
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Selective Review Of Artificial Intelligence

Andrew Law

Commissioned by British Telecommunications
Research Laboratories

Martlesham Heath
Ipswich
IP5 7RE

Cognitive Science Research Paper

Serial No. CSRP 078.

Cognitive Studies Programme
The University of Sussex

Brighton
BN1 9QN

O'lf

Overview Introduction

1. Overview

1.1. Introduction

This report provides a selective review of Artificial Intelligence (AI) research.
Its purpose is to indicate some of the major areas of research, selected applications,
issues to be resolved, and possible directions for future AI research.

The sources of information used in this document include the proceedings of
recent AI conferences (ECAI '86. AAAI f86. Expert Systems '85), articles from
relevant journals (e.g., Artificial Intelligence, Artificial Intelligence Review), and
discussions with those involved in AI research at Sussex.

Whilst am attempt has been made to cover the major areas of AI research, it
has not been possible to cover the whole field. Notable omissions from the report
include reviews of research in machine learning and robotics.

The two major sections of the document are Section 2: Applications and Section
3: Applications Infra-Structure. There is no section on general AI theory or
techniques (e.g., knowledge representation, planning, etc.). Instead, developments in
these areas are discussed with respect to their possible applications. Section 2
contains a discussion of expert systems, natural language, vision, and speech
processing. Section 3 contains discussions of the hardware, AI software development
environments and knowledge elicitation techniques that are, or could be used in
building the applications discussed in Section 2. It is expected that the reader has
some general knowledge of AI. However detailed knowledge of the areas discussed is
unnecessary.

30th September 1986

UNIVERSITY LIBRARIES

Overview Summary 2

1.2. Summary
This section provides a summary of the report. The section headings refer to

the section headings of the rest of the report.

Section 2. Applications

2.1. Expert Systems

2.1.1. Applications
Expert systems are now being used in a variety of domains (e.g.. engineering,

medicine, education, mathematics, geology etc.,) and for a variety of purposes (e.g.,
diagnosis, monitoring, quality control, design etc.). The expert systems product and
services in North America is presently worth $280 million and it has been suggested
that this will rise to $1.9 billion by 1992.

2.1.2. Existing Problems and Future Developments
There are various problems with existing expert systems; they do not learn

from experience; they often do not generate very illuminating explanations; they
allow only very restricted forms of user interaction; and their performance does not
degrade gracefully on the peripheries of the problem solving territory. Many existing
expert systems reason with uncertain data or rules of inference. The current means
of reasoning under uncertainty usually involves the use of some probability based
inference technique, e.g., Bayes* theory. However, a major problem is that there are
various problems with using this technique.

Future developments in expert system technology can be seen as, in part,
attempts to reduce the need to represent uncertainty explicitly in expert systems.
These developmentwill also contribute to the solution of some of the other problems
mentioned above. Three of these developments are considered:
(a) Blackboard architectures offer the opportunity of representing various levels or

types of knowledge independently. They also allow these different knowledge
bases to make independent contributions to the reasoning process. These system
will be used more widely in the future since they allow us to represent far
more complex reasoning processes than traditional architectures allow.

(b) Mixed-Initiative expert systems allow the user and system to interact in a more
flexible manner e.g., they are more flexible about who can take the initiative in
the problem solving process.

It is expected that both of these developments in expert system architecture will
have more commercial realisations in the next five to ten years.
(c) Deep representation is at present an ill-defined area of research. However, a

common goal seems to be to produce models of the problem domain. It is
hoped that these systems will improve the flexibility of expert systems, increase
the complexity of the tasks expert systems can perform, improve their
explanatory abilities and reduce the need to reason under uncertainty.
The major problems with deep representation systems concern the difficulty of

producing adequate conceptualisations of the problem domain (e.g., spatial and
temporal representations) and the problem of traversing large search spaces that are
produced.

In this section there is also a discussion of the use of many sorted logics and
the contribution they could make to the solution of the search space problem.

30th September 1986

Orerriew Summary 3

Where there are already adequate models/conceptualisations of a domain (e.g.,
electronic circuitry, simple mechanical devices and medicine) deep representation
techniques are likely to have some impact. However the problem of conceptualisation
will remain a major impasse in the application of deep representation systems in
many other domains.

2.2. Natural Language Processing

2.2.1. Applications
Three main applications for natual language processing (NLP) systems are

considered; machine translation, text summarisation and human-machine
communication.

Reasonable, but not perfect performance can be achieved with existing machine-
translation techniques. Pre- and post-processing can contribute to improving the
performance of machine translation systems, to the extent that a four fold
improvement (over unaided translation) in productivity can be achieved. A possible
application for machine translation would be in translating electronic mail between
countries.

Another application of NLP is in text summarisation. A prototype system is
reported that summarises news and weather items. It can also translate between
different languages. However, the author knows of no commercial text summarisation
systems.

The final area of NLP application considered is at the human-computer
interface. Several tools are now commercially available for building natural language
interfaces to databases. However, in this section it is pointed out that NL
communication will not be appropriate for all forms of human-computer interaction
and that other forms of communication are available. The need and use of NLP
techniques in interface design will depend as much on the success of the
development of other forms of communication (e.g., pointing devices, high resolution
graphics etc.). as on the solution to existing problems in NLP techniques.

2.2.2. Exisiting Problems and Future DeTelopments
The major problem in NLP seems to involve the disambiguation of linguistic

terms.
Semantic parsers will help in some disambiguation tasks. Tools for building

semantic parsers are now becoming available. However the resulting interfaces are
likely to be very domain-dependent, e.g.. we might envisage a system that can deal
with enquiries about train times, but not also about plane times and the weather.

It is expected that work on models of extended discourse will be needed to
solve some problems of disambiguation and will contribute to making extended
interaction with computers far more natural. Research on language acquisition may
contribute important information about the nature of the knowledge involved in
discourse and the pragmatics of language use. However it is unlikely that we will
see many practical NLP systems based on models of extened discourse or the
pragmatics of language use in the next 5-10 years.

Parallelism is unlikely to have a radical affect on practical NLP systems in the
next ten years. It may have a limited effect in terms of the production of more
efficient NLP systems.

30th September 1986

Overview Summary

23. Vision

23.1* Applications
There are already commercial applications for image processing techniques, for

example in optical character recognition, remote sensing and factory automation. The
developments in hardware, particularly in VLSI design and array processors, mean
that we are likely to see more efficient commercial low-level vision packages for
these sorts of task.

23.2, Existing Problems and Future Developments
Low-level vision research seems to be an area of relative consensus and

practical success. However, there is considerably more work to be done in higher-
level processing, particularly in the areas of determination of surface properties,
colour vision, motion perception, and the perception or planning of movements
through cluttered space.

A promising area of research is the investigation of situation specific model
based techniques.

Considering the problems in high-level processing, it is likely that most
practical vision systems used in robotics, quality control etc. in the next five to ten
years will rely heavily on additional sources of information (e.g.. lasar guidance)
and "environmental support" such as limiting the number of possible objects in their
field of operation or providing "clues" like deep shadows etc.

2A. Speech

2.4.1. Applications
Certain tasks will require speech processing (e.g., the processing of speech

passing through telecommunications networks), and in situations where people can
not use their hands to type (e.g.. in flying aircraft).

2.4.2. Existing Problems and Future Developments
The major problem with many existing speech processing systems is that they

are limited in the form and quantity of input (they only deal with limited
vocabularies, they often can not deal adequately with different voice types etc). It is
likely that future speech processing system will utilise more sophisticated versions of
the heterarchical processing method found in HEARSAY-H. It seems unlikely that we
will produce connected speech understanding systems of human levels of competence
in the next ten years.

Section 3. Applications Infra-Structure

3.1. Hardware
3.1.2. Future Developments

Two main approaches are considered: the "evolutionary11 approach and the
"revolutionary11 approach.

Evolutionary

It is likely that advances in VLSI design will make the most significant
contributions to increases in efficiency of general purpose software in the next five
years. It is possible that the work on "abstract instruction sets" for functional

30th September 1986

Overview Summary

languages will also have some effect.

Revolutionary
In this section several "revolutionary" approaches are discussed. It seems that

parallelism will affect only a limited number of tasks (e.g., low level speech and
vision) in the next five years. It is likely that further developments in VLSI design
and array processors will contribute in a quantitative way to these tasks. It is
possible that limited parallelism will be used in general purpose programming.

While there seems to be considerable theoretical interest in connect ion ism, the
possible consequences of the research are still unclear. Very little practical,
applicable connectionist software is likely to appear in the next five years.

3.2. AI Languages and Environments
In this section there is a discussion of two issues: Developments that will aid

in the increase of the production of AI based software and developments that will
make software produced in AI development environments more relevant to the tasks
at hand.

3.2.1. Increasing Productivity
It is possible that further developments of high level AI languages and interface

devices will mean that more people can be involved in the production of AI
software. Systems such as the Programmer's Apprentice are also likely to increase
productivity significantly. A system is descibed, based on the Programmer's
Apprentice, and used in telecommunications software development in Italy.

3*2*2* Increasing Relevance
Further work will be done on identifying the tasks to which the various high

level AI programming languages are best suited.
Popular forms of these languages will be provided on specialised hardware,

perhaps with limited parallelism.
It is also likely that we will see more multi-language environments, with

cleaner, more efficient implementations. With further improvements in the memories
of small target user machines, it may be possible to directly port programs
developed in large software environments (running on large expensive machines) onto
the smaller machines. Various ways of achieving this are discussed.

33* Knowledge Elicitation
As expert systems become more complex, and the demands for further

sophistication increase, it is likely that existing knowledge elicitation techniques will
be inadequate. There will be increasing pressure for the development of new
knowledge elicitation techniques.

30th September 1986

Applications Expert Systems

2. Applications

2.1. Expert Systems
An expert system embodies organised knowledge about some narrow domain.

This knowledge enables it to perform some or all of the tasks in this domain, in a
manner which we would consider requires "expertise" if performed by a human. The
concept of the expert system arose in the '70s when AI abandoned, or postponed,
attempts to develop generally intelligent machines, and turned instead to the
development of systems that could solve narrowly focussed real world problems.

There are three fundamental components of a simple, classical expert system.
The first component is the knowledge base. This contains symbolic representations of
an expert's rules of judgement. These usually take the form of the "IF (some
condition) THEN (some action or assertion)". The second component is the inference
engine. This applies the rules from the knowledge base to the data to develop some
conclusion(s). The final component is the interface. This is the channel through
which information for and from the expert system passes. For example, it could be
a natural language interface, allowing users to specify questions in natural language
and, possibly, to receive natural language based explanations. In other expert systems
it could simply process the outputs of some set of input devices (e.g., a temperature
gauge) and drive some output devices or give advice to the user.

More sophisticated expert systems contain additional components. For example,
schedulers or planners may organise the order in which rules are applied. Other
components could include "justifiers" for providing justification of conclusions, and
knowledge acquisition devices, which either automatically develop new rules when
necessary, or which support the user in adding new rules or amending old ones.

2*1.1. Applications
Why do we need expert systems? Humans experts are scarce, and therefore

expensive, often over-worked, mortal and fallible. However, computational systems
can embody aspects of their expertise and can aid or replace them, or communicate
their expertise to learners. Hence, expert system technology may, in principle,
preserve expertise, make expertise cheaper, and make human experts more effective.
While expert systems have mainly grown out of university research departments and
R&D departments in large multinational corporations, they are now being used in a
wide range of domains (e.g., education, medicine, engineering, science, mathematics,
geology, knowledge engineering, etc.) and by many different institutions. Expert
systems can be implemented to perform one or more of a range of functions,
including fault diagnosis and interpretation, monitoring, prediction and control, design
planning, and component compilation.

2.1.2. Existing Problems and Future Derelopments
Investment in expert systems technology in North America is estimated to be

$400 million in 1986, with a product and services market worth $280 million in
1986 — this is expected to rise to $1.9 billion in the next six years (Hewett, 1986).
Therefore, the expert systems market appears relatively healthy, and the application
of expert systems technology seems to have been successful in many areas.

However, the extent to which we will see continued investment will depend, in
part, on how we can improve the performance of expert systems by increasing their
efficiency and accuracy, by extending their range of applications, and on the ease
with which they can be created.

30th September 1986

Applications Expert Systems

In this section there is a discussion of some of the limitations of existing expert
system technology and ways of overcoming them. Four main areas of development
are considered: techniques for reasoning under uncertainty, the development of
blackboard architectures, mixed initiative expert systems and the development of
deep representation systems. These developments are all primarily concerned with
extending the range of applications of expert systems and in improving their problem
solving abilities. However, it is shown that development in some of these areas also
relates to improving explanatory facilities, and to introducing learning abilities to
expert systems.

Other sections of this report discuss other important developments that may
contribute to the survival or expansion of the expert systems market. In Section 3.2
there is a disussion of the tools that are available for expert system development,
and in Section 3.3 there is a discussion of the problems of knowledge elicitation (the
process of eliciting knowledge from experts in order to represent it in expert
systems).

There are three main functions which, ideally, we should want an expert
system to perform:
• To solve all problems in the domain.
• To present, and (when required) explain the result in an "acceptable11 manner.
• To learn from experience, e.g., to restructure knowledge or amend its knowledge

base.
These are all functions which human experts should be able to perform,

however the performance of existing expert systems in each of these areas is often
disappointing — when compared to the human.

At present most expert systems do not learn from "experience", and there is
growing concern about the need for better explanatory capabilities.

The most important factor is that expert systems often cannot solve the
problems with which they are presented. For example, a common criticism of expert
systems is that, unlike human experts, they do not "degrade gracefully". As human
experts approach the "boundaries" of their knowledge, they gradually become less
proficient. That is, as human experts become uncertain about a domain, their
performance degrades gracefully rather than precipitously, like expert systems (and
many other computer programs). This means that expert systems are not very
robust. A possible reason for this is that they cannot call on the sources of
information or processes that a human might in these circumstances (common sense,
first principles, analogies, etc.).

(a) Reasoning under uncertainty
Solutions to certain tasks involve sources of information that are "uncertain" for

various different reasons. For example the data source may be noisy, ambiguous,
imprecise or incomplete, the object world may be unpredictable or the rules of
inference may be uncertain (the nature and the importance of the distinctions in
forms of uncertainty are discussed below).

