
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Skeptical Theory of Inheritance
in Nonmonotonic Semantic Networks

John F. Horty 1- 8

Richmond H. Thomason'
David S. Touretzky 3

October 1987
CMU-CS-87-175 i:\

Philosophy Department
University of Maryland

College Park, MD 20742

J Intelligent Systems Program
University of Pittsburgh

Pittsburgh, PA 15260

'Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

material is based on work supported by the National Science Foundation under
Grants No. IST-8516313 and IRI-8700705.

ABSTRACT

This paper describes a new approach to inheritance reasoning in semantic networks
allowing for multiple inheritance with exceptions. The approach leads to an analysis
of defeasible inheritance which is both well-defined and intuitively attractive: it yields
unambiguous results applied to any acyclic semantic network, and the results conform to
our intuitions in the cases in which the intuitions themselves are firm and unambiguous.
Since the definition provided here is based on an alternative, skeptical view of inheritance
reasoning, however, it does not always agree with previous definitions when it is applied
to nets about which our intuitions are unsettled, or in which different reasoning strategies
could naturally be expected to yield distinct results. After exploring certain features of
the definition presented here, we describe also a hybrid (parallel-serial) algorithm that
implements the definition in a parallel marker-passing architecture.

i
UNIVERSITY LIBRARIFS

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

CONTENTS

1 I n t r o d u c t i o n 1

2 B a s i c c o n c e p t s 2

2.1 Notat ion 2

2.2 Inheritance 3

3 M o t i v a t i o n 4

3.1 Forward chaining 4

3.2 Restricted skepticism 6

3.2.1 Compound vs. direct conflicts 8

3.2.2 Preempt ion 9

4 D e f i n i n g i n h e r i t a n c e 1 1

4.1 Degree 11

4.2 The definition 13

5 D i s c u s s i o n 15

5.1 Nonmonotonicity 15

5.2 Soundness • 16

5.3 Stability 17

5.4 Intersections of credulous extensions 22

5.5 Decoupling 2 2

6 A h y b r i d i n f e r e n c e a l g o r i t h m 24

6.1 Parallel Marker Propagat ion Machines 2 5

ii

6.2 Skeptical inheritance on a P M P M 27

6.2.1 Degree 2 '* 28

6.2.2 The algorithm 30

6.3 Correctness of the algorithm 35

6.4 Performance of the algorithm 38

6.5 Discussion 39

7 C o n c l u s i o n 4 1

A A s k e p t i c a l r e a s o n e r in C o m m o n L i s p 42

A. l T h e Common Lisp code 43

A.2 Sample input files 48

A.3 Sample runs 49

iii

1 I n t r o d u c t i o n

This paper describes a new approach to inheritance reasoning in semantic networks allow
ing for multiple inheritance with exceptions. Like the previous approaches of Touretzky
[16] and Ether ington [4], bu t unlike many other approaches, such as those of Roberts and
Goldstein [13] or Fahlman [5], the approach presented here leads to an analysis of defeasi
ble inheritance which is both well-defined and intuitively at t ract ive: it yields unambiguous
results applied to any acyclic semantic network, and the results conform to our intuitions
in those cases in which our intuitions themselves are firm and unambiguous. Since the
definition provided here is based on an alternative, skeptical view of inheritance reasoning,
however, it does not always agree with these previous definitions when it is applied to nets
about which our intuitions are unsettled, or in which different reasoning strategies could
natural ly be expected to yield distinct results.

The paper is organized as follows. In Section 2, after setting out our notat ion and basic
terminology, we sketch a view of the general na ture of inheritance reasoning, drawing
upon a loose analogy between inheritance reasoning and ordinary deductive reasoning.
In Section 3, we isolate the principles underlying our particular approach to inheritance.
These principles are then organized into a rigorous definition in Section 4; the resulting
definition is examined in more detail in Section 5. An actual inheritance reasoner based
on the definition presented here has been implemented in Common Lisp; the program,
along with some sample inputs and runs, is contained in an appendix. Of more theoretical
interest, we describe in Section 6 a hybrid (parallel-serial) algorithm tha t implements the
inheritance definition presented here in a parallel marker-passing architecture.

We do not a t t empt in this paper to provide any systematic comparison of our approach
to nonmonotonic inheritance either with those of Touretzky [16] and Etherington [4], or
with other similar approaches to nonmonotonic reasoning; this project of comparison and
evaluation is begun in [17], where we set out a partial design space for the classification
of inheritance systems and investigate the consequences of some different design choices.
However, one aspect of our account deserves to be mentioned. While the previous theories
of Touretzky and Etherington (since they are based on a fixed point construction) tend to
associate a number of of different extensions with a single network, the skeptical theory
described in this paper always leads to a unique extension. Because it allows us to avoid
the complexities of dealing with multiple extensions, this skeptical approach may prove to
be more practical in some applications.

1

2 Basic concepts

2 .1 N o t a t i o n

Letters from the beginning of the alphabet (a, 6, c) will represent objects, and letters from
the middle of the alphabet (p, g, r) will represent kinds of objects. Letters from the end of
the alphabet (u ,v ,w ,x , y , z) will range over both objects and kinds.

An assertion will have the form x —• y or x -/+ y, where y is a kind. If x is an object, such
an assertion should be interpreted as an ordinary atomic statement: a —> p and b -f* p,
for instance, are analogous to Pa and ->P6 in logic; they might represent statements
like 'Tweety is a bird' and 'Jumbo isn't a bird'. If x is a kind, these assertions should
be interpreted as generic statements: p —> q and r /> for example, might represent
the statements 'Birds fly' and 'Mammals don't fly'. There is nothing in ordinary logic
very close in meaning to generic statements like these, since they can be true even in the
presence of exceptions. In particular, 'Birds fly' can't be interpreted to mean \fx[Px D Qx],
and 'Mammals don't fly' doesn't mean anything like *ix[Rx D - iQx] . 1 We describe a pair
of assertions having the form x —> y and x -/*> y as conflicting assertions. Note that
the conflicting assertions include not only logically contradictory pairs, like 'Tweety is a
bird' and 'Tweety isn't a bird', but also the kind of conflicts exhibited by pairs of generic
statements such as 'Birds fly' and 'Birds don't fly'.2

Capital Greek letters will represent networks, where a network consists of a set J of
individuals and a set K of kinds, together with a set of positive links and a set of negative
links, both finite subsets of (I x K) U (K x K). We identify the positive and negative links
in a network with our positive and negative assertions.

Lower case Greek letters will range over sequences of links, among which we single out
for special consideration the paths, defined inductively as follows: each assertion is a path;
and if a —» p is a path, then both a —> p —> q and a p -/+ q are paths. As this notation
indicates, paths are special kinds of link sequences—joined, in the sense that the end node
of any link in a path is identical with the initial node of the next link. It follows from their
definition that paths are subject also to two further constraints. First, a negative link can

xFor detailed argumentation on this point, with supporting linguistic evidence, see Carlson [3].
2Intuitively, these pairs are inconsistent. But whether the second is the negation of the first, and whether

they are logically inconsistent, are issues that would have to be settled by a logic of the generic plural.
Unfortunately, there is as yet no such logic.

2

occur in a path, if at all, only at the very end: a —• p -/+ q is a path, but a y+ p —• q isn't.
Second, an individual can occur only as the initial node of a path: p - > a ^ g isn't a path.

Paths will be said to enable assertions, or statements, much in the way that proofs
enable their conclusions: a path of the form x —» o —* y is said to enable the assertion
x —> y, and likewise, a path of the form x —> o -/* y is said to enable the assertion x y.
As this suggests, it is often natural to understand a path—like a proof—as representing
a particular chain of reasoning behind the assertion it enables. The path a —» p —• g, for
example, enables the assertion 'Tweety flies', while representing an argument like "Tweety
flies because he is a bird and birds fly." We describe describe a pair of paths as conflicting

paths if they enable conflicting assertions.

2.2 I n h e r i t a n c e

Since we identify the links in a net with assertions, a net can be viewed as a set of
hypotheses, or axioms. Let us say that an assertion A is supported by a net T if we can
reasonably conclude that A is true whenever all the links in T are true—if the information
contained in T would naturally lead to the conclusion that A. We want to know what
we can conclude from a given net; so our object is to define the general conditions under
which a net T supports an assertion A.

In the context of ordinary deductive logic, we often find ourselves in a similar situa
tion, when we want to know what statements are deducible from a given set of hypothe
ses. In that context, it is a common practice to approach the question in a roundabout
way. Instead of defining the relation of deducibility directly, one first characterizes the
deductions—sequences of statements representing certain kinds of arguments, or chains of
reasoning—and then defines a statement as deducible from a set of hypotheses if those
hypotheses permit a deduction of that statement.

Of course, the process of drawing conclusions from a set of hypotheses through in
heritance reasoning is quite different from the process of drawing conclusions through
deduction. Inheritance reasoning doesn't depend on the interplay of connectives, for ex
ample, since there aren't really any connectives, to speak of, in our semantic nets; and
even some of the connective-free structural rules governing classical deducibility (such as
Weakening) fail to hold for nonmonotonic inheritance. Still, we find it helpful in the case of
inheritance to follow a similar kind of roundabout strategy in describing the consequences
of a set of hypotheses. Instead of trying to specify directly the statements supported by

3

a given net, we first characterize the arguments or chains of reasoning—represented, now,
by pa ths—tha t are permitted by a net. As in the case of ordinary deducibility, this relation
between sets of hypotheses and the chains of reasoning they permit is really the central
idea; and it will be the primary focus of our at tention. Once we have identified the paths
t ha t a net permits , it is natural to define the s ta tements supported by a net by stipulating
t ha t a net supports a s ta tement jus t in case it permits a pa th enabling t ha t s ta tement .

We refer to the entire set of s ta tements a net supports as the theory of the net, and to

the entire set of pa ths it supports as its extension.

3 Motivation

In this section we examine several simple examples of nets and the pa ths they should

permit , in order to illustrate the principles underlying our general characterization of the

permission relation, which is then presented in Section 4.

3 . 1 F o r w a r d cha in ing

Consider, first, the simplest kind of case imaginable, a linear net Ti (Figure 1). Jus t to
fix an interpretat ion, let a = Tweety, p = Canaries, q = Birds, and r = Flying Things. Ti
explicitly contains the information, then, tha t Tweety is a canary, t ha t canaries are birds,
and tha t birds fly. Now given jus t this information, we would certainly want to allow a
chain of reasoning along the lines of "Since Tweety is a canary, a kind of bird, and birds
fly, Tweety flies"—so we want the net Ti to permit the compound pa th a —• p —> q —» r,
representing this argument . In jus t the same way, we want the net T 2 (Figure 2), with b =
Jumbo , 3 = Royal Elephants , t = Elephants , and u = Flying Things, to permit the pa th
b —> s —> t -/+ u , which represents an argument something like "Jumbo is a royal elephant,
a kind of elephant, and elephants don ' t fly; so Jumbo doesn' t fly."

These examples illustrate some of the compound reasoning pa ths t ha t can be con
structed by assembling the direct links contained in a net , bu t they don ' t yet tell us, when
we think of the construction as proceeding inductively, how these pa ths are to be assembled.
There are, of course, two natural options for assembling compound pa ths from direct links:
roughly, top-down and bot tom-up. Most t reatments of inheritance reasoning—including
those of Roberts and Goldstein [13], Fahlman [5], and Touretzky [16]—presume the top-

4

Figure 1: Tx Figure 2: T2

down approach. They are guided, more or less explicitly, by a picture of inheritance
according to which properties are imagined to flow downward through the semantic net,
from more general to more specific kinds and then finally to individuals, unless the flow
is interrupted, somehow, by an exception. Formally, this "property flow" picture leads
to the construction of compound permit ted pa ths through the process of backward chain

ing, according to which, a t the inductive step, a compound permit ted pa th of the form
x —• y —* a is assembled by adding the direct link x —• y to its permit ted end segment
y -+ a.

