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Abstract

This paper proposes a method for adapting the traditional devices of
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tions about the properties of a retriever can be stated rigorously in
terms of inference and that the model-theoretic specification can then
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the use of model-theoretic specifications.
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The success of artificial intelligence as a science hinges on our abil-

ity to build a theory that relates a program's structure to its

behavior. Essential to this enterprise are methods for producing

rigorous specifications of programs at a high level of abstraction that

can be used to codify and communi cate our results.

There are two specification methods predominantly (though certainly not

exclusively) used: English prose typically describing various structural

components of the program and their role in the program's performance,

and the actual code that is used to implement the program. (For the

sake of argument, call the latter LISP code.) An English prose specifi-

cation can be highly abstract but, in practice, usually at the expense

of rigor and precision. Consider the problem of predicting how a pro-

gram so described in a journal will behave on examples not considered in

the article. Worse yet, consider the problem of showing that the pro-

gram has certain properties. Though a LISP-code specification does not

suffer from the lack of precision that an English specification typi-

cally does, it is not sufficiently abstract. Hence, appropriately

enough, LISP code rarely works its way into the literature. When is the

last time you published a program? A less serious and more-easily

remedied problem is that a LISP-code specification may need to be accom-

panied by a specification of LISP itself. I know of a researcher who

misunderstood a published LISP program because he and the author had

different versions of LISP in mind.

A methodology that has been pursued successfully throughout computer

science is that of separating the description of what a program computes

from how it computes it. On the one hand there are descriptions of a

program's input/output behavior and on the other descriptions of its

internal modules, processes, states and data structures. Descriptions

of how a program works can and should be given at various levels of

abstraction. For example, at one level a program can be described as a

non-deterministic algorithm moving through a search space from an ini-

tial state to a goal state, while a less abstract description would

specify a search strategy for realizing the non-deterministic algorithm

on a deterministic machine.
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This paper considers the case for using model theory to specify what a

program computes. A method is proposed for adapting traditional model-

theoretic techniques and is illustrated by specifying two programs. The

first is a toy example used to illuminate the key points of the tech-

nique, while the second, a knowledge retriever, is used to demonstrate

application of the technique to a realistic AI program. Beyond what is

demonstrated by these examples and those mentioned in the section on

related work, little is known about the range of applicability of the

technique.

2. Overview of the Proposed Technique

A major concern of Al is with programs that manipulate representations,

which I take to be data structures that denote. This raises the possi-

bility that many such programs can be viewed as inference engines,

deriving conclusions from their representations. This paper is con-

cerned with developing techniques for using model theory to specify the

input/output behavior of programs seen from this viewpoint.

For example, a planner can be seen as an inference system. The program

embodies a theory of action and its input is a pair of sentences each

predicating a condition on the world. The planner produces a plan such

that its theory of action logically implies that the second input sen-

tence would be true if the plan were performed in any world satisfying

the first input sentence.

Unfortunately, many planning systems such as STRIPS (Fikes and Nilsson,

1971) do not meet such a specification. In order to deal with the enor-

mously complex problem of finding an appropriate plan among the set of

all plans, these systems employ problem representations that often find

plans quickly but do so at the expense of occasionally failing to find

any at all. As an inference engine such a system is incomplete. How

then can such an incomplete system be specified?

The idea that plans are counterfactuals was brought to my attention

by Andy Haas.



The approach advocated here is to produce another model theory whose

logical implication relation is weakened in such a way that the program

is a sound and complete inference engine with respect to it. Many peo-

ple initially find this approach quite odd. They are accustomed to

thinking of a model theory as specifying what can be concluded validly

from what—in some sense, as a competence theory of inference. I sug-

gest that those who are comfortable with this viewpoint consider the

weaker model theory as a performance theory of inference. Other people

are accustomed to thinking of a model theory as a way of assigning mean-

ing to symbols and are skeptical of producing a new meaning assignment.

But I am not suggesting that the original model theory be discarded; on

the contrary, it is still a valuable device in the study of meaning.

