
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



THE EDUCATIONAL IMPLICATIONS

OF ARTIFICIAL INTELLIGENCE

Margaret. A. Boden

This paper will be published in Thinking: An Interdisciplinary Report/
ed. W. Maxwell (Franklin Institute Press, Philadelphia, in 1983).

Cognitive Science Research Paper

Serial no: CSRP 017

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN



o i9



Educational Implications of AI — 1

THE EDUCATIONAL IMPLICATIONS OF ARTIFICIAL INTELLIGENCE

Margaret A. Boden

is paper will be published in Thinking: -An, Interdisciplinary Report,
. W. Maxwell (Franklin Institute Press, Philadelphia, in 1983).

Abstract

can help us to understand and improve thinking. Via its influence on
gnitive and developmental psychology, it promises to illuminate the
ocedural complexities of thought. Applied in the classroom, it can
ster autonomy and self-confidence in normal and handicapped children,
d provide tutorial aids significantly more flexible than those of
aditional CAI. Through nonspecialist courses in higher education, AI
n encourage the judicious computer literacy that modern societies will
ed.
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Educational Implications of AI

EDUCATIONAL IMPLICATIONS OF ARTIFICIAL INTELLIGENCE

The volcanic peaks of Fiji, described by Rupert Brooke as the most
fantastically shaped mountains in the world, remind me of the well-known
reason for climbing Everest: "Because it is there11. This reply may be
adequate justification of the mountaineer's obsession, but it would not
suffice to explain why people involved in education should be interested
in artificial intelligence (AI). AI is the attempt to write programs
enabling computers to do things that would involve intelligence if done
by people (Boden, 1977). Like every human activity, it has its own
peculiar fascination. But there are more pressing reasons why AI is
educationally relevant, reasons of both a theoretical and a practical
kind.

Many cognitive psychologists today look to AI for help in
understanding problem-solving, learning, and intelligence. Even
creativity might be illuminated by Al-ideas. Psychological theory can be
expected to influence pedagogical practice, and relevant recommendations
have already been drawn from the AI way of thinking about thinking. The
entry of AI into the classroom in the form of Al-based automatic tutors
calls for an appreciation of the differences between this approach and
the traditional view of computer-assisted instruction. Current work with
handicapped children suggests that Al-ideas can help them to realize
their intellectual and emotional potential. And the increasing use of
computers in schools and universities prompts one to ask whether social
life will be impoverished by the widespread introduction of
•'intelligent11 programs into educational institutions. For these various
reasons, then, educationists might be expected to take an informed
interest in AI.

Educational psychology and pedagogical practice alike are
unavoidably (if often implicitly) influenced by general psychology.
Today, theoretical psychologists increasingly draw concepts from AI and
computer science in asking questions about thinking. According to the
computational approach, thinking is a structured interpretative process.
In this view, AI agrees with many non-behaviorist psychologists — such
as Piaget, for instance. Indeed, AI agrees with Piaget in a number of
ways, including the commitment to formalism and cybernetics, and the
insight that psychology (being concerned with meaning and symbol-
manipulation) is semiotic rather than causal. However, Piaget gave only
vague answers to his questions about thinking and its development, and
also failed to make his questions about these matters sufficiently
detailed: his vocabulary of "disturbance,11 "regulation,11 and
"compensation" is inadequate to express the procedural complexity
involved (Boden, 1979; in press, b) . Nor is Piaget alone in this.
Non-computational psychologists in general tend to underemphasize mental
process, taking it for granted as unproblematic rather than enquiring
into it. This is hardly surprising, since computational concepts are
needed to express the content, structure, construction, comparison,
transformation, function, and development of differing representations
and information-processes. A central lesson of AI, then, is that our
theoretical aim should be to specify the procedural complexity of
thinking.



