
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

*Tt-%*E* F*!—oGt—jai

Roger Evans And Gerald G <a z d a r •*

C o g n i t i v e S t u d i e s Programme

Uni v e r ss i ty o -F Sussex

April 1984

• The order of the authors' names is only coincidental 1y alphabetic: the
first author wrote all of the ProGram code and almost all of the prose;
the second author conceived the project, got the grant, managed the
money, provided the occasional exemplar rule, handled public relations,
devised nroff macros, did the copy editing, designed the cover, and
wrote this footnote.

We are grateful to the SSRC (UK) [Grant HR 7829/13 for the financial
support that made ProGram possible, to our AI colleagues at Sussex whose
POPLOG programming environment made the creation of ProGram almost a
pleasure, and to Andy Clews for the printer driver.

Copyright (?) , University of Sussex, 1984. This document may be copied
for noncommercial purposes, without further permission being sought.

Evans 4 Gaidar -i-

SB*

T h e F̂ r-oOr̂ ŝim M a n u a l

Table of Continti

1, Introduction
I

1.1 Overview 2
1.2 Using the system 5

2 . Grammar Format
7

1.I Feature syntax ~ 7
2.2 Feature aliasing data 9
2.3 ID rules 11

2.3.1 Regular expressions 12
2.3.2 Variables 12
2.3.3 Heads 13

2.4 Metarules 14
2.4.1 Multiset variables 14
2.4.2 Matching 15
2.4.3 Rule names 16

2.5 LP rules 17
2.6 Feature coefficient defaults 18
2.7 Feature cooccurrence restrictions 16
2.8 Root admissibility conditions 19
2.9 The lexicon 19
2.10 Assumptions about the 6PSG formalism 28

3. Normalisation
23

3.1 Normalisation of data modules 23
3.2 Metarule application 30
3.3 The Head Feature Convention 35
3.4 Pro6ram data files 36

3.4.1 USING clauses 36
3.4.2 FROM clauses 38
3.4.3 TO clauses 3B

3.5 Data modules required by commands 39
3.6 Structure of normalised data records 40

3.6.1 ID rules 40
3.6.2 The lexicon 41
3.6.3 LP rules 41
3.6.4 Metarules 42
3.6.5 Feature coefficient defaults 43
3.6.6 Feature cooccurence restrictions 43
3.6.7 Root adnissibi1ity conditions 44

4 . The Parm&r
45

4.1 Parsing modes 45
4.1.1 AUTO node 46
4.1.2 MONITOR node 46
4.1.3 CONTROL mode 47

4.2 The WATCH switch 47
4.3 Summary of the parting switches 47
4.4 Outline of the parsing algorithm 48
4.5 Using the system 49
4.6 Testing a grammar 55
4.7 Displaying parse trees 59
4.6 The SHQWTREE package 62

5. The System
65

5.1 Summary of system commands 65
5.2 Help facilities 66
5.3 Errors, causes and corrections 67

5.3.1 ProSram errors 67
5.3.2 System errors 68

5.4 Switches 69
5.5 Libraries 70

5.5.1 FILTER 71
5.6.2 HORECONHS 72
5.6.3 NEWWQRDS 73

5.6 Customising the system 74
5.7 The lexicon interface 76
5.8 The structure of the file system 78

5.8.1 PROGRAM: the top level 78
5.8.2 CUSTOM: customised libraries 78
5.8.3 DEMO: a demonstration grammar 78
5.8.4 HELP: the help files * 78
5.8.5 LIB; optional system libraries 79
5.8.6 SYS: the main system routines 79

6. A Demonstration Grammar
81

6.1 Features 81
6.2 Aliases 81
6.3 ID rules 83
6.4 Metarules ' 84
6.5 LP rules 84
6.6 Feature coefficient defaults 85
6.7 Feature cooccurrence restrictions 85
6.8 Root admissibi1ity conditions 86
6.9 The lexicon 86

R e -f e r e n c e s
89

A p p e n d i x I s The system under Unix P0PL06
91

A p p e n d i x 2 s Recent implementations of PS6
93

A p p e n d i x 3 s Recent research on NL PSG 's
99

£yans * Gazdar - i i *-

Aval1abilitv

1. This manual is University oi Sussex Cognitive Science Research Paper
35 (CSRP 835) and can be ordered from Ms. Judith Dennison, Cognitive
Studies Programme, Arts E, University of Sussex, Falmer, Brighton BN1
9QN, for 7.50 pounds, including postage and packing.

2. ProGram is part of the standard Sussex POPLOG system and included,
without extra charge, in all academic issues and updates of the POPLOG
system. POPLOG, is available to UK academic users for the sum of 500
pounds (special arrangements apply to holders of SERC AI grants who have
a VAX running Unix) and is already in use at nearly 50 educational
institutions in England and abroad. Existing UK academic POPLOG users
can obtain a free update of the P0PL06 system, one which will include
ProGram, in return for a magnetic tape sent to Mr. Jonathan Laventhol,
POPLOG Group, Arts E, University of Sussex, Falmer, Brighton BN1 9QN.
POPLOG is available for VAX's under VMS, VAX's under Unix, and Bleasdale
BDC 680a's under Unix. It is scheduled to become available on PERQ's and
6EC 63's. Non-educational customers (UK & overseas) who want ProGram
with POPLOG should order it through System Designers Ltd., Systems
House, 1 Pembroke Broadway,. Camberley, Surrey GU15 3XH (0276 62244).
This company makes POPLOG available to educational institutions in the
USA for 995 dollars.

3. Academic users of other Prolog systems can obtain a magnetic tape (in
Unix tar format) of the Prolog code of the ProGram system free, together
with a copy of "The ProGram Manual", provided they pay the tape,
postage, package, and handling costs (35 pounds). Copies can be ordered
from Ms. Alison Mudd, Cognitive Studies Programme, Arts E, University of
Sussex, Brighton BN1 9QN. A chegue for 35 pounds, made payable to "The
University of Sussex", should be enclosed with the order.

3L.J- I ri±:r-€=iciltjicr-t: i o n

ProGram is a suite of Prolog programs that are intended to permit the
design, evaluation, and debugging of computer realizations of phrase
structure grammars for large fragments of natural languages. The grammar
representation language employed, that known as Generalized Phrase
Structure Grammar or GPSG (Gazdar & Pullum 1982 - 'GP82'f henceforth;
6azdar, Klein, Pullua and Sag 1982), it neutral with respect to parsing
or generating sentences, and is capable of being used with a variety of
programs. ProGram is thus a graifiar interpreter, where the latter is, in
this instance, construed as a software tool, namely a grammar
development system for ute by linguists or computer scientists
developing GPSG's for large fragments of natural languages.

All the major parts of the grammar interpreter code are written in
standard Prolog (see Clocksin & Hellish 1981), at provided within the
POPLOG fliultilanguage program development environment (Hardy 1982, Hardy
& Sloman 1982, Hellish fc Hardy 1983). Only specialized optional modules
(for example the tree drawing package) have been written in PQP11. This
is intended to maximise the portability of the main grammar development
system, especially overseas where most relevant sites now have Prolog
available, but usually not P0P11. Installation of the system should be
fairly simple on any machine of moderate size which supports Prolog.

We decided that the most perspicuous way of arriving at a grammatical
representation language that would be entirely neutral with rtspect to
the computational uses to which the grammar might subsequently be put
was simply to build a grammar interpreter that would interpret the
extant GPSG formalism in more or less exactly the way it was normally
written (including all the abbreviatory and alias devices beloved of
generative linguists). This decision means that linguists who can
understand the GPSG formalism, but are quite naive computationally, can
use the system immediately without the need to learn an additional
grammar representation language.

The standard 6PS6 grammar notation employed in the project is entirely
noncommittal with respect to the potential uses to which the grammar
•iQht be put, e.g. as a component of a sentence generator, recogniser or
parser. And it is also noncommittal within these uses. So, for example,
nothing in the grammar format (as opposed to the structure of the
grammar itself) forces a parsing utilisation to be top-down rather than
bottoi-up, or left-right rather than right-left.

This neutrality also extends to the programming language environment.
Although ProGram is written in Prolog, that fact does not in itself
require that programs which use grammars developed with the Pro6rai
system must be written in Prolog. No language-specific features of
Prolog are exploited in the grammar formalism proper (in contrast to,
e.g., Direct Clause Grammars (Pereira fc Warren 1980)). Thus, for
example, a grammar could be developed and debugged with Pro6ram, and
then used, in its normalised form, by a chart parser written in POP11 or
LISP, say.

Evans 4 Gazdar -i~

Introduction The ProGnw hinuil. Chapter 1

There are two motivations for this the neutrality of the representation,
one theoretical, the other practical. The GPSG framework is a theory
about the structure of languages, it is not, in itself, a theory about
how languages are produced, parsed or learned. In adapting the GPSG
notation to a for* in which it can be accessed as a component of
possible theories of production, parsing, or grammatical inference, it
is essential to ensure that the conversion process does not augment it
with gratuitous biases in respect of such theories. The practical
motivation isf of course, that a grammar format that is maximally
neutral with respect to application and language environment is likely
to attract the widest possible range of users.

1»1

The Pro6ra» grattar development system is a collection of utility
programs designed to aid the creation, debugging, and testing of phrase
structure grammars for natural languages written within the notational
conventions of GPSG. The 6PS6 framework it a formally precise, yet
powerful and practical grammar representation language, one which has
already been adopted by a big Hewlett Packard research project (Gawron
et al. 1982) for the syntactic basis of a natural language understanding
system. The specification of a 6PSG grammar has a number of components
which interact in complicated ways, and a GPSG grammar defines large and
complex structural analyses. Thus the task of ensuring manually that a
given grammar behaves as expected, assigning all and only the correct
structures to any given phrase, is both time-consuming and prone to
error.

The ProGram grammar development system is a computational tool to help
overcome these problems. As such it can be of use both to the
theoretical linguist who wishes to examine the behaviour of a grammar,
and to the applied computational linguist, who is concerned that the
grammar to be incorporated in an language understanding system or a
language production system is internally consistent and incapable of
assigning spurious analyses.

The system allows the complete specification of a grammar, from feature
syntax upwards, in a form essentially identical to that given in GPB2,
including ID rules, LP rules, metarules, feature defaults, etc., subject
only to a few constraints on the features of special significance to the
theory (HEAD, FOOT, etc.). The initial processing of this grammar
includes wellformedness checks on the specification (for example, every
category - a feature tree - must conform to the feature syntax
specifications), but the main testing function of the system is a parser
which can be interactively controlled, allowing specific bugs in the the
user's grammar to be located and examined quickly.

The parser has three modes of operations in automatic mode, the parser
runs without intervention from the user, stopping either at the first
parse found, or doing an exhaustive search for all parses. In monitor
mode, the parse proceeds automatically, but checks with the user every
time it makes a major decision (for example, what rule to apply). The
user may accept the decision, reject it completely, or ask for
alternatives, before the parser continues. In control mode, the parser
asks the user to actually make the major decisions. For example, the
user will be asked which rule to attempt to apply next. The system then

A Gaidar -2- April t984

Introduction The ProGraw Manual, Chapter 1

proceeds, and r if the attempt fails, it products diagnostic information
(for example, 'Foot Feature Convention failed').

These three modes, the ability to select only a particular subset of
input data (ID rules, etc.), the possibility of tracing the parse, and
the clear presentation of the resulting structure, combine to make the
system a flexible and useful grammar-testing tool.

A 6PS6 grammar, as far as Pro6ram is concerned, has up to nine
components as follows:

1. Specification of feature syntax.
2. Iaetdiate doeinance rules (ID rules).
3. Hetirules which operate on the ID rules.
4. Linear precedence rules (LP rules).
5. Feature coefficient default values (FCD's).
L Feature cooccurrence restrictions (FCR's).
7. Feature aliasing data.
8. Root, adeissibility conditions (RAC'i).
9. A lexicon.

Of these, the first six ^re exactly as characterized in the GPSG
literature (see, e.g., GP62) and are discussed in chapter 2, below.

The feature aliasing data allows abbreviation of feature expressions, so
that, for instance, a grammar writer can write S instead of, perhaps,
CCAT1, [CAT, CBAft',21, CHEAD, tMAJOR, *V, -N3333 which is likely to be
the full, unabbreviated, 6PSG form of' tht sentence category. Clearly,
this makes rule specification and the like simpler and more readable.

The root admissibility conditions allow the grammar writer to place
restrictions on the sort of category which is acceptable as the root of
a parse tree.

The lexicon provides a way of establishing a simple correspondence
between words and the parts of speech to which they belong. However,
provision is also made for a more sophisticated lexicon.

ProGram operates in two phases: data normalisation and parsing. The
grammar components as specified above must all be normalised before they
are used for parsing. Normalisation consists of translating the alias
abbreviations (as above) and checking for valid feature specification
(according to the feature syntax provided) and for valid datum (ID rule,
metarule, etc.) specification. Various error messages and warnings may
be produced during normalisation and these can then be corrected as
necessary * usually only the data module concerned needs renormalising.

Parsing provides the main investigative function of the system. The
parser uses the normalised data produced in the manner described above,
and parses successive strinos of words. All the major conventions
described in the GPSG literature are implemented, including the Head
Feature Convention, the Foot Feature Principle (and hence SLASH
categories, etc.), the Control Agreement Principle, the Conjunct
Realization Principle, lexical subcateqorization and rule instantiation
incorporating the notion of privilege.

Evans 4 Cazdar -J-

Introduction The ProGnw Manual* Chapter 1

ProGram provides the user with various means of displaying trees, the
most perspicuous of these (only available under POPLOG) provides screen
(and printer) output in the for* exemplified below.

Cnpl

[< n b l (5) } [

man

Note that in the parse tree above, the nodes are labelled with the names
of the rules which expand then, not with their category label. This is
partly because in developing a grammar it is usually more useful to know
what rule is responsible for a node than it is to know what its gross
category is, and partly because the category label in a 6PS6 is itself a
tree of a features, and not a simple monadic category name. To see the
category associated with a particular node, one simply moves the cursor
to the node and presses the VED PUSH key. The VDU will then display the
structure of the category. Thus, for example, if we were to inspect the
internal structure of the node labelled VP4 in the example above, then
the system would display the following feature tree.

unspec

The v a r i o u s o p t i o n s a v a i l a b l e during pars ing i n c l u d e :

1. Reading sentences from teriinai or data file.
2. Writing parse trees to terminal or data file.
3. Displaying parse trees on teriinai in a readable fonat.
4. Finding first parse only, or all parses.
5. Parsing completely autoiaticaily.
6. Parsino with user advising at all crucial decisions.
7. Parsing «ith user in complete control over choices.
8. Tracing the operation of the parser.

Evans & Gazdar -4- April 1984

Introduction The ProGn* Manual, Chapter I

Using these options, the grammar writer can see, for example, what the
parser is doing (in particular, perhaps, see where it is going wrong) or
force the parser to try particular rules, either to produce unlikely
parses more quickly than by exhaustive search, or to attempt to force
wrong analyses. Furthermore, in control node, the parser reports the
reasons for failure when any particular user-selection fails.

ProGram is currently equipped with a simple demonstration grammar
designed to illustrate the various features of the system. Subsequent
releases of the system may include a larger grammar covering a
significant portion of the syntactic constructs of English, and designed
to provide a basis for serious research into English syntax, or to
provide a grammatical foundation for computational systems intended to
parse or produce English.

1,2 U s i n g t h e » y « t e m

This section describes the basic mechanics of how to use the ProSram
grammar development system. It assumes the user has written a grammar
and wishes to use ProGram to develop and test it. It also assumes the
user has created text files containing the various components of the
system using local editing utilities (e.g. VED in POPLOS). For full
details of how the grammar should be represented, see chapter 2.

Details of how ProGram is loaded will be found in the help file LOCAL -
these depend on the local setup. Several messages may (or may not) be
displayed during the loading sequence. When the system is ready to use,
the following messages will be displayed:

ProGram 6rammar Development System
Version 1, 29/4/84

(For help information type: help. >

The '?-' is the Prolog prompt. It means the system is waiting for the
user to type something. In some systems it may be different (e.g. ' : - ') ,
in some systems it may vary according to whether it is at 'command
level' or inside a program (when it may become, for example, ' I : ') . Your
Prolog reference manual will have details.

In this case, the '?-' means that the system is waiting for a command. A
command consists of one or more words followed by a period. In ProGram,
the first word is the main command and may be modified with additional
data specification clauses. See chapter 5 for a list of the commands
available, and chapter 3 for details of the data clauses.

In order to test the grammar, the user must first normalise all the
components. See chapter 3 for full details. The first command might be;

nomid from myrules.

Evtns * Gzzdar -5- Aoril 1984

Introduction The ProGraw Manual, Chapter 1

This says 'normalise the ID rules in the data file HYRULES' (which the
user has previously created as specified in chapter 2) . The normalised
rules are simply displayed on the screen, and any errors detected are
reported. If there are errors (see chapter 5) , the text file MYRULES
should be edited and then the command tried again. When there are no
errors* the data can be safely saved by giving the command:

noraid fron myrules to normdat.

This command normalises as before, but saves the results in a file
called NORHDAT (which it creates if necessary).

A similar procedure must be undertaken to normalise all the components
of the grammar, using the commands NORhLEX (normalise lexical category
rules), NORMLP (normalised LP rules), etc.

At various times during these commands messages like

(loading normrules)

Hill appear. These are just to inform the user that system modules are
being loaded (and hence there is a slight delay) and can be safely
ignored. Also, the system may ask for the names of 'background' data
files (as discussed in chapter 3) . For example if the command given
above really is the first command of the session, then the data filet
FEATURES and ALIASES Mill be requested. This could have been avoided by
typing the command asi

normid from myrules using myfeats for
features using myalias for aliases.

It is quite permissible for commands to be spread across several lines,
as long as words are not broken by line boundaries. The computer will
continue to prompt for more until a period is typed.

If you mistype a command, or type a command which is not understood, the
system will either produce an error, or else respond with 'no' and a new
prompt. At the end of commands which are executed successfully, the
system types 'yes' before the next prompt. Another prompt without a YES,
NO or an error, probably means the period has been omitted. This can be
corrected simply by typing a period.

Having normalised all the data, the grammar can be tested using the
PARSE command (see chapter 4 for more details). Other utility commands
may also be given whenever the system is at command level.

Note finally that, throughout this manual, terms which have a special
significance to Pro6ram (e.g. commands, filenames, features, etc.)
appear in upper case within the text. In the Prolog code itself, these
terms (with the sole exception of Prolog variables) appear in lower
case. Explicitly quoted expressions, and examples of interaction with
the system (the latter being inset, usually), will appear in lower case.

Evans 4 Gaidar -6- April 1984

HZ m

This chapter describes the format of a grammar for use with Pro6ram. As
data for a Prolog program, the various parts must conform to Prolog's
syntactic requirements (subject to operator declarations made in the
system or by a user with knowledge of both Prolog and the system), and
all the examples shown below do so conform except that items in angle
brackets (< >) refer objects defined elsewhere and should not be
taken literally. This file does not provide full details of Prolog
syntax (for that, see Clocksin and Hellish, 1981) f in fact, the topic is
neglected except by example. However, the following point is of
particular importance: the Prolog convention about variable names is
that any word starting with an upper case letter is assumed to be a
Prolog variable. Prolog variables have a place in the grammar
specification, only in the case of ALIASES, as detailed below, but in
general, feature names, rule names, etc., are constants and so must not
start with an upper case letter,

A grammar may have up to nine components as listed below?

1. Specification of feature syntax.
2. Feature aliasing data.
3. Immediate Dominance rults (ID rules).
4. Metarules which operate on the ID rules.
5. Linear precedence rules (LP rules).
6. Feature coefficient default values (FCD's).
7. Feature cooccurrence restrictions (FCR's).
8. Root adunsibilty conditions (RAC's).
9. A lexicon,.

Not all of these components are compulsory, in fact (2) is purely a
notational convenience (but it is very convenient). There follows a
section on each component, and it is assumed for simplicity that each
component will be a separate data filt. This is not strictly necessary
as the system allows the user to concatenate files and filter output
data from them.

2.1 F e a t u r e nvntax

The specification of feature syntax consists of a collection of
assertions of three types:

feature <feature spec),
boolean <feature name),
syncat <feature name>.

The first of these defines the coefficients of a feature in a form very
similar to that used in GPB2: a <feature spec> is a list (enclosed in
square brackets ([...]) whose first element is a <feature name> and
whose other elements »re either single (feature name>'s or lists of
alternatives, enclosed in braces ({ ... >)• A <feature name) is a Prolog
atom, e.g. a word (one not starting with a capital letter), a number or
a word followed by a number.

f 1/ an c X /%

Fortit The ProGraw Kanuai, Chapter 2

A feature specifications defines all the coefficients the feature can
take (by giving the nates of the features which may occur). Here are
some examples of feature specifications:

feature [cat,bar,head].
feature [bar, {lexical, 1,2,3}3.
feature [head,major ,{ttnse,case}]«

A FEATURE is a tret (as described in 6PB2) which conforms to the feature
specifications, that is, a feature is a list whose first element is a
<feature name) and whose other fitments (if any) are all features
permitted by the feature specification for that <ftaturt name). The
three specifications above periit all the following features (and more):

[bar, [lexical]] (can choose any one of the options)
[bar, [1]]
[head,[cast],[major]] (order of coefficients is irrelevant)
[cat] (coefficients are optional)
[foo] (not specified means 'no coefficients')
[cat, [bar,[l]],[head9[*ajor],(agr]]]

As is apparent, these features can get quite cumbersome so the system
has some built in conventions about features. One of them we have seen
above - if a feature (FOO, say) is not specified its definition is
assumed to be

feature [foo].

This was done with FOO above, but also with LEXICAL, 1, 2, 3, CASE, A6R,
MAJOR * in fact all the leaf values in the feature trees. A second
convention was not employed above: if a bare <feature name) is
encountered where a feature is expected, it is assumed to be the feature
of that name with no coefficients specified e.g. foo can be used for
[foo]. This is very useful for readability, not to mention bracket-
counting. The list of examples above could have been written as follows:

[bar, lexical]
[bar, 1]
[head,case,major]
cat
foo
[cat, [bar,1],[head,major,agr]]

The second type of feature definition, BOOLEAN, is also in abbreviation,
but with an additional notational convenience thrown in. The assertion:

boolean <feature name),

is equivalent to

feature [<feature name), •, -3.

but + and * are treated specially in the system, to allow you to use
then as prefixes. Thus if we add the following to our definitions above:

X ft > * A i

Graaiar Forwat The ProGraw Manual, Chapter 2

feature [major, n,v].
boolean n.
boolean v.

we are now allowed features of the following sort:

[cat, [head, [major, [+n,-v3333
[head, [majorf-v3,agr3.

There is one further convention built in to the system. It is often
desirable to specify the absence of a coefficient in t feature. Thus
far, this is not easy to do - it cannot be just left out since that
ieans 'unspecified' not 'absent' and during parsing, for instance, the
head feature convention might decide to specify a value for it. So the
system allows the use of the prefix * to mean absence. For example:

Chead, [major,-v3

This 'extra value
coefficients etc.

is available for
they are supposed

all features,
to take.

regardless of how many

Finally the assertion

syncat <feature name>.

This is used by the rule handling routines to decide whether a feature
may be used as a syntactic category or not. Any feature whose <feature
name) is declared as a SVNCAT may be sed in an ID rule (etc.). Any
other sort of feature gives an error.

2»2 Feature aliasing data

In section 2.1, a few feature definitions
example. They are repeated here:

feature [cat,bar,head],
feature [bar, {lexicalf1,2,3}].
feature [head,major,<agr,case)3.
feature [major, n,v3.
boolean n.
boolean v.

were provided by way of

This is, approximately, a small part of the
are some examples of common categories
syntax:

syntax given in
expressed using

GP82. Here
this feature

np *
verb *
s =
etc.

[cat,[bar,23,[head,[major,+n,-v 3 3 3
[cat,[bar,lexical],[head,[major,+v,-n] 3]
[cat,[bar,23,[head,[major,+v,-n3 3 3

To produce a grammar of any size using these longwinded feature names
would be laborious at best and the result would be largely
incomprehensible. So ProGram provides a mechanism for abbreviating them
* ALIASES. In the simplest case, an alias definition looks like this:

Evans 4 Gazdar -9- At\r i f

ffraitar Format The ProGraw tfanuai. Chapter 2

a l i a s (< a l i a s > , < f e a t u r e >) .

An alias in its simplest form just t e l l s the system that a p a r t i c u l a r
word (the <alias> above) it goinq to be used as an a b b r e v i a t i o n for a
feature (the <feature> a b o v e) . Given these three a l i a s e s :

a l i a s (n p , [c a t , [b a r , 2] , [h e a d , [< n a j o r , + n , - v l]]) .
a l i a s f v e r b , [c a t , [b a r , l e x i c a l] , [h e a d , [m a j o r , + v , - n 3 3 3) .
al i a s (s f [cat, [bar ,2] , [head, [major , •vf-n-3 3 1) .

the grammar writer could freely use NP, VERB, and S in the rules of the
grammar and the system itself would make all the relevant s u b s t i t u t i o n .

By making use of Prolog v a r i a b l e s and t e r m s , tht a l i a s i n g can be made
even more h e l p f u l . A Prolog v a r i a b l e is denoted by a word that s t a r t s
witha upper case letter and serves to bind together p a r t s of a
d e f i n i t i o n or assertion without a c t u a l l y s p e c i f y i n g any v a l u e . Prolog
terms are more complex e x p r e s s i o n s than the simple words used up to now
and are written in functional n o t a t i o n i.e. as a f u n c t o r , which must be
a word (not a v a r i a b l e) followed by one or more a r g u m e n t s (enclosed in
p a r e n t h e s e s) where each argument is itself a v a r i a b l e , a word (or
number, e t c .) or a term. The use of Prolog terms in aliasing is best
shown by e x a m p l e ;

a l i a s (h (L) , [c a t , [b a r , L 3 , [h e a d , m a j o r 3]) .
a l i a s < n (L , A g r) , t e a t , [b a r , L 3 , [h e a d , [m a j o r , + n , - v 3 , [a g r f A g r 3 3 1 > .

The first of these is an a l i a s for a generic HEAD f e a t u r e (unspecifed
major c o e f f i c i e n t s - see G P 8 2) , the v a r i a b l e L is used to specify the
bar l e v e l . The way to think of this v a r i a b l e behaving is like t h i s :

L has no value specified (i.e. it is a v a r i a b l e) , but the alias
is only valid for t e r m / f e a t u r e pairs with the same value (the
'value' of L) for all o c c u r r e n c e s of L.

Thus this first alias a l l o w s the use of H (L E X I C A L) , H (l) , H (2) , H(3) in
the grammar rules (actually it also a l l o w s silly v a l u e s - e.g. H (F O Q) -
but the f e a t u r e syntax checker will reject such invalid c o e f f i c e n t s for
B A R) .

In the second alias a b o v e , two v a r i a b l e s have been used, to allow
s p e c i f i c a t i o n of bar level and agreement f e a t u r e s t h u s , for e x a m p l e ,
N (2 , S I N B) now means a singular NP.

A l i a s e s may also be applied to other a l i a s e s . For e x a m p l e , s u p p o s e the
following alias was added to t h o s e a b o v e :

a l i a s (h , h (l e x i c a l)) .

This would allow the use of H to stand for [C A T , [B A R , L E X I C A L] ,
[H E A D , M A J O R]] via two alias a s s e r t i o n s .