The new model theory can be thought to provide an additional meaning

assignment. If the program is working under this alternative meaning

then it is a complete inference engine. Hence, the symbols mean one

thing to us and something different to the program. According to our

theory of meaning the program is incomplete but according to its weaker

theory of meaning it is complete.

How can these new, weaker model theories be produced and what is their

relationship to the unweakened model theory? To answer the question

consider a model theory as laying down a set of constraints on what con-

stitutes a model. Of all (mathematical) objects, only those that

satisfy the constraints qualify as models. A model theory also associ-

ates with each model a truth assignment, a total function from sentences

to their truth values. Hence, a model theory constrains the range of

truth assignments that can be generated. In a standard propositional

logic, for example, these constraints ensure that any truth assignment

that assigns two sentences true, also assigns their conjunction true.

The logical implication relation associated with a model theory is a

product, solely of the range of truth assignments that the model theory

generates. Relaxing the constraints produces a new model theory, one

that may generate additional truth assignments. No matter how the
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constraints are relaxed, the new model theory must have a weaker logical

implication relation than the original. That is, if i == and j=2 are

logical implication relations and j=2 is obtained by relaxing the mode]

theory for |=1, then alpha ]=2 beta implies alpha |=1 beta. To see

this, observe that a truth assignment can serve only as a counterexample

to a claim that one sentence logically implies another; hence if none of

the truth assignments from the relaxed model theory are counterexamples

then certainly none from the original model theory are.

3. A Toy Example

Consider a program that reasons about an arbitrary equivalence relation

named "r". A user communicates with the program, making assertions and

queries, each of which specifies a sentence of the form "r(alpha,beta)",

where alpha and beta are symbols drawn from some lexicon.

This program can be specified in terms of the symbolic manipulations it

performs. There are many conceivable specifications but for the sake of

argument let us say that the program works by maintaining a collection

of disjoint sets. Initially there is a unit set for each symbol in the

lexicon. Whenever the user asserts "r(alpha,beta)" the program combines

the sets that contain alpha and beta into a single set. To respond to

the query "r(alpha,beta)" the program simply determines whether the ele-

ments alpha and beta are in the same set. There are many well-studied

algorithms for performing this set-union task (Tarjan and van Leeuwen,

1984), the best of which can process a series of n assertions and

queries in slightly greater than 0(n) time.

To the user of the system this specification is too detailed and too

concrete. He does not need to know, nor does he care, whether the pro-

gram works one way or another. At the level of abstraction with which

the user is concerned the various implementations are all identical. Of

course, for other concerns, such as implementation, there is a world of

difference between different specifications. A more abstract, non-

procedural definition of this reasoning system can be obtained by

replacing the question "What does the reasoner do?" with "Given a set of

sentences that have been asserted, what query sentences succeed?" At

this higher level of abstraction the various set-union algorithms are



all equivalent.

In response to the question of what queries succeed, it can be shown

that the program described above answers "yes" to a query if, and only

if, it legitimately can do so based on what it has been told. That is,

it answers "yes" if, and only if, the queried sentence logically follows

from the set of asserted sentences. Forgive my pedantry while I spell

out the obvious details of the model theory that gives rise to the logi-

cal implication relation for this language; these details will be valu-

able in considering how to relax a model-theoretic specification.

Each of the model theories discussed in this paper is given a name. The

one presented next is called "E". In cases where confusion could arise,

terms like "E-model" and "E-logical implication" and symbols like "|=r."

are used to indicate which model theory is under consideration.

An E-model is a pair <D,A> where D is a non-empty set of individuals

called the domain and A is a function that maps every symbol in the

lexicon to an element of D and maps r to a binary relation over D such

that:

(1) A(r) is reflexive,

(2) A(r) is symmetric, and

(3) A(r) is transitive.

