NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

« Navls Y
[

)
O\

NATURAL LANGUAGE GENERATI ON FROM PLANS

Chris Mellish

g

jnitive Science Research Paper
~ial no: CSRP 031

¥ University of Sussex g,
P||t|ve Studi es Programe %
i

oo of Social Sciences

| ner
i ghton 'BN1 9QN

DUTY tinbanice nnn.ﬁwq TTMLY

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
PITISBURGH, PENNSYLVANIA 15213

NATURAL LANGUAGE GENERATI ON FROM PLANS
(Prelimnary Progress Report)

- Chris Mellish
Cogni tive Studies Programme
University of Sussex

1.0 I NTRODUCTION AND RATI ONALE

As conputers become entrusted wth increasingly conplex tasks and the
necessary software for this becones increasingly "intelligent", so it becones
increasingly frequent that decisions and actions taken by nmachines cannot be
full?/ conprehended by single human beings. Hence in parallel wth the
devel opment of intelligent software there is a need for a corresponding
devel opment of facilities by means of which a machine may explain its actual anc
planned actions in a way conprehensible to a person. ne mpde in which suet
explanations mght be expressed is natural [anguage. However, in spite of the
urgent practical need, as well as the fascinating theoretical questions raisec
by the subject, relatively little work in Al on natural [anguage processi n% hag
looked at natural language generation rather than understanding, althougt
perhaps this is changing. -

This work aims to produce a system that produces natural I_anguaﬂe
"expl anations' of plans. Although opinions differ on exactly what a plan is, the
notion of a plan is crucial to problemsolving in a nunber of areas of Al, foi
instance game playing CWIlkins 823 and natural |anguage understanding CWIensk>
833. It is hoped that plans will provide a rich, yet formally delimted, inpul
for a natural Iangua?e generator. It is also hoped that there are domain-
i ndependent strategies for explaining plans and that therefore the resulting
program can be transferred between domains with relatively little trouble.

A program that can explain plans in natural | angua?e could be used in varioui
types of practical systems. First of all, it could be used together with ar
intelligent program to provide explanations of that programs planned actions,
Secondly, it could be wused, in conjunction with a planni n? program to helj
anot her agent (probably a human being) to make plans in a conplex domain.

As an initial exploration into the problems involved, a first-pass conputei
pro?ram “has been written, which in sone sense generates natural |anguage
expl anations of plans. The program has been designed with the second kind 01
apglication inmnd. It is currently set up to work with the domain of (a small
supbpart of) the POPLOG programm ng environment CSloman 833. Such a program coul ¢
eventually form a conponent of an intelligent "help" system for the PCPLG
system This paper describes the current program and some of its limtations.

2.0 APPROACHES TO NATURAL LANGUAGE GENERATI ON

Before the programis described in detail, it is worth summarising sone o
the approaches that have been used in natural [anguage generation systems anc
stating the basic philosophy of this project.

MDonald CMDonald 833 distinguishes between systems that are grammar
controlled and those that utilise direct production. The distinction here Is
WRether the prog_ram is under the direction of a linguistic conponent
(hypothesising things that can be said and then checking against the "nessage")

S NI ITVIV e WDNMIITTVUNVRE VLITLIVITAVIF T AWV T LNV

or whether it is under the direction of the '"message" itself (this being
"evaluated" by a special "text generation" evaluator). Systems in the firsc
category include [Simmons and Slocum 72] and [Goldman 75], whereas the system of
[Swartout 831 would be in the second category. As McDonald points out, direct
production systems are generally dignorant of grammar, and this Llimits the
smoothness of the output (such systems cannot incorporate general rules about
context and embedding); however, they are probably more directed and efficient
than the grammar-controlled models. We follow McbDonald (and [Davey 78]) in
adopting something nearer to the direct production approach but dintroducing an
explicit intermediate grammatical representation.

Given a direct production apgroach to natural language generation, there is a
decision to be made as to whether the generator should work basically in a "top

down" or a "bottom up" fashion. The system of [Mann and Moore 81] adopts a
bottom-up strategy called “fragment and compose", which involves splitting the
message into small fragments and then finding ways of combining these together.
[McKeown 821, on the other hand works from high level plans ("schemas™) of whole
paragraphs, finding fragments that can fill the expectations generated by them.
We would Like to investigate a top-down approach to language generation, where a
whole paragraph (or text...) is planned in advance. In this way, we hope to be
able to make use of rhetorical strategies such as found by [Weiner 791].

A final question that should be asked about a natural language generator is
to what extent it 1is supposed to represent a model of human performance.
McDonald has heavily constrained the operations performed by his generator with
psychological constraints 1in mind. Our object is, instead of striving for a
psychological model, to strive for the generation of the most ''readable" text,
by whatever means are most appropriate. That is, we are interested in producing
a description of how it is possible at all to generate good quality text - what
knowledge is needed for this and what processes are involved.