Aliasing in fact a l l o w s the c o m p l e t e power of Proloq for decoding
a l i a s e s , and it is applied r e p e a t e d l y wherever p o s s i b l e (including
s u b f e a t u r e s) • A competent Prolog programmer can make use of this for
more involved a b b r e v i a t i o n s . The d e m o n s t r a t i o n grammars make use of a
few of these nor advanced f e a t u r e s , in p a r t i c u l a r , it is p o s s i b l e to

Evans 4 Gazdar -10- April 19S4

Granar Forwat The ProCraw Harmal, Chapter 2

provide an alias for the SLASH notation (S/NP), etc. - see 6.2.

2 . 3 ID r u l e s

The basic format for specifying immediate dominance rules is as follows:

<name> x <cat> --> <cat>, ,<cat>.

Here <na«e> is the name of the ID rule, and <cat> is a syntactic
category, i.e» a feature/alias specification as above. There can be as
many categories on the right-hand-side as desired, separated by commas
and terminated by a period.

The <name> is a valid Prolog term, usually a word, number or a functor
with one or two arguments. Examples of ID rules aret

vptr? [cat, [bar, 13, [head,[major,+v,-n333 -->
[cat, [bar,lexical],[head,[majorf+v,-n3 3] ,
[cat, [bar,23,[head,[major,+n,-v333.

si: s — > np, vp.
np (propn): np — > n.

In the first, a rule for a transitive vp, no aliases are used, and it is
quite cumbersome. In the second, alaises for s, np, vp are used to make
things tidier. The third rule also uses aliases, and it has a complex
term for the rule name. For reasons why you might want to do this, see
below. Note that aliases can be mixed up with full category
specifications at will, and that aliases are not detected in the rule
name - there they are treated as literal words (etc.). Also, two rules
may have the same name (but see the discussion of subcategorisation,
below).

Different parts of the <na«e> are used for several things in the system,
and the following points should be borne in mind when choosing rule-
names;

(i) Identifying the ID rule

The principal use of the name is to identify the ID rule, for example in
control mode when the user it asked to specify which rule to use. The
user does not have to specify the full name - if the name is a complex
term, then only the functor of the name need be specified - (the parser
will try each matching rule in turn).

(ii) Identifying a node in a parse tree where the rule is applied

The name is used in the parse tree displays to label any node where the
rule has been applied (it is impractical to label with the parent
category, as usual with parse trees, since the category itself is
typically itself a large feature tree). Thus it is useful to specify
rule names with mnemonic significance for their LHS category. The name
is used in full (i.e. functor and arguments) but in any word in the
term, if the word contains an underline character, then it and all the
characters in the word after it are not displayed. Thus the both the
labels VP_INTR' and VP_TR will appear, in parse tree displays only,

Evans 4 Gaidar -11- April 1984

Grawwir Forwtt The ProGmw Manual, Chapter 2

simply as VP.

(iii) Lexical subcategorisation

The rule name is used to implement the lexical subcategorisation
feature. The name, or its functor if it is a complex tern, is added as
a feature argument of [bar, l e x i c a l ! in any lexical category in the rule
(RHS). This means that the category Mill only match lexical items
specified in a lexical rule (see lexical rules, below) with the same
name/functor.

2 , 3 , 1 R e g u l a r e x p r e s s i o n s

The categories on the right hand side of a rule nay also have regular
expression operators attached to them. Three operators are possible:

opt(<cat>) - <cat>
<cat> *• - <cat>
<cat> •• - <cat>

2 , 3 , 2 V a r i a b l e s

is optional
may be appear zero
may appear once or

or many times
many times

A slightly more complicated form of an ID rule is as follows:

<name>:<cat> --> <cat>, ... ,<cat> where <cond>, ... ,<cond> .

The additional WHERE clause allows the user to specify two sorts of
things - variable definitions and control agreement. Variable
definitions allow one to incorporate variables into ID rules. Normally,
a rule with a variable (i.e. a word starting with a capital letter) in
it will not normalise. In order to allow variables in a rule, a <cond>
of the form

<var> is <feature>

must be provided in a WHERE clause. Thus the following rules are both
acceptable (and do exactly the same j o b) :

si: s — > np,vp.
si: s —> np,VP where VP is vp.

Variables added like this (there can be several, with a <cond> for each)
are used in two ways. Firstly, one sometimes wants to specify that two
parts of a rule are identical, without completely specifying their
value. The following rule incorporates subject-vp agreement in this way
(note that layout is not i m p o r t a n t) :

tl: s —> [cat, [bar ,23,[head,[major,+n,-v3,AGR33,
[cat,[bar, 13,[head,[major,+v,-n3,A6R]3
where A6R is [a g r] .

Here we have specified a variable A6R which takes the same value in HP
and VP and which is specified as the feature '[agr3'. The coefficients
of 'Cagr3' are not specified, but must be the same in any use of this
rule.

[vans & Gazdar -12- April 1964

Granar For**t The ProGn* tfanuaJ, Chapter 2

Doing agreement this nay work*, but is a little unwieldy, and the 6PSG
formalism contains the CAP which places special constraints on some
[agr] features. Hence there is a better way of doing agreement using the
CAP. This is the second sort of <cond> expression in a WHERE clause. It
simply specifies that one category controls another. However, to do
this, the categories themselves have to be expressed as variables (since
they occur in two places in the rue). Thus subject-vp agreement is
properly done like this:

tit s — > NP,VP where NP is np, VP is vp, NP controls VP.

Here we have two variables, NP and VP, which are specifed as 'np' and
'vp' respectively, and which are a control pair. Syntactically, control
agreement is symmetrical - it doesn't matter which controls which.
However, the CONTROLS clause must always follow the clauses defining its
variables.

2 , 3 , 3 H e a d s

In order for the Head Feature Convention (HFC) to operate properly, ID
rules must have heads. ProGram takes the following as the definition of
a head:

The head of an ID rule is the unique category (in the RHS of the
rule), if there is one, with no coefficient of the feature HAJOR
(although MAJOR itself aust be present) and of ainiaal bar level
(out of the RHS categories of the rule).

Some ID rules do not have heads, either because there is no category
with unspecified MAJOR coefficient, or because there is more than one of
minimal bar level. The HFC processing produces a warning message in such
cases, but this need not be taken as an error.

It is often useful to define an alias for heads, i.e. an alias for a
category with unspecified HAJOR. For example:

alias(h(B), [cat, [bar ,B3,[head,major}]).

Using this alias, the head can be explicitly specified in a rule.

i h i — > np,h(l).
vtr: vp — > h d e x i c a l) ,np.

The HFC ensures that the H(l) in rule SI becomes a VP (by inheriting its
•V, -N from the S) . Actually, including control agreement, the final
form of this rule might be:

sis s — > NP, HI where NP is np, HI is h (l) , NP controls HI.

The definition of head is still as above - the alias itself doesn't
ensure that no other category is a suitable candidate. The head feature
convention operates as specified in 6P82. The system's handling of HFC
is not done during parsing, but as a preprocess which takes place
between normalisation (of ID rules) and parsing. This preprocess is not
incorporated into the normalisation because expansion using metarules
(see below) must normally come between normalisation of ID rules and HFC
processing. Thus the normal sequence of processing required is:

Evans 4 Qazdar -13- April 1984

Grawwar Forwat Th* ProGraw flanuai, Chapter 2

(without metarules) (with metarules)

ID rules ID rules
! 1
! normalise ! normalise
{ !

Normed ID rules Normed ID rules
! i
I HFC ! expand with metarules
! !

ID rules ready for parsing Expanded set of (normed) ID n

i HFC
I

ID rules ready for parsing

2 . 4 M e t a r u l e s

Metarules are rules which map one ID rule into another. The simplest
form of a metarule is:

<name>: <ID rule) « > <ID rule) .

Here <name) is just as in ID rules and <ID rule) is an ID rule as
specified above except that:

(i) The <naie> and the colon following it ar^ omitted.
(ii) U there is a WHERE clause, then the whole ID rule

(including the WHERE clause) tust be enclosed in
parentheses,

(iii) A multiset variable lay be included in the daughter list.

The grammar expansion process (see below) uses these metarules to expand
the set of ID rules in the grammar. For each ID rule already in the
grammar that fits the ID rule on the left hand side of the metarule,
(i.e. none of the feature specifications contradict), an ID rule of the
form on the right hand side is added to the grammar. In the simplest
case, no communication between the two sides of the metarule is
necessary, i.e. none of the information particular to the ID rule that
fits the LHS is needed in the RHS. However, it is more likely that
communication is required. There are two ways of achieving communication
- by using multiset variables and by using MATCHES clauses.

2 . 4 / 1 M u l t i s e t v a r i a b l e s

The daughter list of an ID rule in a metarule (and only in a metarule),
may contain a multiset variable, written as

There may be at most one multiset variable in a rule (no more are ever
needed, since the daughter lists are not ordered), and it may occur
anywhere in the list. When comparing the LHS of the metarule with an ID
rule, the multiset variable c a n m a t c h any number of categories
(including none), and the categories do not have to be adjacent in the
ID rule. So the particular categories specified in the metarule LHS are

£>ans * Gazdar -14- April 1984

Grawwar Foraat The ProGra* Hanual? Chapter 2

(napped onto c a t e g o r i e s of the ID rule , and the multiset variable gets
the rest. If the. multiset v a r i a b l e also o c c u r s in the RHS ID rule of the
m e t a r u l e , then all the ca t e g o r i e s which mapped into the multiset
v a r i a b l e on the LHS are inserted into the new ID rule g e n e r a t e d . An
error will result if the RHS has a multiset v a r i a b l e and the LHS does
not. Here is an exa m p l e of the use of a multiset v a r i a b l e :

p a s s : vp — > v, np, ...

vp - - > vpass, o p t (p p) ,

This i s a s imple v e r s i o n of the pass ive m e t a r u l e . VP, VPASS, e t c . are
assumed to be a l i a s e x p r e s s i o n s . This metaru le r u l e says

For any ID rule which expands a VP as a V, an NP (the NP can occur
anywhere in the daughter list of the ID rule), and possibly other stuff,
create another ID rule for i VP expanding as * passive verb (VPASS), an
optional prepositional phrase, and all the other stuff (reaeabering that
ordering is specified independently in the LP rules).

A couple of t e c h n i c a l p o i n t s are worth n o t i n g : (i) the t h r e e dots (. . .)
can sometimes get confused w i t h other symbols (e . g . commas, the dot at
the end of the r u l e , e t c .) . Thus i t i s a d v i s a b l e always t o put spaces on
e i t h e r s ide of m u l t i s e t v a r i a b l e s . And (i i) , m u l t i s e t v a r i a b l e s are
s e n s i t i v e to the use of r e g u l a r express ion o p e r a t o r s e lsewhere in the
r u l e . In p a r t i c u l a r i f an ID r u l e c o n t a i n i n g a C++ category (i . e . C must
occur a t l e a s t once) matches a metaru le LHS of the forrc ? - - > C,
then a C* * i s put i n t o the m u l t i s e t v a r i a b l e (not a C + +) , s ince one C
has a l r e a d y o c c u r r e d .

2,4,2 Matching

Either of the ID rule descriptions in a m e t a r u l e can take a WHERE
clause. These WHERE clauses may not contain CONTROLS specifications,
but they may contain IS specifications (defining variables) and HATCHES
specifications. A HATCHES clause is used for the second sort of
communication between the two ID rule descriptions in a metarule. It is
conventional in 6PS6 metarules to assume a correspondence between like
categories on either side of a metarule, except where differences are
-made explicit.

Consider the following auxiliary-initial metarule:

inv: vp(aux, fin) — > h, vp

s(inv) --> h, s.

Here, H is an alias for a lexical head category (see the discussi o n
a b o v e) , VP(AUX, F I N) , VP, S, e t c . , are al i a s e x p r e s s i o n s . This rule
does not state that the S(I N V) i n h e r i t s e v e r y t h i n g from the V P (A U X , F I N) ,
except BAR lev e l , which is ex p l i c i t l y stated (via a l i a s e s) and similarly
the daughter S inheri t s from the daughter VP. To do this we use a
HAT C H E S c l a u s e . A HA T C H E S clause t a k e s the same form as a CON T R O L S

£>«»s 4 Gazdar -15- April 19.64

Graiwar Forwat The ProGraw Manual, Chapter 2

clause, and similarly it requires two IS clauses to define its
variables, and they must precede it in the WHERE clause. The WHERE
clause:

where VP1 is vp(aux, fin), SI is s(inv), VP1 matches SI.

defines the two variables VP1 and SI and then states that they match
everywhere except where they differ. That is, all the bits of the
categories which can be matched together and which are not explicitly
specified in the metarule, must be identical in all uses of the metarule
(so the created rule inherits them from the original rule).

The complete metarule might then look like this:

inv: (VP1 —> h,VP2 where VPt is vp(aux,fin)f

VP2 is vp)

(8 1 — > h, S2 where SI is •(inv),
S2 is s,
VP1 matches SI,
VP2 matches S2).

Again note that layout is not important. The manner in which clauses may
be distributed among the two WHERE clauses is subject to the following
rules:

(i) an IS clause must occur in the WHERE clause of the ID rule the
variable is first used in, or earlier (i.e. LHS for a variable in RHS
but not vice versa).

(ii) IS clauses defining variables must precede the MATCHES clauses they
are used in.

2.4.3 Rulg names

The ID rules generated by metarules have names which encode the history
of their metarule derivation. In the parse tree displays, these names
are written in functional notation. For example:

VP1 name of an ID rule in the grammar;
PASS(VPl) name of a rule produced by applying

metarule PASS to VP1;
INV(PASS(VP1>) name of a rule produced by

applying PASS, then INV to VP1.

The rule-types that result may not be uniquely named - metarules can
apply to rules in more than one way.

Ivans 4 Gaidar -/6- April 1984

Granar For**t The ProGn* tfanuaJ, Chapter 2

2,5 LP rules*

The linear precedence rules specify the ordering constraints on sister
categories. The simplest form of lp rule is as follows:

<cat> << <cat>.

This simply states that one category must precede another (if they
cooccur). The categories must be full category specifications (i.e. not
just subfeatures, etc.), but may incorporate aliasing as desired.

Two other forms of LP statement are possible. Firstly, wherever you can
have a single <cat>, you can have a collection, in braces {<cat>, ...,
<cat>>. No ordering is specified among these categories (although other
LP statements may do so). For example;

{n,v,p} << (np>,

is the same as

n << np.
v << np.
p < < n p.

Secondly, statements may be cascaded and transitivity is assumed. For
example,

n << np << vp.

is the same as

n < < n p.
np << vp.
n << vp.

Both these mechanisms can be mixed up arbitrarily. The normalisation
process also expands the LP rules under the appropriate transitive
closure.

The normalisation mechanism uses the expressions given in the rules
(i.e. the alias expressions, etc.> to decide whether two categories are
the same. Thus if the LP rules employ both the following expressions:

s
[cat, [bar,23,[head,[major,+v,-n333

where one is simply an alias for the other, they will be viewed as
different categories for the purposes of LP rule expansion. This will
have no effect on the system's behaviour, but it will generate more LP
rules than are required. In general, then, the user should avoid using
alternative expressions for a single category in LP rules.

funs 4 Gazdstr -J7- April 1984

Graiiar For»at The ProGra* Manual, Chapter 2

2.6 Feature coefficient defaults

Feature coefficient defaults specify default values for feature
coefficents which are assigned if not privileged (see 6P82) or otherwise
specified. The form of an FCD specification is:

fcd(<featname>,<excl>,<Lfeat>,<Pfeat>).

Here <featname> is the name of the feature whose default is to be
defined, and <excl> is a list of feature names * see below. <Lfeat> and
<Pfeat> are the lexical and phrasal default values respectively
(features can take different defaults on lexical or phrasal (i.e. bar
level at least 1) categories). Either can take any of the following
forms:

the word FREE * meaning no default,
a feature specification for <featname> (or alias expression),
a feature name, the name of a coefficient of <featname>.

An FCD can only be specified for a given
some features (e.g. AGR) can appear
feature syntax, and hence in a given
instances can have defaults assigned for

feature name in one place -
in more than one place in the

category. Only one of these
it. The exclusion list, <excl>,

is used to direct the
consists of a list of
required in the
CONJ] would
feature or
<featname>,
FCD:

normalisation process to the correct instance. It
feature names which must not be above the instance

feature tree. For example, an
mean that the default applies to an
the CONJ feature. If there is
<excl> can safely be left as [].

exclusion list [FOOT,
instance not in the FOOT
only one instance of

Here is an example of an

fcd(case, [foot], free, *case).

Here CASE defaults to FREE on lexical categories and *CASE on phrasal
categories. The stipulation of FOOT in the exclusion list, prevents the
FCD applying to the instance of CASE in FOOT (e.g. [FOOT, [SLASH, [CAT,
[HEAD, CASE]]]]) being used.

Any feature which is not privileged and which does not get
either from a rule or by default, is given the value UNSPEC.

a value,

2.7 Feature cooccurrence restrictions

Feature cooccurrence restrictions specify pairs of feature values which
must or must not cooccur. The form of an FOR is:

fcr(<namel>,<excll>,<featl>,<name2>,<excl2>,<feat2>).

Here, <namel> and <txcll>, and <name2> and <excl2>, combine to specify
particular instances of the features <namel> and <name2> as in the FCD's
above. <feati> and <feat2> can take values as in <Lfeat> and <Pfeat>
above and additionally be one of the forms:

Evans & Gaidar -18- April 1984

Granwar Forwat The ProGra* Manual, Chapter 2

unspec
not(uniptc)
not (..«)

where ... is an <Lfeat> or <Pfeat> above. The single word UNSPEC as a
value Deans that the feature value was not specified at all by feature
instantiation. The restriction specifed is that if feature <na»el> has
(doesn't have) the value specifed, then feature <na«e2> «ust have (not
have) the value specifed. Here are soae examples of FCR's:

fcr(minor, [foot], vforr, n, [foot], - n) .
fcrtainor, [foot], vfori, v, [foot], +v).

Together, these FCR's ensure that any category with a coefficient VFORM
(assumed to be encoding of verb torphology, etc.) on MINOR really is a
verb, i.e. -N, *V.

2.S R o o t a d m t c s i b i l i t y c o n d i t i o n s

The root admissibilty conditions are not part of the SPSS theory, but
are used to prevent the parser from generating unwanted alternative
parses for things. The for* of an RAC is:

rac(<name>, <excl>, <feat>).

Here the arguments are just like one half of an FCR specification (see
above). Every time a tree is generated the RAC's are checked. If the
root node of the tree has the feature <name> which has the value <feat>
then the tree is rejected. Here is an example of an RAC:

rac(bar, [foot], not(unspec))•

This rac ensures that the bar level of any root category is not
unspecified (it is possible sometimes to get unspecified bar levels when
the Conjunct Realization Principle ('CRP' henceforth - see Gazdar,
Klein, Pullum and Sag (1982) for discussion of the CRP) is being used).

2 . 9 T h e l e x i c o n

.The lexicon consists of lexical category rules which provide the
association between words and the parts of speech to which they belong.
The ford of a lexical category rule is:

<na»e> i <cat> ->- <wordl>, ... ,<wordN> •

Here <na<*e> is JIS in ID rules (see above), <cat> is a feature expression
(or alias, etc.) and <wordl>, ... ,<wordN> is just a list of words,
separated by co»mas. A word aay not start with a capital letter. A
lexical rule says that each of the words on the right hand side is an
instance of the category on the left hand side, and may be used in any
ID rule with the same name (or whose name's functor is the same). This
latter point is the lexical subcategorisat ion mechanism, which can be
turned off using the switch NOLEX (see chapter 5) . Note that <cat> must
be of bar level LEXICAL, otherwise a normalisation error occurs.

Evans A Gazdar -19- April 1984

Grawwar Format The ProGraw Hanual, Chapter 2

The lexical categories need to be fully specified in all features which
are not specified by default, or by the corresponding category in the
rules that introduce the category. Leaving a feature unspecified in the
lexicon does not mean it can take any value, indeed, the value will be
set to UNSPEC, and cannot be changed. Here are a couple of examples of
lexical category rules:

npl: n ->- kirn, lee, sandy.
np2; n ->- book, house, hill.

These two both define nouns to be used in two different NP rules - the
one for proper nouns (NP1) and one for ordinary count nouns. The
relevant ID rules (night be:

npl s np — > n.
np2: np —> det, adj*» ,n.

assuming suitable aliases for NP, N, DET, AOJ, etc.

The third and fourth lexical rules below provide an example of the use
of features in the lexicon which do not specifically occur in the ID
rules.

vtr(s): v(s) ->- sees, likes, loves,
-vir(p): v(p) ->- see, like, love.

Suppose we have an ID rule:

vtr: vp ->- v, np.

Then the two lexical rules above would both apply to fill in the V,
taking their number feature (S or P) with them. HFC, CAP, etc., could
then operate to communicate this number feature to the VP, subject NP,
and so on. In the lexical rules, VMS) and V(P) are examples of complex
aliases. A suitable alias might be:

alias<v(NUMB),
[cat,tbar,lexical],[head,[major,+vf-n3,Cagr,[number ,NUMB]]]]).

It is worth noting that the parser will run more efficiently,
particularly in a search for all parses, if a given word has only one
lexical category associated with it. In grammar testing applications,
this should not be too inconvenient, although it means that, for
example, it is best to have several non-overlapping groups of proper
nouns for the different cases (nominative, accusative, etc.).

2 , 1 0 A s s u m p t i o n s a b o u t t h e G P S G f o r m a l i s m

ProGram makes various assumptions about use of feature names, etc., and
places certain constraints on rule format, etc., which are not
explicitly discussed in the GPSG literature. This section contains a
summary of these constraints.

The following features are assumed to be present:

Evans ft Gazdar -20- April 19B4

firanar Forwat The ProGn* Harma!, Chapter 2

CAT - tht feature representing a basic 'saall' category (i.e.
corresponding to CAT in 6P82, not CAT1). The only tssuted
significance of CAT is that CDNJ is not a subfeature of it (or at
least, the instance of CONJ used for the CRP is not).

FOOT - the FOOT feature used by the Foot Feature Principle CFFP'
hereafter, see GP82 for discussion). It need not be present if
HOFQOT is on (see 5.4).

CONJ - feature used by CRP. Categories which have a CONJ feature which
is not s (i.e. they ire not *CQNJ) are privileged - they do not take
defaults. CONJ should not be a subfeature of CAT. See (v), below.

HEAD - the head feature used by HFC. This lust not be a subfeature of
FOOT (although there aay be a head feature under FOOT, but the HFC
will not appply to this).

MAJOR * used in the definition of a head category. Head categories aust
have no coefficient for MAJOR specified.

BAR - used by HFC and lexical fubcategorization routines. Its first
coefficient (in the feature syntax specification) lust be the bar
level, taking values LEXICAL, 1, 2, 3, . . . (positive integers only,
signifying increasing level. LEXICAL * Bl. All values to be used
should be stipulated in the feature syntax specification.

LEXICAL * lowest bar level. This lust have no subfeatures in the feature
syntax -specification (although the systei will add one when doing
lexical isubcategorization).

A6R - feature used by CAP - as with HEAD, instance §ust not be under
FOOT.

I f any of the above f e a t u r e s are absen t , then the corresponding
p r i n c i p l e s , e t c . , s imply M i l l not work * most of the*} w i l l f a i l . The
switches NOCQNJ, NOFOOT, and so on , l a y bl set to overcome t h i s (see
chapter 4) .

There are a lso some r e s t r i c t i o n s on the format of r u l e s and metaru les
t h a t need to be observed:

(i) ID r u l e d e s c r i p t i o n s o c c u r r i n g in metaru les may not c o n t a i n CONTROL
AGREEMENT c l a u s e s .

(i i) REPEATER c a t e g o r i e s (those marked w i th r e g u l a r express ion o p e r a t o r s
#* or ++> g e n e r a t e independent i n s t a n c e s . In p a r t i c u l a r , using
v a r i a b l e s in a r e p e a t e r c a t e g o r y , or having a r e p e a t e r as head
category or p a r t o f a c o n t r o l p a i r , w i l l f a i l (the ca tegory w i l l not
be c o n s t r a i n e d as e x p e c t e d) .

(i i i) Having v a r i a b l e s in HEAD, FOOT or AGR can cause u n p r e d i c t a b l e
r e s u l t s when using HFC, FFP, CAP. For example, FFP w i l l sometimes
' l o s e ' the b indings in a f o o t f e a t u r e .

Evans & G*zd*r - 2 J - *»* < i

Granar Format The ProGra* ttarmal, Chapter 2

<iv) CONTROLS clauses in an ID rule should come after the associated
variable binding clauses.

(v) The extension restriction in CRP does not apply to the -feature CONJ
(i.e. the CONJ features of the daughters do not have to extend that
of the mother). The mother's CONJ feature is alHays set to NCONJ.
Also, CRP as implemented requires that the mother be the MAXIMAL
category which the daughters all extend. A small modification to the
source code Hill change this - see the note in CRP system module
(.../program/sys/crp, in the UNIX version of ProGram). However, this
modification will slow the parser down considerably.

Evans 4 Gazdar -22- April 19S4

3- Normali »4»-fc x on

To use ProBram, you need to have a 6PSB grammar. This grammar can have
up to nine components, and we shall assume that each component is in a
different file (this is not strictly necessary, but it makes life
easier). For full details of specifying these components, see chapter 2.
We shall assume here that the components of our grammar have the
following namesi

FEATS1 feature syntax specification
ALIAS! feature alias specification
IDRULES immediate dominance rules
LEXICON the lexicon
LP linear precedence rules
HETARULES metarules
FCD feature coefficient default specifications
FCR feature co-occurence restrictions
RAC root admissibility conditions

3.1 N o r m a l i s a t i o n of d a t a m o d u l e s

The first thing that has to be done is normalisation of these data
modules. Normalisation uses the information in FEATURES and ALIASES to
translate and check all the rest of the data. The data is translated
into an internal form in which the aliases have been fully expanded and
a few other minor bookkeeping functions have been carried out. If, in
the process of doing this, the system detects an error, for example a
badly specified feature, then a mishap message will be printed. In a few
cases a warning message is printed when strange, but not actually
illegal, data is encountered.

Normalisation has to be done before parsing or testing, since the parser
uses the internal, normalised forms. The primitive normalisation
commands are:

In each case the default input and output are the terminal, so if you
just type

normid.

to the top-level (Prolog) prompt, you will be prompted to type an ID
rule, which will get normalised and displayed. This is not usually what
is required, it is more common to redirect the data using TO and FROM:

normid from idrules to nidrules.

This means 'read in all the rules from the file IDRULES, normalise them
and write the normalised versions to the file NIDRULES'. In order to do
this, the system needs to read the data modules for features and
aliases. If these modules have not already been loaded (e.g. because you
have already normalised something), then the system needs to know the
appropriate file names and it will ask vou for these names when it needs
them, e.g.

Evans & G*zd*r -23- April 1964

normalisation The ProGraw Manual, Chapter 3

FEATURES data is now required.
Please type in data file name !:

You just type the nane, followed by a period. You can also specify the
relevant names in the original command employing a USING clause;

normid from idrules to nidrules using featsl
for features using aliasi for aliases.

The 'for features' bit is necessary - it tells the system that the file
it is reading (FEATS1) is the data nodule 'features'. Without the FOR
clause, the data would be read, but the system would still prompt for
features data.