The truth assignment associated with <D,A> is the function that takes

each sentence of the form r(alpha,beta) to True if the relation A(r)

holds between A(alpha) and A(beta), and to False otherwise. These truth

assignments can then be used in the usual fashion to define the notions

of E-satisflability, E-validity, and E-logical implication for this

language.

This model theory serves two purposes in analyzing the program. First,

it provides a rigorous semantics for the language that the program mani-

pulates and in doing so defines logical implication for the language.

Second, it is used in specifying what the program computes by stipulat-

ing that it responds "yes" if, and only if, the queried sentence E-

logically follows from the asserted sentences. In the case of this pro-
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these two uses of a model theory as we turn our attention to a reasoning

program that is not complete.

Suppose that for some reason we were not happy with a program that

required slightly greater than 0(n) time to process a series of n asser-

tions and queries. (I told you this was a toy example!) Furthermore,

suppose that we were willing to replace the set-union algorithm with the

following algorithm, which is much weaker but slightly faster. Whenever

"r(alpha,beta)" is asserted, the program adds the pair <alpha,beta> to

an associative store. The program responds "yes" to the query

"r(alpha,beta)" if, and only if, alpha and beta are identical or the

associative store contains either <alpha,beta> or <beta,alpha>.

This program is incomplete with respect to E. For example, if only

r(a,b) and r(b,c) have been asserted, the query r(a,c) will not result

in "yes" even though the queried sentence E-logically follows from the

two asserted sentences. E still gives a semantics for the language

manipulated by the program but it no longer specifies what the program

computes. However, there is a weaker model theory—call it Ew—whose

logical implication relation does specify the input/output relation of

this program. E w is identical to E except that constraint (3), which

says that A(r) must be transitive, is eliminated. With respect to E w

the program is a sound and complete inference engine—though admittedly

soundness and completeness are normally taken to be with respect, to a

model theory that specifies the meaning of the language.

Every model in E is also a model in Ew, but not vice-versa. For exam-

ple, consider the model <Di»A;1> where 0^=^(1,2,3} and A-j satisfies:

A3(a) = 1

A2(b) = 2

A3(c) = 3

A2(r) = {<1,1>,<2,2>,<3,3>,<3,2>,<2,1>,<2,3>,<3,2>)

This model respects constraints (1) and (2) but not constraint (3). The

truth assignment generated by <DltA-> is not generated by any E-model,

hence |= w is strictly weaker than |=«. Returning to the example previ-

ously cited, <D1 ,A-.> demonstrates that r(a,b) and r(b,c) do not Eco-

logically imply r(a,c).



Though this example program specification is quite simple it has illus-

trated many of the major points about the method of specifying programs

with model theory. The next section uses this method in the study of

knowledge retrieval. Since a method should be judged by the results

that can be obtained with it, the next section is not as concerned with

the method itself as with how it can contribute to the study of

retrieval.

4. Knowledge Retrieval

Artificial intelligence reasoning systems commonly employ a knowledge

base module (KB) that stores information expressed in a representation

language and provides facilities for other modules of the system to

retrieve this information. Though there has been a growing concern for

formalization in the study of knowledge representation, little has been

done to formalize the retrieval process. This section outlines an

attempt to use the proposed specification technique to remedy the situa-

tion. Successively, the four subsections that comprise this section

- show how retrieval can be viewed as a certain form of inference,

- show how this form of inference can be given a model-theoretic

specifi cation,

- present some of the properties of the specified retriever,

- and discuss a couple of extensions that could be made to the

speci fixation.

4.1. Retrieval as Inference

The retrieval problem that T have studied takes the knowledge base to be

a set of sentences of the first-order predicate calculus (FOPC). While

FOPC may be Jess expressive than many other languages that could be

used, it is expressive enough to lead to a serious retrieval problem;

most notably, logical implication is only semi-decidable.

Frisch and Allen (1982) present the case in more detail.