3.0 PLANS, STATES AND ACTIONS

This section briefly outlines the representation of plans, states and actions
assumed by the current program. One problem that immediately arises is that,
although they are agreed on the general nature of what a "plan" s, Al
researchers disagree a Lot on the details, and a universally accepted formalisn
for plans is therefore not available. Perhaps all that is agreed on is something
like the following rather vague definition (from [Schank and Abelson 77]):

"A plan is made up of general information about how actors achieve goals. !/
plan explains how a given state or event was prerequisite for, or derivative
from, another state or event”

If ptanning programs have no uniform organisation, then a general natural
language explainer of plans must make as few assumptions as possible about thei:
output. We have therefore assumed that a planning program generates a desirec
sequence of actions and also provides information about the goal of the plan anc
the initial state of the world before the plan is enacted. This is not a plan it
the sense of the above definition, and in order to make sense of it, the
generator must hypothesise the information that lacks. Thus the program mus!
have available general information about actions and their preconditions an
effects. We have chosen to model the program's knowledge of actions on that use
by the STRIPS program [Fikes and Nilsson 71]. For example, the following migh
be the Prolog clause representing the action of "an agent going to a place
(such an action does not exist in the POPLOG domain). (In order to understan
this paper, it is not necessary to have a full understanding of Prolog. All th

NATURAL LANGUAGE GENERATIUN FRUM FLAND

Prolog clauses presented can be vieuedvéimpty as datastructures with various
components. Note, however, that names which start with uppercase letters denote
variables).

operator(go(Agent,Place),
Cat (Agent,PlaceNow) ,route(PlaceNow,Place)],
Cat (Agent ,PlaceNow)],
Cat (Agent ,Place)]).

The first Lline of this clause provides the name of the action. The second
gives the List of preconditions (the agent must be at some place "PlaceNow" and
there must be a route from there to the desired goal). The third gives the
propositions to be '"deleted" from the world when the action is performed, and
the fourth gives the propositions to be added. This example operator illustrates
the fact that actions and states in the domain are represented in a simple logic
notation (no quantification being allowed).

Our program at present distinguishes between two kinds of effects that an
action can produce (whether they be propositions to be added or deleted). These
could be called the primary and secondary effects. With the above operator, the
usual reason for going somewhere is to get to that place, not to get away from
the place one is currently at. Hence the added fact is of primary importance. In
an explanation, one 1is likely to mention secondary effects only when they are
relevant to the plan; primary effects, on the other hand, are Llikely to be
mentioned anyway. Primary effects (or "objects') are represented by the program
by clauses such as the following:

object(go(Agent ,Place) ,at (Agent , Place)).

With this general representation of operators (actions), from a given initial
state of the world and Llist of desired actions, the program can construct e
triangle table for the plan (see [Fikes Hart and Nilsson 720). Indeed this,
rather than the simple sequence of actions, is the representation of the input
that it works with.

Occasionally there may arise in the domain of application complex states anc
actions, or the program may need to reason in terms of such for the purposes of
planning the text. Here is the simple grammar for states and actions that i
used for this purpose:

STATE ::= [not,STATE] STATE is not the case
[and,STATE1,STATE2] STATE1 and STATEZ2 are both true
[enabled ,ACTION] the preconditions of ACTION are true
[done ,ACTION] ACTION has just been performed
[doing,ACTION] ACTION is currently being performed

PRIMITIVE STATE

ACTION ::= [then, ACTION1,ACTION2] doing ACTION1, ACTION2 sequentially
Lachieve ,STATE] making STATE true
PRIMITIVE ACTION

The square brackets notation used here may not be familiar to all readers
An item Llike "[and,STATE1,STATE2]" 1is used to denote a tree structure, wher
"and" is the label at the top node and "STATE1" and "STATEZ2" denote the (only
two subtrees. Graphically, such a structure might be displayed as:

-

e v L AT ATUTO

NATURAL LANGUAGE GENERATION FROM PLANS

ot
| and|
ot

4 Y
+ +

I I
STATE1 STATE2

Although this grammar of states and actions has not been fully dinvestigatec
as a formal calculus, there are various equivalences between formulae in this
scheme. For instance:

Lachieve ,[done ,ACTION]] === ACTION

4.0 THE DOMAIN~DEPENDENT DICTIONARY

Since the program is supposed to be able to "explain" plans in any domain anc
to any person, it must have an extra input which specifies the special feature:s
of the domain under consideration and the person who 1is receiving the
explanation. This section briefly explains what form that extra input takes,
with some examples. Much of this is currently of an ad-hoc nature.

4.1 Introduction of verbs

It is necessary to specify how primitive states and actions in the domain car
be described in English. This normally involves the introduction of verbs. The
following Prolog clauses illustrate the specification of verbs for an action anc
a state 1in the POPLOG domain, the action of deleting a file and the state of
having free space on the disc:

lex(delete(F) ,delete, Lagent:user,obj:Fl).
lex(disc_space,have ,[agent:user,obj:NP]1) :~
NP matches
Lcorenp = [headnoun = $$space,
postadjs =+ [prep = $%on,
head = .eeeeel
]
1.

