. We will briefly describe two 
classes of design process: program derivation and rapid prototyping. Although these approaches 
seem very different, in practice they would probably be used in some combination. 

Generally speaking, program derivation involves formulating a specification in advance, and 
applying program derivation steps to obtain an implementation consistent with the specification. 
More specifically, we identify two classes of program derivation steps: elaboration and revision. 
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In a revision step, the functionality of a program is changed in reaction to changing requirements 
or in response to a better understanding of the requirements. Elaboration involves filling in 
details of design-decision steps; for example, it can be a process of making commitments (e.g., 
to particular data-structure representations or to an order of computation) and then exploiting 
them for efficiency gains. 

In a rapid prototyping paradigm, a programmer might forgo the initial formal specification 
and simply implement prototypes directly from an informal understanding of the requirements. 
Prototypes will have expediently chosen commitments that may not be appropriate for all imple
mentations. These commitments could then be retracted to obtain more abstract specifications 
from which one could derive alternative implementations. Or, implementations could be derived 
directly from prototypes. 

Eventually, it may be necessary to adapt an implemented software system to new requirements. 
It is expected that in the DBA such adaptation may be accomplished by design reuse. For 
example, the changes required to adapt a program might be confined to its abstract specification, 
and then, using the existing derivation by analogy, a new implementation would be derived. 

There are several potential benefits of the DBA, and inferential programming in particular. In 
the first place, software maintenance under changing requirements will be simpler and conducted 
at a more conceptual level without compromising program correctness. In the second place, 
programs will be correct by construction with completely formal program derivation. The 
importance of this cannot be overemphasized, given the complexity of a posteriori program 
verification. In the third place, a record of design decisions will serve as explicit documentation, 
and abstractions of such records will serve as a basis for reuse of past design experience. And 
finally—but perhaps most important of all—adaptability and efficiency will coexist, rather than 
conflict as they do now. However attractive these may be, the cost associated with the DBA 
comes from the need to retain design information. Approaches being developed in our current 
research and elsewhere in the community indicate that the possibility exists for understanding 
the nature of design information—how it can be represented, and how it can be applied on an 
increasingly sophisticated scale. The management of design information, however, remains as a 
serious question in the development of a DBA. 

2.2. Accomplishments of the Ergo Project since 1985. 

We feel that during the past three years, our understanding of the DBA and the issues concerning 
its realization has increased considerably. We have accomplished research in three areas: generic 
tool components for environment prototyping, program derivation techniques, and applications 
of inferential programming. We were able to make this progress by combining theoretical re
search with program derivation methodologies, and by implementing experimental environments, 
thereby enabling us to put the methodologies into practice. In particular the Ergo Support System 
that we have developed is a collection of generic tool components that assists in the exploration 
of ideas in the DBA by enabling the rapid prototyping of experimental applications. It comprises 
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tools to support language implementation, program analysis and transformation, user interaction, 
and reasoning about programs. 

Our research in program-derivation techniques covers the spectrum from high-level algorithm 
development methodologies to lower-level implementation optimizations. This work has been 
driven by concrete examples, and has provided invaluable input and feedback to the tool devel
opment We studied staging transformations, including precomputation and frequency reduction, 
through compiler development examples [JS86a]. We presented techniques for deriving imper
ative programs that reuse storage in simple applicative programs [JS86b]. We explored design 
reuse from two different perspectives: abstract data-type specialization [Sch86] and the use of 
analogy in program development [DS87]. We also explored variations of inferential program
ming, including the transformation of statements about the semantics of the desired program 
[EP87] and deriving programs through proof transformation in a constructive logic [Pfe87a]. 

2.2.1. Generic tool components for environment prototyping. 

We have long recognized the importance of providing an engineering framework for experi
mentation in the DBA. We believe that such a framework must support experimentation with 
languages and program development styles. We also believe that new forms of expression are 
required for a realization of design-based programming. This belief is based on our previous 
experimental research which indicates that the DBA imposes new requirements on programming 
languages due to the formal links that are maintained between specifications and implementations 
in the DBA. Therefore, experimentation with new and different languages and language concepts 
should be an integral part of research in the DBA. Moreover, the DBA admits many different 
concrete program design methodologies. We have strong evidence (in the form of examples) 
that different development styles will be appropriate for different problem types and problem 
domains. Thus, during the last three years of work on the Ergo Project, we have devoted consid
erable effort to designing and implementing a set of highly-integrated generic tools, collectively 
referred to as the Ergo Support System (ESS). 

The ESS provides a rapid prototyping environment for researchers in design-based program 
development, program manipulation, and programming language theory. These tools allow us 
to build experimental environments with relatively modest programming effort. We learn from 
using these environments, and this then provides insights that spur the development of improved 
experimental systems. This view of the ESS is illustrated in part in Figure 2. Ideally, the 
ESS should support rapid prototyping of all aspects of programming languages pertinent to 
program-design environments. That is, one should be able to easily specify syntax, semantics, 
and transformation rules for a language and then obtain an environment tailored to manipulating 
programs in that language. Our goals are even broader, since we believe that logical languages 
and proof systems are essential to the development of an inferential programming environment 
(any DBA based on theoretical foundations), and that we must therefore be able to implement 
these languages as well. 

We are still short of this broad goal, but have made significant progress towards its realization. 
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Figure 2: The Ergo Support System 

Advances were made on the conceptual level in designing abstract interfaces between tools, 
answering the requirements of a language prototyping system for inferential programming. More 
specifically we designed higher-order abstract syntax (HOAS) as the central representation for 
formal objects, and we designed a new data type providing a coherent caching scheme for 
attributes and attribute sharing across many generations of a program or specification. Prototype 
implementations provided design feedback; further, bootstrapping of tools (building tools using 
our own tools) provided a higher degree of integration and flexibility of the system components. 

Currently, the ESS provides tools for specifying the syntax and static semantics of languages in 
a simple, modular, and user-oriented fashion. Rules for transforming and manipulating syntactic 
objects can be specified, but we have only achieved partial integration of the former and latter 
sets of tools. We believe the integration of rules and the user interface descriptions with the 
other ESS tools lies in the near future, while full description and use of language semantics in 
the ESS is subject to further research. 

The Ergo Support System tools. The ESS comprises tools to support language implementa
tion, program analysis and transformation, user interaction, and reasoning about programs. We 
have developed tools and facilities to aid work in each of these areas. We briefly describe here 
what each of these facilities does. 

The Syntax Facility [DPRS88,Die88] generates components for dealing with the syntactic 
structure of languages. From a language grammar it generates parsers, unparsers, and other 
useful syntactic manipulation components for use in other tools and application programs. A 
unique aspect of this facility is the highly readable and intuitively appealing metalanguage used 
for specifying the grammars. 

The Analysis Facility [MN86a,Nor87b] provides for general-purpose program analysis by 
means of attribute grammars. As is well known, these grammars provide a convenient and 
effective framework for specifying many kinds of semantic analyses; for instance, it is possible 
to specify data-flow analysis. The Analysis Facility accepts attribute grammars specified in a 
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simple metalanguage closely related to the metalanguage used for syntax specification. From this 
it generates attribute evaluators. The generated evaluators are demand-driven, which reduces the 
amount of recomputation required when attribute values are changed. Furthermore, they employ 
a unique strategy for ensuring the consistency of the attribute values over the many incarnations 
of a program that might arise during its derivation. 

The Type Inference Facility takes a specification of the semantic type signature of a language, 
and produces an attribute evaluator for performing type inference and type checking of programs 
in the language. Type inference can be performed up to the degree of polymorphism present in 
ML; partial type inference and type checking is possible for explicitly polymorphic languages in 
which full type inference is undecidable. 

The Program Flow Analyzer (PFA) [Nor87a], is a tool for constructing application compo
nents that obtain control and data-flow information about programs. For example, a data-flow 
component called Last Use was developed for analyzing a program to determine for any variable 
reference if that reference is the last use of that variable. The PFA works from a specification of 
the partial semantics of a programming language, thus allowing a flow component to be specified 
independently of any specific programming language. 

The Higher-Order Unification Facility [E1187a,EU87c,EU87b] is a language-generic system for 
matching, unifying, and rewriting programs, formulas and other syntactic objects. This facility 
is unique, in that the matching and unification algorithms are not restricted to first order. The 
generalization to higher-order unification allows for very succinct formulation of transformation 
rules or rewrite equations in the presence of object language binding constructs. 