Notice that a command can spread over several lines if necessary - in
general, Prolog does not care about new lines or spaces between words,
so you can lay out data files (e.g. the ID rules) in any format you
choose. The important thing is to remember the period at the end of each
command/rule/feature specification. The only other point to note is that
the system prints little messages as it loads system modules, just to
keep you informed. For example, this is what would happen if we had just
loaded the system and we typedi

?- normid from idrules to nidrules using featsl for features.

(loading normrules)
(loading normid)
ALIASES data is now required.
Please type in data file name

(loading normfeats)

<longish pause)

yes

Three system modules were loaded (NORMRULES, NORMID, and NORMFEATS) and
the aliases data was requested - the features data was given in the
command. If we now type:

?- normlex from lexicon to nlexicon.
(loading normlex)

yes

we see that only one module was loaded, since NORMFEATS, FEATURES and
ALIASES, the other three modules required, have already been loaded.

If for some reason you do not want a data module to be loaded (e.g. your
grammar is so simple there are no aliases), you can use the word NONE as
a filename, either in the command, or when prompted.

Evans 4 Gazdar -24- April 1984

Normalisation The ProGran Manualf Chapter 3

As mentioned above, all the components of the grammar, apart from the
features and aliases themselves, have to be normalised and the
normalised data saved. Thus we could type:

?- normmeta Iron Metarules to nmetarules.
?- normfcr fro* fcr to nfcr.
< e t c >

The MORECQMMS library provides some commands which do the normalisation
•ore easily, by assuming standard nafies for all the data Modules - see
chapter 5.

Normalisation of ID rules includes all the processing required for the
Control Agreement Principle and lexical subcategorization. It does not
include Head Feature Convention (HFC) processing (see 3.3, below). The
MORECOMMS library provides commands which do normalisation and the HFC
automatically, but if metarule expansion is required, this has to be
done between the two. MORECOMMS provides a command to do that
automatical 1y, too.

Before using the grammar, you may well want to expand it using the
metarules. This should be done after normalisation, but before HFC
processing. See 3.2, below.

By using the FILTER library, you can combine several data files together
to be viewed as one. Thus, if your ID rules are split between several
files, you can give a command like:

normid from idrulesl then idrules2 to nidrules.

which combines data from IDRULES1 and IDRULES2, normalises it and stores
the result in NIDRULES. Similarly, you can select particular rules iron
a file by using the SOMEOF filter (see 5.5.1 for details).

In general, normalisation does not display anything except mishaps and
warnings on your screen. If you want to watch what is happening, set the
switches TI and TO to on (see 5.4 for details). Note that Prolog syntax
errors in your data files may not be apparent * in standard Prolog the
error message gets written into the output data file, not the terminal
(see 5.3).

The rest of this section consists of examples of each of the various
grammar modules being normalised. Output is sent to the terminal (since
it is not redirected) so that any syntax errors are picked up properly.
After all the modules have been successfully normalised with no errors,
the data can safely be saved in data files, either by individual
commands as below, but with redirection (FROM) clauses, or using one of
the commands N0RM_6RAM or NORN.HETA" from the MORECOMMS library (see
5.5.2).

For convenience,, tracing of INPUT data has been turned on, so that the
reader can see what it is we are normalising.

& Gaztar -25- April 1934

Normalisation The ProGra* Manual, Chapter 3

?- t i on. SWITCH ON INPUT TRACING
t r a c e j n is on
yes

?- noriid f ro i idrules. NORMALISE SOHE ID RULES

(loading nonrules)
(loading nonfeats)

PROGRAM NOW PROHPTS FOR SORE DATA NODULES, SINCE THEY HERE NOT SPECIFIED IN
THE COMMAND. NOTE THAT ONCE THEY ARE LOADED, PRQ6RAM NEVER PROHPTS AGAIN,
features data is now required
Please type in data f i l e naie !: features.

REMEMBER THE FULL STOP
aliases data i s now required
Please type in data f i l e nate it a l i n e s .
(loading nori id)

ID rule normalisation can now proceed - notice that the traced input is
interspersed with the output. Normally the tracing mould be on the
screen and the output data would be redirected to a f i l e . The banner
comment at the top, ident i fy ing the data nodule, is produced for a l l
data f i l e s , with an appropriate heading. Also, i f a header st r ing is
specif ied by the user, i t appears in th is banner. The /# and • /
bracketing t e l l s Prolog that the banner is a comment and not part of the
data.

/t

ProGrai Brauar Development Systei
Version if 29/4/84

NORHED ID RULES
§/

THIS IS THE INPUTs
s : v(2) — > 1 , 2 where 1 is n(2,[noil) , 2 is h(l) , 1 controls

.2. /

AND THIS IS THE NORNALISED RESULT:
baseruiets,no,[rDot, [cat, tbarf [2]], [head, hajor, [vll, Jll, _2, JJlJcic

trl,_4tC23,not[root, [cat, [bar, [21], [head, [aajor, [nil, [ainor,
[agr ! .53, [case, [noiinativell]]], _6, .73), c(ctri,_8,El],no,[root
, CcatTtbar, [113, [head, [aajor, .9], [§inor, [agr f j l ! .11113,'
.11, J2I>],tctrl controls ctrll).

v p j i v(l) --> h.

baserule(vp.l,[],[root, [cat, [bar, [1]], [head, [aajor, CvJ], J]] , J,
_3]ftc(^4,^5f[lexicalf [vp.lJ1,no,[rootf [cat, [bar, [lexical,
Ivp.l l lJ, [head, [tajor, .6] , .711, .8, .91)1,11).

. . . . data Quitted here

Evans * Gaidar -26- April 1984

tiorwsl i sit ion The ProGnw Manual, Chapter 3

THE ERRORS FOLLOWINS ARE EXPECTED, SINCE THE CATEGORIES IN THE RULE ARE VERY
UNDERSPECIF1ED:

conj : [root, teat, J] , J] — > c<_2) , troot, [cat, J] , % conj] where
J is bar f .2 if conj.

Warning: BAR coefficient not specified * no lexical check
Involving? [root, [cat, tbar, J I f _2], .3, [conj, t

%]]3

baserule(conj,rto,[root, [cat, [bar, J] , _23, _3, [conj, _413,tc(Ji,_6,Uexica
1, [conj]},no,[root, teat, [bar, [lexical, [conj]]], [head, iiajor,
[conj, .411, .73), J , .93), c(II, 11, l,no,[root, [cat, [bar,
J 3 , J23, .13, [conj, r33])],[3).

coord J root — > [root, tconj, neither]] , [root, [conj, nor]] >••

Warning: No BAR coefficient found in category
Involvings [root, .1, .2, [conj, [neither]]]

Warning: No BAR coefficient found in category
Involving: [root, J, J, tconj, [nor]]]

baierule(coord,nof[rootf .1, ,2, _3],[c(_4,J5,no,no,[rootf _6, ̂ 7, tconj,
[neither]]]), c(J,.9,no,plus,[root, J t, .11, (conj, [nor]]])],[]).

.... etc ...

tnd.of.file. GENERATED BECAUSE INPUT IS BEING TRACED

yes

ID RULES SUCCESSFULLY NORMALISED. HOW DO THE LEXICON IN A BIHILAR WAY:

?- norilex froa lexicon.

(loading norilex)
/*
ProGrai 6ramar Developaent Systet
Version 1, 29/4/84

NORHEI) LEXICON
#/

INPUT DATA:
vp. l (sf) : v i l , [s ing , f in]) -> - jutps , runs , tings.

OUTPUT DATA:
lexru]e (J , lex ivpJ (s f }) , [roo t , [cat, tbar, t lex ica l , t v p j]]] f [head,

[tajor, t v]] , [l inor, [agr, [singular]] , [v for i , [f i n i t e] , [auxiliary
, [-U, [inverted, [-]]]]]], .2, .31) :- oncelieiberMJjutps,
runs, sings])).

Evans i Cazdar - 2 7 - April 1984

Mortalisatioh The ProGra* Manual, Chapter 3

vpl (pf) ; v(|,Cplur, fin]) ->- jutp , run , sing.

lexrule(J,lex(vpJ(pf)),[root, [cat, [fair, [lexical, [vpjlll, (head,
[•ajor, [vJ], Cunor, [agr, [plural]], [vfon, [finite], [auxiliary,
[-3], [inverted, [-]]]]]], .2, .31) :- once(ietber(_l,[juip, run,
sing])).

.... lots otitted

SLIGHTLY DIFFERENT OUTPUT FORHAT IF M R E l S ONLY ONE WORD:

pp(by) : p(l,by) ->- by.

lexrule(by,lex(pp(by)),[root, [cat, [bar, [lexical, tppHl, [head, [lajor,
[pf [by]]], J l l , .2 , J]) .

. . . * etc. ••••

conj(b) 8 c([conj, nor]) ->- nor.

lexrule(nor,lex(conj(b)),[root, [cat, [bar, [lexical, [conj]J3f [head,
[•ajor, [conj, [nor]]], ,13], .2, J])t

endjrf.file.

yes

Now the LP data. This is slightly different. Because the LP rules are
expanded as Nell as normalised, all the data is read in before any
output is produced, so with TRACE_IN on, all the tracing output comes
first. Also, there are usually •ore output data items than input ones.

?- noralp froi lp.

(loading norilp)
INPUT DATA (ALL OF IT):

[root, [cat, [bar, lexical]]] « {[root, [cat, [bar, 11]] , [root, [cat,
[bar, 2]]]}.

p(8) « n(2> « v(l).
ad) « n(l) « p(2).

[root, [conj, neither]] << [root, [conj, nor)],
[root, [foot, nil]] « [root, [foot, cat]],
end of file.

OUTPUT DATAs
lp([root, [cat, [bar, [lexicalf .1]], 21, 3, 4],troot, [cat, [bar, 111], "

.51, .6, .7]).
lplCroot, [cat, [bar, [lexical, .11], .2], .3, .41,[root, [cat, [bar, [2]],

.5], J, Jl).

Evans 4 Gaidar -28- April 1984

Mortalisation The ProGrau Manual, Chapter 3

lpUroot, [cat, [bar, [23], [head, l u j o r , [n]] , .133, . 2 , .3],[root, [cat,
[bar, I I]] , [head, [u jo r , [v]] , .411, .5 , . 4]) .

lpUroot, (cat, [bar, [lexical, .13], [head, [•ajor, (p, . 2]] , .313, .4 ,
.51,[root, (cat, [bar, [23~J, [head, [u jo r , In33, >33 , . 7 , .83).

lp([root, [cat, [bar, [133, [head, [lajor, (n33, .133, . 2 , _33,troot, cat,
[bar, [23], [head, (•ajor, [p, .433, .533, .6 , .73).

lp([root, [cat, [bar, [133, [head, [u jo r , t a l l , .133, 2, .33,[root, teat,
[bar, [133, [head, [u j o r , In33, .433, . 5 , .63).

lp([root, . 1 , . 2 , [conj, [neither]]],[root, 3, 4, tconj, [nor333>.
lpltroot, . 1 , [foot, [nil]] ' , .23,[root, .3 , [foot, [cat, .4 , .533, .63).
ipUroot, [cat, [bar, [lexical, .133, [head, [u jo r , [p, .233, .333, .4,

.53,[root, [cat, [bar, [133, [head, [u jo r , tv3), .633, .7 , .63).
lp([root, [cat, [bar, [133, [head, tiajor, t a i l , .133, . 2 , .3],[root, (cat,

(bar, [233, [head, dajor, [p, .413, .513, .6 , .73).
yes

NETA-RULE N0RHAL1SATI0N IS LIKE ID RULE NORMftLlSATION:

?- norueta froi tetarules.

(loading norueta)
/•
Pro6rai Graeiar Development Syitei
Version 1, 29/4/64

HORNED HETA RULES
»/
pass : v(l) —> ... , n(2) «=) v(l,[passl) —> ... , opt(p(2,by>).

Ktarulelpass,baserule(.i,.2,[root, [cat, (bar, (133, [head, teajor, (v33,
.333, .4, .53,[c^6,.7,[23,no,[root, [cat, [bar, (233, (head,
[•ajor, In33, .833, .9, .H3)3,.ll),str(J2),baserule(.l,[pais
! .21,[root, (cat, (bar, [HI, [head, [ujor, [v]], (•inor, .13,
[vfori, [passive], [auxiliary, (-33, (inverted, [-33331], .14,
151,(cl 16, 17,[2],opt,[root, [cat, (bar, [233, (head, lujor,

tp, [by333, .1833, .19, .283) ! .123,.21)).

• • • • CiC MM

yes

FCDf FCR AND RAC NORMAL ISA!IW ARE SIMILAR. TYPICAL COMMANDS ARE:

?- nortfeti f ro i led.'

?- nortfer f rot I c r .

?- norirac f r o i rac.

Evans A Gaidar -29- April 1984

Hortalisation The ProGra* Manual, Chapter 3

3,2 M e t a r u l e a p p l i c a t i o n

This section describes how to apply the metarules to the ID rules in a
ProGram grammar. Grammar expansion is achieved by calling the command
EXPAND. EXPAND reads normalised ID rules from its input stream and
produces the expanded grammar of (normalised) ID rules as its output. It
assumes that the normalised Metarules have already been loaded *
normally they are specified by a USIN6 clause in the c o m m a n d / M e t a r u l e
application Must take place before HFC processing (see 3.3, below).

A typical use of the EXPAND command might be:

?- expand from nidrules to eidrules
?- using nmeta for norted aetarules.

This command takes the (normalised) ID rules from a file called NIDRULES
and expands them using the (normalised) metarules in the file NMETA. The
resulting grammar (including the original ID rules) is saved in a file
called EIDRULES. Notice that the USING clause also specified which data
module it was using (the NORMED METARULES module). Otherwise the system
would have prompted the user for this information,

Tf the TRACE.OUT switch is set (see 5.4), then the names of the new
rules are printed out as they are generated, together with the pass
number: pass 1 contains the original rules, pass 2 contains those
generated from pass 1, pass 3 contains those generated from pass 2, and
so on. Each rule is printed out as follows:

(original name of rules) <meta rules applied)

For example:

pass 2 - vp_l pass stml

announces a new rule generated on pass 2 by metarule STM1 from the pass
1 rule VP^l PASS (i.e. result of metarule PASS applied to ID rule VP.l).
Note that full names are used here - truncation of names, and also
insertion of brackets to form a functional notation, are only done on
parse displays.

The expansion algorithm makes repeated passes over the ID rules,
attempting to apply each metarule to each of the ID rules generated on
the pass before (but no metarule can apply to an ID rule twice). The
EXPAND command produces its output in the order it generates it, i.e.
the original ID rules first, followed by those produced on the first
pass, then those produced on the second pass etc. Between each such
block of rules a Prolog comment announcing the pass number is also put
into the output stream. This is purely for the convenience of any user
who might wish to examine the raw output.

Let us examine an example of doing metarule expansion on the
demonstration grammar. The example uses the command NQRM_AND_EXPAND
provided in the HORECOMMS library (see 5.5.2) which normalises the ID
rule and the metarules, does the expansion and then does HFC processing
on the resulting rules. Standard data file names are assumed for this
command, so no explicit request for features, aliases, etc., is made.
Also, since the output data is written to data files (with standard

Evans * Gaidtr

T h e ProGr** H i n u a l , C h a p t e r 3

n a m e s) , no o u t p u t i s n o r m a l l y p r o d u c e d a t t h e t e r m i n a l . But i n t h i s
e x a m p l e we s w i t c h TRACE_OUT on f i r s t , so t h a t o u t p u t i s d i s p l a y e d as
w e l l as s a v e d .

?- t on. TURN TRACINB ON
trace,out is on
yes
?- norland, expand. 61VE THE MAIN CDHHAND

(loading (tonrules) SEVERAL SYSTEH NODULES ARE LOADED.
(loading nonfeits)
(loading nortid)

THE REST OF THE OUTPUT IS TRACINB
FIRST, THE ID RULES, NORMALISED

biserult(s,nD,Croot, [cat, [bar, 12]], [head, t i t jo r , [v]] , .13] , J2, J] , [c (c
t r l , J , t21 ,no , [root , [cat, [bar, [251, [head, ttajor, tn33, ti inor,
tagr ! .53, [case, tnotinative33331, . 6 , .73) , c(ctrl ,J},t l3,no,troot
, [cat, [bar, [1]] , [head, t u j o r , , 9] , [ainor, [agr ! I] \ J |]]] ,
. 1 1 , .12])] , [c t r l controls ctrlJ)

. . . . lots left out here

baseruie(pp,[],[root, [cat, [bar, [2]] , [head, [t i j o r , [p, J]] , . 2]] ,
3, 4] , [c(5, 6,[lexical , [pp]],no,[root, [cat, [bar, [lexical ,

[ppf]] , [head,"[iajor, . 7] , J]] f . 9 , .11]) , c<J l ,J2 , [23 l no, [root ,
[cat, [bar, [23], [head, [iajor, [n]3, .1333, . 1 4 | J 5]) 3 , [] i

Warnings BAR coefficient not specified - no lexical check
Involving: [root, [cat, [bar, . 1 1 , .23, J$, tconj, [%33J

THIS ERROR AMD THE FOLLOWING ONES ARE EXPECTED - THE COORDINATION RULES
DO NOT HAVE LEUCAL CATEBORIES, ETC.

baserule(conj,no,[root, [cat, [bar, _13, .23, . 3 , Cconj, v4]] , [c(.5 , .6 , [lexica
1, [conj]],no,[root, [cat, [bar, [lexical , [conj}]] , [head, twjor ,
[conj, . 4]] , . 7]] , . 8 , . 9]) , c (. l l , . l i , J , n o , [r o o t , teat, tbar,
.13, J 2 3 , J 3 , tconj, [%333)],U)

Naming: No BAR coefficient found in category
Involving: [root, . 1 , . 2 , tconj, tneitherll]

Naming: No BAR coefficient found in category
Involving: [root, . 1 , . 2 , tconj, [nor]]]

baseruie(coord,no,troot, . 1 , . 2 , .33,tc(.4,.5,no,no,[root, . 6 , . 7 , tconj,
tneither333), c l .B .^^o.p lus^root , . 1 1 , . 1 1 , tconj, tnor]33)3,[3)

baserule(top,no,[root, [cat, [bar, [233, [head, [tajor, tv33, 133, 2,
. 3 3 , C d J , J , [2] , n o , t r o o t , [cat, [bar, [233, .63, [foot 1 n i l] ,

73), d B, 9,[23,no,[root, teat, [bar, [233, [head, Uajor, 113,
J113, [foot, teat, tbar, [233, 633, 123)3,tl)

£v*tis * G*zd*r -31- April 19B4

Horwalisation The ProGn* H*nu*l, Chapter 3

THIS TRACE ROUTPUT IS PRODUCED FOR EACH
RULE PRODUCED BY THE EXPANSION PROCESS.

FIRST OF ALL, THE INITIAL RULES
(BACKWARDS!)

NOW THE METARULES ARE NORMALISED
(loading noraieta)

.... trice output here ,.,,
THE ID RULES 6ET EXPANDED

(loading expand)

pass 1 * top
pass 1 - coord
pass i * conj
pass 1 - pp
pass 1 - ap_2
pass i * apj
pass 1 - nb_2
pass 1 - nbj

pass 1 * np.2
pass i - npj
pass 1 - vp_5
pass i - vp.4
pass 1 - vpJS
pass 1 - vp.2
pass 1 * vp.1
pass 1 - s

pass 2 - pp stil
pass 2 - nb.l relci
pass 2 - np.l stil
pass 2 - vp.5 inv
pass 2 - vp_4 stii
pass 2 - vp_3 pass
pass 2 - vp_3 pass
pass 2 - vp j stii
pass 2 - vp.J sti l

pass 2 * vp.2 pass
pass 2 - vp.2 sti l
pass 3 - vp.2 sti l pass
pass 3 - vp 3 pass stil
pass 3 - vp_3 pass stil
pass 3 - vp 3 stil pass
pass 3 - vp_3 stil pass
pass 3 * vp_3 stil pass
pass 3 - vp_3 stil pass

The output above is produced as the r u l e s i r e g e n e r a t e d . The output
below is the r e a l t r a c e d output as the r u l e s are w r i t t e n to the data
' f i l e . A g a i n , s ince t h e r e are r a t h e r a l o t , most of then have been
o m i t t e d .

NOH THE RULES GENERATED ON THE SECOND PASS
FORMAT IS ID RULE NAHE FOLLOWED BY
HETA-RULE NAHE (E .G. FIRST ONE IS A RULE
RESULTIN6 FROM APPLYING STHl TO THE PP
RULE)

PASS 3 CAN ONLY USE RULES GENERATED ON
PASS 2. THE RULE 'vp 2 s t i l pass ' IS THE
RESULT OF APPLYING STHl TO THE PASS 2 RULE
' v p . 2 pass'

Evans I Gaidar -32- April 1984

Normalisation The ProGraa Manual, Chapter 3

... a couple emitted here ...

baserule(vp..2,[],(root, feat, [bar, tl]], [head, (iajor, N13, .1]}, .2,
_3],Ec(_4,_5,(lexical, [vp_2]3,no,troot, teat, (bar, [lexical,
(yp 2333, [head, dajor, 1), 733, 8, 9]>, c(11, 11,(21,no,[root,
(cat, (bar, [23], [head, (Mjor, [i>33, .12]], .13, _141>1,[]>

baserule(vp..3,[],[root, [cat, [bar, M l , [head, (ujor, Iv]), .1)3, .2,
.3},i:c(.4,.S,(lexical, (vp 3)],no,[root, (cat, (bar, [lexical,
(vp.311], [head, tiajor, . « , .711, .8, .91), c(.ll,.ll,[2J,no,[root,
[cat, [bar, [2]], [head, taajor, [n33, .12]], .13, .14]), c(.15,.16,[
2],no,[root, [cat, (bar, [213, [head, tiajor, In]], 17]], 18,
.193)3,[»

... all the rest of the past 1 data (i.e. original rules) here ...

THE FIRST NEW RULE:

baseruletppJstilMroot, [cat, [bar, [233, [head, lujor, [p, .13], .233,
[foot, [cat, (bar, [233, [head, (lajor, [n33, [einor, .3, [case,
t*33:i33], 43,Ic(5, 6,tlexical, [pp]],no,[root, (cat,~[bar, [lexical
, [pp]]], [head, tnjor, .73, .83], .9, _1I3)],_11)

... a fen mire left out ...

THE VP RULES ABOVE GENERATE
THE F0LL0HIN6 RULES ON PASS 2

baserule(vp..3,[pass],(root, [cat, [bar, M l] , [head, [lajor, tv]3, (linor,
.1, (vfori, [passive], [auxiliary, [-]], [inverted, [-]]]]]],
.2, .33,[c(.4,.5,[2],opt,[root, [cat, [bar, [2]], [head, Eiajor,
[p, [by]}], .633, 7, 83), c(9, IB,[lexical, [vp 3J],no,[root,
[cat, [bar, (lexical, ivp.3]]], [head, [ujor, .11], .12]], .13,
.143), c(.lS,.16,(23,no,[root, (cat, (bar, (21], (head, Uajor,
in]], .173], .18, .19])],.28)

baserule(vp.3,[pass],(root, (cat, (bar, [|}], [head, (ujor, [vJ], [einor,
1, (W o n , [passive], [auxiliary, (-]], [inverted, [-133]}],

.2, .33,(c(4,.5,[2],opt,[root, [cat, (bar, [213, (head, [ujor,
(p, (by]]], .63], .7, .83), c(.9,.ll,[lexical, (vp.33],no,[root,
[cat, (bar, (lexical, ivp.3]]]^ (head, [ujor, .111, .1233, .13,
143), c(15, li,[23,no,[root, [cat, (bar, 1211, (head, [•ajor,

tn]], .173], .18, .19])],.28)

baserule(vp.3,(stil3,(root, (cat, (bar, [1J], (head, dajor, [v33, .1]],
(foot, [cat, (bar, [2]], (head, [ujor, [n]3, dinor, 2, (case,
V m m , .31,(c(.4,.5,[lexical, [vp.3]3,no,(root, (cat, (bar,
[lexical, tvp.3333, (head, (ujor., .63, .733, .8, .93), c(.ll,.ll,t23
,no,[root, [cat, [bar, (233, (head, (aajor, [nil, 1233, 13, 14])],
15)

Evans i Gaidar -33- April 1984

normalisation The ProGraw Manual, Chapter 3

baseruie(vpJ5,[still,[root, [cat, [bar, [11], [head, Ciajor, tv3J, .133,
[foot, [cat, [bar, [211, [head, dajor, [nil, [tinor, .2, [case,
[M33333, .3},[c<.4,.5,tlexical, [vp 5J],no,[root, [cat, [bar,
[lexical, [vp.3J]J, [head, [iajor, 61, .733, 8, .9]), c(.lB,Ji,[2J
,no,[root, [cat, [bar, [213, [head, ttajor, [nil, 1233, 13, 143)3,
15)

baserule(vp.2,[pass],[root, [cat, [bar, [133, [head, [tajor, [v33, [einor,
.1, [vfori, [passive], [auxiliary, [-33, [inverted, [-333333,
2, 33,[c(4, 5,[23,opt,[root, [cat, [bar, [233, [head, [lajor,
[p, [kylU, .*]], .7, J3>, c(.9,JI,tlexical, [vp.2J],no,£root,
[cat, [bar, [lexical, [vp.2333, [head, [lajor, .113, .1233, .13,
.143)3,_15>

baserule(vp.2,[stil3,[root, [cat, [bar, [133, [head, [tajor, [v33, .133,
[foot, [cat, [bar, [233, [head, [aajor, [ft]], [iinor, 2, (case,
[%3I3333, .33,[c(.4,J,[lexical, [vp 233|no,[root, [cat, [bar,
[lexical, [vp.2333, [head, tiajor, > 3 , .733, J, .93)3,.11)

AND NOW THE PASS 3 RULES

baserule(vp.2,[stil* pass],[root, [cat, [bar, [I]], [head, [aajor, [v]],
[•inor, .1, [vfora, [passive], [auxiliary, [-}], [inverted, [-3333]],
[foot, [cat, [bar, [233, [head, [aajor, [p, [by]]], [einor, .2,
[case, [%]]]]]],• JH,tc< 4,.5,[lexical, tvp.2]],no,[root, teat,
[bar, [lexical, tvp_2]JV [head, Ciajor, jtf, .713, J , .93)3,Jl)

baserule(vp.3,[pass, stil3,[root, [cat, [bar, [133, [head,teajor, [v33,
tiinor, J, [vfore, [passivel, [auxiliary, [-33, [inverted, [-3]]]]],
2, .33,[c(4,.5,I23,opt,[root, teat, tbar, [233, [head, [Mjor,
[p, CbyJ33f .633, .7, .83), ci.9,.iB,tlexical, [vp.333,no,[root,
[cat, [bar, [lexical, [vp 3333, [head, [tajor, 111, 1233, 13,
J4J)3,J5t

... etc ...
NOW HFC PROCESSING TAKES PLACE

(loading hfc)
baserule(s,no,[root, [cat, [bar, [233, [head, [iajor, [v33, [iinor, [agr

! .1J ! .2131, .3, .4],[c(ctrl!.5,[23,no,[root, [cat, [bar, [233,
[head, [aajor, [n3J, tiinor, [agr ! .13, [case, [noiinative333]],
.6, .73), c(ctrl,no,[13,no,[root, [cat, [bar, [131, [head, [eajor,
[v3], [einor, Uqr ! .13 ! .2333, J , .93)3,tctrl controls ctrll)

... all ok until *e reach coordination rules ...