It has been argued that the use of classical logic alone is inadequate when
reasoning under uncertainty, as the reasoning process operates with truth values
which are different from TRUE and FALSE (e.g., Mamdani et al., 1985) This has
led to the development of other reasoning and representational formalisms: e.g.,
modal, fuzzy or multivalued logics. Some of these techniques have been used in
practical expert systems (e.g., MYCIN, Shortliffe, 1976; PROSPECTOR, Duda et al.,
1978).

30th September 1986

Applications Expert Systems 8

Mamdani et al., (1985) point out that all these systems use similar techniques
and can be classed together as "variations on the Bayseian inference theme*1. In these
systems the degree of uncertainty is usually represented by a numerical measure.
The value is propagated through the inference chain. In the case of numerical
representations, the numbers are often interpreted as a probability, and the inference
step is based on Bayes' theory (although there are other techniques, see below).

However, there has been some dissatisfaction with the use of these techniques.
Some objections concern theoretical issues, others are more pragmatic objections.

Theoretical Objections
(i) The justification of numerical computations by appeal to techniques such as

Bayesian inference is theoreticaly invalid. This is because there are often
dependencies between the rules — this is a violation of the assumption of
conditional independence found in Bayes* theory.

(ii) Various sources of uncertainty exist, but they have been confused and
represented as a single source in the systems developed.
These two reasons may not be considered all that important if our only

concern is performance, and if we are satisfied with the performance of existing
systems. However, there are also many pragmatic reasons for objecting to current
techniques.

Pragmatic Objections
(i) Development process — The numerical information (e.g., certainty factors

attached to rules or data) is often "elicited11 through the process of iterative
development. That is, there is a cycle of performance assessment and subsequent
hand "tuning" of certainty factors. In the development of large systems this can
be a laborious process.

(ii) Computational demand — It is often difficult to apply the Bayesian inference
rule at each step of the inference chain. This is because not only the prior
probabilities but also the joint probabilities are required to compute the
probability of the hypothesis from the evidence. This requires an enormous
amount of data and computation (often leading to ad hoc, piecemeal solutions
bringing about the theoretical objection mentioned in (i)).

(iii) Modularity — Due to the dependencies between rules it is often difficult to add
new rules without them affecting the certainty factors of other rules.

(iv) Generality of applications — The systems produced are often very "local*1 in
their potential for application. The result of the tuning process is often
appropriate for only a limited domain. The resulting systems often have to be
significantly altered in order for them to be applied in new domains.

(v) Intelligibility — All inference techniques require that the value of each
proposition has a unique interpretation (TRUE and FALSE do have unique
interpretations), unfortunately this is often not the case with numerical values.
Also, and related to the previous point, the explanations produced by these
systems have been considered "unnatural", or at least unhelpful. This means
that the operations of the system are difficult to understand, check and debug.
Before we can identify ways of overcoming the problems of reasoning under

uncertainty, it is necessary to examine the types of sources of uncertainty. Once
this is done it is possible to identify what can be improved and how. A first
attempt at identifying some important sources of uncertainty and techniques for
overcoming the problems are discussed below (however this list should not be

30th September 1986

Applications Expert Systems

considered as exhaustive. For a more comprehensive review of sources of uncertainty
see Cohen, 1986 and Reichgelt & van Harmelen, 1985). Almost all the techniques
discussed here concern how to reduce uncertainty, not how to develop better
techniques for reasoning under it.

Sources of Uncertainty

(i) Uncertainty in the object world
Uncertainty may arise because the object world is intrinsically unpredictable

(e.g., in the areas of quantum mechanics or thermodynamics). There does not seem
to be any way of avoiding inference under uncertainty in these circumstances.

(ii) Uncertainty in the fidelity of the input to expert systems
There are two main sources for input to expert systems: input devices (for

example temperature guages used in monitoring systems), and users, who provide the
data about which the system has to reason (for example a set of symptoms).

Uncertainty may be introduced into the reasoning process because the
instruments used to guage the object world are unsatisfactory. They may be too
"coarse", they may have limitations in the range of their sensing capabilities or they
may be unreliable. This may mean that they can not disambiguate important
features, or it may mean that certain information is missing.

Production of better input devices (e.g.. through making them more reliable,
increasing their fidelity, increasing their range) may improve the performance of
reasoning systems by decreasing the degree of uncertainty.

It may also be possible to improve performance by knowledge based post-
processing of the outputs of the input devices. An example of this sort of technique
is the partial use of top-down processing sometimes found in speech, NLP and vision
processing systems (see Sections 2.2, 2.3, 2.4). This sort of technique allows the
system to clarify or disambiguate the outputs of low level processing (even the
outputs of the input devices) through the use of higher-level knowledge.

When dealing with a "noisy" object world (e.g., as in speech processing), it is
also possible to limit or change the world in which the system will operate. For
example, in speech processing the domains in which the systems work need to be
restricted if we want to produce optimal performance, (e.g., talk slowly, in
monotone, only use the words specified in the vocabulary X etc.)

Finally there is the case where there is missing information. This may be due
to the inadequate nature of the input devices or because the user has not provided
the appropriate data.

There seem to be four main approaches to dealing with the problem of missing
data: First, it is possible to use alternative sources of information which provide
supporting evidence (for example see the discussion below on blackboard
architectures). Second, it may be that the user has not specified all the information
which is required or has not specified it clearly enough. In this case it is necessary
for the system to recognise that the information is inappropriate and to ask the user
to provide the appropriate information, perhaps also giving advice about how to get
this information. There is a more detailed discussion of these sorts of mixed
initiative system below. The third approach involves the use of intelligent planning.
As Cohen (1986) points out. uncertainty is often due to the timing of the provision
of evidence, and therefore it can be minimized by ordering actions so that the
timing of the presentation of evidence is most facilitative. He gives the example of

30th September 1986

Applications Expert Systems 10

buying a box which is the correct size for a birthday present. If the box is bought
first, then certain information is missing in deciding the size of the box. It makes
much more sense to buy the present before the box so that one can be certain that
it will be the right size.

The fourth approach involves the development of systems that can reason under
incomplete information, for example, by making assumptions and being able to refine
their reasoning if those assumptions are confirmed or denied at a later point. These
systems, while they reason under uncertainty, reason about it. rather than with it.
Systems employing non-monotonic and default logics allow for this sort of
inferential process. In these systems assumptions are made which may have to be
revised in the light of new information. This means that they have to maintain
information about the source of the uncertainty.

One of the first formulations of a non-monotonic logic is given by McDermott
& Doyle (1982). and the best known practical system based in non-monotonic logic
is Doyle's Truth Maintenance System (TMS) (Doyle. 1979). There is an extensive
mathematical (e.g.. Hughes. 1972) and philosophical (e.g.. Bradley & Swartz 1979)
literature on these logics and many alternative formulations of non-monotonic logics
have been developed (e.g.. see Gabbay. 1985). However few expert systems have
been built which use TMS systems (an exception is the EXTASE system, see Worden
et al.. 1986).

It is expected that TMS systems will become more refined over the next five
years and will be used in commercial expert systems. It is also possible that TMS
packages will become available in expert system development environments in the
next five years.

(iii) Uncertainty in the rales of inference

Uncertainty may arise in the rules of inference, not because they faithfully
reflect the unpredictable character of the environment (as in case (0) but for three
other reasons: First, the uncertainty represented in the rules may reflect our
uncertainty about the validity of the applicability of a rule generally or the
applicability of a rule in a particular situation — that is. we are unable to produce
an adequate theory. Second, we may need to produce systems that reason quickly.
Although we may have an adequate theory, in order to produce practical systems.
we may need to couch that theory in terms of more general (and less certain) rules
of thumb in order to decrease the search space and so increase the speed of
inference. Finally, it may be that we have a "good theory*, but we do not have the
appropriate expert system architecures or representational formalisms to implement it.
These three reasons have often lead to expert systems operating with (uncertain)
rules of thumb or heuristics.

If uncertainty does have to be introduced into the rules of inference, either
because we can not produce an adequate theory, because it would be impractical to
adequately implement the theory, or because the object world is intrinsically
unpredictable, then there are alternatives to the use of the Bayesian method. Other
methods include the use of "fuzzy" logic (Zadeh. 1983). Dempster-Shafer theory
(Shafer, 1976) and certainty factors (Shortliffe & Buchanan. 1975). However, it is
unclear whether these avoid the problems mentioned above. Also Fox (1984) has
suggested that uncertainty should be represented (and presented) qualitatively with
explicit semantics rather than as numbers representing probabilities. He suggests that
this would make the systems operations more intelligible. He has produced a
hierarchy of belief terms (e.g.. "certain", "likely", "unlikely) based on a subset of the
English vocabulary. In the inference process these can be combined according to a

30th September 1986

Applications Expert Systems 11

set of rules. He suggests that this will contribute to overcoming the problems of
intelligibility, as there will be no need to interpret the meaning of a number. The
meaning of the linguistic term is presumably regarded as transparent and more
natural.

However it is unclear whether this system would address any of the other
problems with Bayesian techniques mentioned above (e.g., computational demand,
laborious development process, violation of the assumption of conditional
independence). Indeed, it is questionable whether users, knowledge engineers or
experts would produce common interpretations of the qualitative values of
propositions such as "possible", "likely", "unlikely". Thus, it is questionable whether
the problem of intelligibility would be solved by this technique.

The last three developments discussed here involve attempts at producing
architectures, techniques and representational formalisms that should allow us to
implement more complex and adequate theories.

(b) Blackboard Architectures
Traditional expert systems (including those that reason under uncertainty using

numerical inferencing methods) usually have a common architecture: a single
knowledge base and a single inference engine, although each of these may be very
different in each implementation.

However, more recently, new architectures have been suggested. Probably the
best known example is the blackboard architecture. In this sort of architecture more
than one knowledge base is provided. The knowledge bases may differ in terms of
the representational formalism used (e.g., logic or frames), or in the domain of
information represented (knowledge about syntax or semantics) or possibly in the
inference strategy that is used. Each knowledge base contributes to the problem
solving process by presenting its hypotheses on a "blackboard", and by reading
information off it.

This sort of architecture was developed in speech understanding where it was
recognised that many sources of information were required to solve the problems
(e.g.. HEARSAY-II; see Erman & Lesser, 1980). In these sorts of system the
knowledge bases differed mainly in terms of the "level" of information represented
(e.g.. at the "top" there was knowledge of semantics and syntax, at the bottom there
was knowledge of phonetics). However knowledge bases could be distinguished by
characteristics other than "levels". For example an expert system might contain three
knowledge bases, one concerned with knowledge about the structure of the engine,
another with the functions of its components and the third with knowledge about
its electrical components.

With multiple sources of knowledge it may not be necessary to introduce
uncertainty (and its associated problems) into the inference process. Instead it may
be possible to solve the problem by providing several sets of simple but truth
conditional rules. Each set on it's own may be unable to solve the problem, but.
through co-operation with the other sets using the blackboard, the solution can be
reached with certainty.

(i) Explanation and justification
These sorts of architecture may contribute to the production of more adequate

explanations and justifications. Multiple lines or forms of reasoning about different
aspects of the problem should provide more convincing justifications than a single
line of reasoning. Also, when asking for explanations, users could specify which
parts of the inference process they are interested in referring to the operations of

30th September 1986

Applications Expert Systems 12

the appropriate knowledge bases.

(ii) Learning and knowledge acquisition
Hayes-Roth (1984, 1985) has developed a domain independent blackboard

system capable of "learning" when supported by human expert interactions. The
human expert watches the system operate and overides any incorrect decisions. The
system then questions the experts about the reasons for interventions and modifies
the rules appropriately. This brief description of the system is based on a report by
Boyle (1985) — unfortunately the author could not acquire the original reports and
so cannot comment on the success of the system.

(c) Mixed Initiative Expert Systems
A mixed initiative expert system is a system which interacts with the human

user for advice during the problem solving process and allows flexibility in terms of
who can take the initiative (as opposed to only interacting before and after the
problem solving process). There are three main reasons why mixed-intiative expert
systems are required.

First, few experts work entirely alone in solving problems. They rely on
colleagues to give them specialised advice or alternative perspectives on problems —
especially when they become uncertain about their knowledge of a particular domain.
To some extent the development of blackboard architectures reflects this fact.
However, it is likely that for some time expert systems will not be able to work
entirely autonomously (particulary in very complex domains), they are likely to
need human help. Mixed-initiative systems should provide this facility.

Second, it is likely that if expert systems are to be professionally accepted,
they will have to take greater account of the user. As Kidd (1985) points out, users
approach tasks with their own intentions, expectations and constraints; these can
significantly affect the choice or acceptance of an appropriate remedy. She also
suggests that an important part of giving, and accepting, appropriate advice from an
expert is the negotiation involved between the expert and consulant. It is likely that
if we are to produce expert systems whose decisions are to be accepted by users in
a wide variety of domains then we need to develop expert system architectures that
allow for flexibility in terms of the ways users can interact with the systems.

Finally, as mentioned above, users sometimes do not provide appropriate
information for the expert system to operate with. Therefore an expert system may
need to be able to reconsult the user after an initial attempt at solving the problem.

A major problem, however, is that at present most expert systems are built
using knowledge of how to do the job, not of how to be an assistant (Worden et
al., 1986). It is expected that, over the next few years, greater emphasis will be
placed on attempting to understand co-operative processes, and to build expert
systems with architectures and knowledge that can support human-machine co-
operation. Some work has already been done, for example, Worden et al., (1986)
have been developing a "framework for building expert systems which can co-operate
in something of the manner we would expect a human assistant to co-operate —
accepting advice from the user when he knows best, not repeating mistakes
unnecessarily, attempting to understand reasons behind user interventions and
sometimes knowing when it is out of its depth" (p. 319).

The work of Kidd (1985) on what users want from an interaction with an
expert system, and O'Malley, Draper & Riley (1985) on constructive co-operative
interaction should be relevant to understanding some of the problems involved in
developing mixed-initiative expert systems.

