NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The ProGram Mamnual

Roger Evans and Gerald Gazdar

Cognitive Studies Programme

University of Sussex

April 1984

¢+ The order of the authors’' names is only coincidentally alphabetic: the
first author wrote all of the Probram code and almost all of the prose;
the second author conceived the project, got the grant, managed the
money, provided the occasional exemplar rule, handled public relations,
devised nroff macros, did the copy editing, designed the cover, and
wrote this footnote.

We are grateful to the SSRC (UK) [Grant HR 7B29/1] <for the +financial
support that made ProGram possible, to our Al colleagues at Sussex whose
POPLOG programming environment made the creation of ProGram almost a
pleasure, and to Andy Clews for the printer driver.

Copyright C), University of Sussex, 1984, This document may be copied
for noncommercial purposes, without further permission being sought.

Evans & Gazdar -1-

28¥

-
045

The FProGram Mamnual

Table of Contents

1. Introduction

1.
ll

1
2

Overview
Using the system

2. Grammar Format

NN

2I

1
2
3

4

- o~ w

Feature syntax
Feature aliasing data
ID rules
2.3.1 Regular expressions
2.3.2 Variables
2.3.3 Heads
Metarules
2.4.1 Multiset variables
2.4.2 Matching
2.4.3 Rule nanmes
LP rules
Feature coefficient defaults
Feature cooccurrence restrictions
Root admissibility conditions
The lexicon

@ Assumptions about the GPSE formalism

3. Normalisation

[Z IR 7 2 7
. e
- NN -

Normalisation of data modules
Metarule application
The Head Feature Convention
Probram data files
J3.4.1 USING clauses
3.4.2 FROM clauses
3.4,3 T0 clauses
Data eodules required by commands
Structure of normalised data records
J3.6.1 ID rules
6.2 The lexicon
6.3 LP rules
6.4 Metarules
6.5 Feature coefficient defaults
6.6
6.7

Feature cooccurence restrictions
Root admissibility conditions

N -

it
12
12
13
14
14
15
16
17
18
18
19
19
20

23
23
30
35
36
36
38
38
39
40
40
41
41
42
43
43
44

4. The Parser

4.1 Parsing modes
4.1.1 AUTO mode
4,1.2 MONITOR mode
4,1.3 CONTROL mode
The WATCH switch
Summary of the parsing switches
OQutline of the parsing algorithm
Using the systenm
Testing a grammar
Displaying parse trees
The SHOWTREE package

E B N B R R
N D>UN

S. The System

S.1 Summary of system commands
5.2 Help facilities
5.3 Errors, causes and corrections

5.3.1 Probram errors

5.3.2 System errors
Switches
Libraries

5.5.1 FILTER

5.6.2 MORECOMMS

5.6.3 NEWWORDS
Customising the system
The lexicon interface
The structure of the file systesm

5.8.1 PROGRAM: the top level
2 CUSTOM: customised libraries
3 DEMD: a demonstration grammar
4 HELP: the help files
5
6

[
e o
o

(£ 4]
.« .
w3 o

LIB: optional system libraries
SYS: the main system routines

6. A Demonstration Grammar

Features

Aliases

ID rules

Metarules

LP rules

Feature coefficient defaults
Feature cooccurrence restrictions
Root admissibility conditions

The lexicon

« » & s =
Do ~NOoOUN N -

o0 00000 O~ O~

o =

References

Appendi % 1 The system under Unix POPLO6

Appendix 2: Recent implementations of PSG

Appendix 3I: Recent research on NL PSG's

Evans & Gazdar -iii-

45
43
46
45
47
47
47
48
49
S5
o9
b2

65
65
66
67
&7
68
69
78
71
72
73
74
76
78
78
78
78
78
79
79

81
81
81
83
84
84
85
85
86
8é

89

91

83

99

Aval 1labili t v

1. This manual s University oi Sussex Cognitive Science Research Paper
35 (CSRP 835) and can be ordered from Ms. Judith Dennison, Cognitive
Studies Programme, Arts E, University of Sussex, Falmer, Brighton BN
9QN, for 7.50 pounds, including postage and packing.

2. ProGamis part of the standard Sussex POPLOG system and included,
wi thout extra charge, in all academc issues and updates of the POPLOG
system POPLOG, is available to UK academic users for the sum of 500
pounds (special arrangements apply to holders of SERC Al grants who have
a VAX running Unix) and is already in wuse at nearly 50 educational
institutions in England and abroad. Existing UK academ c POPLOG users
can obtain a free update of the POPLO6 system one which wll include
ProGam in return for a magnetic tape sent to M. Jonathan Laventhol,
POPLOG Group, Arts E, University of Sussex, Falmer, Brighton BNL 9QN
POPLOG is available for VAX's under VMS, VAX's under Unix, and Bl easdale
BDC 680a's under Unix. It is scheduled to become available on PERQ s and
6EC 63's. Non-educational customers (WK & overseas) who want ProG am
with POPLOG should order it through System Designers Ltd., Systens
House, 1 Penbroke Broadway,. Canberley, Surrey GUL5 3XH (0276 62244).
This conpany makes POPLOG available to educational institutions in the
USA for 995 dol | ars.

3. Academic users of other Prolog systens can obtain a magnetic tape (in
Unix tar format) of the Prolog code of the ProGam system free, together
with a copy of "The ProGram Mnual", provided they pay the tape,
postage, package, and handling costs (35 pounds). Copies can be ordered
from M. Alison Midd, Cognitive Studies Programme, Arts E, University of
Sussex, Brighton BNL 9QN. A chegue for 35 pounds, made payable to "The
University of Sussex", should be enclosed with the order.

Anss] IQRL

1. Imntroduction

ProBram is a suite of Prolog programs that are intended to permit the
design, evaluation, and debugging of computer realizations of phrase
structure qrammars for large fragments of natural languages. The grammar
representation language employed, that known as Generalized Phrase
Structure Grammar or GPS5G (Gazdar & Pullum 1982 - ‘'GPB2', henceforth;
Gazdar, Klein, Pullum and Sag 1982), is neutral with respect to parsing
or generating sentences, and is capable of being used with a variety of
programs, Probram is thus a grammar interpreter, where the latter is, in
this instance, construed as a software tool, namely a grammar
development system for use by linguists or computer scientists
developing GPS6’'s for large fragments of natural languages.

All the major parts of the grammar interpreter code are written in
standard Prolog (see Clocksin & Mellish {1981), as provided within the
POPLOG multilanguage program development environment (Hardy 1982, Hardy
& Sloman 1982, Mellish & Hardy 1983). Only specialized optional modules
{for example the tree drawing package) have been written in POPli. This
is intended to maximise the portability of the main grammar development
systea, especially overseas where most relevant sites now have Prolag
available, but wusually not POP11. Installation of the system should be
fairly simple on any machine of moderate size which supports Prolog.

We decided that the most perspicuous way of arriving at a agrasmatical
representation language that would be entirely neutral with respect to
the computational uses to which the grammar might subsequently be put
was siaply to build a grammar interpreter that would interpret the
extant GPSG formalism in more or less exactly the way it was normally
written (including all the abbreviatory and alias devices beloved of
generative linguists)., This decision wemeans that linguists who can
understand the BPSG formalisa, but are quite naive computationally, can
use the system immediately without the need to learn an additional
graamar representation language. »

The standard G6PS6 grammar notation eeployed in the project is entirely
noncommittal with respect to the potential uses to which the grammar
eiqght be put, e.qg. as a component of a sentence generator, recogniser or
parser. And it is also noncommittal within these uses. So, for example,
nothing in the grammar format (as opposed ¢to the structure of the
grammar itself) forces a parsing utilisation to be top-down rather than
bottom-up, or left-right rather than right-left.

This neutrality also extends to the programming language environment,
Although Probram 1is written in Prolog, that fact does not in itselfs
require that programs which use grammars developed with the Probrae
system wmust be written in Prolog. No language-specific features of
Prolog are exploited in the grammar formalism proper (in contrast to,
e.g., Direct Clause Grammars (Pereira & Warren 198@)). Thus, for
example, a gqrammar could be developed and debugged with ProGram, and
then used, in its normalised form, by a chart parser written in POP!{ or
LISP, say.

Evans & Gazdar . .

Introduction The ProGras Manual, Chapter !

There are two motivations for this the neutrality of the representation,
one theoretical, the other practical. The GPSG framework is a theory
about the structure of languages, it is not, in itself, a theory about
how languages are produced, parsed or learned. In adapting the GFSG
notation to a form in which it can be accessed as a comsponent of
possible theories of production, parsing, or grammatical inference, it
is essential to ensure that the conversion process does not augment it
with gratuitous biases in respect of such theories. The practical
motivation is, of course, that & gramear format that is wmaximally
neutral with respect to application and language environment is likely
to attract the widest possible range of users.

1.1 Overview

The ProBram grammar development system is a collection of wutility
programs designed to aid the creation, debugging, and testing of phrase
structure grammars for natural languages written within the notational
conventions of GPSG. The GPSE framework is a formally precise, vyet
powerful and practical grammar representation language, one which has
already been adopted by a big Hewlett Packard research project (Gawron
et al. 1982) for the syntactic basis of a natural language understanding
system., The specification of a GPSG grammar has a number of components
which interact in complicated ways, and a 6P56 grammar defines large and
complex structural analyses. Thus the task of ensuring manually that a
given grammar behaves as expected, assigning all and only ¢the correct
structures to any given phrase, is both time-consuming and prone to
error,

The ProGram grammar development system is a computational tool ¢to help
overcome these problems. As such it can be of use both to the
theoretical linguist who wishes to examine the behaviour of a grammar,
and to the applied computational linguist, who is concerned that the
gramsmar to be incorporated in an lanquage understanding system or a
language production system is internally consistent and incapable of
assigning spurious analyses.

The system allows the complete specification of a gramamar, from feature
syntax wupwards, in a form essentially identical to that given in GP82,
including ID rules, LP rules, metarules, feature defaults, etc., subject
only to a few constraints on the features of special significance to the
theory (HEAD, FOOT, etc.). The initial processing of this grammar
includes wellformedness checks on the specification (for example, every
category - a feature tree - nust conform to the feature syntax
specifications), but the main testing function of the system is a parser
which can be interactively controlled, allowing specific bugs in the the
user's grammar to be located and examined quickly.

The parser has three modes of operation: in automatic mode, the parser
runs withaout intervention +from the user, stopping either at the first
parse found, or doing an exhaustive search for all parses. In monitor
mode, the parse proceeds automatically, but checks with the user every
time it makes a major decision (for example, what rule to apply). The
user may accept the decision, reject it completely, or ask for
alternatives, before the parser continues. In control mode, the parser
asks the wuser to actually make the major decisions. For example, the
user will be asked which rule to attempt to apply next. The system then

Fuance & Gazdar -2- April 1984

Introduction The ProGram Manual, Chapter 1

proceeds, and . if the attempt fails, it produces diagnostic information
(for example, 'Foot Feature Convention failed’).

These three modes, the ability to select only a particular subset of
input data (ID rules, etc.), the possibility of tracing the parse, and
the clear presentation of the resulting structure, combine to make the
system a flexible and useful grammar-testing tool.

A GPSG grammar, as far as ProGram 1is concerned, has up to nine
components as follows:

1, Specification of feature syntax.

2 [anediate doainance rules (ID rules),

3. Metarules which operate on the ID rules.

4, Linear precedence rules (LP rules).

S. Feature coetficient default values (FCD's),
&, Feature cooccurrence restrictions (FCR's).
1. Feature aliasing data,

8. Root admissibility conditions (RAC's).

9. A lexicon,

0f these, the first six are exactly as characterized in the 6&PSG
literature (see, e.g., GPB2) and are discussed in chapter 2, below.

The feature aliasing data allows abbreviation of feature expressions, so
that, for instance, a grammar writer can write 8 instead of, perhaps,
[CATi, [CAT, [BAR,21, [HEAD, [MAJOR, +V, =N1J1] which is likely to be
the #full, unabbreviated, G6PSG form of the sentence category. Clearly,
this makes rule specification and the like simpler and more readable.

The root admissibility conditions allow the grammar writer to place
restrictions on the sort of category which is acceptable as the root of
a parse tree,

The lexicon provides a way of establishing a simple correspondence
between words and the parts of speech to which they belong. However,
provision is aiso made for a more sophisticated lexicon.

ProGram operates in two phases: data normalisation and parsing. The
qraamar components as specified above must all be normalised before they
. are used for parsing. Normalisation consists of ¢translating the alias
abbreviations (as above) and checking for valid feature specification
(according to the feature syntax provided) and for valid datum (ID rule,
setarule, etc.) specification. Various error msessages and warnings may
be produced during normalisation and these can then be corrected as
necessary - usually only the data module concerned needs renormalising.

Parsing provides the main investigative function of ¢the system. The
parser uses the norealised data produced in the manner described above,
and parses successive strings of words. All the wmajor conventions
described in the GPSG literature are implemented, including the Head
Feature Convention, the Foot Feature Principle (and hence SLASH
categories, etc.), the Control Agreement Principle, ¢the Conjunct
Realization Principle, lexical subcateqorization and rule instantiation
incorporating the notion of privilege.

Evans & Gazdar -3- Anril 1684

I ntroduction The ProGw Manual * Chépter 1

ProGram provides the user with varicous means of displaying trees, the
mst perspicuous of these (only available under POPLOG) provides screen
(and printer) output in the for* exemplified below

o (a3} [rbT) *
I 1 :
[<nbl (5)}1 [Treieis)
m!an tllmt w

[
[{mpZY| ({vpalsl}|

klm thlnks [np2]| fvpiistml)|

finp2y| [dvpZis)i]|

lee sees

Note that in the parse tree above, the nodes are labelled with the names
of the rules which expand then, not with their category label. This is
partly because in developing a grammar it is usually more useful to know
what rule is responsible for a node than it is to know what its gross
category is, and partly because the category label in a 6PS6 is itself ‘a
tree of a features, and not a simple monadic category name. To see the
category associated with a particular node, one simply moves the cursor
to the node and presses the VED PUSH key. The VDU will then display the
structure of the category. Thus, for example, if we were to inspect the
internal structure of the node labelled VP4 in the example above, then
the system would display the following feature tree.

[verb| raar| [tense]

Ising] [pres]

The various options available during parsing include:

~ Reading sentences fram teriinai or data file.
Writing parse trees to terminal or data file.
Displaying parse trees on teriinai in a readable fonat.
Finding first parse only, or all parses.
Parsng completdy autoiaticaily.
Parsno with user advisng at all crucial decisions.
Parsng «ith user in complete control over choices.
Tradng the operation of the parser.

ONDARWDN R

Evans & Gazdar -4- April 1984

Intro&uction The ProGram Manual, Chapter |

Using these options, the grammar writer can see, for exaaple, what the
parser is doing (in particular, perhaps, see where it is going wrong) or
force the parser to try particular rules, either to produce unlikely
parses more quickly than by exhaustive search, or to attempt to force
wrong analyses. Furthermore, in control mode, the parser reports the
reasons for failure when any particular user-selection fails,

ProGram is currently equipped with a simple demonstration grammar
designed to illustrate the various features of the systeam. Subsequent
releases of the system may include a larqger grammar covering a
significant portion of the syntactic constructs of English, and designed
to provide a basis for serious research into English syntax, or to
provide a grammatical foundation for computational systees intended to
parse or produce English.

1.2 Using the system

This section describes the basic mechanics of how to wuse the ProGran
grammar development system. It assumes the user has written a grammar
and wishes to use ProGram to develop and test it. It alsc assumes the
user has created text files containing the various components of the
system using lncal editing utilities (e.g. VED in. POPLOS). For +¢ull
details of how the grasmar should be represented, see chapter 2.

Details of how ProGram is loaded will be found in the help file LOCAL -
these depend on the local setup. Several messages may (or may not) be
displayed during the loading sequence. When the system is ready to wuse,
the following messages will be displayed:

ProGram Brammar Development Systenm
Version 1, 29/4/84

(For help information type: help.)

?-

The ‘?-' is the Prolog prompt. It means the system is waiting +for the
user to type something. In some systems it may be different (e.g. ":-'),
in sonme systems it may vary according te whether it is at ‘commandg
level ' or inside a program (when it may become, for example, "!:’'). Your
Prolog reference manual will have details.

In this case, the ‘?-' means that the system is waiting for a command. A
comnand consists of one or more words followed by a period. In ProGram,
the first word is the main command and may be modified with additional
data specification clauses. See chapter 5 for a list of the commands
available, and chapter 3 for details of the data clauses.

In order to test the grammar, the user wmust <first normalise all the
components. See chapter 3 for full details. The first command might be:

noraid from myrules.

Evans & Gazdar -5=- April 1984

Introduction . The ProGraw Manual, Chapter 1

This says ‘normalise the ID rules in the data file MYRULES' (which the
user has previously created as specified in chapter 2), The normalised
rules are sinply displayed on the screen, and any errors detected are
reported. If there are errors (see chapter 5), the text file MYRULES
should be edited and then the command tried again. When there are no
errors, the data can be safely saved by giving the comamand:

noraid from myrules to noradat.

This coamand normalises as before, but saves the results in a file
called NORMDAT (which it creates if necessary).

A similar procedure must be undertaken to normalise all the components
of the ogrammar, using the commands NORMLEX (normalise lexical category
rules), NORMLP (normalised LP rules), etc.

At various times during these commands messages like
(loading normrules)

will appear. These are just to inform the user that system modules are
being loaded (and hence there is a slight delay) and can be safely
ignored. Also, the system may ask for the names of ‘background’ data
files (as discussed in chapter 3I). For example if the command given
above really is the first cosmand of the session, then the data files
FEATURES and ALIASES will be requested. This could have been avoided by
typing the connmand as:

normid from myrules using ayfeats for
features using myalias for aliases.

It is quite permissible for comsands to be spread across several lines,
as long as words are not broken by line boundaries. The computer will
continue to prompt for more until a period is typed.

If you mistype a command, or type a command which is not understood, the
system will either produce an error, or else respond with ‘no’ and a new
prompt. At the end of commands which are executed successfully, the
system types ‘yes’' before the next prompt. Another prompt without a YES,
NO or an error, probably means the period has been omitted. This can be
corrected sieply by typing a period.

Having normalised all the data, the grammar can be tested using the
PARSE command (see chapter 4 for more details). Other utility commands
may also be given whenever the system is at command level.

Note finally that, throughout this manual, terms which have a special
significance to FroBram (e.g. commands, filenames, features, etc.)
appear in upper case within the text. In the Prolog code itself, these
terms (with the sole exception of Prolog variables) appear in lower
case. Explicitly quoted expressions, and examples of interaction with
the system (the latter being inset, usually), will appear in lower case.

Evans & Gazdar -6~ April 1984

=2 - Grammar Format

This chapter describes the format of a grammar for use with ProBram. As
data for a Prolog program, the various parts must conform to Prolog's
syntactic requirements (subject to operator declarations made in the
system or by a user with knowledge of both Prolog and the system), and
all the examples shown below do so conform except that items in angle
brackets (< >) refer objects defined elsewhere and should not be
taken literally, This file does not provide <full details of Proleg
syntax (for that, see Clocksin and Mellish, 1981), in fact, the topic is
neglected except by example. However, the <following point is of
particular iamportance: the Prolog convention about variable names is
that any word starting with an upper case letter is assumed to be a
Prolog variable. Prolog variables have a place in the gqraemmar
specification, only in the case of ALIASES, as detailed below, but in
general, feature names, rule names, etc., are constants and so must not
start with an upper case letter,

A grammar may have up to nine components as listed below:

. Specification of feature syntax,

2. Feature aliasing data.

3. Imaediate Dominance rules (ID rules).

4. Metarules which operate on the ID rules.

5. Linear precedence rules (LP rules).

6, Feature coefficient default values (FCD's).
7. Feature cooccurrence restrictions (FCR's).
8. Root adeissibilty conditions (RAC's).

9. A lexicon.

Not all of these coaponents are compulsory, in fact (2) is purely a
notational convenience (but it is very convenient), There follows a
section on each component, and it is assumed for simplicity that each
component will be a separate data file. This is not strictly necessary
as the system allows the user to concatenate files and +filter output
data from thenm.

2.1 Feature syntax

The specification of feature syntax consiste ©of a collection of
assertions of three types: :

feature (feature spec).
boolean (feature name),
syncat <(feature name).

The first of these defines the coefficients of a feature in a fore very
similar to that used in GPB2: a (feature spec> is a list (enclosed in
square brackets ([... 1) whose first element is a <feature name> and
whose other elements are either single {feature name)’'s or lists of
alternatives, enclosed in braces ({ ... }). A {(feature name) is a Prolog
atom, e.g. a word (one not starting with a capital letter), a number or
a word followed by a nuamber.

Fvane A RavsAdar -7 .

Grannar Format The ProGram Manual, Chapter 2

A feature specifications defines all the coefficients the feature can
take (by giving the names of the features which may occur). Here are
some examples of feature specifications:

feature [cat,bar,headl.
feature (bar, {lexical,1,2,3}1.
feature [head,major,{tense,casel}l],

A FEATURE is a tree (as described in 6PB2) which conforms to the feature
specifications, that is, a feature is a list whose first element is a
(feature nane> and whose other elements (if any) are all +features
permitted by the feature specification for that (feature name>. The
three specifications above permit all the following features (and more):

[bar, [lexicalll (can choose any one of the options)
[bar, [1]]

{head,(casel,[majorll] (order of coefficients is irrelevant)
[cat] (coefficients are optional)

{fool (not specified means ‘no coefficients’)

{cat, (bar,(1]],(head,(majorl,lagrilll

As is apparent, these features can get quite cumbersome sp the systenm
has some built in conventions about features. One of them we have seen
above - if a feature (FOO, say) is not specified its definition |is
assumed to be

feature [fool.

This was done with FOO above, but also with LEXICAL, §, 2, 3, CASE, AGR,
MAJOR - in fact all the 1leaf values in the feature trees. A second
convention was not employed above: if a bare <(feature naae’> is
encountered where a feature is expected, it is assumed to be the feature
of that nane with no coefficients specified o.g. foo can be wused far
[fool., This 1is very wuseful +¢or readability, not to mention bracket-
counting. The list of examples above could have been written as follows:

[bar, lexicall

(bar, 11

(head,case,rajar]l

cat

foo

[cat, [bar,1],(head,major,agrll

The second type of feature definition, BOOLEAN, is also an abbreviation,
but with an additional notational convenience thrown in., The assertion:

boolean <(feature name),
is equivalent to
feature [(feature name)>, +, -1J.

but + and - are treated specially in the system, to allow vou to wuse
them as prefixes. Thus if we add the following to our definitions above:

Fuane 2 RavAdar -l Aawit 1082

Grammar format The ProGram Manual, Chapter 2

feature [major, n,vl.
boolean n.
baoolean v.

we are now allowed features of the following sort:

[cat, {head,[major,[+n,-v11]]
[head, [major,-vl],agrl.

There is one further convention built in to the system. It is often
desirable to specify the absence of a coefficient in a feature. Thus
far, this is not easy to do - it cannot be just left out since that
means ‘unspecified’ not ‘absent’ and during parsing, for instance, the
head feature convention might decide to specify a value for it. So the
system allows the use of the prefix ™ to mean absence. For example:

{head, [major,-vl,*casel

This ‘extra value' is available for all features, regardless of how many
coefficients etc., they are supposed to take.

Finally the assertion
syncat {(feature name).

This is used by the rule handling routines to decide whether a feature
may be used as a syntactic category or not. Any feature whose {(feature
name> is declared as a SYNCAT may be sed in an ID rule (etc.). Any
other sort of feature gives an error,

2.2 Feature aliasing data

In section 2.1, a few <feature definitions were provided by way of
example., They are repeated here:

feature [(cat,bar,headl.

feature [bar, {lexical,!,2,3}1.
feature [head,major,{agr,case}l.
feature (major, n,vl.

boolean n.

booclean v,

This is, approximately, a small part of the syntax given in B6PB2. Here
are some examples of common categories expressed using this feature
syntax:

np = [cat,[bar,2],[head,[major,+n,~-v11]

verb = [cat,(bar,lexicall,[head,(major,+v,-nll]
s = [cat,[bar,2]l,[head,{major,+v,-nll]

etc.

To produce a grammar of any size using these Jongwinded feature names
would be laborious at best and the result would be largely
incomprehensible., So ProGram provides a mechanism for abbreviating thenm
- ALIASES. In the simplest case, an alias definition looks like this:

tvans & Gazdar -9~ Anri] 1QR4A

ffraitar Format The ProGaw tfanuai. Chapter 2

alias(<alias> <feature>).

An alias in its simplest form just tells the system that a particular
word (the <alias> above) it going to be used as an abbreviation for a
feature (the <feature> above). Given these three aliases:

alias(np,[cat,[bar,2],[head, [<najor,+n,-vl]]).
aliasfverb,[cat,[bar,lexical],[head, [major,+v,-n333).
al ias(ss[cat, [bar,2], [head, [major, evi-n-331).

the grammar writer could freely use NP, VERB, and S in the rules of the
grammar and the system itself would make all the relevant substitution,

By making use of Prolog variables and terms, tht aliasing can be made
even more helpful. A Prolog variable is denoted by a word that starts
witha upper case letter and serves to hind together parts of a
definition or assertion without actually specifying any value. Prolog
terms are more complex expressions than the simple words used up to now
and are written in functional notation i.e. as a functor, which must be
a word (not a variable) followed by one or more arguments (enclosed in
parentheses) where each argument is itself a wvariable, a word (or
number, etc.) or a term The use of Prolog terms in aliasing is best
shown by example;

alias(h(L), [cat,[bar, L3, [head, major3]).
alias<n(L,Agr), teat,[bar,L3,[head,[major,+n,-v3, [agr Agr33l>.

The first of these is an alias for a generic HEAD feature (unspecifed
major coefficients - see GP82), the variable L is used to specify the
bar level. The way to think of this variable behaving is like this:

L has no value specified (i.e. it is a variable), but the alias
is only valid for term feature pairs with the same value (the
‘value' of L) for all occurrences of L. '

Thus this first alias allows the use of H(LEXICAL), H(I), H(2), H(3) in
the grammar rules (actually it also allows silly values - e.g. H(FOQ -
but the feature syntax checker will reject such invalid coefficents for
BAR) .

In the second alias above, two variables have been used, to allow
“specification of bar level and agreement features thus, for example,
N(2,SINB) now means a singular NP

Aliases may also be applied to other aliases. For example, suppose the
following alias was added to those above:

alias (h,h(lexical)).