The first component of such a "lex" structure is the name of the state o
action involved. The second is the verb that can be used to describe it, and th
third is an indication of how surface cases of that verb are to be filled in
This third component can specify that a case (eg "agent", "obj") can be fille
by a noun phrase denoting a particular individual (eg "user" - the hearer),
noun phrase denoting an individual mentioned in the state or action (eg "F" i
the "delete" case), or a "canned" noun phrase. The specification after the "
in the entry for 'disc_space” 1is a way of specifying the structure of tt
special phrase "space on the disc” ("......" indicates more detail that has nc
been included here). For more information about this notation see 6.4 below.

NATURAL LANGUAGE GENERATION FROM PLANS

4.2 Normal Forns

Soneti‘mes a particular action or state in the domain cannot be expressed in
English as a sinple (present tense, active) use of a verb. In this case, it can
be convenient to consider the action or state as a conplex object formed from a
hypothesised primtive object that can be expressed as a sinple use of a verb
(An exanple of where this is advantageous is given below). Here are sone such
"rewrite rules from the POPLOG domai n:

rewwite%deletedEFg,Ldone,delete(FLB).
rewite(view ng(F),[doing,lookat(F)3).

Thus, for exanple, the state”deleted(F?M is most readily expressed as a passive
sentence - "F has Dbeen del eted"" ~is related to the primtive action
'del ete(F)™ which can be expressed by a sinple use of a verb.

4.3 Noun Phrase Introduction

The problem of how to choose a noun phrase to nention a particular object is
conmpl ex, and has not been addressed in this project (so far). Instead, rules are
provided that map every possible referent onto a fixed noun phrase. Here are
sone exanmpl es:

fill_anuser,NPg .- NP matches Ccorenp = Cpron = $$youD3.
fill_np(tenp,NP) :- NP matches
. Ccorenp = Cdet = $$t he,

adjs =+ $$tenporary,
3 noun = $$file3

Here the referent "user" has been mapped onto the pronoun "you'' and the
referent "tenp" has Deen napPed onto the phrase "the tenporary file". Mre
details about the notation used for these phrases is given below in 6.4.

4.4 User Model

One of the prine advantages of having a general natural |anguage generator
rather than a system relying on fixed templates, should be that an explanation
generated can be finely tailored to the needs and abilities of the reader. It is
not a prime aim of this work to investigate how a person's know edge of a
conpl ex domain can be represented, but obviously the generator needs to be
sensitive to this issue. At present, the program s nodel of the user consists of
fixed know edge about what things the user finds "obvious" - which actions are
suggested obviously by certarn goals, and which results obviously follow from
gertain actions. Here is one of the "obviousness" clauses used in the POPLQC

omai n:

obviousjresul t(select star(X), Cdoing, display(systemstar(X))3).

This expresses the fact that it is obvious that if the user marks the name of a
file displayed on his VDU screen wth an asterisk, then the system wll be
displaring an asterisk in front of the file name. One advantage of having a
natural language generator available is that "obviousness" information can

NATURAL LANGUAGE GENERATION FROM PLANS

al |

ac
' whYc

t# Ee obtained in advance by presenting the user with English sentences,
W t

(s)he must agree or disagree.

5.0 OVERALL STRUCTURE COF THE PROGRAM

The sta?es_through which the current program works can be conveniently show
by the follow ng diagram

Triangle table
\|/ Initial "parsing"
"Parse" of plan
\[/ " Cbvi ousness™ pruni ng
|
Sinpl\ﬁued "par se™
| Choice of "rhetorical strategies"
Di scourse structure
Hb Choice of words and sentences

Cbnstik?ent tree
|/ Ordering, norphol ogy

Par agr aph(s)

Initially, the triangle table nust be "parsed" into a representation when
the program can see the rationale for each particular action. This is a formo
constrained "plan recognition": constrained because the overall goal is given
The idea here is that the hypothetical planner may work in unknown ways, bu
that only certain kinds of rationalisations for actions can be explained by th
generator. It does not matter particularly whether the rationalisation tha
arises is like the one used by the original planner - it suffices that |
provide a conplete justification of the actions.

Having obtained a representation of the inportant structure of the plan
whi ch has involved extracting from the full representation given by the triangl
table, the program still may have a relatively large structure to work with. On
of the central problens of natural |anguage generation is decidinﬂ what to leav
out. As Mann and col | eagues point out [Mann and More 81], "the demands ¢
snmooth text production are inconpatible with expression of all of the availabl
information". The second stage of the program involves pruning parts of the BU
that are "obvious" to the reader (in terms of the primtive user model describe
inthe last section).