30th September 1986

Applications Expert Systems 13

(d) Deep Representations

What is a deep representation? It does not seem possible to give a definitive
description of what deep representations are. Indeed a recent Alvey workshop on the
subject failed to provide a unanimous definition. The characteristics identified below
were found in three important overview articles (Cohn, 1985; Bobrow, 1984;
Brasden, 1985). However, these characetristics should not be considered as a
definitive set, but as indicating some general properties of deep representation
systems. Bobrow (1984) should be consulted for a fuller review of the
characteristics of deep representation techniques. (This edition of the journal is a
special issue on deep representation techniques and systems, and reviews of some of
the major problems and developments in deep representation.)

Cohn (1985) defines deep representation in contra-distinction to traditional
expert systems representations, which he suggests have "shallow knowledge11. They
have shallow knowledge because they contain rules which are heuristic rules of
thumb. There is often no notion of causality represented in the rules, for example,
they may simply associate a set of observed symptoms with a diagnosis. On the
other hand, deep representation techniques usually have some model or models of
the problem domain. These models are often based on causal and/or functional
descriptions. It is important to point out that there is not one deep model of a
domain but usually several. These models will differ in terms of relative "depth"
and in terms of the types of deep descriptions (structural, functional and/or causal).
For example, a deep representation of an engine might contain deep structural models
(this might specify engine capacities, stresses, dimensions, etc.) Another model might
be a functional one (specifying the function of each component). It may also require
a dynamic model of the engine (for example, this could produce desciptions of the
engine in various running states).

Why do we need deep representation? It is not suggested here that all expert
systems should be based on deep representations. However, Cohn (1985) and Brasden
(1985) both suggest that the some of the consequences of the shallow/associationist
representations of knowledge are that they are less flexible (they are restricted to
operating within a very narrow domain), they not provide useful explanations, and
they often require the system to reason under uncertainty (along with its associated
difficulties).

The reason why deep representation based systems are expected to be more
flexible is that they should reason from general, "first principles". These should be
applicable to other domains which have similar characteristics. For instance, Brasden
(1985) suggests that "the knowledge held is general, rather than specific to one
purpose. The more general, the deeper the knowledge" (p. 8). Cohn (1985) also
suggests that the lack of understanding of shallow models "tends to limit the range
and nature of the problems the system is able to solve" (p. 300).

One reason why these systems are expected to give more adequate explanations
is that, rather than listing the set of symptoms and the resulting diagnosis, deep
representation based systems can generate descriptions from the underlying causal or
functional model. It is suggested that this will be more convincing and
understandable.

Brasden (1985) also seems to suggest that the use of probabilistic inference
techniques (and the problems associated with them) has arisen from our lack of
deep representations, and that one crucial feature of deep representation systems is
that they are considered to be less probabilistic "The deeper the knowledge, the more
precisely we can define the relationship between items, and the less we need deal in
probabilities" (Basden, 1985, p. 8). It seems that this statement might apply to

30th September 1986

Applications Expert Systems 14

many areas of expert system applications (those where we fully understand the
mechanisms involved), but not all of them. For example, quantum mechanics could
be considered as a deep model of all physical processes. However probabilities
would need to be involved in representation of the behaviour of the components
because they are intrinsically indeterminate.

There are several existing systems which use "deep" representation techniques.
For example, ABEL (Patil, 1981): this is an expert consultant for acid-base
imbalances; CADUCEUS (Pople, 1982): this diagnoses internal medical problems;
CASNET (Weiss. 1978): this system diagnoses eye diseases. It should be pointed out
that expert systems with deep representations or models, may also contain more
shallow or traditional components. For example. Gallanti. et al.. (1986) describe a
diagnostic expert system that will have both deep and shallow components. It is
expected that the shallow heuristic knowledge will make the system more efficient.

However there are many problems in attempting to build and use practical deep
modelling systems. Some of these problems are reviewed here as well as
developments that might overcome them.

(i) Problems with deep representation techniques

Cohn (1985) outlines four main problems involved in producing and using
expert systems that use deep representations.

The first problem concerns conceptualisation. This is the process of analysing the
problem domain and developing a means of describing it — for instance, what are
the basic properties involved, the relationship between objects etc. For some domains,
the appropriate desciptions already exist (e.g.. descriptions of electrical ciruitry,
simple mechnical devices and medicine), these are the areas that are most likely to
be affected by developments in deep representation. However, in other areas it is far
more difficult to identify the conceptual structure of the domain. A particularly
difficult problem is the production of deep representations for time and space. Much
effort is presently being placed on developing adequate representations of these
notions. (For example, in 1986, the section on knowledge representation of the
proceedings of AAAI (Vol. l) contained 19 papers. Nearly half of them concerned
problems with representing time.) Cohen suggests that conceptualisation in general is
going to be the hardest problem in deep representation, "The only work that really
begins to address this problem ... are the concept discovery systems of Lenat (Davis
& Lenat. 1982; Lenat. 1982)" (p. 300). However, it is unlikely that these sorts of
systems will be of any practical use in the next ten years, and at present it does
not seem that there are any rigorous, non-computational methods of knowledge
elicitation/acquisition that are well suited to the domain of deep knowledge. A
review of current knowledge acquisition techniques for deep representation medical
expert systems can be found in Gotts (1984).

The second problem involves trying to ensure "high fidelity axiomatisation". A
high fidelity of axiomatisation might be measured by the closeness of its simplest
model to the intended interpretation. The problem is that a given formalisation may
have a much simpler model than that intended, and it is often difficult to identify
that simpler model.

The third and related problem is that of ensuring a consistent knowledge base.
Cohn suggests that it can be a non-trivial problem to determine whether a given set
of axioms has a model at all, "The problem is especially hard since any system with
the expressive power of first order predicate calculus (and surely we need at least
this amount of expressiveness) is only semi-decidable; there is no decision procedure
to compute whether an axiomatisation is satifiable (p. 301).

30th September 1986

Applications Expert Systems 15

Cohn suggests that systems such as TEIRESIAS (Davis, 1982) are likely to be
useful for this sort of problem. TEIRESIAS was built to help with the maintenance
of large rule bases by using notions such as rule models and type checking to check
rules for sensibleness. Also, systems such as Cunningham's model finding program
(Cunningham, 1985) are likely to be very useful for these sorts of problems.

The final problem Cohn mentions concerns the use of systems based on deep
representations. The use of such representations in complex domains is likely to
produce massive search spaces because, if expert systems are going to reason from
first principles, the inference chains will be very long. Searching these large search
spaces will be very expensive.

In the next section there is a discussion of sorted logics as a representation
language for deep reprsentation systems and how they could contribute to the
solution of some of the problems mentioned above.

(ii) Many sorted logics
What are many sorted logics? In many sorted logic the items in the object

world are divided into different sorts (e.g., objects, relationships or types of objects
and relationships). The sorts of the arguments of all the non-logical symbols in
t?rhe language and the sorts of the results of function symbols are specified. For
example we could provide the sort "integer" and produce axioms involving numerical
operators that only took integers as their arguments and only returned integers as
results. To this extent, sorted logics are very similar to typed programming
languages (such as PASCAL), and they share their problems too.

Several mechanised many sorted logics have been proposed or built (e.g., some
of the more recent work Cohn mentions includes Reiter, 1981; Walther, 1983). There
are several problems with these logics. Cohn suggests that Walther's logic is the only
one with a sound theoretical foundation. Also, a major problem is that that many
sorted logics have a restricted expressive power compared to unsorted logics. Cohn
recommends LLAMA (Cohn, 1983a, 1983b) as being particulary expressive.

What are the advantages of many sorted logics as a representation language?
The major advantage is that sortal logics can reduce the search space. Cohn argues
that there are two major reasons for this; (a) no further inference will be done on
ill-sorted formulae (e.g., where the sort of the argument of a predicate and the sort
of an input are different), (b) axiomatisation will be far smaller than with non-
sorted logics, either because fewer axioms will be required, or because the axioms
themselves are smaller. There may be fewer axioms because the axioms that would
normally be needed to explicitly express sortal information can be absorbed into the
sortal notation and the inference machinery. Taking the example given above about
numerical operators: in a non-sortal logic it would have been necessary to provide
an additional axiom representing the rule that numerical operators only take integers
as their arguments. Similarly, the axioms will be far smaller because sortal
preconditions do not have to be explicitly stated — this also makes it a convenient
notational tool.

Cohn also suggests that they will help with the fidelity problem discussed
above. This is because the structure it imposes on the axiomatisation and restrictions
imposed on the interpretations of the non-logical symbols, reduces the number of
possible models.

References

Boyle. C.D.B. (1985). Acquisition of control and domain knowledge by watching in

30th September 1986

Applications Expert Systems 16

a blackboard environment. In M. Merry (Ed.) Expert Systems '85: Proceedings
of the Fifth Technical Conference of the British Computer Society Specialist Group
on Expert Systems C.U.P: Cambridge.

Bowbrow, D.G. (1984). Qualitative reasoning about physical systems: An
introduction. Artificial Intelligence, 24, 1-5.

Bradley, R. & Swatz, S. (1979). Possible Worlds: An Introduction to logic and its
philosophy. Basil Blackwell: Oxford.

Brasden. A. (1985). What is deep knowledge? In Proceedings of the ALVEY Deep
Knowledge Workshop, No.]. University of Sussex. 10-12 July 1985.

Cohen, P.R. (1986). Numeric and symbolic reasoning in expert systems. Proceedings
of ECAI '86, Vol. I, 413-426.

Cohn, A. (1983a). Mechanising a particularly expressive many sorted logic. Ph.D.
Thesis, University of Essex.

Cohn, A. (1983b). Improving the expressiveness of many sorted logic. Proceedings of
AAAI '83.

Cohn, A. (1985). Deep knowledge representation techniques. In M. Merry (Ed.)
Expert Systems '55: Proceedings of the Fifth Technical Conference of the British
Computer Society Specialist Group on Expert Systems C.U.P: Cambridge.

Cunningham, J.C. (1985). Comprehension by model-building as a basis for an expert
system. In M. Merry (Ed.) Expert Systems '85: Proceedings of the Fifth
Technical Conference of the British Computer Society Specialist Group on Expert
Systems C.U.P: Cambridge, sp

Davis, R. (1982). Expert Systems: where are we, and where do we go from here?
AI Memo No. 665, MIT: Mass.

Davis. R. & Lenat, D. (1982). Knowledge Based Systems in Artificial Intelligence.
McGraw-Hill.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12, 231-272.

Duda. R.O.. Gaschnig, J.. Hart, P.E., Konolige, K.. Reboh, R., Barrett, P. & Slocum,
J. (1978). Development of the PROSPECTOR consultant system for mineral
exploration. Final Report, SRI Projects 5821 and 6415, SRI International, Inc.,
Menlo Park, Calif.

Erman, L.D. & Lesser V.R. (1980). The HEARSAY-II speech understanding system:
A tutorial. In W. Lea (Ed.) Trends in Speech Recognition 361-381. Prentice
Hall. Englewood Cliffs: N.J.

Fox, J. (1984). Language, logic and uncertainty. Imperial Cancer Research Fund
Laboratories Report.

Gabbay, D.M. (1985). Intuitionistic basis for non-monotonic logic. Artificial
Intelligence, 25, 75-94.

30th September 1986

Applications Expert Systems 17

Gallanti, M., Gilardoni, L. Guida. G. & Stefanini, A. (1986). Exploiting physical and
design knowledge in the diagnosis of complex industrial systems. Proceedings
of ECAI '86, Vol. 1, 335-349.

Gotts, N.M. (1984). Knowledge acquisition for medical expert systems — A review.
AI in Medicine Group Report, AIMG-3 Sussex University.

Hayes-Roth, B. (1984). BBI: An architecture for blackboard systems that control,
explain and learn about their own behaviour. HPP-84-16. Stanford.

Hayes-Roth, B. & Hewett, M. (1983). Learning control heuristics in BBI. HPP-85-2.
Stanford.

Hewett, (1986). Commercial expert systems in North America. Proceedings of ECAI
'86, Vol.2.

Hughes, G.E., Cresswell. M.J. (1972). An Introduction to Modal Logic. Methuen:
London.

Kidd. A.L. (1985). What do Users Ask? — Some Thoughts on Diagnostic Advice. In
M. Merry (Ed.) Expert Systems '85: Proceedings of the Fifth Technical
Conference of the British Computer Society Specialist Group on Expert Systems
C.U.P: Cambridge.

Lenat, D.B. (1982). Heuristics: Theoretical and experimental study of heuristic rules.
Proceedings of AAAI '82.

Mamdani, A.. Efstahiou, J. & Pang, D. (1985). Inference under uncertainty. In M.
Merry (Ed.) Expert Systems '85: Proceedings of the Fifth Technical Conference
of the British Computer Society Specialist Group on Expert Systems C.U.P:
Cambridge.

McDermott, D. & Doyle, J. (1982). Non-monotonic logic I. Artificial Intelligence, 13,
41-72.

Merry, M. (1985). Expert systems — some problems and opportunities. In M. Merry
(Ed.) Expert Systems '85: Proceedings of the Fifth Technical Conference of the
British Computer Society Specialist Group on Expert Systems C.U.P: Cambridge.

O'Malley, C.E. Draper, S.W. & Riley, M.S. (1985). Constructive interaction: A
method for studying human-computer-human interaction. In B. Skackel (Ed.)
Human-Computer Interaction — Interact '84. North-Holland: Amsterdam.

Patil, R.S. (1981). Causal representation of patient illness for electrolyte and acid-
base diagnosis. PhD. Thesis, Laboratory for Computer Science MIT: Mass.

Pople, Jr. H.E., (1982). Heuristics methods for imposing structure on ill-structured
problems: The structuring of medical diagnostics. In P. Szolovits (Ed.)
Artificial Intelligence and Medicine. AAAS Selected Symposium Series 51.
Westview Press: Bolder. Colarado.

Reichelt, H. & van Harmelen, F. (1985). Relevant criteria for choosing an inference
engine in expert system. In M. Merry (Ed.) Expert Systems '85: Proceedings of

30th September 1986

Applications Expert Systems 18

the Fifth Technical Conference of the British Computer Society Specialist Group on
Expert Systems C.U.P: Cambridge.

Reiter, R. (1981). On the integrity of typed first order data bases. In H. Gallaire, J.
Minker & J.M. Nicholas (Eds.) Advances in Data Base Theory, Vol. L
Plenum Press.

Shafer. G. (1976). Mathematical Theory of Evidence. Princeton University Press.
Princeton.