Naming: HFC failed
Involving: idrule(coord)

baserule(coord,no,[root, .1, _2, .33,[c(.4,.5,no,no,[root, .6, .7, [conj,
[neither]]]), c(.Bf.9,no,plus,[root, JB, .It, [conjf [nor]]])3,[])

Evans 4 Gaidar -34- April 1984

Normalisation The ProGraw Manual, Chapter 3

Warning: HFC {ailed
Involving: idrule(top)

baserule(top,noJroot, [cat, [bar, 1 2]] , [head, t ia jor , tv33» 13], 2,
.3] , [c (.4 l .5 , [2] ,no,Croot , [cat, tbtr , 1211, .63, [foot ' l n i l] ,
.71) , c~(J, 9,12],no,[root, [cat, [bar, [231, [head, [la jor , IB] ,
. 1 1]] , [foot, teat, [bar, [23], .63] , .123)] , [3)

THE FAILURES ABOVE ARE EXPECTED - THE RULES DO NOT HAVE HEADS.
NOW ON WITH THE NEN RULES:

baserule(pp,[sti l3,troot, [cat, [bar, [2]] , [head, [ia jor , [p, J J J , m%

[foot, [cat, [bar, [233, [head, t ia jor , [n]3, [einor, . 3 , [case,
[•333313, J U t (J , _ 6 , [l e x i c a l , [pp]],no,[root, [cat,"[bar, [lexical
, [pp313, [head, [i i j o r , [p f J 3 3 , .233, . 7 , j ' 3 U , . 9) "

. . . and so on, without any probleas ..•

yes PROLOG REPORTS THE COHMAND
SUCCESSFULLY COMPLETED

N o t i c e t h a t VP_3 and PASS g e n e r a t e d t w o i d e n t i c a l new r u l e s i n p a s s 2 .
T h i s i s b e c a u s e V P . 3 h a s t w o i d e n t i c a l N P ' s f o r t h e m e t a r u l e t o m a t c h
against. ProGram makes no check that the rules generated are not
i d e n t i c a l , so users should f i l t e r duplicate rules out afterwards i f they
want to . Note that duplicate rules in ear ly passes can lead to more
dupl icat ion in la te r ones.

Notice also that the output from metarule expansion is rather
unreadable. I t is possible to decide from the data above whether a l l
and only the expected rules were produced, but i t is not easy. The
rule-name output helps catch gross generation er rors , but for f iner
t e s t i n g , the parser is best used.

3 . 3 The Head F e a t u r e C o n v e n t i o n

The head feature convention (HFC) operates in the manner specif ied in
GPB2. See 2 .4 .3 for de ta i ls of how to specify a head category in an ID
r u l e .

The system's handling of HFC is not done during parsing, but as a
preprocess which takes place between normalisation (of ID rules) and
parsing. This preprocess is not incorporated into the normalisation
process because expansion using metarules (see 3.2) must normally come
between normalisation of ID rules and the HFC processing. Thus the

Evans 4 Gazdar - 3 5 - April 1984

H o r w a l i s i t i o n The ProGra* Manual* Chapter 3

normal sequence of processing requ i red i s :

(without aetarules)

ID rules
!
! normalise
!
Norttd ID rules
!
! HFC
i
ID rulesready for parsing

(with tetarules)

ID rules
i
t

S normalise
i

Norted ID rulis
!
I expand nith Mtarules
I

Expanded sit of (norted) ID rules
!
i HFC

ID rules ready for parsing

The primitive command for doing the head feature processing is called
HFC. It is used just like NORMID, etc. (see 3 . 1) : it expects a file of
normalised ID rules as input, and it produces a file of normalised ID
rules Nith the featural consequences of the HFC incorporated. A typical
use tight be:

hfc from nidrulesl to nidrules2.

It does not require any other data modules to be loaded.

The MORECOMMS library (see 5.5.2) provides several commands which
combine HFC with ID rule normalisation, metarule expansion, etc.

3.4 ProGram data f i l e s

This section contains information about the data files used by the
system - what they must contain, how to access them in commands, the
standard names for them, and so forth.

Most of the commands require two sorts of data - background data and
input data - and produce output data. Background data consists of
information about the grammar which is required to do the processing.
Input data is what the processing is done on. Output data is the result.
For example, the parser needs a grammar for background data, sentences
for input data and produces parse trees for output data. These three
sorts of data can be specified in the command using USING, FROM and TO
clauses.

3,4.1 USING c l a u s e s

A USING clause takes the form:

using <input file)

It specifies that the <input file) given is to be used as background
data. It causes the file to be loaded (in Prolog terms 'reconsulted ')
before the command it is attached to is executed. For example:

The ProGraw tfanuai, Chapter 3

parse using foo.

means 'load file foo, and then parse'. Note that <input file) can be a
complex expression using THEN and SOMEOF if the FILTER library has been
loaded (see 5.5.1). A command can employ several USING clauses in order
to load different files. A second form of the USING clause is

using (input file) for <data nodule naie)

Here, the additional information is that this background data is to be
taken as the data for <data nodule name). The point of this is that each
command knows which data nodules it needs, and the system maintains a
record of which data modules have been loaded. If a command is run and a
needed data module has not been loaded, the user Mill be prompted for a
file name for that data. By adding a FOR clause, the system is informed
that the data module given has now been loaded, and so it does not ask
for it.

For example, suppose nothing has been loaded, and we want to normalise
some ID rules. The background data for this command consists of two
modules, FEATURES and ALIASES. Here are two alternative ways to get them
loaded:

i. normid using myfeats for features using myalias for aliases,

ii. normid..

FEATURES data is now required.
Please type in data file name ?- myfeats.
ALIASES data is now required.
Please type in data file name ?- myalias.

In (i), the data was specified in the command; in (ii), the system
prompted for it. Note the period after the filenames in this latter
case. Apart from in the commands themselves this is the only place where
a period is required.

Now consider the following:

iii. normid using myfeats for features using myalias.

ALIASES data is now required.
Please type in data file name ?-

Despite the fact that alias data was loaded in the command, the system
was not told that it was the alias data, so it asked for it anyway. If
this happens, or if, in general, you do not want to specify data for a
given module, type NONE instead of the file name.

USING clauses without a FOR can be used to load nonstandard data modules
(see 5.5.3 for an example) and also for reloading data modules. It is
not necessary to tell the system that a data module is being loaded if
it thinks it is already loaded.

Evans 6 Gaidar -37- April 1984

Norwalisation The ProGraw Manuai, Chapter 3

3.4.2 FROM clauses

A FROM clause tikes the form:

from <input file)

The clause specifies the source of input data for the command. As with
USING clauses, <input file) may include THEN and SOMEOF operations.
Normally, there is only one FROM clause in a command (if tore than one
is present, then only the leftmost applies). If there is no FROM clause,
input is expected fro* the terminal. That is, the user is expected to
type the data for the command in, using the correct syntax, terminated
by a period, when protpted. To end the input data type

end.

Examples of FROM clauses:

i. parse from sent 1.

ii. normid from idrulesl then idrules2 using myfeats for features.

In d) , the parser gets its sentences from the file SENT1, and trees are
displayed on the terminal. In (ii), ID rules are taken from IDRULES1 and
then from IDRULES2, and the data module MYFEATS is used for the
features. If aliases have not been loaded already, the system will
prompt.

3.4.3 TO clauses

A TO clause takes the form:

to <file name)

The clause specifies where the output data is to be put. The <file name)
must be a simple file name - THEN and SOMEOF may not be used. Tracing
still goes to the terminal. Again, there should be at most one TO
clause. If there is none, output is displayed on the terminal.

Examples of TO clauses:

i. normlex to nlex1.

ii. parse from sentl to treesi.

In (i), input is from the terminal (the user types in lexical rules) and
the normalised versions are saved in NLEX1. In (ii), the input is from
SENT1 and the output is put in TREESI. Unless tracing is on, nothing
will happen at the terminal at all.

Evans 4 Gazdar -38- Aoril

Mortalisation Th* ProGra* Manual, Chapter 3

3.5 D a t a m o d u l e s r e q u i r e d by c o m m a n d s

The following table gives the name, content* and standard file name of
the various data nodules used as input and background data by system
commands. The standard file names are those assumed by the high level
commands in thie MORECQHMS library (see 5.5.2).

Nodule

features
aliases
idrules
•etarules
lexicon
lprules
fed
fcr
rac

noraed idrules
norted tetarules
noraed lexrules
noraed lprules
noraed fed
noraed fcr
noraed rac
text
trees

Standard naae

features
alaises
idrules
•etarules
lexicon
IP
fed
fcr
rac

nidrules
naeta
nlexicon
nip
nfed
nfer
nrac
<none>
<none>

Contents

feature syntax specification
feature aliases specification
ID rule data
Heta-rule data
lexrule data
Ip rule data
fed data
fcr data
rac data

ID rules data (normalised) (• HFC if used)
tetarule data (normalised)
lexrules data (norialised)
lp rules (normalised)
fed data (normalised)
fcr data (normalised)
rac data (noraalised)
sentences etc.
parse trees

The f o l l o w i n g table g i v e s the b a c k g r o u n d , input and output data m o d u l e s
for the basic: c o m m a n d s . The c o m m a n d s in the M Q R E C O H M S library are
c o m p o s i t e s of t h e s e .

Command Background Input Output

nor aid
normmeta
normlex
norilp
normfed
normfcr
norarac

hfc
expand
ihowdata
parse

features,aliases
features,aliases
features,ililies
features,aliases
features,aliases
features,aliases
features,aliases

<none>
noraed metarules
<none>
features,
normed idrules,
normed lexrules,
normed lprules,
normed fed,
normed fcr,
normed rac.

idrules
metarules
lexrules
lprules
fed
fcr
rac

normed idrules
normed idrules
<any>
text

normed idrules
normed metarules
normed lexrules
normed lprules
normed fed
normed fcr
normed rac

normed idrules
normed idrules
<no output)
trees

Evans A Gaidar -39- April 1964

Horn! i sat ion The ProGnw Manual, Chapter 3

3.6 Structure of normali»gd data records

This section contains examples of normalised versions of each type of
data object, together with a brief explanation of the function of each
component. In general, intimate knowledge of these objects should only
be needed as a last resort, for example, when errant behaviour cannot be
tracked down using the parser.

3.6,1 ID rules

An ID rule is normalised into an instance of the predicate BASERULE. For
example, the ID rule:

s : v<2) --> NP , VP where NP is n(2,tnoa])f
VP is h(l)f
NP controls VP.

becomes:

baserule(s,no,[root, teat, [bar, [211, [head, [major, [v]J, J] J , _2, _31,[c(c
trl,_4,[2],no,[root, teat, (bar, [21], [head, tiajor, [ft]], [minor,
tagr ! J5], [case, tnominativeJ]]]], _6, .7]) , c(ctrl,J,[l],no,[root
, [cat("[bar, [1]], [head, tiajor, _9]f" tiiinor, [agr i J) i .11111,
J l , .121)1,[Ctrl controls ctrlJ).

The components of t h i s break down as f o l l o w s (the number is the argument
p o s i t i o n in the t e r n , w i th the va lue in the above example a lso given in
b r a c k e t s) :

1. (s) - the name of the ID rule (or the original ID rule, for rules
generated with tetarules).

2. (no) - the aetarules which have been applied. NO leans Metarules
cannot be applied to this rule'. For lexical rules, this object is the
list of the naaes of the metarules which have been applied to produce
this rule (initially U>.

3. ([root, teat,],_2,_31) - the normalised version of the mother
category. Note that . 1 , .2, etc., are Prolog's own notation for
variables.

4. ([c(. . . .) ,c(. . . .) I> * the daughter category list - each category is
represented by a term with functor C. See belott for a description.

5. ([ctrl controls Ctrl]) - an internal structure which is used for the
CAP processing* By the time the rule is normalised, it is redundant.

The daughter ca tegory terms have f u n c t o r C and f i v e arguments as
f o l l o w s : (examples from f i r s t daughter ca tegory above) .

Aoril 1984

Nornlisation The ProGraw Manual, Chapter 3

1. (ctrl) - flag used for CAP processing.

2. (.4) - flag used to tark the HEAD daughter * should be a variable
until HFC processing is done,
3. (t2D- coefficient of BAR in the category.

4. (no) - the category type. The four possible values are NO (in
ordinary category), OPT (in optional category), STAR (a Kieene §
category) and PLUS (a Kleene • category),

5. ([root, (cat, . . . ,] , .6, .7]) * the normalised feature tree for the
category.

3 . 6 . 2 The l e x i c o n

Lexical rules normalise into clauses for the predicate LEXRULE which
takes three arguments (see also 2 . 9) . There are two for ts - depending on
whether the rule specif ies one word or several words.

The following lex ica l ru le :

vp_l (s f) i v (B , ts ing , f i n]) - > - jumps, runs, l ings ,

normalises to:

lexrule(J,le«<vpJ(sf)),troot, teat, tbar, [lexical, tvp.l]]), [head,
[aajor, [v]J, [ainor, [agr, [singular]], [vfort, [finite], [auxiliary
, M I , [inverted, I-]]]]]], .2, JH1-once(tetber(J,£jutps,
runs, sings])).

which is of the form

lexrule(W,<name of rule> f<normalised feature t r e e)) 5 -
once (member (N ,< l i s t of words)).

A rule with just one word, such as

pp(by) : p(0,by) - > - by.

normalises to :

lexrule(fay,lex(pp(by)),[root, [cat, [bar, [lexical, [pp]]],
[head, [tajor, [p, [by]]], .1]], .2, .31).

which is of the form:

1 txru l e (<word >, <nafie of r u l e) , Normalised feature t r e e)) .

3.6.3 LP rules

A given linear precedence rule produces at least one clause of the
predicate LP with two arguments, both normalised feature trees. Each
instance specifies that categories matching the first argument precede
categories matching the second argument. Note that one LP rule will in
general produce several LP clauses by itself, and mav interact with

Evans A Gazdar -4i- April 1984

H o r w a l i s a t i o n The P r o G n w H*nualf C h a p t e r 3

other LP r u l e s v i a t r a n s i t i v i t y .

The f o l l o w i n g LP r u l e

[r o o t , [c a t , [b a r , l e x i c a l]]] <<

{ [r o o t , [c a t , [b a r , 1]]] , [r o o t , [c a t , [b a r , 2]] J > .

Mould produce the f o l l o w i n g two LP c l a u s e s :

lpdroot, [cat, [bar, [lexical, .111, .21, .3 , .4],[root, [cat, [bar, [I]] ,

.53t .6, .7]) .
lp([root, [cat, [bar, [lexical, 111, 21, 3, 4],[root, [cat, [bar, [2]],

J), .6, .73).

3 .6 .4 Metarules

A normalised tetarule is an instance of the predicate NETARULE with four
arguments. The following Metarule:

inv: (VP1 — > h, VP2 where VP1 is v(l,[aux]),
VP2 is v<l))

••>

SI --> h, S2 where SI is v (2 , [i n v l) ,
S2 is v (2) f
51 H a t c h e s V P 1 ,
52 m a t c h e s V P 2 .

n o r m a l i s e s to the f o l l o w i n g s t r u c t u r e :

•etarule(inv,baseruleiJ,_2,Eroot, [cat, [bar, [1]], [head, [aajor, [v}],
[•inor, _3, tvfon, [finite], [auxiliary, [+]], [inverted, [•]]]]]],
.4, _5],tc(_6,_7,[lexical, [J]],no,[root, [cat,[bar, [lexical,
[Jill, £head,"[§ajor, _9], Jill, J l , J2]>, c<J3,J4,[U,no,[root
, [cat, [bar, till, [head, [tajor, [v]J, J5J], J 6 , J7])],JB),no,ba
serule(J,[inv ! .21,[root, teat, [bar, [21], [head, [aajor, Evil,
[ainor, .3, [vfort, [finite], [auxiliary, [•]], [inverted, M l]]]] ,
4, 5],[ci 19, 28,[lexical, [21]],no,[root, [cat, [bar, [lexical,
L21311, [head, [tajor, .22], J3JJ, .24, .255), c(.26,.27,[2],no,[ro
ot, [cat, [bar, [21], [head, [aajor, [v]], J5]], .16, J7])l,_28)).

The a r g u m e n t s a re:

1. (inv) - the nate of the aetarule.

2. (baserulet....)) - the normalised version of the first ID rule

3. (no) - either NO or STR(VAR) depending on whether there ii a string
variable in the rule. If so, the categories it latches will be unified
nith VAR »hen the letarule i$ used. This variable lay also appear in the
daughter list of the second baserule.
4. (bi5erule(.,.,)> - the normalised version of the second ID rule.

fi/ans I Gtzdar -42- April 1984

normalisation The ProGraw JfanuaJ, Chapter 3

The ID r u l e s normal ise in the sane way as o r d i n a r y ID r u l e s , except fo r
the f i r s t two arguments (name and metaru le l i s t) . These a re u n i f i e d
a p p r o p r i a t e l y to a u t o m a t i c a l l y produce the r i g h t name in any r u l e
g e n e r a t e d . S i m i l a r l y , any MATCHES c lause w i l l produce u n i f i c a t i o n s
w i t h i n the m e t a r u l e . These can be de tec ted by more than one ins tance of
a v a r i a b l e in the r u l e (i . e . two v a r i a b l e s w i th the same number) . For
example v a r i a b l e s _ 1 5 , _ 1 6 , _ i 7 appear in two p laces i n the r u l e above.
The r u l e only a p p l i e s when both ins tances of a g iven v a r i a b l e a re the
same.

3 . 6 . 5 F e a t u r e c o e f f i c i e n t d e f a u l t s

FCD records normalise into instances of the predicate NCFD. For example:

fed (case,[foot3,ace,free)•

normalises to:

nfed(case,[root, [cat, . 1 , [head, 2, tainor, 3, [case ! 4] I 53 ! 6]
I .71 i .83,,4,£t%3],_9). ~

The arguments a r e :

1. (case) * the nate of the feature.

2. ([root I) - the path to the feature through a category (a
•iniaally instantiated feature tree identifying the given feature. The
exclusion list ([foot] in this case) is used to locate the correct path.

3. (.4) - thi variable in the path that corresponds to the coefficent
being specified.

4. a r i l) - the lexical default value of the coefficient.

5. (.9) - the phrasal default value of the coefficient.

The d e f a u l t va lues a re n o r m a l i s e d , except in the s p e c i a l case FREE which
becomes a v a r i a b l e .

5 . 6 . 6 Feature cooccurence r e s t r i c t i o n s

FCR's normalise to a clause for the predicate NFCR. The clause succeeds
only if the restriction is violated. For example! •

f cr (major,[foot 3,v,mi nor,[foot],not(case)).

normalises to:

Ivans & Gaidar - 4 3 - April 1984

Mortalisation The ProGraw Hanualf Chapter 3

nfcr(J) ;- fcrttstU * [root, [cat, .2, [hud, titjor, CvJ] ! .31 ! .43
! _5],not(.l « [root, [cat, .6, [head, _7, tiinor, _B, lease,
j)) I .ill ! .11"] i J21M \ !.

This is of the fore

nfcr(Cat) s- f c r t e s U C a t * Pathl, not<Cat « P a t h 2)) , ! .

FCRTEST is a system predicate (in the MONITOR » o d u l e) . PATH1 and PATH2
are paths leading to the feature specified (as in FCD's a b o v e) , with the
coefficient filled in as specified. The equalities (unifications)
succeed if the CAT has the coefficient given. NOT is inserted if it is
present in the original FCR, to negate the condition.

3.6.7 Root admissibi1itv conditions

RAC's behave like FCR's - they generate clauses that «ust fail. The
clauses contain paths as above. The example is the special case UNSPEC,
which nay also be used with FCR's.

rac(case,[foot],not(unspec)).

normalises tot

nrac(J) J- not (not (_1 > [root, [cat, .2, [head, .3, [ainor, .4, [cast,
unspecJ i .51 ! Jl ! .73 I JJ)) , !•

The general form is

nrac(Cat) ?- not(Cat * P a t h) , ! ,

with possibly an extra NOT thrown in for negation.

Evans & Gaidar -44- April 1984

The parsing module of Program provides the main tool for investigating
grammars. The basic function of the parser is to accept phrases of the
language (i.e. strings of words which occur in the lexical rules) and
attempt to parse them according to the grammar specified. The basic
command to invoke the parser is 'parse' and, as with the normalisation
commands, input and output files nay be specified. The input consists of
strings of words separated by spaces and terminated by end-of-line. The
output depends on the setting of the switch SHOW (tee chapter 5) . If
SHOW is OFF, the output is the raw Prolog representation of the parse
tree (which can be read back in if desired, e.g. for use with
'showdata'). If SHOW is ON, then the output employs an interactive
display mechanism which allows the user to examine the tree (note: since
it is interactive, output should be to the terminal whenever SHOW is
ON). By using TRACE.OUT, with SHOW off, the user can examine and save
the parse tree if they desire.

Examples of calling parser

parse,

will display input and output on the terminal;

show on, parse.

will display input and output on the terminal, and provide an
interactive display of the parse trees;

trace^out on,
show off.
parse from data to trees.

will parse the sentences to be found in a file called DATA, display the
resulting parse trees, and save these parse trees in a file called
TREES.

The parser needs several data files to be loaded (ID rules, lexicon,
etc.) before it will run. It will ask for these if they are not already
loaded or specified in a USING clause.

The parser has its own special data reading routine, which means you do
not have to worry about commas, periods, upper case letters, etc., - you
just type the sentence as normal. However, this means that the filter
options - SOMEOF and THEN * (see chapter 5) cannot be used with parser
input.

4,1 P a r s i n g m o d e s

The parser operates in three distinct modes, which are described below.
Initially, the parser is in AUTO mode, but the mode may be changed by
giving one of the mode switching commands:

Evans i Gaidar -45- April 1984

The Parser The ProGraw hanual, Chapter 4

control on.
monitor on.
auto on.

This should be done before running the parser (although it is possible
to switch mode inside the parser, when in monitor or control nodes).

The difference between the modes lies in how the parser makes its
decisions during parsing. For a complete understanding of the parser's
behaviour, it is necessary to understand Prolog's backtracking search
strategy (for those interested, see 4.4, below). However, the brief
discussion that follows should be sufficient for most users of the
system.

At any point in the parsing process, the parser has a sequence of
syntactic categories which span the sentence, or part of the sentence.
It has to find an ID rule which combines some of these categories into
one larger category. There may be several ways to do this, using
different ID rules and different groups of the categories. In the
process of searching for all parses, the parser must try all possible
ways. Some of them lead to dead ends, perhaps because the parser ends up
with only two categories which span the whole sentence but which cannot
be combined (a successful parse is one where there is only one category
left, spanning the whole sentence * the root of the parse tree). So, at
any point there are two things the parser can do: try to find a new way
to combine categories, or decide that it is a dead end and go back to
the decision before and try to find a new way there (that is what is
called 'backtracking'). The different modes allow different levels of
control over the choices made and decisions about backtracking.

4 . 1 . 1 A U T O m o d e

In auto mode, the parser runs completely automatically. The only control
over the parsing operation is choosing whether you want only the first
parse, or all parses (the ONEPARSE switch - see below). The parsing
process can be watched by setting the WATCH switch (see below), but it
cannot be controlled. If SHOW or TRACE_QUT is selected, then the user
gets the chance to examine each tree as it is produced.

4 . 1 . 2 M O N I T O R m o d e

In monitor mode, the parser reports each decision it makes to the user.
There are two sorts of decision - choosing a lexical category for a word
and choosing an ID rule to apply. In each case the parser makes sure the
choice is applicable first and then reports the name of the rule (ID or
lexical) chosen.

Monitor mode can be used in two ways, controlled by the CHECK switch.
If CHECK is on (as it is initially), then after reporting the choice,
the user is asked if it is acceptable. If the user says yes, the parser
continues, if no, then it looks for another acceptable choice. If there
isn't another one it backtracks to the decision before. Normal
exhaustive search for all parses involves trying all acceptable choices
at each stage, and by rejecting an acceptable choice in this way, the
user can prevent the parser from doing work that would, for instance,
lead to parses already known to be correct. The user can thus quickly
force the parser to explore the possibility of particular analyses.

Evans 4 Gaidar -46- April i984

The Parser The ProOraw Harm*!, Chapter 4

If CHECK is off, the parser does not ask the user at each staqe, and
monitor mode simply provides a more detailed trace of the parser's
operation than when running with WATCH on alone,

4,1.3 C O N T R O L m o d e

In monitor mode, the parser processes until it reaches a decision which
can be used (e.g. an ID rule which latches the categories available). In
control mode, the user actually tells the parser which rule to try.
Each time the parser reaches a choice point, for example, which ID rule
to try, it asks the user for the name of an ID rule. It then attempts to
use the rule specified. If it succeeds, then parsinq continues on to the
next choice point, if it fails, then failure is reported, together with
the reason for failure, when it is known (for example, failure of the
Foot Feature Principle, or default checking, etc.) and the user is asked
to specify another ID rule. Alternatively the user can say 'no more
possibilities' forcing the parser to backtrack to the choice before.

When the user specifies a name of a rule, the name does not have to be
exact. The name of a lexical rule or ID rule can be a simple word, or a
complex term (see chapter 2) . In control mode, the name specified by the
user can be the whole name, or the functor of the name. This means that
the name can sometimes match more than one rule, the system will try
each in turn, but before it does, the user is told which one it is
using. If the CHECK flag is on, the user may reject the selection if
desired.

See below for examples of the different modes in operation, and the
printout produced by each of them.

4.2 T h e W A T C H s w i t c h

In monitor and control modes, the parser displays the categories it is
currently working on - a collection of categories which spans a right
subsequence of the input string (the 'current segment'). This
information is usually sufficient for the user to keep track of what is
going on. The WATCH switch causes the parser to display the complete
partial trees After each scan, rather than just the names of the root
nodes. WATCH works in all modes.

4.3 S u m m a r y of t h e p a r s i n q s w i t c h e s

The f o l l o w i n g swi tches a re r e l e v a n t t o the parsers
AUTO, MONITOR, CONTROL change the parse tode.

ONEPARSE Mhen ON, stop after the first parse,
when OFF look for ALL parses.

SHOW use the interactive tree-displaying
routines for each successful parse.

Evans 4 Gazdar -47- April 1984

The Parser The ProGraw Hanual, Chapter 4

TRACE_OUT write data nortilly and also SHOW it
on the screen,

CHECK controls whether the user can check
choices tade by the parser.

HATCH Nhen ON, the parser displays partial
trees between passes,

4.4 O u t l i n e of t h e p a r s i n g a l g o r i t h m

This section contains a brief description of the parsing algorithm.
This algorithm is designed specifically for ease of use in the ProGram
system. It is not intended as an efficient free-standing parser for GPS6
grammars. Understanding the algorithm is not a prerequisite for using
the system, but may be of interest to those wishing to understand the
workings of the system, modify it, etc. It assumes a fair knowledge of
the workings of Prolog.

The algorithm is presented as a schema for the main predicates in a
Prolog implementation.

FIND_PARSE is the main parsing predicate. 6iven a list of words as its
first argument, it returns a list of parse trees spanning all the words.
Backtracking produces alternatives. A valid parse is one where the
output list of trees has only one member.

find.parse ([],[]).
find_parse([Word!Words3,[NewTreeiRe«Trees]) i-

/* parse the tail */
find_parse(Words,01dTrees),
/# look up a category for the head */
lexcat(Word,LexTree),
/• try to combine new cat with the rest */
tryrule(Lex Tree,01dTrees,NewTree,ReffiTrees).