A query asks whether a specified closed sentence of FOPC can be

retrieved from the KB, and the retriever responds "yes" or "no." So,

for example, one could query "Can fUNCLE(JOHN,BILL)f be retrieved?" Tt

is not difficult to extend this notion of query to include FOPC sen-

tences with free variables. Such an extension enables one to ask, "What

are all the x's such that fUNCLE(x,BTLL)f can be retrieved?" However,

for purposes of this exposition it suffices to consider only the first

form of query.

A specification must determine whether a retriever responds "yes" or

"no" for any given KB and any given query. Just as one can speak of a

sentence logically following, or being provable, from a set of sen-

tences, one can speak of a queried sentence being retrievable from a set

of sentences contained in a knowledge base. Thus the task of specifying

a retriever comes down to one of specifying a retrievability relation.

I place three requirements on any retrievability relation that I study.

If kb is a set of sentences and q a single sentence of some language

whose logical implication relation is |= then any retrievability rela-

tion for that language should satisfy:

soundness: if q is retrievable from kb then kb \- q.

verbatim retrieval: if q is in kb then q is retrievable from kb.

decidabi1ity: retrievability is a decidable relation.

The first requirement demands that sentences not logically following

from the KB are not retrievable while the second demands that sentences

explicitly in the KB are retrievable. The third requirement, which

ensures that the retriever can be realized by an effective procedure

that is guaranteed to terminate, is weaker than it ideally should be~-

that the retriever could be realized by a procedure requiring only some)

small amount of computational resources.

It should come as no surprise that I specify a retrievability relation

for FOPC by identifying it with the logical implication relation of a

model theory obtained by relaxing the standard Tarskian model theory for

FOPC (Tarski, 1935). I call the Tarskian model theory "T" and the

relaxed model theory that specifies the retriever "R".

Consider how, as a retrievability relation, ;=R stands up to the above



requirements. Since |=R is obtained by relaxing constraints in the

specification of |= the soundness requirement is met, according to the

argument of Section 2. Any logical implication relation will satisfy

the second requirement, regardless of the mode] theory. Since | = is

not decidable, it is the third requirement that forces a relaxation of T

and leads to the viewpoint of knowledge retrieval as limited (i.e.,

incomplete) inference. Hence it is the undecidability of FOPC that

makes the retrieval problem interesting.

4.2. Specifying a Retriever

I have used this viewpoint of retrieval as limited inference to specify

a slightly simplified version of the knowledge retriever incorporated in

the ARGOT dialogue-participation system (Allen, Frisch and Litman,

1982). The specification is produced in stages, first by specifying a

retriever that is extremely conservative in what it infers and then by

extending it with additional forms of decidable inference such as those

dealing with taxonomic hierarchies and property inheritance (as typi-

cally done by semantic-network systems). At each stage a retrievability

relation is specified by identifying it with both a provability and a

logical implication relation. A point worth noting is that these

specifications of ARGOT's retriever were developed after the program.

Only the extremely conservative retriever is considered here, though

Section 4.4 briefly outlines how semantic-network-style taxonomic infer-

ence can be incorporated.

The strategy for ruling-out certain inferences to obtain this extremely

weak inference engine is based on the important intuition that retrieval

is more like a matching operation than a deductive operation. Stated in

terms of inference, the simple retriever satisfies the no-chaining res-

tri ction; imagining the KB and query divided into quanta called "facts,"

the simple retriever cannot chain two facts together in order to respond

affirmatively to a queried fact. In other words, a queried sentence is

retrievable only if each of its facts is retrievable from a single fact

in the KB. This intuition contrasts with the notion that retrieval

deduces the queried sentence by repeatedly combining facts together to

derive new facts.



This no-chaining restriction reduces the problem of deciding retriev

bility for arbitrary sentences to that of deciding retrievability

facts. This reduced problem can be kept simple by defining facts

such a way that they themselves are simple.