Shortliffe, E. H. (1976). Computer-Based Medical Consultations: MYCIN. American-
Elsevier: New York.

Shortliffe. E.H. & Buchanan, B.G. (1978). A model of inexact reasoning in medicine.
Mathematical Biosciences, 23, 351-379.

Walther, C. (1983). A many sorted calculus based on resolution and paramodulation.
Proceedings of IJCAI '83, VoL 8.

Weiss, S.M., Kulikowski, C.A., Amaral. S. & Safir, A. (1978). A model-based method
for computer aided medical decision making. Artificial Intelligence, 11, 145-
178.

Worden, R.P., Foote. M.F., Knight, J. & Anderson, S.K. (1986). Co-operative expert
systems. Proceedings of ECAI '86, Vol. 1, 357-368.

Zadeh, L.A. (1983). The role of fuzzy logic in the management of uncertainty in
expert systems. Fuzzy Sets and Systems, 11, 199-227.

30th September 1986

Applications Natural Language Processing 19

2.2. Natural Language Processing
Natural language processing (NLP) involves computer generation and

understanding of textual, natural language inputs.

2-2*1. Applications
Three main areas for NLP applications are considered here: in machine

translation, text summarisation and as a medium for human-computer
communication.

(a) Machine Translation
It is not yet possible to provide general, perfect machine translation packages.

However, in some domains high, but not perfect, translation performance may be
quite acceptable. For instance, in machine translation there is a demand for bulk
translation or translation, between "odd" combinations of languages, where there is a
skill shortage (e.g., between Dutch and Greek). Commercially viable machine
translation systems exist (e.g., LITRAS [German-English, English-German] based on
METAL; Slocum. 1986). While they do not produce perfect translations, they can
produce massive increases in productivity especially if pre- and/or post-processing is
made available. For example, provisional post-editors (i.e., people who were not
involved in the development of the system) working on the output of METAL were
able to revise 29 pages a day. This contrasts with the average daily output of a
translator, which is around 5 to 8 pages a day. See King (1986) for a review of
some of the current work (including a report of progress in the EUROTRAN project,
the largest machine translation project at present), and for a general discussion of
the prospects of machine translation. His main conclusions are that machine
translation will not entirely replace human translation, and that "there is no prospect
of them getting drastically better". However, they do offer massive improvements in
productivity, especially when dealing with "every-day", non-specialised material and
where pre- and post-processing is introduced. A possible application of machine
translation techniques is the provision of an automatic translation service for
messages passed by electronic mail between different countries.

(b) Text Summarisation
Another area for the application of NLP techniques is in text summarisation.

Schank (1985) reports on a program called FRUMP which summarised unedited news
items and could translate them into other languages (given that it used Schank's
"language-independent internal meaning representations"). Target languages included
Chinese and French. However, this system was never commercially available.

(c) Human-Computer Communication
The most common form of explicit human-human communication is via natural

language. At present the dominant form of communication with computers is via
programming languages. Most of the general public who do not program might find
it a laborious means of communication or difficult to learn. It is hoped that research
into NLP will provide interfaces that will change this, so that much of human-
computer interaction can proceed via natural language.

However, it must be recognised that there are other ways of making computers
more generally accessible, and that there are circumstances where natural language
communication is inappropriate. Ways of making computers more generally accessible
include providing languages and devices that are more natural to use and easier to
learn. The development of high level programming languages, direct manipulation

30th September 1986

Applications Natural Language Processing 20

inerfaces , high resolution graphics, bit map screens and pointing devices have, and
will, make the user's job much easier. An important question will be whether these
sorts of techniques will provide a means of communication with computers which
are convenient and easy enough to use, so that further progress in NLP will become
redundant.

There are many tasks where natural language communication with the computer
is inappropriate. In choosing a high level programming language for a task, it is
recognised that different languages are suited to different tasks, they can differ
considerably in terms of efficiency, expressive?n power, or problem orientation;
natural language is no exception to this. Natural language tends to be ambiguous
and imprecise. Therefore, in tasks where precision is important, such as the
specification of an algorithm, other languages or forms of communication (e.g., high
level programming languages or pointing devices) may be more appropriate.

Two areas of human-computer interaction are considered here: The first concerns
explanation systems; these explain the operations and the output of computational
processes. The second concern interfaces to large informations sources, such as
databases.

(i) Explanation

In the field of expert systems it is likely that if we are to produce generally
acceptable systems then we will have to improve their explanatory capabilities. At
present expert systems rely on "direct production" explanation which often means all
that is provided is an execution trace; these can become incomprehensible if it is too
long. There is now a growing interest in the application of NLP techniques to
language generation in explanations. For example there is an ALVEY project at
Sussex managed by Dr. Mellish, investigating "Natural Language Generation From
Plans'* — project number 010; the uncle is M. Cooper of BT Research.

(ii) Data-base front ends

The research on NLP of the last two decades is now beginning to show fruition
in the development of commercially available tools for the development of NLP
interfaces to knowledge bases. It is expected that this trend will continue and that
we will see increasing numbers of domain-independent tools for constructing front-
ends (e.g., the SRI TEAM system (Martin et. al. 1983) and the INTELLECT system),
although, once constructed, the front ends are likely to be domain dependent (see
below). Most of these do, and will, make use of technology that has been available
for several years, and which can be found in Woods' LUNAR program (Woods,
1973). However ATNs, although flexible, are considered to be cumbersome, since they
are a low-level notation requiring inelegant detail, and are not considered as robust
as certain other techniques e.g., Kaplan's chart parser (Kaplan, 1973). (See [l] for a
definition of an ATN.)

2.2.2. Exisiting Problems and Future Developments

A major problem with all commercially available techniques, including ATNs
and chart parsers, is that there are still many cases of ambiguity which can not be
resolved.

(a) Semantic Parsers
One way of overcoming some of the problems of ambiguity is to build systems

that make use of semantic processing, e.g., systems that use rules which specify
simple semantic restrictions about what kinds of object can participate in what kinds

30th September 1986

Applications Natural Language Processing 21

of relationships. Semantic parsers (e.g.. Schank et al. 1980, Dahlgren & McDowell,
1986) are considered to be more robust than pure syntactic parsers. However, they
tend to be suited to processing simple declarative sentences. There have been some
successful attempts to build tools and techniques to improve their performance (e.g.,
Binot & Ribbens, 1986; Lytinen, 1986) but, at present, these techniques only work
adequately in narrow domains, and hence NLP front ends to databases that are built
using these techniques are likely to remain effective only for narrowly restricted
domains.

(b) Models of Discourse
Another related problem is that current NLP systems are restricted by their

models of context. This is because they are all based on sentence-by-sentence
processing. This also makes some aspects of disambiguation difficult, for example, the
disambiguation of ellipsis (e.g., incomplete text or statements) and pronouns (e.g., the
referent of "his" in the sentence "He took his life" — Did he take his own life or
someone else's?). Disambiguation of these features is generally associated with
processes operating during extended discourse, which means that it is not possible to
adequately process these features through sentence-by-sentence processing.

It is expected that work on the structure of discourse and the pragmatics of
communication will make a contribution to overcoming these problems. The work
done (e.g., Grosz, 1977) on the structure of discourse and (Cohen, 1978; Allen, 1983;
Litman, 1986) on language as goal directed behaviour suggests that the deployment
of relatively modest computational resources could overcome some of the problems
mentioned above. However, it would seem that we are unlikely to see practical NLP
systems employing these techniques for the next 5-10 years.

(c) Language Acquisition
There seems to be a growth in interest in language acquisition systems, i.e.

systems that can substantially improve their linguistic abilities by learning new
words and grammatical rules. As in other areas of AI applications, one reason for
this interest is the recognition that adequate NLP systems will be knowledge rich
and that an alternative to "hand coding" these systems is to provide them with
facilities to augment their own knowledge bases. There has always remained some
interest in the development of algorithms for learning syntax since Chomsky's theory
of LAD (Language Acquisition Device). For example, see Wolff. (1980) Berwick,
(1980), and Anderson. (1977), for description of systems that learn or augment
grammars. However, there is now a growing interest in the production of a broader
framework for understanding language acquisition in humans. This includes analyses
of the development of general purposeful and communicative skills (e.g., speech
acts). As mentioned above, current NLP systems are restricted by the lack of these
sorts of "skills". Shatz (1983) provides an overview of the work being done in this
field (mainly by developmental psychologists and linguists). Although it seems
unlikely that we will be able to produce complex language learning devices in the
foreseeable future, this research may provide insight into the constituent knowledge
structures and processes required in order to be a practical language user (and
understander) — in particular it may tell us more about the domain of discourse
and goal structures.

(d) Parallelism
Any progress in introducing limited parallelism to NLP systems is likely to

contribute in a quantitative manner (as in most other areas of computation) by
producing faster and more efficient parsers over the next ten years. However the

30th September 1986

Applications Natural Language Processing 22

"connectionist" work is already influencing NLP (though less apparently than in
vision or learning). For instance there is now a new connectionist technique called
"simulated annealing" which is concerned with NLP. The author knows of no
publications, but there is a project funded by the Joint Speech Research Unit at the
University of Leeds — supervised by Prof. Geoffrey Sampson of the Linguistics and
Phonetics department, and Eric Atwell of the Computer Science department. It is
unclear what the properties of such a parser would be (beyond those of the
connectionist machine — see Section 3.1), or the likelihood of producing working
models. However, given the state of the art of connectionism. it is unlikely that we
will see any radical changes brought about by macro-parallelism in practical NLP
systems in the next ten years.

Notes

[l] ATNs (augmented transition networks) are grammar representations for
natural language. They are an extension of finite state transition diagrams. Finite
state transition diagrams are transition networks representing the possible rewrites of
linguistic items (e.g., NP -> NP + VP). Augmented transition networks are similar
but they include additional conditions and side effects operating on the arcs. These
additions resulted in the power needed for handling features of language, like
embedding and agreement, that could not be conveniently captured by context free
grammars. ATNs can be viewed as either a grammar formalism or a parser
(definition from Barr & Feigenbaum, 1983).

References

Allen, J. (1983). Recognising intentions from natural language utterances. In M.
Brady & R. Berwick (Eds.) Computational Models of Discourse, MIT: Mass.

Barr, A. & Feigenbaum, E.A. (1983). The Handbook Of Artificial Intelligence. Vol. 1.
Pitman: London.

Binot, J.L. & Ribbens, D. (1986). Dual frames: A new tool for semantic parsing.
Proceedings of AAAI '86, 579-583.

Cohen, P. (1978). On knowing what to say: Planning speech acts. Technical Report
118, Dept. Comp. Sci. Univ. Toronto.

Grosz. B. (1977). The representation and use of focus in dialogue understanding.
Technical Note 151, SRI International.

Kaplan, R.M. (1973). A general syntactic processor. In R. Rustin (Ed.) Natural
Language Processing. Algorithmic Press: New York.

King. M. (1986). The prospect of machine translation. Proceedings ECAI '86, Vol. 1.

Litman, D. J. (1986). Understanding plan ellipsis. Proceedings of AAAI '86, 619-624.

Lytinen, S.L. (1986). Dynamically combining syntax and semantics in natural
language processing. Proceedings of AAAI '86, 575-578.

Martin, P., Appelt, D. & Periera, F. (1983). Transportability and generality in a
natural language interface system. Proceedings of IJCAI '83.

30th September 1986

Applications Natural Language Processing 23

Schank, R. (1985). Intelligent advisory systems. In P. Winston. & K. Prendergrast
(Eds.) The AI Business: Commercial Uses of Artifial Intelligence. MIT: Mass.

Schank. R. Lebowitz, M. & Birnbaum. L. (1980). An integrated understander. AJCL,
6,(1).

Shatz, M. (1983). Communication. In J.H. Flavel, & E.M. Markman (Eds.) Handbook
of Child Psychology, Vol. 3: Cognitive Development. Wiley: New York.

Slocum. J. (1986). METAL: The LRC machine translation system. In M. King (Ed.)
Machine Translation Today — the State of the Art. Edinburgh University Press:
Edinburgh.

Woods. W.A. (1973). Progress in natural language understanding: An application to
lunar geometry. Proceedings of AFIPS Conference.

30th September 1986

Applications Vision 24

23. Vision
Barr & Feigenbaum (1983) define vision processing as the task of understanding

a scene from its projected images. However, in the field of vision research, a
distinction is often made between signal processing and classification on the one hand
and image understanding on the other. Signal processors transform an input image
into another image that has desirable properties. For example, a signal processor may
produce a better signal-to-noise ratio to facilitate human or machine inspection.
Classification techniques classify images into predefined categories often by
statistically based pattern matching techniques. These techniques are primarily
concerned with the processing of two dimensional images. They will be refered to as
"image processing techniques in this section. The other form of vision processing,
image understanding, involves a process that builds a description not only of the
image itself but also of the scene it depicts. Image understanding, as Barr &
Feigenbaum (1983) point out, is usually considered to require, in addition to image
processing techniques, highly structured knowledge about the task world.

23.1. Applications
Image processing research has already had some commercial impact. For

example, in the field of optical character recognition, remote sensing and medical
image analysis. However there are many areas appropriate for image understanding
applications once some of the existing theoretical and technical problems have been
resolved.

(a) Human-Human Communication
At present telecommunications mostly proceed via textual and oral means. As

with local human-machine interaction, human-human telecommunication might be
enhanced by the provision of visual information. However, a major problem will be
parsimoniously coding and sending this information. Image understanding techniques
such as model based techniques (see below for more on model based techniques)
might make the coding process more parsimonious. For instance, only visual
information which is changing over time need be coded, as this is the source of any
new information. Principles from AI image understanding vision research (e.g., on the
perception of motion) are likely to be useful here.

(b) Data Translation and Manipulation
The trend towards digital storage of information throughout many areas of

industry may necessitate the production of complex vision systems (and other
knowledge based techniques) in order to transfer the vast stores of existing
diagrammatic information into machine readable form. For example, the UK
department of Ordnance Survey is now producing digital representations of maps for
computer storage (and later computer processing). At present, this needs to be done
"by hand"; in the future, image processing vision systems could be developed to
perform the task much more cheaply, and possibly more accurately.