This would allow the wuse of H to stand for [CAT,[BAR, LEXI CAL],
[HEAD, MAJOR]] via two alias assertions.

Aliasing in fact allows the complete power of Prolog for decoding
aliases, and it is applied repeatedly wherever possible (including
subfeatures)s A competent Prolog programmer can make use of this for
more involved abbreviations. The demonstration grammars make use of a
few of these nor advanced features, in particular, it is possible to

Evans 4 Gazdar -10- April 1944

Grasmar Forwmat The ProGraw Manual, Chapter 2
provide an alias for the SLASH notation (S/NF). etc. - sée 6.2.

2.3 ID rules

The basic format for specifying immediate dominance rules is as follows:
{name> 3 <cat> -=-> (cat>, ... ,Ccat>.

Here <(name)> is the name of ¢the ID rule, and <cat> is a syntactic
category, i.e., a feature/alias specification as above. There can be as
many categories on the right-hand-side as desired, separated by commas
and terminated by a period.

The <name) is a valid Prolog tera, usually a word, nunber‘o? a functor
with one or two arguments. Examples of ID rules are:

vptr: {cat, [(bar,1],(head,[major ,+v,~n}1] ==
{cat, (bar,lexicall,lhead,lmajor,+v,-nlll,
[cat, [bar,2],Chead,[major,+n,-v11].

sl: s --> np, vp.
np(propn)s:s np =-=-> n,

In the first, @ rule for a transitive vp, no aliases are used, and it is
quite cumbersome. In the second, alaises for s, np, vp are used to make
things tidier., The third rule also uses aliases, and it has a complex
term for the rule name. For reasons why you might want to do this, see
below. Note that aliases can be wmixed up with full tategory
specifications at will, and that aliases are not detected in the rule
name - there they are treated as literal words {(etc.). Also, two rules
may have the same name (but see the discussion of subcategorisation,
below).

Different parts of the <(name> are used for several things in the systenm,
and the +following points should be borne in mind when choosing rule-
names:

(i) ldentifying the ID rule

The principal use of the name is to identify the ID rule, for example in
control wmode when the user is asked to specify which rule to use. The
user does not have to specify the full name - if the nanme is a complex
term, then only the functor of the name need be specified - (the parser
will try each matching rule in turn).

(ii) Identifying & node in a parse tree where the rule is applied

The name is used in the parse tree displays to label any node where the
rule has been applied (it is impractical to label with the parent
category, as usual with parse trees, since the category itself 1is
typically itsel¥ a large +eature tree). Thus it is useful to specify
rule names with mnemonic significance for their LHS category., The nanme
is wused in full (i.e. functor and arguments) but in any word in the
term, if the word contains an underline character, then it and all the
characters in the word after it are not displayed. Thus the both the
labels VP_INTR and VP_TR will appear, 1in parse tree displays only,

Evans & Gazdar -11- ' April 1984

G awmi r Forwtt The ProGw Mnual, Chapter 2

siimply as VP.
(i) Lexical subcategorisation

The rule name is used to implement the lexical subcategorisation

feature. The name, or its functor if it is a complex tern, is added as
a feature argument of [bar, lexical! in any lexical category in the rule
(RHS). This means that the category MIl only match lexical items

specified in a lexical rule (see lexical rules, below) with the same
name/functor

2.3, 1 Reqgular expressions

The categories on the right hand side of a rule nay also have regular
expression operators attached to them Three operators are possible:

opt(<cat>) - <cat> is optional
<cat> *o - <cat> may be appear zero or many times
<cat> oo - <cat> may appear once or many times

2.3.2 IVariabIes

A slightly more complicated form of an ID rule is as follows:
<name>:<cat> --> <cat>, ... ,<cat> where <cond>, ... ,<cond>

The additional WHERE clause allows the user to specify two sorts of
things - variable definitions and control agreement. Variable
definitions allow one to incorporate variables into ID rules. Normally

a rule with a variable (i.e. a word starting with a capital letter) in
it will not normalise. In order to allow variables in a rule, a <cond>
of the form

<var> is <feature>

must be provided in a WHERE clause. Thus the following rules are bhoth
acceptable (and do exactly the same jobh):

Si: S — np,vp.
si: s — np,VP where VP is vp.

Variables added like this (there can be several, with a <cond> for each)
are used in two ways. Firstly, one sometimes wants to specify that two
parts of a rule are identical, without ~completely specifying their
value. The following rule incorporates subject-vp agreement in this way
(note that layout is not important):

tl: s — [cat, [bar,23,[head, [major,+n,-v3, AGR33,
[cat,[bar, 13,[head,[major,+v,-n3, A6R]3
where A6R is [agr].

Here we have specified a variable A6R which takes the same value in HP
and VP and which is specified as the feature '[agr3'. The coefficients
of 'Cagr3' are not specified, but must be the same in any use of this
rule.

[vans & Gazdar -12- Aoril 1964

Grasnar format The ProGram Kanual, Chapter 2

Doing agreement this way works, but is a little unwieldy, and the G6PSG
formalism contains the CAP which places special constraints on some
lagr]l features, Hence there is a better way of doing agreement using the
CAP. This is the second sort of <(cond> expression in a WHERE clause. It
simply specifies that one category controls another. However, to do
this, the categories themselves have to be expressed as variables (since
they occur in two places in the rue). Thus subject-vp agreement 1is
properly done like this:

slt 8 --> NP,VP where NP is np, VP is vp, NP controls VP,

Here we have two variables, NP and VP, which are specifed as ‘np’ and
'vp' respectively, and which are a control pair. Syntactically, control
agreement is sympmetrical - it doesn’'t wmatter which controls which.
However, the CONTROLS clause must always follow the clauses defining its
variables.

2.3.3 Heads

In order for the Head Feature Convention (HFC) to operate properly, 1ID
rules aust have heads. ProGram takes the following as the definition of
a head:

The head of an ID rule is the unique category (in the RHS of the
rule), if there is one, with no coefficient of the feature WAJOR
(although MAJOR itself must be present) and of minisal bar level
{out of the RHS categories of the rule),

Some ID rules do not have heads, either because there is no category
with unspecified MAJOR coefficient, or because there is more than one of
ainimal bar level. The HFC processing produces a warning message in such
cases, but this need not be taken as an error.

It is often useful to define an alias for heads, i.e. an alias for a
category with unspecified MAJOR. For exaample:

alias(h(B), [cat,[bar,B),[head,majorll).
Using this alias, the head can be explicitly specified in a rule.

sit 8 -=> np,h(l).
vtr: vp -=-> hilexical),np.

The HFC ensures that the H(!1) in rule S1 becomes a VP (by inheriting its
+V, -N +from the §S). Actually, including control agreement, the final
form of this rule might be:

§1: s -=> NP, H1 where NP is np, HY is h(1), NP controls Hi.

The definition of head is still as above - the alias itself doesn’t
ensure that no other category is a suitable candidate. The head feature
convention operates as specified in GPB2., The system’'s handling of HFC
is not done during parsing, but as a preprocess which takes place
between normalisation (of ID rules) and parsing. This preprocess is not
incorporated into the noarmalisation because expansion using metarules
{see below) must normally come between normalisation of ID rules and HFC
processing. Thus the normal sequence of processing required is:

Evans & Gazdar -13- April 1584

Grammar Format The ProGram Manual, Chapter 2

(without metarules) (with metarules)
ID'rules IDlrules
; normalise E normalise
No;ned ID rules No%med ID rules
: HFC E expand with metarules
ID‘rules ready for parsing Exéanded set of (normed) ID r:
3 HFC

ID rules ready for parsing

2.4 Metarules

Metarules are rules which map one ID rule 1into another. The simplest
form of a metarule is:

{name>: <(ID rule) ==> <CID rule) .

Here <(name)> is just as in ID rules and <ID rule> is an ID rule as
specified above except that:

(i) The (name> and the colon following it are oaitted.

(i1) If there is a WHERE clause, then the whole ID rule
{including the WHERE clause) aust be enclosed in
parentheses.

(iii) A sultiset variable may be included in the daughter list.

The grammar expansion process (see below) uses these metarules to expand
the set of ID rules 1in the grammar. For each ID rule already in the
grammar that fits the ID rule on the left hand side of the metarule,
{i.e. none of the feature specifications contradict), an ID rule of the
form on the right hand side is added to the grammar. In the simplest
case, no communication between the two sides of ¢the nmetarule is
necessary, i.e. none of the information particular to the ID rule that
fits the LHS is needed in the RHS. However, it is more likely that
communication is required. There are two ways of achieving communication
- by using multiset variables and by using MATCHES clauses.

2.4.1 Multiset variables

The daughter list of an ID rule in a metarule (and only in a wetarule),
may contain a multiset variable, written as

There may be at most one multiset variable in a rule (no more are ever
needed, since the daughter 1lists are not ordered), and it may occur
anywhere in the list. When coaparing the LHS of the netarule with an ID
rule, the wmultiset variable can. match any number of categories
(including none), and the categories do not have to be adjacent in the
ID rule. So the particular categories specified in the metarule LHS are

Evans & Gazdar -14- April 1964

Grawmar Foramat The ProGram Manual, Chapter 2

mapped onto categories of the ID rule, and the wmultiset variable qets
the rest. I+ the multiset variable also occurs in the RHS ID rule of the
metarule, then all the categories which mapped into the multiset
variable on the LHS are inserted into the new ID rule generated. An
error will result if the RHS has a multiset variable and the LHS does
not. Here is an example of the use of a multiset variable:

pass! VP ==> V, NPy +us

==)
vp -=)> vpass, opt(ppl,y «os .

This is a simple version of the passive metarule. VP, VPASS, etc. are
assumed to be alias expressions. This metarule rule says

For any ID rule which expands a VP as a V, an NP (the NP can occur
anywhere in the daughter list of the ID rulel, and possibly other stufd,
create another ID rule for a VP expanding as & passive verb (VPASS), an
optional prepositional phrase, and all the other stuff (remesbering that
ordering is specified independently in the LP rules),

A couple of technical points are worth noting: (i) the three dots (...)
can sometimes get confused with other symbols (e.g. commas, the dot at
the end of the rule, etc.). Thus it is advisable always to put spaces on
either side of multiset variables. And (ii), multiset variables are
sensitive to the use of reqular expression operators elsewhere in the
rule. In particular if an ID rule containing a C++ category (i.e. C must
cccur at least once) matches a metarule LHS of the form 2 --> C, ...
then a C##*# is put into the multiset variable (not a C++), since one C
has already occurred.

2.4.2 Matching

Either of the ID rule descriptions in a metarule can take a WHERE
clause,. These WHERE «clauses may not contain CONTROLS specifications,
but they may contain 1S specifications (defining variables) and MATCHES
specifications., A MATCHES clause is wused for the second sort of
communication between the two 1D rule descriptions in a metarule., It is
conventional in GPSG metarules to assume a correspondence between like
tategories on either side of a metarule, except where differences are
‘made explicit.

Consider the following auxiliary-initial metarule:
inv: vp(aux, fin) --> h, vp

=)

s(inv) -=-> h, s.
Here, H is an alias for a lexical head category (see the discussion
above), VFP(AUX, FIN}, VP, 8§, etc., are alias expressions, This rule
does not state that the S(INV) inherits everything from the VP(AUX,FIN),
except BAR level, which is explicitly stated (via aliases) and similarly

the daughter S inherits from the daughter VP, To do this we wuse a
MATCHES «clause. A MATCHES clause takes the same form as a CONTROLS

Evans & Gazdar -15- April 1984

Grai war Forwat The ProGaw Manual, Chapter 2

clause, and simlarly it requires tw IS clauses to define its
variables, and they nust precede it in the WHERE clause. The WHERE
cl ause:

where VPL1 is vp(aux, fin), SI is s(inv), VPL matches SI

defines the two variables VP1 and SI and then states that they mtch
everywhere except where they differ. That is, all the bits of the
categories which can be matched together and which are not explicitly
specified in the metarule, nust be identical in all uses of the metarule
(so the created rule inherits them from the original rule).

The conplete metarule mght then look like this:

inv: (W1 — h,VP2 where VPt is vp(aux,fin);
VP2i svp)

) .

(81— h, S2 where Sl is «(inv),
S2iss,
VP1 matches SI,
VP2 matches S2).

Again note that layout is not inportant. The manner in which clauses my
be distributed anong the two WHERE clauses is subject to the follow ng
rul es:

(i) an IS clause nust occur in the WHERE clause of the ID rule the
variable is first used in, or earlier (i.e. LHS for a variable in RHS
but not vice versa).

(ii) 1S clauses defining variables nust precede the MATCHES clauses they
are used in.

2.4.3 Ruld _nanes

The ID rules generated by metarules have names which encode the history
of their metarule derivation. In the parse tree displays, these nanmes
are witten in functional notation. For exanple

VP1 name of an ID rule in the grammar;
PASS(VPI) name of a rule produced by applying
metarul e PASS to VPI;
I NV(PASS(VP1>) name of a rule produced by
applying PASS, then INV to VP1

The rule-types that result may not be uniquely named - netarules can
apply to rules in nore than one way

lvans 4 Gaidar ' -/ 6- April 1984

Granar For**t The ProGn* tfanuad, Chapter 2

2.5 1 P rules*

The linear precedence rules specify the ordering constraints on sister
categories. The simplest form of Ip rule is as follows:

<cat> << <cat>.

~ This simply states that one category nust precede another (if they
cooccur). The categories nust be full category specifications (i.e. not
just subfeatures, etc.), but my incorporate aliasing as desired

Two other forms of LP statement are possible. Firstly, wherever you can
have a single <cat> you can have a collection, in braces {<cat> ...,
<cat>>. No ordering is specified among these categories (although other
LP statements may do so). For exanple

{n,v,p} << (np>,
is the same as

n << np.
v << onp.
p << np.

Secondly, statements may be cascaded and transitivity is assumed. For
examle

n << np << vp.
is the same as

n<<np.
np << vp.
n << vp.

Both these mechanisms can bhe mxed wup arbitrarily. The normalisation
process also expands the LP rules under the appropriate transitive
closure.

The normalisation mechanism uses the expressions given in the rules
(i.e. the alias expressions, etc.> to decide whether two categories are
the same. Thus if the LP rules enploy both the followi ng expressions

S
[cat, [bar,23,[head,[major,+v,-n333

where one is sinply an alias for the other, they wll be viewed as
different categories for the purposes of LP rule expansion. This wll
have no effect on the system's behaviour, but it wll generate mre LP
rules than are required. In general, then, the user should avoid using
alternative expressions for a single category in LP rules

funs 4 Gazdstr -J7- ‘ April 1984

Grammar Format The ProGram» Manual, Chapter 2

2.6 Feature coefficient defaults

Feature coefficient defaults specify default values for feature
coefficents which are assigned if not privileged (see GPB2) or otherwise
specified. The form of an FCD specification is:

fcd({featname>,<{excl>,(Lfeat>,{Pfeat?).

Here <(featname) is the name of the feature whose default is to be
defined, and <{excl)> is a list of feature names - see below. (Lfeat)> and
(Pfeat> are the lexical and phrasal default values respectively
(features can take different defaults on lexical or phrasal (i.e. bar
level at least 1) cateqories). Either can take any of the following
forms:

the word FREE - meaning no default,
a feature specification far (featname)> (or alias expression),
a feature name, the name of a coefficient of (featnanme).

An FCD can only be specified for a given feature name in one place -
some features (e.g. AGR) can appear in waore than one place in the
feature syntax, and hence in a given category. Only one of these
instances can have defaults assigned for it. The exclusion list, <excl)>,
is used to direct the normalisation process to the correct instance. It
consists of a list of feature names which must not be above the instance
required in the feature tree. For example, an exclusion 1list ([FOOT,
CONJ] would mean that the default applies to an instance not in the FOOT
feature or the CONJ feature. If there is only one 1instance of
{featname), <excl> can safely be left as []. Here is an example of an
FCD:

fcd(case, (footl, free, “case).
Here CASE defaults to FREE on lexical categories and *“~CASE on phrasal
categories. The stipulation of FOOT in the exclusion list, prevents the
FCD applying to the instance of CASE in FOOT (e.g. (FOOT, [SLASH, ([CAT,
{HEAD, CASEJ]]]) being used.
Any feature which is not privileged and which does not get a value,

either from a rule or by default, is given the value UNSPEC.

2.7 Feature cooccurrence restrictions

Feature cooccurrence restrictions specify pairs of feature values which
must or must not cooccur. The form of an FCR is:

fcr({namel),<excll),{featid,<{namne2>,{excl2)>,{feat2)).
Here, <namel> and {excl!>, and <(name2)> and <{excl2>, combine ¢to specify
particular instances of the features <(namel> and <(name2)> as in the FCD's

above., <(featl> and {(feat2, can take values as in <(Lfeat> and <(Pfeat>
above and additionally be one of the forms:

Evans & Gazdar -18- April 1984

Ganwar Forwat The ProGa* Mnual, Chapter 2

unspec
not (uniptc)
not (..«

where ... is an <Lfeat> or <Pfeat> above. The single word UNSPEC as a
value Deans that the feature value was not specified at all by feature
instantiation. The restriction specifed is that if feature <na»el> has
(doesn't have) the value specifed, then feature <na«e2> «ust have (not
have) the value specifed. Here are soae examples of FCR's

fcr(mnor, [foot], vforr, n, [foot], -n).
fcrtainor, [foot], vfori, v, [foot], +v).

Together, these FCR's ensure that any category with a coefficient VFORM

(assumed to be encoding of verb torphology, etc.) on MNOR really is a
verb, i.e. -N, *V

2.S Root admtcsibility conditions

The root admssibilty conditions are not part of the SPSS theory, but
are used to prevent the parser from generating unwanted alternative
parses for things. The for* of an RAC is:

rac(<name>, <excl> <feat>).

Here the arguments are just like one half of an FCR specification (see
above). Every time a tree is generated the RAC s are checked. If the
root node of the tree has the feature <name> which has the value . <feat>
then the tree is rejected. Here is an exanple of an RAC:

rac(bar, [foot], not(unspec))e
This rac ensures that the bar level of any root category is not
unspecified (it is possible sometimes to get unspecified bar levels when

the Conjunct Realization Principle ('CRP henceforth - see Gazdar,
Klein, Pullum and Sag (1982) for discussion of the CRP) is being used).

2.9 The _lexicon

.The lexicon consists of lexical category rules which provide the
~association between words and the parts of speech to which they belong
The ford of a lexical category rule is:

<na»e> i <cat> -> <wordl>, ... ,<wordN> e

Here <na<*e> is JIS in ID rules (see above), <cat> is a feature expression
(or alias, etc.) and <wordl> ... ,<wordN> is just a list of words,
separated by co»mas. A word aay not start wth a capital letter. A
lexical rule says that each of the words on the right hand side is an
instance of the category on the left hand side, and may be used in any
ID rule with the same name (or whose name's functor is the same). This
latter point is the lexical subcategorisation mechanism which can be
turned off wusing the switch NOLEX (see chapter 5). Note that <cat> nust
be of bar level LEXICAL, otherwise a normalisation error occurs

Evans A Gazdar -19- April 1984

G awwar For mat The ProGaw Hanual, Chapter 2

The lexical categories need to be fully specified in all features which
are not specified by default, or by the corresponding category in the
rules that introduce the category. Leaving a feature unspecified in the
lexicon does not man it can take any value, indeed, the value will be
set to UNSPEC, and cannot be changed. Here are a couple of examples of
lexical category rules:

npl: n -> kirn, lee, sandy
np2; n ->- bhook, house, hill.

These two both define nouns to be used in two different NP rules - the
one for proper nouns (NP1) and one for ordinary count nouns. The
relevant ID rules (night be:

npl s np —> n.
np2: np — det, adj*» ,n.

assumng suitable aliases for NP, N, DET, AQJ, etc.

The third and fourth lexical rules below provide an example of the use
of features in the lexicon which do not specifically occur in the ID
rules.

vtr(s): v(s) -> sees, likes, loves
-vir(p): v(p) -> see, like, love.

Suppose we have an ID rule:
vir: vp -> v, np.

Then the two lexical rules above would both apply to fill in the V,
taking their number feature (S or P) with them HFC, CAP, etc., could
then operate to communicate this number feature to the VP, subject NP,
and so on. In the lexical rules, VMS) and V(P) are examples of conplex
aliases. A suitable alias mght be:

alias<v(NUMB),
[cat,thar,lexical],[head, [major,+vi-n3, Cagr, [number ,NUMB]]]]).

[t is worth noting that the parser wll run mre efficiently

particularly in a search for all parses, if a given word has only one
lexical category associated with it. In grammar testing applications,
this should not be too inconvenient, although it means that, for
example, it is best to have several non-overlapping groups of proper
nouns for the different cases (nomnative, accusative, etc.).

2.10 Assumptions about the GPSG formalism

ProGram makes various assumptions about use of feature names, etc., and
places certain constraints on rule format, etc., which are not
explicitly discussed in the GPSG literature. This section contains a
summary of these constraints

The following features are assumed to be present:

Evans ft Gazdar -20- April 19B4

firanar Forwat The ProGn* Harmal!, Chapter 2

CAT - tht feature representing a basic ‘saall’ category (i.e.
corresponding to CAT in 6P82, not CATY). The only tssuted
significance of CAT is that CDNJ ‘is not a subfeature of it (or at
least, the instance of GONJ used for the GRP is not).

FOOT - the ROOT feature used by the Foot Feature Principle CFFP'
hereafter, see GP® for discussion). It need not be present if

HORXT is on (see 5.4).

QONJ - feature used by CRP. Categories which have a GONJ feature which
is not ° (i.e. they ire not *CQNJ) are privileged - they do not take
defaults. GONJ should not be a subfeature of CAT. See (v), below.

HD - the head feature used by HFC. This lust not be a subfeature of
FOOT (although there aay be a head feature under FOOT, but the HC
will not appply to this).

MAIR * used in the definition of a head category. Head categories aust
have no coefficient for MAIR specified.

BR - used by HC and lexical fubcategorization routines. Its first
coefficient (in the feature syntax specification) lust be the bar
level, taking values LEXICAL, 1, 2, 3, ... (positive integers o'nly,
signifying increasing level. LEXICAL * BIl. All values to be used
should be stipulated in the feature syntax specification.

LEXICAL * lowest bar level. This lust have no subfeatures in the featur_e
syntax -specification (although the systei will add one when doing
lexical isubcategorization).

AR - feature used by AP - as with HEAD, instance S§ust not be under
FOOT.

If any of the above features are absent, then the corresponding
principles, etc., simply Mill not work * most of the*} will fail. The
switches NOCQNJ, NOFOOT, and so on, lay bl set to overcome this (see
chapter 4).

There are also some restrictions on the format of rules and metarules
that need to be observed:

(i) ID rule descriptions occurring in metarules may not contain CONTROL
AGREEMENT clauses.

(ii) REPEATER categories (those marked with regular expression operators

#* or ++> generate independent instances. In particular, using
variables in a repeater category, or having a repeater as head
category or part of a control pair, will fail (the category will not

be constrained as expected).
(iii) Having variables in HEAD, FOOT or AGR can cause unpredictable

results when using HFC, FFP, CAP. For example, FFP will sometimes
'lose' the bindings in a foot feature.

Evans & G*zd*r -2J- k<] FRLd

Granar For mat The ProGa* ttarmal, Chapter 2

<iv) CONTROLS clauses in an ID rule should come after the associated
variable binding clauses.

(v) The extension restriction in CRP does not apply to the -feature CONJ
(i.e. the CONJ features of the daughters do not have to extend that
of the mother). The mother's CONJ feature is alHays set to "CONJ.
Also, CRP as inmplemented requires that the nother be the MAXI MAL
category which the daughters all extend. A small modification to the
source code Hll change this - see the note in CRP system module
(.../program sys/crp, in the UNIX version of ProGram). However, this
modi fication will slow the parser down considerably.

Evans 4 Gazdar -22- April 194

S - Normal isation

To use ProGram, you need to have a 6PSG grammar, This grammar can have
up to nine components, and we shall assume that each component is in a
different file (this is not strictly necessary, but it wmakes life
easier). For full details of specifying these components, see chapter 2.
We shall assume here that the components of our grammar have the
following namest

FEATSI feature syntax specification

ALIAS! feature alias specification

IDRULES inmediate dominance rules

LEXICON the lexicon

LP linear precedence rules

METARULES metarules

FCD feature coefficient default specifications
FCR feature co-occurence restrictions

RAC root admissibility conditions

3.1 Normalisation of data modules

The first thing that has to be done is norealisation of these data
modules. Noraalisation uses the information in FEATURES and ALIASES to
transiate and check all the rest of the data. The data 1is translated
into an internal form in which the aliases have been fully expanded and
a few other minor bookkeeping functions have been carried out. If, in
the process of doing this, the system detects an error, for example a
badly specified feature, then a mishap message will be printed. In a few
cases a warning message is printed when strange, but not actually
illegal, data is encountered.

Normalisation has to be done before parsing or testing, since the parser
uses the internal, normalised forms. The primitive normalisation
commands are:

NORMID,NORMLEX ,NORMLP ,NORMMETA ,NORMFCD,NORMFCR,NORMRAC

In each case the default input and output are the terminal, so if you
just type

normid.

to the top-level (Prolog) prompt, you will be prompted to type an ID
rule, which will get normalised and displayed. This is not usually what
is required, it is more common to redirect the data using TO and FROM:

normid from idrules to nidrules.

This means ‘read in all the rules from the file IDRULES, normalise thenm
and write the normalised versions to the file NIDRULES'., In order to do
this, the system needs to read the data modules for features and
aliases. If these modules have not already been loaded (e.g. because you
have already normalised something), then the system needs to know the
appropriate file names and it will ask you for these names when it needs
them, e.qg.

Evans & Gazdar -23- April 1984

Normalisation The ProGran Manual, Chapter 3

FEATURES data is now required.
Please type in data file name !1

You just type the name, followed by a period. You can also specify the
relevant names in the original command employing a USING clause:

normid from idrules to nidrules using featsl
for features using aliasi for aliases.

The 'for features’ bit is necessary - it tells the system that the file
it is reading (FEATS!) is the data module 'features’'. Without the FOR
clause, the data would be read, but the system would still proapt for
features data.

Notice that a command can spread over several lines if necessary - in
general, Prolog does not care about new lines or spaces between words,
s0 you can lay out data files (e.g. the ID rules) in any format you
choose. The important thing is to remember the period at the end of each
command/rule/feature specification. The only other point to note is that
the system prints little messages as it loads system modules, just to
keep you informed. For example, this is what would happen if we had just
loaded the system and we typed:

?- normid from idrules to nidrules using feats! for features.