The third stage involves looking at the conplexity of the parts of tl
remining plan structure and making decisions about strategies for explainir
them r instance, an action that has mnany conplex justifications »
preconditions to be achieved may need to be explained by a whole paragraph, w*
other explanations nested within it; in sinpler cases, whole strings of actioi
can be described by a single sentence. The result of this stage is an outline
the structure of the whole discourse to be produced

NATURAL LAWtoUAbt A3cnci\nixvn [IW.. e -r,*w

The discourse structure is now mapped onto a detailed syntactic
Apresentation of the text to be generated. This involves recursively working
though the levels of structure, generating constituent trees for the paragraphs

and sentences involved. At the lowest |evels, actual sentence forns and |exica
itens are selected. However, at this point the constituent -trees contain no

ordering information - they are solely a representation of constituent
structure.

The final stage involves producing a |linear output from this constituent
tree. This involves introducing ordering and norphol ogy. At present, ordering
rules are stated explicitly for every constituent type; in future versions it
woul d be advantageous to 1nvestigate general ordering ég; nciples. For instance,
it mght be useful to use the IDLP framework of GPSG CGazdar and Pullum 82].

6.0 AN EXAMPLE

In order to provide a non-trivial exanple of the pro?ram working, it is
unfortunately necessary to give a brief sunmary of some relevant features of the
POPLOG domai n. The exanple s concerned with the screen editor, VED. It assumes
that, although it is possible to be editing several files simultaneously, only
one edit "buffer*! may be displayed on the user's termnal at a given time (the
real VED does not have this restriction). The scenario is as follows:

The user has been editing a file, and wshes to wite it %to disc%.
Unfortunately, his quota of space on the disc is exhausted, and therefore he
nust delete sone existing files first. There is a VED command which causes
the user to be presented wth an editor buffer show ng the names of his
files. Gven that, the user can mark the files he wshes to delete and
invoke another command to convert this buffer into a set of operating system
comands to delete the_flle(sL, These commands can then be executed. At this
point, the user is still looking at the (now transformed) directory listing
file. In order to wite the original, he nust quit this new file and resune
editing the old one.

A relatively naive user of POPLOG mght wonder how to react when (s)he receives
an error nessage on attenpting to wite the first file. An intelligent HAf
system mght produce a plan (essentially as above) for getting the file witten
It could then be explained by a program of the kind presented here.

In terms of our representation of the POPLOG domain, the goal of the plan is:
witten(file)

and the triangle table [ooks as follows. The actions are shown in sequence wtl

brief explanatory comments. Before each action is a sequence of lists (delimter

bK 'C' and '3, ‘with items separated by commas). These lists represent the fact:

that are true just before the action is performed. The last "row' indicate:

those that were true initially and have not changed; the second from last ra
i ndicates those that becane true after the first action, and so on

[inved, viewing(file), vedbuffer(file), lastved(file), file(tenp)]
enter_clir . get directory listing

Lvi ewi ng(veddir), vedbuffer(veddir), buff _has(veddir,tenp),

NATURAL LANGUAGE GENERATION FROM PLANS

lastved(veddir)3
Cin_ved, vedbuffer(file), file(temp)]

selectstar(temp) 35, mark files to be deleted

[buff has(veddir,star(temp))]
Cviewing(veddir), vedbuffer(veddir), lastved(veddir)]
[in_ved, vedbuffer(file), file(temp)]

enter_del 2:: convert to os commands

Lbuff has(veddir,delete(temp))]

03

Lviewing(veddir), vedbuffer(veddir), lastved(veddir)]
[in_ved, vedbuffer(file), file(temp)]

enter_dodcl 22; execute os commands

[deleted(temp), disc_spacel

Cbuff has(veddir,delete(temp))]

0]

Lviewing(veddir), vedbuffer(veddir), lastved(veddir)]
[in_ved, vedbuffer(file)]

enter_q 232 quit directory buffer

Cviewing(file), lastved(file)]
[deleted(temp), disc_spacel
Cbuff has(veddir,delete(temp))]
(]

€]

Lin_ved, vedbuffer(file)l

enter_w ;:; write original file

Cwritten(file)]

Cviewing(file), Lastved(file)]
[deleted(temp), disc_spacel
Cbuff_has(veddir,delete(temp))]
|

(]

[in_ved, vedbuffer(file)l

.1 Initial "parsing"

nformation is now extracted from this representation to
epresentation of the plan, 1in which justifications for
xplicit. This lLooks as follows:

form a 'parsed
actions are mad

NATURAL LANGUAGE GENERATION FROM PLANS

&

[done,write(file)] - enter_w|

+ v

l
W WS
|patch|
e

e 4
h e R
e
+

+—+

+ +

<
v

|disc_space - []
I

[doing,lookat(file)] - [J

+—+
o —
+— 4+

b o—

| Cdone ,delete(temp)] ~ enter_dodcl| |Cnot,Cdoing, lookat(veddir)1] - enter_q|
|
jCdoing,display(system,delete(temp))] - enter_del|
+ + +

l
[doing,display(system,star(temp))] - selectstar(temp)

+

FY

[doing, lookat(veddir)] -~ enter_dir

+—
+ —+

o w—
+—+

Each node of this tree structure (except the "patch" annotation) has two
parts (shown separated by a '-'). The first is a state and the second is an
action. The meaning of the node is that at some point this action needs to be
performed in order that the state be achieved. For the action to be enabled,
however, the states associated with the child nodes must have been achieved (in
the Lleft-right order shown). Sometimes the action is marked empty ("[]"). This
indicates that the resulting state is made true automatically by the performing
of the actions below it in the tree. In the terminology of section 3.0, the
state is a secondary effect of the actions. This plan has a fairly simple
structure: the main action has two preconditions, and the other actions are
parts of "chains'" of actions leading up to the attaining of these subgoals.

