
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

NATURAL LANGUAGE GENERATION FROM PLANS

Chris Mellish

jnitive Science Research Paper

no: CSRP 031

* University of Sussex
piitive Studies Programme
liool of Social Sciences
lmer
ighton BN1 9QN

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

«> J%&n

C

NATURAL LANGUAGE GENERATION FROM PLANS

(Preliminary Progress Report)

Chris Mellish
Cognitive Studies Programme

University of Sussex

1.0 INTRODUCTION AND RATIONALE

As computers become entrusted with increasingly complex tasks and the
necessary software for this becomes increasingly "intelligent", so it becomes
increasingly frequent that decisions and actions taken by machines cannot be
fully comprehended by single human beings. Hence in parallel with the
development of intelligent software there is a need for a corresponding
development of facilities by means of which a machine may explain its actual anc
planned actions in a way comprehensible to a person. One mode in which suet
explanations might be expressed is natural language. However, in spite of the
urgent practical need, as well as the fascinating theoretical questions raisec
by the subject, relatively little work in AI on natural language processing ha«
looked at natural language generation rather than understanding, althougt
perhaps this is changing.

This work aims to produce a system that produces natural language
"explanations11 of plans. Although opinions differ on exactly what a plan is, the
notion of a plan is crucial to problem-solving in a number of areas of AI, foi
instance game playing CWilkins 823 and natural language understanding CWilensk>
833. It is hoped that plans will provide a rich, yet formally delimited, inpul
for a natural language generator. It is also hoped that there are domain-
independent strategies for explaining plans and that therefore the resulting
program can be transferred between domains with relatively little trouble.

A program that can explain plans in natural language could be used in varioui
types of practical systems. First of all, it could be used together with ar
intelligent program to provide explanations of that program's planned actions,
Secondly, it could be used, in conjunction with a planning program, to helj
another agent (probably a human being) to make plans in a complex domain.

As an initial exploration into the problems involved, a first-pass computei
program has been written, which in some sense generates natural language
explanations of plans. The program has been designed with the second kind 01
application in mind. It is currently set up to work with the domain of (a small
subpart of) the POPLOG programming environment CSloman 833. Such a program coulc
eventually form a component of an intelligent "help" system for the POPLOt
system. This paper describes the current program and some of its limitations.

2.0 APPROACHES TO NATURAL LANGUAGE GENERATION

Before the program is described in detail, it is worth summarising some oi
the approaches that have been used in natural language generation systems anc
stating the basic philosophy of this project.

McDonald CMcDonald 833 distinguishes between systems that are grammar
controlled and those that utilise direct production. The distinction here is
whether the program is under the direction of a linguistic component
(hypothesising things that can be said and then checking against the "message")

•in i wi\nu unnuunuL utiicnntivn i rwn

or whether it is under the direction of the "message11 itself (this beincj
"evaluated11 by a special "text generation" evaluator). Systems in the first
category include [Simmons and Slocum 723 and [Goldman 753, whereas the system of
[Swartout 833 would be in the second category. As McDonald points out, direct
production systems are generally ignorant of grammar, and this limits the
smoothness of the output (such systems cannot incorporate general rules about
context and embedding); however, they are probably more directed and efficient
than the grammar-controlled models. We follow McDonald (and [Davey 783) in
adopting something nearer to the direct production approach but introducing an
explicit intermediate grammatical representation.

Given a direct production approach to natural language generation, there is a
decision to be made as to whether the generator should work basically in a "top
down" or a "bottom up" fashion. The system of [Mann and Moore 813 adopts a
bottom-up strategy called "fragment and compose", which involves splitting the
message into small fragments and then finding ways of combining these together.
[McKeOwn 823, on the other hand works from high level plans ("schemas") of whole
paragraphs, finding fragments that can fill the expectations generated by them.
We would like to investigate a top-down approach to language generation, where a
whole paragraph (or text...) is planned in advance. In this way, we hope to be
able to make use of rhetorical strategies such as found by [Weiner 793.

A final question that should be asked about a natural language generator is
to what extent it is supposed to represent a model of human performance.
McDonald has heavily constrained the operations performed by his generator with
psychological constraints in mind. Our object is, instead of striving for 3
psychological model, to strive for the generation of the most "readable" text,
by whatever means are most appropriate. That is, we are interested in producing
a description of how it is possible at all to generate good quality text - whot
knowledge is needed for this and what processes are involved.