(lcading norarules)

(loading normid)

ALIASES data is now required.

Please type in data file name i: aliasi.

(loading normfeats)

{longish pause>

yes

?-
Three system modules were lpaded (NDRMRULES, NORMID, and NORMFEATS) and
the aliases data was requested - the features data was given in the

command. I[f we now type:

?- normlex from lexicon to nlexicon.
(loading normlex)

yes
‘?-

we see that only one module was loaded, since NORMFEATS, FEATURES and
ALIASES, the other three modules required, have already been loaded.

If for some reason you do not want a data module to be loaded (e.g. your

grammar is so simple there are no aliases), you can use the word NONE as
a filename, either in the command, or when prompted.

Evans & Gazdar -24- April 1984

Nor mal i sat i on The ProGan Mnual¢ Chapter 3

As mentioned above, all the components of the grammar, apart from the
features and aliases themselves, have to be normalised and the
normal i sed data saved. Thus we could type: '

?- normmeta Iron Metarules to nmetarules
?- nornfcr fro* fcr to nfcr
<etc>

The MORECQMMS library provides some commands whi'ch do the normalisation
eore easily, Dby assumng standard nafies for all the data Modules - see
chapter 5.

Normal irsation of ID rules includes all the processing required for the
Control Agreement Principle and lexical subcategorization. It does not

include Head Feature Convention (HFC) processing (see 3.3, bélow). The
MORECOMMS [ibrary provides commands which do normalisation and the HFC
automatically, but if metarule expansion is required, this has to be
done between the two. MORECOMMS provides a command to do that

automatical 1y, too.

Before using the grammar, you may well want to expand it using the
met arul es. This should be done after normalisation, but before HFC
processing. See 3.2, below

By using'the FILTER library, you can combine several data files together
to be viewed as one. Thus, if your ID rules are split between several
files, you can give a command |ike

normd from idrulesl then idrules2 to nidrules.

which combines data from |IDRULES!I and |DRULES2, normalises it and stores
the result in NIDRULES. Simlarly, you can select particular rules iron
a file by using the SOMEOF filter (see 5.5 1 for details). o

In general, normalisation does not display anything except mshaps and
warnings on your screen. If you want to watch what is happening, set the
switches TI and TO to on (see 5.4 for details). Note that Prolog syntax
errors in your data files may not bhe apparent * in standard Prolog the
error message gets witten into the output data file, not the termna

(see 5.3).

The rest of this section consists of examples of each of the various
grammar modul es being normalised. Qutput is sent to the termnal (since
it is not redirected) so that any syntax errors are picked up properly

After all - the modules have been successfully normalised with no errors

the data can safely be saved in data files, either by individual

commands as below, but with redirection (FROM clauses, or using one of
the commands NORM 6RAM or NORN. HETA" from the MORECOMMS library (see
5.5.2)

For convenience,, tracing of INPUT data has heen turned on, so that the
reader can see what it is we are normalising

Evans & Gaztar - 25- April 1934

Normalisation The ProGras Manual, Chapter 3

7- ti on. SWITCH ON INPUT TRACING
trace_in is on

yes

7- noraid from idrules. NORMALISE SOME ID RULES

{ loading norarules)
{ loading norafeats)

PROGRAM NOW PROMPTS FOR SOME DATA MODULES, SINCE THEY WERE NOT SPECIFIED IN
THE COMMAND. NOTE THAT ONCE THEY ARE LOADED, PROBRAM NEVER PROMPTS AGAIN.
features data is now required
Please type in data file name !; features.
REMEMBER THE FULL STOP
aliases data is now required
Please type in data file nase i1 aliases.
(loading norsid }

ID rule normalisation can now proceed - notice that the traced input 1is
interspersed with the output. Normally ¢the ¢tracing would be on the
screen and the output data would be redirected to a +file. The banner
comment at the top, identifying the data module, is produced for all
data files, with an appropriate heading. Also, if a header string is
specified by the wuser, it appears in this banner. The /% and #/
bracketing tells Prolog that the banner is a comment and not part of the
data.

/4
ProGras 6rassar Development System
Version 1, 29/4/84

NORMED ID RULES
#/
THIS IS THE INPUT:
$: v(2) == 1, _2 where _1is ni(2,(nom]) , _2 is h(1) , _1 controls
2.

AND THIS IS THE NORMALISED RESULT:
baserule(s,no,(root, (cat, (bar, [2]], [head, (major, [v1], _111, _2, _31,(cic
trl,_4,021,n0,(root, {cat, [bar, [2]], Chead, (aajor, (n]1, [ainor,
{agr | _81, [case, [nominativelllll, _4, _71), clctrl, 8,{11,n0,[root
y [cat, [bar, (111, [head, (major, _91, (minor, (agr { 51 { _1811],
Aty 12D 1, [ctrl controls ctrll),

vp_l s vil) ==) b,
baserule(vp_1,[1,[root, [cat, (bar, [11], [head, [major, [v1], _111, _2,
_31,lc(_4, S,(exical, [vp_111,n0,lroot, Ccat, [bar, [lexical,

[vp_1113, [head, [major, _61, _713, 8, _91)1,[1).

«ooo data onitted here

Evarns & Gazdar -26- April 1984

BB
B R

Normalisation The ProGrams Manual, Chapter 3

THE ERRORS FOLLOWING ARE EXPECTED, SINCE THE CATEGORIES IN THE RULE ARE VERY
UNDERSPECIFIED:

conj ¢ [root, {cat, _13, _2] --» c(_2) , [root, [cat, _1], * conj] where
_1is bar , _2 is conj.

Warning: BAR coefficient not specified - no lexical check
Involving: (root, [cat, (bar, _13, _23, _3, lconj, (*11]

baserulefconj,no,lroot, [cat, Cbar, _13, _21, _3, [conj, _413,[c(_§, 6,[lexica
1, [conjll,no,lroot, (cat, (bar, Clexical, (conjll), [head, [eajor,
[conj, _43), _71}, _B, 93}, c(_18,_ 11, t,no,(root, [cat, (bar,
_13, 121, _13, [conj, [*11D13,00),

coord : root --) [root, [conj, neitherl) , {root, [conj, norll ¢+,

Warning: No BAR coefficient found in category
Involving: [root, _i, _2, [conj, [neitherll]

Warning: No BAR coefficient found in category
Involving: [root, _i, _2, [conj, [norl}]

baserule{coord,no,lroot, _f, _2, _33,[c(_4, 5,no,no0,[roct, _6, _7, [conj,
[neitherdl), c(_8, 9,no,plus,(root, _18, _11, [conj, {norlld11, (D),

wees Bt L

end_of file, GENERATED BECAUSE INPUT IS BEING TRACED
yes

ID RULES SUCCESSFULLY NORMALISED. NOW DO THE LEXICON IN A SIMILAR WAY:

?7- noralex froa lexicon.

{ loading noralex)

/4

ProGraa Graanar Developaent Systea
Version 1, 29/4/84

NORMED LEXICON
#/
INPUT DATA:
vp_L(sf) ¢ vid,[sing, finl) -)- jumps , runs , sings.
QUTPUT DATA:
lexrule(_1,lex(vp_1(s#)) [root, (cat, (bar, [lexical, [vp_111], [head,
{sajor, [v1], Ceinor, Lagr, {singularl], [vfora, [finitel, [auxiliary
s (=11, Cinverted, (-11111), _2, _31) :- oncelmeaber(_1,[jusps,
runs, singsl}).

Evans & Gazdar -27- April 1984

Normalisation The ProGraw Manual, Chapter 3

vp_Lipf} ¢ vi@,lplur, fin]) =)~ jump , run , sing.
lexrule(_1,lex(vp_1(pf)),[root, [cat, Cbar, [lexical, Lvp_111], [head, e
(wajor, [v1l, [minor, lagr, (pluralll, (vform, [finitel, [auxiliary, ,
{-11, (inverted, [-113111, _2, _31) :- once(sesber(_1,[juap, run, -
sing))), -

eres lots omitted
SLIGHTLY DIFFERENT QUTPUT FORMAT IF THERE IS ONLY ONE WORD:
ppiby) * p(@,by) =)= by.

lexrule(by,lex(pp(by}i,lroot, [cat, [bar, [lexical, [pplll, (head, {major,
[p, Cbyldd, _133, _2, 3D,

s08 e th- a0
conjib) ¢+ cilconj, norl) -> nor.

lexrule(nor,lex(conjib)),lroot, Ccat, (bar, [lexical, Cconjll], [head,
{eajor, [conj, [norlld, _111, _2, 3D,

end_of _file,

yes

Now the LP data. This is slightly different. Because the LP rules are
expanded as well as normalised, all the data is read in before any
output is produced, so with TRACE_IN on, all the tracing output comes
first. Also, there are usually more output data items than input ones.

?- noralp fros lp.

{ loading norslp)
INPUT DATA (ALL OF IT):
[root, (cat, [bar, lexicallll <{ {[root, {cat, C(bar, 1111 , {root, [cat,
[bar, 2111},
pi@) < n(2) vil),
all) < nll) <€ pl2),

{root, [conj, neitherl] <([root, {conj, norll.

[root, {foot, nill) < [root, {foot, catll.

end_of _file,

QUTPUT DATA:

Iptlroot, [cat, [bar, (lexical, _111, _21, _3, _4},(root, [cat, [bar, [1]],
51, _&, 11

lp(lroat, (cat, (bar, [lexical, _113, _21, _3, _41,[root, [cat, [har, [21],
51, _4, 71}

Evans & Gazdar -28~ . April 1984 &

Mortalisation The ProGrau Manual, Chapter 3

IpUroot, [cat, [bar, [23], [head, lujor, [n]], .133, .2, .3],[root, [cat,
[bar, 11]], [head, [ujor, [V]], .411, .5, .4]).

IpUroot, (cat, [bar, [lexical, .13], [head, [«ajor, (p, .2]], .313, .4,
.51,[root, (cat, [bar, [23~J, [head, [ujor, In33, >33, .7, .83).

Ip([root, [cat, [bar, [133, [head, [lajor, (n33, .133, .2, _33,troot, cat,
[bar, [23], [head, (-ajor, [p, .433, .533, .6, .73). .

Ip([root, [cat, [bar, [133, [head, [ujor, tall, .133, _2, .33,[root, teat,
[bar, [133, [head, [ujor, In33, .433, .5, .63). ' '

Ip([root, .1, .2, [conj, [neither]]],[root, .3, _4, tconj, [nor333>.

Ipltroot, .1, [foot, [nil]]', .23,[root, .3, [foot, [cat, .4, .533, .63).

ipUroot, [cat, [bar, [lexical, .133, [head, [ujor, [p, .233, .333, .4,
.53,[root, [cat, [bar, [133, [head, [ujor, tv3), .633, .7, .63).

Ip([root, [cat, [bar, [133, [head, tiajor, tail, .133, .2, .3],[root, (cat,
(bar, [233, [head, dajor, [p, .413, .513, .6, .73).

yes

NETARULE NORHALISATION IS LIKE ID RUE NORMLISATION:
?- norueta froi tetarules.

(loading norueta)

e

Probrai Graeiar Developnent Syitei
Version 1, 29/4/64

HORNED HETA RULES

»

pass : V(1) = ... , n(2) «=) v(I,[passl) = ... , opt(p(2 hy>).

Ktarul el pass, baserul e(.i,.2,[root, [cat, (bar, (133, [head, teajor, (v33,
L1333, .4, .53,[c"6,.7,[23,no, [root, [cat, [har, (233, (head,
[+gor, In33, .833, .9, .H3)3,.11),str(J2),baserule(.l,[pais
I 2L,[root, (cat, (bar, [HI, [head, [ujor, [v]], (einor, .13
[vfori, [passive], [auxiliary, (-33, (inverted, [-33331], .14,
154, (cl 16, _17,[2], opt,[root, [cat, (bar, [233, (head, |ujor,
tp, [by333, .1833, .19, .283) ! .123,.21)).

dc MM
yes
FCD; FCR AND RAC NORVAL ISA!IW ARE SIMILAR. TYPICAL COMVANDS ARE:
?- nortfeti froi led.’

?- nortfer frot lcr.

?- norirac froi rac.

Evans A Gaidar 29- April 1984

Normalisation The ProGram Manual, Chapter 3

3.2 Metarule application

This section describes how to apply the metarules to the ID rules in a
ProGram grammar. Grammar expansion is achieved by calling the command
EXPAND. EXPAND reads normalised ID rules from its input stream and
produces the expanded grammar of (normalised) ID rules as its output. It
assumes that the normalised metarules have already been 1loaded -
normally they are specified by a USINGE clause in the command. Metarule
application must take place before HFC processing (see 3.3, below).

A typical use of the EXPAND command might be:

?- expand from nidrules to eidrules
?- using nmeta for norsed metarules.

This command takes the (normalised) ID rules from a file called NIDRULES
and expands them using the (norealised) metarules in the file NMETA. The
resulting grammar (including the original ID rules) is saved in a file
called EIDRULES. Notice that the USING clause alsc specified which data
mpdule it was using (the NORMED METARULES module). Otherwise the systen
would have prompted the user for this information.

I't the TRACE_OUT switch is set (see 5.4), then the names of the new
rules are printed out as they are generated, together with the pass
number: pass | contains the original rules, pass 2 contains those
generated from pass 1, pass 3 contains those generated from pass 2, and
so on. Each rule is printed out as follows:

{original name of rules> <(meta rules applied>
For example:s
pass 2 - vp_1 pass stal

announces a new rule generated on pass 2 by metarule STM! from the pass
! rule VP_1 PASS (i.e., result of metarule PASS applied to ID rule VP_1).
Note that full names are used here - truncation of names, and also
insertion of brackets to form a functional notation, are only done on
parse displays.

The expansion algorithm makes repeated passes over the 1ID rules,
attempting to apply each metarule to each of the 1D rules generated on
the pass before (but no metarule can apply to an ID rule twice). The
EXPAND command produces its output in the order it generates it, i.e.
the original ID rules first, followed by those produced on the first
pass, then those produced on the second pass etc. Between each such
block of rules a Prolog comment announcing the pass number is also put
into the output stream. This is purely for the convenience of any user
who might wish to examine the raw output.

Let us examine an example of doing metarule expansion on the
demonstration grammar. The example uses the command NORM_AND_EXPAND
provided in the MORECOMMS library (see 5.5.2) which normalises the ID
rule and the metarules, does the expansion and then does HFC processing
on the resulting rules. Standard data file names are assumed for this
command, €0 no explicit request for features, aliases, etc., is made.
Also, since the output data is written to data files (with standard

Evans & Gazdar -14- Aaw.t 10084

Normalisation The ProGram Manual, Chapter 3

names), no output 1is normally produced at the terminal. But in this
example we switch TRACE_OUT on first, so that output is displayed as
well as saved.

7-t on, TURN TRACING ON

trace_out is on

yes

?- norm_and_expand. 6IVE THE MAIN COMMAND

(loading norarules) SEVERAL SYSTEM MODULES ARE LDADED.

{ loading norafeats)
{ loading noraid)

THE REST OF THE OUTPUT IS TRACING
FIRST, THE ID RULES, NORMALISED

baserule(s,no,lroot, [cat, [bar, (211, [head, {major, (v1], _11), 2, _31,lclc
trl, _4,[21,n0,lroot, fcat, [bar, (211, {head, [major, [n1), [minor,
[agr | _S5), [case, [nominativel1d}, _6, _71), clctrl, B,[1],n0,(root
s lcat, [bar, [111, [head, [major, _91, [winor, {agr | _51 ! _18111,
1y 1201, [etr] controls ctril)

o.oo lots left out here

baserule(pp,[1,{root, [cat, Cbar, [2]], [head, [major, [p, _111, _213,
23, _41,[et 5, é,01exical, [ppll,no,[root, [cat, [bar, [lexical,
{pplll, Chead, [major, 71, _B11, _9, _181), c(_11,_12,[21,n0,[root,
[cat, (bar, [2]], (head, [major, [nl3, _1311, _14, _151}1,01)

Warning: BAR coefficient not specified - no lexical check
Involving: [root, (cat, [bar, _13, _2}, _3, {conj, {*11]

THIS ERROR AND THE FOLLOWING ONES ARE EXPECTED - THE COORDINATION RULES
DO NOT HAVE LEXICAL CATEGORIES, ETC.

baserule(conj,no,[root, [cat, [bar, _11, _21, _3, [conj, _411,0c(_ 5, é,[lexica
1, [conjll,no,lroot, [cat, [bar, [lexical, [conjlll, [head, [major,
(conj, _411, 713, _B, _91), c(_i0, 11, t,no,lroot, [cat, Cbar,
11, 123, 13, Leonj, [*1OD11,0D)

Narning: No BAR coefficient found in category
Involving: [root, _I, _2, [conj, [neither1l]

Warning: No BAR coefficient found in category
Involving: [root, _1, _2, [conj, [norlll

baserule{coord,no,(root, _1, _2, _3J,lc(_4, 5,no,no0,lroot, _6, _7, [conj,
(neither11l), c{_B,_9,no,plus,lroot, _18, _11, {conj, [norIN1,[1)

baserule(top,no,(root, [cat, [bar, [2]], (head, [sajor, [vil, _111, _2,
31, 0e(4, 5,021,n0,{root, [cat, (bar, {211, _4), (foot | nill,
D, ¢ 8, 9,021,n0,lroot, [cat, [bar, [2]], [head, [major, _18],
1131, Lfoot, lcat, Cbar, (213, _61), _121)),ID)

Evans & Gazdar -31- April 1984

Horwal i sation The ProGr* Hnu*l, Chapter 3

NOW THE METARULES ARE NCRWVALI SED
(loading noraieta)

trice output here .., -
THE 1D RULES GET EXPANDED - -
(loading expand) b

pass 1 * top TH'S TRACE ROUTPUT 1S PRODUCED FOR EACH
pass 1 - coord RULE PRODUCED BY THE EXPANSI ON PROCESS.
pass i * conj =
pass 1 - pp :
pass 1 - ap 2 FIRST OF ALL, THE IN'TIAL RULES
pass i * apj (BACKWARDS!)

pass 1 -nb 2

pass 1 - nbj

pass 1 * np.2
pass i - npj
pass 1 - vp 5
pass i - vp.4
pass 1 - vpJS -
pass 1- Vp.2 =
pass 1 * vp.1
pass 1 -s -

pass 2 - pp stil NOH THE RULES GENERATED ON THE SECOND PASS
pass 2 - nb.l relci FORMAT IS ID RULE NAHE FOLLOWED BY

pass 2 - np.l stil HETA-RULE NAHE (E.G. FIRST ONE IS A RULE
pass 2 - vp.5 inv RESULTIN6 FROM APPLYING STHI TO THE PP -
pass 2 - vp_4 stii RULE) -
pass 2 - vp_3 pass
pass 2 - vp_3 pass
pass 2 - vpj stii
pass 2 - vp.J stil

pass 2 * vp.2 pass
pass 2 - vp.2 stil

pass 3 - vp.2 stil pass PASS 3 CAN ONLY USE RULES GENERATED ON
pass 3 - vp_3 pass stil PASS 2. THE RULE 'vp_2 stil pass' IS THE
pass 3 - vp_3 pass stil RESULT OF APPLYING STHI TO THE PASS 2 RULE
pass 3 - vp_3 stil pass : 'vp.2 pass'

pass 3 - vp_3 stil pass
pass 3 * vp_3 stil pass
pass 3 - vp_3 stil pass

The output above is produced as the rules ire generated. The output
below is the real traced output as the rules are written to the data
'file. Again, since there are rather a lot, most of then have been
omitted.

Evans | Gaidar -32- April 1984 -

Nor mal i sati on The ProGaa Mnual, Chapter 3

. a couple emtted here ...

baserul e(vp.. 2,[], (root, feat, [bar, tI]], [head, (|ajor N13, 1]}, .2,
3] Ec(4, 5 (lexical, [vp_2]3notroot , (bar, [Iexi cal,
(yp 2333, [head, da|0r), 733, .8, 9]> c(11, _11,(24,no, [root,
(cat (bar [23], [head, (Mor, [i>33, 217, .18, _141>1,[]>

baser ul e(vp. . 3[] [root, [cat, [bar, MI, [head, (ujor, Iv]), .1)3, .2,
3 iic(.4,. S(Iexmal (vp_3)], no,[root, (cat, (bar [lexical,

(vp.311], [head, tigjor, . «, .711, .8, .91), (.11, [23, no; [root,
[cat, [bar, [2]], [head, taajor, [n33, .12]], . 14]) (15 16,
2]19g())3[r[oo [cat, (bar, [213, [head, tigjor, In]], A1, .

.. al the rest of the past 1 data (i.e. original rules) here ..
THE FIRST NEWRULE:

baserul etppJstilMoot, [cat, [bar, [233, [head, lujor, [p, .13],
[oot, [cat, (bar, [233, [head, (lajor, [n33, [einor, .3, [case,
*33|33] A3 0¢(.5, 6,tlexical, [pp]],no,[root, (cat,~[bar, [lexical
. [ppl 1], [head, tnjor, .73, .83], .9, _113)], 11

. a fen mre left out ..

THE VP RULES ABOVE GENERATE
THE FOLLOH N6 RULES ON PASS 2

baserul e(vp.. 3, [pass], (root, [cat, [bar, MI'], [head, [lgjor, tv]3, (linor,
.1, (vfori, [passwe] [aUX|I|ary, [-]], [inverted, [-]]]111],
.33,[¢(.4,.5,[2],opt,[root, [cat, [bar, [2]], [head Eajor,
[p, [by]}] .633, _7, 83) (9 |B[|ex1ca| [vp_3J], no, root,
[cat, [bar, (Iexical, ivp.3]]], [head, [ujor, .11], 12]], .
143), ¢(.1S,.16,(23,no, [root, (cat, (bar, (21], (head, Uajor,
in], .173], .18, .19])],.28)

baserule(vp3[pass] (root, (cat, (bar, [|}], [head, (ujor, [vJ], [einor,
_L (Won, [passive], [aUX|||ary, (-]], [inverted, [-133]}],
.2, 33((4 51[2],opt,[root, [cat, (bar, [213, (head, [ujor,
(p, (by]]], .63], .7, .83), ¢(.9,.11,[lexical, (vp.33],no,[root,
[cat, (bar, (lexical, ivp.3]]]“(head, [ujor, .111, .1233, .13,
J143), ¢(15,_11,[23,no, [root, [cat, (bar, 1211, (head, [+qor,
tn]], .173], .18, .19])],.28)

baserul e(vp. 3, (stil3,(root, (cat, (bar, [L1J], (head, dajor, [v33, .1]],
(foot, [cat, (bar, [2]], (head, [ujor, [n]3, dinor, 2, (case
Vmm, .31,(0(.4,.5,[|exica|, [vp.3]3,no, (root, (cat, (bar,
[lexical, tvp. 3333, (head, (ujor., .63, .733, .8, .93), c(.II,.I1,t23
,no,[root, [cat, [har, (233, (head, (aajor, [nil, _1233, _13, _14])]
15)

Evans i Gaidar - 33- April 1984

Normalisation The ProGram Manual, Chapter 3 =

ne gl

baserulelvp_3,[stai),lroot, [cat, [bar, [1}], [head, [major, [v1]}, _11],
[foot, (cat, {bar, [2]], Chead, [major, {n}l, [minor, _2, {case,
(*111133, _33,lc(_4, S,[lexical, [vp_311,n0,lroot, [cat, (bar,
{lexical, [vp_311), [head, [major, _&1, _711, _8, 91), c(_18,_11,[2]
o [root, [cat, [bar, [2]], [head, [major, (n1], _1211, _13, _141}],_
15}

baserule(vp_2,(pass],(root, [cat, (bar, £11], (head, [major, (v1], [minor,
_1, [vfora, [passivel, [Lauxiliary, (-11, [inverted, [-11111],
22, 31,[ct 4, 5,02),0pt,(root, (cat, (bar, [2]], (head, [major,
{p, [byll], _611, _7, BN}, ¢l 9, 18, [lexical, [vp_211,nc,lroot,
[cat, [bar, [lexical, [vp_2111, [head, [major, _111, _1211, _13,
_141)1,_15)

baserule(vp_2,[stall,[root, [cat, [bar, [1]], [head, [major, [v1l, _111, &
(foot, (cat, [bar, [21], [head, [major, [nll, [minor, _2, [case, =
(*111111, _31,(c(_4, S,Clexical, [vp_211,n0,lroot, [cat, (bar,
{lexical, [vp_2111, (head, [major, _é1, _711, _8, 911, 1@}

AND NOW THE PASS 3 RULES

baserulelvp_2,{stal, passl,(root, [cat, [bar, [11], Chead, [major, [v1}, =
[minor, _1, [viora, [passivel, [auxiliary, [-11, [inverted, [-13]1]],
{toot, [cat, [bar, [2]], Chead, [major, [p, [byll1, [einor, _2,
[case, [*11113], _31,(c(_4, 5,[1exical, [vp_21]1,n0,lroot, (cat,
[bar, [lexical, [vp_2111, [head, [major, _61, _711, _B, 91)},_18)

baserule(vp_J,[pass, stall,(root, (cat, [bar, [11], [head, (major, [v1],
{ainor, _1, (vfors, [passivel, [auxiliary, [-11, linverted, (-111111,
2, _31,(c(4, 5,02),0pt,(root, (cat, [bar, (211, [head, (major,
{p, [byl11, _633, _7, 81, ci_9,_18,[lexical, [vp_311,n0,[root,
[cat, [bar, Clexical, [vp_311], (head, (major, _113, _1213, _13,
_14h1, 15)

I 1 { P

NOW HFC PROCESSING TAKES PLACE
{ loading hic) <
baserule(s,no,(root, [cat, [bar, (211, (head, (major, [v1], [minor, [agr =
V2111, 3, _4),Qctcetrl, 5,021 n0,(root, Ccat, (har, (211,

{head, (major, [nll, [minor, (agr { _11, (case, (nominativelllll,

_6, T, clctrl,no,[1],n0,(root, [cat, (bar, (111, [head, [major,

{vll, [minor, (agr | _13 ¢ _231), B, _91)],lctr] controls ctril)

«os all ok until we reach coordinatien rules ...