The "patch' node in the tree is not really a proper node. It serves as an
annotation, recording the fact that the second subgoal (that of looking at the
file to be written) was already satisfied originally, but has to be resatisfied
because the achieving of the first subgoal (that of getting space in the disc)
has messed it up. This is Sussman's notion of ‘'prerequisite clobbers brother
goal' [Sussman 751.

Note that the topmost goal "written(file)" has been rewritten in normal form
"[done,write(file)]" (as have all states and actions).
6.2 "Obviousness" Pruning

"Pruning" rules are now applied to this tree, to remove parts that are "obvious"
(in the sense of our crude user model). There are three rules used at present;
here is a schematic representation of them:

NATURAL LANGUAGE GENERATION FROM PLANS

. + S — -
j Result-Action| =-> C3- Actionj

+ ¥ m—e————g

1. Oovious Result

+ + + . +
lResuIt-ActionL ~=> | CD- Cachi eve, Resul t]]|

2. Cbvious Action

.

L
+

| Resul t - Acti on)

T

5 3 4
T + +

4 B & 9 8 8 % & B % B @ o e e
[[1-Actl]| ==>
T - ¥

3. Collapsing of Actions

The Yobvious result™ rule applies if a certain state is an obvious result of
an action. It then sinply deletes the state fromthe description, with the
inplication that it need not be mentioned in the justification. The "obvious
action" rule applies when there is an obvious action to achieve a given goal. Ir
this case, the action is not deleted, but rather is replaced by the (in genera
vaguer) action to "achieve the state"; the state need not now be mentioned a
the result. The programoriginally sinply deleted the action in this case
However, although it is quite possible to |eave out descriptions of internediate
states in an explanation of what to do, leaving out actions results in a strangi
kind of story where states change without any apparent cause. Finally th»
"col lapsing of actions" rule collects together se?uences of actions that are t<
be performed without mention of intermediate results

After this "pruning" stage, the plan |ooks as follows:

NATURAL LANGUAGE GENERATION FROM PLAND

<+
h g

[done,write(file)] - enter_w|

s &+
T T

I
O
|patch|
bt

4
+

o —

+ +
+

disc_space - [J

4+ —+
+—+

& —

[done,delete(temp)] - enter_dodcl|
+

a
P
+
+ +
<>
h g
3

.,.
¥

+
|Cdoing,display(system,delete(temp))] - [then,selectstar(temp) enter_dell|
¢ , +

b — e

[doing, lookat(veddir)] - enter_dir

- —
+ — +

+ +
+

{doing,lookat(file)] - []

+—
+— +

o a—

e
hs v

[not,[doing,lookat(veddir)]] - enter_gq

+

+— 4

ALL that has happened here is that the obvious result of
[doing,display(system,star(temp))] - selectstar(temp)

has been deleted, and the action has been combined with the next action up the
tree -(this i1s the "obviousness'" case discussed in section 4.4). Of course, given
a different representation of what was obvious to the reader, different
operations might have been performed.

6.3 Choice of Rhetorical Strategies

Having "pruned" surplus information from its representation of the plan, the
program now plans the overall "shape" of the discourse to be generated. For
this it makes use of a simple "grammar” for discourses, as follows:

DISCOURSE ::= [embed,DISCOURSE1,DISCOURSEZ2,DISCOURSE3]
Lcontrast_sequence,DISCOURSE1,DISCOURSE2]
[sequence,DISCOURSET,DISCOURSE2]
Cdo,ACTION]

[result ,ACTION,STATE]
Lprerequisites,ACTION,STATE]

NATURAL LANGUAGE GENERATI ON FROM PLANS

At this stage, the program nust Look at patterns in the plan representation
and decide whether they are best expressed as single sentences, sequences of
sentences or perhaps as conplex paragraphs, wth sub-explanations enmbedded
within explanations. A state-action pair that has npre than one precondition to
be established will generally give rise to an "enbed" structure, where the main

oal is introduced ("D SCOURSE1"), then the subgoals are described
%"DISCOURSE?%, then a concluding sentence ("Dl SCOURSE3") recapitulates on the
achievement of the nain ?oal; a sequence (“chain") of actions, each feeding the
next in a sinple way, will generally give rise to a "sequence" structure, where
the first action and its result are described ("DI“COURSEI"), followed by the
others in sequence ("DISCOURSE2"); if there is a "patch" annotation, this mght
be changed to a "contrast sequence", where some kind of contrastive conjunction
Iﬁ nee?e betgeen the sentences. Here is a sinplified representation of one of
the rules used;

e
+

lﬁbsult - Actionl is explained as:

« s+ o o = ¢ ¢ Subtrees. . . .