TRYRULE tries to combines the new tree (Tree) with a leading sublist of
the old trees (OldTrees), giving a new resulting tree (ResTree) and the
remaining old trees (ResTrees). If it succeeds, it will try again on the
resulting tree. If not, it just leaves the tree alone. (Hence the
parser produces one big trte before several little ones).

tryrule(Tree,01dTrees,ResTree,ResTrees) :-
/* apply a rule, giving a new tree and
some of the old ones left over #/
rulef or ([TreeiOldTrees] ,NewTrte,RefnTrees) ,
/* combine the new tree with the remainder to get result
tryrule(NewTree,RemTrees,ResTree,ResTrees).

tryrule(T,0,T,Q).
/* no rule applies, -rtiulti«inputi't/

Evans 4 6a2dar -48- April 1984

The Parser The ProGraw Manual, Chapter 4

The predicate LEXCAT returns a parse tree for the word it it given
i.e. a tree whose root is the appropriate syntactic category and whose
substructure is whatever is desired (in ProGram, simply a leaf
consisting of the word itself). Backtracking produces alternatives.

The predicate RULEFOR takes a list of trees and tries to find a rule
which will consume a leading (LEFTMOST) sublist, returning the new tree
constructed and the remaining trees of the original list. It is here
that all the principles, 1inear precedence, default setting, etc. , get
done. Backtracking produces alternatives.

Predicates LEXCAT and RULEFOR contain all the mode-dependent processing.
The WATCH information is printed out immediately before RULEFOR in
TRYRULE (although, for clarity, the predicate has been omitted above).

4.5 U s i n g t h e s y s t e m

This section contains an example of a typical session using the ProGram
system to explore the demonstration grammar. It assumes that the grammar
data is syntactically correct, but not normalised. Note that the
demonstration grammar is less than descriptively adequate, even for the
small subset of English that it purports to cover. Some of its failings
will be revealed and discussed below.

We shall start inside Program, with the DEMO directory specified as the
grammar directory* either by being in the demo directory when ProGra*
was started up, or by using customised predicates to set the grammar
directory (e.g., in P0PL06, the predicate GRAMMAR).

?- n o r a j r a a .

?- sho* on.

SHOW i s on.
yes

?- go.

FIRST OF ALL, NORMALISE THE
GRAMMAR WITHOUT METARULE
EXPANSION - TO TEST OUT THE
BASIC PHRASES, ETC.

SNITCH SHO* ON - INITIALLY HE
WANT TO LOOK AT THE TREES,
NOT SAVE THEM.

NOW LOAD THE GRAMMAR AND START
PARSING (IN AUTOMATIC NODE)

We s tar t with some simple phrases. Note that automatic exaustive parsing
is quite slow, so i t is best to t ry small things out f i r s t , to get some
idea of what won't go wrong in bigger phrases. The actual trees are not
included here, but the fol lowing table indicates the number of parses
obtained.

Evans & Gaidar - 4 9 - A p r i l 1984

The Parser The ProGran Manual, Chapter 4

!: kii
i: sees bert
!: bert sees
!: kii sees bert
it sees bert kit

Is in i book
Is a tin in i book
Is sees i i*n in a book
Is neither kit nor sindy
is neither bert nor bill

2 PARSES - AS NOUN OR AS NP
i PARSE AS VP ONLY
NO PARSES - 'bert' IS ACCUSATIVE
1 PARSE
NO PARSES - VP-NP LP RELATION IS NOT AVAILABLE

1 PARSE - PP's ARE OK
1 PARSE
2 PARSES, PP MODIFIES NP OR VP
3 PARSES
3 PARSES

Because ' kira','sandy' etc. are ambiguous between noun and noun-phrase,
in the demonstration grammar, there are three possible parses here.

is neither sees bert nor loves bill
1 PARSE

i; neither sees nor loves bert 1 PARSE

But there is no comparable ambiguity here, so only a single parse
results.

So the basic phrases seem sound - obviously we could test some more, and
perhaps a good way of checking out a lot is to run the system as a batch
job, saving the trees by giving the command:

go to trees.

to get the data saved in the file 'trees'. Later, the data can be
examined with the commands

showdata from trees.

Having decided the basic phrases are sound, we can continue by expanding
the grammar with the metarules and doing some more complicated things:

?- nora aeti. NORMALISE GRAMMAR A6AIN, INCLUDING
METARULES THIS TIHE. THIS IS A BIT
WASTEFUL, SINCE MANY COMPONENTS ARE
UNCHANGED, BUT IT IS CONVENIENT

•as?

yes

?- go. PARSE A6AIN IN AUTOMATIC NODE

Parsing in AUTO lode.

is kit is seen AN INNOCUOUS EN0U6H SENTENCE BUT...

Here we get two problems - firstly, ProGram produces three parses and
secondly it takes a very long time to do it. We shall tackle the first
one first. The problem is with the VP 'is seen'. The three parses
produced involve (i) a VP, (ii) a VP/PP (this is correct - the optional
PPCby) has been slashed) and (Hi) a VP/NP. This latter case is
unexpected. Examining the feature trees for the categories reveals that
'seen' has been parsed as a VP/NP derived from rule VP.2 (V<2) —> H,
N<2>>. The problem, then, is that VP_2 should not produce PASSIVE VP
rules - only the metarule PASS should do that. But nothing in the rule

Evans It Gaidar - 5 # - April 1984

The Parser The ProGr** H*nu*l, Chapter 4

blocks the passive fea ture . We should hive * defaul t for the VFORH
feature of FINITE. The FCD we require is

f c d (v f o r m , [f o o t] , f i n i t e , f i n i t e) .

Now we could simply add th is to the PCD f i l e of the demonstration
grammar and renormalise the FCD's. Another way to do i t , and one which
does not disturb the exist ing demonstration grammar too much, is to
create a new f i l e with th is FCD in i t and then add i t to the given
FCD's. How the new f i l e is created depends on the par t icu la r computer
environment (see chapter 5 for d e t a i l s) . He shal l assume that a new f i l e
NEHFCD has been created with the FCD above in i t . The fol lowing commands
w i l l incorporate the new FCD into the grammar that the parser is usingi

?- norefcd froa ntufcd to ftetfcd2.
THIS COMANB NORNALISES THE NEN FCD.
ASSUHIN6 THE SRAHHAR IS ALREADY LOADED,
HE NILL ONLY BE ASKED FDR THE ALIASES DATA.

ALIASES data i t no* required.

PI e m type in data f i l e nast
It aliaits. NE TYPE ' a l i a m . '
yes

?- go uling nfcd then ne*fcd2.
THIS COHHAND RESTARTS PARSING BUT USIN6
nfcd AND ne«fcd2 AS FCD DATA.

Now, 'kirn is seen' will only produce two parses as expected. The other
problem mentioned above is the time. In general, automatic exhaustive
parsing with more than a few rules tends to be slow. There are several
ways to overcome this problem* First of all, avoid using words which
have more than one lexical entry (indeed, the demonstration grammar
deliberately has no such words) since a lot of time will be spent
checking that the second (usually inappropriate) entry cannot be used.
Secondly, keep the phrases as short as possible - for example, once NP
syntax has been tested satisfactorily, it is often sufficient to use
proper names in NP positions without loss of generality. Thirdly, keep
down the number of ID rules in use. It is often possible to restrict
attention to a particular subset of the rules, or to expand using only a
subset of the metarules. There ^r§ several ways of cutting out unwanted
rules, as briefly described below:

(i) Organise the ID rules into separate data files, rather than all in
one. Thus there may be a file of VP rules, a file of NP rules, etc.
These can be normalised separately and then combined as desired (using
THEN in a USING clause), or combined (using THEN) before normalising
into one file.

(ii) Filter the ID rules (or the normalised ID rules) using a SOMEOF
clause. The command:

parse using soiiGf nidrules for normed idrules.

« Gtzdtr -51- April 1984

The Parser The ProGnw Manua l , Chapter 4

w i l l prompt t h e user t o accept or r e j e c t each normed ID r u l e i n t u r n .
I t i s sometimes worth f i l t e r i n g a f i l e and s imply sav ing the r e s u l t f o r
l a t e r use . COPYDATA can be used f o r t h i s . The command:

copydata from someof n i d r u l e s t o n i d r u l e s 2 .

w i l l l e t you save a subset of the normed ID r u l e s i n t h e new f i l e

NIDRULES2. Th is i s a l s o a good way of d e l e t i n g a c c i d e n t a l d u p l i c a t e
r u l e s g e n e r a t e d by the M e t a r u l e s . See c h a p t e r 5 f o r more d e t a i l s .

(i i i) M e t a r u l e s can be s p l i t s i m i l a r l y , but remember t h a t , t o ensure
t h a t a l l the a p p r o p r i a t e r u l e s ^re g e n e r a t e d , expansion must use a l l t h e
m e t a r u l e s t h a t a re t o be used . That i s , you nay not expand w i t h one s e t ,
and then w i t h another and s imply combine t h e r e s u l t . There a re u s u a l l y
only a few m e t a r u l e s and i t i s o f t e n more p r a c t i c a l t o s imply f i l t e r
them as in < i i) above. E i t h e r f i l t e r t h e m e t a r u l e s in an expand command:

expand from i d r u l e s us ing someof m e t a r u l e s .

or f i l t e r the se t of n o r m a l i s e d expanded i d r u l e s , removing any produced
by a g i v e n m e t a r u l e .

In our case we can e a s i l y reduce the load f o r t e s t i n g p a s s i v e s . Once the
grammar has been loaded once (a f t e r t h e i n i t i a l LOAD or GO command), we
can g i v e t h e f o l l o w i n g command t o f i l t e r t h e i d r u l e s :

go us ing someof n i d r u l e s .

w i th the f o l l o w i n g r e s u l t s :

idruled) Is y FILTER PROMPTS WITH FIRST RULE - ACCEPT IT
idrulelCvp.U) !: n REJECT SECOND RULE UNTRANSITIVES)
idru Ie l tvpJHi d y ACCEPT
idruledvp 31) i : n REJECT
idruleiCvp 41) i : n REJECT
idrulttlvpj]) !: y ACCEPT
idruletvp op) I: y ACCEPT (6IVES US THREE PARSES FOR ' is seen by bert')
id ru l tUnpJ l) i: n REJECT (ONLY PROPER NOUNS FOR NOH)

i d r u i t l t n p j m !: y ACCEPT
idruleiCnbJ]) it skipto pp

SKIP ON TO THE PP RULE
idrule(nb_2) idruleUapJ]) idrul!([ip_2])

THESE ARE THE RULES SKIPPED
idrule(coord) !: n
idrule(conj) It n DON'T HANT COORDINATION STUFF
idrule(top) !: y BUT KEEP TOPICALISATION

idruleUpp, still) I: y
WANT RESULTS OF sta! AND pass FOR pp AND vp.2

idrulednb 1 , r e l c l l) i : skipto vp 2 pass
HERE HE SPECIFY METARULE HISTORY TOO

idrule([npj, stall) idrule([vp 5, inv]) idrule([vp_4, stil)) idrule([vp_3,
pass!) idrule([vp_3, pass]) idrule([vp_3, stall) idrule(Cvp_3,
still)

f^ans 4 Gazdar - 5 2 - April 1984

The Parser The ProGra* Manual, Chapter 4

idrule([vp.,2, still) !: y
idrule([vp_2, stil, pass]) i: y
idrule(Cvp_3, pass, itil]) is end

HE DON'T KANT ANYTHING ELSE
Parsing in AUTO iode.
!: READY TO PARSE WITH ID RULES SELECTED ABOVE

There are other Nays to overcome the speed problem in soie c a s e s . If the
required parse is known to be the first one, then switching ONEPARSE on
will stop the subsequent e x h a u s t i v e search. A l t e r n a t i v e l y , don't use
automatic mode. For example, in monitor mode we can tell the parser not
to explore a particular alternative if we wish. Consider the string 'a
man lee s e e s ' . This has at least two parses - as a topicalised sentence
or as a noun phrase containing a relative c l a u s e . Automatic parsing
produces the the topicalised sentence first. The following use of
monitor mode (with all the ID rules loaded) forces the parser straight
to the noun phrase parses

?- • on. TURN ON HONI TOR NODE
Current mode is MONITOR
yes

?- go. START PARSINB

Parsing in MONITOR tode.

ts a aan kin sees
Using lexrul-i vp.Zlsf) for SEES
— Ok? (type y, yes or nothing to accept) isy

LEXRULE vp2(sf) HAS BEEN CHOSEN -
HE ACCEPT THE CHOICE

Current segnent: (vp_2(sf))

Using ID rule vp.2 stil to consuae 1 categories.
— Ok? (type y, yes or nothing to accept) i:y

THE CHOICES ARE IN THE SANE ORDER AS AUTOMATIC
PARSINB - HE ACCEPT ALL THE EARLY ONES

Current sequent: stil(vp.2)

Leaving category vp_2 stal alone.
— Ok? (type y, yes or nothing to accept) Isy

Using lexrule np_2(prop_noa) for KIM

— Ok? (type y, yes or nothing to accept) l$y

Current segient: (np_2(prop_noa)} stil(vp.2)

Using ID rule np_2 to consuae 1 categories.
— Ok? (type y, yes or nothing to accept) !iy
Current segienti np_2 stal(vp_2)

Evans 4 Gazdar -53- April 1984

The Parser The ProGraw Kanuai, Chapter 4

Using ID rule i to consul* 2 categories.

— Ok? (typt y, yes or nothing to accept) i:y

Current segient: s

Leaving category s alone.
— Ok? (type y, yes or nothing to accept) !:y
Using lexrule nb.i(s) for NAN

— Ok? (type y, yes or nothing to accept) i:y

Current segaent: (nb_i(«)> s

Using ID rule n b j to consuie 1 categories.
— Ok? (type y, yes or nothing to accept) !: n

HERE HE ARE - IF HE ACCEPT THIS CHOICE,
HE 6ET THE INITIAL NP BUILT FIRST, AND
THEN TOPICALISATION IS USED. HE REJECT
IT, F0RCIN6 THE S/NP TO CONBINE NOW

Using ID rule nb.l relcl to consuie 2 categories.
— Ok? (type y, yes or nothing to accept) !:y

NOH HE CAN LET IT CONTINUE TO THE PARSE
Current segaent; relcl(nb.l)

Leaving category nb.l relcl alone.
— Ok? (type y, yes or nothing to accept) isy

Using lexrule npj(sdet) for A

— O k ? (type y, yes or nothing to accept) isy

Current segientt (np.Hsdet)} relcl(nb_i)

Using ID rule n p j to consuie 2 categories.

— Ok? (type y, yes or nothing to accept) !:y

Current segient: np.l

Leaving category np.l alone.
— Ok? (type y, yes or nothing to accept) !:y

THE PARSE AS AN NP:
node(np_l, [root, [cat, [bar, [2]], [head, [iajorf [nil, [linor, Cagr,
[singular]], [case, [*]]]]], [foot, [cat, unspec, [head, unspec,

... 23 LINES' DHITTED HERE! ...
[conj, I*]]], sees)])])])]).

NOH THE PARSER STARTS BACKTRACKING -
LOOKING FOR ALTERNATIVES TO THE CHOICES
HADE. IN THIS CASE, SINCE HE ARE HAPPY
WITH OUR PARSE, HE TELL IT TO STOP

The Parser The ProGrat Manual, Chapter 4

node(np_2,(root, [cat, [bar, [2J], [head, (aajor, [nil, [itnor, [agr, (singula
r]J, (case, I*]]]]], [foot], unspec],[node((np_2(prop_accH,(root,
[cat, [bar, [lexical, Cnp_2]]], [head, (aajor, [n]}, [ainor, [agr,
[singular]], [case, [•]]»], [foot, unspecl, [conj, I*]]],bill)]).

node (Oip_2(prop_acc)), (root, (cat, [bar, [lexical, [np.2]]], [head, [ujor,
[n]], [ainor, [agr, [singular]], (case, (*]]]]], umpec, unspec],bill

AH! TWO PARSES AS EXPECTED
!; sees bill TRY THE VP

node(vp.2,[root, [cat, [bar, [1]], [head, Caajor, [y]], (ainor, [agr, [singula
r]], tvfora, [finite], [auxiliary, [-]], (inverted, [-}]]}]], [foot],
unspec],(node({vp_2(sf)),(root, [cat, (bar, [lexical, [vp_2J]J,
[head, (aajor, [v]], [ainor, [agr, (singular]], [vfora, [finite],
[auxiliary, (-]], (inverted, [-]]]]]], (foot, unsped, [conj,
(*]]],sees>, node(np.2,[root, (cat, (bar, (2]], (head, (aajor,
(nil, (linor, [agr, [singular]], (case, [%]]]]}, (foot, unsptc],
[conj, [""]]],Cnode({np.2(prop.acc)},troot, [cat, [bar, [lexical,
I'np 2]]], [head, (lajor, [n]], (linor, Cagr, [singular]], (case,
[*]]']]], [foot, unsped, (conj, [%]]],bill)]>]).

ii end VP HAS OK - STOP PARSING FOR MOW
yes PROLOG SAYS '60 coeeand successful'
?- shoddata froi rac. LETS HAVE A LOOK AT THE RAC'S - HAYBE

THEY ARE BLOCKING THE OTHER PARSE OF 'kia'

rac(bar,[foot],not(unspec)>

rac d a jor, [foot] ,not (unspec))
NO - N0THIN6 FUNNY THERE

yes
?•< c on. OK - LET'S PARSE IN CONTROL NODE TO SEE

HHAT IS HR0N6
Current lode is CONTROL
yes
?- parse. ONCE THE 6RANHAR IS LOADED, 'parse' AND

'go' ARE SYNONYMOUS.

Parsing in CONTROL tode.
i: kii TRY 'kia' A6AIN
— LEI rule for KIN lib

CONTROL NODE ASKS HHICH LEXICAL RULE HE
HANT TO USE - CAN'T REMEMBER HHAT IT IS
CALLED. PROLOG'S BREAK FACILITY ALLOHS US
TO 60 BACK TO TOP LEVEL TEMPORARILY. VERY
USEFUL.

[break]

Evans 4 Gaidar -SA-

The Parser The ProGra* Hanual, Chapter 4

t t * No (tore) choices for np 1
BACKTRACKING

Leaving category (npj(sdet)} alone.
— Ok? (type y, yes or nothing to accept) !: q

Data f i les closed.
;;; [execution aborted]
Setproiog

?- IF HE HAD WANTED TO STAY INSIDE THE PARSER,
REPEATED REJECTION OF RULES MOULD HAVE
EXITED AS FAST AS HAS POSSIBLE.

F i n a l l y , f r o m t h e p o i n t o f v i e w of t h e s y s t e m , CONTROL mode i s f a s t e s t
since i t does no searching * i t just asks the user what to do. For an
example of control mode in use, see below.

4 . 6 T e s t i n g a grammar

This section contains an example of the parser in use as a grammar
tes te r . The grammar being tested is the demonstration grammar but
without any metarule expansion having been done - in the i n i t i a l stages
of test ing the extra rules generated by metarules are best l e f t out.
since they slow things down a b i t . The grammar bug is as fol lows: in
the FCD speci f icat ion for CASE, the lex ica l and phrasal defaults are the
wrong way round. A look at the FCD data f i l e w i l l show how th is could
easi ly come about - in f a c t , th is bug, and the debugging process shown
below, genuinely occurred while test ing the demonstration grammar.

ProSrai 6 r a n a r Development Systea
Version 1 , 29/4/84

(For help information type: help.)

?- go. LOAD UP THE GRAMMAR (ALREADY NORMALISED)

Parsing in AUTO tode. AUTO NODE IS THE DEFAULT

!: k i t sees b i l l TRY TO PARSE A SIMPLE SENTENCE
!: kit OH DEAR - NO PARSES (SECOND PROMPT

DISPLAYED WITHOUT ANY TREES)
TRY JUST ' k i a 1 .

node((np_2(prop_noi)),[root, [cat, [bar, [lexical, tnp_23]], [head, [aajor,
[nil, [linor, [agr, [singular]], [case, [nominative]]]]], urtspec,
unspec],kia).

THAT'S FUNNY - SHOULD BE TWO PARSES - AS
A WORD (THE ONE HE 60T) AND AS AN NP

!: bill TRY bill' ('kit' AND 'bill' DIFFER IN THE
LEXICON ONLY BY CASE FEATURE)

A Gaidar -55- April 1984

The Parser The ProGrat Manual, Chapter 4

?- thoNdati froa lexicon.

HAVE A LOOK AT THE LEXICON

vp.Hsf) s v(l,ttinq, fin]) ->- juaps , runs , linos

...etc... LOTS OF STUFF LEFT OUT HERE

np.2(prop_noa) t ndjsing, noa]) ->- kia , sandy , lee

np.2(prop_acc) i nil,(sing, ace]) ->- bill , ben , bert

... etc ... OK, SO HE NEED THE NP.2 RULES

yes

?- AZ CONTROL Z ENDS THE BREAK ...
[end break]
— LEX rule for KIH i: np.2

AND HE ARE BACK IN THE PARSE.
DON'T HAVE TO 6IVE THE FULL NAHE, IT HILL
OFFER ALL THE ALTERNATIVES (ONLY ONE IN
THIS CASE)

Located LEX rule np.2(prop_noa)
— Ok? (type y, yes or nothing to accept) i:y

HE ACCEPT THE RULE

Current segient: (tip 2(prop.noa))
REPORTS THE CURRENT STATE.
NOW HE NEED TO 6IVE THE NAHE OF AN ID RULE
HHICH HILL CONSUME OUR NOUN - ITS CALLED
NP.2 AS HELL.

— ID rule to consuae (np_2(prop.noa)) (at least)!: np.2

Located ID rule np.2
— Ok? (type y, yes or nothing to accept) i:y

ACCEPT IT A6A1N
turning: FCD failed.
Involving: case in [root, [cat, (bar, (lexical, [np.2]]3, [head, [sajor,
[n]], tainor, tagr, [singular]], [case, [noainativi]]]]], [foot
! .1], tcomj, [*]]]

AHA! THAT RULE SHOULD HAVE WORKED BUT IT
DIDN'T, BECAUSE THERE IS SOHETH1N& WRONG
HITH THE CASE DEFAULT IN THE NOUN

»<i No (tore) possible Batches for rule.
NO OTHER HAY FOR THE RULE TO HORK

HI ID rule np 2 not applicable.
6IVE UP ON THE RULE

Evans 4 C a z d a r - 5 7 - April 1984

The Parser The ProGraw Manual, Chapter 4

Current segaent: (np 2(prop not))
BACK"TO WHERE M CHOSE THAT IB RULE
NO OTHERS TO TRY, SO QUIT

— ID ru l t to confute (np_2(prop_not}} (at l e n t) is q
Data f i l e s closed.
;;; [execution aborted]
Setprolog

yes OK, SO THE FCD'S KUST BE HR0N6 -
?- shondata f roe f e d . LET US HAVE A LOOK

fcd(case,[foot],ace,free)
fed(inverted,[foot],- inverted9freel
fcd(auxiliary,[footJf- auxiliaryffree)
yes

THEY LOOK ALRI6HT. case IS THE PROBLEM,
LET'S JUST CHECK OUT THE HELP FILE

?- help graeaars.
(LOOK AT «6RAMARS>

AH! THE case COEFFICIENTS ARE THE WRONG NAY
ROUND, IT SHOULD BE fcd(case,[foot],freefacc).
SO IT IS TRYIN6 TO FORCE ace ONTO THE NOUN
BETTER FIX THAT

<EDIT THE FCD FILE)

?- norefed froe fed to nfed.
NOW RENORNALISE THE FCD'S

(loading norieark)
(loading norefeats)

THE PARSER HAS LOADED THE FEATURES,
BUT NOT THE ALIASES

ALIASES data is now required.
Please type in data file nate It aliases.

yes
?- 90 using nfcd. RESTART, BUT LOAD THE NEH nfcd FILE FIRST

Parsing in CONTROL aode.
STILL IN CONTROL MODE

is kie
— LEI rule for KIH h np.2
Located LEI rule np_2(prop_noa)
— Ok? (type y, yes or nothing to accept) !:y

Current segaent: (np_2(prop_noa)}

— ID rule to consuee (np_2(prop^noaJ) (at least)!: np_2
Located ID rule np_2
— Ok? (type y, yes or nothing to accept) !:y

AS BEFORE UP TO NOW - THIS TINE IT WORKS
Current segeent: np_2

E¥ans & Gaidar

The Purser The ProGrai Hanuai, Chapter 4

NO NEED FOR ANY MORE - QUIT
— ID rule to consuie np.2 (at l eas t) I : q
Data f i l es closed.
; ; ; [execution aborted]
Setproiog

? - a on. BACK TO AUTMATIC NODE

Current tode is AUTO
yes

?- 50.

Parsing in AUTO tode.

!: kit I M S bill TRY THE SENTENCE A6AIN

node(s,[root, [cat, (bar, (2]J, [head, [tajor, [v3], (linor, [agr, [singular]]
, [yfori, [finite!, (auxiliary. M l , [inverted, t-]])]]], [foot],
unspec],(node(np_2,(root, [cat, [bar, [23], Chead, dajor, Cnl],
tiinor, [agr, [singular]], [case, [noiinative]]]]], (foot, unspec],
[conj, (*]]],CnodeUnpJHpropjot)),[root, [cat, [bar, [lexical,
[np.2]]], [head, dajor, [n]], tiinor, [agr, [singular]], Cease,
[noiinative]]]]], [foot, unspec], [conj, [*]]),kit)]}, node(vp_2,troo
t, [cat, [bar, [1]], [head, tiajor, [v]], [linor, [agr, [singular]],
[vfort, [finite], (auxiliary, [-]], [inverted, [-]]]]]], [foot,
unspec], [conj, [*}]],[node({vp.2(sf)},troot, [cat, [bar, [lexical,
[vpw2]li, thead, [eajor, [vll, Elinor, [agr, [singular]], Cvfon,
[finite], (auxiliary, M I , (inverted, H]]]]], [foot, unspec],
[conj, [4]]:i,sees), node (np.2, (root, (cat, (bar, [21], (head,
dajor, [nil, Ciinor, [agr, [singularJ3, (case, [*]]]]], (foot,
unspec], [conj, [%]]],[node({npj(prop.acc)},[root, (cat, (bar,
[lexical, [npj]]], (head, dajor, (n]]f dinor, (agr, [singular]],
(case, ["]]!)]], [foot, unspec], [conj, [*]]],bill)])])]).

!: end IT WORKED * EXACTLY QIC PARSE. STOP
PARSIN6

4 . 7

yes
?- end.

Exiting ProSrw.