Warning: HFC failed
Involving: idrule(coord)

baserule(coord,no,lroot, 1, 2, _31,[c(_ 4, S,no,no,lroot, _6, _7, [conj,
[neitherill), c(_B, %,no0,plus,(root, _18, _1i, L[conj, [nor}1D)1,0[1)

Evans & Gazdar -34- April 1984

Normalisation The ProGram Manual, Chapter 3

Warning: HFC failed
Involving: idrule(top)

baseruleftop,no,(root, [cat, [bar, [2]], Chead, [major, [v1], _111, 2,
33, 0ct 4, 5,02),n0,0root, [cat, [bar, 0211, _&1, [foot i nill,
70, ot 8, 9,{2),no,lroot, [cat, (bar, [2)], [head, [major, _18],
_1131, [foot, [cat, (bar, [21], _613, _121)1,(]) '

THE FAILURES ABOVE ARE EXPECTED - THE RULES DO NOT HAVE HEADS.
NOW ON WITH THE NEW RULES:

baseruletpp,(stall,lroot, [cat, [bar, [2]], [head, [major, [p, _113, _21],
[foot, (cat, [bar, {211, [head, [major, (nl}, [minor, _3, [case,
[*111113, _43,0c(_5,_6,[lexical, [ppll,no,lroot, {cat, [bar, [lexical
 [pplld, [head, [eajor, [p, _111, _211, _7, _81}1,.9)

«oo and so on, without any probleas ..,

yes PROLOG REPORTS THE COMMAND
SUCCESSFULLY COMPLETED

Notice that VP_3 and PASS generated two identical new rules in pass 2.
This 1is because VP_3 has two identical NP’'s for the metarule to match
against, ProGram makes no check that the rules generated are not
identical, so users should filter duplicate rules out afterwards if they
want to. Note that duplicate rules in early passes can lead to more
duplication in later ones.

Notice also that the output +from metarule expansion is rather
unreadable. It is possible to decide from the data above whether all
and only the expected rules were produced, but it is not easy. The
rule-name output helps catch gross generation errors, but for finer
testing, the parser is best used.

3.3 The Head Feature Convention

The head feature convention (HFC) operates in the wmanner specified in
GPB2. See 2.4.3 for details of how to specify a head category in an ID
rule,

The system’'s handling of HFC is not done during parsing, but as a
preprocess which takes place between normalisation (of ID rules) and
parsing. This preprocess is not incorporated into the normalisation
process because expansion using metarules (see 3.2) must normally come
between normalisation of ID rules and the HFC processing. Thus the

Evars & Gazdar -35- April 1984

Normalisation The ProGrawm Manual, Chapter 3

normal sequence of processing required is:

(without metarules) (with metarules)

ID rules ID rules

{ norsalise { noraalise

ébfl!ﬂ 1D rules éorled 1D rules

i HFC ; expand with setarules

;D rulesready for parsing E:panded set of (noreed) ID rules
:HFC
1
iD rules ready for parsing

The primitive command for doing the head feature processing is called
HFC. It is used just like NORMID, etc. (see 3.1): it expects a file of
normalised ID rules as input, and it produces a file of normalised ID
rules with the featural consequences of the HFC incorporated. A typical
use might be:

hfc from nidrules! to nidrules2.
It does not require any other data nodules to be loaded.
The MORECOMMS 1library (see 95.5.2) provides several coamands which

combine HFC with ID rule normalisation, metarule expansion, etc.

3.4 ProGram data files

This section contains information about the data files wused by the
system - what they wmust contain, how to access them in commands, the
standard names for them, and so forth.

Most of the commands require two sorts of data - background data and
input data - and produce output data. Background data consists of
information about the grammar which is required to do the processing.
Input data is what the processing is done on. Qutput data is the result.
For example, the parser needs a grammar for background data, sentences
for input data and produces parse trees for output data. These three
sorts of data can be specified in the command using USING, FROM and TO
clauses,

J3.4.1 USING clauses

A USING clause takes the form:
using <input filed
It specifies that the <input file> given is to be wused as background

data. It causes the file to be loaded (in Prolog terms ‘reconsulted’)
before the command it is attached to is executed. For example:

Normalisation The ProGran Hanual, Chapter 3

parse using foo.

means ‘load file foo, and then parse’. Note that <input file) can be a
complex expression using THEN and SOMEQOF if the FILTER library has been
loaded (see 5.5.1). A command can enploy several USING clauses in order
to load different files. A second form of the USING clause is

using <input file> for <{data module name>

Here, the additional information is that this background data is to be
taken as the data for (data module name)>. The point of this is that each
command knows which data modules it needs, and the system maintains a
record of which data modules have been loaded. If & command is run and a
needed data module has not been loaded, the user will be prompted for a
file name for that data. By adding a FOR clause, the system is informed
that the data module given has now been loaded, and so it does not ask
for it.

For example, suppose nothing has been loaded, and we want to normalise
some ID rules. The background data for this command consists of two
sodules, FEATURES and ALIASES. Here are two alternative ways to get thenm
ioaded:

i. normid using myfeats for features using myalias for aliases.
ii. normid.

FEATURES data is now required.
Please type in data file name 7- myfeats.
ALIASEY data is now required.
Please type in data file name ?- myalias.

In (i), the data was specified in the command; in (ii), the systenm
prompted for it. Note the period after the filenames in this latter
case. Apart from in the commands themselves this is the only place where
a period is required.

Now consider the following:
iii. normid using myfeats for features using myalias,

ALIASES data is now required.
Please type in data file name ?-

Despite the fact that alias data was loaded in the command, the systen
was not told that it was the alias data, so it asked for it anyway. I+t
this happens, or if, in general, you do not want to specify data for a
given module, type NONE instead of the file nane,

USING clauses without a FOR can be used to load nonstandard data modules
(see 5.5.3 +for an example) and also for reloading data modules. It is
not necessary to tell the system that a data module is being loaded 1if
it thinks it is already loaded.

Evans & Gazdar ~37- April 1964

Normalisation The ProGraw Manual, Chapter 3

3.4.2 FROM clauses

A FROM clause takes the form:
from <{input file>

The clause specifies the source of input data for the command. As with
USING clauses, <input +file> may include THEN and SOMEOF aperations.
Neremally, there is only one FROM clause in a command (if mpore than one
is present, then only the leftmost applies), I¢ there is no FROM clause,
input is expected from the terminal. That is, the user is expected to
type the data for the command in, using the correct syntax, terminated
by a periocd, when promspted. To end the input data type

end.

Examples of FROM clauses:

i, parse from sentt.

ii. normid from idrulesi then idrules?2 using myfeats for features.
In (i), the parser gets its sentences from the file SENT!, and trees are
displayed on the teraminal. In (ii), ID rules are taken from IDRULES! and
then from IDRULES2, and the data module MYFEATS is used for the
features. If aliases have not been lpaded already, the system will

prompt,

J3.4.3 70 clauses

A TO clause takes the form:

to <(file name>
The clause specifies where the output data is to be put. The <(file name>
must be a simple file name - THEN and SOMEOF may not be used. Tracing
still goes to the terminal. Again, there should be at wmost one TO
clause, If there is none, output is displayed on the terainal,
Examples of TO clauses:
i, normelex to nlexl,
ii. parse from senti to treesi.
In (i), input is fram the terminal (the user types in lexical rules) and
the normalised versions are saved in NLEX1. In (ii), the input is from

SENT! and the output is put in TREES!. Unless tracing is on, nothing
will happen at the terminal at all.

Evans & Gazdar -38- Aoril} 1984

Kormalisation The ProGran Kanual, Chapter 3

3.5 Data modules required by commands

The following table gives the name, contents and standard file name of
the various data wmodules wused as input and background data by systen
commands. The standard file names are those assumed by the high level
commands in the MORECOMMS library (see 5.5.2).

Module Standard nase Contents

features features feature syntax specification
aliases alaises feature aliases specification
idrules idrules ID rule data

setarules setarules Meta-rule data

lexicon lexicon lexrule data

lprules Ip 1p rule data

fcd $cd fcd data

fcr fer fcr data

rac rac rac data

noraed idrules nidrules ID rules data (norsalised) (+ HFC if used)
noraed setarules naeta setarule data (normalised)
noraed lexrules nlexicon lexrules data (normalised)
norased lprules nlp lp rules (normalised)

noraed fcd nfcd fcd data (norsalised)

noraed fcr nfcr fcr data (normalised)

noreed rac nrac rac data (norsalised)

text {none> sentences etc.

trees {none) parse trees

The following table gives the background, input and output data modules
for the basic commands., The commands in the MORECOMMS library are
composites of these.

Coamand Background Input Output

normid features,aliases idrules noraed idrules
noraseta features,aliases setarules noraed setarules
noralex features,aliases lexrules noraed lexrules
noralp features,aliases lprules noreed lprules
norafcd features,aliases fcd noraed fcd
norefcr teatures,aliases fer noraed fcr
norarac features,aliases rac noraed rac

héc {none) noraed idrules norsed idrules
expand noraed metarules noraed idrules norsed idrules
showdata <{none) (any) <no output)
parse features, text trees

noraed idrules,
noraed lexrules,
norsed lprules,
noraed fcd,
noreed fcr,
norsed rac.

Evarns & Gazdar -39~ April 1964

Horn! i "sat ion The ProGw Manual, Chapter 3

3.6 Structure of normali»gd data records

This section contains exanples of normalised versions of each type of
data object, together with a brief explanation of the function of each
conponent. In general, intimate know edge of these objects should only
be needed as a last resort, for exanple, when errant behaviour cannot be
tracked down using the parser.

3.6.1 ID rules

An IDrule is normalised into an instance of the predicate BASERULE. For
exanple, the ID rule:

s : v<2) --> NP, VP where NP is n(2,tnoa])¢
VPish(l);
NP controls VP,

becones:

baserule(s,no,[root, teat, [bar, [211, [head, [major, [v]J, J]J, _2, _31,[c(c
trl,_4,[2],no0,[root, teat, (bar, [21], [head, tiajor, [ft]], [minor,
tagr ! J5], [case, tnominatived]]]], _6, .7]), c(ctrl,J,[I],no,[root
, [cat'[bar, [1]], [head, tiajor, _9J{" tiiinor, [agr i J) i .11111,
J1, .121)1,[Ctrl controls ctrlJ).

The components of this break down as follows (the number is the argument
position in the tern, with the value in the above example also given in
brackets):

1. (s) - the nare of the ID rule (or the original ID rule, for rules
generated with tetarules).

2. (no) - the aetarules which have been applied. NO leans Metarules
cannot be applied to this rule'. For lexical rules, this object is the
list of the nases of the metarules which have been applied to produce
this rule (initially U>.

3. ([root, teat,],_2, 31) - the normalised version of the mother
category. Note that .1, .2, etc., are Prolog's omn notation for
variables.

4. ([c(....),c(....)I> * the daughter category list - each category is
represented by a term with functor C. See belott for a description.

5. ([ctrl controls Ctrl]) - an internal structure which is used for the
CAP processing* By the time the rule is normalised, it is redundant.

The daughter category terms have functor C and five arguments as
follows: (examples from first daughter category above).

Evans & Gazdar -4§- Aoril 1984

Nornl i sation The ProGaw Manual, Chapter 3

L (ctrl) - flag used for CAP processing.

2. (.4 - flag used to tark the HEAD daughter * should be a variable
until HFC processing is done,
3. (t2D- coefficient of BARin the category.

4, (no) - the category type. The four possible values are NO (in
ordinary category), CPT (in optional category), STAR (a Kieene §
category) and PLUS (a Kl eene ¢ category),

5. ([root, (cat, ...,], .6, .7]) * thenornalised featuretree for the
category.

3.6.2 The lexicon

Lexical rules normalise into clauses for the predicate LEXRULE which
takes three arguments (see also 2.9). There are two forts - depending on
whether the rule specifies one word or several words.
The following lexical rule:
vp_I(sf) i v(B,tsing, fin]) ->- jumps, runs, lings,
normalises to:
lexrule(J,le«<vpd(sf)),troot, teat, tbar, [lexical, tvp.l]]), [head,
[aajor, [v]J, [ainor, [agr, [singular]], [vfort, [finite], [auxiliary
, M1, [inverted, I-]111111, -2, JH1-once(tetber(J,Ejutps,
runs, singsj)).

which is of the form

lexrule(W,<name of rule>;<normalised feature tree)) 5 -
once (member (N,<list of words)).

A rule with just one word, such as
pp(by) : p(0,by) ->- by.
normalises to:

lexrule(fay,lex(pp(by)),[root, [cat, [bar, [lexical, [pp]]],
[head, [tajor, [p, [bYIl], -111, .2, .31).

which is of the form:
ltxrule (<word >, <nafie of rule), Normalised feature tree)).

3.6.3 LP rules

A given linear precedence rule produces at least one clause of the
predicate LP with two arguments, both normalised feature trees. Each
instance specifies that categories matching the first argument precede
categories mtching the second argument. Note that one LP rule will in
general produce several LP clauses by itself, and mav interact with

Evans A Gazdar _ -4 - April 1984

Kormalisation The ProGram Manual, Chapter 3

other LP rules via transitivity.
The following LP rule

[root, [cat, [bar, lexicallll <<
{lroot, [cat, [bar, 1311 , [(root, [cat, Cbar, 2111}.

would produce the following two LP clauses:

lp(root, [cat, [bar, [lexical, _111, _21, _3, _41,(root, (cat, [bar, [11],
81, _&, 7D,

Ip(lroot, (cat, [bar, [lexical, _111, _21, _3, _4]1,[root, [cat, (bar, [2]],
51, _&, 7D ’

I.6.4 Metarules

A normalised metarule is an instance of the predicate METARULE with four
arguments. The following metarule:

inv: {(VP1 --> h, VP2 where VP1 is v(1,laux]l),
VP2 is v(l))

==)

§1{ --> h, 82 where St is v(2,linv]),
§2 is v(2),
St matches VP,
52 matches VP2,

normalises to the following structure:

setarule(inv,baserule(_1, 2,[root, [cat, [bar, (111, [head, [major, [v]],
[minor, _3, [vform, (¢inite), Cauxiliary, {+3), Qinverted, [+11111],
_&, _51,Lc(&, 7,[lexical, [_Bll,no,[root, [cat,lbar, {lexical,
[_811], [head, [major, 91, _1811, _11, _121), c(_13,_14,013,n0,[root
o [cat, [bar, [11], Chead, [major, [v1}, _1511, _1&, _171)],_1B),n0,ba
serule(_1,linv | _21,[root, (cat, (bar, [211, (head, [major, [v1],
[ninor, _3, (vfora, [finitel, [auriliary, {+]], [inverted, [+11111],
_4, _51,[c(_19,_20,[lexical, [_2111,n0,(root, [cat, [bar, {lexical,
[21331, (head, [eajor, _221, _2311, _24, _251), c(_26,_27,[2],n0,(ro
ot, [cat, [bar, [2]1, {head, (major, [v1], _1511, _14, _170)1,.28)).

The arguments are:
I, {inv) - the naee of the aetarule,
2. (baserule(....)) ~ the norsalised version of the first ID rule
3. (no) ~ either NO or STR(VAR} depending on whether there is a string
variable in the rule. If so, the categories it matches will be unified
with VAR when the metarule is used. This variable may also appear in the

daughter list of the second baserule,
4. (baserule(.,..)) - the normalised version of the second ID rule.

Evans & Gazdar -42- April 1984

Normalisation The ProGram Manual, Chapter 3

The ID rules normalise in the same way as ordinary ID rules, except for
the first two arguments (name and metarule list), These are unified
appropriately to automatically produce the right name in any rule
generated. Similarly, any MATCHES clause will produce unifications
within the metarule. These can be detected by more than one instance of
a variable in the rule (i.e. two variables with the same number). For
example variables _15,_16,_17 appear in two places in the rule above.
The rule only applies when both instances of a given variable are the
same.

3.6.5 Feature coefficient defaults

FCD records normalise into instances of the predicate NCFD. For example:
fcd(case,[footl,acc,free).
normalises to:

nfcd(case,(root, [cat, _1, [head, _2, {minor, 3, [case ! 431 S1 1 6]
.7 81, 4,000, 9,

The arguments are:
f. (case) - the name of the feature.
2. (froot ... 1) - the path to the feature through a category (a
sinisally instantiated +feature tree identifying the given feature., The

exclusion list ([foot] in this case) is used to locate the correct path.

3. (_4) - the variable in the path that corresponds to the coefficent
being specified.

4. ([[*3]) - the lexical default value of the coefficient.
5. (_9) - the phrasal default value of the coefficient,

The default values are normalised, except in the special case FREE which
becomes a variable.

3.6.6 Feature cooccurence restrictions

.FCR's normalise to a clause for the predicate NFCR. The clause succeeds
only if the restriction is violated. For example:

fcr(major,[footl,v,minor,[footl,not(case)).

normalises to:

Evans & Gazdar -43- April 1984

Mortalisation The ProGaw Hanual; Chapter 3

nfer(J) ;- ferttstU* [root, [cat, .2, [hud, titjor, QuJ] ! .31 ! .43
I 5], not(.l «[root, [cat, .6, [head, 7, tiinor, B Iease,
j)) Ll b i J21my L

This is of the fore

nfcr(Cat) s- fcrtesUCat * Pathl, not<Cat « Path2)),!.
FCRTEST is a system predicate (in the MONITOR »odule). PATHL and PATH2
are paths leading to the feature specified (as in FCD's above), with the
coefficient filled in as specified. The -equalities (unifications)
succeed if the CAT has the coefficient given. NOT is inserted if it is
present in the original FCR, to negate the condition.

3.6.7 Root admissibilitv conditions

RAC s behave like FCR's - they generate clauses that «ust fail. The
clauses contain paths as above. The exanple is the special case UNSPEC,
which nay also be used wth FCR's.

rac(case, [foot], not(unspec)).
normal i ses tot |

nrac(J) J- not (not (1 >[root, [cat, .2, [head, .3, [ainor, .4, [cast,
unspec] i 511 JI 1731 J])) , L

The general form is
nrac(Cat) ?- not(Cat * Path),!,

with possibly an extra NOT thrown in for negation.

Evans & Gaidar -44- April 1984

R

LR I 8 B

SRR R B

H1§itd

IEL:M:.__.E_. §.._! R SN {1 R S TR T 3 N i;;i_.;-il_;_:"l.__

Aavdids 4 E O REpEI B

49 o The FParser

The parsing module of Program provides the main tool for investigating
grammars., The basic function of the parser is to actept phrases of the
language (i.e. strings of words which occur in the 1lexical rules) and
attempt to parse them according to the grammar specified. The basic
command to invoke the parser is ‘parse’ and, as with the normalisation
commands, input and output files may be specified. The input consists of
strings of words separated by spaces and terninated by end-of-line. The
output depends on the setting of the switch SHOW (see chapter S5). 14
SHOW is OFF, the output is the raw Prolog representation of the parse
tree (which can be read back in if desired, e.g. for use with
‘showdata’). If SHOW is ON, then the output employs an interactive
display mechanism which allows the user to examine the tree (note: since
it is interactive, output should be to the terminal whenever SHOW is
ON). By wusing TRACE_QOUT, with SHOW off, the user can examine and save
the parse tree if they desire.

Examples of calling parse:
parse.

will display input and output on the terminaly
show on, parse,

will display input and output on the terminal, and provide an
interactive display of the parse trees;

trace_out on.
show off.
parse from data to trees.

will parse the sentences to be found in a file called DATA, display the
resulting parse trees, and save these parse trees in a file called
TREES.

The parser needs several data files to be loaded (ID rules, lexicon,
etc.) before it will run, It will ask for these if they are not already
loaded or specified in a USING clause.

The parser has its own special data reading routine, which means you do
not have to worry about commas, periods, upper case letters, etc., - you
just type the sentence as normal. However, this means that the filter
options - SOMEOF and THEN - (see chapter 5) cannot be used with parser
input.

4.1 Parsing modes
The parser aoperates in three distinct modes, which are described below.

Initially, the parser 1is in AUTO mode, but the mode may be changed by
giving one of the mode switching commands:

Evans & Gazdar -45- April 1584

The Parser The ProGram Hanual, Chapter 4

control on.
monitor on.
auto on.

This should be done before running the parser (although it is possible
to switch mode inside the parser, when in monitor or control modes).

The difference between the modes lies in how the parser makes its
decisions during parsing. For a complete understanding of the parser’s
behaviour, it is necessary to understand Prolog's backtracking search
strategy (for those interested, see 4.4, below). However, the brief
discussion that follows should be sufficient for most wusers of the
systeas.

At any point in the parsing process, the parser has a sequence of
syntactic categories which span the sentence, or part of the sentence,
it has to find an ID rule which combines some of these categories into
one larger category. There may be several ways to do this, using
different ID rules and different gqroups of the categories. 1In the
process of searching for all parses, the parser must try all possible
ways. Some of them lead to dead ends, perhaps because the parser ends up
with only two categories which span the whole sentence but which cannot
be combined (a successful parse is one where there is only one cateqory
left, spanning the whole sentence - the root of the parse tree). So, at
any point there are two things the parser can do: try to find a new way
to combine categories, or decide that it is a dead end and go back to
the decision before and try to find a new way there (that is what 1is
called ‘'backtracking’'). The different modes allow different levels of
control over the choices made and decisions about backtracking.

4.1.1 AUTO mode

In auto mode, the parser runs completely automatically. The only control
over the parsing operation is choosing whether you want only the first
parse, or all parses (the ONEPARSE switch - see below). The parsing
process can be watched by setting the WATCH switch (see below), but it
cannot be controlled. If SHOW or TRACE_OUT is selected, then the user
gets the chance to examine each tree as it is produced.

4.1.2 MONITOR mode

" In monitor mode, the parser reports each decision it makes to the user.
There are two sorts of decision - choosing a lexical category for a word
and choosing an ID rule to apply. In each case the parser makes sure the
choice 1is applicable first and then reports the name of the rule (ID or
lexical) chosen. -

Monitor mode can be used in two ways, controlled by the CHECK switch.
I+ CHECK is on (as it is initially), then atter reporting the choice,
the user is asked if it is acceptable. If the user says yes, the parser
continues, if no, then it looks for another acceptable choice. If there
isn‘t another one it backtracks to the decision before. Normal
exhaustive search for all parses involves trying all acceptable choices
at each stage, and by rejecting an acceptable choice in this way, the
user can prevent the parser from doing work that would, for instance,
lead to parses already known to be correct. The user can thus qguickly
force the parser to explore the possibility of particular analyses.

Evans & Gazdar -46- April 1984

The Parser The ProGrawm HManual, Chapter 4

I+ CHECK is off, the parser does not ask the user at each stage, and
monitor mode simply provides a more detailed trace of the parser’s
operation than when running with WATCH on alone.

4.1.3 CONTROL mode

In monitor mode, the parser processes until it reaches a decision which
can be used (e.g. an ID rule which matches the categories available). In
control mode, the user actually tells the parser which rule to try.
Each time the parser reaches a choice point, for example, which ID rule
to try, it asks the user for the name of an ID rule. It then attempts to
use the rule specified. If it succeeds, then parsing continues on to the
next choice point, if it fails, then failure is reported, together with
the reason for +failure, when it is known (for example, failure of the
Foot Feature Principle, or default checking, etc.) and the user is asked
to specity another ID rule. Alternatively the user can say ‘no more
possibilities’ forcing the parser to backtrack to the choice before.

When the user specifies a name of a rule, the name does not have to be
exact. The name of a lexical rule or ID rule can be a simple word, or a
complex term (see chapter 2). In control mode, the name specified by the
user can be the whole name, or the functor of the name. This means that
the name can sometimes match more than one rule. the system will try
each in turn, but before it does, the user is told which one it is
using, I the CHECK flag is on, the user may reject the selection if
desired.

See below for examples of the different modes in operation, and the
printout produced by each of thenm.

4.2 The WATCH switch

In monitor and control modes, the parser displays the categories it is
currently working on - a collection of categories which spans a right
subsequence of the input string (the ‘current segment '), This
information is usually sufficient for the user to keep track of what is
gqoing on., The WATCH switch causes the parser to display the coaplete
partial trees after each scan, rather than just the names of the root
nodes. WATCH works in all modes.

4,3 Summary of the garéind switches

The following switches are relevant to the parser:
AUTO, MONITOR, CONTROL change the parse sode.

DNEPARSE when ON, stop after the first parse,
when OFF look for ALL parses.

SHOW use the interactive tree-displaying
routines for each successful parse.

Evans & Gazdar -47- April 1984

The Parser The ProGram Manual, Chapter 4

TRACE_DUT write data norsally and also SHOW it
on the screen,

CHECK controls whether the user can check
choices aade by the parser,

WATCH when ON, the parser displays partial
trees between passes.

4.4 Qutline of the parsing algorithm

This section contains a brief description of the parsing algorithm.
This algorithm is designed specifically for ease of use in the ProGranm
system. It is not intended as an efficient free-standing parser for GPSE
grammars. Understanding the algorithm is not a prerequisite for using
the system, but may be of interest to those wishing to wunderstand the
workings of the system, modify it, etc. It assumes a fair knowledge of
the workings of Prolog.

The algorithm is presented as a schema for the wmain predicates in a
Prolog implementation.

FIND_PARSE is the main parsing predicate. 6iven a list of words as its
first argument, it returns a list of parse trees spanning all the words,
Backtracking produces alternatives. A valid parse is one where the
output list of trees has only one meamber.

find_parse((1,(1).
find_parse({WordiWords]l,[NewTree!/RemTrees]) 1-
/% parse the tail #/
find_parse(Words,0ldTrees),
/% laok up a category for the head #/
lexcat (Word,LexTree),
/% try to combine new cat with the rest #/
tryrule(LexTree,0ldTrees ,NenTree,RenTrees).

TRYRULE tries to combines the new tree (Tree) with a leading sublist of
the old trees (DldTrees), giving a new resulting tree (ResTree) and the
remaining old trees (ResTrees), If it succeeds, it will try again on the
resulting tree. I+ not, it just leaves the tree alone. (Hence the
parser produces one big tree before several little ones).

tryrule(Tree,0ldTrees,ResTree,ResTrees) :-
/% apply @ rule, giving a new tree and
sone of the old ones left over #/
rulefor{(Tree!0ldTrees]) ,NewTree,RenTrees),
/% combine the new tree with the remainder to get result
tryrule(NewTree,RemTrees,ResTree,ResTrees).
tryrule(7,0,7,0).
/% no rule applies, results=inputs #/

Evars & Gazdar -48- April 1984

e

T

TR T

B

The Parser The ProGram Manual, Chapter 4

The predicate LEXCAT returns a parse tree for the word it is given -
i.e. a tree whose root is the appropriate syntactic category and whose
substructure is whatever is desired (in Probram, simply a leaf
consisting of the word itself). Backtracking produces alternatives.