The use of the word "fact" has been deliberately vague and it will n

be made precise unti] Section 4.3. However before turning to t

specification of retrieval it is worth noting that the main connecti

in a fact is disjunction. This is a crucial point because R is deriv

by weakening only the interpretation of disjunction. Hence, a fact

given a weaker interpretation in R, eliminating chaining and thus maki

R-logical implication decidable over the set of facts. A key examp

worth bearing in mind is that the specification does not sanction a si

pie form of chaining, the disjunctive form of modus ponens:

P. ~P v Q i^R Q

It is tempting to try to produce the specification of the relaxed mod

theory by following the tactic used in Section 3 of simple textual del

tion of some constraint on what constitutes an unrelaxed model. Ho1

ever, in the case of T it is not so straightforward. E specifies thr

constraints on the relations that can be assigned to the symbol "r" a

thus prevents the atomic sentences of the language from obtaining ce

tain combinations of truth values. (Recall that all sentences in t

object language of E are atomic.) Relaxing E to obtain E w involv

deleting one of the three constraints, allowing the atomic sentences

be given additional combinations of truth values.

Unlike E, T places no constraints on the relations that a model c

assign to a relation symbol and therefore the atomic formulas of t.

language can be assigned any combination of truth values. So the str

tegy of generating additional truth assignments by giving the atom

sentences more combinations of truth values cannot be pursued in th

case. Since the truth assignments to atomic formulas cannot

4
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(1975, 1977) pursues a strategy of using 4 truth values.



increased we must consider the trutn assignments to moiecuiar rormuias.

T Is truth-functional; the truth value of a molecular formula in a model

is a function of the truth values of the formula's constituents in that

model. For example, a disjunction is true jn a T-model if, and only if,

one of its disjuncts is true in that model. In order to admit more

truth assignments while still maintaining a compositional semantics, the

truth value of a molecular formula must be a function of some other

feature of the formula's constituents. The best-known non-truth-

functional model theories are the possible-worlds model theories

(Kripke, 1963), which are commonly used for modal logics. In a PWMT

(possible-worlds model theory) one speaks of the truth value of a for-

mula in a world, and for a molecular formula this may be a function of

the truth values of the formula's constituents in other worlds. There

are many reasons for moving from a Tarskian to a possible-worlds model

theory, but the sole motivation here is that the possible-worlds frame-

work is a more expressive medium for describing a model-theory; every

truth-functional model theory can be written in a possible-worlds form

but not vice-versa.

So, the first step to reaching the ultimate target of a model theory for

specifying the retriever is to produce a PWMT—call it T'—whose models

correspond to those in T and which therefore yields precisely the Tar-

skian truth assignments. The next step is to produce R by relaxing Tf

so that it allows more models and associates non-truth-functional truth

assignments with the added models.

For pressent purposes, consider a model in a PWMT to be a 3-tuple <D,A,W>

where D—the domain—and W—the set of worlds in the model—are non-

empty sets and A is a function from a non-logical symbol and a world to

an appropriate denotation for that symbol. Because the non-logical sym-

bols may have different denotations in different worlds, there is a

truth assignment associated with each world in a model. The manner in

which such a truth assignment is derived varies from one PWMT to

another.

The current task is to define T', a PWMT that corresponds to T. Since a

T-model generates only one truth assignment, let T1 be a possible-worlds

theory in which all models contain exactly one world. Hence, the T'-

model <D,A,{w}> corresponds to the T-model <D,lambda x.A(x,w)>. In the
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obvious way, w in <D,A,{w}> can be associated with a truth assigr

the same as that associated with its corresponding T-model. I make

explicit because, as previously mentioned, it is the manner in

these assignments are generated that is to be relaxed. Specific

consider the equation that inductively defines the way Tf assigns

values to disjunctions. If V is the truth assignment associated
fit , W

world w in model m then

( 4 ) Vm,w ( a ] p h a v b e t a ) = OR(Vmw(alpha),Vm w(beta)),

where OR is the function such that

OR(True,True) = True

OR(True,False) = True

OR(False,True) = True

OR(False,False) = False

To specify R, T' is relaxed to allow models with more than one v

This enables R to construct non-truth-functional truth assignmer

defining the assignment associated with one world in terms of

associated with other worlds. In particular, R assigns True to a

junction in a world if any of its disjuncts are assigned True ir

world in the model. This modification is effected by replacing (4)

(5).