One way of attempting to do this is to write computer programs that
achieve an intellectual task that human thinkers can manage. Because
programmed procedures must be explicitly and rigorously defined, this
exercise may provide ideas as to what psychological processes might be
involved — and it will certainly help to locate lacunae in current
psychological theory. However, the way in which a program does
something may bear very little relation to the way in which human minds
do it. Careful comparisons need to be made between the various levels of
the program and psychological data, to assess the degree of match
between the artificial and the natural systems. In many cases, the
relevant data are not available. Often, there are methodological
difficulties in deciding just which aspects of the program one might
plausibly expect to be worth empirical testing (some aspects are
included merely in order to produce a program which will run, and have
no psychological interest). And many psychologists are not sufficiently
interested in the activity of programming to want to spend their time in
writing complex programs. For these reasons — not to mention a positive
commitment to working with human subjects — many psychologists
sympathetic to AI do not desert empirical research for the computer
console. Rather, they try to plan their experiments with computational
questions in mind, their studies being more closely focussed on the
procedural details of thinking than is usual.

In developmental psychology, for instance, the computational
influence has been largely responsible for the increasing interest in
microdevelopmental research. This studies the dialectical interplay
between action-sequences and changing cognitive representations
(theories, models, heuristics, choice-criteria . • . ) . The emphasis of
microdevelopmental studies differs from more traditional approaches in
emphasizing the specifics of action, on the assumption that the
procedural detail of performance (not only its overall structure) give
clues to the underlying competence. Admittedly, Piaget (for instance)
took seriously details of action which others had ignored as
trivialities. But the degree of detail aimed at in microdevelopmental
research is greater — and that which would be needed to specify an
adequate computational theory of these matters is greater still.

For example, a microdevelopmental study of children's learning to
balance blocks found that a non-balanced block may at first be ignored
as an apparently irrelevant anomaly, and only later be accepted as a
genuine counterexample challenging (and prompting improvement of) the
childfs current theory (Karmiloff-Smith & Inhelder, 1975). This fact is
not predicted, still less explained, by generalized talk of
"accommodation11. The experimenters suggested that time is needed for
"consolidation" of any theory — but they did not ask just what
consolidation is, and how it is effected. These questions would need to
be answered if "consolidation" were to be accepted within a
computational theory of cognitive change (Boden, in press, a).

Again, microdevelopmental work has cast doubt on the common
assumption that the classificatory power of 5- and 10-year-olds is very
similar (Thornton, 1982). This view relies on the fact that the product
of classification may be identical as between these two age-groups, but
it ignores the fact that the activity of sorting is significantly
different. The author's experimental design highlights many procedural
differences, and she interprets her observations in broadly
computational terms. She suggests that children of 10 treat the whole
classification as a single unit composed of interrelated classes, that



at 5 they proceed as though each class were independent of the others,
and that 7-year-olds attend to the relations between classes so as
spontaneously to effect the transition by organizing their initially
"juxtaposed11 procedures into more coherent systems. She admits that the
procedural content of concepts like these needs to be clarified if
cognitive development is to be understood, and is currently attempting
such a clarification with the help of Al-ideas. (With reference to bugs
and creativity, both discussed below, one should note that this author
takes her work to show that cognitive change need not be failure-driven,
a conclusion that is supported by the comparable finding that a child
asked to draw maps may spontaneously construct a more powerful map even
though the current one has always succeeded (Karmiloff-Smith, 1979).)

The educational potential of AI has been explicitly recognized by a
number of workers in the field. One of these is Seymour Papert, an ex-
colleague of Piaget who has been deeply influenced by Piaget's ideas
about autonomous constructive learning and the epistemological relevance
of the structure (not only of knowing but also) of what is known.
Papert's ideas are likely to be influential, not least because in
November 1981 he was invited by President Mitterand of France to advize
on a new Paris computer research centre (with a budget of $20 million a
year) devoted to the development of a low-cost pocket-sized computer
that will be available on a mass scale throughout the world. In a recent
book, Papert (1980) explores the promise of the nascent "computer
culture", focussing not on the many uses people will find for computers,
but rather on the power of computational environments to affect the way
people think and learn — and, crucially, the way they think about
themselves.