The Interaction Facility [Fre86] provides high-level support for developing interactive pro
gram manipulation systems using keyboard, mouse and windows. The high degree of integration 
of this.X-windows-based facility with the other components of the Ergo Support System allows 
for much faster prototyping of environments without sacrificing flexibility in the style of the 
user interface. 

The Deduction Facility reads and analyzes a description of a logical language and deduc
tive system and provides support for interactive and semi-automatic proof development in that 
system. The logical systems accepted by the Deduction Facility include first- and higher-order 
classical and intuitionistic logic, modal logics, Huet's Calculus of Constructions, the type theory 
underlying PRL and many others. Other uses include general type inference and Hoare-style 
reasoning about programs. Much of the Deduction Facility has been completed and the full 
implementation will be ready soon. 

The Box Facility [Pfe86] provides automated configuration management for the ESS. For 
example, the Box Facility automatically activates the Syntax Facility when an attempt is made 
to execute a parser whose associated grammar specification has changed since the time the parser 
was last generated. Many of our tools create other tools from high-level specifications. The Box 
Facility handles this by allowing an arbitrary nesting of tool-generating tools. 

Abstract interfaces. An important aspect of the tooling effort for the ESS is use of compo
nent technology in its development. We have designed several types of interfaces, both internal 
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abstract data types and external specification languages, which allow us to develop tools inde
pendently and yet achieve a high degree of integration. This greatly increases the usefulness 
of the ESS tools for prototyping, and furthermore offers the possibility of sharing of tools with 
other research groups. In the following discussion we give descriptions of the most important 
abstract data types we have developed for use in internal abstract interfaces. 

Internal interfaces. Higher-order abstract syntax. (HOAS) [PE87] provides a new standard 
internal representation for programs, formulas, and other syntactic objects in the ESS. It has a 
first-order interface which is used for parsing and unparsing, and a higher-order interface which 
is used for transformation and manipulation and soon for various kinds of semantic analysis. 
The higher-order interface extends the usual notion of abstract syntax by allowing name binding 
constructs to be encoded in the typed A-calculus. This allows many of the techniques used for 
analyzing A-expressions to become applicable to the analysis of binding information in programs 
and formulas. For example, the Higher-Order Unification Facility provides language-generic 
higher-order unification functions for programs based on this representation. 

Presently, only the Higher-Order Unification Facility uses the higher-order interface. New 
versions of the Analysis Facility and the Type Inference Facility which are also based on the 
higher-order interface are under development First-order interfaces are defined through context-
free grammars, and higher-order interfaces through the scope declarations, described below. 
Currently, the parsers generate first-order abstract syntax which is then converted by stylized 
LISP code to HOAS when necessary. 

Attributes provide a standard means of annotating abstract syntax terms and subterms with 
semantic information. As in standard attribute grammars, the values of attributes associated with 
a particular term are defined by functions on the term's context, its subterms, and the term itself. 
The data type of attribute in the ESS [Pfe87b] also incorporates novel schemes which address 
issues of attribute consistency, attribute caching, and demand-driven attribute evaluation in a 
program-transformation environment where a large number of local program transformations 
often leave many attribute values unchanged. In addition to attribute grammars, type signatures 
and program flow signatures employ the data type of attribute. It is noteworthy that formal 
specification of this attribute interface requires dependent function types which are unavailable 
in most languages. 

Boxes [Pfe86] provide a framework for specifying the functional relationship between the 
various functions and tools used to generate an environment Conceptually, a box is a collection 
of functions mapping between abstract data types (i.e., abstract interfaces). For example, the 
Syntax Facility consists of two higher-order functions: one, the parser generator, maps a grammar 
to a function from strings to abstract syntax trees, and the other, the unparser generator, maps a 
grammar to a function from abstract syntax trees to strings. At present, the ESS still assumes a 
file-oriented development environment. Hence, boxes are annotated with information about the 
files comprising a box. 

External interfaces. In addition to internal interfaces, we have developed external interfaces 
in the form of formal specification languages. Ease of use, generality, and rapid adaptability 
were the overriding concerns in their design. These goals were achieved via "bootstrapping" 
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(i.e., by building the second generation of these data types with our own tools). In the following 
paragraph we briefly describe this bootstrapping process for some of the external interfaces. 

Concrete grammars, externally, are strings whose concrete syntax is defined through a meta-
grammar. This provided great flexibility (unparsing of grammars, adaptability of the grammar 
syntax) which was used extensively during the development of ESS tools. Attribute grammars 
are doubly bootstrapped; their syntax is defined through a metagrammar, and their semantics 
is defined through a metaattribute grammar. Scope declarations are currently provided in an 
ad hoc manner through LISP functions which define the higher-order view of abstract syntax. 
As in an earlier prototype, we plan to allow for bootstrapping by defining scope declaration 
with context-free grammars, attribute grammars, and higher-order matching. Type signatures are 
treated simply as a list of language constructs (abstract syntax operators and constants) annotated 
with their (usually polymorphic) types. Program and data flow-annotations are drawn from an 
evolving library of program and data-flow idioms. They are easily specified as properties of 
abstract-syntax operators. 

2.2.2. Techniques for program derivation. 

Our approach to building program design environments is largely experimental. However, this 
does not imply that we believe all foundational problems of the DBA have been solved. This is a 
long-term problem, but we now know how to make incremental progress towards an integrated 
program design environment. Our past research in this area has focused on the discovery 
of program-development paradigms and the gauging of the area of their applicability. Our 
results cover the spectrum from high-level algorithm development methodologies to lower-level 
implementation optimizations. In our work, the transformation techniques are always illustrated 
with concrete examples, and the experiences with them have thus provided invaluable input and 
feedback into the tool development. 

In addition to the individual results, the two main lessons we learned from this research are: 

• Program derivation can provide deep insight into the nature of algorithms and 
implementations. 

• Only a variety of languages and methodologies will be able to cope with the 
variety of problem types and abstraction levels which arise during software 
development. 

In the following, we briefly summarize what we consider our main contributions in this area of 
program-derivation techniques. 

(1) Staging transformations for compiler development [JS86a]. Computations can generally 
be separated into stages, which are distinguished from one another by either frequency of execu
tion or availability of data. Precomputation and frequency reduction involve moving computation 
among a collection of stages so that work is done as early as possible (so less time is required 
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in later steps) and as infrequently as possible (to reduce overall time). By means of examples, 
several general transformation techniques for carrying out precomputation transformations were 
presented. The techniques are illustrated by deriving fragments of simple compilers from in
terpreters, including an example of Prolog compilation, but the techniques are applicable in a 
broad range of circumstances. 

(2) Abstract data types and reuse [Sch86]. We consider a view of programming experience 
as a network of programs that are generalizations and specializations on one another and that 
are interconnected by appropriate derivation fragments. This view is supported with a number 
of examples which illustrate the important role of abstract data-type boundaries in program 
derivation. A key observation is that code is an insufficient representation of the results of a 
design process and that design information must be explicitly represented. 

(3) Use of analogy in program development [DS87]. We have illustrated how abstractions on 
program derivations can support a rich space of generalizations and analogies. It is argued that 
neither code nor abstracted code alone can serve as a basis for reuse, but that program-design 
information is essential for reuse of past design experience. 

(4) Transformations on destructive data types [JS86b]. We present techniques for deriving, 
from simple applicative programs, efficient implementations that use destructive data operations 
and that can reuse heap-allocated storage. These techniques rely on simple propagation of non
interference assertions; reasoning about the global state of storage is not required for any of the 
examples presented. 

(5) Transformation of statements about the semantics of the desired program [EP87]. We 
consider the specification to be a formula describing properties of the meaning of the desired pro
gram. The specification is then transformed (through logical inference) until it can be recognized 
as the meaning of a program. Using this methodology we developed program derivations for 
several complex algorithms for higher-order unification and its special cases. These derivations 
share insights and commitment steps, thus forming a family of derivations. To our knowledge, 
this is the largest program derivation effort to date. This paradigm can also be used to give a 
new interpretation to the fold/unfold method for program transformation. 

(6) Deriving programs through theorem proving and proof transformation in a constructive 
logic [Pfe87a]. The use of the proofs-as-programs paradigm for algorithm design and program 
development is outlined. We argue that proving theorems in a constructive logic is in practice 
not sufficient to specify algorithms, but that the algorithm developer must have some tools for 
general proof transformation in order to formally develop efficient and complex algorithms. 