DisDlayina

END

parse

SESSION

trees

In normal use, without the SHOW switch on, the parser produces parse
trees which are quite unreadable. For example, the tree for 'kirn sees

The Parser The ProGra* Manual, Chapter 4

b i l l ' l o o k s l i k e t h i s :

node(s,[root, [cat, (bar, (211, [head, [eajor, [vl] , [einor, [agr, [singular]]
f [vfora, [finite], [auxiliary, [-]] , [inverted, [-]]] »] , [foot],
unspec],[node(np_2,[root, [cat, [bar, [2]], (head, [§ajorf [n]],
[•inor, [agr, [singular]], [case, [noeinativel]]]], [foot, unspec],
[conj, [*]]],[node({npj(prop_noa)>,[root, [cat, [bar, [lexical,
[np_2]]J, [head, [aajor, [ft]], [amor, [agr, [singular]], [case,
[nosinative]]}]], [foot, unspec], [conj, [*]]] ,kie)]) , node(vp_2,[roo
t, [cat, [bar, [1]] , [head, iiajor, [v l i , [itnor, [agr, [singular]],
[vfora, [f inite], [auxiliary, [-]] , [inverted, [-]]]]]] , [foot,
unspec], [conj, [*]]],[node({vp_2(sf}},[root, [cat, [bar, [lexical,
[vp_2]J], [head, [aajor, tv]] , [iinor, [agr, [singular]], [vfort,
[f inite], [auxiliary, [-]] , [inverted, [-]]]]]] , [foot, unspec],
[conj, [%]]],sees), node(np.2,[root, [cat, [bar, [2]] , [head,
[•ajor, [ni l , [sinor, [agr, [singular]], [case, [*]]]]} , [foot,
unspec}, Iconj, [%]]],[node({np_2(prop.acc)},[root, [cat, [bar,
[lexical, [np.2]]], [head, Ciajor, [n]J, ttinor, [agr, [singular]],
[case, [v]]]]] f [foot, unspec], [conj, [*]]] ,b i l l)])])]) .

This i s , of course, the internal representation of the tree, and for
«ost people it has only two uses:

(i) it is the for«t that the tree is saved in a data f i l e i n , for exaaple
the coAnand

parse to treedat.

will store trees l ike this. They can then be viewed at leisure using

showdata fro« treedat.

(without needing the SHOW switch on - s e e below).

(i i) One can count how aany of then there are, to see if the right
number of parses has been found.

The foraat of a tree is actually very siaple. A tree is a t e n of the
fora:

node(N,N,D)

where N is the naae of the node (the full name, without truncation), M
is the feature tree for the ©other and D is a list of the daughter
subtrees (also instances of NODE), in left-right order, except when the
node is lexical, in which case D is the word itself.

A itore readable interactive tree-display routine is provided by the
FILTER library, and can be selected by switching SHOW on (see chapter
5). It is also used by the trace printer (when TRACE.OUT is on) and the
command SHOWDATA.

With the interactive display routine selected, the
displayed as follows:

parse tree above is

^ M.

The Parser

It s
2: .
3s .
• •
4: .
5: .
» •
b: .
7: .
• •

np
(np(prop)}
kin

vp
. <vp(sf>>

sees
np

(np(prop)}
. . bill

The ProGrtw Manual, Chapter 4

The tree itseH is in 'indentation -fortat' * for each tree, the root
node name is printed, followed by the subtrees (also in indentation
format) indented several spaces. The dots are to help keep track of the
indentation. The labels of the nodes are as discussed in chapter 2 *
they are the naties of the ID rule applied at that node, but anything
beyond an underline character is omitted. Thus the node labelled VP here
derives from the rule named VP_2. If the tree had been labelled
conventionally, i.e. with each node labelled by the category associated
with it, then this label would be:

[root, [cat, [bar, 1], [head,
[major, v3,[minor, 333, _1, _23

Notice also that names of LEXICAL rules are enclosed in braces { > to
distinguish the*. The node-naming conventions used by ProGram allow the
basic parse tree to be readable, and give the grammar writer control
over the labels used.

To view the internal structure of a category, one uses the numbers given
at the start of each line (except lines for word-nodes, which have no
internal structure). Once the tain tree has been displayed, ProSram will
prompt the user as follows;

Examine option !:

There are several things that can be typed - nothing (i.e. just
<return>) means 'finished examining tree - go back to parser', T means
'display the main tree again' and a number means 'display the internal
category structure of this node (as numbered in the main tree)'. As
always, one can also type HELP.

In this case, typing '7' would result in the following tree being
displayed:

The Parser The ProGraw Hanual, Chapter 4

root
. cat
• . bar
• . . lexical
• • . • np_2

head
ftajor

• • . • n
• inor

. . . . agr
singular

case
• • • • •

foot
• unspec

. conj

This is the feature tree for the noun 'bill' (using lexical rule
NP_2(PRQP_ACC) which get displayed as (NP2(PR0P)}). The format is the
same, except that feature names are used to label nodes, and no nuebers
are given, since there is no internal structure to these node labels*

The user can now select another node or the main tree etc. Node 1 (the S
node) looks like this:

Examine option
root
. cat
• t

. a

•

* .

is 1

bar
. 2
head

major
• • v

minor
agr

. . . singular
vform

. . .

. . .

. . .

finite
auxiliary

inverted

foot
unspec

4.8 Th» SHOWTREE package

Users of the system under P0PL06 can take advantage of a prettier
display routine (for certain VDU's only) which makes use of the POP 1i
parse tree display library (the SHOWTREE library). By loading the custom
module SHOWTREE after the FILTER library, the display predicate is
redefined to display a tree as follows:

The Parser The ProGraw Hanual9 Chapter 4

np

<np(prop)>{

kirn

I
Cvp (s-f)

sees

vp
1
y np

•Cnp <prop) >

The labelling conventions for nodes are as above* The tree if displayed
using the POPLOG screen editor VED and aost of the keys on the keyboard
are redefined or disabled. The new functions for keys are given in your
LOCAL help file. They permit the user to «ove the cursor from node to
node in the tree. A further key (the VED PUSH key) causes the category
structure tree of the current node to be displayed. For example (the
node for 'bill' again)s

root

cat
JL

•foot conj

bar head unspec

I lexical

np_2

major

ri"i

minor

agr

singular

case

The VED POP key restores the aain tree again, and the user can jump
between main tree and feature trees at will. The VED END-OF-FILE key
returns control to the parser.

Evans * Gazdar -64- April 1984

The

5.1 Summary of iystem commands

This section suaaarises the coamands available in the basic systeit.
Further coaaands are discussed in section 5.5.2, below.

NORMID noraalise ID rules (see chapter 3).
NORHLEX noraalise lexicon (see chapter 3).
NORHHETA noraalise aetarules (see chapter 3).
NORHFCD noraalise FCD data (see chapter 3).
NORHFCR noraalise FCR data (see chapter 3).
NORMRAC noraalise RAC data (see chapter 3).
NDRNLP noraalise LP data (see chapter 3).
EXPAND expand ID rules using aetarules (see chapter 3).
PARSE run parser (see chapter 4).
STATUS display switch settings (see section 5.4).
S ON turn snitch/snitches S on (see section 5.4).
S OFF turn snitch/snitches S off (see section 5.4),
LIB X load library aodule X (see section 5.5).
HELP display general help inforaation (see section 5.2).
HELP X display help inforaation on topic X (see section 5.2).
ID show identification string.
FORGET ALL forget all data aodules.
END quit ProGraa, return to operating systea.

SHOWDATA - display the data in a data file using the SHOW display option.
Data is read froa the input and displayed as though the SHOW
switch were on. Particularly useful for looking at stored parse
trees.

COPYDATA - copy data froa one file to another. This coaaand does nothing
to the data at all, but can soaetiaes be useful with the SOHEOF
filter (see 5.5.1).

ID X - set identification string to X. The identification string is
printed in the header for all data files created by the systea.
Typical inforaation aight be date, user's naae, etc.

CLOSE - close all data files. Occasionally, due to syntax errors, etc.,
a data file aay be left in an open state and reading thus coaaences
half way through. This coaaand ensures all data files are closed.

F0R6ET X * forget data aodule X. This coaaand causes the systea to
forget that the specified aodule has been loaded, so it will require
it to be reloaded before atteapting to use data froa that aodule.

The Syste* The ProGra* tfanuai, Chapter 5

5 . 2 H e l p f a c i l i t i e s

Information and help with ProGram cones in two torus. Host of the
information about using the system is contained in help files. If the
system is running under PDPLOG, the help files will probably be online
and accessible in the same way as the POPLOG help files. Throughout the
help files, references to other help files are preceded by '•'.

The system also has a limited built-in help facility for access while in
use. This provides short explanations and references to the help files.
The command which accesses this information is

help <keyword>.

where <keyword> is the topic required. If the keyword is omitted,
general help information is printed. Note the period at the end of the
command. A fair range of keywords related to the system can be used,
and the command

help index,

gives you a list of the keywords covered*

In most cases where the system requires the user to type something (e.g.
a data module name, a parsing decision, etc.), the user may also type
HELP or HELP <keyword>, this time without a period (periods are only
required at the command level). If no keyword is specified, help about
what you can do at this point in the processing is provided. Thus, for
example, to get the general information about help files found above,
you would have to type HELP HELP.

Thus the general rule is 'if in doubt, type HELP, and if that doesn't
work, then type HELP followed by a period.'

There are also a group of help files which contain example of ProGram in
use. Host of the examples assume the Prolog-only version of the system,
but there are also a few which discuss some of the libraries in the
P0PL06 version.

All the examples are based on the demonstration grammar which is to be
found in chapter 6. See your #LOCAL help file for details of the actual
location of the demonstration grammar on your machine.

The example files all follow the tame general format - they consist of
examples of terminal interaction with ProGram interspersed with
comments. In general, large block comments are just ordinary text while
short comments actually within, output etc., are in upper case. The
sample output text is as produced by the system running under UNIX
POPLOG, with the demonstration grammar for data. A few extra blank lines
have also been inserted for clarity.

The Syste* The ProGraw Manual, Chapter 5

T h e e x a m p l e help f i l e s a r e :

E6DATA what the normalised data looks like.
ESEXPAND expanding using the eetarules.
EBNORM data normalisation exuples.
E6PARSE typical interaction with the systei
E6TEST using the parser to find a bug.
ESTREE various nays of displaying the parse trees.

5.3 Errors, causes and corrections

When using Pro6ram, various sorts of errors and warning messages nay be
encountered. This section attempts to explain and diagnose some of them.

First of all, it is important to be able to distinguish errors produced
by 'ProGrai from errors produced by Prolog or some other part of your
coaputer system.

5.3.1 ProBram errors

ProBran errors come in two fonts:

lishap: <some error message)
involving: <objects that caused the problem)

or
Naming: <some error message)
involvings <objects that caused the problem)

In the first case, the error is bad enough that the command which was
being done has to be aborted, and the system returns to command level.
Here are a couple of examples, both involving normalisation. If the
normalisation of some rule fails, then one of the following error
messages may be generated:

mishap: normalisation failure
involving: <)

when the rule is informed, or of the wrong sort - an ID rule in the
lexicon, for example; or

mishap: Feature specification error
involving! ' < • • • • > . .

when there is something wrong with the feature syntax specification.

The second sort of error is not really an error, but just a warning.
Processing continues after the message has been produced. Here are some
examples of this type of warning.

warning: HFC failed
involving: <)

This will appear when the HFC routine cannot find a head in an ID rule.

The Systew Thi ProGraw ti*nu*l, Chapter 5

warning: FFP failed
involving: < >

In CONTROL mode, this is how the parser reports the problems it has
using the rule chosen.

Hishaps, then, need correction, usually by editing the text files with
the grammar data in. Warnings do not need correction, although they nay
sometimes be an indication of a Mistake.

5 . 3 . 2 S y s t e m e r r o r s

Any other error messages, not specifically of the for* indicated above,
d^re produced by the system. Exactly what they look like depends on the
Prolog system being used, but a typical POPLOG system error tight be:

;;; PR0L06 SYNTAX ERROR - Expecting a separator, operator or closing bracket
;;; ITEM: baz
;;; PARSING: foo ...

This particular type of error, a syntax error, can occur if a command is
Mistyped, or not understood by the system (although sometimes the
response in this latter case will simply be NO - see 4 . 5) . Either way,
the user can carry on typing in cowhands afterwards - nothing will have
been disturbed.

Prolog syntax
mistyped. For

si:
vpl:

errors can also occur if data in the data files has
example, consider the following pair of ID rules:

s — > np, vp
vp — > v np.

been

There are two syntax errors here (i) a Kissing period after the first
rule, and (ii> a missing comma in the second rule between V and NP. Both
of these will generate an error like the example above. Another common
cause of syntax errors is not matching up round or square brackets
properly.

Prolog systems vary on whether they can recover from syntax errors. Some
of them return to command level straight after the first one, others
continue, trying to locate as many syntax errors as possible. Often, the
first error detected may not be the only one in the file - the user
should expect to have to try loading the file several times, correcting
errors between each load, to ensure that all errors have been found.

Suppose the following command is given:

normid from idrules to normedrules.

If there are any syntax errors in the data file IDRULES, then a syntax
error will be produced. Unfortunately, due to the design of Prolog, the
error message will not be printed on the terminal - i t will be put into
the output data file NORMEDRULES instead. So the user may not realize
anything has gone wrong. For this reason, it is advisable to give the
command as:

The Systei The ProGnw Manual, Chapter 5

n o r m d fro* idrules.

This will tend output to the terminal, first of all, just to check that
there are no syntax errors. Once ail syntax errors have been cleared,
the earlier coimand can be given safely to store the normalised data.

Apart fro* syntax errors, the only other sorts of errors one should
expect are errors involving data files, for example, trying to read data
froii a nonexistent file, or giving a file a name which is not p e m i t t e d
by the operating systesu Again, the particular error produced will vary.
A POPLOG example is*.

J55 PROLOG ERROR - CAN'T OPEN FILE (no such file or directory)
;;; INVOLVING: idrules

This will appear if you atteapt to use a file IDRULES which doesn't
exist.

Snitch naie

TRACE.QUT

TRACEJN

SHOW

Abbreviation

TRACE, TO, T

TI

S

5,4 S w i t c h e s

Various features within ProGran are controlled by switches which can be
turned on and off by the user. The switches fall into three categories:
trace options, parse modes and general flags. The flags, acceptable
abbreviations for the*, and their functions are given below:

Function

controls tracing of output data (data
displayed as it is written)
controls tracing of input data (data
displayed as it is read)
controls output fort (SHOW on produces
friendlier, but not machine-readable
output)

controls the parser's scan tecHanisi
(HATCH on produces full trees each scan)
switch on automatic lode
snitch on lonitor aode
snitch on control lode
controls user-checking of parser decisions
controls whether to stop at first parse

controls whether Conjunct Realization
Principle is used (ON * not used)
controls whether Foot Feature Principle is
used (ON « not used)
controls whether Head Feature Convention is
used (ON * not used)
controls whether lexical subcategonzation is
used (ON * not used)
controls whether bar levels are being used

HATCH

AUTO
MONITOR
CONTROL
CHECK
ONEPARSE

NOCONJ

NOF00T

NOHEAD

NOLEX

NOBAR

A
DON, N
CTRL, C
CH
0

HOC

NOF

NOH

NOL

NOB

The Systew The ProGra* Manual, Chapter 5

LEJCHETA L controls whether tetarules only apply to
ID rules that introduce lexical categories
(when ON) or to all ID rules (when OFF).

Switches nay be turned on or off using the ON and OFF predicates, for
examples

check on.
oneparse off.

auto, nohead on.
c, o, chf to off.

Several switches can be changed in one statement, and the abbreviations
given Bay also be used if desired. The current setting of the switches
can be viewed with the command

status.

The initial setting of switches is:

Parse mode AUTO
CHECK ON
LEXMETA ON
All others OFF

This can be changed if desired by setting switches in the custom module
(see 5.8.2). Note that the parse modes cannot be turned OFF, you can
only switch to a different mode.

5.5 L i b r a r i e s

This section describes the library files in the system. Library files
are optional parts of the system which can be loaded in by the user with
the LIB command:

lib <libraryname>.

Alternatively they can be included automatically by having the assertion

included ib (<1 ibraryname>)).

in the customisation file (see 5.6). In a few cases, they are loaded
automatically (e.g., the FILTER library loads if you select the WATCH
option).

The *LOCAL help file should contain details of any libraries local to
your own installation. Local libraries can be loaded either with

custom <1ibraryname).

as a command, or by putting

The Systet The ProGr** flanuai, Chtpter 5

include(custom(<libraryname>).

in your customisation fi1e•

5,5,1 F I L T E R

The FILTER library provides more sophisticated 10 handling than is
available in the basic system monitor. Except when using the system in
batch node, or on a machine which does not have a large address space,
it is usual to have FILTER included automatically, i.e. in the
customisation file. It contains all the trace handling routines, as well
as the filtered input routines described below. Note that this means
that unless FILTER is loaded, the trace switches do nothing.

The FILTER library provides two mechanisms for combining and controlling
input data files. Using the basic system only, an input data file
specification is simply a filename in a FROM or USING clause (see 3.4
for more details). For example, to normalise ID rules from a data file
called NPRULES the command would be:

normid from nprules.

Using the FILTER library, the input can be specified as the concatenation of
two (or more) files, using the word THEN - for example:

normid from nprules then verbrules to normed.

This command normalises the rules in the file NPRULES and then the rules
in the file VERBRULES. All the resulting normalised rules are put in a
file called NORMED. THEN can also be used in a USING clause - for
example:

parse using nbriedl then norned2 for normed ID rules.

Being able to concatenate files in this fashion allows the user to write
a grammar modularly, with different files for different parts of the
grammar. They can then be tested in isolation before being combined into
a full system, using THEN concatenation.

The second feature provided by lib filter is the interactive filter,
invoked by the word SQHEQF - for example:

normlex from someof mylex.

This command normalises data from the file KVLEX, but interposes an
interactive filter between the file and the program. This means that
every time the program reads a new rule from the data file, the name of
the rule is reported to the user. The user then has several options:

1. accept the rule - so the program uses it
2. reject the rule - go and read another one and report that
3. look for a rule with a specific name and use that
4. start again (at beginning of the file)
5. behave as though the end of the file has been reached

The Systew The ProGra* Manual, Chapter 5

The SOMEOF filter allows the user to be selective about what data within
a file is to be used, so that, for example, particularly troublesome
rules can be easily isolated for testing. For an example of this filter
in use, see 4.5.

THEN and SOMEOF can be freely combined - for example:

parse using foo then someof baz then bing.

This command uses file FOO, then BAZ with the filter interposed, and
then BING. Brackets allow the grouping to be rearranged:

parse using foo then soieof (baz then bing).

This command uses the filter on both BAZ and BINS.

Suppose the ID rules for the grammar have been developed in two files,
which have, perhaps, been tested separately. Let's say the normalised VP
rules are in NVPRULES and all the rest are in NIDRULES. To load them
both for parsing, the following command could be given:

parse using nvprules then nidrules for normed idrules.

Alternatively, using the command:

load.

to load up the whole grammar would cause NIDRULES to be loaded (since it
has the standard name) but not NVPRULES. But if we subsequently gave the
command:

parse using nvprules then nidrules.

all would be well. We do not need a FOR clause since the system already
knows about the normed ID rules. However, the following commands would
not work:

i. load.
parse using nvprules.

ii. load using nvprules then nidrules.

In the first case, NVPRULES would replace the existing rules, so
NIDRULES would effectively not have been loaded. In the second case, all
the rules get loaded, but then the LOAD command reloads NIDRULES only,
again replacing all the existing rules.

5 , 5 , 2 M Q R E C O M M S

The commands built in to the basic system are just the system
primitives, NORMID, NORMLEX, PARSE, etc. The MORECOMMS library provides
some compound commands which make common operations easier. It also
provides a good illustration of how the user can build up more complex
commands if desired. The commands provided are as follows:

The Systet T h e P r o G n w M a n u a l , C h a p t e r 5

NORHHFC * normalise ID rules and do HFC processing on thea. If metarules
are not being used, these two operations can safely be coibined (see
3.3) .

NORHJDRULES - do NORHHFC using the standard filenames.

NORHJIISC - normalise lexicon, LP rules, FCD's, FCR's, RAC's froe
standard filenaies.

NORHJND.EIPAND - norialise ID rules and metarules, expand the grauar
and do HFC on the result. Standard filenames used throughout.

NORHJRAH - nortalise a whole qniaar (without metarules), using
standard filenaies.

NORH.HETA - nonalise (and expand) a whole grauar (with metarules),
using standard filenames throughout.

LOAD - load in a l l thf normalised data required for parsing, using
standard H i e nates.

60 - load up data (i f necessary) and run the parser.

DEBUG - set switches for convenient debugging.

The commands w h i c h use s t a n d a r d f i l e n a m e s do n o t need t o have t h e i r
i n p u t s and o u t p u t s s p e c i f i e d (any s p e c i f i c a t i o n w i l l be i g n o r e d) . The
s t a n d a r d f i l e n a m e s f o r a l l d a t a modu les a r e g i v e n i n 3 . 5 .

5 , 5 , 3 NEWWORDS

The NEWWORDS library provides a simple mechanism for dealing with
specific unknown words. The library should be loaded after the
(normalised) lexicon has been loaded. For each new word to be used, a
clause *newword(<word>).' must be provided. This can be done in several
ways. The command

assert(newword(foo)))

adds 'foo' as a new word. Alternatively, a data file containing several
new words can be constructed. A data file (WORDS 1f say) with some new
words in it might look like this:

newword(grengle).
newword<foo),
newword(thunk).

Such a file could then be loaded with a USING clause:

parse using wordsl.

The Systew The ProGraw Hanual, Chapter 5

Note that no FOR clause is possible since WQRDS1 is not a standard data
nodule. Now, whenever the parser comes across a word which is not in the
lexicon, but which is specified as a NEWWORD, it will try parsing using
every category in the lexicon for that word. Any successful parse will
produce a candidate for the syntactic category of the word.
Unfortunately, the parser does not remember the successful categories at
present.

The NEWWORDS library is provided for the benefit of users who are
interested in experimenting with the automatic acquisition of lexical
subcategorisation information from texts.

As one might expect, using NEWWORDS slows the parser down a lot, since
there are many alternatives to be considered. It works best with only
one new word in the sentence, and the nearer the beginning that word
appears, the better.

5.6 Customising the system

The ProGra® system has been designed with portability in mind, using
only 'standard' Prolog for the main system and libraries. The system
makes no assumptions about the operating system and file handling
mechanisms - these aspects, as well as the inclusion of nonstandard
modules (for example, the SHOWTREE module in the POPLOG version, which
makes use of P0P11 libraries), must be locally tailored in the CUSTOM
module. This section describes what customisation is possible, and how
to achieve it.

There is only one file in ProGram which needs modification to suit local
requirements, and that is the PROGRAM module itself. As the comments at
the head of the module explain, a predicate CUSTOMISATION.FILE must be
defined, whose function is to REC0N5ULT the customisation file described
below. This predicate has to be specifically defined taking into account
the format of filenames in the local operating system. For example,
under P0PL06 UNIX, the clause might be:

customisation file i- reconsult('$program/custom/custom.pi ') .

and under POPLOB VMS it might be:

customisation_file :~ reconsult ('program:[custom]custom.pi ') .

Note that the actual name of the customisation file is irrelevant.

The only other possible change to the PROGRAM module is the use of the
operator ':-' to mean 'top-level-invoke'. In some systems, this may be a
different symbol, e.g. '?-'• It appears twice in the PROGRAM module, and
it also appears in the library module NEWWORDS. There are no other
changes to be made to the main system, all other customisation takes
place in the customisation file. Note that the customisation file is
loaded before the operator declarations have been made, and so must not
presuppose that infix operators, etc., have been defined.

The Systea The ProOn* ffanuai, Chapter 5

The customisation file is simply a H i e of Prolog code which gets
reconsulted when the system loads. Thus it can be used to define new
local commands, etc., simply by providing clauses for them (see below
for details of redefining system commands, however). It can also provide
new definitions for three predicates which are used by the system:
FILENAME, MODULENAME, and INCLUDE.

The predicate FILENAME; takes two arguments. The first is the name of a
file, as given to th? system by the user (i.e. as typed in a command).
It is a Prolog atom. The second should be instantiated by the predicate
to the actual filename for that file, suitable for use in a SEE or
RECONSULT. If no FILENAME clause is specified, the default clause does
nothing, i.e. it returns the filename exactly as given.

For example, in a system (e.g. VMS) where filenames have file types, and
the conventional type for Prolog files is '.pi', not redefining FILENAME
would lead to the necessity of commands like:

parse from 'foo.pl' using 'id.pl' for normed idrules.

But if we define FILENAME to add the .pi automatically, as follows:

filename(X,Y) :- name(X,XN>, append(XN, '.pi ' ,YN) ,name(Y,YN).

then we could write

parse from foo using id for normed idrules.

Similarly, we could redefine FILENAME to get grammar files from a
specific directory, which would get automatically prefixed onto every
file name.

MODULENAME is similarly a two place predicate which serves the same
function as FILENAME, but for system modules. The first argument takes
different forms according to what sort the module is as follows:

1st arg. Module sort

lib(foo) library module foo
custom(foo) customised module foo
foo system module foo

This allows the different classes of module to be stored in separate
subdirectories if desired. The default clause for MODULENAME just
returns the name of the module (i.e. it strips off LIB, CUSTOM, etc.).

INCLUDE is a predicate with one argument, which should be a module name
as in the table above. When the ProBram system loads, only the MONITOR
and COMMAND modules are loaded automatically (although most other
modules will be loaded automatically as soon as they are needed).
Modules specified in an INCLUDE clause are also loaded at system-load
time. This can be useful for several reasons. (i) If you are
precompiling the system (e.g. a POPLOG 'saved image'), and you want
various bits of the system included in it, this is the clean way to get
them in. (ii) Some modules (e.g. MORECOMMS, FILTER) don't load
automatically and have to be loaded explicitly anyway. (iii) You may
prefer to have modules loaded at the start, rather than interrupting

The Syste* The ProGra* Manual, Chapter 5

your work half way through a session. (iv) All the INCLUDE clauses are
handled after the monitor and commands have been loaded, and in the
order that you specify. This means that if you want to redefine system
commands, you can do it in a separate customised module and INCLUDE it.
You cannot do it in the main customisation file, since this is loaded
first, and so the system definitions Mould overwrite yours, not vice
versa.

For example, the POPLOG customisation module SHOWTREE must be loaded
after the library module FILTER, since it redefines a predicate in the
latter. This can be done by putting the following clauses into the
customisation file:

include(lib(filter>).
include(custom(showtree)).

Finally, a customisation file can set switch values, if the initial
default settings (all OFF except CHECK, parsing mode « AUTO) do not suit.
Clauses like

?- o on.
?- ch off.
?- c on.

in the customisation file, will achieve this. Note that the prompts
shown here need to be typed into the file exactly as shown.

For an example of a fairly sophisticated customisation file, see the
UNXcustom module, which customises Program for POPLOG on VAX UNIX (see
appendix 1).

5.7 T h e l e x i c o n i n t e r f a c e

ProGram is mostly concerned with grammar rules. The lexicon is provided
mainly for convenience - so that ordinary sentences can be used, rather
than strings of syntactic categories. In particular, the built in
lexicon handling is relatively simple-minded, and would not cope well
with a realistically large lexicon resulting, for example, from all the
morphological forms of a large number of words. The more experienced
user may well wish to design lexicon handling routines (in Prolog or, in
the POPLOG version, P0P11 or even LISP) which access a larger lexicon
more efficiently. This section gives details of the interface between
ProGram and its lexicon to enable such routines to be designed.

The lexicon lookup in the parser consists of a call of the predicate
LEXRULE with three arguments as follows:

lexrule(Nord,Name,Cat)

The arguments are:

The Systew The ProCrai ffanuai, Chapter 5

Word - the word being looked up (already instantiated).
Naie - this is a ten of the fore lex(M) where N is the naie

of the lexical rule used. N should be set by the lexicon
routine, and is used for display in parse trees.

Cat - the syntactic cateqory of the Uord. This is set by the lexicon
routine and should be a fully normalised, fully specified
category, according to the feature syntax specification.