Papert reminds us that psychological theories of thinking usually
affect educational practice not via detailed hypotheses but via
relatively general ideas, and he identifies a number of "powerful ideas"
that enable one to think more confidently and effectively. An important
example is the notion of "bugs" in thinking. This concept originated in
computer programming, wherein one soon discovers the ubiquity of bugs.
Bugs are mistakes, but not just any mistakes: a false factual assumption
is not a bug, nor is a momentary slip in executing some procedure, nor
the choice of a procedure that is wholly inappropriate to the goal. A
bug is a precisely definable and relatively systematic erroneous
variation of a correct procedure.

Several Al-workers have attempted a classification of bugs. Sussman
(1975) distinguished several types in terms of general teleological
notions such as goal, brother-goals, and prerequisite; he wrote a self-
modifying learning program that diagnosed its bugs so as to criticize
and repair its self-programming accordingly. More recently, OfShea and
Young (1978) have analysed a large sample of childrenfs subtraction-
errors in terms of the deletion or overgeneral application of individual
rules, such as the "borrowing" rule. Brown and VanLehn (1980; Burton,
1981) have also studied subtraction, and their programs "BUGGY" and
"DEBUGGY" provide a notation for precisely describing bugs and a
diagnostic tool for identifying errors in students1 work. They are
developing a "generative theory of bugs", a set of formal principles
that can be applied to a particular (correct) procedural skill to
generate all the bugs actually observed in the data, and no others.
They expect their theory to predict the bugs that occur during the
learning of arithmetic, algebra, and calculus (and, possibly, operating
computer systems or controlling air traffic).



Their central idea is that many bugs are "patches" (a term drawn
from computer programming) that arise from the attempt to repair a
procedure that has encountered an impasse while solving a particular
problem. Various repair heuristics and critics are defined by the
theory, and the way in which a repair will be attempted is theoretically
independent of the reason why the procedure was incorrect in the first
place. This enables the authors to explain the phenomenon of "bug-
migration11, wherein a subject has a different bug on two tests given
only a few days apart. Using their diagnostic system, they find that
only certain bugs migrate into each other, and that they seem to travel
both ways. For instance, "Stops-Borrow-At-Zero" migrates into "Borrow-
Across-Zero", and vice-versa. The hypothesis is that bugs will migrate
into each other if (as in this example) they can be derived by different
repairs to the same impasse. Repair theory thus makes empirical
predictions about the detailed pattern of errors observed when people
are learning skills of thinking.

Despite its emphasis on error, "bug" is an optimistic rather than a
defeatist notion. For it implies that elements of the correct procedure
or skill are already possessed by the thinker, and that what is wrong is
a precisely definable error that can be identified and fixed. In this it
differs from the broader notions of "anomaly" and "counterexample," the
educational value of which has been stressed for instance in the
Piagetian tradition (Groen, 1978). As Papert puts it, the concept of
"bug" helps one to think about thinking in "mind-sized bites." These
insights led Papert to develop the LOGO programming language (usable
even by six-year-olds), in the conviction that AI in the classroom could
help children to a fruitful insight into their own thinking-abilities.
There is some evidence that the experience of LOGO-programming does
indeed encourage children to replace the passively defeatist "I'm no
good at this" with the more constructive "How can I make myself better
at it"? (Papert, 1980; Howe e£ jiL., 1979).