2.2.3. Applications of inferential programming. 

An example of a major application of our philosophy of inferential programming to program 
and algorithm development is the derivation—on paper—of algorithms for first-order and higher-
order unification [EP87]. We have used these derivations in an essential way as a basis for an 
implementation in LISP as part of the ESS. Actually doing the formal derivation of Huet's com-
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plex algorithm for higher-order unification led us to several substantial efficiency improvements 
and extensions. For example, we were able to incorporate products and polymorphism into 
the unification algorithm by conducting a second derivation guided by our original one. These 
extensions were necessary for our applications based on higher-order unification; furthermore, 
they will be required for the mechanization of the derivation itself. Such mechanization will 
complete a "bootstrapping" process—the formal derivation of parts of the ESS by applying the 
tools provided by the ESS itself. Not only are we improving our system, but we are learning 
what support the system has to provide for substantial derivations. 

Since we regard this example as both a very significant illustration and as a sound motivation 
for further work, we would like to give more detail here on how we arrived at the present 
result. During early development of the ESS, we, like others, had used abstract syntax trees 
as the central data type for representing programs, derivations, and whatever other syntactic 
objects we needed to manipulate (grammars, attribute grammers, etc.). It quickly became clear 
that this representation did not allow us to specify even basic transformation rules in a simple 
and complete way. The well-known problem of the correct treatment of bound variables (or 
local variables) was the crux of the matter. A paper by Huet & Lang [HL78] on second-order 
matching and its uses seemed to provide a solution. Thus, we decided to base our central 
data type on the simply-typed A-calculus (which incorporates bound variables in a natural way) 
rather than on the more usual first-order terms. Eventually this led to the notion of Higher-Order 
Abstract Syntax (HOAS) [PE88]. For use in the ESS, matching and substitution then require 
an implementation of Huet's second-order matching algorithm. Care must be taken, however, 
because second-order matching may possibly generate many different substitutions and can have 
exponential complexity even for simple examples. Even so, a first, language-specific prototype 
was put together to test the viability of Huet's ideas, and it was extremely successful. 

The next logical step was to produce a language-independent implementation that could be 
used for any language as long as its binding constructs were made explicit in a uniform way 
through HOAS. Much to our chagrin, this second implementation proved quite impractical and 
also exposed some fundamental weaknesses in Huet's approach: namely, that a given pattern 
could only match functions with a fixed number of arguments. At this point we realized that we 
did not have a deep enough understanding of Huet's algorithm to generalize it or make nontrivial 
efficiency improvements. Thus, we embarked on the project of formally deriving the algorithm 
for full higher-order unification. As of yet, no implemented system is capable of handling a 
derivation of this order of magnitude and complexity, so it was to be a paper exercise—but we 
kept the goal of eventual mechanization clearly in mind. 

Actually, there were at least three different, but closely related specifications we wanted to 
derive: (1) deciding higher-order unifiability, (2) enumerating a set of minimal and complete 
unifiers, and (3) higher-order matching (with one term being constant). We started with a simple 
one-line specification of the set of unifiers and, after some arduous work, arrived at a set of 
non-effective recursive equations. These could then be specialized to solve our three specifi
cations. Moreover, this derivation suggested some further transformations leading to dramatic 
efficiency improvements that would reduce the algorithm's complexity from exponential to linear 
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or quadratic time in many common second-order cases. We also found that the proper way of 
handling the multiple-argument problem was through the use of products and polymorphism, 
rather than through the inclusion of lists as we had assumed earlier. We changed the specifica
tion again, and, guided by the previous derivations, we derived the extended version which had 
eluded us up to then. (The derivations are fully described in [EP87].) 

The final set of recursive equations from our derivation was the basis of a Common LISP 
implementation which is now an integral part of the ESS. The formal derivation is now a part 
of our documentation [EP87] and should enable us to incorporate further improvements without 
compromising its correctness by first deriving an updated algorithm and then systematically (but, 
alas, still by hand) changing the LISP program. As in the past, we should also be able to adjust 
to changing requirements if they arise through our experience with the current implementation. 
What remains to be done is of course the mechanization of the derivation. This would be 
an important milestone: we would then have derived part of the improved ESS with the tools 
provided by the ESS. At present, we are prevented from accomplishing this only by the lack 
of a facility for maintaining the large accumulation of theorems and subderivations necessary 
for this complex algorithm derivation. We believe that a general, persistent object-base system 
might provide a solution here, but are not confident that such a system will be available soon. 
Hence, we are actively thinking of both general solutions to this difficulty and ways of working 
around the problem in the short term. 

3. Future Research. 

We now present our thoughts and proposals for our research strategy for the next three years. 
Section 3.1 gives a brief overview of the research plans, and then more detailed explanations are 
presented in the three following sections: 3.2 for Foundations, 3.3 for Applications, and 3.4 for 
Engineering. Each of these sections is composed of three parts which lay out a problem statement, 
our general approach, and more specific research plan. The purpose is to give summaries of the 
important technical issues as we perceive them, descriptions of our ideas on how best to address 
these issues, and finally details of how we want to implement these ideas. 

3.1. Overview of the Ergo research strategy. 

Research into the DBA necessarily encompasses many areas of both theoretical and experimental 
work in computer science. Such research always involves risk; however, we assert, this risk 
can be managed by adopting a strategy based on the construction of an engineering framework 
which we call an Experimental Program-Design Environment (EPDE). Such a framework would 
support not only continuing experimentation with various aspects and components of an EPDE 
as they are developed, but also the rapid integration of new theoretical results. The research 
proposed here therefore centers around the construction and use of just such a framework. Our 
intention is that this will serve as the basis for the development of an integrated environment 
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that supports program design, analysis and maintenance, rapid prototyping of language systems, 
and logic applications such as reasoning systems. 

In the following subsections, as we said above, we present proposals for research on three 
major fronts: Foundations, Applications, and Engineering. This separation of topics does not 
imply any isolation or compartmentalization of thinking, however. We claim not only that 
there are strong ties between these three major research areas, but also that we are proposing 
a practical mechanism permitting essential feedback from one area to the other. We use work 
in foundations to provide a sound basis for formal ideas, but in addition this provides insights 
into the interplay between reasoning about programs and program derivations that suggest new 
ideas in our engineering projects. In the other direction the tools and environments we have 
been working on produce common, language-generic facilities. These are used not only as 
prototyping tools, but they are also employed to test logical and semantical ideas while they 
are being developed. We feel that application of inferential programming makes use of the 
above in both an experimental and foundational exploration into the nature of the program-
design process. This exploration is based both on our previous work in inferential programming 
(resulting in many nontrivial derivations) and on a paper "database" of derivation ideas with 
which we propose to experiment 

Section 3.2 on Foundations is divided into three subsections concerning (1) axiomatic lan
guage description and program development, (2) languages for inferential programming, and (3) 
the transformation of semantic specifications. In each separate subsection, we have provided a 
statement of the problems to be solved, a description of our general approach to the research on 
these problems, and a more specific research plan. The theme of the first subsection is what we 
call the proofs-aS'programs paradigm, but we take care not to isolate this work from thinking 
on standard programming languages. The theme of the second subsection is the development of 
wide-spectrum systems of languages by means of semantic modules, and their use in managing 
the passage between specifications and implementations. Finally, the theme of the third section 
is the derivation of program-transformation systems using denotational semantic definitions of 
programming languages expressed in suitable higher-order logical languages. 

Section 3.3 on Applications proposes a continuing development for current Ergo work on 
making derivations of larger programs. These derivations are extensive enough for use in 
building parts of the Ergo system itself. Several other direct applications are also contemplated. 
The experience in doing these derivations will be used in investigations into design reuse, and 
also for improving many aspects of the system. 

Section 3.4 on Engineering discusses not only the continued development of the Ergo system 
(which is essential for all the other activities), but it also presents a research plan focusing on 
high-level components, abstract interfaces, the uses of higher-order abstract syntax and abstract 
data-type specification, and the understanding of a program-design record. We are claiming that 
we have already made progress on these problems and that their development will have wide 
utility. 
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3.2. Foundations. 