The predicate RULEFOR takes a list of trees and tries to find a rule
which will consume a leading (LEFTMOST) sublist, returning the new tree
constructed and the remaining trees of the original 1list. It 1is here
that all the principles, linear precedence, default setting, etc., get
done. Backtracking produces alternatives.

Predicates LEXCAT and RULEFOR contain all the mode-dependent processing.
The WATCH information is printed out immediately before RULEFOR in
TRYRULE (although, for clarity, the predicate has been omitted above).

4.5 Using the system

This section contains an example of a typical session using the Profraa
system to explore the demonstration grammar. It assumes that the grammar
data is syntactically correct, but not normalised. Note that the
demonstration gqrammar is less than descriptively adequate, even for the
snall subset of English that it purports to cover. Some of its failings
will be revealed and discussed below.

We shall start inside ProbGram, with the DEMO directory specified as the
gramear directory: either by being in the demo directory when ProGras
was started up, or by using customised predicates to set the grammar
directory (e.g., in POPLOG, the predicate GRAMMAR).

?- nora_graa. FIRST OF ALL, NORMALISE THE
BRANMAR WITHOUT METARULE
EXPANSION - TO TEST OUT THE
BASIC PHRASES, ETC.

yes

7- show on. SWITCH SHOW ON - INITIALLY WE
WANT TO LOOK AT THE TREES,
NOT SAVE THEM.

SHOW is on.

yes

?- go. NOW LOAD THE GRAMMAR AND START

PARSING (IN AUTONATIC MODE)

We start with some simple phrases. Note that automatic exaustive parsing
is quite slow, 80 it is best to try seall things out first, to get some
idea of what won't go wrong in bigger phrases. The actual trees are not
included here, but the following table indicates the number of parses
obtained.

Evans & Gazdar -49-~ April 1984

The Parser The ProGan Mnual, Chapter 4

ki 2 PARSES - AS NON CR AS NP

i: sees bert i PARSE AS VP ONLY

I bert sees NO PARSES - 'bert' IS ACCUSATIVE

I kii sees bert 1 PARSE

it sees bert kit NO PARSES - VP-NP LP RELATION IS NOT AVAI LABLE
Is ini book 1 PARSE - PP's ARE (K

s atinini book 1 PARSE

Is sees i i*nin a hook 2 PARSES, PP MODIFIES NP CR VP

Is neither kit nor sindy 3 PARSES

is neither bert nor bill 3 PARSES

Because ' Kira','sandy' etc. are ambiguous hetween noun and noun-phrase,
in the demonstration grammar, there are three possible parses here.

IS neither sees hert nor |oves hill

1 PARE
i neither sees nor |oves bert 1 PARSE

But there is no conparable ambiguity here, so only a single parse
results.

So the basic phrases seem sound - obviously we could test some more, and
perhaps a good way of checking out a lot is to run the system as a batch
job, saving the trees by giving the command:

go to trees.

to get the data saved in the file ‘'trees'. Later, the data can be
examned with the commands

showdata from trees.

Having decided the basic phrases are sound, we can continue by expanding
the grammar with the metarules and doing some more conplicated things:

2- nora_aeti. NORVALI SE GRUVMAR ABAI N, | NCLUDING
VETARWLES THS TIHE. THS IS A BIT
WASTEFUL, SINCE NANY COPONENTS ARE

Jes UNCHANGED, BUT 1T 1S CONVEN ENT

% Q0. PARSE AGAIN N AUTQVATI C NCDE
Parsing in AUTO | ode.

is kit is seen AN [NNOCUOUS ENOUGH SENTENCE BUT. ..

Here we get two problems - firstly, ProGram produces three parses and
secondly it takes a very long time to do it. We shall tackle the first
one first. The problem is with the VP ‘'is seen'. The three parses
produced involve (i) a VP, (ii) a VPIPP (this is correct - the optional
PPCby) has been slashed) and (H) a VP/NP. This latter case s
unexpected. Examining the feature trees for the categories reveals that
‘seen' has been parsed as a VP/NP derived from rule VP.2 (V<2) — H
N<2>>, The problem then, is that VP_2 should not produce PASSIVE VP
rules - only the metarule PASS should do that. But nothing in the rule

Evans It Gaidar - b#- April 1984

JEEV L ol BEEEHE . RHEOLEEY JERY

U O o]

LE: i

Bt b

4% ST

ELBIET

The Parser The ProGram Hanual, Chapter 4

blocks the passive feature. We should have a default for the VFORM
feature of FINITE, The FCD we require is

fcd(vform,[footl),finite,finite).

Now we could simply add this to the FCD file of the demonstration
grammar and renoresalise the FCD's. Another way to do it, and one which
does not disturb the existing demonstration grasmar too auch, is to
create a new file with ¢this FCD in it and then add it to the given
FCD's. How the new file is created depends on the particular coaputer
environment (see chapter § for details). We shall assume that a new file
NEWFCD has been created with the FCD above in it. The following commands
will incorporate the new FCD into the grammar that the parser is using:

7= norafcd froe newfcd to newfcd2.
THIS COMMAND NORMALISES THE NEW FCD.
ASSUNING THE GRAMMAR IS ALREADY LOADED,
WE WILL ONLY BE ASKED FOR THE ALIASES DATA.
ALIASES data is now required.

Please type in data file nase
s aliases. NE TYPE ‘aliases.’
yes

7- go using nfcd then newfcdZ.
THIS COMMAND RESTARTS PARSING BUT USING
nfcd AND newfcd2 AS FCD DATA,

Now, ‘kim is seen’ will only produce two parses as expected. The other
problea aentioned above is the timse. In general, automatic exhaustive
parsing with more than a few rules tends to be slow. There are several
ways to overcome this problem., First of all, avoid using words which
have aore than one lexical entry (indeed, the demonstration grasmar
deliberately has no such words) since a lot of time will be spent
checking that the second (usually inappropriate) entry cannot be wused.
Secondly, keep the phrases as short as possible - for example, once NP
syntax has been tested satisfactorily, it is often sufficient to wuse
proper names in NP positions without loss of generality. Thirdly, keep
down the nuaber of ID rules in use. It is often possible to restrict
attention to a particular subset of the rules, or to expand using only a
subset of the metarules. There are several ways of cutting out unwanted
rules, as briefly described below:

(i) Organise the ID rules into separate data files, rather than all in
one, Thus there aay be a file of VP rules, a file of NP rules, etc.
These can be nornalised separately and then combined as desired (using
THEN in a USING clause), or combined (using THEN) before normalising
into one file.

(ii) Filter the ID rules (or the normalised ID rules) wusing a SOMEDF
clause. The command:

parse using someof nidrules for norsed idrules.

Evans & Gazdar -51- April 1984

The Parser The ProGram Manual, Chapter 4

will prompt the user to accept or reject each normed ID rule in turn,
It is sometimes worth filtering a file and simply saving the result for
later use. COPYDATA can be used for this. The command: ’

copydata from someof nidrules to nidrules2.

will let you save a subset of the normed ID rules in the new file

NIDRULES2. This is also a good way of deleting accidental duplicate
rules generated by the metarules., See chapter 5 for more details.

(iii) Metarules can be split similarly, but remember that, to ensure
that all the appropriate rules are generated, expansion must use all the
metarules that are to be used. That is, you may not expand with one set,
and then with another and simply combine the result. There are usually
only a few metarules and it is often more opractical to siaply +filter
theem as in (ii) above. Either filter the metarules in an expand command:

expand from idrules using someof metarules.

or filter the set of normalised expanded idrules, removing any produced
by a given metarule. '

In our case we can easily reduce the load for testing passives. Once the
grammar has been loaded once (after the initial LOAD or GO command), we
can give the following command to filter the idrules:

go using someof nidrules.

with the follbuinq results:

idrulel(s) Is y FILTER PROMPTS WITH FIRST RULE - ACCEPT IT
idrule{lvp_13) it o REJECT SECOND RULE (INTRANSITIVES)

idrule(lvp_21) fzy ACCEPT

idruleflvp 31} i n REJECT

idrulel(lvp_4]) it n REJECT

idrule{fvp_51) is y ACCEPT

idruletvp pp} 11 y ACCEPT (GIVES US THREE PARSES FOR ‘is seen by bert’)
idrule(lnp_11) i n REJECT (DNLY PROPER NOUNS FOR NOW)

idrule({np_2)) 11 ACCEPT
idrule({nb_11) i: skipto pp

SKIP ON TO THE PP RULE
idrule(nb_2) idrule(lap_1]1) idruletlap_2))

THESE ARE THE RULES SKIPPED

~

idrule(coord) i: n
idruleiconj) 13 n DON'T WANT COORDINATION STUFF
idrule(top) i: vy BUT KEEP TOPICALISATION

idrule(lpp, stall) iz y

WANT RESULTS OF stal AND pass FOR pp AND vp 2
idrule({nb_1, relcld) i: skipto vp_2 pass

HERE WE SPECIFY METARULE HISTORY T0O

idrule(lnp_1, stall) idrule(lvp_5, invl) idrule(lvp_4, stall) idrule(lvp_3,

passl) idrule(lvp_3, passl) idrulef(lvp_3, stall) idrule({vp 3,
statl}

Evans & Gazdar -52~ Aoril 1984

The Parser The ProGram Manual, Chapter 4

idrule(lvp_2, stald) i1y
idrulellvp_2, stal, passl) i1y
idrule(lvp_3, pass, stall) i: end

WE DON'T WANT ANYTHING ELSE

Parsing in AUTD mode.

i READY TO PARSE WITH ID RULES SELECTED ABOVE

There are other ways to overcome the speed problem in some cases. If the
required parse is known to be the first one, then switching ONEPARSE on
will stop the subsequent exhaustive search. Alternatively, don‘'t wuse
automatic wmode., For example, in monitor mode we can tell the parser not
to explore a particular alternative if we wish., Consider the string ‘a
man lee sees’'. This has at least two parses - as a topicalised sentence
or as a noun phrase containing a relative clause. Automatic parsing
produces the the topicalised sentence first. The <following use of
eonitor mode (with all the ID rules loaded) forces the parser straight
to the noun phrase parse:

7= a on, TURN ON MONITOR NODE
Current sode is MONITOR

yes

7- go. START PARSING

Parsing in WONITOR mode.

{4 a san kin sees
Using lexrule vp_2(sf) for SEES
-~ 0k? (type y, ves or nothing to accept) i:y
LEXRULE vp2(sf} HAS BEEN CHOSEN -
WE ACCEPT THE CHOICE -
Current segnent: {vp_2{(sf))

Using ID rule vp_2 sta! to consume { categories.

--- 0k? (type y, yes or nothing to accept) i:y .
THE CHOICES ARE IN THE SAME ORDER AS AUTOMATIC
PARSING - WE ACCEPT ALL THE EARLY ONES

Current segment: stai(vp_2)

Leaving category vp_2 stal alane.

=== 0k? {type y, yes or nothing to accept) {:y
Using lexrule np_2(prop_noa) for KIN
--- 0k? (type y, yes or nothing to accept) isy

Current sequent: (np_2(prop_noa)} stalivp_2)

Using ID rule np_2 to consuse | categories.
=== 0k? (type y, yes or nothing to accept) liy

Current segaent: np_2 stalivp_2)

Evans & Gazdar -53- " April 1984

The Parser The ProGraw Manual, Chapter 4

Using ID rule s to consune Z categories.
--- 0k? (type y, yes or nothing to accept) i:y

Current segaent: s

Leaving category s alone.
—=- Dk? (type y, yes or nothing to accept) |

Y

Using lexrule nb_1{s) for MAN
=== 0k? (type y, yes or nothing to accept)

-
~<

Current segaent: (nb_lis)} s

Using ID rule nb_{ to consuse { categories.
-=- 0k? (type y, yes or nothing to accept) i: n

HERE WE ARE - IF WE ACCEPT THIS CHOICE,
WE BET THE INITIAL NP BUILT FIRST, AND
THEN TOPICALISATION IS USED. WE REJECT
IT, FORCING THE S/NP TO COMBINE NOW
Using ID rule nb_{ relcl to consuse 2 categories.
--- 0k? {type v, yes or nothing to accept) i:y
NOW WE CAN LET IT CONTINUE TO THE PARSE
Current segaent: relclinb_i)

Leaving category nb_{ reicl alone.
--- 0k? {type y, yes or nothing to accept) i:

Using lexrule np_l(sdet) for A
--- 0k? (type y, yes or nothing to accept) i:y

Current segaent: {np_l(sdet)} relcl(nb_1)

Using 1D rule np_1 to consuse 2 categories.
--- 0k? (type y, yes or nothing to accept) i:y

Current segsent: np_1

Leaving category np_1 alone,
--- 0k? (type y, yes or nothing to accept) !:y
THE PARSE AS AN NP:

nodeinp_1, [root, [cat, [bar, [2)], [head, [major, [nl], [minor, [agr,
[sinqular)), [case, [*111]], [foot, [cat, unspec, [head, unspec,

evo 23 LINES OMITTED HERE! ...
lconj, (*11], sees)))D) D),

NOW THE PARSER STARTS BACKTRACKING -

LOOKING FOR ALTERNATIVES TO THE CHOICES

MADE. IN THIS CASE, SINCE WE ARE HAPPY

WITH OUR PARSE, WE TELL IT TD STOP

Fvane & fRavAdar -Bda At dAMma

The Parser The ProGrawm Manual, Chapter

node(np_2,{root, [cat, {bar, [2]], [head, [major, (nl], [minor, [agr, (singula
rll, lcase, [*1111], [foot], unspecl,(node((np_2(prop_acc)},lroot,
(cat, [bar, [lexical, (np_211], [head, (major, [n}], [minor, [agr,
[singularll, (case, [*]1]1], (foot, unspec], [conj, [*111,bill1)]),

node({np_2(prop_acc)),(root, [cat, [bar, [lexical, [np_2131, [head, [major,
{nll, leinor, (agr, [singularll, [case, (*1111], unspec, unspecl,bill
)

AH! TWO PARSES AS EXPECTED
i+ sees bill TRY THE VP

node(vp_2,(root, [cat, (bar, [111, Chead, (major, [v]1, [minor, (agr, [sinqula
ril, [vfora, [finitel, [lauxiliary, (-11, (inverted, [-11111], [foot],
unspec],Cnode{vp_2(sf)},(root, (cat, [bar, [lexical, [vp_2]11,

[head, (major, [v11, (minor, [agr, {singularl], (vfora, [finitel,

fauxiliary, (-13, linverted, [-11]111, [foot, unspecl, [conj,

{*111,sees), node(np_2,{root, [cat, [bar, [21], (head, [major,

{nll, (minor, {agr, (singularll, [case, [*1111], (faot, unspecl,

{conj, (*111,{node{{np_2(prop_acc)},{root, [cat, (bar, [lexical,

[np_2111, [head, (eajor, {nll, [winor, [agr, [singularll, [case,

{*11111, (foot, unspecl, [conj, [*111,0il1) 12 1).

it end VP WAS 0K - STOP PARSING FOR NOW

yes PROLO6 SAYS ‘60 cosmand successful’

7- showdata from rac. LETS HAVE A LOOK AT THE RAC'S - MAYBE
THEY ARE BLOCKING THE OTHER PARSE OF ‘kia’

rac(bar,(foot],not (unspec))

rac(major,(foot],not {unspec))

NO - NOTHING FUNNY THERE

yes

?- ¢ on, 0K - LET'S PARSE IN CONTROL MODE TO SEE
WHAT 1S WRONG

Current aode is CONTROL

yes

7- parse. ONCE THE ORAMMAR IS LOADED, ‘parse’ AND

‘go’ ARE SYNONYNOUS.

Parsing in CONTROL mode.

it kia TRY 'kia’ ABAIN

=== LEX rule for KIN 11 b
CONTROL MDDE ASKS WHICH LEXICAL RULE WE
WANT TO USE - CAN'T REMEMBER WHAT IT IS
CALLED. PROLOG'S BREAK FACILITY ALLOWS US
T0 60 BACK TO TOP LEVEL TENPORARILY. VERY
USEFUL.

[break]

Evans & Gazdar -5K-

The Parser The ProGram Manual, Chapter 4

#3# No (more) choices for np_{
BACKTRACKING
Leaving category {(np_1(sdet)} alone.
--- Dk? (type y, yes or nothing to accept) i:

Data files closed.
$13 [execution aborted]
Setprolog

?- IF WE HAD WANTED TO STAY INSIDE THE PARSER,
REPEATED REJECTION OF RULES WOULD HAVE
EXITED AS FAST AS WAS POSSIBLE.

Finally, from the point of view of the system, CONTROL mode is fastest

since it does no searching - it just asks the user what to do. For an
example of control mode in use, see below.

4.6 Testing a grammar

This section contains an example of the parser in use as a grammar
tester. The grammar being tested is the demonstration grammar but
without any metarule expansion having been done - in the initial stages
of testing the extra rules generated by metarules are best left out,
since they slow things down a bit. The grammar bug is as follows: in
the FCD specification for CASE, the lexical and phrasal defaults are the
wrong way round. A look at the FCD data file will show how this could
easily come about - in fact, this bug, and the debugging process shown
below, genuinely occurred while testing the demonstration grammar.

Probras brassar Developsent Systes
Version 1, 29/4/84

(For help information type: help.)
?- go. LOAD UP THE GRAMMAR (ALREADY NORMALISED)
Parsing in AUTO mode. AUTO MODE IS THE DEFAULT

i+ kis sees bill TRY TO PARSE A SIMPLE SENTENCE
s kia OH DEAR - NO PARSES (SECOND PROMPT

DISPLAYED WITHOUT ANY TREES)

TRY JUST ‘kim',
node ({np_2{prop_nos)},[root, (cat, [bar, [lexical, {np_21]1, [head, (eajor,
[nl], Cainor, [agr, [singularl], [case, [nominativelllll, unspec,
unspec],kin).

THAT'S FUNNY - SHOULD BE TWO PARSES - RS
A WORD (THE ONE WE GOT) AND AS AN NP

it bill TRY 'bill" ("kia’ AND 'bill’ DIFFER IN THE
LEXICON ONLY BY CASE FEATURE)

Fvane & Gazdar -55- April 1984

The Parser The ProGat Manual, Chapter 4

?- thoNdati froa Iexicon.

HAVE A LOK AT THE LEX| CON
vp. Hsf) s v(I,tting, fin]) -> juéps, runs , 1inos
cete. . LOTS OF STUFF LEFT QUT HERE
np.2(prop_noa) t ndjsing, noal) -> kia, sandy , lee
np. 2(prop_acc) i nil,(sing, ace]) -> bill , ben, bert
. etc .. (K SO HE NEED THE NP.2 RULES
yes

277 CONTROL Z ENDS THE BREAK ...
[end break]
—LEX rule for KIH i: np.2
AND HE ARE BACK IN THE PARSE.
DON' T HAVE TO 61 VE THE FULL NAHE, IT HLL
OFFER ALL THE ALTERNATIVES (Q\LY ONE IN
~ TH'S CASE)
Located LEX rule np.2(prop_noa)
—&? (type y, yes or nothing to accept) iy
HE ACCEPT THE RULE

Qurrent segient: (tip.2(prop.noa))
- REPCRTS THE CLRRENT STATE.
NON HE NEED TO 61 VE THE NAHE OF AN ID RULE
HH CH H LL CONSUVE QLR NON - | TS CALLED
NP.2 AS HELL. _
—ID rule to consuae (np_2(prop.noa)) (at least)!: np.2

Located ID rule np.2
—Ck? (type y, yes or nothing to accept) iy
. ACCEPT I T AGAIN
turning: FCD failed.
Involving: case in [root, [cat, (bar, (lexical, [np.2]]3, [head, [sajor,
[n]], tainor, tagr, [singular]], [case, [noainativi]]]]], [foot
1], teom, [¥]]]

AHA' THAT RULE SHOULD HAVE VWORKED BUT IT
DIDN T, BECAUSE THERE IS SCHETHING VIRONG
HTH THE CASE DEFAULT IN THE NON

»<i No (tore) possible Batches for rule. o
NO OTHER HAY FQR THE RULE TO HORK

H 1D rule np_2 not applicable.
6/ VE P ON THE RULE

Evans 4 Cazdar -57- April 1984

The Parser The ProGram Manual, Chapter 4 &

Current segaent: {np_2(prop_nos))
BACK TO WHERE WE CHOSE THAT ID RULE '
NO OTHERS TO TRY, 50 QuliT

=== ID rule to consuse {np_2{prop_nca)} (at least) !1 g

Data files closed.

333 (execution aborted]

Setprolog

yes 0K, SO THE FCD'S MUST BE WRONG -
?- showdata from fcd. LET US HAVE A LOOK

fcd(case,[foot],acc,free)
fcdlinverted,(footl,- inverted,free)
fed(auxiliary,{foot],~ auxiliary,free)
yes

g e

THEY LOOK ALRIGHT. case IS THE PROBLEM, =
LET'S JUST CHECK OUT THE HELP FILE

7= help grasmars.

{LDOK AT #GRANMARS)
AH! THE case COEFFICIENTS ARE THE WRONG WAY
ROUND, 1T SHOULD BE fcd{case,[foot],free,accl.
S0 IT IS TRYINE TO FORCE acc ONTO THE NOUN
BETTER FIX THAT e

{EDIT THE FCD FILE> =

?- norafcd froa fcd to nfcd. =
NON RENORMALISE THE FCD'S

{ loading noramark)

{ loading norafeats) =
THE PARSER HAS LOADED THE FEATURES, =
BUT NOT THE ALIASES =

ALTASES data is now required.

Please type in data file nase i: aliases.

yes
?7- go using nfcd. RESTART, BUT LOAD THE NEW nfcd FILE FIRST

Parsing in CONTROL aode. =

STILL IN CONTROL MODE
i1 kin :
=~~~ LEX rule for KIN {: np_2 =
Located LEX rule np_2(prop pe;d =

-=- 0k? (type y, yes or nothing to accept) l:y

Current segaent: {np_2{prop_noa})}

=== ID rule to consuse (np_2(prop_noa!} (at least)i: np_2
Located ID rule np_2

--- 0k? {type y, yes or nothing to accept) i1y

AS BEFORE UP TO NOW - THIS TIME IT WORKS
Current segaents np_2

Evans & Gazdar -8R

The Parser The ProGran Manual, Chapter ¢4

NO NEED FOR ANY MORE - QUIT
=== 1D rule to consume np_2 (at least)i: g
Data files closed.
313 [execution aborted]
Setprolog

?- a on. BACK TO AUTOMATIC MODE

Current sode is AUTO
yes

?' 900
Parsing in AUTD sode.

{t kia sees bill TRY THE SENTENCE AGAIN

node(s,{root, (cat, {bar, {211, Chead, [major, {vi], [minor, [agr, [singularl]
, (vfora, (finite], [auxiliary, (-11, (inverted, (-111111, [footl,
unspecl,[node(np_2,lroot, [cat, [bar, {211, Chead, [major, [nl],
{ainor, [agr, [singular]), [case, [nosinativelllll, [foot, unspec],
{conj, {*11],[node({np_2(prop_noa!},lroot, [cat, [bar, [lexical,
{np_2111, [head, [major, [nll, [minor, Cagr, (sinquiarll, [case,
[nosinativel1}l], [foot, unspec], [conj, [*}11,kin)]), nodelvp_2,iroo
t, Ccat, [bar, [1]), Lhead, [major, [v1l, [minor, [agr, [singularll,
[vfors, [finitel, Lauxiliary, [-1], [inverted, [-1111]1, [foot,
unspec], [conj, [*311,[node({vp_2(sf)},(root, [cat, [bar, [lexical,
[vp_2113, [head, (major, [v1l, [minor, [agr, [sinqular]l, [vforas,
(finitel, {auxiliary, [-31, (inverted, [-111]11, [foot, unspec],
fconj, [*1)],sees}, node(np_2,[root, [cat, [bar, [2]], [head,

{major, (nl], (einor, lagr, (singuiarl}l, [case, {*1111], [foot,
unspec], [conj, (*13),[node({np_2(prop_acc)},(root, [cat, [bar,
[lexical, [np_211), [head, [major, [nll, Uminor, [agr, [singularli,
{case, [*1])1], [foot, unspec], [conj, [*111,bil1}0100D),

i end IT WORKED - EYACTLY DNE PARSE. STOP
PARSING

yes

?7- end, END SESSION

Exiting ProGran.

4.7 Displaying parse trees

In normal use, without the SHOW switch on, the parser produces

trees which are quite unreadable. For example, the tree for

parse

‘kim sees

P .Y

The Parser The ProGra* Manual, Chapter 4

bill ' looks like this: +-'~
node(s,[root, [cat, (bar, (211, [head, [eajor, [VvI], [einor, [agr, [singular]] ?:‘.
¢ [vfora, [finite], [auxiliary, [-]], [inverted, [-]]]»], [foot], i
unspec],[node(np_2,[root, [cat, [bar, [2]], (head, [8ajor; [n]],

[sinor, [agr, [singular]], [case, [noeinativel]]]], [foot, unspec],)
[conj, [*]]].[node({npj(prop_noa)>,[root, [cat, [bar, [lexical,

[np_2]1d, [head, [aajor, [ft]], [amor, [agr, [singular]], [case, :w
[nosinative]]}]], [foot, unspec], [conj, [*]]].kie)]), node(vp_2,[roo =
t, [cat, [bar, [1]], [head, iiajor, [vli, [ithor, [agr, [singular]], -

[vfora, [finite], [auxiliary, [-]], [inverted, [-]1]111]. [foot, o
unspec], [conj, [*]]],[node({vp_2(sf}},[root, [cat, [bar, [lexical, E
[vp_2]J], [head, [aajor, tv]], [iinor, [agr, [singular]], [vfort, "_'T_
[finite], [auxiliary, [-]], [inverted, [-]]1]]]], [foot, unspec],
[conj, [*]]].sees), node(np.2,[root, [cat, [bar, [2]], [head, =&
[sajor, [nil, [sinor, [agr, [singular]], [case, [*]]]]}, [foot,

unspec}, Iconj, [*]]].[node({np_2(prop.acc)},[root, [cat, [bar,
[lexical, [np.2]]], [head, Cigjor, [n]Jd, ttinor, [agr, [singular]],
[case, ["]111]¢ [foot, unspec], [conj, [*]]],bil])]D]).