Papert thus stresses the educational value of the activity of
programming itself. But AI can enter the classroom in another way,
namely, in the form of tutorial programs. Automatic teaching-aids, of a
sort, have long been with us. B.F. Skinner's "teaching-machines", and
their descendants in "computer-assisted instruction" (CAI), can vary
their response to a limited degree with the student's level of
understanding, by means of branched programs with predefined choice-
points. But the flexibility of tutorial programs based in AI is much
greater, because they incorporate complex computational models of
students' reasoning that enable them to respond in more subtly adaptive
ways. A number of such programs already exist that are useful in limited
domains, and several groups around the world are working on these issues
(Sleeman & Brown, 1981). Only if a clear articulation of the knowledge
involved in the chosen domain has been achieved can it be embodied in an
instructional program — though before this embodiment it might be
usable by a human teacher in an instructional programme. "DEBUGGY", for
instance, is as good as or better than human diagnosticians at
discovering the (nearly one hundred) bugs that explain a student's
subtraction-errors. In the hands of a specially-primed teacher, it can
be put to use in the classroom. It has not yet been incorporated within
a remedial program, with which students can interact to improve their
subtraction skill; nor has it yet been presented in such a form as to be
usable as a diagnostic aid by any maths teacher. But these educational
developments are in the forefront of the authors' minds, one of Brown's
main aims having long been to develop diagnostic and remedial principles



that can be used by tutors — whether human or automatic — to help
people Learn (Brown & Burton, 1975). (Some practice with DEBUG6Y might
profitably be provided in teacher-training courses, even though it
cannot yet be adopted as a classroom tool.)

We have seen that AI helps to foster a constructive rather than
defeatist attitude to one's mistakes. But to emphasize the creative
potential of bugs is not to say that all creative thinking is a reactive
response to failure (Boden, in press, a). On the contrary, it often
appears to be grounded in a spontaneous exploratory urge. This much is
recognized by psychological accounts of creativity in terms of
"competence11, Madaptation-Level11, "functional assimilation11, and "play".
However, creativity cannot be understood by way of these concepts, nor
by any other structurally undifferentiated, quasi-quantitative, notions
of novelty and familiarity. For such concepts enable us to say little or
nothing about precisely how individual creative achievements come about.
A theory of creative thinking should be able to explain how these or
those novel thoughts are generated, how promising pathways are
recognised in preference to probable dead-ends, and how potentially
interesting ideas are distinguished from novel banalities.

The idea that AI might help answer these questions strikes many
people as paradoxical. It is commonly assumed that, because of its
programming provenance, AI must be fundamentally incapable of modelling
creativity. Were this so, its educationaL relevance would be gravely
limited, for a prime aim of education is to encourage creativity.
However, unless it is either random or somehow essentially mysterious,
creativity must be grounded in some systematic generative principles.
From the viewpoint of theoretical psychology, which assumes thinking
itself to be food for scientific thought, to regard creativity as
essentially mysterious is intellectually defeatist. And that creativity
cannot in general be a random process (though there is sometimes a
random aspect to it) is recognized by all who scorn the idea that a
barrowload of monkeys with typewriters could produce Hamlet. Rules or
generative principles there must then be, and since AI is specifically
concerned with transformations in generative structures one may expect
it to be relevant.

Although most AI studies do not attempt to model systems in which
genuinely novel ideas arise, or radical constraints are relaxed, some
relevant work has been done. For instance, Lenat!s (1977a; 1977b)
"Automatic Mathematician" starts off with some elementary concepts of
set-theory and a collection of heuristics (rules for combining,
transforming, and comparing concepts), and sets out to explore their
potential in an open-ended way so as to discover new mathematical
concepts. Significantly, the program does not merely churn out new
ideas, but focusses on some heuristic pathways as more likely to be
promising than others, and some novel ideas as more interesting than
others. Thus having discovered the natural numbers and decided to
explore this path, it then discovers and dubs "interesting" concepts
such as prime numbers, square roots, and maximally-divisible numbers
(with respect to which last the program developed two minor new results
in number theory).