3.0 PLANS, STATES AND ACTIONS

This section briefly outlines the representation of plans, states and actions
assumed by the current program. One problem that immediately arises is that,
although they are agreed on the general nature of what a "plan" is, Al
researchers disagree a lot on the details, and a universally accepted formalisn
for plans is therefore not available. Perhaps all that is agreed on is something
like the following rather vague definition (from [Schank and Abelson 773):

"A plan is made up of general information about how actors achieve goals, t
plan explains how a given state or event was prerequisite for, or derivative
from, another state or event"

If planning programs have no uniform organisation, then a general natural
language explainer of plans must make as few assumptions as possible about thenr
output. We have therefore assumed that a planning program generates a desirec
sequence of actions and also provides information about the goal of the plan am
the initial state of the world before the plan is enacted. This is not a plan if
the sense of the above definition, and in order to make sense of it, th<
generator must hypothesise the information that lacks. Thus the program musi
have available general information about actions and their preconditions an<
effects. We have chosen to model the program's knowledge of actions on that use<
by the STRIPS program [Fikes and Nilsson 713. For example, the following migh
be the Prolog clause representing the action of "an agent going to a place1

(such an action does not exist in the P0PL0G domain). (In order to understan*
this paper, it is not necessary to have a full understanding of Prolog. All th<

NATURAL LANGUAGE GENERATION I»KUFI

Prolog clauses presented can be viewed limply as datastructures with various
components. Note, however, that names which start with uppercase letters denote
variables).

operator<go(Agent,Place),
Cat(Agent,PlaceNow),route(PlaceNow,Place)],
Cat(Agent,PlaceNow)],
Cat(Agent,Place)!).

The first line of this clause provides the name of the action. The second
gives the list of preconditions (the agent must be at some place MPlaceNowM and
there must be a route from there to the desired goal). The third gives the
propositions to be "deleted11 from the world when the action is performed, and
the fourth gives the propositions to be added. This example operator illustrates
the fact that actions and states in the domain are represented in a simple logic
notation (no quantification being allowed).

Our program at present distinguishes between two kinds of effects that an
action can produce (whether they be propositions to be added or deleted). These
could be called the primary and secondary effects. With the above operator, the
usual reason for going somewhere is to get to that place, not to get away from
the place one is currently at. Hence the added fact is of primary importance. In
an explanation, one is likely to mention secondary effects only when they are
relevant to the plan; primary effects, on the other hand, are likely to be
mentioned anyway. Primary effects (or "objects11) are represented by the program
by clauses such as the following:

object(go(Agent,Place),at(Agent,Place)).

With this general representation of operators (actions), from a given initial
state of the world and list of desired actions, the program can construct i
triangle table for the plan (see CFikes Hart and Nilsson 723). Indeed this,
rather than the simple sequence of actions, is the representation of the input
that it works with.

Occasionally there may arise in the domain of application complex states anc
actions, or the program may need to reason in terms of such for the purposes o1
planning the text. Here is the simple grammar for states and actions that is
used for this purpose:

STATE ::= Cnot,STATED
Cand,STATE1,STATE2]
Cenabled,ACTION]
Cdone,ACTION]
Cdoing,ACTION]
PRIMITIVE STATE

ACTION ::= Cthen,ACTION1,ACTION2]
Cachieve,STATE]
PRIMITIVE ACTION

STATE is not the case
STATE1 and STATE2 are both true
the preconditions of ACTION are true
ACTION has just been performed
ACTION is currently being performed

doing ACTION1, ACTION2 sequentially
making STATE true

The square brackets notation used here may not be familiar to all readers,
An item like "Land,STATE1,STATE2]11 is used to denote a tree structure, when
"and11 is the label at the top node and "STATEV1 and "STATE211 denote the (only:
two subtrees. Graphically, such a structure might be displayed as:

NATURAL LANGUAGE GENERATION FROM PLANS

| and |
+ +

+ + +

i I
STATE1 STATE2

Although this grammar of states and actions has not been fully investigated
as a formal calculus, there are various equivalences between formulae in this
scheme. For instance:

[achieve,[done,ACTION33 — = ACTION

4.0 THE DOMAIN-DEPENDENT DICTIONARY

Since the program is supposed to be able to "explain11 plans in any domain and
to any person, it must have an extra input which specifies the special features
of the domain under consideration and the person who is receiving the
explanation. This section briefly explains what form that extra input takes,
with some examples. Much of this is currently of an ad-hoc nature.

4.1 Introduction of verbs

It is necessary to specify how primitive states and actions in the domain car
be described in English. This normally involves the introduction of verbs. The
following Prolog clauses illustrate the specification of verbs for an action anc
a state in the POPLOG domain, the action of deleting a file and the state o1
having free space on the disc:

lex(delete(F),delete,[agent:user,obj:F3).
lex(disc_space,have,[agent:user,obj:NP]) :-

NP matches
[corenp = [headnoun = $$space,

postadjs =+ [prep = $$on,
head = 3

3
3.