(5) V (alpha v beta) = True if for some world u in m

= False otherwise

The equation gives a formula of the form "alpha v beta" the

interpretation as a traditional PWMT would give to the modal fc

"possibly (alpha v beta)."

Notice that (4) and (5) are in full agreement on those models that

tain only a single world. Hence R still generates all the Tax

truth assignments. However, R also generates many non-truth-funct

truth assignments. As an example consider any two-world model

worlds are complementary—they disagree on the truth value assigns

every atomic formula. Every literal (an atomic formula or its negs



must be true in exactly one of the two worlds, and therefore in either

world every disjunction of literals is true, regardless of the truth of

the literals in that world. This vividly illustrates how the logic is

weakened; if one knows only that a disjunction of literals is true, one

knows nothing of the truth values of those literals.

R-models with complementary worlds play an important role in studying

the properties of this model theory. Whereas R-models with identical

worlds produce only the Tarskian truth assignments, those with comple-

mentary worlds are the most un-Tarskian in that their truth assignments

differ most from the Tarskian truth assignments. Such R-models can

demonstrate, for example, that P and ~p v Q do not R-logically imply Q.

A counterexample is produced by a world that satisfies P and falsifies Q

and is in an R-model that contains its complementary world.

4.3. Properties of the Retriever

This section examines the properties of the retrievabi1ity relation

specified by model theory R. I state these properties without proof,

concentrating instead on how they coincide with certain informal intui-

tions about retrieval.

The principal motivation for relaxing T to produce R was to obtain deci-

dability of logical implication. Yet because R still gives negation,

conjunction and quantification their standard Tarskian interpretations,

! =R remains undecidable. However, it is decidable for sentences of a

particular normal form. A universal clause is a universally quantified

disjunction of literals. An existential di sjunction is an existen-

tially quantified conjunction, each conjunct of which is a disjunction

of literals; that is it is of the form,

(E x1 x2 ...) ( L n v L 1 2 v ...) & (L21 v L 2 2 v . . . ) & . . .

where each L. . is a literal. An atomic sentence is neither a universal

clause nor an existential disjunction though a disjunction with a single

disjunct, is permitted. This seemingly-trivial insistence that every

existential disjunction and universal clause contains a disjunction has

the crucial consequence that these sentences are interpreted more weakly



by R than by T.

Property 1

There is a procedure, which given any finite set of univers

clauses—kb—and any existential disjunction—q—decides wheti

k b ! = R q .

Though this crucial property is not proved here, the remaining prope

ties mentioned in this paper are the key lemmas in its proof.

One intuition about retrieval is that it yields exact answers. I

example, "(E x) Liar(x)" is not retrievable from a KB containing sole

"Liar(Richard-Nixon) v Liar(John-Dean)" because a particular x cannot

named. So a retriever only says that an individual with a particul

property exists if it is able to name that individual. The followi

property formally states that | =R captures this intuition.

Property 2

An existential conjunction,

(E x^ x2 ...) ( L n v L 1 2 v ...) & (L21 v L 2 2 v . . . ) & . . .

is R-logically implied by a set of universal clauses, kb, if, e

only if, there is a substitution, 9, of ground terms for the var

ables x1,x2>... such that

k b '^R *L11 v L12 v 9''^Q a n d

kb j=R (L21 v L 2 2 v . . . ) e and ...

Now consider the problem of retrieving a ground clause--a disjunction

variable-free literals—from a set of universal clauses.

Property 3

Let kb be a set of universal clauses and q be a ground claus

Then kb |= q if, and only if, b |=R q for some b that is a groi

instance of a clause in kb.

This is a no-chaining property where a fact is formalized as being

ground clause. Notice that R-logical implication is restricted not ji



to a single universal clause but to a single instance or the clause.