Principles or representation techniques from AI image understanding research
might be used in areas such as computer aided design (CAD). In CAD it is often
necessary to generate and manipulate representations of three dimensional objects.
Representational formalisms which have been developed in AI might contribute to
these sorts of systems. For example, generalised cylinders are a form of
representation developed in vision research. It provides a useful means of
representing complex objects by part/whole segmentation.

30th September 1986

Applications Vision 25

Other areas for the application of AI image understanding research include the
use of vision in providing robots (e.g., autonomously guided vehicles) with vision
sensing, this is expected to increase their versatility and flexibility. It is likely that
AI vision research will be necessary in this domain in order to provide three-
dimensional information. However, there are many problems yet to be resolved
before general purpose AI vision systems or practical vision packages can be
produced, although there are many potential applications.

23.2> Existing problems and Future Developments
In order to understand the direction vision in which research is going, and

what are the possibilities and problems, it will be helpful to examine the history of
vision research.

Vision research in the 60's and 70's can be described under two main headings
which reflect two alternative strategies for vision processing: the high level "blocks
world" and "low level" vision processing research.

In low level research there was an attempt to identify methods for extracting
the "important" features or changes in an image. For example, there was an attempt
to build line and region finding algorithms. It was hoped that this low level
information could be combined to provide higher level information. However.* as
Brady (1981) points out, by the end of the seventies the consensus was that low
level vision alone was incapable of providing useful, rich descriptions. As in speech
(e.g., HEARSAY II; Erman et. al., 1976) and natural language processing (e.g.,
SHRDLU; Winograd, 1972). it was realised that there was a need for top down
information flow to provide the necessary additional constraints.

The high level vision processing research consisted of attempts to overcome the
combinatorial explosion and the problems of low level vision by identifying high
level constraints. A good example of this is the work on line labelling (e.g.. Clowes,
1971; Waltz. 1975). This involved methodologically working out all the ways
planes could meet in space, all possible appearances of these junctions and developing
a notation for representing these configurations. Recognising an object was then
simply a matter of finding a consistent labeling for a line drawing of the object.

More recently AI vision research has split, not into groups reflecting competing
strategies (top down vs bottom up), but into groups exploring and attempting to
define the computational properties of different co-operating modules. Some of these
modules parallel those identifiable in the human visual system (identifiable through
psychological experiments, studies of visual illusions and brain damaged patients etc.)
e.g., stereopsis, interpretation of surface contour, determination of surface orientation
from texture, motion and depth. Most of this work has been inspired by the work
of Marr and is concerned with elaborating his theory of vision processing (see Marr,
1978 for a description of some of the theory).

Brady (1981) points out that the major areas of success and consensus involve
those modules that are at the "bottom" of the hierarchy in vision processing — those
that deal with the image as opposed to subsequent representations of it. Brady
(personal communication — seminar at Sussex) has recently suggested that that the
bottom-up data driven approach is far from exhausted, and that he didn't forsee the
need for knowledge-based systems in basic research for quite some time, until the
bottom-up approach had been taken much further. It is expected that considerable
progress will continue to be made in this area. This will be supported by advances
in VLSI design and progress in the commercial availability of array processors. This
may mean that in the medium term, say within five years, low level vision
packages will become commercially available. These should embody the necessary

30th September 1986

Applications Vision 26

balance between efficiency and flexibility.

Brady points out that as we move up the vision processing hierarchy there is
less consensus and many more problems to be solved — these are reviewed in
Brady, (1981). The problems include those of identifying the details of the "surface
orientation map**, determination of surface properties, the question of colour vision,
motion perception, and the perception or planning of movements through cluttered
space. He also points to the possible influence of micro and macro-parallelism on
vision research and suggests I t is likely that our conception of compututation will
change as a result of such developments. Vision will be one of the first areas to
benefit from such advances" (Brady, 1981, p. 11).

The resolution of some or all of these problems may be a necessary prerequisite
for providing general vision processing packages as these sorts of information (depth,
texture, colour, shading and motion) will aid greatly in the disambiguation of the
scene. The rest of the volume describes some of the more recent attempts in dealing
with these problems.

However there are two other (not mutually exclusive) approaches to developing
better vision systems. The first involves the use of more high level, situation specific
information or models in disambiguation. The second approach involves the use of
multiple sources of information and/or the simplification of the environment to
reduce the need for disambiguation.

(a) High Level Model Based Techniques

There is a growing interest in the potential role of situation specific, model
based representation of objects that working vision systems might encounter* Detailed
information (e.g., abstract geometric models) about classes of objects the system is
likley to encounter can help improve the performance of vision systems. Brookes
(1981) reports on a system which uses "high" level object representations in order to
identify aircraft in an airport.

(b) Multiple Sources of Information and Changing the Environment

It may be possible to avoid the problem of producing very complex, general
vision systems by providing simpler systems with additional sources of information.
For instance, information from vision processing could be used in conjunction with
other sources of non-visual information e.g., acoustic, temperature etc. The
combination of various sources of information is likely to require the development
of more sophisticated architectures, representations and control strategies such as the
those being used in blackboard architectures in expert systems (see section 2.1.).
Another way of overcoming the problems of producing complex vision systems is to
alter or restrict the range of visual information which the system needs to process.
For instance by guaranteeing that only a certain set of objects enter into the scene
or by providing additional clues in the scene such a sharp contrast or shadows. It
seem that practical vision systems requiring more than image processing will have to
be supplemented by these sorts of information.

This section draws heavily on the work of Brady, (1981; 1983). The first
reference is an introduction to a special issue of the AI Journal on vision. Although
the article is now five years old, most of the issues raised are still important today.
The second reference includes an annotated bibliography on more recent vision
research, concentrating in particular on image processing hardware, parallel image
understanding algorithms (including connectionist theories), and robotic vision.

References

30th September 1986

Applications Vision 27

Brady. M. (1983). Parallelism in vision. Artificial Intelligence, 21, 271-283.

Brady. M. (1981). Preface — the changing shape of computer vision. Artificial
Intelligence, 17, 1-15.

Brookes, R.A. (1981). Symbolic reasoning among 3-D models and 2-D images.
Artificial Intelligence, 17, 274-282.

Clowes. M.B. (1971). On seeing things. Artificial Intelligence, 2, 79-116.

Cohen. P.R. & Feigenbaum. E.A. (1983). Xm Vision. In The Handbook Of Artificial
Intelligence, Vol. 3. Pitman: London.

Erman. L.D.. Hayes-Roth. F.. Lesser. V.R. and Reddy. D.R. (1976). The HEARSAY-H
speech understanding system: Integrating knowledge to resolve uncertainty.
Computing Surveys, 12, (2), 213-253.

Marr. D. (1978). Representing visual information. In A.R. Hanson & E.M. Riseman
(Eds.) Computer Vision Systems. Academic Press: New York.

Waltz. D. (1975). Generating semantic descriptions from drawings of scenes with
shadows. In P. Winston (Ed.) The Psychology of Computer Vision. McGraw-
Hill: New York.

Winograd. T. (1972). Understanding Natural Language. Academic Press: New York.

30th September 1986

Applications Speech Processing 28

2A. Speech Processing
Speech processing involves computer production and understanding of speech

(either single words or connected speech). The input for such a system would be
human speech (perhaps recorded and perhaps with additional background noise), the
output could be some representation speech, for example a piece of text. However,
the output could include more than simply a list of words; it may contain
information about accent* stress, intonation etc.

2A.I. Applications
Why do we need speech processing systems? The reasons are similar to those

for NLP (see Section 2.2), and it seems that further progress in each field will be
related for two reasons. First, sophisticated speech processing systems are of little
use unless we can process their output (the input to NLP systems). The second
reason is that knowledge from higher levels (e.g., grammatical or pragmatic
knowledge) may need to be used to solve ambiguities at lower levels and vice versa
(e.g., intonation can contribute to clarifying grammatical ambiguity).

Therefore, the results of speech processing could be used to improve the
performance of NLP systems. However, it is unlikely that we shall want to take on
the additional tasks of producing speech processing systems simply to solve the
remaining problems of NLP. Also, it will be inappropriate to give priority to speech
in HCI in all circumstances, the circumstances under which would be an
inaapropriate form of human-machine communication are likley to be the same as
those for NLP (see Section 2.2.).

However, there are circumstances where HCI should proceed, at least in part.
via speech. We can talk much quicker than we can type; also, if
programmers/operators can communicate with computers through speech then their
hands are left free to perform other functions. In some circumstances it will be
inconvenient for the operator to use their hands for communication, e.g., in flying an
aircraft. Speech contains additional information that could be important in some
systems (e.g.. intonation indicating reference or urgency, both in input and in
output). Finally, there are obviously applications in the area of telecommunications,
where users can communicate with remote information sources (such as databases)
via the telephone. This could be done without the need for extra equipment at the
user's end.

2*4.2. Existing Problems and Future Developments
The ARPA-SUR (Advanced Research Projects Agency — Speech Understanding

Research) initiative aimed to achieve systems for connected-speech understanding
capabilites (as opposed to systems which recognised isolated words). This initiative
produced five major speech understanding systems in the 70*s; HEARSAY-I, n, (see
Erman et al..l980), HARPY (see Lowerre and Reddy. 1980), WHIM (Wolf and
Woods, 1980) and SRI/SDC (Walker, 1978). This initiative and the projects are
reviewed in Barr and Feigenbaum (1983).

The major problem with these systems is that they suffer from an aspect of
the "micro-worlds11 problem (Dreyfus. 1982). in that most of them work adequately
only in "perfect" environments. When an extended vocabulary, background noise or
voice variation (e.g accent, intonation) is introduced, the performance of these
systems decreases significantly. These speech systems could operate within less than
perfect environments but they all seemed to reflect certain performance constraints,
for example even in word recognition "Sizable vocabularies (more than a hundred
words) can be realistically utilized with speaker-dependent templates. Smaller

30th September 1986

Applications Speech Processing 29

vocabularies (on the order of one or two dozen words) can be reliably utilized in
talker-independent systems" (Flanagan et al., 1980, p.442, cited in Barr &
Fiegenbaum, 1983).

It is expected that progress in the development of VLSI and array processors
will have a quantitative effect on low level speech processing (see Section 3.1).
However the major problems remaining are not ones which can be solved by
developments in the speed of hardware alone; the major problem will concern
knowledge representation, organisation and acquisition.

Generally, speech processing has has contributed to, general AI techniques — for
example, island driving searching and blackboard architectures were developed in
speech processing. Because of the nature of speech processing, success in this area is
likely to contribute to the development of techniques for other systems that depend
on co-operative decision making using multiple expert systems. For example, tasks
requiring the coordination of several co-operating robots. This is because it is now
recognised that significant progress will probably not be made until a wider range of
knowledge is incorporated [l l Other forms of knowledge can be used to restrict the
search task by using expectancies. For example, in HEARSAY-I, semantic knowledge
(the rules of chess) and syntactic knowledge (natural language grammar) were used
to disambiguate speech. Therefore, speech processing systems will probably consist of
richly interconnected collections of knowledge based systems, utilising many types
and levels of knowledge. Some of the ideas found in Sloman (1985) and Sloman et
al. (1978) are relevant to this sort of task. Current work on developing more
adequate blackboard systems (e.g., Boyle, 1985) and other architectures for dealing
with multiple sources of representation and reasoning (e.g., Kauffman & Grumbach,
1986) will contribute to this task.

It is not expected that levels of human speech recognition competence will be
reached within the next ten years. The major problems for producing practical
systems will involve overcoming the "micro-worlds" problems of restrictions on
vocabularies, speech types and speed. However production of speech is likely to come
close to human performance over this period.

Notes

[l] The assertion that future success in speech processing will depend our ability to
identify, represent and integrate multiple sources of knowledge has recently been
challenged, and should not be regarded as uncontentious. For example Durham
(1986) suggests "Current thinking is that much information resides in the speech
signal itself, if only one could see how to use it" (p. 26).

References

Barr, A. & Feigenbaum, E.A. (1983). The Handbook of Artificial Intelligence Vol 2.
Pitman: London.

Boyle. C.D.B. (1985). Acquisition of control and domain knowledge by watching in a
blackboard environment. In M. Merry (Ed.) Expert Systems '85: Proceedings of
the Fifth Technical Conference of the British Computer Society Specialist Group on
Expert Systems. C.U.P: Cambridge. '

Dreyfus, H. (1982). From micro-worlds to knowledge representation. In J. Haugland
(Ed.) Mind Design. MIT: Massac.

30th September 1986

Applications Speech Processing 30

Durham. T. (1986). A quantum leap towards the hearing computer?. Computing,
18th September, 26-27.

Erman, L.D. & Lesser V.R. (1980). The HEARSAY-H speech understanding system:
A tutorial. In W. Lea (Ed.) Trends in Speech Recognition. 361-381. Prentice
Hall. Englewood Cliffs: NJ.

Flanagan, ?nJ. Levinson. S. Rabiner. L. and Rosenberg. A. (1980). Techniques for
expanding the capabilities of practical speech recognisers. In W. Lea (Ed.)
Trends in Speech Recognition. 425-444. Prentice Hall. Englewood Cliffs: NJ.

Kauffmann. H. & Grumbach, A. (1986). MULTIple worlds in LOGic Programming.
Proceeding of ECAI *86, Vol. 1, 291-305.

Izard. S. (1986). Levels of representation in computer speech synthesis and
recognition. In M. Yazdani (Ed.) Artificial Intelligence: Principles and
Applications. Chapman and Hall Computing: NY.

Lowerre. B. & Reddy. R. (1980). The HARPY speech understanding system. In W.
Lea (Ed.) Trends in Speech Recognition. 340-360. Prentice Hall. Englewood
Cliffs: N.J.

Sloman. A. (1986). Real time multiple-motive expert systems. In M. Merry (Ed.)
Expert Systems *85: Proceedings of the Fifth Technical Conference of the British
Computer Society Specialist Group on Expert Systems. C.U.P: Cambridge.

Walker. D.E. (Ed.) (1978). Understanding Spoken Language. North-Holland: New
York.

Wolf. J. and Woods. W. (1980). The HWIM speech understanding system. In W.
Lea (Ed.) Trends in Speech Recognition. 316-339. Prentice Hall. Englewood
Cliffs: NJ.