The first component of such a "lex" structure is the name of the state o
action involved. The second is the verb that can be used to describe it, and th
third is an indication of how surface cases of that verb are to be filled in
This third component can specify that a case (eg "agent11, "obj") can be fille
by a noun phrase denoting a particular individual (eg "user11 - the hearer),
noun phrase denoting an individual mentioned in the state or action (eg "F" i
the "delete" case), or a "canned" noun phrase. The specification after the ":-
in the entry for "disc_space" is a way of specifying the structure of t̂
special phrase "space on the disc" (" " indicates more detail that has nc
been included here). For more information about this notation see 6.4 below.

NATURAL LANGUAGE GENERATION FROM PLANS

4.2 Normal Forms

Sometimes a particular action or state in the domain cannot be expressed in
English as a simple (present tense, active) use of a verb. In this case, it can
be convenient to consider the action or state as a complex object formed from a
hypothesised primitive object that can be expressed as a simple use of a verb
(An example of where this is advantageous is given below). Here are some such
"rewrite rules11 from the POPLOG domain:

rewrite(deleted(F),Ldone,delete(F)3).
rewrite(viewing(F),[doing,lookat(F)3).

Thus, for example, the state fldeleted(F)M is most readily expressed as a passive
sentence - "F has been deleted11. It is related to the primitive action
ltdelete(F)M which can be expressed by a simple use of a verb.

4.3 Noun Phrase Introduction

The problem of how to choose a noun phrase to mention a particular object is
complex, and has not been addressed in this project (so far). Instead, rules are
provided that map every possible referent onto a fixed noun phrase. Here are
some examples:

fill_np(user,NP) :- NP matches Ccorenp = Cpron = $$youD3.
fill_np(temp,NP) :- NP matches

Ccorenp = Cdet - $$the,
adjs =+ $$temporary,
noun = $$file3

3.

Here the referent "user" has been mapped onto the pronoun "you11 and the
referent "temp" has been mapped onto the phrase "the temporary file". More
details about the notation used for these phrases is given below in 6.4.

4.4 User Model

One of the prime advantages of having a general natural language generator,
rather than a system relying on fixed templates, should be that an explanation
generated can be finely tailored to the needs and abilities of the reader. It is
not a prime aim of this work to investigate how a person's knowledge of a
complex domain can be represented, but obviously the generator needs to be
sensitive to this issue. At present, the program's model of the user consists of
fixed knowledge about what things the user finds "obvious" - which actions are
suggested obviously by certain goals, and which results obviously follow from
certain actions. Here is one of the "obviousness" clauses used in the POPLOG
domain:

obviousjresult(select star(X),Cdoing,display(system,star(X))3).

This expresses the fact that it is obvious that if the user marks the name of a
file displayed on his VDU screen with an asterisk, then the system will be
displaying an asterisk in front of the file name. One advantage of having a
natural language generator available is that "obviousness" information can

NATURAL LANGUAGE GENERATION FROM PLANS

actually be obtained in advance by presenting the user with English sentences,
with which (s)he must agree or disagree.

5.0 OVERALL STRUCTURE OF THE PROGRAM

The stages through which the current program works can be conveniently showr
by the following diagram:

Triangle table

\|/ Initial "parsing"
I

"Parse" of plan
I

\|/ "Obviousness11 pruning
i

Simplified "parse11

Choice of "rhetorical strategies"

Discourse structure
i

\|/ Choice of words and sentences

Constituent tree

/ Ordering, morphology

Paragraph(s)
Initially, the triangle table must be "parsed" into a representation when

the program can see the rationale for each particular action. This is a form o
constrained "plan recognition": constrained because the overall goal is given
The idea here is that the hypothetical planner may work in unknown ways, bu
that only certain kinds of rationalisations for actions can be explained by th
generator. It does not matter particularly whether the rationalisation tha
arises is like the one used by the original planner - it suffices that i
provide a complete justification of the actions.

Having obtained a representation of the important structure of the plan
which has involved extracting from the full representation given by the triangl
table, the program still may have a relatively large structure to work with. On
of the central problems of natural language generation is deciding what to leav
out. As Mann and colleagues point out [Mann and Moore 81], "the demands c
smooth text production are incompatible with expression of all of the availabl
information". The second stage of the program involves pruning parts of the pU
that are "obvious" to the reader (in terms of the primitive user model describe
in the last section).

The third stage involves looking at the complexity of the parts of tl
remaining plan structure and making decisions about strategies for explainir
them. For instance, an action that has many complex justifications »
preconditions to be achieved may need to be explained by a whole paragraph, wi*
other explanations nested within it; in simpler cases, whole strings of actioi
can be described by a single sentence. The result of this stage is an outline
the structure of the whole discourse to be produced.