Theoretical and experimental research on the DBA must go hand in hand in order to achieve real 
progress. The word "foundations" for us means investigating the interplay between reasoning 
about programs and program development. We believe that program correctness and language 
design are the major issues of the foundational work for inferential programming. In particular, 
we will focus on the following topics: (1) axiomatic language description and its use in program 
development (including a reexamination of the proofs-as-programs paradigm and (generalized) 
Hoare logics in this context); (2) semantic language description and its relation to program 
development (with concentration on the design of a flexible semantic foundation for a wide-
spectrum system of languages); (3) denotational semantics and its use in deriving programs 
or justifying program transformation rules (with an emphasis on the choice of an appropriate 
logical basis). The Deduction Facility, a high-level tool in the ESS, is the bridge spanning the 
gap between foundational and experimental research. It has been explicitly designed to support 
rapid prototyping of systems for semantically and axiomatically based reasoning about programs. 

3.2.1. Axiomatic language description and program development 

This area of research in the Ergo Project is concerned with exploring how the axiomatic de
scription of language can be exploited in the context of a program derivation system. Axiomatic 
language descriptions are given through inference systems for properties of programs, the most 
prominent of which are (1) various constructive type theories (proving properties of programs 
written in an appropriate A-calculus) and (2) Hoare-logic systems (axiomatizing imperative lan
guages). Currently, these two approaches have little in common, as constructive type theories 
mainly employ the proofs-as-programs paradigm (PPP), in which a program is extracted from a 
completed proof of the specification, whereas Hoare logics are used to verify previously given 
imperative programs. 

Problem statement. We believe that the three main issues that need to be considered are: (1) 
the practicality of the PPP, (2) the usability of proof transformations in program development, 
and (3) the possibility of establishing a hybrid approach that allows the manipulation of both 
proofs and programs. 

Practicality of proofs as programs. There are many questions to be decided to determine 
whether the PPP is more than a theoretical curiosity. Too pure an application of the idea will 
not have practical applications in real software development or in generating efficient imple
mentations. We have to discover how much of a proof must be developed interactively (with 
the programmer making crucial decisions based on his own knowledge), and how much can be 
synthesized during the development of proofs based on properties required by the specification. 
In particular, it has to be shown whether the PPP is applicable to more practical languages than 
the A-calculus. Even when practicality is demonstrated, we still have to consider whether highly 
formal proofs erect a barrier that inhibits intuitive understanding of an algorithm or program. 
When this is the case, further structuring will have to be designed, not only for the sake of the 
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human user, but also to allow the building of libraries of proofs that can be reused in a creative 
way in new combinations. 

Proof transformations. If proofs correspond to verified programs, proof transformations 
correspond to program transformations. Much more work is needed to show what the basic 
proof-transformation techniques are. We also need to explain how we are to exploit the additional 
information about the program which can be found in its correctness proof. In particular, we 
do not know fully yet what the appropriate metalanguage is for writing programs that carry 
out proof transformations—something that is badly needed for the treatment of any large scale 
problem. Experience with logical deduction systems shows that an interactive mode of operation 
with machine-based tools is extremely helpful. We do not know yet, however, how we are to 
interact with a system that allows proof transformations, since experience to date has only been 
carried out on a very informal level. We also have to investigate whether proof transformations 
apply to Hoare logics as well as to constructive type theories which are closer to functional 
languages. 

Integration of approaches. Is it possible to integrate different methodologies in the DBA into 
a design-based environment which allows many different development strategies? We believe so, 
but this is something that has to be demonstrated explicitly and tested on significant examples. 
In particular, we have to asses how large the gap is between traditional program derivation and 
the PPP and how we will be able to bridge this gap. 

General approach. Our goal in this research is not only to understand the theoretical founda
tions for the use of axiomatic language descriptions in program development but simultaneously 
to prototype environments for relevant experimentation. As explained in Section 2, we have 
already found considerable value in using experimentation on paper, and the ESS has been ex
plicitly designed and implemented to support rapid prototyping of such environments. We also 
believe that the tools necessary for the relatively small-scale experiments we plan in this area 
can be created quickly from the broad base of the existing ESS. In particular, we feel that testing 
the PPP is an excellent and relatively well understood starting point for investigating the issues 
we have outlined in the problem statement above. 

We will continue to work on augmenting the scope of the PPP by introducing proof trans
formations in order to capture a larger class of program development steps (see [Pfe87a] for 
some preliminary results). We also propose to pursue another generalization that puts proofs and 
programs on a more equal footing and allows direct manipulation of programs while maintaining 
proofs. This could open up the technology to a potentially much larger class of users, since the 
program developer can choose to deal primarily with programs, which are more familiar objects 
than proofs. Below we elaborate on these approaches to using axiomatic language description in 
program development. In the paradigm of pure program synthesis, algorithms are developed by 
proving a theorem in a suitable logical system. The program is extracted as an afterthought im
plicit in the proof. If the proof is complete, the algorithm is verified. More rapid prototyping of 
algorithms is possible, since unverified programs can be extracted from incomplete proofs. The 
understanding of this technology is relatively advanced (embodied, for example, in the NuPrl 
proof-development system, see [BC85] and [Con86]). 
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Turning to program transformations and proof transformations, we note that a common mis
conception is to think of a constructive proof as a design record for the extracted program. This 
is only a weak analogy, since the proof only contains certain types of steps which form a small 
subset of elaborative steps: namely, those connecting logical specification with implementation, 
but not those connecting one implementation with another. Proof transformations achieve these 
more general steps. In approaching the connection between proof and programs from the side 
of programs, we note that most program transformations actually transform more than just pro
grams. Rather, most techniques use programs and assertions about them (e.g., loop invariants, 
strictness and termination properties) and proceed to transform those more complex objects. We 
take this idea a step further and, in essence, transform a program and its associated correctness 
proof into a new program with a new correctness proof. We claim that, since a correctness 
proof contains much information about a program, this information can be exploited to guide 
the transformation process. This is similar to the way assertions are used to permit some program 
transformations to be used in certain appropriate contexts. 

An important principle of program transformations is to keep the set of basic rules small 
and prove them correct once and for all. The same principle applies here, and examples and 
preliminary experiments (see [Pfe87a]) indicate that four basic proof-transformation techniques 
suffice to generate a large number of practical algorithms. They can be named as follows 
(with analogous program-transformation techniques mentioned in parentheses): (1) Reduction 
(partial evaluation, unfold, application), (2) Expansion (fold, abstraction), (3) Choice-function 
introduction (steps which go from specifications to executable code), and (4) Choice-function 
elimination (steps which abstract from executable code to specification). But, there are two other 
considerations that should be mentioned as part of our approach. 

First, lateral steps during program development, which are quite common in practice, change 
the specification. This happens, for example, when a program is to be adapted to the solution 
of a different, but related problem. The central issue concerning lateral steps is that of design-
information reuse. In the PPP this is provided for very directly: lemmas (theorems, previously 
proved or accepted facts from former developments) can be used directly in the way a mathe
matician uses them. This often leads to inefficiencies, but proof transformation techniques can 
help to eliminate these inefficiencies. Metatheorems can also be used as proof transformers 
for lateral steps in algorithm design if the metatheory is sufficiently formal and powerful. The 
system we are developing is intended to make this easier to do in a formal way. 

The second consideration again relates programs and proofs. Typically, proofs come first 
in the PPP and the program is extracted from i t Making the programs explicit in the proofs 
(as in Hoare logic and some type theories) opens up the possibility of having both programs 
and proofs partially instantiated. This blurs the distinction between various paradigms and will 
allow some writing of programs in a style similar to that familiar to present-day programmers, 
without leaving the security of verified program development and formalized design records. 
The explicit incorporation of proofs, in particular, allows us to place conventional development 
methodologies in a continuum. At the extremes we have program verification (i.e., program 
given, find proof) and program synthesis (i.e., find proof, extract program). In between these 
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we can distinguish various styles of hybrid development (i.e., program partially given, proof 
partially given, complete both). This discussion always assumes that the program specifications 
are given. If one is interested in generating specifications, there is yet another dimension to 
the picture allowing the specifications we are trying to satisfy to be only partially instantiated 
in various respects. The implications of this broader view have to be explored further, but we 
believe we have established the context to do so. 

Research plan. Our planned work involves investigating the foundations of axiomatic lan
guage description and its use in program development, carrying out examples both on paper and 
through prototyping simple environments for exploring the practical implications of our research. 
Different classes of languages, however, entail different styles of axiomatic description. Thus, 
we propose to follow three principal lines of investigation. 