T h e present t rea tment , on the other hand, is intended to capture a kind of bot tom-up
approach to inheritance reasoning. This approach seems especially natura l when one wants
to push the analogy, as we do, between paths and arguments—since arguments , a t least as
they are usually represented (say, by proof sequences), tend to move from the beginning
forward. Formally, the bot tom-up approach leads to the construction of compound paths
through the process of forward chaining: a t the inductive step, the compound permit ted
pa th a —> x —y y is assembled by adding the direct link x —» y to its permit ted initial
segment a —• x\ and likewise, the compound permit ted pa th a —» x -/+ y is assembled by
adding the direct link x y to the permit ted initial segment a —• x. This adherence to
forward chaining is one of the central principles guiding our approach. Not only does it
embody a different metaphor for inheritance reasoning ("argument construction" instead
of "property flow"), but it leads also to different technical results, as illustrated by our

5

discussion of the net Vis in Section 5.5, below. 3

3.2 R e s t r i c t e d s k e p t i c i s m

In our approach, then, compound permit ted paths are constructed through forward chain
ing, bu t of course, not every pa th cons t ruc t ive through forward chaining from the ma
terials in a given net should be permit ted by tha t net. Conflicts can interfere, as in the
net T 3 (Figure 3). This net has come to be known as the Nixon Diamond, because of
the interpretat ion, due to Reiter, under which a = Nixon, q = Quakers, r = Republicans,
and p = Pacifists. W h a t T 3 tells us explicitly, under this interpretat ion, is t ha t Nixon is
bo th a Quaker and a Republican, tha t Quakers are pacifists, and tha t Republicans are not
pacifists. Unrestricted forward chaining would allow us to construct from this information
bo th the paths a —• q —» p and a —• r p. But since these two pa ths conflict, enabling
the conflicting s ta tements a —> p and a -f* p, we don ' t want T 3 to permit bo th these pa ths
a t once. Given jus t the information contained in T 3 , we wouldn' t want to conclude bo th
tha t Nixon is a pacifist and tha t he isn't .

W h a t you say about inheritance depends crucially on your t rea tment of nets like the
Nixon Diamond, which contain compound conflicting paths . One option is to suppose,
al though you can ' t permit bo th of two such paths , t ha t it is reasonable to permit one
or the other. In the case of the Nixon Diamond, for example, this s trategy would lead
us to the conclusion tha t either the pa th a —• q —• p or the pa th a —• r p should be
permit ted. W h a t lies behind this strategy is a kind of credulity or belief-hunger—the idea
tha t i t 's best to draw as many conclusions as possible from a given net , even at the cost of
making arbi t rary choices among conflicting arguments . As developed by Touretzky [16],
this strategy involves associating with each net containing compound conflicting pa ths a
number of consistent extensions, which he refers to as "grounded expansions," reminiscent
of the "extensions" of Reiter [12] or the "fixed points" of McDermot t and Doyle [10].
For this reason, because they can consistently be associated with a number of different

3Of course, the very description of the kind of network-based reasoning we study here as "inheritance''
reasoning itself seems to suggest the top-down or "property flow" picture—according to which individuals
are supposed to "inherit" properties from their superiors in a network roughly as one might inherit, say, the
family jewels from Aunt Martha. Once one adopts the bottom-up approach, the terminology of "inheritance"
is no longer so appropriate; but the terminology by now has become fixed, and it would introduce more
confusion than it would eliminate if we tried to characterize this kind of reasoning process in a phrase more
nearly neutral between the top-down and the bottom-up views.

6

Figure 3: T 3

extensions, Touretzky describes nets like these as "ambiguous."

We take a different point of view. Ra ther than supposing tha t an inheritance reasoner
should t ry to conclude as much as possible from a given net, we adopt a broadly skeptical

at t i tude , according to which conflicting arguments tend to neutralize each other. Our basic
idea, which will have to be explained in more detail, is t ha t a compound path is neutralized

by any conflicting path which is not itself preempted. Even without further explanation,
however, some of the consequences of this basic skeptical intuition should be clear. Given
jus t the information in the Nixon Diamond, for example, an inheritance reasoner guided by
our skeptical reasoning strategy, won't be able to conclude either t ha t Nixon is a pacifist
or t ha t he isn' t . I t won' t conclude tha t he is a pacifist, since the information contained
in the net provides the materials for constructing an argument to the contrary; it won' t
conclude tha t he isn't a pacifist, since the net also provides the materials for constructing
an argument t ha t he is.

Although our approach is based, generally, on the skeptical idea tha t such paths tend
to neutralize each other, the special brand of skepticism we adopt here is restricted in
two ways. First , we suppose tha t only compound paths can be neutralized at all; and
second, t ha t pa ths can be neutralized only by conflicting pa ths which are not themselves
preempted. Both of these restrictions are important ; we examine them in turn .

7

Figure 4: T 4 Figure 5: T 5

3 .2 .1 C o m p o u n d v s . d irect confl icts

As an example of a net containing conflicting direct pa ths , consider T 4 (Figure 4). (Again,
take a = Nixon and p = Pacifists.) According to the definition we provide, T 4 will permit
both the conflicting pa ths a p and a 7A p: our reasoner will conclude from T 4 bo th tha t
Nixon is a pacifist and tha t he isn't . This may seem odd, especially in light of our cautious,
skeptical approach to T 3 . I t may appear , from a certain point of view, t ha t T 4 presents
us wi th nothing bu t a limiting case of the phenomenon found in T 3 —so tha t consistency
of principle should lead us to conclude, if T 3 doesn' t permit either the pa th a —• q —> p
or the pa th a —• r p, tha t T 4 , likewise, shouldn' t permit either of the pa ths a —• p or
a p. Bu t it is also possible to isolate a point of view from which our different t rea tment
of the conflicting paths in T 3 and T 4 seems just right.

Remember, we are talking about the design of an inheritance reasoner, a mechanism
for drawing conclusions from a certain kind of database—a set of s ta tements tha t can be
represented as the set of links in a net. Now when we think of the net T 3 as a databa.se,
it is, of course, consistent: in fact, under the Nixon interpretation, all of the s ta tements
contained in T 3 are t rue. Obviously, no one would want a reasoning mechanism to draw
inconsistent conclusions from consistent information; so it follows at once tha t T 3 can't

permit bo th the pa ths a —> q —• p and a —> r p, since these two pa ths enable the
conflicting s ta tements tha t Nixon is a pacifist (a —> p) and tha t he isn't (a -f± p) . On the
other hand, when we look at T 4 as a database, it already contains bo th of these s tatements;

8

http://databa.se

so in this case, we are faced with the problem of drawing the appropriate conclusions from
information tha t is already inconsistent.

This is a notoriously difficult problem, but we find tha t it is bo th possible and useful to
adopt in the context of inheritance reasoning a proposal tha t was originally formulated by
Belnap, in [1] and [2], as a guide for deductive reasoning in the presence of inconsistency.
As a general principle, we propose tha t a reasoner ought to be able to conclude from a set
of s ta tements every s ta tement actually contained in tha t set, a t least—even if the set is
inconsistent. It follows, of course, t ha t if our inheritance reasoner were actually provided
with the information contained in T4—that Nixon bo th is and isn't a pacifist—it ought
to be able to conclude from this information both tha t Nixon is a pacifist and tha t he
isn't . Thinking of deductive reasoning, Belnap argues tha t the presence of inconsistent
information shouldn't enable a mechanical reasoner to derive arbi trary conclusions, as it
would in the case of a theorem prover using classical logic. We have shown in [15], however,
tha t this much of the motivation behind relevance logic is already built into inheritance
reasoning, even in the simple case of monotonic inheritance; and the arguments we provided
there carry over into the nonmonotonic case. Thus , the reasoner we describe in this paper
will conclude from T4, as it should, both tha t Nixon is a pacifist and tha t he isn't; but it
won' t then go on to draw irrelevant conclusions from this conflict: it won' t conclude, for
instance, tha t Nixon is a Democrat .

3 .2.2 P r e e m p t i o n

The second restriction on our broadly skeptical outlook is the idea tha t even compound
arguments are neutralized only by those conflicting arguments tha t are not themselves
preempted. This idea—that certain compound arguments can be, as we say, preempted

by others—really lies a t the heart of our approach, allowing us to transform a simple and
dogmatic skepticism into something much more interesting.

Again, we begin with an example, the net T 5 (Figure 5). This net results from adding
the link p r to Ti , and the interpretations of these two nets will overlap as well. Jus t
as before, we take a = Tweety, q = Birds, and r = Flying Things; bu t now let 's shift the
earlier interpretat ion so tha t p = Penguins, giving some plausibility to the new link p -/+ r .
If things are like this, what should we conclude about Tweety: does he fly or not? Well,
there are two pa ths to consider: a —> p —• q —> r, which enables the conclusion tha t Tweety
flies, and a —> p r, which enables the opposite conclusion. Since both of these paths are

9

compound, and they enable conflicting conclusions, simple skepticism would bar us from

reaching any conclusion at all. But evidently, in this case, we should reach a conclusion:

we should conclude, in fact, tha t Tweety doesn' t fly—since he is a penguin, and penguins

don ' t fly. The reason we are able to conclude here tha t Tweety doesn' t fly—even though

he is a bird, and birds fly—is tha t penguins happen to be a specific kind of bird, so tha t ,

in case of conflicts, the information we have about Tweety in vir tue of his being a penguin

should override whatever we would otherwise suppose to be t rue of him simply because he

is a bird.

This illustrates the central intuition behind preemption: that arguments based on more

specific information should be allowed to override arguments based on less specific infor

mation. As we define it, a pa th will be preempted in a net, roughly, when the net provides
the materials for constructing a conflicting argument based on more specific information.
Looking again a t the net Ts, we see tha t it bo th permits the pa th a —• p —> q (telling
us t ha t Tweety is a bird) and contains the link q —• r (telling us directly t ha t birds fly).
We want to say, however, t ha t the pa th a —• p —• q —• r (telling us t ha t Tweety flies,
because he is a bird and birds fly) is preempted in Ts, since the net also contains the link
P "A Q (telling us directly tha t penguins don ' t fly), and conclusions deriving from the node
p (penguins) are based on more specific information about a (Tweety) than conclusions
deriving from the node q (birds). In terms of the topology of Ts, i t 's natural to suppose
tha t the reason p can be said to provide more specific information about a t han q does is
simply tha t the net permits the pa th a —• p —• q (telling us bo th tha t Tweety is a penguin
and tha t penguins are a specific kind of bird) . So, restating in a way tha t incorporates this
analysis of specificity, we can say tha t the pa th a —• p —» g —• r is preempted in T$ jus t
because there is a node p such tha t T$ bo th contains the direct link p •/+ r and permits
the pa th a —• p —• q.

This idea of preemption can easily be generalized to apply to arbi t rary nets and paths .
We will say tha t a pa th of the form x —• r —> v —• y is preempted in a net T just in
case there is a node z such tha t z -f+ y G T, and either z = x or T permits a pa th of
the form x —> 7"i —> z —• r 2 —> v. Wi th exact symmetry, we say tha t a pa th of the form
x—• r —> v j / is preempted in a net V just in case there is a node z such tha t z —> y £T
and either z = x or T permits a pa th of the form x —> TX z —> T2 —> v.

10

4 Defining inheritance

Let 's use the symbol ' | = ' to s tand for the permission relation, so tha t T |= cr' means tha t
the net T permits the pa th a. We have now considered the central principles underlying our
approach to this idea—forward chaining, along with a certain kind of restricted skepticism.

It remains only to organize these principles into a rigorous definition.

4 .1 D e g r e e

Our adoption of forward chaining suggests tha t a bot tom-up, inductive definition should
be possible. In order to frame such a definition, however, we need to be able to associate
with each pa th a some measure of its "complexity" in a given net T, in such a way tha t
it can be decided whether T |= cr once it is known whether r |= cr' for each pa th a1 less
complex in T t han a itself.

The natura l thing to think is tha t we might be able to identify the complexity of a path ,
in this sense, with its length—but this won' t work, since we will often need to know about
longer pa ths before we can decide whether shorter pa ths are permit ted. As an example,
consider the net TQ (Figure 6). Here, it follows at once from our motivating principles tha t
the pa th x —> p —> y, which has length two, shouldn't be permit ted, since it is compound
and it conflicts with the unpreempted pa th x —* q —* r -/* y9 of length three. A more
complicated si tuation arises in the case of T7 (Figure 7). Here, the pa th x —» p —• y should
be permit ted: the potentially conflicting pa th x q —* r -/+ y no longer interferes, since
it is itself neutralized by the pa th x — ^ u ^ A r , which is longer still. Evidently,
as this net suggests, before we can decide whether a particular pa th is to be permitted,
we need to know about all the conflicting paths tha t might neutralize it, as well as all
the pa ths tha t might neutralize those conflicting paths , all the other paths tha t might
neutralize those, and so on.