30th September 1986

Applications Infra-Structure Hardware 31

3. Applications Infra-Structure

3-1- Hardware
This section looks at the possibility for progress in hardware development. One

of the most contentious issues raised here concerns parallelism, which can also be
considered as an issue of knowledge representation, programming or AI technique.
Also some developments in parallelism do not involve a radical departure from
traditional underlying hardware (e.g., communicating sequential processors). For the
sake of clarity, all major questions concerning parallelism are discussed under this
section.

3.1.1. Exisiting Problems
Why should we be concerned about hardware development? There are two main

reasons. The first concerns the need for greater efficiency from hardware and the
programs that run on it. Enkintrap (1986) reports that computer usage in large
installations has been increasing by between 40-60% a year. However traditional
processing power has only been increasing by 15-20% a year.

The second reason concerns what parallelism might offer us in terms of the
development of new AI techniques and concepts, and perhaps even a new "paradigm"
of computation. Bobrow and Hayes (1985), in their review of progress in AI, show
that several eminent researchers believe that little significant progress has been made
in the last decade. Their suggestion is that we have learned to refine and
commercially apply several ideas from the research of the sixties and seventies, but
no significant theoretical advances have been made. However, over the last few
years there has been some optimism displayed about the potential effects of
developments in "connectionism". For example, Boden suggests "one area where it
seems that there may be a breakthrough is that of connectionist ... machines ...
exploratory research should become possible within the next decade" (Bobrow &
Hayes, 1985), and Feldman suggests "many of the core problems of AI, such as
pattern matching, context sensitivity, representation of real world knowledge and
plausible inference, are better approached on a non-symbolic computational basis"
(ibid). He goes on to argue that connectionist machines may offer an alternative.

3.1.2. Future Developments
There are currently two main approaches to the development of hardware and

software: The serial or "evolutionary" approach concerns making existing hardware
and software more efficient. The non-serial or "revolutionary" approach involves
advances in micro- and macro-parallelism (connectionism), which is concerned with
radical (and not so radical) changes in the underlying hardware of the machines we
use, and possibly radical changes in our conception of computation as a whole.

(a) The Evolutionary Approaches or 'do it faster9

Two important developments are considered briefly here. Changes in VLSI design
and research on "abstract instruction sets", aimed at accelerating the speed of
programming languages running on conventional and, potentially, parallel hardware.
Neither of these approaches directly offer computing any radical departure in terms
of new concepts/techniques etc. However, the increases in speed of processing that
they do offer may bring about new possibilities in applications.

30th September 1986

Applications Infra-Structure Hardware 32

(i) VLSI Design
Current research into VLSI design shows that some major advances have been,

and will be. made in increases in processing speed in the short and medium term.
Improvements in VLSI design involve better, more efficient chip architectures, for
example, closer spacing of components. VLSI design should not be seen as an
alternative to the advances made in parallelism. For example, the development and
commercial realisation of array processors (see below) have been enabled by advances
in VLSI design. However, it is suggested below that it is unlikely that we will see
the commercial production of full scale dedicated hardware based on cheap
"customised" VLSIs.

It should be noted that, while developments in VLSI chip design will aid in
producing more efficient AI and traditional software applications, AI techniques will
also aid in VLSI design. It is expected that A.I will make significant contributions to
this research by providing VLSI designers with computer aided design (CAD)
techniques and other support tools. Wolf, Kowalski AMcFarland, (1986) discuss some
of the ways AI based tools can aid VLSI designers. Finegold, (1985), Kahn, (1985),
and Lathrop & Kirk (1986) provide descriptions of existing tools. It is expected that
VLSI design will be a useful test bed for complex CAD techniques that will later
be used in other areas.

(ii) Warren's Abstract Machine (WAM)
There have been attempts to design computer architectures and languages where

the basic machine language is a form of symbolic logic and the basic machine
operation is a form of logical inference. This has been stimulated by the Japanese
Fifth Generation Project. Prolog is the best known (but not the only) logic based
language. Attempts are also being made in building similar macchines for other
functional languages such as LISP.

What are the prospects of building such machines and what sort of increases in
speed can we expect? In this section I briefly examine Warren's work on the design
of an abstract instruction set for Prolog (called WAM) and Tick's work on the
design of a hardware sequential processor, especially adapted for the WAM. Their
belief is that large scale parallelism is unlikely to be realised and/or will not run
practical Prolog programs. However, they believe that it will be possible to build
WAM-based Prolog systems with small-scale parallelism, that these systems will run
very fast and that there will be no need for special Prolog dialects.

Warren (1983, 1980) has designed a Prolog abstract instruction set and Tick
has designed the processor, (reported in Tick & Warren, 1984). Experimental
prototypes have been built and tested. The "High-Speed Prolog-Machine11 (Nakazaki et.
al 1985) uses WAM working on "exotic", non-standard serial hardware. This machine
produces 280,000 logical inferences per second (280 Klips). This can be compared to
more traditional Prologs. For example, the following are benchmarks for POPLOG
Prolog, including garbage collection:

SUN-3 12.0 Klips (estimated by extrapolation)
GEC-£3 7.6 Klips
VAX-780 6.4 Klips
SUN-2 3.7 Klips
VAX-750 3.5 Klips

These figures correspond to the state of the system in January 1986, there have
been significant improvements since then.

30th September 1986

Applications Infra-Structure Hardware 33

It should be noted that there is no need to build special hardware for the
WAM. An experimental prototype of a modified version of the WAM has been
implemented on traditional hardware. This system also produces impressive
performance. Knodler et. al. (1986) report the WAM running on traditional
hardware (a Motorola 68000 sequential processor) can provide 10 Klips (expected to
rise to 40 Klips in later implementations), and that this can be improved with PIAG
to 400 Klips. PIAG is a "programmable adaptive instruction generator", it is reported
in Bursky (1985) and it does not seem to require the development of new hardware.

It should be pointed out that most Prolog Benchmarks quote only the 'naive
reverse* test. A number of more comprehensive comparisons have shown that this
can be quite misleading, since the naive reverse method tests only a small subset of
Prolog operations. Different programs can give very different comparative results for
different Prolog systems. For example, on naive reverse tests, compiled Quintus is
four or five times as fast as POPLOG Prolog, yet Thorn-Emi found tha on tests
involving a large Prolog program the differences between Quintus Prolog and
POPLOG Prolog were mostly only a few percent, so they chose POPLOG. as they
considered it had a better environment. This also indicates that the surrounding
environment is very important (see Section 3.2 for a discussion of AI environments).

All the figures for the WAM serial implementations seem to compare
favourably with existing parallel implementations of Prolog, Furthermore, the
programmer's task is no more complicated than with traditional implementations, and
there do not seem to be the "book-keeping" or control problems that exist with
parallel implementations (e.g., Shapiro's Concurrent Prolog runs at 5 Klips on a
SUN-3, this is expected to rise to 65 Klips; PARLOG runs at 2.5 Klips on a SUN-3
— these figures were reported at ECAI 1986 by Shapiro).

In any case, Warren's research should not be seen as an alternative to the
work on parallelism as he argues that the WAM is parallel compatible. Warren
suggests that once (or, if) the problems with parallel implementations are overcome,
he expects a parallel implementation of WAM-based Prolog to come close to
producing giga lips (i.e. 1,000 Klips). In the next section, I consider some of the
approaches to parallelism and their prospects for success.

(b) Revolutionary Approaches: *Do it at the Same Time9

In the AI "public eye" there seems to be the impression that there is a single
approach to parallelism, with unified goals and techniques. This often leads to
disappointment when anouncements are made about developments in parallelism that
are subsequently identified as "not REAL parallelism". This section shows that there
are various forms of parallelism. In the discussion, the different techniques and
underlying goals are reviewed, as well as the possibilities of achieving these goals.
This section draws heavily on Ramsay (1986).

(0 General purpose computing engines
One goal of parallelism is to produce very fast general purpose computing

machines. That is, the aim is to produce machines that perform the same functions
as present computers, but which perform the functions much faster. There are three
main techniques for achieving this goal.

Communicating sequential processors
The first is to utilise existing Von-Neumann, serial hardware but to connect

machines together, with different machines doing different parts of the task in
parallel. As the programs run, they read in data from various devices and output

30th September 1986

Applications Infra-Structure Hardware 34

the results to other devices. The other devices consist of other computers running
different parts of the program.

The advantage of this technique is that there is no need to invest heavily in
the development of new hardware. However there are many problems with this
approach. The programmer's task is much harder, he will have to specify what parts
of the programs will run on different processors. In order for any improvements to
be made in efficiency, programmers need to split up the tasks into the right number
of processes (compatible with the number of available processors). If there is a
disparity between demand and supply for the number of processors, then the
technique can become very inefficient. While there is no need to invest in radically
new hardware, these techniques do demand the use of several machines.
For further details see Hoare. (1978) and Brich-Hansen. (1978).

Dataflow programs and machines
This technique is characterised by two features: First, the development of a

new formalism which makes explicit the operations and the connections between
them (specifying where to get input, where the output goes to). Once these languages
are learned, this will make the programmer's job much easier, since the task of
"controlling" the parallelism is left to the machine. Second, this technique involves
the development of hardware on which the parallelism in these formalisms can be
run.

Two types of formalism exist for dataflow machines: diagrammatic or graphical
languages and textual languages. In graphical languages, the connections between the
various operations are indicated by drawing lines; a program written in a graphical
language would look like a network or tree, with nodes and connections. Textual
languages would look very similar to present day languages (which are also mostly
textual). Sharp. (1985) provides a review of dataflow languages.

Ramsay believes that textual languages will be very difficult to work with.
However, he suggests that it would not be difficult to produce a new generation of
editors and compilers which could handle the diagrammatic languages.

A number of designs for such machines exist. Srini (1986) surveys the
performance of several of the most widely reported machines, some of which
produce "impressive11 performances. However the number of processors in each
machine is very low. and to attain better performance will require an increase in
the number of processors. Ramsay suggests that the problem is that the manufacture
of each processor is a complex and expensive task, each with many subcomponents.
Dataflow machines will provide massive increases in performance, but are likely to
have millions of lower level components.

Functional and single assignment languages
The final strategy for improving the performance of general purpose programs is

to return to the mathematical foundations of programming languages. Many
languages are based on mathematical formalisms, e.g., lambda calculus (LISP, POP-
11) and predicate calculus (Prolog). In pure form these seem well suited to
parallelism, as each program is made up of nested expressions, each of which (in the
pure form) should be capable of evaluation independently (and hence in parallel). As
Ramsay suggests, the crucial point is that the evaluation of an expression in these
languages can have no side effects which linger on after its value has been used in
the value of some enclosing expression. As there are no side-effects, there are no
hidden dependencies between expressions. It is therefore easy to see which expressions
can be evaluated in parallel: they are just those expressions which appear as a sub-

30th September 1986

Applications Infra-Structure Hardware 35

expression of something at a higher level.
There are now several designs for architectures for these machines (Darlington

& Reeve, 1981; Kennaway & Sleep, 1984). The major problems with this work are
the same as for dataflow architectures. That is, it will be difficult to provide enough
processors, and much of the processing power will need to be dedicated to book-
keeping.

The work of Shapiro on Concurrent Prolog, and of Gregory on PARLOG can be
seen as part of this movement (reported by Shapiro at ECAI 1986). However neither
of these languages run on "real" parallel hardware, they run on traditional hardware
which simulates parallelism. Also, neither of them are pure forms of Prolog, they
involve the programmer in the additional tasks of specifying the control of the
parallelism. Therefore, they involve the programmer in additional tasks, such as
learning a new notation. Also almost all of the current schemes for the parallel
execution of logic programs use parallelism in restricted ways. This is mainly due to
the problem of efficiently implementing a general AND/OR parallel system (Pollard,
1982). Also Prolog programs are well known for their non-deterministic nature. This
means it is very likely that they will spawn a large number of tasks which are of
no use. Ramsay concludes that the book-keeping of any parallel executions of
Prolog may well outweigh the advantages which may be obtained — and may not
compete with other work on faster serial processing (e.g.. Warren and Tick's work,
see above).

(i) Essentially distributed algorithms: Dedicated machines and array processors

Dedicated machines
Another goal of parallelism is to produce machines that perform a certain task

or sets of tasks much faster. Many tasks are of the form where the same
computation has to be performed for each of a large number of inputs, and can be
done independently. They are typical of the tasks found in low-level vision and
speech.

Ramsay points out that the work on VLSI design means that if we have some
algorithm to perform such a task then it can, in principle, be placed on one of these
chips. If each chip needs connections only to its immediate neighbours (as should be
the case in the task specification), then we should be able to link processors together
to do the tasks in parallel.

Ramsay suggests that the major problem is that, despite the advances made in
VLSI design, it is still unlikely that dedicated machines (those with algorithms "built
into" the chips) will become cheap or commercially available for some time. If chip
manufacture is to be profitable, then we must reach volume production. The question
is, how sure can we be that we have produced the "right" algorithm and VLSI
design for some task.

Array processors
Slightly more general machines are becoming cheaply available. Fountain (1983)

describes CLIP4. which is a commercially available machine with 32*32 and 128*128
processors for about the price of a good workstation. These machines have similar
uses as dedicated machines, however, they have much simpler and more general
processors. Hillis' book (Hillis. 1985) gives an account of how existing programs
(including those written in symbol manipulating languages like LISP) can be adapted
to run on these machines. The major problem with array processors is the limitation
on memory size of the processors. This limitation means that a good deal of the

30th September 1986

Applications Infra-Structure Hardware 36

machine's time can be spent loading data onto the input lines and getting the results
off the output line. Ramsay concludes that, acknowledging the caveat above, "it is
clear that these machines are going to have a major impact in the immediate and
short term future wherever suitable problems are recognised" (Ramsay, 1986 p. 20).