NATURAL LAWtoUAbt A3cnci\nixvn I I W . . • -r,.*w

The discourse structure is now mapped onto a detailed syntactic
^presentation of the text to be generated. This involves recursively working
though the levels of structure, generating constituent trees for the paragraphs
and sentences involved. At the lowest levels, actual sentence forms and lexical
items are selected. However, at this point the constituent trees contain no
ordering information - they are solely a representation of constituent
structure.

The final stage involves producing a linear output from this constituent
tree. This involves introducing ordering and morphology. At present, ordering
rules are stated explicitly for every constituent type; in future versions it
would be advantageous to investigate general ordering principles. For instance,
it might be useful to use the ID/LP framework of GPSG CGazdar and Pullum 82].

6.0 AN EXAMPLE

In order to provide a non-trivial example of the program working, it is
unfortunately necessary to give a brief summary of some relevant features of the
POPLOG domain. The example is concerned with the screen editor, VED. It assumes
that, although it is possible to be editing several files simultaneously, only
one edit "buffer*1 may be displayed on the user's terminal at a given time (the
real VED does not have this restriction). The scenario is as follows:

The user has been editing a file, and wishes to write it (to disc).
Unfortunately, his quota of space on the disc is exhausted, and therefore he
must delete some existing files first. There is a VED command which causes
the user to be presented with an editor buffer showing the names of his
files. Given that, the user can mark the files he wishes to delete and
invoke another command to convert this buffer into a set of operating system
commands to delete the file(s). These commands can then be executed. At this
point, the user is still looking at the (now transformed) directory listing
file. In order to write the original, he must quit this new file and resume
editing the old one.

A relatively naive user of POPLOG might wonder how to react when (s)he receives
an error message on attempting to write the first file. An intelligent HELf
system might produce a plan (essentially as above) for getting the file written,
It could then be explained by a program of the kind presented here.

In terms of our representation of the POPLOG domain, the goal of the plan is:

written(file)

and the triangle table looks as follows. The actions are shown in sequence witl
brief explanatory comments. Before each action is a sequence of lists (delimiter
by 'C1 and '31, with items separated by commas). These lists represent the fact:
that are true just before the action is performed. The last "row" indicate:
those that were true initially and have not changed; the second from last roi
indicates those that became true after the first action, and so on.

[in_ved, viewing(file), vedbuffer(file), lastved(file), file(temp)]

enter_clir ;;; get directory listing

Lviewing(veddir), vedbuffer(veddir), buff_has(veddir,temp),

NATURAL LANGUAGE GENERATION FROM PLANS

lastved(veddir)]
Cin j /ed, vedbuf fer (f i l e) , f i le (temp)]

selectstar(temp) ; ; ; mark f i l e s to be deleted

Cbuff^has(veddir,star(temp))]
CviewTng(veddir), vedbuffer(veddir), lastved(veddir)l
Cinj /ed, vedbuf fe r (f i l e) , f i le (temp)]

enter_del ; ; ; convert to os commands

Cbuff has(veddir,delete(temp))]
LI ~
Cviewing(veddir), vedbuffer(veddir), lastved(veddir)]
[in_ved, vedbuffer(file) / file(temp)]

enter^dodcl ; ; ; execute os commands

Cdeleted(temp), disc_space3
Cbuff has(veddir/delete<temp))3
C3 ""
Cviewing(veddir), vedbufferCveddir), lastved(veddir)3
Cin_ved, vedbuffer(file)3

enter_q ; ; ; quit directory buffer

Cviewing(file), Lastved(file)D
CdeletedCtemp), disc_space3
Cbuff has(veddir,delete(temp))]
C] ""
C]
Cin_^ved, vedbuf fer(f i le)D

enter_w ; ; ; write original f i le

Cwritten(file>3
Cviewing(file), Lastved(file)D
Cdeleted(temp), disc^space]
Cbuff has(veddir,delete(temp))]
G ""
CD
Cin_ved, vedbuffer(file)]

.1 Initial "parsing11

nformation is now extracted from this representation to form a "parsed1

epresentation of the plan, in which justifications for actions are mad
xplicit. This looks as follows:

NATURAL LANGUAGE GENERATION FROM PLANS

|Cdone,write(file):i - enter__w|
I n,ix.Li-iM.»Mi»w»iii 1 — !•- wr f- » -n- -i— -m — ———..X.