There are several ways to order the paths in a given net so tha t an inductive definition, as
it steps through the ordering, will wind up considering all the pa ths relevant to a particular
pa th before it considers tha t pa th itself. We adopt here what seems to be the simplest such
ordering; later, in Section 6.2.1, we describe a slightly more complicated ordering, with
other compensating virtues. To get at our simple ordering, we first introduce an auxiliary
idea. As we recall from Section 2.1, a pa th is a joined sequence of links containing a
negative link, if at all, only a t the very end. Let 's say, now, tha t a generalized path is a

11

Figure 6:

t

Figure 7

12

sequence of links joined like an ordinary pa th , except tha t it can contain negative links

anywhere, and perhaps more than one. Formally, we can catch this idea by specifying

tha t each assertion is a generalized pa th , and that , if a is a generalized pa th , then both

a —> y and a /> y are generalized paths . (It follows, of course, tha t the generalized paths

include the ordinary paths.) Using this auxiliary concept of a generalized pa th , we now

define the degree of a path a in a net T—written, d e g r (a) — a s the length of the longest

generalized pa th in T from the initial node of a to its end node. Unlike length, degree is

not a property of pa ths alone, but of paths in a net . For example, we have

d e g r 6 (x - > p ^ y) = 3 ,

d e g r ? (x ^ p ^ y) = 5 ,

since in T 6 , the longest generalized pa th from x to y (which happens to be an ordinary
path) has length three, while T7 contains a (true) generalized pa th from x to y of length
five.

As it tu rns out , this idea of degree provides an acceptable notion of pa th "complexity"

for an inductive definition of |=, the permission relation between nets and paths : it can be

decided whether T \= a entirely on the basis of information regarding paths whose degree

in T is less t han tha t of a, along with information about the direct links contained in T
itself. On the other hand, in order to assure tha t d e g r (a) should always be well-defined,

we need to restrict our a t tent ion to nets which are acyclic, in the sense tha t they contain

no generalized pa ths whose initial nodes are identical with their end nodes. (This is a

common restriction; much of the analysis in Touretzky [16], for instance, also applies only

to acyclic nets.)

4.2 T h e def ini t ion

Given this idea of degree, then, and restricting ourselves to acyclic nets, we can now present

our definition of the permission relation. Although the definition is inductive at heart , it

has the overall s t ructure of a definition by cases: it deals separately with compound paths

and with direct links (non-compound paths) . Only in the case of compound pa ths is there

any need to resort to induction; direct links can be handled all a t once, as follows.

Case I: a is a direct link. Then r |= a iff a G T.

13

It is impor tant to note tha t even if a is a direct link, it could easily tu rn out tha t deg r(<r) >
1, since T might contain a compound generalized pa th from the initial node of a to its end
node. On the other hand, if d e g r (a) = 1, then the pa th a has to be a direct link. Thus , in
addition to taking care of all the direct links at once, whatever their degree, Case I serves
also as the basis clause for the induction on degree which extends the permission relation
from direct links to compound paths . The inductive clause is as follows.

Case II: a is a compound pa th with, say, deg r(cr) = n . As an inductive hypothesis, we

can suppose it is settled whether T |= a1 whenever d e g r (a ') < n. There are then two

subcases to consider, depending on the form of cr.

1. a is a positive pa th , of the form x — < 7 i - » u —• y. Then T |= a iff

(a) T |= x —• <J\ —• u,

(b) u -+ y e r ,

(c) X-^ygT,

(d) For all v such t ha t T |= x —> r —> v with v -f+ y G T, there exists z such

tha t z —+ y €T and either Z = XOTT\=X-+TI—+Z-+T2—>V.

2. a is a negative pa th , of the form x —> ax —• u y. Then T |= a iff

(a) T |= x —> <j\ —> u,

(b) u -h y e r ,

(c) x - * y £ I \

(d) For all v such tha t T \= x —• r —• v with v -+ y 6 T, there exists £ such

tha t 2 7A y 6 T and either 2 = x o r T | = x - • r i — > z — > r 2 — > v .

It should be clear tha t this definition of the permission relation accurately represents
the general approach to inheritance reasoning described in Section 3. Case I tells us
tha t any s ta tement actually contained in a net should be permit ted by tha t net. The
two subcases of Case II, dealing respectively with positive and negative compound paths ,
are perfectly symmetric. In each subcase, the clauses (a) and (b) capture the idea of
forward chaining: compound paths are permit ted by a net only if they can be constructed
by adding direct links from the net to initial permit ted segments of those pa ths . The
clauses (c) and (d) take care of conflicts. Wha t (d) says is tha t , even if a compound pa th
is cons t ruc t ive through forward chaining, it can be permit ted only if each potentially
conflicting compound pa th is preempted. Of course, only compound conflicting pa ths can
actually be preempted, since preemption involves the intermediate nodes of a path , and

14

direct links have no intermediate nodes; but if, for skeptical reasons, we don't want a path
to be permitted which conflicts with an unpreempted compound path, we certainly don't
want to permit a path that conflicts with a direct link. This is the force of the clause (c).

Both the clauses (a) and (d) in the inductive step refer to other paths of a certain form
permitted by the net; but this is no problem, because at any step in the induction, paths
of this form will always have a degree less than that of the path being considered.

5 Discussion

It is easy to see that the definition of the permission relation presented in Section 4 yields
the advertised results applied to the nets Ti through T5 from Section 3. In this section
we explore certain properties of the definition. We show that the treatment of inheritance
embodied in this definition is nonmonotonic, that it is sound, and that it has the property
of atomic stability. We show that the skeptical theory of a network is not identical with
the intersection of its credulous theories, and that it allows for decoupling of conclusions.

5 .1 N o n m o n o t o n i c i t y

The analysis presented here is put forth as an analysis of nonmonotonic inheritance: paths
permitted by a net may no longer be permitted once that net is supplemented with addi
tional links; statements supported by a net may no longer be supported once that net is
supplemented with additional links.

The simplest kind of counterexample to monotonicity is illustrated by the nets Tg and
T9 (Figures 8 and 9). Here, T8 permits the path a —> q —* p, and so supports the statement
a —* p. On the other hand, T9 neither permits the path nor supports the statement; but
of course T$ C r 9. From the standpoint of our general skeptical motivation, this is as
it should be. Imagine that the nodes in these two nets are interpreted as in the Nixon
Diamond, with a = Nixon, q = Quakers, and p = Pacifists. Then T8 gives us the materials
for constructing an argument, represented by the path a —• q —• p, for the conclusion that
Nixon is a pacifist; but in the net Tg, both this argument and its conclusion are neutralized
by the direct statement that Nixon is not a pacifist.

A different kind of counterexample to monotonicity—relying on preemption rather than
a conflict with direct links—is provided by the nets Ti and T5 from Section 3. Again, Ti

15

Figure 8: T 8 Figure 9: T 9

is a subset of T 5 . However, Ti permits the pa th a —• p —> g —• r, and so supports the

s ta tement a —• r; T 5 neither permits the pa th nor supports the s ta tement .

5.2 S o u n d n e s s

A reasoning mechanism should be sound, at least in the sense tha t it never leads from a
consistent set of assumptions to an inconsistent conclusion. Classical deductive systems,
for example, are sound in this sense; but of course, if a reasoner based on classical logic
were ever supplied with an inconsistent set of assumptions, it would then support any
conclusion at all.

Like classical logic, the inheritance reasoner we describe here is also sound in this
s tandard sense. However, as we mentioned earlier, in Section 3.2.1, it is designed to behave
more sensibly t han classical logic in the presence of conflicting information. Although this
reasoner will conclude from a network containing conflicting s ta tements every s ta tement
actually contained in t ha t network, the effect of these conflicts is localized: they don' t lead
the reasoner to other, possibly irrelevant conclusions. The following theorem shows tha t
the reasoner we describe won' t ever draw conflicting conclusions from a network unless
t ha t network already contains conflicting s ta tements , as conflicting direct links; and even
if the network does happen to contain conflicting s ta tements , our reasoner won' t draw any
conflicting conclusions tha t aren ' t already contained in the network—it will never draw
any new conflicting conclusions.

16

T h e o r e m llfT supports both x - * y and x -/+ y, then both x —• y G T and x y G T.

Proof . Suppose T supports bo th x y and x -/+ y, but doesn' t contain bo th x —> y and
x y. Then either (i) T supports exactly one of these s ta tements only through compound
pa ths , or (ii) T supports bo th of these s ta tements only through compound paths . It is easy
to see from clauses II. l .(c) and II.2.(c) of the inheritance definition tha t (i) is impossible:
if T contains either s ta tement , it can ' t permit a compound pa th enabling the other. We
prove the theorem by showing tha t (ii) is impossible as well.

Suppose (ii) is t rue . Then T permits some pa th of the form x —• Gi —• ux —* y, and
also pa th of the form x —» a2 —• u2 •/+ y. Since T permits a compound pa th from x to y, it
follows from II . l . (a) - (b) and IL2.(a)-(b) tha t T permits some pa th of the form x —> r —• v
with either v —> y G T or t; y+ y G I \ Let x —• r ' —> i/ be a pa th of minimal degree satisfying
this condit ion—that is, T permits x —• r ' —• v1 and either v1 —• y G T or v' 7A y G T; and
there is no p a t h x —* r" —> v" with d e g r (x —• r" —• v") < d e g r (x -» r ' -» v') such tha t T
permits x —• r" —• v" and either v" —> y G T or v" y G I \ Suppose v1 —* y G I \ From the
assumption tha t (ii), it follows tha t there are no direct links in T from x to y. Therefore,
since T permits x —• o*2 —• u 2 y, it follows from IL2.(d) tha t there must be a node 0

such tha t r |= x —• ri —• 2 —• r 2 —> v' and z y G T. From this it follows tha t T permits
x —• r2 —• 2, where d e g r (x —* r 2 —• 2) < d e g r (x —• T' —• t/) and 2 —» y G T or 2 y G T.
Therefore, the pa th x —• r ' —> v' cannot be of minimal degree, contrary to assumption. If
v1 -f± y G T, it follows likewise from the assumption tha t T permits x —• <j\ -» u x y and
I l . l . (d) t ha t x -+ T9 —> t;' cannot be of minimal degree. I

5.3 S t a b i l i t y

The property of stability is the property of being insensitive in certain ways to redundant
information. In general, there are a number of different stability properties we might choose
to require in an acceptable reasoner, and the differences between them can be subtle. Just
to illustrate the kind of thing tha t goes wrong when an inheritance reasoner is entirely
unstable, however, let 's consider for a moment a shortest-path reasoning algorithm, such
as tha t suggested by Fahlman [5], which resolves differences among conflicting paths by
favoring the shortest.

Consider the nets Tio and Tu (Figures 10 and 11). Evidently, T n results from Tio
simply through the addition of the link a —• r, which is both atomic and redundant—in

17

s

Figure 10: T10 Figure 11: Tn

the sense tha t shortest-path reasoning applied to Tio already tells us t ha t the s ta tement
represented by this link is t rue. Still, even though this atomic link is redundant from the
s tandpoint of Tio, adding it to Tio changes the semantics of tha t net , according to the
shortest-path approach to inheritance reasoning: while Ti0 supports the s ta tement a s
(since the pa th a —+ p —> q -/* s is shorter t han the conflicting pa th a —• p —• g —• r —» s) ,
the new net Tn would support the s ta tement a —• s instead (since the pa th a —* r —• s is
now shorter t han the conflicting pa th a —> p —* q -/+ s).

The example works out differently according to the analysis of inheritance presented
here (as well as tha t of [16]). On the present analysis, it is clear tha t the two nets Tio
and T n support exactly the same statements . In particular, T n doesn' t now permit the
pa th a —> r —* s; so, like Tio, the net Tu doesn' t support the s ta tement a —• s. This
si tuation illustrates the following atomic stability theorem, which shows tha t the reasoner
we describe is stable with respect to redundant atomic s ta tements in a way tha t shortest-
pa th reasoning is not .

T h e o r e m 2 For an atomic statement A} if T supports A, then for any statement B,

T U {A} supports B if and only ifT supports B.

The theorem is an immediate consequence of the following more general lemma, which
establishes a connection between the set of pa ths permit ted by a net, and the set of paths
permit ted once tha t net is supplemented with a redundant atomic s ta tement .

18

L e m m a 1 (A) Suppose Y |= a —> 6 —• p. It follows that, ifY |= a, then Y U {a —• p} |= cr;

and a/50 i/iai, i'/ r U {a —• p} (= cr, then Y f= a*, where a* is the result of replacing

any occurrence of the link a —* p in a by the path a — * 6 — • p. Likewise, suppose

Y |= a —• 5 p. /£ i/iera follows that, if Y \= a, then Y U {a 7A p} |= a ; and a/50, */

r U {a p} |= a, i/iai Y f= a*, where a*, now, is the result of replacing any occurrence of

the link a -/+ p in a by the path a — • 6 -/+ p .