This is, of course, the internal representation of the tree, and for :
«ost people it has only two uses: =

(i) it is the for«t that the tree is saved in a data file in, for exaaple =
the coAnand

parse to treedat.

will store trees like this. They can then be viewed at leisure using

showdata fro« treedat.
(without needing the SHOW switch on -see below).

(ii) One can count how aany of then there are,

to see if the right
number of parses has been found.

The foraat of a tree is actually very siaple. A tree is a ten of the
fora:

node(N,N,D)

where N is the naae of the node (the full name, without truncation), M
is the feature tree for the ©other and D is a list of the daughter
subtrees (also instances of NODE), in left-right order, except when the
node is lexical, in which case Dis the word itself.

A itore readable interactive tree-display routine is provided by the
FILTER library, and can be selected by swtching SHON on (see chapter

5). It is also used by the trace printer (when TRACE.OUT is on) and the
command SHOWDATA.

Wth the interactive display routine selected, the parse tree

above is
di spl ayed as follows:

Fune® M £awd--

The Parser The ProGra» Manual, Chapter 4

i1t s

2t . np

3: . . {np(prop)?

s o o kim

4: . vp

S5: . . A{vpisf))

« + . SEES

6: . . np

7: . . . A{nplprop)}
« o+ o« o« bill

The tree itself is in 'indentation format’ - for each tree, the root
node name is printed, followed by the subtrees (also in indentation
format) indented several spaces. The dots are to help keep track of the
indentation. The labels of the nodes are as discussed in chapter 2 -
they are the names of the ID rule applied at that node, but anything
beyond an underline character is omitted. Thus the node labelled VP here
derives from the rule named VP_2., 1If the ¢tree had been labelled
conventionally, 1i.e. with each node labelled by the category associated
with it, then this label would be:

{root, [cat, [bar, 11, [head,
{major, vl,Iminor,337, _1, _21

Notice also that names of LEXICAL rules are enclosed in braces {)} to
distinguish them. The node-naming conventions used by ProGram allow the
basic parse tree to be readable, and give the grammar writer control
over the labels used.

To view the internal structure of a category, one uses the numbers given
at the start of each line (except lines for word-nodes, which have no
internal structure). Once the main tree has been displayed, ProGram will
prompt the user as follows:

Examine option i:

There are several things that can be typed - nothing {i.e. just
{return)) emeans ’'finished examining tree - go back to parser’', T means
‘display the main tree again’ and a number means 'display the internal
category structure of this node (as numbered in the main tree)’. As
always, one can also type HELP.

In this case, typing ‘7’ would result in the following tree being
displayed:

The Parser The ProGaw Hanual, Chapter 4

r oot
. cat
e . har
. . lexica
o o . o np_2
. head
» s« ftajor
D . . n ",”
« + s ejnor -
agr £
S Singul ar -
s+ » s+« cCase
f oot -
¢ unspec .
conl
This is the feature tree for the noun ‘"bill" (using lexical rule -

NP_2(PRQP_ACC) which get displayed as (NP2(PROP)}). The format is the =
same, except that feature names are used to label nodes, and no nuebers
are given, since there is no internal structure to these node |abels*

The user can now select another node or the main tree etc. Node 1 (the S
node) |ooks like this:

Examine option is 1 =

r oot e
. cat "
.« bar
L] 41 . 2
« .+ head)
« « . myjor .
Y &=
+ « mnor -
e si ngul ar
[] L] L] 3 Vf OI' m ..'_
. e finite
: auxiliary
e o« . . . nverted -
. foot
unspec

4.8 Th» SHOWTREE package

Users of the system under POPLO6 can take advantage of a prettier ”
display routine (for certain VDUs only) which mkes use of the POP1i '
parse tree display library (the SHOMREE |ibrary). By loading the custom
nmodul e SHOWREE after the FILTER [library, the display predicate is
redefined to display a tree as follows:

The Parser The ProGram Manual, Chapter 4

s
A ‘ 1
np vp
[]
{np (prop)}| {vp(sf)) np
klm sles Thp (prop)

blll

The labelling conventions for nodes are as above. The tree is displayed
using the POPLOG screen editor VED and most of the keys on the keyboard
are redefined or disabled. The new functions for keys are given in your
LOCAL help +file. They permit the user to move the cursor from node to
node in the tree. A further key (the VED PUSH key) causes the category
structure tree of the current node to be displayed. For example (the
node for ‘bill’ again):

root
]
[I 1
cat foot conj
, !) I
bar head unspec ~
. I
[1
lexical major minor
)]
[]
np_2 n agr case
singul ar ~

The VED POP key restores the main tree again, and the user can jump
between main tree and feature trees at will. The VED END-OF-FILE key
returns control to the parser.

Evans

*

Gazdar

Apri

1984

P
o
%
=

e

CH I

ERE M I H A

o

A T

i

S.1 Summary of system commands

This section summarises the commands available in the basic

Further commands are discussed in section 5.5.2, below,

NORMID norsalise ID rules (see chapter 3).

NORMLEX noraalise lexicon (see chapter 3).

NORMMETA norsalise metarules (see chapter 3).

NORMFCD norsalise FCD data (see chapter 3).

NORMFCR noraalise FCR data (see chapter 3),

NORMRAC norsalise RAC data (see chapter 3).

NORKLP norsalise LP data (see chapter 3).

EXPAND expand ID rules using setarules (see chapter 3),
PARSE run parser (see chapter 4),

STATUS display switch settings (see section 5.4},

S ON turn switch/switches S on (see section 5.4).

S OFF turn switch/switches § off (see section 5.4).

LIB X load library module X (see section 5.5).

HELP display general help inforsation {(see section 5.2).
HELP X display help inforsation on topic X (see section 5.2},
D show identification string. ‘
FORBET ALL forget all data sodules, ‘

END quit Probram, return to operating systes.

SHOWDATA - display the data in a data file using the SHOW display option.
Data is read from the input and displayed as though the SHOW
switch were on, Particularly useful tor looking at stored parse
trees,

COPYDATA - copy data from one file to another. This coasand does nothing
to the data at all, but can sosetises be useful with the BOMEOF
filter (see 5.5.1), '

ID X - set identification string to X, The identification string is
printed in the header for all data files created by the systes.
Typical inforsation might bg date, user’'s namse, etc.

CLOSE - close all data files, Occasionally, due to syntax errors, etc.,
a data file say be left in an open state and reading thus comaences
half way through, This cossand ensures all data files are closed,

FORBET X - forget data sodule X. This comsand causes the systea 'to
torget that the specified module has been loaded, so it will require
it to be reloaded before attempting to use data from that sodule.

_systen,

The Syste* The ProGa* tfanuai, Chapter 5

5.2 Help facilities

Information and help w'th ProGram cones in two torus. Host of the
information about wusing the system is contained in help files. If the
system is running under PDPLOG, the help files will probably be online
and accessible in the same way as the POPLOG help files. Throughout the
help files, references to other help files are preceded by ',

The system also has a limted built-in help facility for access while in

use. This provides short explanations and references to the help files.
The command which accesses this information is

help <keyword>

where <keyword> is the topic required. If the keyword is omtted,
general help information is printed. Note the period at the end of the

command. A fair range of keywords related to the system can be used
and the command

hel p index,
gives you a list of the keywords covered*

In nmost cases where the system requires the user to type something (e.g.
.a data module name, a parsing decision, etc.), the user may also type
HELP or HELP <keyword> this time without a period (periods are only
required at the conmand level). If no keyword is specified, help about
what you can do at this point in the processing is provided. Thus, for

exanple, to get the general information about help files found above
you would have to type HELP HELP.

Thus the general rule is 'if in doubt, type HELP, and if that doesn't
work, then type HELP followed by a period.'

There are also a group of help files which contain exanple of ProGram in
use. Host of the examples assume the Prolog-only version of the system

but there are also a few which discuss some of the libraries in the
POPLO6 version.
All the exanmples are based on the demonstration grammar which is to be

found in chapter 6. See your #LOCAL help file for ‘details of the actual
location of the demonstration grammar on your machine

The exanple files all follow the tame general format - they consist of
exanpl es of termnal interaction wth ProGram interspersed wth
comments. In general, large block comments are just ordinary text while
short comments actually wthin, output etc., are in upper case. The
sample output text is as produced by the system running under UNIX

POPLOG, with the demonstration grammar for data. A few extra blank [ines
have also been inserted for clarity.

ELRRTHTIN: B Tt F A I

B8

HE

The Systen The ProGram Manual, Chapter §

The example help files are:

EBDATA what the noraalised data looks like.
EGEXPAND expanding using the setarules.

EGNORN data norasalisation exasples.

EGPARSE typical interaction with the systes

EBTEST using the parser to find a bug.

EGTREE various ways of displaying the parse trees,

S.3 Errors, causes and corrections

When using ProBram, various saorts of errors and warning messages may be
encountered. This section attempts to explain and diagnose some of them.

First of all, it is important to be able to distinguish errors produced

by ProGram from errors produced by Prolog or some other part of your
computer systenm.

5.3.1 ProGram errors

ProGram errors come in two foras:

mishap: (some error message>

involving: <objects that caused the problea>
or

warning: <some error message)

involving: <objects that caused the probles)

In the first case, the error is bad enough that the command which was
being done has to be aborted, and the system returns to command level.
Here are a couple of examples, both 1involving normalisation. If the
normalisation of some rule fails, then one of the following error
messages may be generated:

mishap: normalisation failure
involving: < (.00 2

when the rule is illformed, or of the wrong sort - an ID rule in the
lexicon, for example; or

mnishap: Feature specification error
involving:s < ..., ?»

when there is something wrong with the feature syntax specification.
The second sort of error is not really an error, but just a warning.
Processing continues after the message has been produced. Here are some

examples of this type of warning.

warning: HFC failed
involving: ¢ ... 7

This will appear when the HFC routine cannot find a head in an ID rule.

The Systew Thi ProGaw ti*nu*l, Chapter 5
warning: FFP failed
involving: < ... >

In CONTROL mode, this is how the parser reports the problems it has
using the rule chosen.

Hi shaps, then, need correction, usually by editing the text files with

the grammar data in. Warnings do not need correction, although they nay
sometimes be an indication of a M stake

5. 3.2 System errors

Any other error messages, not specifically of the for* indicated above
dre produced by the system Exactly what they look |ike depends on the
Prolog system being used, but a typical POPLOG system error tight be:

;i PROLO6 SYNTAX ERRR - Expecting a separator, operator or closing bracket
o I TBM baz
o PARIING foo ...

This particular type of error, a syntax error, can occur if a command is
M styped, or not understood by the system (although sometimes the
response in this latter case will simply be NO - see 4.5). Either way
the user can carry on typing in cowhands afterwards - nothing will have
been disturbed.

Prolog syntax errors can also occur if data in the data files has been
mstyped. For example, consider the following pair of ID rules:

Si: S —> np, vp
Vp|; vp —> V. np.

There are two syntax errors here (i) a Kissing period after the first
rule, and (ii> a mssing comma in the second rule between V and NP. Both
of these will generate an error like the example above. Another common
cause of syntax errors is not matching up round or square brackets

properly

Prolog systems vary on whether they can recover from syntax errors. Some
of them return to command level straight after the first one, others
continue, trying to locate as many syntax errors as possible. Often, the
first error detected my not be the only one in the file - the user
shoul d expect to have to try loading the file several times, correcting
errors between each load, to ensure that all errors have been found

Suppose the following command is given
normd from idrules to normedrules.

If there are any syntax errors in the data file IDRULES, then a syntax
error wll be produced. Unfortunately, due to the design of Prolog, the
error message will not be printed on the termnal -i't will be put into
the output data file NORMEDRULES fnstead. So the user may not realize
anything has gone wrong. For this reason, it is advisable to give the
command as:

e

—in
T

The Systen The ProGra» nanual; Chapter 5

normid from idrules.

This will send output to the terminal, first of all, just to check that
there are no syntax errors. Once all syntax errors have been cleared,
the earlier command can be given safely to store the normalised data.

Apart from syntax errors, the only other sorts of errors one should
expect are errors involving data files, for example, trying to read data
from & nonexistent ¢ile, or giving a file a name which is not permitted
by the operating systesm. Again, the particular error produced will vary.
A POPLDG example is:

33 PROLOG ERROR - CAN'T OPEN FILE (no such file or directory)
133 INVOLVING: idrules ‘

This will appear if you attempt to use a file IDRULES which doesn’'t
exist,

S.4 Switches

Various features within ProGram are controlled by switches which can be
turned on and off by the user. The switches fall into three categories:
trace options, parse modes and ogeneral flags. The +flags, acceptable

abbreviations for them, and their functions are given below:

Switch nase Abbreviation Function

TRACEOUT TRACE, T0, T controls tracing of output data (data
' displayed as it is written)

TRACE_IN T1 controls tracing of input data (data
displayed as it is read)

SHOW s controls output fors (SHOW on produces
friendlier, but not machine-readable
output)

WATCH N controls the parser’s scan sechanisa
(WATCH on produces full trees each scan)

AUTo A switch on autosatic mode

NONITOR KON, M switch on sonitor mode

CONTROL CTRL, C switch on control aode

CHECK CH controls user-checking of parser decisions

ONEPARSE 0 controls whether to stop at first parse

NOCONJ NOC controls whether Conjunct Realization

: : Principle is used (ON = not used)

NOFOOT NOF tontrols whether Foot Feature Principle is
used (ON = not used)

NDHEAD NOH controls whether Head Feature Convention is
used (ON = not used)

NOLEX NOL controls whether lexical subcategorization is

used (ON = not used)
NOBAR NOB controls whether bar levels are being used

The Systew The ProGa* Manual, Chapter 5

LEJGEA L controls whether tetarules only apply to

IDrules that introduce |exica categories
(vien N or todl IDrules (vhen CFF).

Switches nay be turned on or off using the ON and OFF predicates, for
exanpl es

check on.
oneparse off.

auto, nohead on.
c, 0, chy to off.

Several switches can be changed in one statement, and the abbreviations
given Bay also be used if desired. The current setting of the switches
can bhe viewed with the command

status.
The initial setting of switches is:
Parse mode AUTO
CHECK ON
LEXVETA ON
Al others OFF
This can be changed if desired by setting switches in the custom nodule

(see 5.8.2). Note that the parse nodes cannot be turned OFF, you can
only switch to a different mode.

5.5 Libraries

This section describes the library files in the system Library files

are optional parts of the system which can be loaded in by the user wth

the LIB command: -
lib <libraryname>.

Alternatively they can be included automatically by having the assertion
includedib(<libraryname>)).

in the customsation file (see 5.6). In a few cases, they are [|oaded

autpna;ically (e.g., the FILTER library loads if you select the WATCH

option).

The *LOCAL help file should contain details of any [libraries local to
your own installation. Local Iibraries can be loaded either wth

custom <1i braryname).

as a command, or by putting

The Systen The ProbGras Manual, Chapter §

include(custom(<{libraryname>).

in your customisation file.

9.5.1 FILTER

The FILTER library provides more sophisticated I0 handling than is
available in the basic system monitor. Except when using the system in
batch mode, or on a machine which does not have a large address space,
it is wusual to have FILTER included automatically, i.e. in the
customisation file. It contains all the trace handling routines, as well
as the filtered input vroutines described below. Note that this means
that unless FILTER is loaded, the trace switches do nothing.

The FILTER library provides two mechanisms for combining and controlling
input data files. Using the basic system only, an input data file
specification is simply a filename in a FROM or USING clause (see 3.4
for wmore details)., For example, to normalise ID rules from a data file
called NPRULES the command would be:

normid from nprules.

Using the FILTER library, the input can be specified as the concatenation of
two (or more) files, using the word THEN - for example:

normid from nprules then verbrules to normed.

This command normalises the rules in the file NPRULES and then the rules
in the file VERBRULES. All the resulting normalised rules are put in a
file called NDORMED. THEN can also be used in a USING clause - for
example:

parse using normedl then normed2 for normsed ID rules.

Being able to concatenate files in this fashion allows the user to write
a qrammar modularly, with different files for different parts of the
graemar. They can then be tested in isolation before being coambined into
a full system, using THEN concatenation.

The second feature provided by lib filter is the ‘interactive filter,
invoked by the word SOMEOF - for exanple:

normlex from ;oneof aylex.

This command normalises data from the file MYLEX, but interposes an
interactive filter between the +file and the program, This means that
every time the program reads a new rule from the data file, the name of
the rule is reported to the user. The user then has several options:

. accept the rule - so the program uses it

. reject the rule - go and read another one and report that
look for a rule with a specific name and use that

start again (at beginning of the file)

"behave as though the end of the file has been reached

UV & N -

The Systen The ProGram Manual, Chapter §

The SOMEOF filter allows the user to be selective about what data within
a file is to be used, so that, for example, particularly troublesonme
rules can be easily isolated for testing. For an example of this filter
in use, see 4,5,
THEN and SOMEOF can be freely combined - for example:

parse using foo then someof baz then bing.

This command uses file FOO, then BAZ with ¢the filter interposed, and
then BING. Brackets allow the grouping to be rearranged:

parse using foo then someof (baz then bing).
This command uses the filter on both BAZ and BING.,
Suppose the ID rules for the grammar have been developed in two files,
which have, perhaps, been tested separately. Let’'s say the normalised VP
rules are in NVPRULES and all the rest are in NIDRULES. To load thenm
both for parsing, the following command could be given:

parse using nvprules then nidrules for normed idrules.
ARlternatively, using the command:

load.
to load up the whole grammar would cause NIDRULES to be loaded (since it
has the standard name) but not NVPRULES. But if we subsequently gave the
command:

parse using nvprules then nidrules.
all would be well, We do not need a FOR clause since the system already
knows about the normed ID rules. However, the following coamands would

not work:

i. load.
parse using nvprules.

ii. load using nvprules then nidrules.
In the first case, NVPRULES would replace the existing rules, so
NIDRULES would effectively not have been loaded. In the second case, all

the rules get loaded, but then the LOAD command reloads NIDRULES only,
again replacing all the existing rules,

S.5.2 MORECOMMS

The commands built in to the basic system are just the systen
primitives, NORMID, NORMLEX, PARSE, etc. The MORECOMMS library provides
some compound commands which make common operations easier. It also
provides a gqood illustration of how the user can build up more complex
commands if desired. The commands provided are as follows:

The Systen» The ProGram Manual, Chapter S

NORMHFC - noraalise ID rules and do HFC processing on thea. If setarules
are not being used, these two operations can safely be cosbined (see
3.3). ‘

NORM_IDRULES - do NORMHFC using the standard filenases.

NORM_MISC - normalise lexicon, LP rules, FCD's, FCR's, RAC's ¢ros
standard filenames.

NORM_AND _EXPAND - noraalise ID rules and setarules, expand the grasmar
and do HFC on the result. Standard filenases used throughout.

NORM_GRAM - normalise a whole grammar (without aetarules), using
standard filenanes.

NORM_META - normalise (and expand) a whole grassar (with setarules),
using standard filenases throughout.

LOAD - load in all the norsalised data required for parsing, using
standard file nases.

60 - load up data (if necessary) and run the parser,
DEBUG - set switches for convenient debugging.
The comnands which use standard filenames do not need to have their

inputs and outputs specified (any specification will be ignored). The
standard filenames for all data modules are given in 3.S5.

S.5.3 NEWWORDS

The NEWWORDS library provides a siaple wechanism for dealing with
specific unknown words., The library should be 1loaded after the
(normalised) lexicon has been loaded. For each new word to be wused, a
clause ‘newword(<{word>).’' must be provided. This can be done in several
ways. The coasand

assert(newword(foo)))
adds ‘foo’ as a new word. Alternatively, a data file containing several
new words can be constructed. A data file (WORDS{, say) with some new
words in it might look like this:

newword(grengle).

newword(foo),

newword(thunk).
Such a file could then be loaded with a USING clause:

parse using wordsi.

The Systew _ The ProGaw Hanual, Chapter 5

Note that no FCR clause is possible since WQRDSL is not a standard data
nodul e. Now, whenever the parser comes across a word which is not in the
| exi con, but which is specified as a NEWAORD, it wll try parsing using
every category in the lexicon for that word. Any successful parse wll
produce a candidate for the syntactic category of the word.
Unfortunately, the parser does not remenber the successful categories at
present.

The NEWAORDS |ibrary is provided for the benefit of users who are
interested in experimenting wth the automatic acquisition of [exical
subcategorisation information from texts.

As one mght expect, using NEWAORDS slows the parser down a [lot, since
there are many alternatives to be considered. It works best with only
one new word in the sentence, and the nearer the beginning that word
appears, the better.

5.6 _Customising the system

The ProGra® system has been designed with portability in mnd, wusing
only ‘'standard" Prolog for the main system and libraries. The system
makes no assunptions about the operating system and file handling
mechanisms - these aspects, as well as the inclusion of nonstandard
modul es (for exanple, the SHOMREE nodule in the POPLOG version, which
makes use of POP11 libraries), nust be locally tailored in the CUSTOM
modul e. This section describes what custom sation is possible, and how
to achieve it.

There is only one file in ProGam which needs nodification to suit |ocal
requirements, and that is the PROGRAM nodule itself. As the comments at
the head of the nodule explain, a predicate CUSTOM SATION. FILE nust be
defined, whose function is to RECONSULT the custom sation file described
bel ow. This predicate has to be specifically defined taking into account
the format of filenames in the local operating system For exanple,
under POPLO6 UNI X, the clause mght be:

custoni sation file i- reconsult(' $program custom custompi ') .
and under POPLOB VMS it might be:

custom sation file :~ reconsult (' program [custonjcustompi ') .
Note that the actual name of the custom sation file is irrelevant.

The only other possible change to the PROGRAM nmodule is the use of the
operator ':-' to mean 'top-level-invoke'. In some systens, this my be a
different symbol, e.g. '?-'+ It appears twice in the PROGRAM modul e, and
it also appears in the [library nodule NEWAORDS. There are no other
changes to be made to the main system all other customsation takes
place in the customsation file. Note that the customsation file is
| oaded before the operator declarations have been made, and so must not
presuppose that infix operators, etc., have been defined

The Systea The ProGram Manual, Chapter §

The customisation file is simply a file of Prolog code which gets
reconsulted when the system 1lcads. Thus it can be used to define new
local commands, etc., simply by providing clauses for them (see below
for details of redefining system coemands, however). It can also provide
new definitions for three predicates which are used by the system:
FILENAME, MODULENAME, and INCLUDE.

The predicate FILENAME takes two arguments. The first is the name of a
file, as given to the system by the user (i.e. as typed in a command).
It is a Prolog atom. The second should be instantiated by the predicate
to the actual filename for that file, suitable for use in a SEE or
RECONSULT. If no FILENAME clause is specified, the default clause does
nothing, i.e. it returns the filename exactly as given,

For example, in a system (e.g. VMS) where filenames have file types, and
the conventional type for Prolog files is ',pl’, not redefining FILENAME
would lead to the necessity of commands like:
parse from 'foo.pl’' using 'id.pl’ for normed idrules.
But if we define FILENAME to add the .pl automatically, as follows:
filename(X,Y) t- name(X,XN), append (XN, '.pl’',YN) ,name(Y,YN).
then we could write
parse from foo using id for normed idrules.
Similarly, we could redefine FILENAME to get grammar +files +from a
specific directory, which would get automatically prefixed onto every
file nawme,
MODULENAME is similarly a two place predicate which serves the sanme

function as FILENAME, but for system modules., The first argument takes
different forms according to what sort the mpdule is as follows:

ist arg. Module sort

lib(fo00) library module foo0
custom(foo) = customised module foo
fo0 . system module foo

This allows the different classes of module to be stored in separate
subdirectories if desired. The default clause for MODULENAME just
returns the name of the module (i.e. it strips off LIB, CUSTOM, etc.).

INCLUDE is a predicate with one argument, which should be a module name
as in the table above. When the Probram system loads, only the MONITOR
and COMMAND wmodules are loaded automatically <(although most other
modules will be loaded automatically as soon as they are needed).
Modules specified in an INCLUDE clause are also loaded at system-load
time. This can be useful for several reasons. (1) 1¢ you are
precompiling the system (e.g. a POPLOG ’'saved 1image’'), and vyou want
various bits of the system included in it, this is the clean way to get
them 1in, (ii) Some modules (e.g. MORECOMMS, FILTER) don't load
automatically and have to be loaded explicitly anyway. (iii) You may
prefer to have modules loaded at the start, rather than interrupting

The Syste* The ProGa* Manual, Chapter 5

your work half way through a session. (iv) Al the INCLUDE clauses are
handl ed after the nonitor and commands have been loaded, and in the
~order that you specify. This means that if you want to redefine system
commands, you can do it in a separate custom sed nodule and INCLUDE it.
You cannot do it in the main customsation file, since this is |oaded
first, and so the system definitions Muld overwite yours, not vice
versa

For exanmple, the POPLOG custom sation module SHOAMTREE nust Dbe |oaded
after the Ilibrary module FILTER, since it redefines a predicate in the
latter. This can be done by putting the following clauses into the
custom sation file: :

include(lib(filter>).
include(custom showtree))

Finally, a customsation file can set switch values, if the initial
default settings (all OFF except CHECK, parsing node « AUTO) do not suit.
Clauses Iike

?- 0 on.
?- ch off.
?- ¢ on.

in the customsation file, will achieve this. Note that the promts
shown here need to be typed into the file exactly as shown.

For an exanple of a fairly sophisticated customsation file, see the

UNXcustom module, which custom ses Program for POPLOG on VAX UNIX (see
appendix 1).

5.7 The lexicon interface

ProGam is mostly concerned with grammar rules. The lexicon is provided
mainly for convenience - so that ordinary sentences can be used, rather
than strings of syntactic categories. In particular, the built in
lexicon handling is relatively simple-mnded, and would not cope wel
with a realistically large lexicon resulting, for exanple, fromall the
mor phol ogical forms of a |large number of words. The more experienced
user may well wish to design lexicon handling routines (in Prolog or, in
the POPLOG version, POP1l1 or even LISP) which access a larger |exicon
nmore efficiently. This section gives details of the interface between
ProGram and its lexicon to enable such routines to be designed.

The lexicon |ookup in the parser consists of a call of the predicate
LEXRULE with three arguments as follows:

| exrul e(Nord, Nane, Cat)

The arguments are:

The Systew The ProCrai ffanuai, Chapter 5

Wod - the wad beng looked up (dready instantiated).