Functional program development through proof transformation. We plan to begin by rederi-
ving—in the first place mainly on paper—a number of existing program derivation examples 
using this paradigm. We have already achieved this for several algorithms, Warshall's algorithm 
being our most complex example to date. [Pfe87a] Simultaneously we will investigate proof-
transformation techniques and their properties, such as confluence, termination, or applicability. 
We expect the set of proof transformation rules to be relatively small and similar in structure to 
a fold/unfold or specialization system in that it derives its power through aggregation of small, 
local steps. Once we have developed an understanding of the transformation techniques, we 
need a metalanguage for expressing proof transformations and proof transformation strategies. 
This involves continued experiments with AProlog [MN86b] [MN87] and LF [HHP87]. We will 
also engage in the design of a system which allows "hybrid development" where programs and 
their correctness proofs are both incomplete at the outset of program development. We plan 
to carry out some selected examples in our own Deduction Facility prototype. We further plan 
to continue our work on transformation techniques and to expand on the examples of program 
derivations in this paradigm. A major project will be to derive some seven known algorithms 
for first-order unification. We are currently working on this set of examples using transformation 
of semantic specifications (see Section 3.2.3). 

Generalized Hoare logics for imperative and parallel languages and their relation to pro
gram development. Here, too, we plan to start by deriving a number of well known imperative 
programs through transformation of programs together with their Hoare logic proofs. We hope 
to identify patterns of proof transformations in this setting. We plan to carry out a detailed 
comparison with other approaches to program transformation on imperative languages (for ex
ample [SJW86][JS86b][RS82][Mas86]). In particular, we will investigate where the additional 
information about the program (in the proof) enables or simplifies the recognition and applica
tion of transformations. We will also continue to investigate semantically based formulations 
of generalized Hoare logics for a larger class of programming languages, in particular for par
allel languages (see [Bro85], [Bro86], and [Bro87]) and languages with powerful procedure 
mechanisms (see [Rey82]). We plan to apply transformation techniques to this larger class of 
generalized Hoare logics. In particular we will explore how proof transformations can be used 
on languages with parallel constructs and higher-order procedures that are axiomatized through 
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generalized Hoare logics. As a first step, a reimplementation of an existing Hoare-logic prover 
prototype using the Deduction Facility will enable us to carry out program derivation examples 
in the ESS. We also plan to depart from pure verification by allowing various degrees of instan
tiation of program and proof. Again, experimentation using the Deduction Facility should give 
us some insight into the practical ramifications of allowing such a development style. 

The Deduction Facility. The Deduction Facility will be a high-level tool in the Ergo Support 
System that allows definition of a logical language and inference rules and creates an interactive 
environment for deduction in the given logic. We list it here with the above research plans, 
since it will provide the basis for some of the experimentation with proofs and programs. Also 
we think that the experience on the above problems will influence in essential ways the further 
development and redesign of the tool. In particular, proof system designers will interact closely 
with software developers. The concrete plans for the continued implementation of the Deduction 
Facility are given in Section 3.4 

3.2.2. Languages for inferential programming. 

The elaboration of specifications into implementations spans many levels of abstraction. Lan
guages for the DBA must effectively support expression at all of these levels. Such support 
is often provided by a wide-spectrum language containing the high-level abstraction mecha
nisms necessary for comprehensible specification, as well as the lower-level, computationally 
committed mechanisms necessary for efficient implementation. To some extent, wide-spectrum 
languages such as SETL [DGL*79], Paddle [WU83], CIP-L [Mol84], and REFINE [SKW85] have 
been successful in allowing the expression of both formal specifications and efficient imple
mentations. However, the extent to which these languages can support a DBA, in particular 
inferential programming, is uncertain. 

Problem statement. We see several general problems with the idea of wide-spectrum lan
guages. First, insofar as a wide-spectrum language is a single language, it is inflexible with 
respect to the kinds of abstraction mechanisms it provides for high-level specification. Appli
cability to a broad range of problems can be enhanced by adding new constructs which either 
raise the possible level of abstraction, or provide alternative specification paradigms. However, 
such extension would incur a great expense in both design and implementation effort. Unfor
tunately, we think it is unlikely that any particular set of constructs can be appropriate for all 
applications, since new domains of application will give rise to new language requirements. 
Also, new advances in language design and implementation will make available increasingly 
abstract language mechanisms. It seems to us that the inflexibility of wide-spectrum languages 
will stand in the way of allowing any program-design environment to adapt to new problems 
and incorporate new technology as it is developed. 

The second problem is that reasoning about specifications and programs in a wide-spectrum 
language is, at present, theoretically intractable. In most cases, there is no definition of the 
language semantics which is useful for formal reasoning. Even if formal definitions were to be 
constructed, it would be likely that they would be, at best, unwieldy, and that the underlying 
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semantic concepts and primitives used to describe the language constructs at one abstraction level 
will bear little or no useful relation to the concepts used to describe other levels. For example, the 
primitives typically used to describe the semantics of logic programming constructs [vEK76] are 
hardly related to those used for functional programming [MP82] or pattern-matching mechanisms 
[Ten78]. It seems us, therefore, that reasoning about wide-spectrum programs which may in fact 
contain such useful, yet semantically disparate, constructs would present major difficulties. This 
also often precludes reasoning about the correctness of the transformation rules, since the rules 
may also involve seemingly unrelated (at least on the semantical level) language constructs. This 
problem has been addressed in the design of CIP-L, which is based on an incrementally developed 
spectrum of semantic definitions. However, CIP-L is still based on a particular set of language 
features and abstraction mechanisms, and is also committed to particular implementation targets. 

As we explain below, the approach we are going to take in avoiding the problems of wide-
spectrum languages is to change the thrust to emphasize systems of languages. In thinking 
through the implications of adopting this point of view, we have identified three categories of 
issues for research in the area of wide-spectrum systems: (1) the engineering of languages in 
wide-spectrum systems, (2) the development of techniques for building a semantic framework 
for wide-spectrum systems, and (3) the organization and management of such systems. 

In language engineering we must cope with the need to design and implement all of these 
diverse languages. In particular, since the languages are related, we have to decide how much 
of the implementation effort can or should be automated. More specifically, in the context of the 
Ergo Project, we have to determine just which tools should be provided by the ESS. Clearly, to 
be able to provide a semantic foundation, what is needed is something that provides a basis for 
semantically correct reasoning in all of the languages involved in the wide-spectrum system. We 
have to find out how such a semantic framework can be developed and how transformation rules 
can be extracted from experimental derivations in such frameworks. These problems are closely 
related to some of those discussed in Section 3.2.1. But, with respect to wide-spectrum systems, 
we additionally have to understand how such developments can be conducted incrementally 
and in what ways such frameworks can be utilized in language design and implementation. 
As regards organization and management of wide-spectrum systems, we need to ask how useful 
wide-spectrum systems are going to be developed and maintained over long periods of time. Can 
such activities be made accessible to program designers, instead of only specialists in semantics 
and compiler generation? If they cannot, our project will have failed in an crucial way. We have 
to learn how to break the problems up into feasible subprojects to avoid this kind of failure. 

Aside from the large questions concerning wide-spectrum systems, we also see several major 
technical challenges in this research area. A key challenge will be to understand the result 
of the enrichment and restriction process (explained further in the next paragraphs) in terms 
of transformations of higher-level language features to lower-level ones, and also in terms of 
the structure of the design record. The development of the design record (see Sections 3.3 
and 3.4) will be both influenced by, and provide guidance for, these efforts in language design. 
The organization provided by the Ergo Project will enable this necessary and close cooperation 
between these research efforts. We also see several other significant challenges: How abstract 
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can languages based on our design approach be? Will we always be bound to algorithmic 
languages? Can the enrichment/restriction process be formulated in a useful way for all, or 
sufficiently many, kinds of language constructs? How will the transformation rules be extracted 
from this process? How can the semantic information be utilized in the representation of the 
design record? We believe that the coordinated efforts in the research areas described in this 
proposal will be very effective in addressing these challenges. 

General approach. In order to avoid the problems we have discussed concerning wide-
spectrum languages, we need an alternative approach which involves the incremental design 
and development of a wide-spectrum system of languages, based on a modularly constructed 
and incrementally developed semantic framework. Languages are designed and added to this 
spectrum through a process that both extends the semantic framework and provides the transfor
mation rules necessary for reasoning and derivation in the newly extended system. For program 
derivation, the main difference between such a wide-spectrum system and a wide-spectrum Ian-
guage is this: in a wide-spectrum system, specifications and programs will be written entirely 
in a particular language of the system. Elaboration will involve both the transformation of pro
grams/specifications within a particular language, as well as the translation to the next lower-level 
language in the spectrum. We believe this approach will provide several advantages. 