Proof . We prove only (A); the proof of (B) is similar. First , suppose o is a direct link.
Let r |= <r. Then we know from Case I of the definition tha t a G T; so a G T U {a —• p}; so
r U {a —• p} |= a. Now let T U {a —» p} |= a. If a ^ a —> p, then cr G T, and also a = a*;
so T |= a*. If a = a —• p, then cr* = a —» <5 —• p; so Y |= a* by assumption.

Next, suppose a is a compound pa th , with deg r u { a _> p }(a) = n. As an inductive hy
pothesis, we suppose tha t for all a1 with d e g r u { a - f p y (a') < n, we know bo th (i) tha t
T U {a -+ p} |= a1 if T |= a1 and (ii) t ha t Y f= a'* if Y U {a p} |= a ' . To carry out the
inductive step of the proof, we need to consider two subcases, depending on whether a
is a positive or a negative compound path; and for each subcase, it is necessary to show
bo th t ha t T U {a -+ p} |= o if Y \= <7, and tha t Y \= a* if Y U {a p} |= a. The cases
are largely similar; we show here only tha t if a is a positive compound pa th , of the form
x —• &i —» u —• y, then T |= a* whenever T U {a —• p} |= a.

Suppose t ha t Y U {a —» p} (= a. We know from Case II. 1 of the definition tha t

(a) T U {a —• p} f= x —> ai —• u,

(b) u —> y G T U {a —> p } ,

(c) x / > y £ T u { a ^ p } ,

(d) For all v such tha t r u { a — > p} f= x -+ r —» i; with v-/+y£Yu{a—+ p} ,
there exists z such tha t £ - » y G r u { a — > p} and either z = x or Y U {a —>
p} f= x —• 7i —> 2 —• r 2 —• v.

From (a) and (ii) of the inductive hypothesis, we can conclude tha t

(a*) T f= (x -+ <7i -> u)*.

We know tha t u —> y a —• p, since a is an individual and u must be a kind; so we can
conclude from (b) t ha t

19

(b*) u -+ y e r .

It follows directly from (c) tha t

(c*) x ^ y $ T .

Finally, suppose tha t , for some v, T |= x —> r —> v with v y € I \ Of course, v / ^ t / G
r U {a —• p} as well, and we know from (i) of the inductive hypothesis tha t r U {a —• p} |=
x —* r —> v. Therefore (d) above tells us tha t there exists z such tha t 2 - > y 6 r u { a - ^ p }

and either 2 = x or T U {a -> p} |= x —> ri —• 2 —• r 2 —• v. Again, though, since

z must be a kind, we know tha t z —• y ̂ a —> p, and so we have 2 —• y E I \ If

T U {a —> p} [= x —• r! —• 2 —• r 2 —• v, then we can conclude from (ii) of the inductive

hypothesis t ha t T |= (x —> TX —• z —> r 2 —• v)*. Thus , we have

(d*) For all v such tha t r |= x —* r —• t; with t; 7^ y G T, there exists z such

tha t z —* y € T and either 2 = x or T |= (x —• r x —* 2 —> r 2 —> v)*.

And from (a*) through (d*), we can conclude tha t T \= a*. I

W h a t Theorem 2 shows, again, is t ha t you can' t affect the set of s ta tements supported
by a net by supplementing it with atomic s ta tements it already supports . T h e analog to this
theorem fails, however, when a net is supplemented with a redundant generic s ta tement .
To see this, consider the nets r i 2 and Ti3 (Figures 12 and 13). Here, T i 2 doesn' t permit
the pa th a —• p —• 9 —+ r —+ s (since its initial segment a —• p —» g —» r is preempted);
so this net doesn' t support the s ta tement a —• s. On the other hand, since r i 2 permits
the pa th q —> r —• 5, it does supports the generic s ta tement q —• 6. Evidently, Ti3 results
from T i 2 only through the addition of this s tatement , redundant from the s tandpoint of
r i 2 . Yet, Ti3 does now support the s tatement a —• s, since Ti3 permits a —> p —> q —> s.

I t ' s hard to know what to make of examples like this. We view it almost as a criterion
of acceptability in an inheritance reasoner tha t it should exhibit atomic stability. No one
has ever produced a counterexample to atomic stability with any intuitive force; and it
was, in par t , the failure of this proper ty in shortest-path reasoners t ha t motivated both
the theory of Touretzky [16] and the present analysis. When it comes to generic stability,
however, the ma t t e r is more complicated.

20

Figure 12: T 1 2 Figure 13: T 1 3

On one hand, it is surprising—at least from the s tandpoint of our analogy between
inheritance reasoning and deductive reasoning—to find tha t an acceptable inheritance
reasoner might fail to exhibit generic stability. The deductive analog of a network is a set
of hypotheses, or axioms; the s ta tements supported by a network are like the theorems
derivable from those axioms. From the standpoint of our analogy, then, the failure of
stability is like a si tuation in which the consequences of a set of axioms would be affected
if the axioms were supplemented, not jus t with an arbi trary s ta tement , but with a theorem

derivable from those axioms—and this makes little sense even from a general deductive
point of view, allowing for the possibility of nonmonotonic deductive systems. 4 On the
other hand, even though it indicates a break in our analogy between inheritance and
deduction, it is possible to argue tha t the kind of generic instability exhibited above might
actually tu rn out to be a desirable property in an inheritance reasoner: it suggests a way
in which the graph-theoretic na ture of inheritance reasoning allows a kind of sensitivity to
the s t ructure of arguments tha t is difficult to achieve in deductive systems.

To illustrate, we supply and Ti3 with the following interpretation, inspired by an
example from Sandewall [14]: a = Moby, p = Whales, q = Mammals , r = Land-dwellers,
s = Air-breathers. On this interpretation, what T 1 2 tells us directly is tha t Moby is a
whale, t ha t whales are mammals , tha t mammals are land-dwellers, t ha t whales aren ' t

4 I n a deductive system with consequence relation h, nonmonotonicity is the principle that if T h A then

r U A h A] stability is the principle that if T h A then V U {A} h B iff T h B. Even nonmonotonic

consequence relations—such as the relation hp defined by McCarthy [9]—tend to be stable.

21

land-dwellers, and tha t land-dwellers are air-breathers. Given jus t this information, we
shouldn' t be able to conclude tha t Moby is an air-breather: only land-dwellers are known
directly to be air-breathers, and we can conclude tha t Moby isn't a land-dweller, since he is
a whale. Of course, Ti2 does support the conclusion tha t Moby is a mammal , and also the
conclusion tha t mammals axe air-breathers. But we can ' t pu t these two ideas together in
T 1 2 to conclude tha t Moby is an air-breather. In T ^ , the argument showing tha t mammals
are air-breathers depends on their being land-dwellers. Therefore, we shouldn' t be able to
apply this general conclusion about mammals to Moby, since the general conclusion holds
of mammals only in vir tue of their being land-dwellers, and we know of Moby in particular
t ha t he is not a land-dweller. It is different in Ti3. Here, the fact t ha t mammals are
air-breathers no longer depends solely on the fact tha t they are land-dwellers. According
to Ti3, mammals would be air-breathers even if they weren' t land-dwellers. Therefore, the
fact tha t Moby in particular isn't a land-dweller shouldn' t interfere in with the general
argument tha t , since he is a mammal , he is an air-breather.

5.4 In ter sec t ions of credulous e x t e n s i o n s

We mentioned in Section 3 t ha t the credulous (or belief-hungry) approach tends to as
sociate with nets containing compound conflicting paths a number of different consistent
extensions, or fixed points. It is tempting, therefore, to suppose tha t the set of paths
permit ted by a given net under the present skeptical analysis might simply be the m-
tersection of the various extensions associated with tha t net according to the credulous
analysis provided by [16]. However, nets like r 1 4 — w h i c h have the topology of nested Nixon
Diamonds—show tha t this is not so. In this case, we have T i 4 \= a —> p -/+ q. The poten
tially conflicting pa th a —> 5 —> t —» q poses no problem; this pa th is not permit ted, since
its initial segment a —• s —• t is itself neutralized by the pa th a —* r -f+ t. But the pa th
a -* P ~h Q i s n ' t contained in all the credulous extensions associated with this net; some
contain instead the pa th a —> 5 —• t —• q.

5.5 D e c o u p l i n g

In inheritance reasoners tha t construct inference paths through backward chaining, such
as t ha t of Touretzky [16], conclusions about items in a network depend on conclusions
about their immediate superiors. According to Touretzky's theory, for example, a pa th of
the form x —> u —» a —• y will belong to an extension only if the pa th u —* a —• y also

22

s

•

Figure 14: r 1 4

belongs to tha t extension; a pa th of the form x —• u —» cr y will belong to an extension
only if u —> a -/+ y does.

As the net T ^ shows, our analysis allows items in a network to be decoupled from
their immediate superiors, in the sense tha t it allows particular items to possess properties
possessed by none of their immediate superiors. Here, we have Tis |= a —* p —> q ̂ s. The
potentially conflicting pa th a —> p —* r s poses no problem since its compound initial
segment a —• p —• r conflicts with the direct link a / > r . On the other hand, though r 1 5

permits a —• p —> q —• 5, and so supports the s ta tement a —* 3, the net does not permit
the pa th p —• g —• 5, and indeed does not support the s ta tement p —• 5.

This kind of decoupling can seem a bit anomalous if one's ideas about inheritance
reasoning are conditioned by the top-down or "property flow" approach, according to
which individuals are supposed to inherit their properties strictly in virtue of belonging to
certain classes of things—their ancestors in the network—which possess those properties.
The problem is tha t , while Ti$ supports the s ta tement tha t the individual a is an 5, it is
unclear how a could have inherited this property. After all, the only immediate ancestor
of a in the network is the node p. According to the top-down approach, then, a must
have inherited all the positive properties it does inherit simply in virtue of being a p; if it
possess any part icular property, such as being an 5, this could only be due to the fact tha t
p's possess tha t property. But as we have seen, Ti$ doesn't support the s ta tement tha t p's
are s's.

23

s

Figure 15: Tis

Against the background of the bot tom-up or "argument construction" view of inher
itance reasoning, however, the si tuation presented by this example is perfectly coherent.
Since Tis contains the materials for constructing unpreempted, compound arguments en
abling bo th the conclusion tha t p's are s's and the conclusion t ha t p's are not s 's, our
broadly skeptical point of view forces us to withhold judgment , endorsing neither of these
conclusions. T h e individual a, though, is a particular p for which the general kind of ar
gument enabling the conclusion tha t p's are not s's is blocked: t ha t argument depends on
the information tha t p's are r ' s , but Ti$ tells us explicitly t ha t a is not an r . Since the
general argument t ha t p's are not s's is explicitly blocked for this part icular individual,
then, it cannot conflict in the case of a with the argument tha t p's are s's; so we conclude
t ha t a is an 5.

6 A hybrid inference algorithm

Inheritance networks are at t ract ive as formalisms for knowledge representation because
they allow information to be organize in such a way tha t certain impor tant kinds of
inference can be carried out through efficient graph-searching techniques. In particular,
ever since their inception in the work of Quillian [11], network representations have been
associated with parallel inference schemes. This tendency culminated in the NETL system
of Fahlman [5], which combined a nonmonotonic network representation language with a

24

massively parallel reasoning architecture, known as a Parallel Marker Propagat ion Machine
(P M P M) . Unfortunately, the NETL representation language was never provided with a
clear semantics of its own, independent of the associated inference algorithms; and it
turned out , because of their t rea tment of exceptions, t ha t these algorithms often led to
anomalous results [7]. Once a satisfactory semantic account was developed for inheritance
networks wi th exceptions—initially, wi th the work of Ether ington [4] and Touretzky [16]—
it soon became clear t ha t the kinds of inferences appropriate to these networks could not
be carried out through purely parallel reasoning.

In this section, after reviewing Fahlman's P M P M architecture, we present a hybrid

(parallel-serial) inference algorithm tha t reasons in accord with the definition of inheritance
presented here. The algori thm is designed to exploit the parallelism of the P M P M to the
greatest extent possible, resorting to serial reasoning only when necessary.

6.1 Para l l e l M a r k e r P r o p a g a t i o n M a c h i n e s

A P M P M is an au tomaton composed of active elements tha t play the roles of nodes
and links in a graph. Each element has a small number of internal states (marker bits,
which can be on or off, representing the presence or absence of markers), and a limited
ability to communicate information to the elements to which it is connected. The nodes
and links in a P M P M are responsive to various marker propagation commands, each
of which directs the assignment of markers to particular nodes, often by "propagating"
them from one node to another through the intervening links. P M P M ' s are SIMD (Single
Instruction stream, Multiple Da ta stream) machines: marker propagation commands are
broadcast globally to all elements and executed in parallel by the elements to which they
apply. Parallel marker propagation algorithms can be described as sequences of marker
propagation commands; the result of executing such an algorithm in a particular net is
a coloring—a s tatic assignment of marker bits to nodes—that is used to convey some
information about the net.