Phis means that

Vx ~N(x) v N(s(x)) |^R ~N(0) v N(s(s(O)))

because the query T-logically follows only from two instances of the

clause in the KB:

~N(0) v N(s(0)), ~N(s(0)) v N(s(s(O))) | =T ~N(0) v N(s(s(O)))

Such an inference can be seen as chaining a sentence with itself, and

hence our intuitions say that it should not be performed by the retri-

ever. Property 3 confirms that the specified retriever captures this

intuition.

Fhere are many conceivable retrievers that, like this retriever, satisfy

the no-chaining restriction for the definition of "fact" used here.

However, among these retrievers the one specified here occupies a

privileged position by virtue of Property 4.

Property 4

For any two ground clauses, kb and q, kb j= q if, and on.ly if,

kb !=T q.

Recall (from the soundness requirement of Section 4.1) that for a rela-

tion to be considered a retrievability relation it must be a subset of

\-rn. Therefore, with respect to the present definition of "fact," I =r»

is the strongest retrievability relation satisfying the no-chaining res-

triction !

4.4. Extensions

I expect that having a model-theoretic specification will result in big

payoffs when the capabilities of the simple retriever are extended.

Consider extending the retriever to do a specific kind of finite

chaining—for example, reasoning about inheritance and taxonomies as is

typically done by semantic-networks. FOPC can be enhanced with nota-

tional devices for expressing information about taxonomies and the



Tarskian model theory can also be extended to deal with these syr

additions. Our clear and simple intuitions about taxonomies mal<

an easy task. Since the taxonomic extensions are decidable ar

retriever is to reason fully about them, these same extensions

made to R in order to obtain a retrievability relation for the er

language.

Though the difficult task of finding a proof theory or a decisior

cedure still remains, imagine the difficulty of doing so withe

guidance of a model theory. How would one know when all nee

inferences were captured, or if the captured ones were reasonab]

course one's intuitions could provide guidance, but not to the

provided by a model theory constructed from the same intuitions.

In another application, R could be extended to form a logic of

Levesque (1984) calls "explicit belief"—those beliefs that an

can readily access (i.e., retrieve). R provides a useful foundat

which to build since it accounts for certain crucial facts: an e

explicit, beliefs may be T-inconsistent, an agent cannot expl

believe most of the T-consequences of his explicit beliefs, and ar

can explicitly believe that P but not that. Q, even if P and Q e

logically equivalent and he explicitly believes so.

However, R needs to be extended in order to account for certain £

of explicit belief not present in retrieval. For example, while i

fices to specify a retriever by associating its retrievability re

with the logic's meta-theoretic logical-implication relation,

are many reasons why it is necessary to associate a belief re

with a relation in the logic itself, not the least of which i

beliefs can embed other beliefs.

5. Related Work

There is one line of research that has resulted in a logic so clos

that I discuss it here at the exclusion of all else. The comparj

brief, though a detailed one certainly is called for and easily

merit an entire paper.



Belnap (1975; 1977) presents a four-valued relevance logic that provides

a weakened interpretation of propositional logic. Levesque (1984) in

turn uses this logic as the foundation of a modal explicit-belief opera-

tor in a propositional logic. With the retrieval problem in mind,

Patel-Schneider (1985) extends Belnap's logic with quantification,

resulting in a system with a t-entailment relation strikingly similar to

|=p. Though not explicitly discussed, each of these systems provides a

standard logical system with an alternative, relaxed model theory and in

each case the motivation is to obtain a weak logical-implication rela-

tion (called "entailment" in these systems) with certain properties.