First, reasoning will be easier because each language and its formal semantics (as expressed in 
the system) will be smaller and less complicated. Still, the entire spectrum of abstraction mech
anisms will be available during derivation, because the languages will have been fully related 
by their incremental development into the system, leaving the mixing of language levels to the 
program derivation where they are under careful control. As discussed in Section 3.2.3, this will 
also make it easier to reason about the correctness—or even derivation—of the transformation 
rules. Finally, incremental development will provide a level of language-genericity permitting 
the avoidance of excessive commitment to a particular set of language mechanisms. We believe 
that this will be especially important in reducing risk in our development of the DBA. 

We also plan to show how the design of wide-spectrum systems can be carried out incremen
tally, by developing the idea of semantic specification modules. Such modules might be possible 
in the context of an action-based approach to formal semantic description (for example, consider 
the abstract semantic algebras of Mosses [Mos82], the action semantics of Mosses and Watt 
[MW86], and the high-level semantics of Lee and Pleban [Lee87], [PL88]; other approaches 
include the local formalisms of Wile [Wil86]). We and others believe that a synthesis of known 
techniques will allow the formulation of formal descriptions of programming languages by com
bining what we call semantic modules, each of which contain a description of some particular 
feature or type of construct of languages together with rules for combination with other modules. 

As a simple example, a module might be created that encapsulates the notion of goto. This 
could then be combined (semiautomatically) with other modules according to its combining 
rules, in effect guiding the derivation of a new language description. A new, formally related 
language allowing the goto construct would result. Furthermore, the resulting derivation would 
serve as the basis for analysis and derivation of transformation rules relating the new language 
to the old. 
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Preliminary steps toward such modularity appear in [Lee87], [Wil86], and [Mos87]. We be
lieve that this modularity will greatly enhance the usefulness of formal methods during language 
design in much the same way that modularity in programming languages is useful in program
ming. Even without the modularity, however, action-based semantic descriptions provide a basis 
for reasoning about programs. Furthermore, it has been demonstrated that efficient implemen
tations of languages can often be automatically derived from action-based descriptions of their 
semantics [LP87]. Hence, we believe that the risk in our approach is relatively low. 

Semantic modules are intuitively appealing since they can often be understood in terms of 
language concepts and mechanisms. Hence, their use becomes more accessible to program 
designers, not just to specialists in semantics and compiler generation. More importantly, this 
idea will permit the development of libraries of semantic modules which will serve as a basis for 
a language designer's workbench. Such a workbench will provide for the construction, testing, 
and management of semantic modules, as well as their combination into formally specified 
languages. Dependencies between the modules composing a language or wide-spectrum system 
can thus be maintained, through facilities for carefully controlled inspection and modification 
of semantic specifications. Finally, the workbench provides tools for exploiting the semantic 
framework in the formal derivation of transformation rules, as described in Section 3.2.3. 

The design of a wide-spectrum system, then, can proceed as follows. First, the semantics of 
a "mid-spectra" language, say, a simple first-order imperative language IMP, is written in some 
modular form of an action-based semantics. A spectrum of languages is then created by a process 
of enrichment and restriction, accomplished via the addition and removal of semantic modules. 
For example, the next higher-level language in a spectrum might be obtained by enriching the IMP 
semantics with a module for higher-order functions, and restricting it by removing a module for 
assignment, thus resulting in an ML-like language [Mil85]. The next lower-level language, then, 
might come from an enrichment with goto, and restriction to simpler data types. Eventually, this 
process, properly carried out, leads to a spectrum extending from a low-level language to highly 
abstract specification language. Of course, many choices of enrichments and restrictions are 
possible, leading to many different wide-spectrum systems. This enrichment/restriction process 
is depicted in Figure 3. 

At least two advantages will be realized from this approach. First, it will be possible to define 
semantic modules and methods for connecting them. This will greatly facilitate our efforts in 
the incremental design and development of wide-spectrum systems. Secondly, it will be possible 
to obtain rapidly some efficient prototypes for many of the languages, and this will improve the 
development of the ESS and the EPDE. For implementation purposes, we expect that previously 
developed compiler generation techniques, and new, Ergo-developed facilities for flow analysis 
[Nor87a] and partial evaluation will be important. 

Research plan. Our proposed research, following the approach outlined above, blends exper
imentation with investigations into semantic foundations. As a starting point for the development 
of semantic modules, we will implement an action-based semantics system based on Lee's MESS 
system [LP87] in the ESS. This will provide initial rapid language prototyping capabilities, as 
well as an engineering base on which to build further support for language design. Integration of 
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Figure 3: Example development of a possible wide-spectrum system. 

MESS concepts into the ESS will also provide direct support for experimentation with semantics 
transformations. Then, using this experimental base, we will develop techniques for constructing 
semantic modules, and make first steps in formulating the enrichment/restriction process. We 
plan to base these developments on an extension of the high-level semantics method supported 
by MESS. We believe this extension will be a significant advancement in formal semantic de
scription. In particular, we believe this will lead to the development of a semantic foundation for 
wide-spectrum systems. When a version of the enrichment and restriction process has been for
mulated, we will implement it in the semantics system to obtain the first version of the Language 
Designer's Workbench. 

At this point we will be able to develop and experiment with small wide-spectrum systems 
and methods for extracting transformations from the enrichment/restriction process. In close 
association with the research in semantics transformation (see Section 3.2.3), methods will then 
be developed for extracting transformation rules from wide-spectrum systems. These rules 
will be used in program derivations based on the languages in the system. With sufficient 
experimentation along these lines, we expect to be able to develop a spectrum suitable for 
use in the larger derivations described in Section 3.3. Continued research and experimentation 
should involve use of the semantic framework in the representation of the design record and the 
incorporation of the Language Designer's Workbench into the EPDE. 

3.2.3. Transformation of semantic specifications. 

The overall aim of this phase of the work of the Ergo Project is to establish not only a rigorous 
but also a flexible and usable foundation for inferential programming that makes explicit and 
formal use of programming-language semantics. 
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Problem statement. As we see the matter, an attack on the handling of semantic specification 
requires a formal deduction system supporting (1) the theories involved in algorithm develop
ment, (2) the semantic domains for programming languages, (3) the syntax of programming 
languages, and (4) the semantic functions relating syntax to semantics. Unlike current program 
derivation and verification systems and formalisms, such a system must necessarily allow for 
explicit reasoning about termination properties, as well as a broad class of implementation lan
guages (e.g., call-by-name and call-by-value functional, imperative, logic) rather than a single 
one. It must also permit the systematic derivation of program transformation rules as semantic 
equivalences. 

To achieve these specific aims there also a number of general questions that have to be 
studied. We have yet to answer, for instance, the question of what a good meta-language for the 
formalization of a language and its underlying semantic domains should be. For instance, can we 
extend a system like LCF [GMW79] to encompass higher-order logic? Can we use higher-order 
unification to mechanize (forward and backward) applications of inference rules and to construct 
derived inference rules as in Isabelle [Pau86]? We can also ask how we can shield the user 
from the details of the semantic level, especially when targeting towards imperative programming 
languages, and whether we can synthesize useful systems of program transformation rules within 
our system. There are several logic-based systems for reasoning about programs, but to make 
them more widely useful we have to determine whether we can remedy the inability of systems 
like NuPrl [BC85] [Con86] and the Calculus of Constructions [CH85] to reason easily about 
programs that do not always terminate. We also have to find out if we can provide a useful link 
between the seemingly opposed approaches of program verification and program synthesis. 

General approach. For the purposes of the present discussion, we regard a specification as 
being expressed as a predicate in the language formalizing the semantic domains underlying the 
programming language. An implementation is a program whose meaning (in one of the semantic 
domains) satisfies the specification. Program derivation means to apply deduction steps to the 
specification with the goal to arrive at a description of a function in the semantic domain that 
can be shown to be the meaning of a program. 