T h e notat ion used here for specifying marker propagation commands is a slight ex
tension of the one defined in Touretzky [16]. Commands may be either conditional or
unconditional. Unconditional commands are executed by all elements regardless of their
current s ta te . The unconditional command c lear [Mi], for instance, causes all elements to
clear marker bit Mi . Conditional commands are more common. The command

25

l i n k - t y p e [o n - t a i l [M i] , off-head[Mi] s e t -head [Mi]

would be executed by any element meeting the conditions on the left hand side of the

arrow: if the element represents a link of type , the node at its tail bears the marker

Mi , and the node at its head does not bear marker M x , then the link will perform the

action specified on the right hand side of the arrow, marking the node at its head with

Mi .

Looping is accomplished with a simple l o o p body e n d l o o p construct, which repeats the
commands in the body of the loop until no conditional command appearing in the body
has its left hand side satisfied. The following loop, for example, propagates the marker
Mi up u — l i n k s , thereby computing the transit ive closure of the relation. The
loop terminates when all eligible nodes have been marked with Mi . (The off -head [Mi]
condition assures t ha t nodes already marked with Mi are not eligible to be marked on
subsequent iterations.)

l o o p
l i n k - t y p e [« - * "] , o n - t a i l [M x] , of f -head[Mi] =>> s e t - h e a d [M i]

e n d l o o p

It is also possible to address particular nodes by name using conditional commands.

The node x would be selected by placing the restriction n a m e [x] on the left hand side of

the conditional arrow; only the element representing tha t node would then respond. This

technique is used to select and mark an initial node at the beginning of certain marker

propagation procedures. For example, the procedure below would compute the transitive

closure of the tt—relation start ing at a given node x, marking the nodes in the resulting

set with Mi .

p r o c e d u r e transitive-closure(x: n o d e) = b e g i n
c l e a r [Mi];
n a m e [x] s e t [Mi];

l o o p

l i n k - t y p e [* - > "] , o n - t a i l [M i] , off -head[Mi] = » s e t - h e a d [M i]

e n d l o o p

e n d

26

The set of conditions on the left hand side of the conditional arrow are always treated
conjunctively. Many conditions accept multiple arguments , which also are t reated conjunc
tively; for example, o n - t a i l [M i , M 2] is satisfied by a link element only if it satisfies both
on - t a i l [Mi] and o n - t a i l [M 2] . It is possible, however, to specify disjunctions of markers
on the left hand side, by using a different set of multi-argument commands: the l i n k - t y p e
condition and all conditions beginning with "any-" are disjunctive. For example, the
command a n y - o n - t a i l [M i , M 2] calls those link elements t ha t satisfy either on - t a i l [Mi] or
o n - t a i l [M 2] .

A parallel marker propagation machine is controlled by a host computer tha t broadcasts
commands to all the individual elements, where they are executed in synchrony. The
extension we have made here to the P M P M algorithm notat ion—a loop of the form for
var in <parallel-condition> d o body—doesn't really affect the parallel capabilities of the
machine at all, but involves only s tatements to be executed by the host. The point of
the extension is t o allow elements to be processed serially when necessary. T h e parallel-

condition specifies a conditional test, equivalent to the left hand side of a rule, t ha t is
broadcast to all elements. Elements satisfying the condition are then identified by the host
computer, using some addressing mechanism which we won't go into here (see Fahlman
[5] for details), and processed serially.

6.2 S k e p t i c a l i n h e r i t a n c e on a P M P M

Because each of the computing elements of a P M P M can represent only a small, fixed
number of marker bits, it isn't possible to use a P M P M algorithm to compute, all at once,
the entire theory of a net: for a net with N nodes, tha t would require each node to carry
at least 2N marker bits. Moreover, since it is only under rare circumstances tha t a user
would actually be interested in knowing the entire theory of a network, it would be unwise
in any case to invest the computational resources necessary for computing the full theory.
In the general case, the user comes to a database with a particular query in mind: he wants
to know whether the database supports a particular s ta tement , or its negation. Therefore,
what we define here is a query procedure—query(x 9y)—which is able to determine, for
any net T and nodes x and y, whether T supports the statement x —> y, the statement
x •/+ y, neither s ta tement , or both.

T h e procedure we define is economical. It scans only tha t portion of the network directly
relevant to a part icular query. It uses only fourteen markers all told, and only the two

27

markers M t and Mp to represent the result of the query. As a result of performing the
query (x^y) in the net T, the marker M t will be present on the node y iff T supports x —> y,
and marker Mp will will be present on the node y iff T supports x y.

6.2.1 Degree*'*

In Section 4, we ordered the pa ths in a given net by degree, and then proceeded to define
the permission relation through an induction on the degree of a pa th in a net. In tha t
context—where definition, not implementation, was the issue—the ordering by degree was
appropriate , since it is a particularly simple ordering, and it is adequate, in the sense tha t
all the pa ths t ha t could possibly be relevant to a given pa th are assigned a lesser degree.

In the present context, however, since implementation is itself the issue, the ordering
by degree is no longer quite so appropriate. For reasons of efficiency, we would like our
query procedure to examine the minimum number of paths necessary to decide whether
a part icular s ta tement is supported by a net; but if it were to sort through the paths in
the net by degree, in addit ion to all the pa ths relevant to the query, the query procedure
would wind up considering a number of irrelevant paths as well. For example, in the net
Ti6 (Figure 16), bo th the paths x —> t —• u and the pa th x —• p —• q -f* r are assigned
a lower degree t han the pa th x —• z —» y. Since it is obvious from the s tructure of the
network, however, t ha t neither of these pa ths could possibly have an effect on the pa th
x —> z —> y, it would be wasteful for the procedure query(x^y) even to consider them. In
order to implement our query procedure efficiently, we need to define another ordering of
the pa ths in a net , which differs from the s tandard ordering by degree in considering only
the pa ths relevant to a particular query.

As a first s tep, we specify the restriction of a net V with respect to the query(x,y). Intu
itively, this query-restricted network—written, Tx,v—is supposed to represent the subgraph
of T which it is necessary to examine in order to determine whether T supports either of
the s ta tements x —• y or x -/+ y. We capture the notion formally by specifying tha t Tx,v

is the minimal set containing (i) every link on every pa th in T from x to y, as well as (ii)
every link on every pa th in T from x to ti;, for all nodes w occurring in Tx'v. For example,
we have T^g = {x —• z,z —> y } , since x —> z —> y is the only pa th in T i 6 from x to y, and
there are no other pa ths in Ti6 from x to any of the nodes on this pa th . However, T^j
includes, as it should, every link in T17 except for the two links x t and t —> u. Since
T 1 7 contains the additional pa th x -» v r y, the pa th x —> p q -f* r , which was

28

29

contained in TIQ bu t irrelevant there to query (x,y), is now relevant to the query; so the

links in this pa th must be contained in Yyj.

Once we have defined the query-restricted net TXIV in this way, it is easy to show tha t ,

for any pa th a in r x , y , r |= a iff T x , y f= a. It is then natural to define the degree of a pa th

a in a net Y with respect to the query(x,y)—written, degpV(or)—as the degree of the pa th

a in the suitably restricted net TXTV. Formally, we take

In order to distinguish it from the familiar (Section 4.1) notion of degree, we refer t o
this new, query-restricted notion as degreex,v. Evidently, the procedure query(x,y) can
accurately determine whether a net T supports x —• y or x •/+ y while limiting its a t tent ion
to T x , y : it need only consider those paths in a net whose degree x , y is defined, and it can
consider those pa ths in order of increasing degree x , y .

For convenience, we will also refer in what follows to the degree x , y of a node; where w
is a node, the degree x , y in T of w is defined as the degree x , y of any pa th in T from x to w.
(Of course, all such pa ths have the same degree x , y) . .

6.2.2 T h e a l g o r i t h m

We can now describe query(x,y), our P M P M algorithm for responding to queries in ac

cord with the definition of skeptical inheritance presented here. We begin with the two

subprocedures trim-for-query(x,y) and select-next'degree()\ after tha t , we present the bulk

of query(x,y) itself, with the exception of the subprocedure check-preemption(c)9 which is

described last of all.

The procedure trim-for-query(x, y) tr ims the network T so tha t only the query-restricted
T x ' y will be considered in future processing. It begins in lines 3 and 4 by marking x with
M x and y with M y . In the loop at lines 5-7, it propagates the marker Mi up positive paths
in T from x. If there is a pa th in T, positive or negative, from x to y, it marks y with M 2

in lines 8-9. Finally, in the loop a t lines 10-13, the procedure propagates M 2 down both
links and links in T into those nodes already marked with Mi .

deg r*,, (a) if (7 is a pa th in T
undefined otherwise.

30

1 p r o c e d u r e trim-for-query(x,y: n o d e ^ = b e g i n
2 c l e a r [M x , M y ,Mi ,M 2] ;
3 n a m e [x] => s e t [M x] ;

4 n a m e [y] s e t [M y] ;
5 l o o p

6 l i n k - t y p e [t t — a n y - o n - t a i l [M x , M i] , of f -head[Mi] s e t - h e a d [M i]
7 e n d l o o p

8 l i n k - t y p e [« ^ V / > "] , o n - t a i l [M i] , o n - h e a d [M y]
9 ==> s e t - h e a d [M 2] ;
10 l o o p

1 1 l i n k - t y p e [A ^ V A "] » o n - h e a d [M 2] , o n - t a i l [M i] , off- ta i l [M 2]
12 s e t - t a i l [M 2] ;

1 3 e n d l o o p

1 4 e n d

The overall effect of carrying out this procedure in a net T is to mark each node in Tx*v

(with the exception of x itself) with the marker M 2 , a fact recorded in the following
lemma. In future processing, we then manage to ignore irrelevant pa ths by restricting
certain commands so tha t they apply only to nodes marked with M 2 .

L e m m a 2 As a result of running the procedure trim-for-query(x, y) in T, each node w

occurring in T will be marked with M 2 iffw^x and w occurs in TXiV.

P r o o f . Trim-for-query(x,y) begins in lines 5-7 by marking the nodes on positive paths
in T from x, except for x itself, with Mi . It is clear tha t y itself will be marked with M 2

in lines 8-9 iff there is a pa th from x to y in T. Now suppose tha t not all nodes occurring
in TXiV are marked with M 2 ; in particular, let it; be a node of maximal degree z ' y in Tx,y

t ha t is not marked with M 2 . Since w occurs in r z , y , T must contain a pa th either of the
form x—> T —> w —>£orof the form x —> r —• w 2 , such tha t z occurs in TXtV; since w

is maximal, z will be marked with M 2 . Since w is on a positive pa th from x, w will have
to be marked with Mi ; so w will be marked with M 2 in the loop at lines 10-13, which
contradicts our assumption. Thus , all nodes occurring in Tx,y will be marked with M 2 .
Further , since only nodes tha t are on pa ths from x to a node with M 2 will be marked with
M 2 , all nodes marked with M 2 will occur in r z , y . I

31

The procedure select-next-degree() will be called each t ime through the main loop of

the procedure query(x,y) to mark the nodes of degree z , y n .

1 p r o c e d u r e select-next-degree() = b e g i n

2 c lear [M d e g] ;
3 link-type[a^",V*"]> any-on-ta i l [M x ,M 0 id] , o n - h e a d [M 2] , off-head[Mo l d]

4 => s e t - h e a d [Mdeg];

5 l i n k - t y p e ^ " , ^ "] , on-head[Md*] , o n - t a i l [M 2] , o f f - ta i l [M x ,M o l d]

6 c l ear-head [Md e g];

7 o n [M d e g] = • set [Moid];

The effect of this procedure, in the context in which it occurs in query(xyy), is recorded in

the following lemma.

L e m m a 3 After executing trim-for-query(rc, y) and clearing Moid in a network T, the n-th
call to select-next-degree() leaves exactly the nodes of degree?* n in T marked with Md e g ,
and exactly the nodes of degreex,v less than or equal to n in T marked with M^d.

Proof . Nodes of deg ree z , y 1 will be connected to x in T z , y by direct links, and only
direct links. It is obvious tha t the first t ime select-next-degree() is called, it will mark all
such nodes with Mdeg in lines 3-4; the command on lines 5-6 can have no effect, since it
applies only to links not emanating from x\ and then at line 7, the nodes marked with
Mdeg will be marked also with MQid. Thus the theorem is t rue for n = 1.