Granted that the heuristics were thought up by Lenat rather than by
the program, it is significant — and surprising to many people — that
this sort of fruitful exploratory thinking can be formally represented
at all. The degree of creativity evinced by the program is, however,
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difficult to assess. The concept of creativity is itself so unclear
that it is not obvious just what would count as "discovering", or
"creating11, natural number theory (or anything else). Critics (Hanna &
Ritchie, 1981) have remarked that Lenat does not list all the concepts
regarded by the program as interesting: perhaps a high proportion were
mathematically trivial. It is not clear from the published accounts
whether some crucial "discoveries" were made possible only by the use of
unacceptably ad hoc heuristics, nor is it easy to draw the line between
an acceptably specialized expert heuristic and a disingenuous
programming trick. Certainly, many of the heuristics are highly domain-
specific, relevant only to set-theory. But it is a prime theoretical
claim of Lenatfs that intelligence depends heavily on expert knowledge,
as opposed to very general skills,

Lenatfs view that special-purpose heuristics are necessary to
creative thinking is consonant with the view of intelligence now held by
many people in AI. In the early days of Al-research, it was a common
assumption that very general thinking procedures suffice to solve most
problems. This faith was reflected in the title of one of the most
famous early programs, the "General Problem Solver" (Newell & Simon,
1963), and it motivated much of the early work in "theorem-proving".
Since then, it has become increasingly apparent that, while there are
some relatively general strategies (such as depth-first or breadth-first
search, for instance), the intelligent deployment of knowledge also
involves large numbers of domain-specific heuristics suited to the
structure of the subject-matter concerned.

Like the notion of "buggy thinking," this view of intelligence
contradicts the all-too-common idea that intelligence is a monolithic
ability, which one either has or lacks willy-nilly. If more ammunition
against so-called "Intelligence Tests" were needed, there is a full
arsenal here: the AI approach highlights the absurdity of trying to
assess people's intelligence by deliberately preventing them from using
any of their acquired expertise (Gregory, 1981, pp. 295-333).

Intelligence being the deployment of many special-purpose skills
rather than one general-purpose ability, learning and microdevelopment
must involve the gradual acquisition of myriad domain-specific facts and
heuristics. Many of these are presumably picked up during the initial
"immersion" in a problem-domain, when the unskilled person may appear to
be merely thrashing-around. Just how they are picked up is, however,
obscure. The microdevelopmental studies previously enjoined thus need to
focus on precisely what information is being attended to by the child at
a given time, and what micro-strategies she is using to deploy it, with
what results.

The case for asking these informational questions, with reference
to distinct procedural rules, has been argued in the context of an AI-
model of children's seriation-behavior. Young (1976) showed that
qualitative behavioral differences can result from the addition or
deletion of one simply definable Condition-Action rule. Moreover, the
use of a rule once it has been acquired depends on tests related to its
appropriateness in a particular informational context. For example,
even adults will use a trial-and-error seriation strategy if given a
large number of blocks, differing only slightly in length. Piaget
explained this in terms of "regression" from the formal to the concrete
operational stage, implying that the subject chooses a sub-optimal
method over an optimal one. However, the informational demands here



differ from those when there are only a few blocks, of obviously
differing lengths. The perceptual judgment of which block is the
largest (or smallest) cannot now be made "instantly/1 since the
information from so many blocks cannot be handled all at once.
Consequently, the optimal informational strategy is to compare the
blocks one-by-one. Young's study of seriation is in the
microdevelopmental rather than the macrodevelopmentaI category, not only
because he is able to explain minute details of behavior (such as the
stretching out of the hand towards a block that is not then picked up),
but because of his Al-based view that intelligent behavior is better
described in terms of many independent rules than in terms of holistic
structures.

Handicapped children can benefit greatly from an Al-based
computational environment (Weir, 1981; Weir & Emanuel, 1976). I have in
mind here not the uses of computers as gadgetry (controlling typewriters
and the like), practically important though these are. Rather, I am
thinking of recent research showing how AI can help encourage a variety
of intellectual and emotional abilities. That is, AI can be used not
only to study the mind of a handicapped person, but also to liberate and
develop it. Weir, a psychiatrist with a mastery of AI techniques, has
worked with a number of different handicaps and has started a long-term
project with the sponsorship of the MIT School of Education. Commenting
on the varied examples she describes, Weir points out that we have as
yet only scratched the surface of what is possible.