I
•—4-—+
|patch|
-i—+—+

x 4. x 4— + +

|disc_space - t3 | | [doing, lookat(f i le)] - C3|
4. + + + —.+ +

1 i
x m x x 4 x x
|£done,delete(temp)3 - enter_dodcl| |Cnot,Cdoing,lookat(veddir)33 - enter_q|

iCdoing/dispLay(system/deLete(temp))3 -

T " T T

ICdoing,display(system/star(temp))1 - seLectstar(temp)|
+ . . + +

I
(Cdoing, Lookat(veddir)!] - enterjdir|

Each node of this tree structure (except the "patch11 annotation) has two
parts (shown separated by a f - f) . The first is a state and the second is an
action. The meaning of the node is that at some point this action needs to be
performed in order that the state be achieved. For the action to be enabled,
however, the states associated with the child nodes must have been achieved (in
the left-right order shown). Sometimes the action is marked empty ("CD"). This
indicates that the resulting state is made true automatically by the performing
of the actions below it in the tree. In the terminology of section 3.0, the
state is a secondary effect of the actions. This plan has a fairly simple
structure: the main action has two preconditions, and the other actions are
parts of "chains11 of actions leading up to the attaining of these subgoals.

The "patch" node in the tree is not really a proper node. It serves as an
annotation, recording the fact that the second subgoal (that of looking at the
file to be written) was already satisfied originally, but has to be resatisfied
because the achieving of the first subgoal (that of getting space in the disc)
has messed it up. This is Sussman's notion of "prerequisite clobbers brother
goal" LSussman 753.

Note that the topmost goal "written(file)" has been rewritten in normal form
"Cdone,write(file)3" (as have all states and actions).

6.2 "Obviousness" Pruning

"Pruning" rules are now applied to this tree, to remove parts that are "obvious"
(in the sense of our crude user model). There are three rules used at present;
here is a schematic representation of them:

NATURAL LANGUAGE GENERATION FROM PLANS

j Result-Act ion | =~> C3-Actionj

1. Obvious Result

+ +
|Result-Action)
+ +

~=> | CD-Cachieve,Result]

2. Obvious Action

|Result-Action)

=>

|Result-Cthen/Act1/Action3|

3. Collapsing of Actions

The Mobvious result11 rule applies if a certain state is an obvious result of
an action. It then simply deletes the state from the description/ with the
implication that it need not be mentioned in the justification. The "obvious
action" rule applies when there is an obvious action to achieve a given goal. Ir
this case, the action is not deleted, but rather is replaced by the (in general
vaguer) action to "achieve the state"; the state need not now be mentioned a;
the result. The program originally simply deleted the action in this case
However, although it is quite possible to leave out descriptions of intermediate
states in an explanation of what to do, leaving out actions results in a strangi
kind of story where states change without any apparent cause. Finally th»
"collapsing of actions" rule collects together sequences of actions that are t<
be performed without mention of intermediate results.

After this "pruning" stage, the plan looks as follows:

NATURAL LANGUAGE GENERATION FROn ru\nz

|Cdone/write(fiLe)3 - enter_w|

I
x x~r+
|patch)
x x +

— ... t - — ••_ »

|disc_space - C3|

A _!""Z-X-"-"-"- +
|Cdone,deLete(temp)3 - enter dodcLj

|Cdoing/dispLay(system/delete(temp))3 - Lthen/selectstar(temp)/enter_deLD|

jLdoing, Lookat(veddir)] - enterjdir|

|Cdoing,Lookat(fiLe)3 - C3| ,

I
|Cnot,Cdoing/lookat(veddir)33 - enter_q|
+ , +

ALL that has happened here is that the obvious resuLt of

Ldoing/dispLay(system/star(temp))3 - seLectstar(temp)

has been deLeted, and the action has been combined with the next action up the
tree (this is the "obviousness11 case discussed in section 4.4). Of course, given
a different representation of what was obvious to the reader, different
operations might have been performed.

6.3 Choice of RhetoricaL Strategies

Having "pruned11 surpLus information from its representation of the pLan, the
program now pLans the overaLL "shape" of the discourse to be generated. For
this it makes use of a simpLe "grammar" for discourses, as foLLows:

DISCOURSE ::= [embed,DISCOURSE!,DISC0URSE2,DISC0URSE3D
Lcontrast_sequence,DISCOURSEi,DISCOURSE23
[sequence,DISCOURSE1,DISCOURSE23
Cdo,ACTION3
CresuLt,ACTION,STATE3
Cprerequisites,ACTI0N,STATE3