For induction, suppose the theorem holds for all calls prior to the n- th . The nodes of
deg ree z , y n are just those nodes w for which (i) r z , y contains either of the links u —» w or
u -f* w with u a node of deg ree z , y n — 1; and (ii) T z , y contains no links v —• y or v y
with v a node of deg ree z , y greater than or equal to n. Given the inductive hypothesis,
then, the procedure select-next-degree() behaves as follows on its n - th call. First , in line 2,
it clears the marker Mdeg from nodes of deg ree z , y n . Next, in lines 3-4, it places Md e g on
exactly those nodes w satisfying (i)—since, by hypotheses, any such node u will already
be marked with MQid, w will of course be marked with M 2 , but w will not yet be marked
with Moid- Then, in lines 5-6, it clears Md e g from all those nodes w satisfying (i) except
those also satisfying (ii)—since, if w fails to satisfy (ii), any such node v will of course be
marked with M 2 and will by hypothesis be marked neither with M x nor M Q i d . Finally, in

8 end

32

line 7, the procedure marks the nodes displaying M d e g also with Moid- Thus , if the theorem
is t rue for the all calls prior to the n-th, it is t rue also for the n- th call. I

At this point , we can describe query (x^y) itself, our main inference algorithm.

1 p r o c e d u r e query(x^y: node,/ = b e g i n

2 c lear [M 0 i d , M T , M F , M S K M t ,M f f] ;
3 tr im-for-query (x, y) ;
4 l o o p
5 select-next-degree ();

6 l i n k - t y p e [o n - t a i l [M x] , o n - h e a d [M d e g] s e t - h e a d [M T] ;
7 l i n k - t y p e ^ / * "] , o n - t a i l [M x] , o n - h e a d [M d e g] => s e t - h e a d [M F] ;

8 l ink- type[«->"] , o n - t a i l [M T] , o n - h e a d [M d e g] , off-head [M T , M F]

12 o n [M T T] , o f f [M F F] => s e t [M T] ;

1 3 o n [M F F] , o f f [M T T] s e t [M F] ;

14 for c in < o n [M t t , M f f , M D E G] > d o check-preemption(c);
15 e n d l o o p
1 6 e n d

The procedure begins on line 2 by clearing the result marks M t , M f , and Msk> as well as
the auxiliary marks M t t , and Mff, and then calling trim-for-query(x,y) on line 3 to mark
all the relevant nodes with M 2 . Then the main loop (lines 4-15) is entered. Through the
calls to select-next-degreeQ on line 5, nodes are processed in order of increasing degree:
during each iteration n of the loop, the nodes of exactly degree 2 ' 1 ' n are selected and
marked for processing with M D E G . If there are direct links from x to w, where w is a node
of degree z ' y n, lines 6-7 mark w with M t or M F , as appropriate. The real work begins on
lines 8-9. Here, each node w of appropriate degree z , y is given the auxiliary marker M t t if
it is connected by a link to some node u already marked with M t - Likewise, in lines
10-11 , w is marked with Mff if it is connected by a link to a node v already marked
with M t - These auxiliary markers indicate tentative conclusions. If w is marked with M T T

in lines 8-9, bu t not with Mff in lines 10-11, there is tentative evidence for thinking tha t
the s ta tement x —• w should be supported, and no evidence to the contrary; therefore, the
node will be marked with M t in line 12. Likewise, if w is marked with Mff but not M T T , it

1 1

9
10

33

will be marked in line 13 with Mp. However, some nodes may be marked with bo th M u

and Mffi if w is such a node there is tentative reason to think x —* w is supported, as well

as a tentat ive reason for thinking tha t x -f+ w is supported. For each of these "conflicted"

nodes, we must then call the following check-preemption procedure individually, in line 14,

to determine whether either of the conflicting tentat ive arguments are preempted.

1 p r o c e d u r e check-preemption(c: n o d e j = b e g i n

2 c lear [M c , M d i r , M p r e] ;

3 name[c] s e t [M c] , c lear [M t t , M f f] ;

4 l ink-typef*-*", o n - t a i l [M T] , on -head [M c] = • s e t - t a i l [M d i r] ;

5 l o o p
6 l ink-type["—•*], any -on- ta i l [Mdi r ,M p r e] , o n - h e a d [M T] ,

7 off-head[Mp re,MF] s e t -head [M p r e] ;

8 e n d l o o p ;

9 l i n k - t y p e [] , on-tai l [Mdir] > of f - ta i l [M p r e]

10 => s e t -head [M t t] ;

1 1 l i n k - t y p e f / ^] , o n - t a i l [M d i r] , o f f - ta i l [M p r e]

12 s e t - h e a d [M f f] ;

13 o n [M c] , o n [M t t] , off[M f f] =^> s e t [M T] ;

1 4 o n [M c] , o n [M f f] , off [M t t] => s e t [M F] ;

15 o n [M c] , o n [M t t , M f f] => s e t [M s K] ;

1 6 e n d

Where c is such a conflicted node, the procedure check-preemption(c) marks nodes with

direct links to c with on line 4. It then marks preempted nodes, in the loop at lines 5 -

8, by propagating M p r e upwards from nodes with M d i r . In lines 9-12, the tentat ive markers

M t t and Mff, which were deleted from c in line 3, are reset only if they were propagated

from nodes which are not marked as preempted. If only one of these two tentat ive markers

is reset, it must be tha t the tentat ive conflicting evidence was preempted; so c is marked

in lines 13-14 either with M t or with M f , as appropriate. If bo th of the tentat ive markers

are reset, then neither of the conflicting tentat ive arguments is preempted. In accord with

our general skeptical viewpoint, therefore, these paths neutralize each other; so the node

c is marked in line 15 with M s k -

34

6.3 C o r r e c t n e s s of t h e a l g o r i t h m

The P M P M algorithm we have described in this section can be proved to be correct—that

is, bo th sound and complete—with respect to the inheritance definition from Section 4.

T h e o r e m 3 As a result of executing the procedure query(x,y) in a net T, the node y will

be marked with M t iff T supports x —> y} and with M F iff T supports i / > t/.

This theorem follows at once from the following lemma, along with the the observation

tha t no command in query(x,y) ever deletes either of the markers M t or Mp.

L e m m a 4 Suppose procedure query (x,y) is executed in T; let w be a node of degree n in

T. Then w will be marked with M t during the n-th iteration of the main loop in query(x, y)

iffT supports x —> w, and w will be marked with Mp during the n-th iteration of the main

loop in query(x, y) iffT supports x -f* w.

Proof . First , let the degree2 5'* of w be 1, so tha t T contains direct links, and only direct

links, from x to w. Suppose x —» w £ I \ Then of course T supports x —> w. Lemma 3

tells us tha t , on the first t ime through its main loop, query(x,y) marks w with Mdeg in

line 5; then w is marked in line 6 with M T . Similar reasoning shows us tha t the theorem

holds also when x •/+ w £ I \ Therefore, the theorem is t rue when w is a node of degree x ' y

1. Assuming the theorem is t rue for nodes of degree z ' y less than n, we show tha t it 's t rue

also for the node w, where w is of degree z , y n. The induction proceeds in four par ts .

Part 1: completeness for positive paths . Suppose T supports x —• w. If x —• w £ T,

Lemma 3 tells us tha t w will be marked with Md e g by the t ime the n- th pass through the

main loop of query(x,y) reaches line 6; it will therefore be marked with M t in line 6. If

x —> w ^ T, then T must permit some pa th of the form x —• a\ —* u —• w. By Il . l . (a)

of the inheritance definition, we know r f= x —> <j\ —• u; so by inductive hypothesis,

query(x9y) marks u with M t prior to the n- th iteration of the main loop. By I l . l . (b) , we

know u —> w € T. Therefore, on the n- th iteration of the main loop, when Lemma 3 tells

us tha t the node w is marked with Mdeg, ti/ will be marked in lines 8-9 with M«- If there

is no node v such tha t v w £ T and r | = x — • r — w e can see using the inductive

hypothesis tha t the node w cannot be marked with Mff in lines 10-11. It will therefore be

marked with M t a t line 12. On the other hand, if there is a node v such tha t v -/+ w £ T
and T \= x —> r —> t>, we can see using the inductive hypothesis tha t the node w will be

35

marked with Mff in lines 10-11; it will therefore satisfy the condition in the fo r loop at
line 14, and so check-preemption(c) will have to be called, with c = w.

For any such node v, ILl . (d) tells us t ha t there must be a z such tha t z —> w G T
and either 0 = x o r T | = x - > r 1 - > 2 - > r 2 - > t ; . There may, of course, be many nodes
z satisfying this condition: let z1 be be one of minimal degree 2 ' v . In line 3 of check-
preemption(c)9 the markers M t t and Mff are cleared from it;, and M c is set. In line 4,
the marker Mdir—indicating a direct link to w—is set on bo th the nodes v and z1. Since
T |= x —• Ti —» z' —* r 2 —• v, the inductive hypothesis tells us t ha t every nodes on this pa th
must display the marker M t by the t ime we enter the n- th iteration of the main query(x,y)
loop. Therefore, the loop in lines 5-8 of check-preemption(c) will propagate M p r e up this
pa th , beginning with the node immediately after z1 and continuing all the way to v itself.
However, since z1 is minimal, there are no nodes on permit ted pa ths from x to z1 with
direct links to w; so we can see using the inductive hypothesis t ha t z' will not be marked
with M p r e . Therefore, w will be marked with M w in lines 9-12 of check-preemption(c), bu t
not with Mff in lines 11-12; and so on line 13, w will be marked with M t .

Part 2: soundness for positive paths . Suppose tha t query(x,y) marks w with M t on the
n- th i teration of the main loop. There are only three commands in the loop tha t could
result in tu's being marked with M t : (i) the command in line 6 of query(x,y), (ii) the
command in line 12 of query fay), and (iii) the command in line 13 of check-preemption(c).
We examine t hem in turn , showing tha t no mat te r how M t is assigned to n/, it must tu rn
out t ha t T supports x —• w.

(i) If w is marked with M t in line 6 of query(x,y), it must be tha t x —• w G V. Hence,

T supports x —• w.

(ii) Suppose w is marked with M t in line 12 of query(x,y). Then w must have been
marked with M t t in lines 8-9. Looking at lines 8-9, we can see therefore, t ha t there must
be some node u with u —• w G T such tha t query(x,y) marks u wi th M t . By inductive
hypothesis, then, r (= x —• at —• u, for some pa th o\. This tells us tha t clauses II. 1.(a) and
I l . l . (b) of the inheritance definition are satisfied. Moreover, II. l .(c) is satisfied as well: we
know tha t x w $L T—since if x —• w G T, then w would have been marked with M f a t
line 7, and so w could not have been marked with M t t in lines 8-9. Finally, suppose there
were some node v such tha t r f= x -* r v and v -/+ y G T. By inductive hypothesis,
query(x9y) would already have marked v with M t on a previous i teration of the loop. The
node w would then be marked with Mff in lines 10-11 of the current i teration, and so w

36

could not be marked with M t at line 12, contrary to our supposition. Hence, there can be

no such node v, and I l . l . (d) is vacuously t rue. Therefore, since the clauses II. 1.(a) through

I l . l . (d) are satisfied, T \= x —> G\ —» u —• iy, and so T supports x —• w.

(iii) Suppose w is marked with M t in line 13 of check-preemption(c), wi th c = w.
In order for check-preemption(c) even to be called on the node w9 the node must have

been marked with Mtt in lines 8-9 of query(x>y), and also with Mff in lines 10-11. Since

w is marked with M t t , we know by an argument identical to tha t presented in (ii) tha t

T |= x —> Gi —• u, tha t u —• w G T, and tha t x -f* w £ T. So clauses I l . l . (a) through

II.l .(c) of the inheritance definition are satisfied. Since w is also marked with Mff, however,

an analogous argument tells us tha t there exist nodes v such tha t T |= x —• r —> v and
v y e r .