Naie - this is a ten of the fore lex (M) whae N is the naie
of the lexical rule used. N should be set by the lexicon
routing, ad is usd for display in parse trees.

Ca - the syntactic cateqory of the Uard. This is set by the lexicon
routine and should be a fully normalised, fully specified
category, according to the feature syntax specification.

Alternative syntactic categories for a word are obtained by Prolog
backtracking, such alternatives represent alternative solutions to the
LEXRULE predicate.

All the parse mode handling behaves just as usual - in control iode the
user is asked to specify a lexical rule naie before lookup* This is not
passed to lexrule, but after lexrule has returned, the wuser-specified
name (say UN) is compared with the returned name (N, above). Only if UN
* N or functor(N, UN, J is the rule used, otherwise the parser askes
for an alternative rule.

The lexical category must be fuI'Iy normalised (see chapter 3). The

system provides a predicate NORMFAEAT that does this, i.e. given a

category C which is specified using aliases, etc., the call
normfeat(C,NC)

returns NC as the normalised version. NORMFEAT gives a Aishap if it

cannot normalise - in parti cular, unbound variables. cannot be
normalised, and so normalising a normalised category will often fail in
this way.

The lexical coefficient feature in ProGra* is handled by the [lexicon
normaliser. This means that any new [exicon |ookup routine nust set the
LEXICAL feature itself. It oust be set to the name of the ID rule (or
the functor of the name, if the name is a conplex term) in which the
word is introduced. Alternatively, one can set the switch NDLEX to stop
all | exi cal coefficient checking. The . system module NORMLEX
(.../program sys/normex in the UNIX version of ProGram) contains nore
information and some potentially useful predicates. '

Any new routines that redefine this predicate should be loaded as the
normed lexicon data module, i.e. replacing the normal normed [exicon.
The built in lexicon handler behaves as follows: NORMLEX is given rules
of the form

vtr: vlex(sing) -> likes, loves, sees.
and produces clauses, |ike:

lexrule(X, lex(vtr), ...) :- once(member(X tlikes,|oves,sees])).
where ... is the normalised version of VLEX(SING (an aliased category)

with its lexical coefficient set. These clauses are normally all written
to a data file which is loaded as normed Iexicon. '

The Systew The ProGn* Hinutl, Chapter 5

5.8 The structure of the file ivitgrn

This section contains an index to all the files in ProGram. The index is
organised in the saute way as the files are in the POPLOG UNIX system,
namely as a collection of subdirectories under the directory Iprogra*.

5.8.1 PROGRAM: the top level

custoa * directory containing cuitoiised libraries
deto - directory containing demonstration graatar
help - directory containing aain help files

lib - directory containing optional systea libraries
Sys - directory containing aain systea files

5.8.2 AQSSTOMX _ customised_ libraries

PLO6custoa.pl - customisation for Prolog-only systea
UNXcustoa.pl - custoaisation file for VAX UNIX POPLW

UNXakgds - UNIX (cshl coaaand file to build saved iaage
VKScustoa - custoaisation file for VAX WS POPLOB
seetree.p - POP11 library to interface to LIB SHONTRE
showparsep - POP11 library to interface Pro6raa to SEETREE
shoittree.pl - PRDLO6 interface to SHOHPARSE

usercoaa.pl * library of systes-dependent coaaands
vedfiles.pl - library for siaple VED interface

5,8,3 DEMO: a demonstration_qgrammar

aliases fed fa feat ures
idrules | exi con Ip aetarul es
nf ed nfer nidruies nlexi con
np naeta nrac rec

5.8.4 HHHPs the help files

assuaed - assuaptions about 6PS6 foraalisa

coaaands * suaaary of basic systea coaaands

custoa - ho* to custoaise the systea to local requireaents
data - details of data file organisation and use

errors - notes on different sorts of error and cures

The Systen

example - examples of the systes in use:

egdata

egexpand

egfilter

egnora

egparse

egtest

egtree

9psg - a bibliography of recent work in BPS6
gramsaars ~ details of grammar specification for the systes
help - information about help facilities

hfc = details on head feature convention processing
index - an index to the systes

intro =~ introduction to the systea documentation
lexicon - notes on the interface to the lexicon
libraries - details of the optional systes libraries
local - local installation notes

setarules - details of use of setarules

nora - how to norsalise gramsar data in the systea
overview - overview of systea functions

use - basic use of the systea

parsing - how to use the parser for grammar testing
poplog - relevant sources of inforsation on POPLOG
switches - the systea switches and what they do
systeas - details of other computational 6PS6 systeas
use - basic use of the systea

5.8.5 LIB: optional system libraries

filter - sore sophisticated data file handling routines
807 eCOBRS - some higher level systes cossands
newwords - library to handle unknown words

5.8.6 SYS: the main system routines

cesands - basic top level cosmands

crp - Conjunct Realisation Principle routines
expand - grammar expansion {using metarules)

fcd - FCD and category amatching routines

ftp - Foot Feature Principle routines
helpinfo - data for built-in HELP facility

htc - Head Feature Convention routines

aonitor - basic systes monitor - utility routines etc

The ProGraw Manual, Chapter §

The Systes The ProGram Manual, Chapter 5

norafeats - main feature normalisation routines
noraid - 1D rule normalisation routines

noralex - lexicon normalisation routines

norslp - LP rule normalisation routines
norsaark - FCD, FCR and RAC normalisation routines
noraaeta - aetarule noraalisation routines
norerules - utility routines for norsalisation
parse = aain parsing module

progras = aain systea loader

E o A Demonstration Grammar

6.1 Features

The top-levels of feature structure take a standard form.

feature
feature
feature
feature

{root,
[cat,
[bar,
[head,

cat, foot, conjl.
bar, headl.
{lexical, 1, 231,
major, sinorl.

Major features - one for each phrasal type. Prepositions have a sub-
feature which is a terminal symbol feature.

feature
feature

Minor features.

{major,
lp,

{v, n, a, p, conjll,
{by, to, in, on, withll.

feature [minor, agr, {(case, vforml}l.
feature [agr, {singular, pluralll.
feature [vform, {(finite,passive}, auxiliary, invertedl.
feature [case, <{nominative, possessive}l].
The foot feature only has one candidate coefficent - a CAT +for doing

SLASH categories.

feature

[foot,

catl.

Very simple conjunct features - just two possibilities,

feature

[conj,

{neither, norll.

The last two are boolean features

boolean auxiliary.
boolean inverted.

6.2 Aliases

The aliases below let you write V(2) to mean a basic verbal category
bar level 2 (similarly for other bar levels, and for nouns, adjectives
and prepositions).

alias|
alias(
alias(
alias(

The following aliases

note that a

v(iN),
niN),
a(N),
p(N),

{root,[cat,lbar ,N),[head,[major,vi11)).
{root,(cat,[bar ,Nl,[head,(major,nl]11).
[root,(cat,[bar N],[head,[major,alll]).
(root,{cat,(bar ,N],[head,[major,plll1),

let you specify ainor features too if desired
preposition version is not included, siaply because it is

not used in the grammar at all.

of

A Denonstration 6ra»war The ProQww Hanual ¢ Chapter 6

aiiras(Vv(N,M, [root,teat,[bar,N,[head,[mjor,v3,
Cni nor | H3333).

aliast n(N,M, [root, [cat, Cbar, N3, [head, [mjor,n],
Cminorl HI]]] >.

alias(a(N,M, [root,[cat,[bar,N],[head,[mjor,a],
CAi nor| H3333)«

The next group of aliaies is designed to be used as the mnor features
arguent in the aliases above. The main reason that the actual feature
names are the full words is so that the abbreviations can be used here.
Thus, for example V(1,CAUX]) neans a VP which is FINITE and "“AUXI LI ARY

alias(sing, [agr,singular]).
alias< plur, [agr,plural 1).
alias(no«, [case,no»inativel)s

alias(ace, “case).

alias(aux, Cvform finite, -"auxiliary]).

alias(inv, [vforn, finite, “inverted]).

alias(fin, [vfom finite, -auxiliary, -inverted!).

aliasf pass, [vform passive, -auxiliary, -inverted]).

Me can provide a prepositional alias to sinplify the stipulation of
particular prepositions*

alias* p(N, P)¢[root,[cat,[bar,N],[head, [«ajor,[p,P]]]]]).
And a simlar one to sinplify the stipulation of conjunction words.

alias(c(C), [root,teat,[bar,lexical],[head, [mjor,C]]]).
The following aliases allow the use of the H (for HEAD) notation

aliasf h(N), [root,[cat,[bar,N],[head,[major]]]]).
alias(h, h(lexical)).

The system requires the lowest bar level to be called LEXICAL - the
alias below allows us to use 0 instead if we wish.

alias(0, | exical).

Finally, an alias which lets wus wuse the slash notation for slash
categories. Prolog understands expressions like XY as the sane sort of
thing as V(X,Y), only using V' instead of V. Wat the alias does is
conplicated - it is not just a straight translation: NORHFEAT does
normalisation on feature expressions, PATHFOR |ocates the coefficients
of particular features, and PROTECT ensures that the resulting feature
is not normalised again (things must not be normalised twice).

alias(X'Y, 2) *-
nor nf eat (X, XN), nor nf eat (Y, YN)
pathfor(foot, YN, " *'),
pat hf or (cat, YN, YCat),
pat hfor (foot, XN, [tcat! YCat]3),
Z « protect(XN).

fvan< A Rawdae

A Demonstration Gramaar The ProGran Kanual, Chapter ¢

6.3 ID rules

The sentence rule uses variables to specify control.

s: v(2) =--> N2,H! where N2 is n(2,[noml),
H1 is h(1),
N2 controls HIi,

In the VP rules that follow, notice the underline character (_) in the
rule labels. We want them to have different names, so that lexical
subcategorisation works, but everything after the underline gets omitted
from the parse tree displays, etc., so the label appears as just VP,

vp_1: v(1) ==> h,

vp_2: v(i) ==> h,ni{2),

vp_3: v(1) -=> hyn(2),n(2),

vp_4: vil) -=> h,vi{2).,

vp_5: v(i,laux]) --> h,vii,[pass]).,
vp_pp: vil) =-=> h{1),p(2).

There are two NP rules - one for common nouns, the other <for proper
nouns and pronouns.

np_1: n{(2) --> DET,Hl,o0pt(p(2)) where DET is a(@),
H1 is h(1),
Hi controls DET.
np_2: n(2) =-=-> h,
The NI category allows for the introduction of adjectives.

nb_1: n(l) == h,
nb_2: n(1) ==, a(1),h(1),

Adjective phrases allow adjective modifiers.

ap_1: a(l) ==)> h.
ap_2: a(l) --)> al@),h(1),

And the prepositional phrase rule is straightforward.
pp: p(2) == h,n{(2), .

A couple of rules that together permit one type of coordinate structure.
coord: root --> [root, [conj,neitherl], {root, [conj, norll++ .

conj: [root, [cat,Bl, C] --> c(C), [root,[cat,Bl,~conj]
where B is bar, C is conj.

Finally, a rule for topicalisation. The topicalised category and the
slashed categqory must have the same major feature. Note that M must be
defined before it is used in the WHERE clause.

A Demonstration Grammar The ProGram Manual, Chapter ¢

top: v(2) --> Ct, h{(2)/L2
where M is major,
Ci is (root,(cat,lbar,2]1,{head,M]1],
€2 is [root,{cat,(bar,2],(head,M11].

6.4 Metarules

it is sensible to lay metarules out so that they are easy to read. Here
is passive,

pass: vil) =-=-> ... , n(2)
=)
vii,[pass)) --> ... , apt(p(2,by)).

And here is ‘subject-auxiliary inversion’'. We need variables to specify
correspondences between the categories (using MATCHES).

invs (VP1 --> h,VP2 where VP!l is vi{l,[laux]),VP2 is v(1))
ns)
(8{ =--> h,82 where S1 is v(2,[inv]), 82 is v(2),
S1 matches VP{,
§2 matches VP2),

The following metarule allows slash categories to terminate in a
‘missing’” item of the appropriate kind,

stmi: (Ct --> C2, ... where Cl is [(rootl,
€2 is [root,{cat,lbar,21,

{head,{minor,~casellll)
==)

C1/€C2 -=>
Finally, a metarule for introducing that-less relatives.
relcl: (Nl --> ... where Ni is n(1))
==2)

NI == vus , v(2)/n(2).

6.5 LP rules
A lexical category precedes a non-lexical.

{root,[cat,lbar,lexicalll] << { [root,{cat,(bar,1111],
{root,{cat,lbar,211] 1.

A Demonstration Grammar The ProGram Manual, Chapter 6

NP's precede VP's, adjectives precede nouns, nouns precede their PP
modifiers.

n(2) << vitl),
atl) << n(f) << p(2).

Conjuncts that begin with 'neither’ precede those that begin with ‘nor’.
{root,(conj,neitherll << [root,[conj,norll.

And the final LP rule forces slash categories to be +final in their
constituents.

{root,*foot] < [root,[foot,catll.

6.6 Feature coefficient defaults

Our demonstration grammar contains just three FCD's, giving defaults for
the minor features. The first says that accusative is the unmarked
phrasal case, and the second and third stipulate that unearked lexical
items are neither +inverted, nor +auxiliary. Note that specifying FOOT
in the exclusion list forces the defaults onto the real einor features,
and prevents the defaults applying to minor features appearing within a
foot feature.

feature excl lexical phrasal
fcd(case, [foot), free, acec).
fcd{ inverted, [foot], ~-inverted, free).
fcd(auxiliary, [foot], -auxiliary, free).

6.7 Feature cooccurrence fe;trigtinns
Verbs are never marked for case.

fcr(major, [footl, v, minor, [footl, notlcase)).
Not even in a slashed category.

fer(foot, [], [foot,[cat,lhead,[major,vil1l, foot,
{1, not((foot,[cat,lhead,[minor,casellll)).

14 something is inverted, then it is an auxiliary.

ferd inverted, (footl, +inverted, vform, [fo0t],
(vform, finite, +auxiliaryl),

A Demonstration Grammar The ProlGram Manual, Chapter é

6.8 Root admissibility conditions

Those given just prohibit categories with unspecifed major feature or
bar level,

rac(bar, [footl, not(unspec)),
rac wajor, [footl, not{unspec)).

6.9 The lexicon

The demonstration lexicon is straightforward. The only opoints to note
are (i) that the rule labels are coaplex terms, Only the bit outside the
brackets is used for lexical subcategorisation, etc. The rest serves to
identify each lexical rule uniquely, so that we can locate them properly
when in CONTROL mode. And, (ii) we have to specify all the features we
want specified (we cannot expect defaults to set them). Defaults check
settings, but they will not add extra information to a category.

vp_1(sf): v(@,[sing,finl) ->- jumps,runs,sings.
vp_1(pf)s v(B,[plur,finl) ->- juap, run, sing.

vp_2(sf): vi(®,[sing,finl) ->- 1loves,sees,closes.
vp_2(pf): vid,I{plur,finl) ->- love, see, close.
vp_2(ps): v(@,[pass]) -»- loved,seen,closed,

vp 3(sf): v(@,[sing,finl) ->- hands, gives,buys,
vp_3{pf): v(@B,[plur,.finl) ->- hand, gqive, buy.
vp_3(ps): vi(B@,lpass]) ->- handed,given,bought.

vp_4(sf): vi(B,[sing,finl]) ->- thinks, believes,knows.
vp_4(pfl: v(@,[plur,finl) ->- think, believe, know.
vp_4(ps): v(@,[passl) ->- thought,believed,knew,

vp_S{sf): viB,[sing,auxl) ->- is,
vp_S(pf): v(B,Ising,auxl) ->- are,

np_2(prop_noml: n(@,[sing,noml}) ->- kim,sandy,lee.
np_2{prop_ace): n(@,[(sing,accl) ->- bill,ben,bert.
np_2{(s_nom): n(@,[sing,nom]) ->- he,she.
np_2(s_acc): n(@,[(sing,accl) ->- hinm,her,
np_2(p_noa): n{@,{plur,noml) ->- they.
np_2(p_acc): n(@,[plur,accl) ->- then,

nb_1(s_acc): ni{@d,[sing,accl) ->- book,man,woman.
nb_1(p_acc): ni@,lplur,accl) ->- books,men,women.

nb_t(s_nom): n(d,[sing,noml) =->- tree,boy,girl.
nb_1{p_nom): n(@,(plur,noml) ->~ trees,boys,qirls.

np_l(sdet): a(@,[singl) ->- a,an,every.
np_l(pdet): a(@,{plurl) ->- all,some.

ap_1: a(®) ->- red,blue,qreen,yellow.
ap_2: a(@) ->- very,bright,dark,

A Demonstration Graamar

pptbhy): p(@,by) =->-
pp(to): p(@,to) ->-
pplin): p(@,in) =)~
pplonl): p(@,0n) =->-
pp(with): p(B,with)

by.
to.
in.
on.
-)_

with.

The ProGram Manual, Chapter 6

conj(a): c(lconj,neitherl) ->- neither,

conj(b): c(lconj,norl) ->- nor.

Evans & Gazdar -88- April 1984

References

Clocksin, Wlliam and Christopher Hellish (1981) Pr ogr awivg in
Prol og. Berlin: Springer-Verlag.

6awron, Jean Hark, Jonathan King, John [amping, Egon Loebner, Anne
Paul son, Geoffrey Pullum Ilvan Sag & Thomas Wasow (1982) The 6PS6
linguistics system 74-81. Also distributed as Hewl et t Packard
Computer Science Technical Hot* CSL-82-5.

Gaidar, Gerald, and Geoffrey Pullum (1982) Ceneralized phrase structure
gr awnar : a theoret ical synopsis, Bloomington; Indiana University
Linguistics Club mimeo. Also available as University — of Sussex
Cognitive Science Research Paper 1 (CSRP 007). '

Gazdar, Cerald, Ewan Klein, 6eoffrey Pullum and Ivan Sag (1982)

Coordinate structure and unbounded dependencies. In H Barlow, D.
Flickinger | 1.A Sag (eds.) devel opments in Ceneralized Phrase
Structure G awnar ; Stanford Wrking Papers in Gawaatical Theory,

Vol ute 2. Bi ooraington: Indiana University Linguistics Club, 38-68.
Also available as "University of Sussex Cognitive Science Research
Paper 6 (CSRP 006). :

Hardy, Steven (1982) The POPLOG programmng system University of
Sussex Cognitive Science Research Paper 3 (CSRP 003).

Hardy, Steven, and Aaron Slogan (1982) POPLOG. a nulti-purpose, multi-
| anguage program devel opment environnent. Hi meo, Cognitive Studies
Program University of Sussex.

Hel l'ish, Christopher, and Steven Hardy (1983) Integrating Prolog into
the POPLOG environnent. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, 533-535.

Pereira, Fernando, and David H.D. Warren (1980) Definite clause grammars
for language analysis - a survey of the formalism and a comparison
with augmented transition networks. ~ Atificial Intelligence 13,
231-278.

Appendi x 1

The svstem under ULiniix POFPL.OG

This appendix deals with the use of the Unix POPLOG wversion of the
system (likely, in our view, to be the version in most cosmon use). By
the time a reader gets the system, it may be slightly out of date, so
consult your own GHELP LOCAL help file for accurate information.

Probram help files are accessed just like POPLOG help files (i.e. using
VED) by giving the command

ghelp <filename>

to POP11 or PROLO6 or VED, in the usual way. Since ProBram uses the
word ‘help’, the wusual Proleg ‘help’ command (to access Prolog help
tfiles) is renamed 'hlp’. The POP1! ‘help’ command remains unchanged.

Data file names are automatically suffixed with ',pl’. They are prefixed
with a directory which can be set with the GRAMMAR command (see below).
It defaults to the current directory, unless specifed when the system is
run (see below).

Extra commands available are:

TIME - display the current date and time.
SETID - set the ID string to be the current date and time.
BRAMMAR - exanine or change the grammar directory.

The grammar directory should be a norsal UNIX directory
specification (ending with a '/ ‘). If the directory is
already correct, type nothing (i.e. just hit (RETURN)).

In the POPLDE version of ProGram, there is an additional library,
SHOWTREE, which redefines the parse-tree display routines to use a
custonised version of the POPLOG (POP11) library SHOWTREE (see POPLOG'Ss
help ¢file on GSHOWTREE). This is only used when the SHOW or TRACE_OUT
switch is ON. The main tree is displayed graphically on the screen
(using VED) and the keyboard is disabled except for the following keys,
.whose functions are redefined as follows:

CURSOR UP

CURSOR DOWN
CURSOR DOWN-LEFT
CURSOR DOWN-RIGHT
CURSOR LEFT
CURSOR RIGHT

sove up to parent node
“move down to siddle daughter node
sove down to lefteost daughter node
~move down to rightaost daughter node
sove to next sister left
aove to next sister right

POSITION PUSH display feature tree for this node

POSITION POP - display sain parse tree
SCREEN REFRESH - 'screen refresh
T0P OF FILE - print tree (if possible)

END OF FILE - return to parser

Uni x PIPLOG version The ProG** Hnual, Appendix |

An extra command is also provided:
tree_printable.

This causes subsequent trees to bhe displayed in a printable format.
Alternatively the user can specify a POP1l procedure TREE_PRINTER which
will display the tree itself (accessing the VED buffer globally). The
tree will only be printable if one of these options is selected.

Another |ibrary, VEDFILES, does automatic checking of data files which
are currently being wused and which are also being edited in VED. It
ensures that the lost up to date version is always |oaded.

The ProGram systemis situated under the directory denoted by the
environment variable ‘'“programl. The system files are distributed as
documented in the custom sation module, which is

$program cust om UNXcust om pl
The custom library (*progran’custon) contain an executable (CSHELL)
file UNXnmkgds which rebuilds a saved image (fprogram custom imge.psv)
of the system The saved image thus created may be run from CSHELL with
the command:

prolog -gds

An optional extra argument may also be given, which is taken as the
initial setting of the grammar directory (see GRAMMAR above).

popl | -gds Vgram
If the extra argument it mssing, then the current directory is used.

A systemw de command UNIX command ‘programl is provided to make access
to this saved imge easier. To run ProGram all you need to do is type:

program
or

program <grammar directory)
to the CSHELL.
To run ProSram from inside Prolog, type:

consul t (" $program sys/ program pi "),
There will be several loading messages and then the system wll start up
as described in 4.5.

Appenrndi x ;2

Recent PSG implementations

i. John Bear

All paths, left corner chart parser. Uses <features for agreement and
unbounded dependencies. Relative clauses, questions, existentials. No
semantics. Language: Interlisp. Machine {(0S): DEC20 (TOPS 20).

Linguistics Research Center, P.0. Box 7247, University Station,
University of Texas, Austin, TX 78712, USA. '

Bear, John (1981) Baps as syntactic ¢features. MA dissertation,
University of Texas at Austin., Published by IULC, Bloomington, IN.,
in 1982, '

Bear, John and Lauri Karttunen (1979) PSG: a simple phrase structure
parser., Texas Linguistic Forum 15, 1-44,

2. Hewlett Pagkarq

Top-down parser and transducer yielding first order logic translations.
Includes metarules, features, some feature instantiation principles,
slash categories, but not ID/LP., Intended as portabl front-end for

databases, and currently hooked wup to relational database in HPRL (a
development of FRL). System currently undergoing thorough revision and
redesign. Language: LISP (PSL). Machines (DS): VAX 11/780 (UNIX), HP
9836 (NMODE).

Geoffrey K. Pullum, Daniel P. Flickinger, Carl Pollard, Derek Proudian,
Ivan A. Sag, Thomas Wasow, (and formerly also Jean Mark Gawron and Anne
E. Paulson). Computer Science Laboratory, Hewlett Packard Company, 1501
Page Mill Road, Palo Alto, CA 94304, USA,

Gawron, Jean Mark, Jonathan King, John Lamping, Egon Loebner, Anne
Paulson, Geoffrey Pullum, Ivan Sag & Thomas Wasow (1982) The GPSG
linquistics system, Proceedings of the 26th Annual Meeting of the
Association for Computational Linguistics, 74-8B1. Also distributed
as Hewlett Packard Computer Science Technical Note CSL-82-5.

3. Mark Johnson

Suite of small programs: sentence generator employing features,
instantiation, ID/LP; feature package defining unification, increment,
etc.: LR(1) parser. Language: FranzlLisp. Machine (0S8): VAX 11/780
(UNIX),

Department of Linguistics, University of California at San Diego, La
Jolla, CA 92893, USA.

PSG lmplementations The ProGram Manual, Appendix 2

4. James Kilbury

Modified Earley-Shieber parser usinf a "first" relation for the ID/LP
formalism. Extension to all aspects of the GPSG framework including
direct parsing with metarules is planned. Parser to produce semantic
representations for in an Al system with German language interface.
ID/LP parser. Language: Waterloo PROLOG, Version 1.4. Machine (0S):
ITEL AS/5-7@31 C[IBM 37@1 (VM/SPE),

Technische Universitat Berlin, Fachbereich Informatik (2@), Institut fur
Angewandte Informatik, Projekt KIT, Sekr. FR 5-8, Franklinstrasse 28/29,
D-1000 Berlin 18, West Bermany.

Kilbury, James (1984a) A modification of ¢the Earley-Shieber algorithm
for direct parsing of ID/LP grammars. Unpublished paper, Technische
Universitat Berlin.,

Kilbury, James (1984b) GPSG-based parsing and generation. To appear in

Claus-Rainer Rollinger (ed.) Probleme des (Text-)Verstehens -
Ansatze der Kunstlichen Intelligenz. Tubingen: Max Nienmeyer.

S. Francis Jeffry Pelletier

Recursive descent parser, Incorporates metarules, slash categories.
Provides intensional logic translations. Doesn’'t incorporate features or
ID/LP. Language: SNOBOL (SPITBOL dialect). Machine (0S5): Amdahl 4780
(MTS).

Department of Philosophy, University of Alberta, Edmonton, Canada Té6
2H1,

6. Stephen G. Pulman

RTN based parser operating either depth or breadth first. Compiles
metarules (not ID/LP) into RTN and then optimises. Slash categories
included, but not other +featural information. Minimal semantics
associated with one test grammar, Language: POP1i. Machine (0S): VAX
. 11/78@ (VMS),

Linguistics, School of English and American Studies, University of East
Anglia, Norwich NR4 77J, UK.

Pulman, Stephen (1983a) Generalised phrase structure gqrammar, Earley's
algorithm, and the minimisation of recursion. In K. Sparck-Jones &
Y. Wilks (eds.) Automatic Natural Language Parsing. Chichester:
Ellis Horwood, 117-131,

Pulman, Stephen (1983b) Computational linguistics and language teaéhing.
MS, UEA.