For example, her work with a severely autistic child suggests that
a sense of autonomous control (over oneself and others) may develop for
the first time as a result of the experience of interactive (L060-)
programming. The immediacy of results and the non-human context (in
which the threat of personal rejection or adverse judgment is removed)
combine to provide an inducement for the emotionally withdrawn child to
venture into a world not only of action, but of interaction. Interaction
with human beings follows, apparently having been facilitated by the
computational experience.

Again, one may wish to build on and improve the spatial
intelligence of severely palsied children. Since they lack normal
sensorimotor experience, one might expect them to suffer from
generalized disabilities of spatial cognition. But manipulative tests
are clearly of little value in assessing just what abilities a palsied
child has or lacks. The use of computer graphics (for which LOGO was
developed) provides a window onto the intelligence of these children,
one that allows diagnosis of their specific difficulties in
understanding spatial concepts. Weirfs aim being not just to understand
their minds but to help change them, she has the satisfaction of
reporting considerable advances in the children's intellectual
achievement and general self-confidence.

Linguistic defects, too, may be bypassed in assessments based on
computer graphics. For instance, a grossly dyslexic boy was found by
Weir to have a superior spatial intelligence, involving highly developed
metaknowledge in the spatial domain. The dissociation between linguistic
and spatial knowledge is, of course, consonant with the AI view of
intelligence discussed above. Much as I suggested above that "DEBUGGY"
mnight be useful for teacher-training, even though it is not ready for
use as a classroom tool, so ideas arising from Weirfs LOGO-projects
might be put to use in the training of teachers for the handicapped. But
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since it is a prime claim of her approach that the experience o1
interaction with a LOGO-machine is itself highly therapeutic, she woulc
recommend increased availability of computers for use by handicapped
people.

This raises an aspect of the "computer culture" awaiting our
children that has not yet been mentioned, namely, the enormous increase
in the number of computers used in society. By 1980 there were already
two million personal computers in use in the USA (Levin & Kareev, 1980),
and the market is expanding; and there is an increasing use of programs
by institutions (governmental, medical, educational, and commercial). In
their discussion of "the future with microelectronics", Barron and
Curnow (1979) point out that, as well as vocational training and adult
retraining, we shall need contextual education to ensure that everyone
is aware of the technology and its possible consequences. As users get
less expert, there will be an increasingly urgent need for relevant
nonspecialist courses in higher education. They conclude that "It should
perhaps be a target that every graduate has the capability to use
computer systems and a thorough understanding of their potential [and, I
would add, of their limitations}" (p. 231) .

Several universities are already running courses with these aims in
mind, and some people are already doing comparable work with school
pupils. For instance, we at the University of Sussex have found that one
can alert naive (and non-numerate) users, on their first day of
programming experience, to the facts that even an "intelligent" program
is incapable of doing many things that one might prima facie expect it
to do, and that even a nonspecialist user may be able to modify the
program so as to make it less limited. A conversational or visual
program, for example, is initially impressive, but the user soon
realizes that apparently "obvious" inferences about the meaning of the
input words or pictures are not actually being made by it. The
beginner-student can then attempt to supply the missing rule so that the
un-made inference can now be drawn. Since they themselves are altering
these complex systems, students gain confidence in the activity of
programming. More important, they realize that programs, however
impressive they may be, are neither godlike nor unalterable.

These insights would not readily be communicated merely by teaching
students to program — in FORTRAN, for example, or BASIC. They are best
conveyed by way of specially prepared teaching-demonstrations making use
of AI techniques (ours owe a great debt to the late Max Clowes, whose
imaginative vision of student-friendly computing environments inspired
us all). Educational projects such as these are socially important,
since for most people the ability to write usable programs will be less
important than the ability to use — and to avoid misusing — programs
written by others. This sort of computer literacy will be necessary if
people are to be able to take advantage of this new technology rather
than being taken advantage of by it.