If ILl . (d) were false, there would be some such node v for which there is no node z
such tha t T \= x —> Ti —> z -+ r2 —> v and z —» w G T. Let v' be a node satisfying

these conditions of minimal degree x , y . Since w is marked with M t on line 13 of check-
preemption(c), it cannot have been marked with Mff in lines 11-12; therefore, v1 must have

been marked with M p r e by the loop in lines 5-8. The effect of this loop, however, is to

propagate the marker M p r e up a positive pa th , all of whose nodes are marked with M t

but not with Mp, from a node marked with M t and linked directly to w. Therefore, we

know tha t by the n- th iteration of the main loop of query(x,y) there must exist a sequence

of nodes zQ,zu... ,zm occurring in T such tha t : each Zi is marked with M t , none of the

zSs except perhaps z0 is marked with Mp, zQ —• w G T, zm = v\ and Z{ —> Zi+i G T for

all 0 < i < m. T h e inductive hypothesis tells us tha t , for 0 < i < m, T supports each

of the s ta tements x —• and also tha t , for 0 < i < m, none of the s ta tements x -f+ Zi
is contained in T. We can then conclude from Lemma 5 tha t T permits a pa th of the

form x —• T0 —> ZQ z\ —> • • • -* zn(= v'). Since z0 —• w G T, this contradicts the

above assumption concerning v'; and so ILl.(d) must be true. T therefore permits the

pa th x —• Gi —> u and so supports x —• w.

Part S: completeness for negative paths . Similar to Par t 1.

Part 4 • soundness for negative paths . Similar to Par t 2. I

L e m m a 5 For a sequence of nodes z 0 , z u . . . , z m , suppose: (i) that T supports x z{ for
0<i<m, (ii) that z{ -> zi+1 G T for 0<i < m, and (iii) that x-f* z{ <£T for 0 < i < m.
Then V permits a path of the form x —> r 0 z0 —> zx • • • —• zm.

37

P r o o f . It follows from (i) tha t R f= x —• TQ —• ZQ, for some r 0 . Assuming R | = x —• TQ —•
zo —* Zi —* * • • —* Zn, for some n < m , we show tha t R | = x —> r 0 —> z0 —> 2 X —» • • • —• zn —*

z n + i . We satisfy ILL (a) by inductive hypothesis; we satisfy II .L(b) by (ii) and II.l .(c) by

(iii). Finally, suppose there exists v such tha t R | = x —• r —> v with v y+ zn+i G I \ By

(i) we know tha t R [= x -> r n + 1 —• z n + 1 for some pa th r n + 1 . Therefore there exists z such

tha t z 2 n + i G T and either 2 = x or T |= x —• r ' —• z —• r" —• v. So 11.1.(d) is satisfied

as well. I

6.4 P e r f o r m a n c e of t h e a l g o r i t h m

We now give bounds on the running t ime of query(x,y) in a net T.

Let d(x) be the length of the longest shortest pa th from x to any other node in T.

The procedure trim-for-query(x,y)9 which propagates Mi up and M 2 down the hierarchy

between x and y, runs in 0(d(x)) t ime. Note tha t d(x) depends on the network as a whole;

it does not depend on y. In most practical applications, however, d(x) is not expected to

be significant. 5

T h e procedure select-next-degree() contains no loops. It therefore runs in constant t ime.

Let C(x,y) represent the number of conflicted nodes encountered when computing

query(x,y) in T. Conflicted nodes are terminal nodes of compound paths tha t conflict

with some other compound pa th , bu t not with any direct pa th . T h a t is, the conflicted

nodes in T are those nodes c such that : (i) T permits paths of the form x —• a —• u and

x —• r —• i/, where T contains the bo th the links u —* y and v -f± y, and (ii) T contains

neither of the links x —• y or x •/> y. These nodes will be marked with bo th M t t and

Mff by query(x9y)\ then check-preemption must be called sequentially for each such node.

Let d(x, y) denote the length of the longest shortest pa th from x to any other node in

the t r immed network TXiV. Obviously, d(x,y) < d(x). The procedure check-preemption

contains a single loop tha t propagates M p r e up links in Tx*y] it runs in 0(d(x, y))

t ime.

5 I F INHERITANCE WERE COMPLETELY STABLE (SEE SECTION 5.3), THE RUNNING TIME FOR trim'for-query(x>y) COULD
BE INCREMENTALLY REDUCED TO CONSTANT TIME, OR EVEN A SINGLE TIME STEP, BY MODIFYING THE QUERY PROCEDURE SO
THAT IT ADDS REDUNDANT LINKS TO T AS A SIDE EFFECT UNTIL d(x) FALLS BELOW THE DESIRED VALUE. SINCE INHERITANCE
FAILS TO EXHIBIT GENERIC STABILITY, HOWEVER, WE WOULD HAVE TO RESORT INSTEAD TO MORE COMPLEX conditioning
PROCEDURES (MENTIONED BELOW, IN SECTION 6.5) TO IMPROVE THE RUNNING TIME OF THIS PART OF THE ALGORITHM.

38

Let D(x,y) be the "depth" of the t r immed network Tx,v—that is, the degree z , y of the
node y. Note tha t d(x,y) < D(x,y). The main loop of query(xyy) is executed at most
1 + D(x, y) t imes. Inside this loop is the for loop tha t calls check-preemptionfc), the
total number of calls to which is C(x , y), each running in time 0 (d (x , y)) . Therefore, the
running t ime of the entire procedure query(x,y) is

0{max{d{x),D{x,y) + [C(x,y) -d(x,y)])).

Since d(x) is not expected to be a significant factor in realistic knowledge bases, the running
t ime of a query(x,y) in such a knowledge base will be

0{D{x,y) + [C{x,y)-d{x,y)]).

In a realistic knowledge base containing very few conflicted nodes, the running t ime of
query(x,y) will of course approach the purely parallel 0(D(x,y)).

6.5 D i s c u s s i o n

The P M P M architecture we described in this section is ra ther limited in computational

power, which makes economical implementations possible. Fahlman estimated in [6] tha t a

million-element marker propagation machine could be constructed using just a few custom

VLSI chips, plus a lot of RAM. The Connection Machine [8], which is the closest physical

realization to our idealized P M P M , was inspired by Fahlman's work; the algorithm we

present here is thus well suited to the Connection Machine. Our algorithm also maps very

natural ly onto other parallel architectures. We briefly mention two extensions.

First , suppose the P M P M architecture is modified so tha t , in a network with N nodes,

each node has a t least 2N marker bits, so tha t the entire theory of the network can be

represented a t once. We reserve the bits MTx and M F x for each node x in the net. If y is

marked with M t * it indicates tha t T permits x —> y, and similarly for M F a j . A P M P M with

this many marker bits could simply compute the entire theory of a network a t once, and

then use table lookup to answer queries. A more practical approach would be to compute

the results of queries as needed and cache them in the nodes.

A second possible extension involves the sequential calls to check-preemption(c) in the

body of the for loop in the main inference procedure. Suppose the we had the ability

to propagate m different sets of markers independently, in parallel. (This might be the

case if a P M P M were being simulated on a dataflow architecture with m processors.) We

39

could then create m sets of markers Mc>,-, Mtt,t, Mff,,-, Mdir.t, and M p r e j , - , for 1 < i < m, and
process conflicted nodes of degree % in parallel, m a t a t ime.

Two related inheritance reasoners tha t have appeared in the l i terature recently are
Touretzky's TINA [16], and Etherington's nondeterministic algorithm [4]. Both are imple
mentat ions of credulous rather than skeptical definitions. TINA (for Topological Inference
Architecture) computes the credulous extension of a network according to the theory pro
vided by [16], provided tha t the extension is unique. If the network has multiple credulous
extensions, TINA detects this fact and issues an error message. Ether ington 's algorithm
generates one credulous extension, bu t which one depends on the choice of order in which
markers are propagated; this is the source of the nondeterminism. Ether ington notes tha t
in some cases the algorithm will never choose certain extensions which his theory permits .

In addition to computing the extension, TINA had another function. In a process known
as "conditioning," it augmented the inheritance network with extra links so tha t a marker
propagation algorithm, called an upscan, could reconstruct portions of the extension as
needed. T h e upscan algorithm was quite simple: it used shortest-path reasoning and
had no sequential bottleneck, unlike the algorithm presented here. We should emphasize,
however, t ha t its purpose was to reconstruct an extension ra ther t han compute i t . 6 The
conditioning process, which takes a network and its correct extension as inputs, alters the
network as necessary to ensure tha t upscans produce correct results. A similar trick could
be used with any inheritance definition.

TINA also supported a second kind of scan, called a downscan. A downscan of y
marked all nodes x such tha t T permits x —• y or (represented by a different marker)
x -/+ y. Downscans are useful for finding all the members of a set, which can then be
intersected with other sets in parallel—for example, to find all the gray elephants by
intersecting elephants and gray things. It would appear to be far more expensive to
compute downscans than upscans on a P M P M . Each conflicted node c encountered during
a downscan from y would have to be resolved individually by calling query (c,y).

6 I t does not appear possible to compute extensions on a PMPM according to the inheritance definition
provided in [16], even when the extension is unique. The difference appears to be unrelated to the choice
between the skeptical and credulous approaches. Instead, it derives from the fact that [16] relies on a
slightly different treatment of preemption, which forces a reasoning architecture to pay more attention to
actual paths, rather than just supported conclusions. We compare these two styles of preemption in [17].

40

7 Conclusion

We have presented in this paper a new, skeptical theory of inheritance reasoning in non
monotonic semantic networks. As far as we know, this theory represents the first significant
al ternative to the analysis of nonmonotonic inheritance reasoning presented in [16]. (A less
radical al ternative is described by Sandewall in [14]; although it differs in some ways from
Touretzky's , Sandewall's is nevertheless a credulous theory.) The fact t ha t there should
be distinct bu t , perhaps, equally well-motivated accounts of correct reasoning in this con
text comes as something of a surprise; it is reminiscent of the si tuation in philosophical
logic, where there exist rival logics embodying distinct conceptions of correct deductive
reasoning.

In the context of inheritance reasoning, the existence of these distinct approaches raises
a number of issues, which we are exploring in our current research. Much of this research
is focused more or less directly on inheritance theory: we are studying the relations among
the different analyses of nonmonotonic inheritance reasoning [17], and working to extend
some of these analyses to more expressive nonmonotonic network languages.

However, it is also possible tha t this research will shed some light on more general
t rea tments of nonmonotonic reasoning. It has been shown by Etherington [4], for example,
t ha t the default logic of Reiter [12] can be used to provide a specification for correct
inheritance reasoning in nonmonotonic semantic networks: Etherington establishes a close
correspondence between these networks and certain kinds of default theories ("network
default theories"). But these results, linking default logic to nonmonotonic inheritance,
presuppose a credulous analysis of inheritance reasoning; this bias towards a credulous
approach to nonmonotonic reasoning is in fact built into bo th Reiter 's default logic and
the nonmonotonic logic of McDermott and Doyle [10]. Since, as we have shown, there turns
out to be an equally well-motivated skeptical theory of nonmonotonic reasoning, at least
in the case of semantic networks, it might be useful at this point to seek a weaker version
of default or nonmonotonic logic, exhibiting instead a bias toward skepticism—or perhaps
a more general logic tha t is neutral between the credulous and skeptical approaches.

41

A A skeptical reasoner in Common Lisp

This appendix presents a direct Common Lisp implementation of the inheritance defini

tion in Section 4. Unlike the P M P M algorithm of Section 6, this direct implementation

computes the extension of a net , by sequentially enumerating all permit ted paths . Since

the number of pa ths in an extension can grow exponentially with the number of nodes,

this approach is not practical for large networks.

The algori thm is a line-by-line translation of the definition in Section 4, except tha t ,

for reasons of efficiency, a different measure of degree is used. Rather t han evaluate paths

in order of increasing degree, the Lisp program performs a topological sort on the entire

graph and orders pa ths according to the number T(z) which the topological sort assigned

to the last node z of each pa th . Thus , if T consists of the links x —* y and y —• 2 , T(z) = 2,

so all pa ths ending with z have degree 2. In contrast , since d e g r is based on pa th length,

d e g r (y - > 2) = 1.

It is easily shown tha t if o\ = x —• T\ —• y x and <J<L = x —» r 2 —• y 2 , then T (y i) < T (y 2)

iff deg r (<J i) < deg r (<72) . Therefore, a program whose notion of pa th complexity is based
on topological order will always produce results in agreement with the other measures of
degree we have defined. The program may consider pa ths in a slightly different order than
if it were using d e g r , bu t it will only do so in situations where this does not affect the
result.

T h e code for our Common Lisp reasoner is contained in Appendix A . l , beginning on
the following page. The main inference function is t h e o r y - o f . It uses the subfunc-
tions a d m i s s i b l e - p o s ? to check clauses II.l .(c) and I l . l . (d) of the inheritance definition
and a d m i s s i b l e - n e g ? to check clauses II.2.(c) and II.2.(d). The top level functions are
l o a d - n e t , show- theo ry , and show- theo ry -o f . Two sample input files are shown in Ap
pendix A.2, and sample runs in Appendix A.3.