We think that a useful meta-language would be a higher-order logic with implicit polymor
phism (as in ML) supporting predomains, and more generally reasoning that is more like familiar 
set-theoretical reasoning in mathematics. This may be compared with LCF, which is a first-order 
logic with implicit polymorphism allowing only domains and continuous functions. It may take 
some time to find a convenient framework that is both formal and sufficiently general. Such 
a generalization is important for a number of reasons. For example, using the framework of 
predomains, we can directly represent many of the the mathematical types we want to work 
with. This makes them more intuitive and also easier to mechanize especially for reasoning 
about meanings of programs in call-by-value and imperative languages. Then, in higher-order 
logic, we can express and prove higher-level facts such as the validity of various induction laws. 
In LCF, data-type inductions must be simulated by complex fixed point inductions each time 
they are used, resulting in cumbersome reasoning. There are other meta-language concerns as 
well. The programmer or language designer should be insulated from the low-level semantic 
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concepts by allowing the introduction of definitions and new notations for them. Experience 
with NuPrl [Con86] and the Environment for Formal Systems [Gri87] suggests that this is a 
simple but very effective device which we hope to exploit further. 

Following AProlog [MN86b,MN87] and Isabelle [Pau86], we plan to use higher-order unifi
cation instead of pattern-matching as the mechanism for applying inference rules. This means 
that the (forwards or backwards) application of an inference rule may partially instantiate the 
theorem it is proving. This idea merges the apparently opposing approaches of theorem prov
ing (program verification) on the one hand, from theorem discovery (program synthesis) on the 
other. The Deduction Facility (see Section 3.4) is explicitly designed to support higher-order 
unification as an inference engine and will be the basis of our implementation. 

Research plan. Our research on this approach to program derivation will be very strongly 
driven by examples. We plan to continue our work on the derivation of existing program 
transformation systems using the denotational semantic definition of the programming language. 
This has been done already for the fold/unfold system for a simple functional language. Other 
examples will include at least functional and imperative programming languages. We also plan 
to assemble a casebook of examples for derivations using explicit transformation of semantic 
specifications. The first major example is a derivation of a complex higher-order unification 
algorithm (see [EP87]). Work on a genealogy of first-order unification algorithms using this 
paradigm is in progress. 

Our experience suggests certain features of the meta-language as outlined above. We plan 
to design a meta-language for the description of language semantics and for reasoning about 
the objects in the semantic domain including these features. A prototype implementation of this 
meta-language in the ESS using the Deduction Facility should provide us with essential feedback 
as to its adequacy. 

3.3. Application of inferential programming. 

Larger programs require a great deal of information management as well as the use of tools for 
viewing larger amounts of information in a sensible way. We will gain experience in this area by 
developing some larger-scale applications using inferential programming methodologies. Along 
the way we will develop additional tools, data structures, and techniques to handle these larger 
programs. 

Problem Statement There are three orthogonal axes along which we can measure our 
progress in the application of the methods of inferential programming: (1) the degree of formality 
of the derivation, (2) the complexity of the resulting algorithms and programs, and (3) ease of 
reuse of design information. Exploration of each of these dimensions presents its own problems. 
Indirectly, these criteria will also give us a measurement of the maturity of our tools and of 
our understanding of the paradigms in the DBA. Thus, we regard these investigations—and the 
design of support tools—as an integral and important part of our research effort over the next 
few years. 
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How formal is the derivation? Program derivations can be located on a continuum between 
"fully formal and implemented on the computer" and "completely informal". One point in 
between is illustrated by our derivation of unification algorithms [EP87]. That work was carried 
out completely on paper. It was rigorous in carrying out major design steps, but completely left 
out many intervening small steps. As the tools in the ESS mature and higher-level components 
and more complete languages become available, we hope to make substantial progress towards 
increasingly formal algorithm derivations. This will expose new issues which are conveniently 
ignored in less formal derivations, and will provide us with feedback about the adequacy of our 
tools. 

How complex are the specification and the resulting algorithms and programs? Small ex
amples with simple specifications and moderately complex algorithms do not pose a major 
challenge. Some of our examples below have a potentially large scope with the possibility of 
highly optimized implementations of very complex algorithms. We hope as time progresses that 
the complexity of the generated code will increase, allowing more efficient implementations. At 
the same time we hope to reduce the complexity of the specifications—the simpler the specifi
cation, the fewer commitments will have been made at the outset and the fewer errors are likely. 
Thus, over time we are exploring the space of languages which connect specifications and im
plementations "from the inside out": starting with high-level languages we are working towards 
more powerful specification languages on the one side, and towards lower-level languages which 
allow more tailoring to the target architecture on the other. 

How easy is it to reuse design information? Devising suitable representations for the design 
information that links a comprehensible specification with derived low-level efficient programs 
is critical for providing computer support for carrying out non-trivial program derivations. Con
venience of design information reuse is related to the degree to which there is explicit sharing 
of structure among a set of related derivations. 

General Approach. Before and during the current research contract the Ergo Project has 
completed the following significant derivations: parsing algorithms [Sch80], graph algorithms 
[RS82], compiler generation [JS86a], abstract data type derivations [Sch86], use of destructive 
data types [JS86b], and first-order and higher-order unification [EP87]. The main purposes of 
these examples was to illustrate program derivation techniques and, in some cases, to gain a 
deeper understanding of an algorithm for an implementation. We can find commonality among 
these derivations which will guide us in the design of data structures for representing derivations. 
We will attempt to mechanize these derivations completely, although this is a major challenge. 
The goal will be to demonstrate that program derivation can serve as a practical tool in software 
development which goes beyond informal algorithm explanation. 

In particular, we have concrete plans for deriving programs in three major problem classes, 
which we now explain. Naturally, others may arise in the course of our research. The three 
classes are: (1) Rederivation of past examples. The use of previously developed informal deriva
tions will allow us to focus on the problems of formalizing derivations, since the necessary design 
insights have already been made. We can study the array of existing derivations and find com
monality to exploit in developing interactive derivation tools, data structures for representing 
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derivations, and derivation techniques. (2) Bootstrap of the ESS. As mentioned earlier, deriva
tion of selected components of the ESS will provide more adaptable tools and good inferential 
programming experience. We expect that first-order unification will be the first example of an 
ESS component bootstrapped completely with our own tools. (3) Derivation of theorem provers. 
The goal is to derive theorem-proving procedures from the specification of the logical system 
(language and inference rules). The groundwork has been laid through derivations of first- and 
higher-order unification algorithms. 

Turning to the problem of the nature of the design record (or account of the design decisions), 
we assert that the most fundamental purposes of the design record are (1) the support of reuse 
of design information, through formal representation of designs and design decisions, and (2) 
the support of explanation of programs, through both formal and informal representations of 
design processes. As we describe in Section 3.4, we will use the insights gained from our 
extensive experience in formal derivations to design an implementation of the design record. 
This engineering-based approach is, we believe, the most practical and direct way to provide a 
basis for experimentation and research into the formal nature of the design record. 

Research Plan. Specifically, we have the following plans in this research area. In the first 
place, we will carry out the formalization of the various derivations mentioned above. This 
should allow us to identify the salient features of the derivation process, thereby providing us 
with a basis for the design of prototype design record implementations. We expect that experi
mentation and evolution of such implementations will also lead to a more formal understanding 
of the design record. Next, in order to augment the pool of derivation examples from which we 
can draw insights, we will survey derivational methodologies and incorporate our findings into 
the same evolutionary process. Finally, continued development of a prototype implementation 
of the design record will be carried out to accommodate revision and elaboration design steps, 
thus allowing flexibility with respect to temporal ordering of user actions. In addition, we will 
work to incorporate abstraction and generalization mechanisms for design records. It should also 
be noted that in conventional software development methodologies, support for reuse is largely 
limited to fully committed code (e.g., subroutines, modules, or packages from a code library). 
The addition of polymorphism and higher-order functions to programming languages carries this 
reusability significantly further. However, the DBA can provide a high degree of support for 
structured reuse and adaptation. We have already begun studying how to generalize concrete 
derivations and apply existing derivations by analogy to new programs [DS87], and we plan to 
continue this line of investigation as well. 

3.4. Engineering of tools and environments. 

The Ergo project has already devoted considerable effort to designing and implementing a set of 
highly-integrated generic tools, collectively referred to as the Ergo Support System (ESS), which 
is intended to provide a rapid prototyping environment for researchers in design-based program 
development, program manipulation, and programming language theory. Ideally, the ESS should 
support rapid prototyping of all aspects of programming languages pertinent to program-design 
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environments. That is, it should be easy to specify syntax, semantics, and transformation rules 
for a language and obtain an environment tailored to manipulating programs in that language. 
Our goals in Ergo are even broader, since we believe that logical languages and proof systems 
are essential to an inferential programming environment, and that we must be able to implement 
these as well. 