At my own university, AI enters undergraduate teaching in a number
of ways besides that just mentioned. Experimental psychologists, for
instance, take a course with a strong AI element. Especially pertinent
here, because of its broad educational relevance and the fact that it is
already being used as a source of ideas in other institutions of higher
education, is the Cognitive Studies Programme.
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This is a three-year "B.A." degree course (situated within the
School of Social Sciences) in which students spend at least two-ninths1

of their time on AI. About half of their time is devoted to their
•'major11 subject: either philosophy, or social psychology, or
developmental psychology, or linguistics. Each of these, of course, is a
discipline that attempts in some way to study the systematic principles
and processes that make intelligence possible. And two-ninths more are
taken up either by another of the subjects on this list, or by further
AI. As their introduction, students take the "Computers and Thought11

course referred to in the preceding paragraph, and also a course which
sketches the theoretical connections between the several subjects
included in the Programme. The Programme is interdisciplinary rather
than multidisciplinary, for each tutor has a knowledge of several of the
areas and an intellectual commitment to highlighting their connections.
The AI element has turned out to be the intellectual core of the
Programme. Its status as primus inter pares results from its power to
clarify theoretical thinking about thinking, and .to provide concepts
applicable to any discipline concerned with the study of thought (we
hope to include majors in education, anthropology, and sociology in
addition to those already listed). Other universities and polytechnics
are embarking on similar educational enterprises, so that higher
education in psychology and the other human sciences will increasingly
include some acquaintance with AI ideas.

Widespread access to computing environments, especially in primary
or middle schools, may have social-psychological effects that
educationists should think about. The computer-junkie, or "hacker"
(Weizenbaum, 1976, pp. 115-126) has already appeared in infantile form
— so much so that a brochure for a children's computer-camp reassured
parents that their offspring would not be allowed to remain at the
terminal all day, that they would be forced to ride, swim, or play
tennis. Whether this presents a threat to normal social development is
not yet known. Research on the impact of such environments on young
children's play-patterns is currently being planned (Robert Hughes,
National Playing-Fields Association: personal communication), in the
hope that any unwelcome changes in play-behavior which ensue could be
forestalled in future.

One should not assume, however, that any changes in social
interaction would necessarily be unwelcome ones. For instance, there is
some evidence in the LOGO-projects that the greater self-confidence
induced by a child's experience of computing can lead to less anti-
social behavior. Moreover, programming contexts are in some ways less
oppressive than interpersonal ones, and so have a liberating potential
that could be useful in education. This potential has already been
mentioned with respect to the autistic child who was led to interact
with people after the safer experimentation in a computational
environment (and it has been observed also in the context of medical
interviewing (Card et^jj^*/ 1974)). A computer system is something to
which (not to whom) one can direct remarks that do not carry their usual
social consequences (Pateman, 1981). Interaction with the system thus
avoids the sort of face-saving manoeuvres which, in interpersonal
contexts, can inhibit the creative exploration of ideas: "I wonder what
it will do if I say this?" is significantly less threatening than "I
wonder what she will think of me if I say that?"



In sum, AI has much to offer to people involved in the theory or
practice of education. It can help both in the understanding and the
improvement of thinking. Through its influence on cognitive and
developmental psychology, AI promises to deepen our insight into the
procedural complexities of thought. Through its applications in the
classroom, AI's view of intelligence as a self-corrective constructive
activity can help foster personal autonomy and self-confidence. This is
so with respect to normal and handicapped students, children and adults.
Used as the basis of intelligent tutorial programs, AI can offer greater
aid and challenge to both student and teacher than the more familiar
forms of computer-assisted instruction. Last but not least, Al-ideas can
be used to convey a deeper understanding of the potential and
limitations of programs, in societies where computer literacy will be an
increasingly important aspect of the communal good. The satisfactions of
viewing AI are not those of scaling Tomaniivi or the Namosi Peaks. But
AI, too, is there: let us not fail to explore it.
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