PSC Iaplewentations The ProGraa Manual, Appendix 2

7. Lenhart K. Schqbert

Left corner parser, with pruning of syntactically or sesantically
unusual alternatives. Incorporates features and morphological analysis,
coordination and slash categories. Provides first order logic
translations. Intended as a front end for a question-answering systee
with access to a logic-based semantic net. Doesn 't incorporate
metarules. Languages: LISP and PASCAL versions. Machine (0S): Amdahl
470/v8 (MTS).

Department of Computing Science, University of Alberta, Edmonton, Canada
Té6G 2HY,

Schubert, Lenhart (1982) An approach to the syntax and semantics of
affixes in ‘conventionalized’ phrase structure grammar,
Proceedings of the 4th Biennial Conference of the Canadian Society
for Computational Studies of Intelligence, 189-1985,

Schubert, Lenhart, and Jeffry Pelletier (1982) From English to 1logic:
Context-free computation of ‘conventional’ 1logical translation,
American Journal of Computational Linguistics B8, 27-44.

8. Hidetoshi Shirgi

Deterministic parser based on PARSIFAL. Incorporates metarules, raising
constructions, and unbounded dependencies. Montague semantics. Language:
LISP, Machine (DS): Hitac M2@@H (V05 3).

Department of Mathematical Engineering and Instrumentation Physics,
Faculty of Engineering, University of Tokyo, Hongo 7-1-2, Bunkyo-ku,
Tokyo 113, JAPAN,

Shirai, Hidetoshi (1983) Deterministic parser. In Proceedings of the
Workshop on Non-Transformational Grammars, Tokyo: ICOT, 57-61.

9. SRI International (PATR-I)

CKY parser, feature system allows Boolean combinations of feature
equalities interpreted on the fly, no metarules, semantics converted to
first-order logic and passed to a theorem prover. Language: INTERLISF.
Machine (0S): DEC20 (TOPS 20).

Stuart Shieber and Stan Rosenschein, SRI International, 333 Ravenswood
Avenue, Menlo Park, CA 94025, USA.

Rosenschein, Stanley, and Stuart M, Shieber (1982) Translating Englich
into logical foram. Proceedings of the 26#th Annual Meeting of the
Association for Computational Linguistics, 1-8.

PSG Implementations ’ The ProGram Manual, Appendix 2

10. SRI International (PATR-II)

Parser: CKY (LISP), Earley’'s algorithm (Prolog); +eature system:
directed acyclic graph structures, semantics embedded in feature systenm;
morphological analysis by method of Kimmo Koskenniemi (LISP, Lauri
Karttunen) Languages - 3 implementations of the PATR-II formalism:
INTERLISP (DEC2@), Prolog (DEC28), ZETALISP (Symbolics 3488). Machines
(0S): DEC2@ (TOPS 28), Symbolics 3é0@0.

Stuart Shieber, SRI International, 333 Ravenswood Avenue, Menlo Park, CA
94025, USA.

Koskenniémi, Kimmo (1983) A two level model for morphological analysis.
Proceedings of the 8th International Joint Conference on Artificial
Intelligence, 683-485.

Shieber, Stuart (1983a) Sentence disambiguation by a shift-reduce
parsing technique. Technical Note 281, SRI International. Also in
Proceedings of the 2Ist Annual Heeting of the Association fTor
Conputational Llinguistics, 113-118. And in Proceedings of the 8th
International Joint Conference on Artificial Intelligence, 699-783.

Shieber, Stuart (1983b) Direct parsing of 1ID/LP grammars. Technical
Note 291, SRI International.

Shieber, Stuart, Susan Stucky, Hans Uszkoreit, and Jane Robinson (1983)
Formal constraints on metarules. Technical Note 283, SRI
International, Also in Proceedings of the 2Ist Annual Heeting of
the Association for Cosputational Linguistics, 22-27.

Stucky, Susan (1983) Metarules as meta-node-admissibility conditions.
Technical Note 324, SRI International.

11. Henry Thompson and John Phillips

Chart parser (intended for grammar testing). Incorporates all aspects of
the 1982 GPSG framework: features, metarules, feature instantiation,
oordination, etc. Semantics currently being implemented. Language: UCI
LISP, FranziLisp. Machines (0S): DEC1@ (Topsi@), VAX 11/780 (UNIX).

Department of Artificial Intelligence, University of Edinburgh, Hope
Park Square, Edinburgh EH8 9NW, UK,

Thompson, Henry (1981) Chart parsing and rule scherata in PSG.
Proceedings of the [9th Annual Meeting of the Association for
Computational Linguistics, 167-172.

Thompson, Henry (1982) Handling metarules in a parser for GPSG.
Edinburgh D.A.l1. Research Paper No. 175. Also: In M. Barlow, D.
Flickinger & I1.A. Sag {eds.] Developments in Generalized Phrase
Structure Grammar: Stanford HKorking Papers 1in Grammatical Theory,
Volume 2. Bloomington: Indiana University Linguistics Club, 26-37.

PSC Iwpletentations The ProGa* tianual; Appendix 2

Thoupson, Henry (1983) Crossed serial dependencies: a | owpower
parseable extension to BPS6. Proceedings of the 21st /Amnaal
Meet i ng of the Associ ati on for Comput at i onal Li ngui sti cs, 16-21.

Thompson, Henry, & John Phillips (1984) An implementation of GPSG within
the MCHART parsing framework. Unpublished paper, Department oi
Artificial Intelligence, University of Edinburgh.

AppeNy tX 5

Recent RBxgpESscrizt>» on, NIL.IPSBJLIB

This bibliography includes diiifrta.ti.pni and published papers and
monographs not already included in the References or in Appendix 2,
above. It excludes unpublished work, and work written in [anguages other
than English.

Anward, Jan (1982) Basic Swedish. In E Engdahl and E Ejerhed (eds.)
Readings on Unbounded Dependencies in Scandinavian Languages,
Acta Universitatis Umensis, Urea Studies in the Humanities 43.
Stockholm Almgvist & Wksell, 47-75.

Bachi, FEfimon, and Barbara Partee (1980) Anaphora and semantic structure.
In J. Kreiman fcAE (Qeda (eds.) Papers from the Parasession on
Pronouns and Anaphor a* Chi cago: Chicago Linguistic Society, 1-28.

Beeken, Jeannine (1983) Cneralized phrase structure (F aar: thearie
en praktijk (in Dutch). Leuven: Departement Linguistlek, KUL.

Bi ssantz, Annette (19B3> The syntactic conditions on be reduction in
BPSG. In J.F. Richardson, M Marks, and A Chukernan (eds.) Papers
from the Parasession on the Interplay ol Phonology, Morphol ogy, and
Syntax. Chicago; Chicago Linguistic Society, 28-37.

Borsley, Robert (1983a) A note on _t_he'Ger],,e_raI_i_z_ed__ Left Branch Condition.
Linguistic Inquiry 14, 169-174. -

Borsley, Robert <19B3b> A Welsh agreement process and the status of VP
and S In S. Gazdar, E.H Klein, and 6.K Pullum (eds.) Oder,
Concord and Constituency. Foris Publications, Dordrecht, 57-74.

Borsley, Robert (1984) On the nonexistence of VP's. In W de Geest fc Y.
Putseys (eds.) [nternational Conf erence on . Sentential
Cowpl eventation .~ Dordrecht; Foris.

Cann, Ronald (1983) An approach to the Latin accusative and infinitive.
In G Gazdar, E.H Klein, and GK Pullum (eds,) Oder, Concord and
Consti t uency. Foris Publications, Dordrecht, 113-137.

Chung, Sandra, and James McCloskey (1983) On the interpretation of
certain island facts in GPSG. Linguistic Inquiry 14, 704-713.

Crain, Stephen, and Janet Fodqr (1984) How can grammars help parsers?
In D Dowty, L Karttunen and A Zwicky (eds.) Hatural I[anguage
pr 0cessi ng: psychol i ngui sticy comput ati onal and theoreti cal
perspecti ves. New York; Cambridge University Press.

Culy, Christopher (1983) An extension oi phrase structure rules and its
application to natural language. MA thesis, Stanford University.

Dahl, Osten (1983) On the nature of bound pronouns. Papers froi the
Institute of Li ngui stics University . ol Stockhol m Publication 48,

PSG papers The ProGrawm Manual, Appendix 3

Dowty, David (198@) Comements on the paper by Bach and Partee. In J.
Kreiman & A.E. Djeda (eds.) Papers from the Parasession on Pronouns
and Anaphora. Chicago: Chicago Linguistic Society, 29-480.

Dowty, David (1982) More on the categorial analysis of grammatical
relatians. In A. Zaenen (ed.) Subjects and Other Subjects:
Proceedings of the Harvard Conference on Grammatical Relations.
Bloomington: 1Indiana University Linguistics Club. Also in 0Ohio
State University KWorking Papers in Linguistics 26, 102-133.

Dowty, David, & Belinda Brodie (1984) A semantic analysis of “floated”
quantifiers in GPSG. In Proceedings of the Third Hest Coast
Conference on Formal Linguistics. Stanford: Stanford Linguistics
Department, nn-nn.

Engdahl, Elisabet (1982a) Constituent oquestions, topicalization, and
surface structure interpretation. In D, Flickinger, M. Macken, and
N. Wiegand (eds.) Proceedings of the First Hest Coast Conference on
Formal Linguistics. Stanford: Stanford Linguistics Department,
256-267.

Engdahl, Elisabet (1982b) A note on the use of lambda-conversion in
generalized phrase structure grammar, Linguistics and Philosophy
4, 5@5-515.

Espinal i Farre, Maria Teresa (19B81) The auxiliary in Catalan. MA
Dissertation, University of London.

Farkas, Donka, and Almerindo Ojeda (1983) Agreement and coordinate NP 's.
To appear in Llinguistics.

Farkas, Donka, Daniel Flickinger, Gerald Gazdar, Willias Ladusaw,
Almerindo 0Ojeda, Jessie Pinkham, Geoffrey Pullum and Peter Sells
(1983) Some revisions to the theory of features and feature
instantiation. In Proceedings of the ICOT #Korkshop on |HNon-
Transformational Grammars, 11-13 (Tokyo: Institute for New
Generation Caomputer Technolagy).

Finer, Daniel (1982) A nontransformational relation between causatives
and naon-causatives 1in French., 1In D. Flickinger, M. Macken, and N.
Wiegand (eds.) Proceedings of the First Hest C(oast C(Conference on
Formal Llinguistics. Stanford: Stanford Linguistics Department,
47-59.

Flickinger, Daniel (1983) Lexical heads and phrasal gaps. In M. Barlaow,
D. Flickinger, and M. Westcoat (eds.) Proceedings of the Second
Hest Coast Conference on Formal Llinguistics. Stanford: Stanford
Linguistics Department.

Fodor, Janet (1983) Phrase structure parsing and the island
constraints. Linguistics and Philosophy &, 163-223.

Gazdar, Gerald (1980a) A cross-categorial semantics for coordination.
Linguistics and Philosophy 3, 407-409.

PSG papers The ProGram Manual, Appendix 3

Gazdar, 6Gerald (1980b) A phrase structure syntax for comparative
clauses, In T. Hoekstra, H.v.d. Hulst, and M. Moortgat (eds.)
Lexical Gramwar. Foris Publications, Dordrecht, 165-179. Also in
6LOT 2, 379-393 (1979)

Gazdar, Berald (1981a) Unbounded dependencies and coordinate structure.
Linguistic Inquiry 12, 155-184,

Gazdar, 6Gerald (1981b) On syntactic categories. Philosophical
Transactions (Serijes B) of the Royal Society 295, 267-283.

Gazdar, Berald (1982) Phrase structure grammar. In P, Jacobson & G6.K.
Pullum (eds.) The Nature of Syntactic Representation. D. Reidel,
Dordrecht, §131-186é.

Gazdar, Gerald, and Geoffrey Pullum (1981) Bubcategorization,
constituent order and the notion "head”. In M. Moortgat, H.v.d.
Hulst and T. Hoekstra (eds.) The Scope of Lexical Rules. Foris
Publications, Dordrecht, 187-123.

Gazdar, Gerald, and bGeoffrey Pullum (1982) “Easy to solve". Linguistic
Analysis 11, 265-267,

Gazdar, Berald, and Ivan Sag (1981) Passive and reflexives in phrase
structure grammar. In J. Broenendijk, T. Janssen, and M. Stokhof
(eds.) Formal Methods in the Study of Language. Mathematical
Centre Tracts, Amsterdam, 131-152.

fazdar, 6erald, Geoffrey Pullum, and Ivan Sag (1982) Auxiliaries and
related phencmena in a restrictive theory of grammar. Language
58, 591-638.

Gazdar, Gerald, Geoffrey Pullum, Ivan Sag, and Tom Wasow (1982)
Coordination and transformational grammar. Linguistic Inquiry 13,
663-676.

Georgopoulos, Carol (1983) Trace and resumptive pronouns in Palauan., In
J.F. Richardson, M. Marks, and A. Chukerman {(eds.) Papers from the
Parasession on the Interplay of Phonology, Morphology, and Syntax.
Chicago: Chicago Linguistic Society, 134-1035,

Bunji, Takao (1981) A phrase structural analysis of the Japanese
language. MA dissertation, Ohio State University.

Bunji, Takao (1982) Apparent object control of reflexives in a
restrictive theory of grammar, Papers iIn Japanese Linguistics B8,
63-78.

Gunji, Takao (1983a) Generalized phrase structure grammar and Japanese
reflexivizatian, Linguistics and Philosophy &, 115-156,

Gunji, Takao (19B83b) Control of gaps and reflexives in Japanese. In
Proceedings of the Secornd Japanese~-Korean Joint Horkshop on Formal
Grammar, 151-186 (Logico-Linguistic Society of Japan).

PSG papers The ProGaw Manual, Appendix 3

Gunji, Takao (1983c) Topicalization in Japanese. In Proceedings of the
| COT Workshop on Hon-Transfornational G awwars, 21-27 (Tokyo:
Institute for New Generation Computer Technol ogy).

Harada, Vasunari (1961) Reduced coordination and trans*ormations, a
review of current approaches to semantic regularities. Li ngui stic
Research, forking Papers in English Linguistics 1, 64-74 (Tokyo
University English Linguistics Association).

Harl ow, Stephen (1983) Celtic relatives. York Papers in Linguistics
10, 77-121.

Hoekstra, Teun (1981) The base and the lexicon in lexical grammar. In
S. Daalder and M Cerritsen (eds.) Linguistics in the Netherlands
1981. Ansterdam North Hol | and, 93-102.

Hoekstra, Teun, Harry van der Hulst, and Mchael Hoortgat (1980)
Introduction to Lexical G awar. Dordrecht: Foris, 1-48.

Horrocks, Ceoffrey (1983) The order of constituents in Mdern G eek.
In G Gazdar, E.H Klein, and GK Pulium (eds.) Oder, Concord and
Constit uency. Foris Publications, Dordrecht, 95-112.

Horrocks, 6eoffrey (1984) The ECP, X -theory and the 'pro-drop'
par ameter. In N de Ceest i V. Putseys (eds.) International
Conference on Sentential Cowplewentation, Dordrecht: Foris.

| keya, Akira (1983) Japanese honorific systems in generalized phrase
structure grammar. In Proceedings of the ICOT Wrkshop on Non-
Transforwational Gawnars, 17-20 (Tokyo: Istitute for New
Generation Computer Technol ogy).

Jacobson, Pauline (1982a) Evidence for gaps. In P. Jacobson & GK
Pullum (eds.) The Nature of Syntactic Representation. D. Reidel,
Dordrecht, 187-228.

Jacobson, Pauline (1982b) Visser revisited. Papers fro* the 18th
Regi onal Meeting of the Chicago Linguistic Society, 218-243.

Jacobson, Pauline (1983) Connectivity in generalized phrase structure
grammar. To appear in Natural Language and Linguistic Theory.

Joshi, Aravind (1983) Factoring recursion and dependencies: an aspect of
tree-adjoining grammars (TAG and a conparison of sonme formal
properties of TAGs, GPSGs, PLGs, and LFGs. Proceedings of the 21st
Annual Heeting of the Association for Cowputational Linguistics
7-15.

Joshi, Aravind (1984) How auch context-sensitivity is required to
provi de reasonable structural descriptions: tree adjoining grammars.
In D. Dowty, L. Karttunen and A. Zwicky (eds.) Hatural [|anguage
processings psychol i ngui stic, comput ati onal , and theoreti cal
perspecti ves, New York: Canbridge University Press.

Joshi, Aravind, and Leon Levy (1982) Phrase structure trees bear nore
fruit than you would have thought. Anerican Journal of
Coaput at i onal Li ngui sti cs 8, 1-11.

PSG papers The ProGra» Manual, Appendix 3

Karttunen, Lauri (1981) Unbounded dependencies: slash categories vs.
dotted lines. In J. Groenendijk, T. Janssen, and M, Stokhof (eds.)
Formal Methods in the Study of Language. Mathematical Centre
Tracts, Amsterdam, 323-342,

Kay, Martin (1983) When meta-rules are not meta-rules. In K. Sparck-
Jones & Y. MWilks (eds.) Automatic Natural Language Parsing.
Chichester: Ellis Horwood, 94-116. Rlso: In M. Barlow, D.
Flickinger & 1.A. Sag (eds.) Developaents in Generalized Phrase
Structure Grammar: Stanford Korking Papers in Grammatical Theory,
Volume 2. Bloomington: Indiana University Linguistics Club, 69-91.

Klein, Ewan (19B0) A semantics for positive and comparative adjectives.
Linguistics and Philosophy 4, 1-45,

Klein, Ewan (1981a) The interpretation of adjectival, nominal, and
adverbial comparatives. In J. 6roenendijk, T. Janssen, and M,
Stokhof (eds.) Formal Methods in the Study of Language.
Mathematical Centre Tracts, Amsterdam, 381-398.

Klein, Ewan (1981b) The syntax and semantics of nominal comparatives In
M. Moneglia (ed.) Atti de Seminario su Tempo e Verbale Strutture
Quantificate In Forma logica. Presso 1 'Accademia della Crusca,
Florence, 223-253.

Kiein, Ewan (19B2) The interpretation of adjectival comparatives.
Journal of Linguistics 1B, 113-136.

Klein, Ewan (1983) Transduction of discourse representations. York
Papers in Linguistics 10, 123-145,

Klein, Ewan, and Ivan Sag (1982) Semantic type and control. In M.
Barlow, D. Flickinger & I.A., Sag (eds.) Developments in Generalized
Phrase Structure Grammar: Stanford Horking Papers in OGrammatical
Theory, Volume 2. Bloomingteon: Indiana University Linguistics
Club, 1-25. Also: to appear in fLinguistics and Philosophy 6.

Konolige, Kurt (1980) Capturing linguistic generalizations with
metarules in an annotated phrase-structure grammar. In Proceedings
of the 18th Annual Meeting of the Association for Computational
Linguistics, 43-48.

Maclaran, Rose (1982) The semantics and pragmatics of the English
demonstratives. PhD dissertation, Cornell University.

Maling, Joan, and Annie Zaenen (1982) A phrase structure account of
Scandinavian extraction phenomena. In P. Jacobson & G.K. Pullum
(eds.) The WNature of Syntactic Representation. D. Reidel,
Dordrecht, 229-282.

Monzon, Christina (1979) A constituent stbucture rule gramsmar of the
Spanish clitic positioning in complex and simple sentences. MA
Dissertation, University of Texas, Austin.

Moortgat, Michael (1981) Subcategorization and the notion ‘lexical
head’. In 8. Daalder and M. bGerritsen (eds.) Llinguistics in the
Netherlands 1981. Amsterdam: North Holland, 45-54.

PSG pi pers The ProGaw Hanual, Appendix 3

Hoortgat, Mchael (19S4) A Fregean restriction on nmetarules. In
Proceedings of the Fourteenth Annual Heeting of the Horth Eastern
Linguistic Society.

Napoli, D.J. (1963) Conparative ellipsis: a phrase structure analysis.
Linguistic Inquiry 14, 675-694.

Nerpanme, Jehn (1983) Tenporalia and strict [lexicalism In J.F
Richardson, M Marks, and A Chukerman (eds.) FMapers fro* the
Parasessio@n on the Interplay of Phonologys tiorphology; and SySitax.
Chi cago: Chicago Linguistic Society, 162-172.

Nozawa, Hideii (1984) A note on generalized phrase structure granmmar.
Journal of the Faculty of Foreign Studies 17, 45-78, Aichi
Prefectural University.

Partee, Barbara, and Emon Bach (1981) Quantification, pronouns, and VP
anaphor a. In J. Goenendijk, T. Janssen, and M Stokhof (eds.)
Forwal Hethods in the Study of Language. Mat hematical Centre
Tracts, Ansterdam 445-481.

Partee, Barbara, and Mats Rooth (1983) Generalized conjunction and type
ambi guity. To appear in Ch. Schwartze (ed.) Heaning, Use, and
Interpretation of Language. Berlin: de Guyter.

Pol lard, Carl and Ivan Sag (1983) Reflexives and reciprocals in English:
an alternative to the binding theory. In M Barlow, D. Flickinger,
and M Westcoat (eds.) Proceedings of the Second Hest Coast
Conference on Formal Linguistics. Stanford: Stanford Linguistics
Depart ment .

Pulluffl, Geoffrey (1982) Free word order and phrase structure rules. I'n
James Pustejovsky and Peter Sells (eds.) Proceedings of the Twelfth
Annual Heeting of the Horth Eastern Linguistic Societys 209- 220.
Graduate Li ngui stics St udent Associ ation, University of
Massachusetts, Amherst, Mass.

Pullum Geoffrey (1983a) Context-freeness and the conputer processing of
human | anguages. Proceedings of the 21st Annual Heeting of the
Association for Cowputational Li'nguistics, 1- 6.

Pullum Geoffrey and CGerald Gazdar (1982) Natural |anguages and context
free languages. Linguistics and Philosophy 4, 471-504.

Ri chardson, John (1982) Constituency and sublexical syntax. Papers
frot the 18th Regional Heeting of the Chicago Linguistic Society,
466- 476.

Rooth, Mats, and Barbara Partee (1982) Conjunction, type anmbiguity, and
wi de scope "or". In D. Flickinger, M Macken, and N. Wegand (eds.)
Proceedings of the First Hest Coast Conference on Portal
Li ngui sti cs. Stanford: Stanford Linguistics Department, 353-362.

Ross, Kenneth (1981) Parsing English phrase structure. PD
dissertation, University of Massachusetts at Amherst.

Frane & Rasdar

PSG papers The ProGram Manual, Appendix 3

Sag, Ivan (1982a) A semantic theory of "NP-movement" dependencies. In
P. Jacobsaon & G.K. Pullum (eds.) The WNature of Syntactic
Representation. D. Reidel, Dordrecht, 427-466.

Sag, Ivan (1982b) Coordination, extraction, and generalized phrase
structure. Linguistic Inquiry 13, 329-336.

Sag, Ivan (1983) On parasitic gaps. Linguistics and Philosophy é,
35-45. Also in In D. Flickinger, M. Macken, and N. Wiegand (eds.)
Proceedings of the First dHest C(Coast Conference on Formal
Linguistics. Stanford: Stanford Linguistics Departaent, 35-4¢
(1982).,

Sag, Ivan, and Ewan Klein (1982) The syntax and semantics of English
expletive pronoun constructions. In M. Barlow, D. Flickinger & 1.A.
Sag feds.) Developaents in Generalized Phrase Structure Gramsar:
Stanford Working Papers in Grasmatical Theory, Volume 2.
Bloomington: Indiana University Linquistics Club, 92-136

Saito, Mamoru (1980) An analysis of the tough construction in
Japanese., MA Dissertation, Stanford University.

Sampson, Geoffrey (1983) Cnntext-{ree. parsing and the adequacy of
context-free grammars. In Margaret King <(ed.) Parsing natural
language. London: Academic Press, 151-178@.

Schachter, Paul, and Susan Mordechay (19B3) A phrase structure account
of “nonconstituent" coordination. 1In M. Barlow, D. Flickinger, and
M. Westcoat (eds.) Proceedings of the Second Kest Coast Conference
on Formal Llinguistics, Stanford: Stanford Linguistics Department.

Sells, Peter (1983) Relative clauses in Irish and Welsh. York Papers
in Linguistics 18, 159-172,

Stucky, Susan (1981a) Free word order languages, free constituent order
languages, and the gray area in between. In V. A. Burke and J.
Pustejovsky (eds.) Proceedings of the 1Ith Annual Meeting of the
Korth fastern Linguistic Society, Department of Linguistics,
University of Massachusetts, Amherst.

. Stucky, Susan (1981ib) Word order variation in Makua: a phrase
structure grammar analysis, PhD Dissertation, University of
Illinois at Urbana-Champaign.

Stucky, Susan (1982) Linearization rules and typology. In D.
Flickinger, M. Macken, and N. Wiegand (eds.) Proceedings of the
First Hest Coast Conference on Fformal Linguistics. Stanford:

Stanford Linguistics Department, 60-780.

Stucky, Susan (1983) Verb phrase constituency and linear order in Makua.
In G. Gazdar, E.H. Klein, and G6.K. Pullum (eds.) Order, Concord and
Constituency. Foris Publications, Dordrecht, 75-94.

Udeo, Mariko (1982) The Japanese VP systen. MA thesis, University
College London.

Evans & Gazdar -188-

PSG papers The ProGram Manual, Appendix 3

Uszkoreit, Hans (1982) German word order in GPSG6. In D. Flickinger, M.
Macken, and N. Wiegand (eds.) Proceedings of the First Hest Coast
Conference on Formal Lingquistics. Stanford: Stanford Linguistics
Department, 137-148.

Uszkoreit, Hans (1983) A framework for processing partially ¢free word
order. Proceedings of the 21st Annual Meeting of the Association
for Computational Linguistics, 186-112.

Wasow, Tom, Ivan Sag, and Geoffrey Nunberg (1982) Idioms: an interie
report. In Preprints of the Plenary Session Papers, The XI1Ith
International Congress of Linguists, August 29 - September 4, 1982,
Tokyo: CIPL.

Weeda, Donald (1981) Tenseless that-clauses in gqeneralized phrase
structure grammar. Papers from the Seventeenth Regional Meeting of
the Chicago Linguistic Society, 404-410,

Fvans & Gazdar -186- April 1984