NATURAL LANGUAGE GENERATION FROM PLANS

At this stage, the program must Look at patterns in the plan representation
and decide whether they are best expressed as single sentences, sequences of
sentences or perhaps as complex paragraphs, with sub-explanations embedded
within explanations. A state-action pair that has more than one precondition to
be established will generally give rise to an "embed11 structure, where the main
goal is introduced ("DISCOURSE1"), then the subgoals are described
("DISCOURSE?1), then a concluding sentence ("DISC0URSE3") recapitulates on the
achievement of the main goal; a sequence ("chain") of actions, each feeding the
next in a simple way, will generally give rise to a "sequence" structure, where
the first action and its result are described ("DI^COURSEI"), followed by the
others in sequence ("DISC0URSE2"); if there is a "patch" annotation, this might
be changed to a "contrast sequence", where some kind of contrastive conjunction
is needed between the sentences. Here is a simplified representation of one of
the rules used;

|Result - Action) is explained as:
+ +
• • Subtrees

x

TAT
1

Result

IN
-x x

1
1

Preconds

Key: E -
P -
R -
A -

embed
prerequisites
result
achieve

Other IR j

H x—+
i i1 1

Action Result

Example discourse planning rule

Not mentioned in this diagram are the extra conditions: there must be mor
than one subtree, there must not be a "patch" annotation, "Preconds" is th
conjunction of states achieved by the subtrees, and "Other" is the explanatio
generated for the subtrees.

The structures at the base level of the discourse structure generated (abov
the level of (possibly complex) states and actions) are of three possible forms
"Cdo,ACTIOND" involves saying that some ACTION must simply be performec
"[result,ACTION,STATE:r involves a statement that doing a particular ACTIC
causes STATE to result, and "[prerequisites,ACTION,STATED" involves stating th
prerequisites (STATE) for some given ACTION.

The top level of the plan in our example is treated roughly as specified I
the above rule; that is, a structure like the following is generated for th*
part of the plan:

IPI
4-—+—-+
r(f) space

s dir
Icing |

NATURAL LANGUAGE GENERATION FROM PLANS

|E|

-+ +

TsT •++ LI space

|R| I done I

+-+-+ del(t)
|dng|
4--+-+

I +-+ + I
lookat(dir) star(t) e del display(sys/del(t)) I

+ 4- +
C3

Key:

C - contrast_sequence
E - embed
N - not
P - prerequisites
R - result
S - sequence

wr(f)
|dng| I Rl 1 Rl

-+ 4 +-4-
lookat(f) ejq +++ C3 +-+-+

1IM1 |dng|

lookat(f)

lookat(dir)

|dng|

NATURAL LANGUAGE GENERATION FROM PLANS

+++ ... C3

+++ disc space
I Aj

I
written(file)

A straightforward rendering of the "Prerequisites" part of this structure (if
written(file)11 was defined in the domain-dependent dictionary to give rise to
the file has been written") would be something Like:

In order to get the file to have been written, you must have space on the
disc.

ortunately, by expressing Mwritten(file)M in the normal form, in terms of an
ction that can be rendered by a simple use of a verb, this expression can be
implified. That is, since

written(file) = — Cdone/write(file>],

[achieve,written(file)] === write(file)

y the identity discussed in section 3.0. The sentence can therefore come out
s:

In order to write the file, you must have space on the disc.

The result of planning the complete discourse to explain the plan is the
ollowing large structure, where for lack of space the states and actions have
ad to be abbreviated:

NATURAL LANGUAGE GENERATION FROM PLANS

6.4 Choice of Words and Sentences

Our natural language generator works in a strongly "top down11 mode, planning
the structure of the whole explanation and only filling in individual sentences
at the last minute. This has implications for how we organise the process of
choosing actual words and sentences. In general, the global planning of the
discourse might impose quite vague constraints on a sentence. For instance (in a
more advanced system than this), it might be that in a particular sentence the
focus must change from one object to another; this in itself is not enough to
pin down the exact syntactic structure tSidner 793, but it does impose
constraints on what structures can be chosen. On the other hand, it might be
decided (again, in a more advanced system than this) that the sentence must be
in the passive voice in order to have parallel structure with some previous
sentence. In general, these constraints can interact in subtle ways, and one
needs a framework where one can:

(1) record vague information about the syntactic and semantic structure

(2) have immediate consequences of such constraints worked out

(3) have inconsistent constraints detected quickly

Two grammar formalisms have been especially popular with researchers into
computer natural language generation, largely because they allow for the
independent specification of different features of a sentence/ discourse and
provide simple mechanisms for investigating the consequences of such decisions.
They are Systemic Grammar and (more recently) Unification Grammar (this is
Appelt's term CAppelt 823; it is essentially Martin Kay's [Kay 793 Functional
Grammar).

It is very hard to weigh up the advantages and disadvantages of these two
frameworks. Possibly one should adopt Systemic Grammar, as grammars within this
framework are more developed (eg. CWinograd 723, CMann??3). The approach taken
here is inspired largely by Unification Grammar, however, partly because certain
aspects of this were straightforward to implement (much of Kayfs notion of
unification is similar enough to logical unification that it is easy to
implement in Prolog).