(iii) Parallel repreaentations of knowledge: The connectionist hypothesis

What is connectionism and why is there so much optimism? The "connectionist
hypothesis" suggests that the computation performed by a network of processors need
not be defined by the relation between the signals on some selection of input lines
and the signals, when they arrive, on a selection of output lines. It is defined
instead by the relation between the states of some selection of processors at the
start of the computation and the states of some, possibly other, selection of
processors at the point when an entire network is stable (Ramsay's, 1986 definition).
These systems would run on hardware with tens of thousands of simple processors.
A recent collection of papers (Hinton & Anderson, 1981) present research which has
explored some of the properties of connectionist models. It is believed that they can
be made to have the properties modelled by Boltzmans* laws of statistical thermo-
dynamics. It is suggested that these systems will converge to steady states, will have
learning abilites and that it may be possible to introduce minor damage to the
networks without severe consequences. There seems to be an intuition amongst
researchers that many of the properties of the human brain are mirrored in these
systems — robustness, ability to cope with degraded inputs, ability to learn. "The
trouble is that, although the reports on individual systems do seem to indicate that
they do some of what we want, there is no impression of an overall theory which
could be used either to explain human abilities or to construct practically useful
machines" (Ramsay. 1986 p. 23).

3.13. Conclusions

Clearly, then, there is more than one approach to the improvement of efficiency
in computing, and there is more than one approach to parallelism. Whether
parallelism will be successful depends on what form of parallelism we are trying to
produce, and this in turn depends on the uses to which it is put. However, it is
unlikely that general purpose computing will be radically effected by changes in
underlying hardware in the next ten years. We are more likely to see increased
speed in sequential processing brought about by the work on WAM, and it is
possible that further developments of WAM based systems will include limited
parallelism.

One area where parallelism will have an effect within the next few years is in
array processing. With the continued work on VLSI design and the present
commercial availability of array processors, it might be expected that we will see
improvement in these machines that can already produce impressive results compared
to traditional machines. The only problem will be finding appropriate tasks, it is
expected that vision and speech processing will be the main areas affected.

So far as macro-parallelism is concerned, we are still experimenting. It will
probably be another five years before we are certain about the utilities of these (as
yet non-existent) machines and possibly another decade before we begin to see any
practical applications (if any). It is still unclear exactly what properties these
machines will have, but it is clear that there are many tasks which will demand
some form of macro-parallelism.

References

30th September 1986

Applications Infra-Structure Hardware 37

Bobrow, D.G. & Hayes. PJ . (1985). Artificial intelligence — where are we? Artificial
Intelligence, 25, 375-415.

Brich-Hansen, P. (1978). Distributed processes: A concurrent programming concept.
Communications of the ACM, 21, 934-941.

Bursky. D. (1985). Instruction generation technique speeds program execution.
Electronic Design, March 7, 40-44.

Darlington, J. & Reeve, M. (1981). ALICE: A multiple reduction machine for the
parallel evaluation of applicative languages. Proceedings of the ACM Conference
on Functional Programming Languages and Computer Architecture.

Enkintrap, N. (1986). Quiet life falls under revolutionary attack. Computer Weekly,
July 3, 22.

Finegold. A. (1985). The engineers apprentice. In P. Winston & K. Prendergrast
(Eds.) The AI Business: Commercial Uses of Artificial Intelligence. MIT: Mass.

Fountain, T. (1983). Image processing by parallel computer. Automation, September,
8-15.

Hillis. W. D. (1985). The Connection Machine. MIT Press: Mass.

Hoare, C.A.R. (1978). Communicating sequential processes Communications of the
Association of Computing Machinary, 21, 666-677.

Kahn, H.J. & Filer, N.P. (1985). An application of knowledge based techniques to
VLSI design. In M. Merry (Ed.) Expert Systems '85: Proceedings of the Fifth
Technical Conference of the British Computer Society Specialist Group on Expert
Systems. C.U.P: Cambridge.

Kennaway, J.R. & Sleep. M.R. (1984). Towards a successor to von Neuman. In F.B.
Chambers, D.A. Duce & G.P. Jones (Eds.) Distributed Computing. Academic
Press: London.

Knodler, B. Neidecker, B. & Rosentiel, W. (1986). A Prolog machine for Warren's
abstract instruction set. Proceedings FCAI '86. Vol. 2.

Nakazaki, R. & Konogaya, A. (1985). Design of a high-speed Prolog machine ICOT
Technical Memorandum TM-0105, April.

Sharpe. J.A. (1985). Data Flow Computing. Ellis Horwood: Chichester.

Sloman, A. (1985). Real time multiple-motive expert systems. In M. Merry (Ed.)
Expert Systems '85: Proceedings of the Fifth Technical Conference of the British
Computer Society Specialist Croup on Expert Systems. C.U.P: Cambridge.

Srini, V.S. (1985). An architectural comparison of dataflow systems. Computer, 19,
68-87.

Ramsay. A. (1986). Distributed versus parallel computing. Artificial Intelligence
Review, 1, 11-25.

30th September 1986

Applications Infra-Structure Hardware 38

Tick, E. & Warren, D.H.D (1984). Towards a pipelined Prolog processor. New
Generation Computing, 2, (4).

Warren, D.H.D (1983). An abstract Prolog instruction set. SRI International
Technical Note 309.

Warren, D.H.D (1980). An improved instruction set optimises tail recursion. Dept.
AI Univ. Edingburgh, Research Paper 156.

Wolf, W.H., Kowalski, TJ. & McFarland, S.J. (1986). Knowledge engineering issues
in VLSI synthesis. Proceedings of AAAI '86, 866-871.

30th September 1986

Applications Infra-Structure Environments 39

3.2. AI Languages and Environments
This section discusses languages and AI environments. Two main issues are

considered: First, research in these areas which, it is hoped, will increase human
productivity. Second, approaches to making AI languages and software more relevant
to the tasks at hand.

3.2,1. Increasing Productivity
An important problem in producing software is not just generating software

and hardware that runs fast (see Section 3.1), but producing programmers who work
fast as well. As hardware costs drop, human efficiency issues will become
increasingly important. The problem of human efficiency is particularly important in
AI software development. Sleeman has provided a definition of AI, characterised as
the study of inherently ill-defined problems, where the task is to try to transform
ill-defined problems into well-defined ones (Sleeman. 1985). Partridge (1986) gives a
clearer definition, by comparing the nature of AI problems to traditional software
engineering problems. Some of the characteristic features include:

AI Problems:
• Answers tend to be adequate or inadequate
• Context-sensitive problems
• Not completely specifiable

Software Engineering Problems:
• Answers are correct or incorrect
• Context-free problems
• Completely specifiable

The process of solving AI problems usually involves understanding the nature
of the problem by iteratively refining its definition through the activity of
programming — this is known as the RUDE cycle: Run — Understand — Debug —
Edit. This is in contrast to traditional software design, where a large percentage of
the work is done at the program specification stage, away from the machine. If we
accept that this definition characterises the AI programmer's task, then a potential
source of inefficiency is the time taken to pass through each iteration and the
number of iterations involved.

There are two (not mutually exclusive) ways of increasing the production of
software. The first is to involve more people. This in turn will (in part) involve
making the systems more accessible, that is, making the use of the systems less
"skills-dependent". A second way of improving productivity is to help those that
have the skills to be more efficient, either through the use of intelligent interfaces or
by the use of "unintelligent intelligence amplifiers". This in turn could lead to a
third approach, which is to automise the task completely through automatic program
synthesis.

(a) Making the Systems More Accessible
In a recent series of articles, Enkintrap (1986) suggested that parallelism could

potentially solve many of the problems of computing.
He suggests that there is an "applications backlog". That is. we have now

developed the necessary techniques for many commercial applications but one

30th September 1986

Applications Infra-Structure Environments 40

important factor holding us back is that we do not have enough skilled people to
produce the applications based on these techniques. One way to overcome this
problem is to make machines more accessible to those without skills. Implicitly, he
suggests that advances made in parallelism will contribute to the solution of this
problem: "Software development productivity will always be limited while computers
require system designers to concentrate on the way the machine works, and that in
turn will always be the case while von Neumann architectures are used" (Enkintrap
1986. p.21).

However, in Section 3.1 this conclusion was questioned. One reason is that
parallelism is not going to have a radical effect in the next few years (it will
mostly affect a small number of tasks, or will produce limited improvements in the
speeds of general purpose high level languages). Another reason is that present
developments in parallelism suggest that some parallel languages will be just as hard
(if not considerably harder) to learn and use. It is likely that with languages like
PARLOG, Concurrent Prolog or in programming communicating sequential processors,
the programmer will actually need to know more about the underlying machine than
they would if they had used conventional techniques.

However. Enkintrap is right in suggesting that machines will become more
friendly — but not for some time yet. and not simply because we will have
parallel architectures. The advances will be due in part to making programs much
more efficient: programs operating in parallel should be faster than serial programs.
This will allow interface designers to produce more complex tools or models of
users, etc. This could be called "enabling technology", but the major advances will
come from the theoretical advances made in HCI and AI These will also be
"enabled" by parallelism, i.e., it may help us to produce more complex/appropriate
cognitive models. However, as Sloman (1985) points out, although many features of
human mental functioning are embodied in a massively parallel system, and much of
our mental functioning is likely to have parallel characteristics, we may not need
massively parallel systems to model it or to produce systems (e.g., interfaces) which
use models of it. He suggests that some human mental functioning can be explained
and modelled in much "cruder" forms of parallelism, perhaps in existing parallel
systems or even in simulated parallel systems. Probably the most important factor
will be the fundamental research that needs to be done in HCI in order to
understand the cognitive processes of human users. If this is not done then we will
have yet another backlog — we will have the enabling technology but no theories to
"plug" into it.

Other ways of making AI systems less "skills-dependent" include the
development of high level languages (see below), the development of intelligent
editors (e.g.. Waters. 1982) and the continuing work on high resolution graphics, bit
map screens and pointing devices. Finally, the work in intelligent tutoring systems
may contribute to increased productivity in an indirect manner. One result of this
work (apart from introducing AI into the educational system) will be that we can
produce "skills transfer" much more quickly, efficiently and sensitively than at
present. There are likely to be "AI tutoring systems", Le.» not just systems that
introduce AI techniques to tutoring systems in traditional areas (Maths. English,
Physics, Electronics), but systems which teach AI languages. Most of these systems
are still very experimental, but it is expected that considerable progress will be
made in the next ten years. Also, some exisisting AI development environments
contain "passive", unintelligent tutors. For example the POPLOG environment contains
many tutorial files introducing novices to the system.

30th September 1986

Applications Infrastructure Environments 41

(b) Programmer's Support
A whole spectrum of approaches are, and will be, used in making those who

have AI skills more efficient (some of those mentioned above fall into this category).
At one end of the spectrum is the work being done on providing intelligent tools
for programmers, for example, programmer's apprentices (e.g., CEDAR, Teitelman,
1985; Rich, 1985; Rich & Shrobe, 1978). Other examples include tools for
supporting or automating the task of debugging (e.g. Elsom-Cook & du Boulay,
1986), commenting (e.g.. Rich, 1985) and browsing (e.g. ECO, Robertson et. al.,
1985). This work can be seen as a progression towards automatically synthesising
the job of programmers. The other end of the spectrum includes less intelligent
versions of some of the tools mentioned here — keyword searchers etc. Although
the goal of achieving automatic program synthesis in the next ten years seems very
remote, it is expected that these developments will contribute significantly to
programmer's productivity. Indeed, practical applications of the Programmer's
Apprentice (Rich, 1985) have been found in telecommunications. The SCAT system
transforms descriptions in SDL (Specification Description Langauge) to CHILL (CCITT
High Level programming Language). This partly automates the most crucial phase in
the software development process, i.e., the transition from the project's detailed
specification to the software implementation. This system has already been applied in
the development of message handling in the Italian public packet switching network
(see Barra et al. 1986a, for a review of it's performance, and Barra et al. 1986b,
for a description of the system).

3.2.2. Increasing Relevance

(a) High Level Programming Languages
It is commonly believed that is easier to write programs in high level languages

as they allow a more direct translation between the structure of a task and the
structure of the program. They are also considered to be very easy to debug and
maintain. These features have allowed its to develop applications (e.g., expert
systems) that were not possible in lower level languages. They also provide us with
tools for thinking about complex problems. However, all programming languages
specify objects and procedures to solve a certain set of problems. The characteristics
of high level languages derive from their purpose i.e. to solve AI problems; they
were designed to produce systems that could display intelligent behaviour.

(b) Types of Language
Originally procedural languages like LISP were considered to be general purpose.

However over the last 5-10 years it has been recognised that they are appropriate
for only a limited subset of problems. Some problems are not best solved in terms
of the procedural paradigm; they may be expressed more adequately in terms of
rules (e.g., logic), or in terms of objects passing messages, or in terms of objects and
procedures inheriting properties. These needs have paralleled and motivated the
development of alternative languages such as Prolog and Smalltalk.

Over the next decade, it is expected that work will be done on clarifying the
characteristics of the tasks for which these Languages are best suited. It is also
expected that the popular forms of these languages will be provided in fast single
language environments running on specialised hardware (e.g., the Japanese PSI
machine, Taki et. al., 1984), probably making use of limited parallelism. (See Section
3.1 for a discussion of the speeds of various machines.)

30th September 1986

Applications Infra-Structure Environments 42

However, many of these large machines will be used for software development
work. This means that the question of the facilites provided in the environment will
be as important as the speed of the languages they run. Some relevant technical
issues that should be considered in choosing any AI language system include:
• availability of tracing and debugging tools, including use of saved images;
• links to non-AI languages (e.g., C. Fortran, Pascal) and utilities (e.g. NAG

libraries);
• presence of an integrated editor including "compile marked range" and "output

to editor" facilities;
• good online help and teaching facilities;
• good window/mouse/graphics facilities — for more sophisticated applications;
• provision of library facilities for collaborative development work;
• provision of a library of utility programs;
• access to operating system facilities, including all I/O facilities; pipes, spawning

sub-processes, mail etc.;
• the size of the image — if it is too big, memory costs or paging may be

prohibitive;
• the range of machines and operating systems for which the environment is

available. /

(c) Multi-language Environments
Assuming that development machines will need to be used for many different

tasks, it is likely that multi-language environments will be needed. It is expected
that there will be an increase in the use of multi-language environments like
POPLOG and LOOPS. It is possible that the languages in these environments will
also become faster (perhaps through limited parallelism with hundreds of processors).

Multi-language environments, such as POPLOG allow the software designer to
have an "AI Meccano Set". These are, at present, mostly made up of many tiny
pieces, though in the future it is expected that there will be an increase in the size
and efficiency of these pieces (for example, through the introduction of truth
maintenance packages, production systems etc.).