+4+4
13
+++
+;+) i +;f
IN Other IR
+44 +44
e -x2 % H_'X—+ ..
m 1 1 1
Preconds Action Result
+++
1 Key: E - enbed
Resul t P - prerequisites
R - result
A - achieve

Exanpl e discourse planning rule

Not mentioned in this diagram are the extra conditions: there must be nor
than one subtree, there nust not be a "patch" annotation, "Preconds" is th
conjunction of states achieved by the subtrees, and "Cther" is the explanatio
generated for the subtrees.

The structures at the base level of the discourse structure generated ?abov
the level of (possibly conplex) states and actions) are of three possible forns
"Cdo, ACTIOND" 1 nvolves saying that some ACTION nust sinply be perfornmec
"[result, ACTION, STATE:r involves a statement that doing a particular ACTIC
causes STATE to result, and "[prerequisites, ACTI ON, STATED" Involves stating th
prerequisites (STATE) for sone given ACTION. '

The top level of the plan in our exanple is treated roughly as specified |
the above rule; that Is, a structure like the following is generated for th*
part of the plan

NATURAL LANGUAGE GENERATION FROM PLANS

+-+
Icl
+++
+++
|El
+++
+ + ot
++4+ +++ [3
IP| s
+++ +++
e S 3 + + +
r(f) space +++ +4++
ISl IR]
+++ +++
+ + I e
+++ +++ [] space
Isl IR|
+++ +++
$m——— + + temm o
+++ +++ e dodcl t=t==+
IR} IR| | done|
+++ +++ N a3
e S 3 + + + |
e _dir +=4-+ +++ +=+=+ del(t)
| dng| il | dng|
+=+-4+ +++ +=4-+
| s St S |
lookat(dir) star(t) e del display(sys,del(t))

o
+

+++
|E|
+++
+++ +++ [
|P| Is|
+++ +++
fommpmm—t et T +
wr(f) +-+-+ +++ +++
|dng| IR} IR|
+=t+=+ +++ +++
e SR T e
Key: Lookat(f) e q +++ [] +=+-+
IN} fdng|
C - contrast_sequence +4++ $et=+
E - embed |
N - not +=t=+ Llookat (f)
P - prerequisites |dng]
R - result bt~
S - sequence

Lookat(dir)

NATURAL LANGUAGE GENERATION FROM PLANS

++4+
|El
++4
+ + $om——t
++* . - - [J
L4
++4
e
++4+ disc_space
|Al
+H4

written(file)

A straightforward rendering of the "Prerequisites'" part of this structure (if
written(file)" was defined in the domain—-dependent dictionary to give rise to

the file has been written') would be something like:

In order to get the file to have been written, you must have space on the
disc.

ortunately, by expressing "written(file)" in the normal form, in terms of an
ction that can be rendered by a simple use of a verb, this expression can be
implified. That is, since

written(file) === [done,write(file)],

Cachieve ,written(file)] === write(file)

y the identity discussed in section 3.0. The sentence can therefore come out
s:

In order to write the file, you must have space on the disc.
The result of planning the complete discourse to explain the plan 1is the

ollowing Llarge structure, where for lack of space the states and actions have
ad to be abbreviated:

NATURAL LANGUAGE GENERATI ON FRCOM PLANS

6.4 Choice of Wrds and Sentences

Qur natural |anguage generator works in a strongl¥ "top down* node, planning
the structure of the whole explanation and only frlling in individual sentences
at the last mnute. This has inplications for how we organise the process of
choosing actual words and sentences. In general, the global planning of the
di scourse mght inpose quite vague constraints on a sentence. For instance (in a
nore advanced systemthan this), it mght be that in a particular sentence the
focus nust change from one object to another; this in itself is not enough to
pin down the exact syntactic structure tSidner 793, but it does Inpose
constraints on what structures can be chosen. On the other hand, it mght be
decided (again, in a nore advanced systemthan this) that the sentence nust be
in the passive voice in order to have parallel structure wth some previous

sent ence. In general, these constraints can interact in subtle ways, and one
needs a framework where one can:

(1) record vague information about the syntactic and semantic structure
(2) have immediate consequences of such constraints worked out
(3) have inconsistent constraints detected quickly

Two grammar formalisms have been especially popular wth researchers into
conputer natural language generation, largely because they allow for the
i ndependent sPeC|f|cat|on of different features of a sentence/ discourse and
provide sinple mechanisms for investigating the consequences of such decisions.
They are Systemic Gammar and (more recently) Unification Gammr (this is

Appelt's term CAppelt 823; it is essentially Mrtin Kay's [Kay 793 Functiona
Grammar).