In Unification Grammar, one represents information about a particular
sentence by a functional description, which is basically a statement about
attributes of the sentence and their values (the information about a filler will
itself in general be a functional description). The grammar can also be
expressed as a functional description, which may also specify alternative
structures and the necessary sharing of values between different attributes
(possibly in different phrases). Given a partial functional description for a
sentence, the action of matching it against the grammar functional description
("unification11) has the effect of validating the llgrammaticality11 of the
sentence and filling in any attributes whose values follow from those already
given. It is important to note that attributes in a unification grammar may be
of a semantic, as well as a syntactic nature.

McKeownfs CMcKeown 823 use of a unification grammar is essentially as
described above. That is, a partial functional description for a whole sentence
is built and then Hunify"ed with the grammar. This leads to a rather expensive,

NATURAL LANGUAGE GENERATION FROM PLANS

non-deterministic "unification11 process at the end. Our approach is to check
each piece of functional description as it is generated. This may possvbly
involve non-determinism, if a specified description is very vague, but in
general the kinds of descriptions that we want to specify seem not to introduce
choices (especially if the grammar is organised with this in mind). As yet, we
have only a very primitive grammar and can only handle sharing of attributes
between a phrase and its parent, however, and so we do not have a solid basis
for comparison.

Here is a simplified example of a rule for converting from part of the
discourse plan (as above) into a functional description for the text. It
illustrates the notation that we use for functional descriptions and gives an
example of where the global structure dictates certain aspects of a sentence in
advance.

filUCprerequisites,Action,State],Paragraph) :-
Paragraph matches

tconjn = Croot = 'in order1],
first s [mode = non_finite,

aux = pres-to~inf],
rest = Cmode = finite,

aux = pres-must~inf]

a • . . .

This rule states that a "prerequisites" type structure gives rise to a
paragraph with a "first" sentence, a conjunction and a "rest" sentence. The
conjunction is "in order", the first sentence must be non-finite with "to" anc
an infinitive, and the other sentence must be finite with a "must" auxilliary.
An example "paragraph" of this form would be:

In order to make an omellette you must break eggs

6.5 Ordering and Morphology

The functional description (or constituent tree) generated in the last stag*
contains no ordering information. Kay provides a special notation for expressin
ordering constraints in functional grammar, but we have not adopted this
Rather, there are specific rules for each kind of constituent dictating th
order in which the parts should appear. The program therefore recursively walk
round the functional description, generating words according to these stric
rules. It is at this stage that morphological processing is done (although th
program is grossly defective in this respect). One could imagine noticin
parallel structures and introducing conjunction and ellipsis at this point a
well.

Here, at Last, is the "English11 text generated for our example:

in order to write the first file you must have space on the disc, type
ENTER_DIR and you yill be looking at a directory listing, then mark the
temporary file with a asterisk then type ENTERJ&EL and the system will be
displaying delete(temp). then type ENTERJ>ODCL and you will have deleteen
the temporary file, then you will have space on the disc"

however in order to write the first file you must be looking at the first
file, type ENTERJ1 and you will not be looking at a directory listing, then
you will be looking at the first file

There is obviously scope for improving the appearance of this text
cosmetically - for starting sentences with capital letters, having word endings
generated properly and for replacing various "pseudo-words11 with English
expressions. Overall, the text is fairly comprehensible (to somebody fairly
familiar with the pOPLOG domain), although certain features of it suggest that
more radical improvements might be necessary.

7.0 PROBLEMS AND LIMITATIONS

Now that we can examine the output of the program, certain limitations of the
current approach become apparent. The program can actually generate several
alternative "explanations" of a plan (roughly in order of merit), and some of
the problems are only apparent if we look at the "second best" solutions;
nevertheless, some of these features are things that should not be present in
any output of the program. Here is a list of some of the current problems with
the program:

(1) No use of pronouns. Natural discourse makes great use of pronouns and other
anaphoric devices. Because it cannot introduce pronouns, the program can
generate sentences like "in order to write the first file you must be
looking at the first file" which is at best clumsy, at worst misleading. We
plan to introduce focus annotations at the3 first stage of planning of the
overall discourse structure, and hope to capitalise on the work of Grosz
CGrosz 77] for the design of this planning stage. For how to interpret
annotations about the desired focus of given sentences, we hope to
capitalise on the work of Sidner CSidner 793.