The major problems with multi-language environments concern the interfaces
between the languages and the problem of porting multi-language programs from the
development environment, such as POPLOG (running on VAXs, GECs, SUNs
workstations, APOLLOs. HP BOBCAT workstations and BLEASDALEs), to target user
machines, which are usually much smaller and cheaper. One way to overcome the
first problem (and, potentially in the future, the second) is to produce a common
underlying virtual machine that supports the basic operations of all the languages
used in the environment (as in the developments in POPLOG). This movement may
also help with the portability problem, since the problems of providing a syntax
transformation "front end" to the environment will mean considerably less work
than hand coding the language from scratch.

Also, over the next few years, progress in hardware development means that
small, cheap machines are becoming very powerful, some being able to run AI
programs. This means that AI software development environments (or some subset of
them) will be available, not only on the large development machines, but also on
smaller cheaper machines such as Ataris and Macintoshs.

30th September 1986

Applications Infra-Structure Environments 43

There are a number of options for making software produced in a development
environment available on small cheap machines (without porting the whole
environment):
• Deliver the program in a saved image without all the (unnecessary)

environment libraries and documentation.

• It may be possible to link together only a subset of the core environemnt,
leaving out those parts not required.

• If the program is written in some simple subset of a language that is already
(or soon will be) available on small machines (e.g., Prolog, LISP. POP-11). then
it amy be possible to simply port the program.

• Develop a full batch compiler for users (for the languages that exist in the
environment). For example, at present, in POPLOG there are tools that translate
POP-11 source code into assembler files, possibly for a different machine. Those
files are used in re-building the POPLOG system, or building a new version on
a new machine. There are plans to package these tools so that they can be used
by software developers to package thier product into a run-time system. It is
hoped that these tools will be available in the next few years, although it does
depend on the availablility of funds.

All these approaches could mean that programs developed on large machines
could be ported (along with the necessary parts of the development environment) to
these smaller cheaper machines. This will allow us to use small, cheap target
machines for programs developed on much larger hardware. There are already
versions of POP-11, LISP and Prolog on the Macintosh, and there are plans to put
some version of POP-11 on the Atari.

Some tasks (e.g., knowledge based systems for low level speech and vision
processing — see Section 3.1) seem suited to the use of parallel architectures. At
present there are very few software development environments specially designed to
aid the designer in producing software for these sorts of tasks. However, it is
likely that we will see the development of sophisticated environments (including
appropriate software support tools) that would be suitable for the development of
software that would run on (for example) array processors. For example, see Bisiani
(1986) for a discussion of the AGORA environment.

(d) Shells Ts Multi-language Environments

High level language environments are obviously not the only tools for building
expert systems. There are two types of tools for constructing expert systems: high
level programming language environments and expert system shells. They both have
advantages and disadvantages (this section draws heavily on Reichelt et. al. 1985).

Shells are designed specifically for expert systems development. They are
usually abstracted from existing systems by taking out the knowledge base contents
which are specific to their original application. It has been assumed that these shells
would be appropriate to a number of tasks. Often this is not true, in particular, the
inference engines are very domain specific. They are now generally considered as
rather inflexible, and they often provide only meagre debugging and explanation
facilities. Progress in the development of other support tools are mentioned in
Section 3.3. on knowledge elicitation.

On the other hand, high level programming environments provide a much lower
level set of tools (and not just for expert systems development). The engineer is left
to construct the basic architecture of expert systems. This gives him the flexibility
of designing the types of representation and inference engine he requires. However,

30th September 1986

Applications Infra-Structure Environments 44

the major problem is that they may present the engineer with too much choice and
too little guidance in deciding what techniques are appropriate; he is also left with
the problem of having to implement these techniques. In other words, he has a
complex Mecanno set but, without wide experience in building models, it is difficult
to conceptualise from the pieces exactly what it is possible to build. There is often
also the problem of having to start from "nuts and bolts" every time he builds a
model. Some environments provide more support than others. For instance, in
POPLOG there exist many documented libraries giving examples of expert systems
and general production interpreters. As mentioned, it is expected that more tools like
these will be added and refined. While these are not always efficient implementations
they give an indication of how to build them and the documentation gives an
indication of the tasks for which they are appropriate.

It is expected that there will be work on identifying the appropriateness of
different types of languages, control strategies and shells for different tasks. Some of
this work has been started, for instance a review of criteria for choosing an
inference engine for expert systems is given by Reichelt et. al., (1985). There are
applications for resources to add more and better higher level components to
POPLOG. There is also interest in developing general software engineering tools based
on knowledge based system techniques. These would be used to aid the programmer
in specifying the problem more clearly.

References

Barra, S. Ghisio, O. & Manucci, F. (1986a). Experience and problems of applications
of automatic translation from SDL specifications into CHILL implementations.
In 6th International Conference on Software Engineering For Telecommunication
Switching Systems. Eindhoven.

Barra, S. Ghisio, O. & Manucci, F. (1986b). SCAT, an automatic-programming tool
for telecommunications software. Proceedings of AAAI '86, 831-835.

Bisiani, R. (1986). A software and hardware environment for developing AI
applications on parallel processors. Proceedings of AAAI '86, 742-747.

Elsom-Cook, M. & du Boulay, B. (1986). A pascal program checker. Proceedings
ECAI f86. VU 2.

Enkintrap (1986). Quiet life falls under revolutionary attack. Computer Weekly, July
3, 1986, 22.

Partridge. D. (1986). Engineering artificial intelligence software. Artificial Intelligence
Review, 1, 27-42.

Reichelt, H. & van Harmelen, F. (1985). Relevant criteria for choosing an inference
engine in expert system. In M. Merry (Ed.) Expert Systems '85: Proceedings of
the Fifth Technical Conference of the British Computer Society Specialist Group on
Expert Systems. C.U.P: Cambridge.

Rich, C. (1985). The programmer's apprentice. In P. Winston. & K. Prendergrast
(Eds.) The AI Business: Commercial Uses of Artificial Intelligence. MIT: Mass.

Rich, C & Shrobe, H.E. (1978). Initial report on a LISP programmer's Apprentice.
IEEE Transactions on Software Engineering, Vol. SE-4, (1).

30th September 1986

Applications Infra-Structure Environments 45

Robertson, D., Muetzelfeldt, R., Plummer, D. & Bundy, A. (1985). The ECO
browser. In M. Merry (Ed.) Expert Systems '85: Proceedings of the Fifth
Technical Conference of the British Computer Society Specialist Group on Expert
Systems. C.U.P: Cambridge.

Sloman. A. (1986). Real time multiple-motive expert systems. In M. Merry (Ed.)
Expert Systems '85: Proceedings of the Fifth Technical Conference of the British
Computer Society Specialist Group on Expert Systems. C.U.P: Cambridge.

Sleeman, D. (1985). The low road, the middle road, and the high road. In P.
Winston & K. Prendergrast (Eds.) The AI Business: Commercial Uses of
Artificial Intelligence. MIT: Mass.

Taki. K. Yokota, M. Yamamoto. A.. Nishikawa, H. Uchida. S. Nakashima. H &
Mitsuishi. A. (1983). Hardware Design and Implementation of Personal
Sequentail Machines (PSI). ICOT: Japan.

Teitlman, W. (1985). A tour through CEDAR. IEEE Transactions on Software
Engineering, Vol. SE-11 (3).

Waters, R.C. (1982). The programmer's apprentice: Knowledge based editing. IEEE
Transactions of Software Engineering. Vol SE-8 (l).

30th September 1986

Applications Infra-Structure Knowledge Elicitation 46

3*3. Knowledge Elicitation
Knowledge elicitation has now been recognised as a non-trivial and important

task in AI In order to provide intelligent systems we need to provide them with
appropriate and well structured knowledge. Therefore, a major challenge will be
producing methods (perhaps computationally supported) of transferring human
knowledge into machines. There are, at present, fairly successful techniques for
eliciting simple empirical knowledge, such as the associations between a series of
symptoms and a diagnosis, for example, interviewing, lectures, protocol analysis,
personal contruct theory and conceptual analysis. Wielinga & Breuker, (1984) and
Brouwer-Janse & Pitt, (1986), provide a review of current techniques. There has also
been some progress towards building computational systems to support the knowledge
engineer, for example. TEIRESIAS (Davis, 1983) helps experts transfer their
knowledge into expert systems, and then aids them in revising individual rules to
guarantee that no important knowledge is missing.

Other systems circumvent any interaction with the expert. This is done through
automatic induction of the rule-set e.g., EXPERTEASE (Freyenfeld, 1984). The major
problem with these systems is that, because they learn from example, care must be
taken in presenting the right rules and possibly in the right order — in some
circumstances this will be an expert's job! However, any progress made in the
domain of machine learning is likely to contribute to this area (see Mitchell et. al.,
1986 for a recent review of the field, or the standard texts by Michalski et al.,
1983, 1986). It is likely that we will produce more automatic induction systems and
understand more about their limitations. It is possible that in specialised areas they
could be of considerable use over the next ten years. However it is likely that the
task of knowledge elicitation will become much harder, and different techniques
(perhaps computational) will need to be developed.

This challenge is accentuated by two related factors. The first concerns the
progress made in AI which is providing the enabling technology for more
sophisticated expert systems. As progress is made in the development of AI
techniques (e.g.. blackboard architectures allowing multiple forms of knowledge
representation and inference, advances in deep representation techniques, reason
maintenance and mixed initiative expert systems etc.), the technical possibilities of
building more sophisticated expert systems may lead to a demand for the elicitation
of more knowledge types. That is, there is clearly a demand for more complex
expert systems, however as the opportunity for building more complex expert
systems arise, the task of eliciting that knowledge may become much harder.
Therefore a major problem will be in developing appropriate knowledge techniques
for these new types of knowledge. Eor instance, it does not seem that Kelly's
"Personal Construct Theory" is an appropriate technique for elicitating knowledge
involved in deep modelling (see Gotts, 1984). De Mantaras et al. (1986) give an
example of the use of Personal Contruct theory in a knowledge based, knowledge
elicitation tool.

The second factor concerns the parallel demands for more sophisticated
performance in expert systems — particularly where widespread professional
acceptability is needed. For example, with medical diagnosis systems, a decision's
acceptance by the doctor, or even the patient will be very important. Part of this
acceptance may depend on the ability of the system to explain and justify its
conclusion.

For instance, as Kidd (1985) points out, users approach tasks with their own
intentions, expectations and constraints; these can significantly affect the choice or
acceptance of an appropriate remedy. She also suggests that an important part of the

30th September 1986

Applications Infra-Structure Knowledge Elicitation 47

giving, and accepting, of appropriate advice from an expert is the negotiation
involved between the expert and consultant. It is likely that if we are to produce
expert systems whose decisions are to be accepted by users in a wide variety of
domains, then we may need to model the users* intentions, expectations, dialogue and
negotiation strategies, etc., in order to provide an acceptable form of interaction and
so that appropriate answers can be given.

More generally, there is a realisation that expert systems should have good
pedagogical and explanatory abilities. Present expert systems have extremely simple
means of explanation (usually an execution trace). In the future, we will have to
produce systems that can reason about their own reasoning, not only so that they
are more flexible, but also so that they can provide more convincing and helpful
explanations.

Therefore, while the results of AI research might in principle be able to satisfy
the demands for increasing sophistication in expert systems, this will only be
possible if we can "fill11 this technology with the appropriate knowledge; this in turn
will depend on whether we can develop adequate knowledge elicitation techniques.

The author knows of little work directly involved in developing knowledge
elicitation techniques for these other forms of knowledge, however, there is research
going on that is relevant to this problem. Gotts (1984) provides a review of deep
knowledge elicitation techniques. Also, the work being done in the application of AI
in education may tell us a lot about how to elicit the expert's explanatory power
(see Yazdani. 1986 for a review of current knowledge based tutoring systems). There
is also a SERC funded research project in the Cognitive Studies Programme at Sussex
on explanation and constructive interaction (contact is Dr. Claire O'Malley). Research
in NLP, particularly recent work on the structure of discourse and language
generation may also contribute to our understanding of the process of negotiation
(see Section 2.2). Kidd (1985) provides some references on other work being done on
negotiation.

References

Brouwer-Janse, M.D. & Pitt, R.B. (1986). Knowledge acquisition: Methodological
issues and problem-solving profiles. Proceedings of ECAI '86, 120-127.

Davis, R. (1983). TEIRESIAS: Experiments in communicatibg with a knowledge based
system. In M.E. Sime & M.J. Coombs (Eds.) Designing for Human-Computer
Communication. Academic Press: London.

Freyenfeld, F.A. (1984). Decision support systems. National Computing Centre.

Gotts. N.M. (1984). Knowledge acquisition for medical expert systems — a review.
AI in Medicine Group Report, AIMG-3 Sussex University.

Kidd. A.L. (1985). What do users ask? — some thoughts on diagnostic advice. In M.
Merry (Ed.) Expert Systems *85: Proceedings of the Fifth Technical Conference
of the British Computer Society Specialist Group on Expert Systems. C.U.P:
Cambridge.

de Mantaras, R.L., Cortes. U., Manero. J.. Plaza, E., Salra. X. & Agusti, J. (1986).
Knowledge elicitation using personal contracts application to document
classification. Proceedings of ECAI '86, 128-134.

30th September 1986

Applications Infra-Structure Knowledge Elicitation 48

Michalski. R.S.. Carbonell. J.G. & Mitchell. T.M. (Eds.) (1986). Machine Learning:
An Artificial Intelligence Approach. Vol. II. Morgan Kaufmann Inc.: Cal.

Michalski. R.S.. Carbonell. J.G. & Mitchell. T.M. (Eds.) (1983). Machine Learning:
An Artificial Intelligence Approach. Vol. I. Morgan Kaufmann Inc.: Cal.

Mitchell. T.M.. Carbonell. J.G. & Michalski. R.S. (Eds.) (1986). Machine Learning, A
Guide to Current Research. Kluwer Academic Publishers: Mass.

Yazdani. M. (1986). Intelligent tutoring systems overview. Artificial Intelligence
Review, 1, 43-52.

Wielenga. R.J. & Breuker. J.A. (1984). Interpretation of verbal data for knowledge
acquisition. T. O'Shea (Ed.) ECAI '84: Advances in Artificial Intelligence.
Elsevier: North Holland.

30th September 1986