A l t e r n a t i v e s y n t a c t i c c a t e g o r i e s for a word are obta ined by Prolog
backtrack ing , such a l t e r n a t i v e s represen t a l t e r n a t i v e s o l u t i o n s t o the
LEXRULE p r e d i c a t e .

All the parse mode handling behaves j u s t as usual - in contro l iode the
user i s asked to s p e c i f y a l e x i c a l r u l e na ie before lookup* This i s not
passed to l e x r u l e , but a f t e r l e x r u l e has r e t u r n e d , the u s e r - s p e c i f i e d
name (say UN) is compared with the returned name (N, above) . Only if UN
* N or func tor (N , UN, J is the r u l e used , o therwi se the parser askes
for an a l t e r n a t i v e r u l e .

The l e x i c a l ca tegory must be f u l l y normalised (s ee chapter 3) . The
system prov ides a p r e d i c a t e NORMFEAT that does t h i s , i . e . g iven a
category C which i s s p e c i f i e d us ing a l i a s e s , e t c . , the c a l l

normfeat(C,NC)

returns NC as the normalised version. NORMFEAT gives a Aishap if it
cannot normalise - in particular, unbound variables cannot be
normalised, and so normalising a normalised category will often fail in
this way.

The lexical coefficient feature in ProGra* is handled by the lexicon
normaliser. This means that any new lexicon lookup routine must set the
LEXICAL feature itself. It oust be set to the name of the ID rule (or
the functor of the name, if the name is a complex term) in which the
word is introduced. Alternatively, one can set the switch NDLEX to stop
all lexical coefficient checking. The system module NORMLEX
(.../program/sys/normlex in the UNIX version of ProGram) contains more
information and some potentially useful predicates.

Any new routines that redefine this predicate should be loaded as the
normed lexicon data module, i.e. replacing the normal normed lexicon.
The built in lexicon handler behaves as follows: NORMLEX is given rules
of the form

vtr: vlex(sing) ->- likes, loves, sees.

and produces clauses like:

lexrule(X,lex(vtr), ...) :- once(member(X,tlikes,loves,sees])).

where ... is the normalised version of VLEX(SING) (an aliased category)
with its lexical coefficient set. These clauses are normally all written
to a data file which is loaded as normed lexicon.

The Systew The ProGn* Hinutl, Chapter 5

5 , 8 The s t r u c t u r e o f t h e f i l e iv i tgrn

This section contains an index to a l l the f i les in ProGram. The index is
organised in the saute way as the f i les are in the POPLOG UNIX system,
namely as a collection of subdirectories under the directory Iprogra*.

5 . 8 , 1 PROGRAM: t h e top l e v e l

custoa * directory containing cuitoiised libraries
deto - directory containing demonstration graatar
help - directory containing aain help files
lib - directory containing optional systea libraries
sys - directory containing aain systea files

5,8,2 CUSTOMx customised l ibrar ies

PL06custoa.pl - customisation for Prolog-only systea
UNXcustoa.pl - custoaisation f i l e for VAX UNIX POPLW
UNXakgds - UNIX (cshl coaaand f i l e to build saved iaage
VKScustoa - custoaisation f i l e for VAX VMS POPLOB
seetree.p - POP11 library to interface to LIB SHOWTREE
showparse.p - P0P11 library to interface Pro6raa to SEETREE
shoittree.pl - PRDL06 interface to SHOHPARSE
usercoaa.pl * library of systes-dependent coaaands
vedfiles.pl - library for siaple VED interface

5,8,3 DEMO: a demonstration grammar

aliases
idrules
nfed
nip

fed
lexicon
nfer
naeta

fcr
lp
nidruies
nrac

features
aetarules
nlexicon
rac

5.8,4 HELPs the help f i les

assuaed - assuaptions about 6PS6 foraalisa
coaaands * suaaary of basic systea coaaands
custoa - ho* to custoaise the systea to local requireaents
data - details of data f i l e organisation and use
errors - notes on different sorts of error and cures

The S y s t e i 7he ProGn* , Chapter 5

exatple
egdata
egexpand
egfilter
egnon
egparse
egtest
egtree

qpsg
graaiars
help
M e
index
intro
lexicon
libraries

local
•etarules
nor a
overview
use

parsing
poplog
snitches
systeis
use

- exaiples of the systei in use:

a bibliography of recent work in 6PS6
details of grauar specification for the systei
information about help facilities
details on head feature convention processing
an index to the systei
introduction to the systei documentation
notes on the interface to the lexicon
details of the optional systH libraries

local installation notes
details of use of utarules
how to norialise graiiar data in the systei
overview of systei functions
basic use of the systei

how to use the parser for grauar testing
relevant sources of intonation on P0PL06
the systei switches and what they do
details of other coiputational 6PS6 systeis
basic use of the systei

5.B.5 LIB: optional system libraries

filter - lore sophisticated data file handling routines
•orecons - soie higher level systei coiiands
newwords - library to handle unknown words

5,8.6 SYS; the main system routines

cuands * basic top level coiiands
crp - Conjunct Realisation Principle routines
expand - grauar expansion (using letarules)
fed - FCD and category latching routines
ffp ~ Foot Feature Principle routines
helpinfo - data for built-in HELP facility
hfc - Head Feature Convention routines
•onitor * basic systei lonitor - utility routines etc

The Systtw Thi ProGra* tfanuai, Chapter 5

norefeats * tain feature normalisation routints
nor aid * ID rule norialisation routines
noralex - lexicon normalisation routines
noralp - LP rule noraalisation routines
noruark - FCDV FCR and RAC noraalisation routines
noriaeta * letarule noraalisation routines
norarules - uti l i ty routines for noraalisation
parse * aain parsing aodule
prograa - aain systea loader

monmt:rait:i on

6.1 F e a t u r e s

The top-levels of feature structure tike a standard form.

feature [root, cat, foot, conj].
feature [cat, bar, head],
feature [bar, {lexical, 1, 2)3.
feature [head, Major, iinor].

Major features - one for each phrasal type. Prepositions have a sub-
feature which is a terminal symbol feature.

feature Cffiajor, (v, n, a, p, conj}]/
feature [p, (by, to, in, on, with}].

Minor features.

feature [minor, agr, (case, vform}].
feature tagr, {singular, plural}].
feature [vfprm, {finite,passive}, auxiliary, inverted].
feature Cease, {nominative, possessive}].

The foot feature only has one candidate coefficent - a CAT for doing
SLASH categories.

feature [foot, cat].

Very simple conjunct features - just two possibilities.

feature [conj, {neither, nor}].

The last two are boolean features

boolean auxiliary,
boolean inverted.

6.2 A l i a s e s

The aliases below let you write V(2> to mean a basic verbal category of
bar level 2 (similarly for other bar levels, and for nouns, adjectives
and prepositions).

alias(v(N), [root,teat,tbar,NJ,[head,[major,v]]]]).
alias(n(N), [root,[cat,tbar,N],[head,[major,n]]]] >.
alias(a(N), [root,[cat,[bar,N],[head,[major,a]]]]).
alias(p(N), [root,[cat,tbar,N],[head,[major,p]]]]).

The following aliases let you specify minor features too if desired -
note that a preposition version is not included, simply because it is
not used in the grammar at all.

A Demonstration 6ra»war The ProQnw Hanualf Chapter 6

aiias(v(N,M), [root,teat,[bar,N],[head,[major,v3,
CninorIH3333).

aliast n(N,M), [root, [cat, Cbar,N3, [head, [major,n],
CminorlHJ]]] >.

alias(a(N,M), [root,[cat,[bar,N],[head,[major,a],
CAinorIH3333)•

The next group of aliaies is designed to be used as the minor features
arguent in the aliases above. The main reason that the actual feature
names are the full words is so that the abbreviations can be used here.
Thus, for example V(1,CAUX]) means a VP which is FINITE and ^AUXILIARY.

alias(sing, [agr,singular]).
alias< plur, [agr,plural 1).
alias(no«, [case,no»inativel)•
alias(ace, ^case).
alias(aux, Cvform, finite, -^auxiliary]).
alias(inv, [vforn, finite, ^inverted]).
alias(fin, [vfom, finite, -auxiliary, -inverted!).
aliasf pass, [vform, passive, -auxiliary, -inverted]).

Me can provide a prepositional alias to simplify the stipulation of
particular prepositions*

alias* p(N,P)f[root,[cat,[bar,N],[head,[«ajor,[p,P]]]]]).

And a similar one to sinplify the stipulation of conjunction words.

alias(c(C), [root,teat,[bar,lexical],[head,[major,C]]]]).

The following aliases allow the use of the H (for HEAD) notation.

aliasf h(N), [root,[cat,[bar,N],[head,[major]]]]).
alias(h, h(lexical)).

The system requires the lowest bar level to be called LEXICAL - the
alias below allows us to use 0 instead if we wish.

alias(0, lexical).

Finally, an alias which lets us use the slash notation for slash
categories. Prolog understands expressions like X/Y as the same sort of
thing as V(X,Y), only using V' instead of V. What the alias does is
complicated - it is not just a straight translation: NORHFEAT does
normalisation on feature expressions, PATHFOR locates the coefficients
of particular features, and PROTECT ensures that the resulting feature
is not normalised again (things must not be normalised twice).

alias(X/Y, Z) *-
normfeat(X,XN),normfeat(Y,YN),
pathfor(foot,YN, ' * ') ,
pathfor(cat,YN,YCat),
pathfor(foot,XN,[tcat!YCat]3),
Z « protect(XN).

f v an < A

A Dewonstration Graiiar The ProGra* Manual, Chapter 6

6.5 ID r u l e s

The sentence rule uses variables to specify control.

s: v(2) --> N2,H1 where N2 is n(2,£nom]>,
HI is h(i),
N2 controls HI.

In the VP rules that follow, notice the underline character (_) in the
rule labels. We want theft to have different naces, so that lexical
subcategorisation works, but everything after the underline gets oiutted
froA the parse tree displays, etc., so the label appears as just VP.

v p j : v(l) — > h.
vp~2: v(l) — > h,n<2).
vp_3: v U > --> h,n(2),n(2).
vp_4; v U) — > h,v(2).
vp_5; v(i,[aux]) — > h,v(l,tpass])•

vp^pps v(i) — > h<i) ,p (2).

There are two NP rules - one for coaaon nouns, the other for proper
nouns and pronouns.

np_l: n(2) --> DET,H1,opt(p(2)) where DET is a<0),
HI is h(l),
Hi controls DET.

np_2: n(2) --> h.

The Nl category allows for the introduction of adjectives.

nb.li n(i) — > h.

nb.2: n(l) — > a(l),h(l).

Adjective phrases allow adjective aodifiers.

ap I: a(l> ~ > h.

ap^2; a d) — > a(0),h(i).

And the prepositional phrase rule is straightforward.

pp: p(2> — > h,n(2).

A couple of rules that together perait one type of coordinate structure.

coord: root --> [root, Cconj,neither]], [root, tconj, nor]]++ .
conj: [root, tcat,B], Cl — > c(C>, troot, teat ̂ Bl^con j]

where B is bar, C is conj.
Finally, a rule for topicalisation. The topicalised category and the
slashed category must have the same major feature/Note that M must be
defined before it is used in the WHERE clause.

A Demonstration Graitar The ProGraw Manual, Chapter 6

top: v(2) — > Ci, h(2)/C2
where M is tajor,
Ci is Croot,[cat,[bar,23,[head,M3)],
C2 is troot,Ccat,tbar,23, thead,M333.

6.4 M e t a r u l e s

It is sensible to lay eetarules out so that they are easy to read. Here
is passive.

pass: v(l) --> ... f n(2)

«=>

v(l,tpass3) --> ... , opt (p(29by)).

And here is 'subject-auxiliary inversion'. We need variables to specify
correspondences between the categories (using MATCHES).

inv: (VP1 --> h,VP2 where VP1 is v(I,[aux3),VP2 is v(l)>

(SI — > h,S2 where SI is v(2,Unv3) f S2 is v(2),
51 matches VP1,
52 matches VP2),

The following metarule allows slash categories to terminate in a
'•issing 'item of the appropriate kind.

stall (CI — > C2f ... where CI is Croot3,
C2 is troot,£cat,tbar,23,

Chead,[ftinor,*case3333)

C1/C2 — >

Finally, a metarule for introducing that-less relatives,

relcl: (Nl --> ... where Nl is n(l)>

« >

N l — > ... , v(2)/n(2).

6,5 LP r u l e s

A lexical category precedes a non-lexical.

[root,[cat,[barflexical333 << { troot,Ccat,tbar,1333,
[root,teat,tbar,2333 >

A DewotistratioTi firaiaar The ProGraw Manual, Chapter 6

HP's precede VP's, adjectives precede nouns, nouns precede their PP
modifiers.

n(2) << v(l).

a d) << n(i) << p(2>.

Conjuncts that begin with 'neither/ precede those that begin with 'nor'.

troot,tconj,neither]] << [root,[conj,nor]].
And the final LP rule forces slash categories to be final in their
constituents.

[root^footl << [root,[foot,cat]].

6,6 F e a t u r e c o e f f i c i e n t d e f a u l t s

Our demonstration grammar contains just three FCD's, giving defaults for
the minor features. The first says that accusative is the unmarked
phrasal case, and the second and third stipulate that unmarked lexical
items are neither •inverted, nor ^auxiliary. Note that specifying FOOT
in the exclusion list forces the defaults onto the real minor features,
and prevents the defaults applying to tinor features appearing within a
foot feature.

feature excl lexical phrasal

fcd(case, [foot], free, ace).
fcd(inverted, [foot], -inverted, free).
fcd(auxiliary, [foot], -auxiliary, free .)•

6*7 F e a t u r e c o o c c u r r e n c e r e s t r i c t i o n s

Verbs are never narked for case.

fcr(major, [foot], v, tinor, [foot], not(case)).

Not even in a slashed category.

fcr(foot, [3, [foot,[cat,[head,[major,v]]]], foot,
[], not([foot,[cat, thead,Cm nor,case]]]])).

If something is inverted, then it is an auxiliary.

fcr(inverted, [foot], +inverted, vforn, [foot],
[vforn, finite, •auxiliary]).

A Dewonstr at ion Grawwar The ProGraw Manual, Chapter 6

6.B Root a d m i s s i b i 1 i t y c o n d i t i o n s

Those given just prohibit categories with unspecifed major feature or
bar level.

rac(bar, [foot], not(unspec))•
rac(major, [foot], not(unspec)).

6.9 T h e l e x i c o n

The demonstration lexicon is straightforward. The only points to note
are (i) that the rule labels are complex terns. Only the bit outside the
brackets is used for lexical subcategorisation, etc. The rest serves to
identify each lexical rule uniquely, so that we can locate them properly
when in CONTROL node. And, (ii) we have to specify all the features we
want specified (we cannot expect defaults to set then). Defaults check
settings, but they will not add extra information to a category.

(0, [sing,fin]) ->- jumps,runs,sings.
(8,[plur,fin]) ->- jump, run, sing.

vp_l (sf): v
vp_l(pf)i v

vp_2(sf): v(0,[sing,fin]) ->- loves,sees,closes.
vp_2(pf): v(0,[plur,fin]) ->- love, see, close.
vp_2(ps): v(0,[pass]) ->- loved,seen,closed.

vp_3(sf
vp_3(pf).
vp_3(ps):

vp_4(sf
vp_4(pf)i
vp_4 (ps)t

i v(0,Cpass3) ->- loved,seen,closed.

: v(0,[sing,fin]) ->- hands, gives,buys.
5 v(Bf[plur,fin]) ->- hand, give, buy.
: v(0,[pa5s]) ->- handed,given,bought.

v(0,[sing,fin]) -
v(0, [plur , fin]) ->-
v(0,[pass]) ->-

thinks, believes,knows,
think, believe, know,
thought,believed,knew.

is.

are.
vp_5(sf): v(0,[sing,aux]) ->-
vp.5(pf): v(0,[sing,aux]) ->-

np <,2(prop^no«): n (0, [sing,nom]> ->- kin,sandy, lee,
n p - 2 (p r o p - a c c) : n (0,[sing,ace]) ->- bill,ben,bert,
np_2(s_nom): n(0,[sing,no»]) •>- he,she.
n p - 2 (s ^ a c c) : n (0,[sing,ace]) ->- him,her.
n p . 2 (p w n o ») : n (0,[plur,no»l) ->- they.
n P . 2 (p . a c c) : n (0,[plur,ace]) ->- them.

nb_l(s_acc): n (0, [sing,ace]) ->- book,man,woman.
nb_l(p_acc): n (0, [plur ,acc]) ->- books,men,women.

nb.,,1 (s.noin): n (0, [sing,nofi]) ->• tree,boy ,girl.
nb_l<p_no«)I n(0,[plur,nom]) ->- trees,boys,girls.

np^l(sdet): a(0,[sinq]) ->- a,an,every.
np_l(pdet): a(0,[plur]) ->- all,some.

ap^l: a(0) ->- red,blue,green,yel1ow.
ap_2: a(0) ->- very,bright,dark.

A DenonstratioT! C r a i r a r The ProGraw flanuai, Chapter 6

pp (b y) : p (B , b y) - > - b y .
pp (t o) : p (B , t o) - > - t o .
p p (i n) : p (0 , i n) • > - i n .
pp (o n) : p (8 , o n) - > - o n .
p p (N i t h) : p (0 , w i t h) - > - w i t h .

conj(a): c (Ccpnj,neither]) ->- neither,
conj(b): c ([conj,nor3) ->- nor.

'88-
April 1984

Clocksin, William, and Christopher Hellish (1981)
Prolog. Berlin: Springer-Verlag.

Pr ogr awwivg in

6awron, Jean Hark, Jonathan King, John lamping,
Paulson, Geoffrey Pullum, Ivan Sag & Thomas
linguistics system. 74-81. Also distributed
Computer Science Technical Hot* CSL-82-5.

Egon Loebner, Anne
Wasow (1982) The 6PS6
as Hewlett Packard

G a i d a r , G e r a l d , a n d G e o f f r e y P u l l u m (1 9 8 2) Generalized phrase structure
grawwar: a theoret ical synopsis, B l o o m i n g t o n ; I n d i a n a U n i v e r s i t y
L i n g u i s t i c s C l u b m i m e o . A l s o a v a i l a b l e as University of Sussex
Cognitive Science Research Paper 1 (C S R P 0 0 7) .

Gazdar, Gerald, Ewan Klein, 6eoffrey Pullum, and Ivan Sag (1982)
Coordinate structure and unbounded dependencies. In H. Barlow, D.
Flickinger I I.A. Sag (eds.) developments in Generalized Phrase
Structure Grawwar: Stanford Working Papers in Grawaatical Theory,
Volute 2. Biooraington: Indiana University Linguistics Club, 38-68.
Also available as University of Sussex Cognitive Science Research
Paper 6 (CSRP 0 0 6) .

Hardy, Steven (1982) The POPLOG programming system. University of
Sussex Cognitive Science Research Paper 3 (CSRP 0 0 3) .

Hardy, Steven, and Aaron Slogan (1982) POPLOG: a multi-purpose, multi-
language program development environment. Himeo, Cognitive Studies
Program, University of Sussex.

Hellish, Christopher, and Steven Hardy (1983) Integrating Prolog into
the POPLOG environment. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, 533-535.

Pereira, Fernando, and David H.D. Warren (1980) Definite clause grammars
for language analysis - a survey of the formalism and a comparison
with augmented transition networks. Artificial Intelligence 13,
231-278.

Appendix 1

T h e s y s t e m ULI~Jdc*r- LJn x x

This appendix d e a l s with the use of the Unix POPLOG v e r s i o n of the
system (l i k e l y , in our v iew, t o be the v e r s i o n in most c o n o n u s e) . By
the time a reader g e t s the s y s t e m , i t nay be s l i g h t l y out of d a t e , so
c o n s u l t your own 6HELP LOCAL help f i l e for a c c u r a t e i n f o r n a t i o n .

ProGran help f i l e s are a c c e s s e d j u s t l i k e POPLOG help f i l e s (i . e . us ing
VED) by -giving the command

ghelp <f i lenafte>

to POP11 or PROLOG or VED, in the usual way. S i n c e Pro6ra« u s e s the
word ' h e l p ' , the usual Prolog ' h e l p ' corcaand (to a c c e s s Prolog help
f i l e s) i s renamed ' h i p ' . The POP11 ' h e l p ' command remains unchanged.

Data f i l e names are a u t o m a t i c a l l y s u f f i x e d with ' . p i ' . They are p r e f i x e d
with a d i r e c t o r y which can be s e t with the GRAMMAR command (s e e b e l o w) .
I t d e f a u l t s t o the current d i r e c t o r y , u n l e s s s p e c i f e d when the system i s
run (see b e l o w) .

Extra commands a v a i l a b l e ares

TIME * display the current date and t u e .
SETID - set the ID string to be the current date and t i a e .
BRAHHAR * exaiine or change the qraitar directory.

The grauar directory should be a noraal UNIX directory
specification (ending with a 7 ') . If the directory is
already correct, type nothing (i.e. just hit (RETURN)).

In the POPLOG v e r s i o n of ProSram, t h e r e i s an a d d i t i o n a l l i b r a r y ,
SHOWTREE, which r e d e f i n e s the p a r s e - t r e e d i s p l a y r o u t i n e s to use a
customised v e r s i o n of the POPLOG (POP11) l i b r a r y SHQWTREE (see POPLOG's
help f i l e on SHOWTREE). This i s only used when the SHOW or TRACE.OUT
switch i s ON. The main t r e e i s d i sp layed g r a p h i c a l l y on the screen
(using VED) and the keyboard i s d i s a b l e d except for the f o l l o w i n g keys ,

•whose f u n c t i o n s are rede f ined as f o l l o w s :

CURSOR UP - aove up t o parent node
CURSOR DOWN * aove down t o a i d d l e daughter node
CURSOR DOWN-LEFT - aove down t o l e f tmos t daughter node
CURSOR DOWN-RIGHT - l o v e do*n t o rightmost daughter node
CURSOR LEFT - love to next "sister" l e f t
CURSOR RI6HT - aove to next t i t t e r right

POSITION PUSH - d i s p l a y feature tree for t h i s node
POSITION POP - display tain parse tree
SCREEN REFRESH - screen refresh
TOP OF FILE - print tree (i f possible)
END OF FILE - return to parser

Unix P9PL0G version The ProGr** Hinual, Appendix I

An extra command is also provided:

tree_printable.

This causes subsequent trees to be displayed in a printable format.
Alternatively the user can specify a P0P11 procedure TREE_PRINTER which
will display the tree itself (accessing the VED buffer globally). The
tree will only be printable if one of these options is selected.

Another library, VEDFILES, does automatic checking of data files which
are currently being used and which are also being edited in VED. It
ensures that the lost up to date version is always loaded.

The ProGram system is situated under the directory denoted by the
environment variable '^program'. The system files are distributed as
documented in the customisation module, which is

$program/custom/UNXcustom.pl

The custom library (*program/custom) contain an executable (CSHELL)
file UNXmkgds which rebuilds a saved image (fprogram/custom/image.psv)
of the system. The saved image thus created may be run from CSHELL with
the command:

prolog -gds

An optional extra argument may also be given, which is taken as the
initial setting of the grammar directory (see GRAMMAR above).

popll -gds Vgraml

If the extra argument it missing, then the current directory is used.

A system-wide command UNIX command 'program' is provided to make access
to this saved image easier. To run ProGram, all you need to do is type:

program
or

program <grammar directory)

to the CSHELL.

To run ProSram from inside Prolog, type:

consult('$program/sys/program.pi ') .
There will be several loading messages and then the system will start up
as described in 4.5.

Recent: F»SO i mpl ementat i ons

1. John Bear

All paths, left corner chart parser. Uses features for agreement and
unbounded dependencies. Relative clauses, questions, existentials. No
semantics. Language: Interlisp. Machine (OS): DEC20 (TOPS 20).

Linguistics Research Center, P.O. Box 7247, University Station,
University of Texas, Austin, TX 78712, USA.

Bear, John (1981) Gaps as syntactic features. MA dissertation,
University of Texas at Austin. Published by IULC, Bloomington, IN.,
in 1982.

Bear, John and Lauri Karttunen (1979) PSB: a simple phrase structure
parser. Texas Linguistic Form 15, 1-46.

2. Hewlett Packard

Top-down parser and transducer yielding first order logic translations.
Includes metarules, features, some feature instantiation principles,
slash categories, but not ID/LP. Intended as portabl front-end for
databases, and currently hooked up to relational database in HPRL (a
development of FRL). System currently undergoing thorough revision and
redesign. Languages LISP (PSD. Machines (05)s VAX 11/780 (UNIX), HP
9836 (NMDDE).

Geoffrey K. Pullum, Daniel P. Flickinger, Carl Pollard, Derek Proudian,
Ivan A. Sag, Thomas Wasow, (and formerly also Jean Mark Gawron and Anne
E. Paulson). Computer Science Laboratory, HeNlett Packard Company, 1501
Page Mill Road, Palo Alto, CA 94304, USA.

Gawron, Jean Mark, Jonathan King, John Lamping, Egon Loebner, Anne
Paulson, Geoffrey Pullum, Ivan Sag I Thomas Nasow (1982) The GPSG
linguistics system. Proceedings of the 2ith Annual Meeting of the
Associstt ion for COMput *t ion a J Linguist ics , 74-81. Also distributed
as Hewlett Pick+rd Computer Science Technical Hote CSL-B2-5.

3 . M a r k J o h n s o n

Suite of small programs: sentence generator employing features,
instantiation, ID/LP; feature package defining unification, increment,
etc.5 LR (1 > parser. Language: FranzLisp. Machine (OS): VAX 11/780
(UNIX).

Department of Linguistics, University of California at San Diego, La
Jolla, CA 92093, USA.

PS6 lipleientations The ProGraw Manual, Appendix 2

4. James Kilbury

Modified Earley-Shieber parser usinf a "first11 relation for the ID/LP
formalism. Extension to all aspects of the GPSG framework including
direct parsing with metarules is planned. Parser to produce semantic
representations for in an AI system with German language interface.
ID/LP parser. Language: Waterloo PROLOG, Version 1.4. Machine (05):
ITEL AS/5-7031 CIBM 370] (VN/SP).

Technische Universitat Berlin, Fachbereich Informatik (20), Institut fur
Angewandte Informatik, Projekt KIT, Sekr. FR 5-8, Franklinstrasse 28/29,
0-1000 Berlin 10, West Germany.

Kilbury, Janes (1984a) A Modification of the Earley-Shieber algorithm
for direct parsing of ID/LP grammars. Unpublished paper, Technische
Universitat Berlin.

Kilbury, James (1984b) GPSG-based parsing and generation. To appear in
Claus-Rainer Rollinger <ed.) Problewe des (Text-)Verstehens
Ansatze der Kunstlichen Intelligenz. Tubingen: Max Niemeyer.

5. Francis Je-ffry Pelletier

Recursive descent parser. Incorporates metarules, slash categories.
Provides intensional logic translations. Doesn't incorporate features or
ID/LP. Language: SNOBOL (SPITBQL dialect). Machine (OS): Amdahl 470
(MTS).

Department of Philosophy, University of Alberta, Edmonton, Canada T6G
2H1.

6. Stephen G. Pulman

RTN based parser operating either depth or breadth first. Compiles
metarules (not ID/LP) into RTN and then optimises. Slash categories
included, but not other featural information. Minimal semantics
associated with one test grammar. Language: P0P11. Machine (OS): VAX
11/780 (VMS).

Linguistics, School of English and American Studies, University of
Anglia, Norwich NR4 7TJ, UK.