It is very hard to weigh up the advantages and disadvantages of these two
frameworks. Possibly one should adopt Systemc Gammar, as grammars within this
framework are nore devel oped (e?. CWnograd 723, CMann??3). The approach taken
here is inspired largely by Unification Ganmar, however, partly because certain
aspects of this were straightforward to inplement (much of Kay's notion of
unification is simlar enough to logical wunification that it 1is easy to
inplenent in Prolog).

In Unification Gammar, one represents information about a particular
sentence by a functional description, which is basically a statenent about
attributes of the sentence and their values (the information about a filler wll
itself in general be a functional description). The grammr can also be
expressed as a functional description, which my also specify alternative
structures and the necessary sharing of values between different attributes
(possibly in different phrases%. Gven a partial functional description for a
sentence, the action of matching it against the mammrfumtnma description
("unification') has the effect “of validating the 'granmaticalit%/11 of the
sentence and filling 1in any attributes whose values follow from those already
given. It is inportant to note that attributes in a unification grammar nmay be
of a semantic, as well as a syntactic nature.

McKeown's CMcKeown 823 use of a unification grammar is essentially as
described above. That is, a partial functional description for a whole sentence
is built and then "unify"ed with the grammar. This leads to a rather expensive,

NATURAL LANGUAGE GENERATION FROM PLANS

non-determnistic "unification™ process at the end. Qur approach is to check
each piece of functional description as it is generated. This my possvbly
involve non-determinism if a specified description is very vague, but in
general the kinds of descriptions that we want to specify seem not to introduce
choices (especially if the grammar is organised with this in mnd). As yet, we
have only a wvery primtive grammar and can only handl e sharing of attributes
between a phrase and its parent, however, and so we do not have a solid basis
for comparison

~ Here is a sinplified exanple of a rule for converting from part of the

discourse plan (as above) into a functional description for the text. It
illustrates the notation that we use for functional descriptions and gives an
eéanple of where the global structure dictates certain aspects of a sentence in
advance.

filUCprerequisites,Action, State], Paragraph)
Paragraph matches
tconjn = Qroot = 'in order?],
first s [node = non finite,
aux = pres-to~inf],
rest = Owde = finite,
aux = pres-nust~inf]

a .

This rule states that a "prerequisites" type structure gives rise to a
paragraph with a "first" sentence, a conjunction and a "rest" sentence. The
conjunction is "in order", the first sentence nust be non-finite with "to" anc
an infinitive, and the other sentence nust be finite with a "nust" auxilliary
An exanple "paragraph" of this form would be:

In order to make an onellette you must break eggs

6.5 Ordering and Morphol ogy

The functional description (or constituent tree) generated in the last stag
contains no ordering information. Kay provides a special notation for expressin
ordering constraints in functional grammar, but we have not adopted this
Rather, there are specific rules for each kind of constituent dictating th
order in which the parts should appear. The program therefore recursively walk
round the functional description, ?enerating words according to these stric
rules. It is at this stage that norphological processing is done (although th
program is grossly defective in this respectJ. (ne could imagine noticin
paT?IIeI structures and introducing conjunction and ellipsis at this point a
we

Here, at Last, is the "English® text generated for our exanple

inorder to wite the first file you nust have space on the disc, tyﬁe
ENTER DIR and you vyill be looking at a directory listing, then mark the
tenporary file wth a asterisk then type ENTERJ&EL and the system will be
di spl aying delete(tenﬁ). then type ENTERJ>ODCL and you will have deleteen
the tenporary file, then you will have space on the disc"

~ however in order to wite the first file you nust be looking at the first
file, tyge ENTERJ1 and ﬁou will not be looking at a directory listing, then
you will be looking at the first file

There is obviously scope for inproving the appearance of this text
cosmetically - for starting sentences with capital letters, having word endings
generated properly and for replacing various "pseudo-words* “with English
expressions. Overall, the text is fairly conprehensible (to somebody fairly
famliar with the pOPLOG domain), although certain features of it suggest that
nore radical inprovenments mght be necessary.

7.0 PROBLEMS AND LI M TATI ONS

Now that we can examne the output of the program certain limtations of the
current approach hecome aPparent. The program can actually generate severa
alternative "explanations" of a plan (roughly in order of merit), and sone of
the problems are only apparent if we look at the "second best" solutions
neverthel ess, some of these features are thin?s that should not be present in
any output of the program Here is a list of some of the current problems wth

e program

(1) No use of pronouns. Natural discourse makes great use of pronouns and other
anaphoric devices. Because it cannot introduce pronouns, the program can
?enerate sentences like "in order to wite the first file you nust be

ooking at the first file" which is at best clumsy, at worst msleading. W
plan to introduce focus annotations at the® first stage of planning of the
overal| discourse structure, and hope to capitalise on the work of G oSz
CGosz 77] for the design of this planning stage. For how to interpret
annotations about the desired focus of given sentences, we hope to
capitalise on the work of Sidner CSidner 793.