(2) Repetition of constructions. It is quite possible for the program to
generate deeply nested explanations using the same format at each level. For
instance, consider the following: "In order to write the first file you must
have space on the disc. In order to have space on the disc you must have
deleted the temporary file. In order to delete the temporary file ...". Such
nested explanations can actually be excluded for this example plan, by
suitable tightening of the discourse planning rules. However, sometimes
explanations do need to be nested. In such cases, the different levels
should be marked by the use of different constructions and suitable
paragraph layout to make the structure clearer. Weiner CWeiner 79] notes the
function of various small words like "anyway" in making clear the structure
of an explanation.

(3) Lack of general information. The reader is told how to solve his particular
problem, but is not given general rules that will help him solve similar

L.HHV3UMV3C OCNCKft I 1 U N

problems in future. The insertion of statements of general rules (according
to the known knowledge of the user) plays an important part in a ̂ ood
explanation. The program needs to be able to explain general rules, and make
use of such strategies as explaining by example (and analogy?). There is no
obvious reason why this should not be possible within the current framework.

(4) Poor generation of NPs. As has been noted, noun phrases are all "canned11 in
the current system. Sometimes they can be replaced by pronouns, as noted
above, but there remain situations where a full noun phrase is needed to
refer to an object. The question arises as to what information should be
used in this description. The descriptions of some objects can be taken from
the goal, for instance "the file to be written11; for other objects (such as
the temporary file used in our example) it is necessary to have some
indication of why they appear in the plan. Perhaps the planner should be
expected to provide more information about this.

(5) Absence of negative commands and warnings. The only actions described are
those that lead to the overall goal being achieved - there is no inclusion
of information about sequences that donft work or sequences * that can have
dangerous consequences (like accidentally marking the wrong file for
deletion). Again, one requires a richer interface with the planner in order
for this information to be available. If the inclusion of information of
this sort is required, then the idea of integrating the natural language
generator with the planner must be taken very seriously.

8.0 REFERENCES

Appelt, D. E., "Planning Natural Language Utterances11, Proceedings of the US
National Conference on Artificial Intelligence, 1982.

Davey, A., Discourse Production; A computer model of some aspects of a speaker,
Edinburgh University Press, 1778.

Fikes, R. E./ Hart, P. E. and Nilsson, N. J., "Learning and Executing
Generalised Robot Plans", Artificial Intelligence 3, 1972.

Fikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving", Artificial Intelligence 2, 1971.

Gazdar, G. and Pullum, G. K., "Generalised Phrase Structure Grammar: /
Theoretical Synopsis", Cognitive Studies Research Paper CSRP 7, Universit)
of Sussex, 1982.

Goldman, N. M., "Conceptual Generation", in Schank, R. C. (Ed), Conceptual
Information Processing, North Holland, 1975.

Grosz, B., "The Representation and Use of Focus in Dialogue Understanding", SR]
Technical Note 151, Menlo Park, California, 1977.

Kay, M., "Functional Grammar", in Procs of the 5th Annual Meeting of th<
Berkeley Linguistics Society, Berkeley, 1979.

McDonald, D. D., "Natural Language Generation as a Computational Problem: At

NATURAL LANGUAGE GENERATION FROM PLANS
3 fiMfiS DDHTM QODT

Introduction", in Brady, M. (Ed) Computational Theories of Discourse, MIT
Press, 1983.

Mann, W. C. and Moore, J. A., "Computer Generation of MuLtiparagraph English
Text11, AJCL Vol 7, No 1, 1981.

McKeown, K. R., "Generating Natural Language Text in Response to Questions about
Database Structure11, PhD Thesis, Computer and Information Science,
University of Pennsylvania, 1982.

Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals and Understanding,
Erlbaum, 1977. ~ ~

Sidner, C. L., "Towards a Theory of Definite Anaphora Comprehension in English
Discourse", PhD Thesis, Artificial Intelligence Laboratory, MIT, 1979.

Simmons, R. F. and Slocum, J. "Generating English Discourse from Semantic
Networks", CACM 15(1972), 891-905.

Sloman, A., "POPLOG: A Multi-Purpose, Multi-Language Program Development
Environment", Cognitive Studies Programme, University of Sussex, 1983.

Sussman, G. J. A Computer Model of Skill Acquisition, Elsevier, 1975.

Swartout, W. R., "XPLAIN: A System for Creating and Explaining Expert Consulting
Programs", Artificial Intelligence 21, 1983.

Weiner, J. L., "The Structure of Natural Explanation: Theory and Application",
Report SP-4035, System Development Corp, 1979.

Wilensky, R., Planning and Understanding: jA Computational Approach to Human
Reasoning, Addison Wesley, 1983.

Wilkins, D. E., "Using Knowledge to Control Tree Searching", Artificial
Intelligence 18, 1982.

Winograd, T., Understanding Natural Language, Academic Press, 1972.

SSX 031 c.1
Mellish, C. S.
Natural language generation
from plans /

MAY 1 6 1988

• #