East

Pulman, Stephen (1983a) Generalised phrase structure grammar, Earley's
algorithm, and the minimisation of recursion. In K. Sparck-Jones &
V. Wilks (eds.) Automatic Natural Language Parsing. Chichester:
Ellis Horwood, 117-131.

Pulman, Stephen (1983b) Computational linguistics and language teaching.
MS, UEA.

PS6 Iwplewentations The ProGraw Itanual, Appendix 2

7. Lenhart K. Schutbert

Left corner parser, with pruning of syntactically or semantically
unusual alternatives. Incorporates features and morphological analysis,
coordination and slash categories. Provides first order logic
translations. Intended as a front end for a question-answering system
with access to a logic-based semantic net. Doesn't incorporate
metarules. Languages: LISP and PASCAL versions. Machine (OS): Amdah1
470/V8 (MTS).

Department of Computing Science, University of Alberta, Edmonton, Canada
T6G 2H1.

Schubert, Lenhart (1982) An approach to the syntax and semantics of
affixes in 'conventionalized' phrase structure grammar.
Proceedings of the 4th Biennial Conference of the Canadian Society
for Cotputaiional Studies of Intelligence, 189-195.

Schubert, Lenhart, and Jeffry Pelletier (1982) From English to logic:
Context-free computation of 'conventional' logical translation.
American Journal of Computational Linguistics 8, 27-44.

B. Hidetoshi Shirai

Deterministic parser based on PARSIFAL. Incorporates metarules, raising
constructions, and unbounded dependencies. Montague semantics. Language:
LISP. Machine (OS): Hitac M200H (VOS 3).

Department of Mathematical Engineering and Instrumentation Physics,
Faculty of Engineering, University of Tokyo, Hongo 7-1-2, Bunkyo-ku,
Tokyo 113, JAPAN.

Shirai, Hidetoshi (1983) Deterministic parser. In Proceedings of the
Workshop on Hon-Transforwational Grammars. Tokyo: ICOT, 57-61,

9. SRI International (PATR-I)

CKY parser, feature system allows Boolean combinations of feature
equalities interpreted on the fly, no metarules, semantics converted to
first-order logic and passed to a theorem prover. Language: INTERL1SP.
Machine (OS): DEC20 (TOPS 20).

Stuart Shieber and Stan Rosenschein, SRI International, 333 RavensNOod
Avenue, Menlo Park, CA 94025, USA.

Rosenschein, Stanley, and Stuart M. Shieber (1982) Translating English
into logical form. Proceedings of the 2§th Annual fleeting of the
Association for Computational Linguistics, 1-B.

PSG Iwplewetttations The ProGraw Manual, Appendix 2

10. SRI International (PATR-II)

Parser: CKY (LISP)f Earley's algorithm (Prolog); feature system:
directed acyclic graph structures, semantics embedded in feature system;
morphological analysis by method of Kimmo Koskenniemi (LISP, Lauri
Karttunen) Languages - 3 implementations of the PATR-II formalism:
INTERLISP (DEC20), Prolog (DEC20), ZETALISP (Symbolics 3600). Machines
(OS): DEC20 (TOPS 20)f Symbolics 3600.

Stuart Shieber, SRI International, 333 Ravenswood Avenue, Menlo Park, CA
94025, USA.

Koskenniemi, Kimmo
Proceedings of
Intel 1igence,

(19S3) A two level model for morphological analysis.
the 8th International Joint Conference on Artificial
683-6B5.

Shieber, Stuart (1983a) Sentence disambiguation by a shift-reduce
parsing technique. Technical Note 281, SRI International. Also in
Proceedings of the 21st Annual Meeting of the Associat ion for
Computational Linguistics, 113-118. And in Proceedings of the 8th
International Joint Conference on Artificial Intel 1igence, 699-703.

Shieber, Stuart (1983b) Direct parsing
Note 291, SRI International.

of ID/LP grammars. Technical

Shieber, Stuart, Susan Stucky, Hans Uszkoreit, and Jane Robinson (1983)
Formal constraints on metarules. Technical Note 283, SRI
I n t e r n a t i o n a l . Also in Proceedings of the 21st Annual Meeting of
the Association for Cowputational Linguistics, 2 2 - 2 7 .

Stucky, Susan
Technical

(1983) Metarules as meta-node-admissibility
Note 304, SRI International.

conditions.

11. Henry Thompson and John Phillips

Chart parser (intended for grammar testing). Incorporates all aspects of
the 1982 6PS6 framework: features, metarules, feature instantiation,
coordination, etc. Semantics currently being implemented. Language: UCI
LISP, FranzLisp. Machines (OS): DEC10 (Topsl0), VAX 11/780 (UNIX).

Department of Artificial Intelligence,
Park Square, Edinburgh EH8 9NW, UK.

University of Edinburgh, Hope

Thompson, Henry (1981) Chart parsing and rule schemata in PS6.
Proceedings of the 19th Annual Meeting of the Association for
Cowputat ional Linguistics, 167-172.

Thompson, Henry (1982) Handling metarules in a parser for GPSG.
Edinburgh D.A.I. Research Paper Ho. 175. Also: In M. Barlow, D.
Flickinger & I.A. Sag (eds.) developments in Generalized Phrase
Structure Grawwar: Stanford Horking Papers in Grawwat ical Theory,
Voluwe 2. B l o o m i n g t o n : I n d i a n a U n i v e r s i t y L i n g u i s t i c s C l u b , 2 6 - 3 7 .

r .. - - -

PSC Iwpletentations The ProGra* tianualf Appendix 2

Thoupson, Henry (1983) Crossed serial dependencies: a low-power
parseable extension to BPS6. Proceedings of the 21st /Annaai
Meeting of the Association for Computational Linguistics, 1 6 - 2 1 .

Thompson, Henry, & John Phillips (1984) An implementation of GPSG within
the MCHART parsing framework. Unpublished paper, Department oi
Artificial Intelligence, University of Edinburgh.

n czi ± x

R e c e n t RtB»g»€5» «air-tz:t-» on NJL.JPSBJLJB

This bibliography includes diiifrta.ti.pni and published papers and
monographs not already included in the References or in Appendix 2,
above. It excludes unpublished work, and work written in languages other
than English.

Anward, Jan (1982) Basic Swedish. In E. Engdahl and E. Ejerhed (eds.)
Readings on Unbounded Dependencies in Scandinavian Languages,
Acta Universitatis Umensis, Umea Studies in the Humanities 43.
Stockholm: Almqvist & Wiksell, 47-75.

Bachi, Efimon, and Barbara Partee (1980) Anaphora and semantic structure.
In J. Kreiman fcA.E. Ojeda (eds.) Papers from the Parasession on
Pronouns and Anaphora* Chicago: Chicago Linguistic Society, 1-28.

B e e k e n , J e a n n i n e (1 9 8 3) Generalized phrase structure grawwar: theorie
en praktijk (in Dutch). Leuven: Departement Linguistlek, KUL.

Bissantz, Annette (19B3> The syntactic conditions on be reduction in
BPSG. In J.F. Richardson, M. Marks, and A. Chukernan (eds.) Papers
from the Parasession on the Interplay o1 Phonology, Morphology, and
Syntax. C h i c a g o ; C h i c a g o L i n g u i s t i c S o c i e t y , 2 8 - 3 7 .

B o r s l e y , Robert (1983a) A note on the G e n e r a l i z e d Left Branch C o n d i t i o n .
Linguistic Inquiry 14, 1 6 9 - 1 7 4 .

B o r s l e y , R o b e r t < 19B3b> A Welsh a g r e e m e n t p r o c e s s and the s t a t u s of VP
and S. In S. G a z d a r , E . H . K l e i n , and 6.K. Pullum (eds.) Order,
Concord and Constituency. F o r i s P u b l i c a t i o n s , D o r d r e c h t , 5 7 - 7 4 .

B o r s l e y , Robert (1984) On the n o n e x i s t e n c e o-f V P ' s . In W. de Geest fc Y.
P u t s e y s (e d s .) International Conference on Sentential
Cowplewentation . D o r d r e c h t ; F o r i s .

C a n n , Ronald (1983) An a p p r o a c h to the Latin a c c u s a t i v e and i n f i n i t i v e .
In G. G a z d a r , E.H. K l e i n , and G.K. Pullum (eds,) Order, Concord and
Constituency. F o r i s P u b l i c a t i o n s , D o r d r e c h t , 1 1 3 - 1 3 7 .

Chunq, S a n d r a , and J a m e s M c C l o s k e y (1983) On the i n t e r p r e t a t i o n o-f
c e r t a i n island f a c t s in GPSG. Linguistic Inquiry 14, 7 0 4 - 7 1 3 .

C r a i n , S t e p h e n , and Janet Fodqr (1984) How can g r a m m a r s help p a r s e r s ?
In D. Dowty, L. K a r t t u n e n and A. Zwicky (eds.) Hatural language
processing: psycholinguistic9 computational, and theoretical
perspectives. New York; C a m b r i d g e U n i v e r s i t y P r e s s .

Culy, C h r i s t o p h e r (1983) An e x t e n s i o n oi p h r a s e s t r u c t u r e r u l e s and its
a p p l i c a t i o n to natural l a n g u a g e . MA t h e s i s , S t a n f o r d U n i v e r s i t y .

D a h l , Osten (1983) On the n a t u r e of bound p r o n o u n s . Papers froi the
Institute of Linguistics University o1 Stockholm, P u b l i c a t i o n 4 8 .

PSG papers The ProGraw Hanual, Appendix 3

Dowty, David (1980) Comments on the paper by Bach and Partee. In J.
Kreiman & A.E. Ojeda (eds.) Papers frow the Parasession on Pronouns
and Anaphora. Chicago; Chicago Linguistic Society, 29-40,

Dowty, David (1982) More on the categorial analysis of grammatical
relations. In A. Zaenen (ed.) Subjects and Other Subjects:
Proceedings of the Harvard Conference on Grawwatical Relations.
Bloomington: Indiana University Linguistics Club. Also in Ohio
State University Uorking Papers in Linguistics 26, 102-133.

Dowty, David, & Belinda Brodie (1984) A semantic analysis of "floated"
quantifiers in GPS6. In Proceedings of the Third Uest Coast
Conference on Forwal Linguistics. Stanford: Stanford Linguistics
Department, nn-nn.

Engdahl, Elisabet (1982a) Constituent questions, topicalization, and
surface structure interpretation. In D. Flickinger, M. Macken, and
N. Wiegand (eds.) Proceedings of the First Uest Coast Conference on
Forwal Linguistics. Stanford: Stanford Linguistics Department,
256-267.

Engdahl, Elisabet (1982b) A note on the use of lambda-conversion in
generalized phrase structure grammar. Linguistics and Philosophy
4, 505-515.

Espinal i Farre, Maria Teresa (1981) The auxiliary in Catalan* MA
Dissertation, University of London,

Farkas, Donka, and Almerindo Ojeda (1983) Agreement and coordinate NP's.
To appear in Linguistics,

Farkas, Donka, Daniel Flickinger, Gerald Gazdar, William Ladusaw,
Almerindo Ojeda, Jessie Pinkham, Geoffrey Pullum and Peter Sells
(1983) Some revisions to the theory of features and feature
instantiation. In Proceedings of the ICOT Workshop on Hon-
Transforwational Grawnars, 11-13 (Tokyo: Institute for New
Generation Computer Technology).

Finer, Daniel (1982) A nontransforaational relation between causatives
and non-causatives in French. In D. Flickinger, M. Hacken, and N.
Wiegand (eds.) Proceedings of the First Uest Coast Conference on
Forwal Linguistics. Stanford: Stanford Linguistics Department,
47-59.

Flickinger, Daniel (1963) Lexical heads and phrasal gaps. In H. Barlow,
D. Flickinger, and N. Westcoat (eds.) Proceedings of the Second
Uest Coast Conference on Formal Linguistics, Stanford: Stanford
Linguistics Department*

Fodor, Janet (1983) Phrase structure parsing and the island
constraints. Linguistics and Philosophy 6, 163-223.

Sazdar, Gerald (1980a) A cross-categorial semantics for coordination.
Linguistics and Philosophy 3, 407-409.

PSG pipers The ProGraw Manual., Appendix 3

Gazdar, 6erald (1980b) A phrase structure syntax for comparative
clauses. In T. Hoekstra, H.v.d. Hulst, and M. Moortgat (eds.)
Lexical Granar. Foris Publications, Dordrecht, 165-179. Also in
GLOT 2, 379-393 (1979)

6azdar, Gerald (1961a) Unbounded dependencies and coordinate structure.
Linguistic Inquiry 12, 1 5 5 - 1 8 4 .

Gazdar, Gerald (1981b) On syntactic categories. Philosophical
Transactions (Series B) of the Royal Society 295, 267-283.

6azdar, Gerald (1982) Phrase structure grammar. In P. Jacobson k 6.K.
Pulium (eds.) The Nature oi Syntactic Representation. D. Reidel,
Dordrecht, 131-18$,

6azdar, Gerald, and Geoffrey Pullum (1981) 6ubcategorization,
constituent order and the notion "head". In H. Moortgat, H.v.d.
Hulst and T. Hoekstra (eds.) The Scope oi Lexical Rules, Foris
Publications, Dordrecht, 107-123.

6azdar, Gerald, and Geoffrey Pulium (1982) uEasy to solve". Linguistic
Analysis 11, 265-267.

Gazdar, 6erald, and Ivan Sag (1981) Passive and reflexives in phrase
structure grammar. In J. Groenendijk, T. Janssen, and M. Stokhof
(eds.) Foraal Methods in the Study oi Language* Mathematical
Centre Tracts, Amsterdam, 131-152.

Gazdar, Gerald, Geoffrey Pull urn, and Ivan Sag (1982) Auxiliaries and
related phenomena in a restrictive theory of grammar. Language
58, 591-638.

Gazdar, Gerald, Geoffrey Pullum, Ivan Sag, and Tom Wasow (1982)
Coordination and transformational grammar. Linguistic Inquiry 13,
663-676.

6eorgopoulos, Carol (1983) Trace and resumptive pronouns in Palauan. In
J.F. Richardson, M. Marks, and A. Chukerman (eds.) Papers fro* the
Parasession on the Interplay oi Phonologyf Horphologyf and Syntax.
Chicago: Chicago Linguistic Society, 134-105*

6unji, Takao (1981) A phrase structural analysis of the Japanese
language. MA dissertation, Ohio State University.

Gunji, Takao (1982) Apparent object control of reflexives in a
restrictive theory of grammar. Papers in Japanese Linguistics 8,
63-78.

6unji, Takao (1983a) Generalized phrase structure grammar and Japanese
reflexivization. Linguistics and Philosophy 6, 115-156.

Gunji, Takao (1983b) Control of gaps and reflexives in Japanese. In
Proceedings oi the Second Japanese-Korean Joint Workshop on Portal
Grawwar, 151-186 (Logico-Linguistic Society of Japan).

PSG papers The ProGraw Manual, Appendix 3

Gunji, Takao (1983c) Topicalization in Japanese. In Proceedings of the
ICOT Workshop on Hon-Transfornational Grawwars, 21-27 (Tokyo:
Institute for New Generation Computer Technology).

Harada, Vasunari (1961) Reduced coordination and trans*ormations, a
review of current approaches to semantic regularities. Linguistic
Research, forking Papers in English Linguistics 1, 64-74 (Tokyo
University English Linguistics Association).

Harlow, Stephen (1983) Celtic relatives. York Papers in Linguistics
10, 77-121.

Hoekstra, Teun (1981) The base and the lexicon in lexical grammar. In
S. Daalder and M. Gerritsen (eds.) Linguistics in the Netherlands
1981. Amsterdam: North Holland, 93-102.

Hoekstra, Teun, Harry van der Hulst, and Michael Hoortgat (1980)
Introduction to Lexical Grawwar. Dordrecht: Foris, 1-48.

Horrocks, Geoffrey (1983) The order of constituents in Modern Greek.
In G. Gazdar, E.H. Klein, and G.K. Pulium (eds.) Order, Concord and
Constituency. Foris Publications, Dordrecht, 95-112.

Horrocks, 6eoffrey (1984) The ECP, X'-theory and the 'pro-drop'
parameter. In N. de Geest i V. Putseys (eds.) International
Conference on Sentential Cowplewentation, Dordrecht: Foris.

Ikeya, Akira (1983) Japanese honorific systems in generalized phrase
structure grammar. In Proceedings of the ICOT Workshop on Non-
Transforwational Grawnars, 17-20 (Tokyo: Istitute for New
Generation Computer Technology).

Jacobson, Pauline (1982a) Evidence for gaps. In P. Jacobson & G.K.
Pullum (eds.) The Nature of Syntactic Representation. D. Reidel,
Dordrecht, 187-228.

Jacobson, Pauline (1982b) Visser revisited. Papers fro* the 18th
Regional Meeting of the Chicago Linguistic Society, 218-243.

Jacobson, Pauline (1983) Connectivity in generalized phrase structure
grammar. To appear in Natural Language and Linguistic Theory.

Joshi, Aravind (1983) Factoring recursion and dependencies: an aspect of
tree-adjoining grammars (TAG) and a comparison of some formal
properties of TAGs, GPSGs, PLGs, and LFGs. Proceedings of the 21st
Annual Heeting of the Association for Cowputational Linguisticsf
7-15.

Joshi, Aravind (1984) How auch context-sensitivity is required to
provide reasonable structural descriptions: tree adjoining grammars.
In D. Dowty, L. Karttunen and A. Zwicky (eds.) Hatural language
processings psycholinguistic, computational, and theoretical
perspectives, New York: Cambridge University Press.

Joshi, Aravind, and Leon Levy (1982) Phrase structure trees bear more
fruit than you would have thought. American Journal of
Coaputational Linguistics 8, 1-11.

PSG pipers The ProGra* Manual, Appendix 3

Karttunen, Lauri (1981) Unbounded dependencies: slash categories vs.
dotted lines. In J. Broenendijk, T. Janssen, and H. Stokhof feds.)
Formal Methods in the Study of Language. Mathematical Centre
Tracts, Amsterdam, 323-342,

Kay, Martin (1983) When meta-rules are not •eta-rules. In K. Sparck-
J o n e s tc Y . M i l k s (e d s .) Automatic Natural Language Parsing.
Chichesters Ellis Horwood, 94-116. Also: In M. Barlow, D.
F l i c k i n g e r & I.A. Sag (e d s .) Developments in Generalized Phrase
Structure Grammars Stanford Uorking Papers in Grammatical Theory,
Volute 2, Bloomington: Indiana University Linguistics Club, 69-91.

Klein, Ewan (1980) A semantics for positive and comparative adjectives.
Linguistics and Philosophy 4, 1-45.

Klein, Euan (1981a) The interpretation of adjectival, nominal, and
adverbial comparatives. In J. Groenendijk, T. Janssen, and M.
Stokhof (eds.) Formal Methods in the Study of Language.
Mathematical Centre Tracts, Amsterdam, 381-398.

Klein, Ewan (1981b) The syntax and semantics of nominal comparatives In
M . M o n e g l i a < e d .) Atti de Seminario su Tempo e Verbale Strutture
Quant if icate in Forma Loqica. Presso l'Accademia della Crusca,
Florence, 223-253.

Klein, Ewan (1982) The
Journal of Linguistics

interpretation
18, 113-136.

of adjectival comparatives.

Klein, Ewan (1983) Transduction of discourse representations.
Papers in Linguistics 1(9, 123-145.

York

Klein, Ewan, and Ivan Sag (1982) Semantic type and control. In M.
Barlow, D. Flickinger fc I.A. Sag (eds.) developments in Generalized
Phrase Structure Granwar: Stanford Uorking Papers in Grannatical
Theory,, Volute 2. Bloomington: Indiana University Linguistics
Club, 1-25. Also: to appear in Linguistics and Philosophy 6.

Konolige, Kurt (I960) Capturing linguistic generalizations with
metarules in an annotated phrase-structure grammar. In Proceedings
of the 18th Annual Meeting of the Association for Computational
Linguistics, 43-48.

Madaran, Rose (1982) The semantics and pragmatics of
demonstratives. PhD dissertation, Cornell University.

the English

Maling, Joan, and Annie Zaenen (1982) A phrase structure account of
Scandinavian extraction phenomena. In P. Jacobson I 6.K. Pullum
(ed s .) The Mature of Syntactic Representation. D . R e i d e l ,
Dordrecht, 229-282.

Monzon, Christina (1979) A constituent stbucture rule grammar of the
Spanish clitic positioning in complex and simple sentences. MA
Dissertation, University of Texas, Austin.

Moortgat, Michael (1981) Subcategorization and the notion 'lexical
head'. In S. Daalder and M. Gerritsen (eds.) linguistics in the
Motherlands 1981, Amsterdam: North Holland, 45-54.

PSG pipers The ProGraw Hanual, Appendix 3

Hoortgat, Michael (19S4) A Fregean restriction on metarules. In
Proceedings of the Fourteenth Annual Heeting of the Horth Eastern
Linguistic Society.

Napoli, D.J. (1963) Comparative ellipsis:
Linguistic Inquiry 14, 675-694.

a phrase structure analysis.

Nerbonne, Johnb o e , Joh
Richardson,
Parasession
Chicago:

and strict
Chukerman

(1983) Temporalia
M. Marks, and A. Chukerman (eds.) P

on on the Interplay of Phonology9 tiorphologyf
Chicago Linguistic Society, 162-172.

lexicalism. In J.F.
(eds.) Papers fro* the

d Stand Syntax.

Nozawa, Hideii (1984) A note on generalized phrase
Journal of the Faculty of Foreign Studies
Prefectural University.

structure grammar
17, 45-78, Aichi

Partee, Barbara, and Emmon Bach (1981) Quantification, pronouns, and VP
anaphora. In J. Groenendijk, T. Janssen, and M. Stokhof (eds.)
Forwal Hethods in the Study of Language. Mathematical Centre
Tracts, Amsterdam, 445-481.

Partee, Barbara, and Mats Rooth (1983) Generalized conjunction and type
ambiguity. To appear in Ch. Schwartze (ed.) Heaning, Use, and
Interpretation of Language. Berlin: de Gruyter.

Pollard, Carl and Ivan Sag
an alternative to the
and M. Westcoat (eds.
Conference on Formal
Department.

(1983) Reflexives and reciprocals in English:
binding theory. In M. Barlow, D. Flickinger,
) Proceedings of the Second Hest Coast
Linguistics. Stanford: Stanford Linguistics

Pulluffl, Geoffrey (1982) Free word order and phrase structure rules. In
James Pustejovsky and Peter Sells (eds.) Proceedings of the Twelfth
Annual Heeting of the Horth Eastern Linguistic Societyf 209-220.
Graduate Linguistics Student Association, University of
Massachusetts, Amherst, Mass.

Pullum, Geoffrey (1983a) Context-freeness and the computer processing of
human languages. Proceedings of the 21st Annual Heeting of the
Association for Cowputational Linguistics, 1-6.

Pullum, Geoffrey and Gerald Gazdar (1982) Natural languages and context
free languages. Linguistics and Philosophy 4, 471-504.

Richardson, John (1982) Constituency and sublexical syntax. Papers
fro* the 18th Regional Heeting of the Chicago Linguistic Society,
466-476.

Rooth, Mats, and Barbara Partee (1982) Conjunction, type ambiguity, and
wide scope "or". In D. Flickinger, M. Macken, and N. Wiegand (eds.)
Proceedings of the First Hest Coast Conference on Portal
Linguistics. Stanford: Stanford Linguistics Department, 353-362.

Ross, Kenneth (1981) Parsing English phrase structure.
dissertation, University of Massachusetts at Amherst.

PhD

PSG papers The ProGram Manual, Appendix 3

Sag, Ivan (1982a) A semantic theory of "NP-movement" dependencies. In
P. Jacobson & 6.K. Pullum (eds.) The Nature of Syntactic
Representation. D. Reidel, Dordrecht, 427-466.

Sag, Ivan (1982b) Coordination, extraction, and
structure. Linguistic Inquiry 13, 329-336.

generalized phrase

Sag, Ivan (1963) On parasitic gaps. Linguistics and Philosophy 6,
35-45. Also in In D. Flickinger, M. Macken, and N. Hiegand (eds.)
Proceedings of the First Uest Coast Conference on Formal
Linguistics. Stanford: Stanford Linguistics Department, 35-46
(1982).

Sag, Ivan, and Ewan Klein (1962) The syntax and semantics of English
expletive pronoun constructions. In M. Barlow, D. Flickinger fc I.A.
Sag (eds.) developments in Generalized Phrase Structure Grammar:
Stanford Uorking Papers in Grammatical Theory9 Volume 2.
Bloomington: Indiana University Linguistics Club, 92*136

Saito, Mamoru
Japanese.

(1980) An analysis of the tough
HA Dissertation, Stanford University.

construction in

Sampson, Geoffrey (1983) Context-free parsing and the adequacy of
context-free grammars. In Margaret King (ed.) Parsing natural
language. London: Academic Press, 151-170.

Schachter, Paul, and Susan Hordechay (19B3) A phrase structure account
of "nonconstituentu coordination. In M. Barlow, D. Flickinger, and
H. Westcoat (eds.) Proceedings of the Second Uest Coast Conference
on Formal Linguistics. Stanford: Stanford Linguistics Department.

Sells, Peter (1983)
in Linguistics

Relative clauses
10, 159-172.

in Irish and Welsh. York Papers

Stucky, Susan (1981a) Free word order languages, free constituent order
languages, and the gray area in between. In V. A. Burke and J.
Pustejovsky (eds.) Proceedings of the lith Annual Meeting of the
Horth Eastern Linguistic Societyf Department of Linguistics,
University of Massachusetts, Aaherst.

Stucky, Susan (1981b) Word order variation in Makua: a phrase
structure grammar analysis. PhD Dissertation, University of
Illinois at Urbana-Champaign,

and typology. In D.
(eds.) Proceedings of the

Stanford:

Stucky, Susan (1982) Linearization rules
Flickinger, M. Macken, and N. Wiegand
First Uest Coast Conference on Formal Linguistics
Stanford Linguistics Department, 60-70.

Stucky, Susan (1983) Verb phrase constituency and linear order in Makua.
In 6. Gazdar, E.H. Klein, and 6.K. Pullum (eds.) Order f Concord and
Constituency. Fori$ Publications, Dordrecht, 75-94.

Udo, Mariko (1982) The
College London.

Japanese VP system. MA thesis, University

Evans t Gazdar

PSG papers The ProGra* Harm*!, Appendix 3

Uszkoreit, Hans (1992) German word order in GPSG. In D..Flickinger, M.
M a c k e n , a n d N . W i e g a n d (e d s .) Proceedings of the First Uest Coast
Conference on Formal Linguistics. Stanford: Stan-ford Linguistics
Department, 137-148.

Uszkoreit, Hans < i 983) A framework for processing partially iree word
o r d e r . Proceedings of the 21st Annual Meeting of the Association
for Computational Linguisticsf 1 0 6 - 1 1 2 .

Wasow, T O R , Ivan Sag, and Geoffrey Nunberg (1982) Idioms; an interim
r e p o r t . In Preprints of the Plenary Session Papers, The Xlllth
International Congress of Linguists, A u g u s t 29 - S e p t e m b e r 4 , 1 9 8 2 .
Tokyo; CIPL.

Weeda, Donald (1981) Tenseless that-clauses in generalized phrase
s t r u c t u r e g r a m m a r . Papers fro* the Seventeenth Regional Meeting of
the Chicago Linguistic Society, 4 0 4 - 4 1 0 .

Gaidar April 1984