(2) Repetition of constructions. It is quite possible for the program tc
generate deeply nested explanations using the same format at each level. For
I nstance, consider the following: "In order to wite the first file you nust
have space on the disc. In order to have space on the disc you nust have
deleted the tenporary file. In order to delete the tenporary file ...". Such
nested explanations can actually be excluded for this exanple plan, by
suitable tightening of the discourse planning rules. However, sonetines
expl anations do need to be nested. In such cases, the different levels
should be mrked by the wuse of different constructions and suitable
paragraph layout to make the structure clearer. Weiner CWiner 79] notes the
function of various small words like "anyway" in making clear the structure
of an explanation.

(3) Lack of general information. The reader is told how to solve his particular
problem ~but is not given general rules that will help him solve sinmlar

TV R LAITUVUAVLEG VLiITLIVATAWVIF T RV T LAY

problems in future. The insertion of statements of general rules (according
to the known knowledge of the wuser) plays an important part in a good
explanation. The program needs to be able to explain general rules, and make
use of such strategies as explaining by example (and analogy?). There is no
obvious reason why this should not be possible within the current framework.

(4) Poor generation of NPs. As has been noted, noun phrases are all 'canned" in
the current system. Sometimes they can be replaced by pronouns, as noted
above, but there remain situations where a full noun phrase is needed to
refer to an object. The question arises as to what information should be
used in this description. The descriptions of some objects can be taken from
the goal, for instance "the file to be written"; for other objects (such as
the temporary file wused in our example) it 4is necessary to have some
indication of why they appear in the plan. Perhaps the planner should be
expected to provide more information about this.

(5) Absence of negative commands and warnings. The only actions described are
those that Lead to the overall goal being achieved - there is no inclusion
of information about sequences that don't work or sequences - that can have
dangerous consequences (like accidentally marking the wrong file for
deletion). Again, one requires a richer interface with the planner in order
for this information to be available. If the inclusion of information of
this sort is required, then the idea of integrating the natural Llanguage
generator with the planner must be taken very seriously.

8.0 REFERENCES

Appelt, D. E., "Planning Natural Language Utterances", Proceedings of the US
National Conference on Artificial Intelligence, 1982.

Davey, A., Discourse Production: A computer model of some aspects of a speaker,
Edinburgh University Press, 1978.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., '"Learning and Executing
Generalised Robot Plans", Artificial Intelligence 3, 1972.

Fikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving", Artificial Intelligence 2, 1971.

Gazdar, G. and Pullum, G. K., "Generalised Phrase Structure Grammar: /
Theoretical Synopsis', Cognitive Studies Research Paper CSRP 7, Universit)
of Sussex, 1982.

Goldman, N. M., "Conceptual Generation", in Schank, R. C. (Ed), Conceptual
Information Processing, North Holland, 1975.

Grosz, B., "The Representation and Use of Focus in Dialogue Understanding'", SRI]
Technical Note 151, Menlo Park, California, 1977.

Kay, M., "Functional Grammar", in Procs of the 5th Annual Meeting of the
Berkeley Linguistics Society, Berkeley, 1979.

Mcbonald, D. D., "Natural Language Generation as a Computational Problem: A

wrueas uaeunce cenenaron eon eeans IIITHINNVINE]

3 8lida 00434 0009

Introduction", in Brady, M. (Ed) Computational Theories of Discourse, MIT
Press, 1983.

Mann, W. C. and Moore, J. A., "Computer Generation of Multiparagraph English
Text", AJCL Vol 7, No 1, 1981.

McKeown, K. R., "Generating Natural Language Text in Response to Questions about
batabase Structure", PhD Thesis, Computer and Information Science,
University of Pennsylvania, 1982.

Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals and Understanding,
Erlbaum, 1977.

Sidner, C. L., "Towards a Theory of Definite Anaphora Comprehension in English
Discourse", PhD Thesis, Artificial Intelligence Laboratory, MIT, 1979.

Simmons, R. F. and Slocum, J. "Generating English Discourse from Semantic
Networks', CACM 15(1972), 891-905.

Sloman, A., "POPLOG: A Multi-Purpose, Multi-Language Program Development
Environment', Cognitive Studies Programme, University of Sussex, 1983.

Sussman, G. J. A Computer Model of Skill Acquisition, Elsevier, 1975.

Swartout, W. R., "XPLAIN: A System for Creating and Explaining Expert Consulting
Programs”, Artificial Intelligence 21, 1983.

Weiner, J. L., "The Structure of Natural Explanation: Theory and Application",
Report SP-4035, System Development Corp, 1979.

Wilensky, R., Planning and Understanding: A Computational Approach to Human
Reasoning, Addison Wesley, 1983.

Wilkins, D. E., "Using Knowledge to Control Tree Searching", Artificial
Intelligence 18, 1982.

Winograd, T., Understanding Natural Language, Academic Press, 1972.

SSX 031 c.1

Mellish, C. S.

Natural language generation
from plans /

MAY 1 6 1988