Propositional sentences in Patel-Schneider's system and those embedded

in Levesque's implicit-belief operator have the same interpretation as

in the underlying system of Belnap. Hence, I only shall compare propo-

sitional interpretations in R with those in Belnap's four-valued logic,

which henceforth is called simply "B". Whereas the elimination of

chaining motivated the development of R, the elimination of incon-

sistency motivated the development of B. To compare R and B directly,

one can consider the four values that a B-model can assign to a sentence

as corresponding to the four ways that an R-model can classify a sen-

tence with respect to a designated world, w: True in w and True in no

other world, True in w and True in some other world, False in w and True

in no other world, and False in w and True in some other world. It then

becomes clear that the two logics weaken the logical connectives of FOPC

differently. R weakens the interpretation of disjunction so that a dis-

junction of false formulae may be either true or false. B weakens the

interpretation of negation so that the truth of a sentence is not

related to that of its negation—intuitively what one would expect from

a logic designed to eliminate inconsistency.

The remarkable result is that, like R, B does not sanction the chaining

of facts as defined here. However, B is weaker than R in that no sen-

tence is B-valid. Whereas B denies the existence of validity, R carries

the no-chaining intuition through to its definition: a normal form sen-

tence is R-valid if, and only if, each of its facts is valid, every KB.

Specifically, the relationship between the two systems is that for sen-

tences in prenex conjunctive normal form



kb |=R q if, and onJy if, q is R-valid orR
Lrh 1 =

B
kb |=n q

6. Conclusion

Different specifications of a program provide different viewpoints of

what a program does for a user. When the equivalence reasoner is

queried "r(a,b)M or when the retriever is queried "UNCLE(JOHN,RILL),"

exactly what is being asked? According to a proof-theoretic specifica-

tion a query asks about the existence of a proof, while according to a

computational specification it asks for a certain computation to be per-

formed. Yet someone making such a query, or writing a program to do so,

is likely to think not that his query makes either of these requests but

rather that it asks about a state of affairs in the intended interpreta-

tion. The model theory provides this view; it says that if all the

sentences in the KB are true in the intended interpretation and the

retriever responds "yes" to "UNCLE(JOHN,BILL)" then John is Bill's

uncle. So according to the model-theoretic specification, the query is

about the universe being represented in the KB, not about proofs or com-

putations .

Mode]-theoretic specifications of AT programs are useful for several

reasons. They are more abstract than LISP-code specifications yet for-

mal enough to prove that a specified program has certain properties,

such as those discussed in Section 4.3. It is hard to imagine a form of

specification that moves further in the direction of saying what is com-

puted without saying how. Perhaps this accounts for why the retrieval

specification presented here is extremely short, though an efficient

implementation would require a program of moderate size. In addition to

being technically valuable, a model theory can be a useful heuristic

tool, serving to sharpen and extend our intuitions. Though a proof-

theoretic specification also can possess some of these properties,

This statement holds regardless of whether the intended interpreta-

tion is in model theory R or T.



ideally one would like to have both forms of specification available;

the more-appropriate specification can then be chosen for any given

task.

This paper gives, I hope, strong evidence that a model-theoretic specif-

ication of a program is a valuable tool. Furthermore, it suggests how

these specifications may be produced for incomplete-reasoning programs.

Yet the utility of a methodology must be demonstrated by more than two

examples, however persuasive they may be. The important question that

remains unanswered is "What is the range of AI programs that can be

specified naturally with a model theory?" I stress the word "naturally"

because a cumbersome model-theoretic specification will not provide the

benefits discussed above. To take an extreme case, it is easy to ima-

gine that any syntactic specification could be transformed into a

model-theoretic specification simply by bringing the syntactic objects

into the model theory, but hard to imagine that anything would be gained

by such contortions.

During a period when the retrieval specification used mechanisms other

than possible worlds, I often felt that the specification was stretching

the methodology to its limits, that slight extensions to the retriever

would introduce immense complexity to the specification. My pessimism

subsided with the introduction of possible worlds, and the potential for

extension is now one of the strong points of the retrieval specifica-

tion. The use of possible worlds is just one element in a large body of

well-studied model-theoretic devices and logical implication is just one

of a range of model-theoretic relations, which potentially could be used

in the construction of specifications. On this rests the hope of using

the proposed methodology to specify a wide range of programs. Further

attempts to develop and use the technique are needed to see how far it

can be extended before breaking down.
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