Problem Statement New forms of expression are required for a realization of design-
based programming. We have long recognized the importance of providing an engineering 
framework for experimentation in the DBA, and we also believe that such a framework must 
support experimentation with both languages and program development styles. This belief 
is based on our previous experimental research which indicates that the DBA imposes new 
requirements on programming languages; therefore, experimentation with a variety of languages 
and language concepts must be an integral part of our research. 

Currently, the ESS provides tools for specifying the syntax and static semantics of languages in 
a simple, modular, and user-oriented fashion. Rules for transforming and manipulating syntactic 
objects can be specified, but we have only achieved partial integration of the former and latter 
sets of tools, and much more needs to be done. We believe the integration of rules and the 
user interface descriptions with the other ESS tools lies in the near future, while full description 
and use of language semantics in the ESS is subject to further research. There are two main 
considerations driving the maintenance and further development of the system: (1) high-level 
support for experimentation, and (2) continued development of the internal structure (in the spirit 
of component technology) to support the exchange of components with other research groups, 
to upgrade existing tools, and to allow the rapid prototyping of new tools. 

Other research groups are also producing relevant system components that we hope to exploit. 
We have to give serious thought, however, to the many problems of sharing software. It is partic
ularly clear that an object-oriented database facility in an inferential programming environment 
would serve the role that a file system serves in a conventional system, providing support for 
structured objects instead of just text files, and contributing to much improved performance of 
systems. At this juncture we cannot see just which group is going to develop this especially 
desirable component in a general-purpose form that can be widely shared. Nevertheless, we 
already are taking preliminary steps to collaborate with other research groups that are actively 
engaged in building prototypes of such facilities [WA87]. We feel our careful attention to ab
stract interfaces and component technology will aid us in incorporating object-base technology 
as it is developed for the research community. In another direction, we feel a hypertext system 
would allow us to incorporate informal explanation into formal derivation objects, thereby en
hancing the user interface and giving us a more flexible approach to documentation. Currently 
the expression of interest in hypertext is no more than a statement of intent on our part, but 
steps are being taken to develop concrete plans for exchange of tools and components with other 
research groups that have similar interests. 

General Approach. Inasmuch as the DBA admits many different concrete program design 
methodologies, we have strong evidence (in the form of examples) that different development 
styles will be appropriate for different problem types and problem domains. An important part 
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of our general aims is to demonstrate that we can accommodate the different styles within a 
single support system. 

A major aspect of our implementation activities to date has been program development in 
the spirit of component technology. This not only simplifies program maintenance and rapid 
prototyping of new tools, but also supports the exchange of components with other research 
groups. The most visible results of our development style are the abstract data-type specifications 
for abstract interfaces between system components and the use of bootstrapping of components 
whenever possible. We feel we have made very substantial advances on the conceptual level 
in designing abstract interfaces between tools and answering the requirements of a language 
prototyping system for inferential programming. More specifically, we designed higher-order 
abstract syntax [PE88] as the central representation for formal objects, and a new data type 
providing a coherent caching scheme for attributes and attribute sharing across many generations 
of a program [Pfe87b]. Simultaneously, prototype implementations provided design feedback, 
and the bootstrapping of tools (i.e., building tools using our own tools) provided a high degree 
of integration and flexibility of the system components. 

Components will only integrate well if their abstract interfaces are well-designed and precisely 
described. We hope to evolve current descriptions into a state where they could serve as a basis 
for a metalanguage which would become part of the ESS itself. Current languages for specifying 
abstract data types do not seem appropriate for concise description of the internal interfaces of 
the ESS. Thus our first step is to design the meta-abstract data type of data type specifications 
in which we plan to describe formally the major abstract interfaces in the ESS. This will be 
a prerequisite for work on a more complete ESS bootstrap. Note that the idealized goal of 
bootstrapping is to implement the whole ESS in itself. Currently, our understanding of inferential 
programming is advanced enough that only engineering problems stand in the way of achieving 
this goal for some components, like the first-order and higher-order unification tools. However, 
further foundational research is required for most others. A fully bootstrapped implementation 
of first-order unification is planned and would serve a dual role as a major application for the 
ESS tools and as a part of the ESS itself. 

Research plan. We will continue to develop our applications in the framework of the ESS. 
This will guide its further design and development. Abstractions of current prototype applications 
should develop into new, higher-level components of the ESS. 

The Deduction Facility is the first example of such a tool, and we plan to continue its 
development. This generic proof manipulation tool can be used for natural deduction, type 
inference, Hoare-style reasoning about programs, and for reasoning in semantic domains. Its 
design was strongly influenced by AProlog [MN86b,MN87] and LF [HHP87]. It is based on an 
explicit metalogic (LF) rather than an explicit meta-programming language (ML). The metalogic 
can be given a computational interpretation in the style of AProlog. The implementation of 
the Deduction Facility will proceed in three stages. The first stage, an implementation of the 
metalogic, has already been completed. During the second stage we will use the Interaction 
Facility in the ESS to build an interactive environment for theory definition, proof development 
and transformation. In the third stage we will implement a version of AProlog which will give 
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us a powerful language to express tactics for theorem proving and proof transformation. 

The second example is expected to be a language-generic program derivation environment 
From high-level user-oriented definitions (of language, static semantics, types, transformation 
rules, interaction style, etc.), this tool will generate a specialized derivation systems in an oth
erwise uniform environment. A first prototype will be based on an implementation of a data 
type representing the program design record. Since we will continue to expand our library of 
derivations, we will be able to study the kinds of design steps that need to be represented, as 
well as the design states that programs typically pass through during derivation. We expect that 
our study of derivations, along with experimentation, will allow us to refine our notions of the 
design record, leading eventually to its formalization. Further plans include derivation replay 
and analogy capabilities. 

Moreover, we will use abstraction mechanisms to modularize large, complex, and highly 
interconnected derivations, making them understandable and reusable. Design record abstractions 
will be based on the sources of modularity inherent in derivations due to the independence 
of many design decisions. For example, the simplest kind of modularity in a derivation is 
that present in a single design state, which is generally a program composed of encapsulated 
modules. This program modularity can be exploited by decomposing a design state along its 
internal abstraction boundaries, and carrying out sub-derivations independently on the parts. 
Modularity in the design record will not only make derivations more manageable, but will 
increase the potential reusability of designs, since each sub-derivation will be independently 
reuseable. Another simple form of abstraction we will exploit is the aggregation of many small 
design steps into a single higher-level step. Generalizations of such aggregations will permit 
the reuse of a design strategy as a single design step. It is clear from our past experience 
with derivations that many derivation techniques are commonly used even across unrelated 
applications. 

We recognize that the "scaling up" of applications and high-level components will require 
support for the management of persistent structured objects [Nes86], [BZ87], [Wie86], [ML87]. 
Our plan is to import and install an object-oriented database facility when a suitable one becomes 
available. As we mentioned earlier, we are taking preliminary steps to collaborate with other 
research groups involved in the development of such facilities. 

In addition to higher-level components, we have plans to develop the following two specific 
applications. 

A model language implementation. We will implement a new experimental language, Ideal
ized Algol, that combines a simple imperative language with a procedure mechanism based on the 
lambda calculus [Rey81]. The type structure of the present version of this language makes exten
sive use of conjunctive types (in the sense of Coppo and Dezani [CDV81]). As a consequence, 
the language not only subsumes Algol, but also supports object-oriented programming. We ex
pect that the ESS will substantially reduce the effort required for this implementation; conversely 
the implementation will provide a practical test of the adequacy of the support system (particu
larly its concept of abstract syntax). The clean and well-understood semantics of Idealized Algol 
[01e82], [01e85] should also make the language an excellent vehicle for program transformation 
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and formal proofs. In particular, its programs can be reasoned about in Specification Logic, 
a partial correctness formalism that embeds Hoare logic, dealing with the imperative aspects 
of programs, within an intuitionistic logic dealing with A-calculus-based procedure mechanism 
[Rey82], [Ten85]. 

Investigations of Specification Logic. We will use the Deduction Facility to implement a 
system for reasoning in Specification Logic It is clear from examples of proofs in this logic 
that automated support should gready reduce tedious details. Moreover, the intuitionistic aspect 
of the logic suggests that the system design can usefully draw upon ideas in systems such as 
NuPrl [Con86]. 
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4. Personnel 
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Kenneth Cline Kenneth. Cline@cs . emu. edu 
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• Program Derivation 
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Technical Staff-

Michael Mills Mi chae l.Mills@cs. emu. edu 
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