42

A . l T h e C o m m o n Lisp c o d e

; ; ; - * - B a s e : 1 0 ; M o d e : L I S P ; P a c k a g e : USER; S y n t a x : Common-

; ; ; A s k e p t i c a l i n h e r i t a n c e r e a s o n e r .

(d e f s t r u c t (n o d e (: p r i n t - f u n c t i o n p r i n t - n o d e))
name

(l e v e l 0)

(p o s - l i n k s n i l)

(n e g - l i n k s n i l))

(d e f s t r u c t (l i n k (: p r i n t - f u n c t i o n p r i n t - l i n k))
t a i l
a r r o w
h e a d)

(d e f c o n s t a n t a r r o w - t y p e s ' (> - / - >))

(d e f v a r * t h e - n e t * n i l " L i s t o f l i n k s p e c s (T A I L ARROW HEAD)
(d e f v a r * n o d e l i s t * n i l " N o d e s r e f e r e n c e d i n t h e n e t w o r k . ")

(d e f v a r * l i n k l i s t * n i l " L i n k s r e f e r e n c e d i n t h e n e t w o r k . ")
(d e f v a r * m a x - d e p t h * 0 " D e p t h o f t h e I S - A s u b g r a p h . ")

(d e f u n i n i t i a l i z e - r e a s o n e r ()
(s e t q * t h e - n e t * n i l)
(s e t q * n o d e l i s t * n i l)
(s e t q * l i n k l i s t * n i l)
(s e t q * m a x - d e p t h * 0))

43

; ; ; C o d e t o l o a d a n e t w o r k d e s c r i p t i o n .

(d e f u n l o a d - n e t (l i n k s p e c s)

" L o a d a f r e s h n e t w o r k . "

(i n i t i a l i z e - r e a s o n e r)

(s e t q * t h e - n e t * l i n k s p e c s)

(mapc # ' a d d - l i n k l i n k s p e c s)

(t o p s o r t)

(s e t q * m a x - d e p t h * (n o d e - l e v e l (c a r (l a s t * n o d e l i s t *))))

(m a p c a r # ' n o d e - n a m e * n o d e l i s t *))

(d e f u n a d d - n o d e (x)

(o r (f i n d x * n o d e l i s t * : k e y # ' n o d e - n a m e)

(c a r (p u s h (m a k e - n o d e :name x) * n o d e l i s t *))))

(d e f u n a d d - l i n k (l i n k s p e c)

" A d d s o n e l i n k o f f o r m (T A I L ARROW HEAD) t o t h e n e t w o r k . "
(u n l e s s (a n d (l i s t p l i n k s p e c)

(= (l e n g t h l i n k s p e c) 3 .)
(s y m b o l p (f i r s t l i n k s p e c))
(member (s e c o n d l i n k s p e c) a r r o w - t y p e s)
(s y m b o l p (t h i r d l i n k s p e c)))

(e r r o r " ~ S i s a n i n v a l i d l i n k s p e c f i c a t i o n " l i n k s p e c))
(l e t * ((t a i l (a d d - n o d e (f i r s t l i n k s p e c)))

(a r r o w (s e c o n d l i n k s p e c))
(h e a d (a d d - n o d e (t h i r d l i n k s p e c)))

(l i n k (m a k e - l i n k . h e a d h e a d . t a i l t a i l : a r r o w a r r o w
(p u s h l i n k * l i n k l i s t *)
(c a s e a r r o w

(> (p u s h l i n k (n o d e - p o s - l i n k s t a i l)))
(- / - > (p u s h l i n k (n o d e - n e g - l i n k s t a i l))))

l i n k))

; T o p o l o g i c a l s o r t o f t h e I S - A s u b g r a p h .

; C o m p u t e s t h e NODE-LEVEL f i e l d o f a l l n o d e s i n * N O D E L I S T * ,
; F i n a l l y , s o r t s * N 0 D E L I S T * .

(d e f u n t o p s o r t ()

" T o p o l o g i c a l l y s o r t t h e n o d e s o f t h e i n h e r i t a n c e g r a p h . "
(do ((l e n (l e n g t h * n o d e l i s t *))

(c h a n g e - f l a g n i l n i l)
(a n o t h e r - p a s s ? t c h a n g e - f l a g)
(i 0 . (i f (< i l e n) (1 + i)

(e r r o r " N e t w o r k i s c i r c u l a r ! ! ! "))))
((n o t a n o t h e r - p a s s ?))

(d o l i s t (l i n k * l i n k l i s t *)
(when (<= (n o d e - l e v e l (l i n k - h e a d l i n k))

(n o d e - l e v e l (l i n k - t a i l l i n k)))
(s e t f (n o d e - l e v e l (l i n k - h e a d l i n k))

(1 + (n o d e - l e v e l (l i n k - t a i l l i n k))))
(s e t f c h a n g e - f l a g t))))

(s e t q * n o d e l i s t * (s o r t * n o d e l i s t * # ' < : k e y # ' n o d e - l e v e l)))

44

; ; ; G e n e r a t e t h e s k e p t i c a l t h e o r y o f a n o d e .

(d e f m a c r o f i r s t - n o d e (p a t h)
x (l i n k - t a i l (c a r , p a t h)))

(d e f m a c r o l a s t - n o d e (p a t h)
x (l i n k - h e a d (c a r (l a s t , p a t h))))

(d e f m a c r o e x t e n d (p a t h l i n k)

' (a p p e n d , p a t h (l i s t , l i n k)))

(d e f m a c r o t a r g e t ? (n o d e l i n k s)

" R e t u r n s T i f NODE i s t h e h e a d o f a n y o f L I N K S . "
A (m e m b e r , n o d e , l i n k s : k e y # ' l i n k - h e a d))

(d e f u n t h e o r y - o f - n o d e (x)

" R e t u r n s t h e o r y o f n o d e X a s a p a i r (POS-PATHS N E G - P A T H S) . "

(l e t ((p o s - p a t h s (m a p c a r # ' l i s t (n o d e - p o s - l i n k s x))) ; ; C a s e I
(n e g - p a t h s (m a p c a r # ' l i s t (n o d e - n e g - l i n k s x))))

; ; C a s e I I

(do ((c u r r e n t - l e v e l (+ 2 (n o d e - l e v e l x)) (1 + c u r r e n t - l e v e l)))
((> c u r r e n t - l e v e l * m a x - d e p t h *))

; / C l a u s e s I I . 1 . (a) a n d I I . 2 . (a)

(d o l i s t (a - p a t h p o s - p a t h s)

; / C l a u s e I I . 1 . (b)
(d o l i s t (n e x t - l i n k (n o d e - p o s - l i n k s (l a s t - n o d e a - p a t h)))

(i f (= (n o d e - l e v e l (l i n k - h e a d n e x t - l i n k)) c u r r e n t - l e v e l)
(l e t ((n e w - p a t h (e x t e n d a - p a t h n e x t - l i n k)))

(i f (a d m i s s i b l e - p o s ? n e w - p a t h p o s - p a t h s)
(p u s h n e w - p a t h p o s - p a t h s)))))

; / C l a u s e I I . 2 . (b)

(d o l i s t (n e x t - l i n k (n o d e - n e g - l i n k s (l a s t - n o d e a - p a t h)))

(i f (= (n o d e - l e v e l (l i n k - h e a d n e x t - l i n k)) c u r r e n t - l e v e l)

(l e t ((n e w - p a t h (e x t e n d a - p a t h n e x t - l i n k)))

(i f (a d m i s s i b l e - n e g ? n e w - p a t h p o s - p a t h s)

(p u s h n e w - p a t h n e g - p a t h s)))))))

(l i s t (n r e v e r s e p o s - p a t h s) (n r e v e r s e n e g - p a t h s))))

45

(d e f u n a d m i s s i b l e - p o s ? (n e w - p a t h e a r l i e r - p o s - p a t h s)
" R e t u r n s T i f NEW-PATH i s a d m i s s i b l e g i v e n E A R L I E R - P O S - P A T H S . "
(l e t ((x (f i r s t - n o d e n e w - p a t h))

(y (l a s t - n o d e n e w - p a t h)))
(a n d ; ; C l a u s e I I . l . (c)

(n o t (t a r g e t ? y (n o d e - n e g - l i n k s x)))

; ; C l a u s e I I . 1 . (d)
(e v e r y # ' (l a m b d a (p a t h - 1 & a u x (v (l a s t - n o d e p a t h - 1)))

(i f (t a r g e t ? y (n o d e - n e g - l i n k s v))

(f i n d - p o s - p r e e m p t o r v y e a r l i e r - p o s - p a t h s)

t))
e a r l i e r - p o s - p a t h s))))

(d e f u n f i n d - p o s - p r e e m p t o r (v y e a r l i e r - p o s - p a t h s)

(some # ' (l a m b d a (p a t h - 2)

(a n d (e q (l a s t - n o d e p a t h - 2) v)

(some # ' (l a m b d a (l i n k - 2 & a u x (z (l i n k - h e a d l i n k - 2)))

(a n d (n o t (e q z v))

(t a r g e t ? y (n o d e - p o s - l i n k s z))))

p a t h - 2)))

e a r l i e r - p o s - p a t h s))

(d e f u n a d m i s s i b l e - n e g ? (n e w - p a t h e a r l i e r - p o s - p a t h s)
" R e t u r n s T i f n e g a t i v e NEW-PATH i s a d m i s s i b l e g i v e n E A R L I E R - P O S - P A T H S .
(l e t ((x (f i r s t - n o d e n e w - p a t h))

(y (l a s t - n o d e n e w - p a t h)))
(a n d ; ; C l a u s e I I . 2 . (c)

(n o t (t a r g e t ? y (n o d e - p o s - l i n k s x)))

; / C l a u s e I I . 2 . (d)
(e v e r y # ' (l a m b d a (p a t h - 1 & a u x (v (l a s t - n o d e p a t h - 1)))

(i f (t a r g e t ? y (n o d e - p o s - l i n k s v))

(f i n d - n e g - p r e e m p t o r v y e a r l i e r - p o s - p a t h s)

t))
e a r l i e r - p o s - p a t h s))))

(d e f u n f i n d - n e g - p r e e m p t o r (v y e a r l i e r - p o s - p a t h s)

(some # ' (l a m b d a (p a t h - 2)

(a n d (e q (l a s t - n o d e p a t h - 2) v)

(some # ' (l a m b d a (l i n k - 2 &a ux (z (l i n k - h e a d l i n k - 2)))

(a n d (n o t (e q z v))

(t a r g e t ? y (n o d e - n e g - l i n k s z))))

p a t h - 2)))

e a r l i e r - p o s - p a t h s))

46

; ; ; D i s p l a y t h e o r i e s and i n f e r e n c e p a t h s .

(defun s h o w - t h e o r y ()
"Computes and d i s p l a y s t h e t h p o r v O-f ~
(mapc # ' s h o w - t h e o ? y - J f (r l v e r s H n o l l i I t * ?) * * n e t W O r k - " n i l)

(de fun s h o w - t h e o r y - o f (node)
"Computes a n d d i s p l a y s t h e t h e o r y of NODE."
(l e t * ((x (cond ((n o d e - p node) node)

((f i n d node * n o d e l i s t * :key # ' n o d e - n a m e))
(t (r e t u r n - f r o m s h o w - t h e o r y - o f - n o d e n i l))))

(t h (t h e o r y - o f - n o d e x)))
(mapc # ' s h o w - p a t h (c a r t h))
(mapc # ' s h o w - p a t h (c a d r t h))

n i l))

(defun s h o w - p a t h (p a t h)
(f o r m a t t "~%~S" (node-name (f i r s t - n o d e p a t h)))
(d o l i s t (l i n k p a t h)

(f o r m a t t " ~S ~ S " (l i n k - a r r o w l i n k) (node-name (l i n k - h e a d l i n k)))))

; ; ; M i s c e l l a n e o u s f u n c t i o n s .

(de fun p r i n t - n o d e (node s t r e a m d e p t h)
(d e c l a r e (i g n o r e d e p t h))
(f o r m a t s t r e a m "#<Node ~S>" (node-name n o d e)))

(de fun p r i n t - l i n k (l i n k s t r e a m d e p t h)
(d e c l a r e (i g n o r e d e p t h))
(f o r m a t s t r e a m "#<Link ~S ~S ~S>"

(node-name (l i n k - t a i l l i n k))
(l i n k - a r r o w l i n k)
(node-name (l i n k - h e a d l i n k))))

47

A . 2 S a m p l e i n p u t files

; ; ; F i l e : Preemption-Example.Lisp

i » »

; ; ; Demonstrates preemption i n the presence of a redundant l i n k .

(l o a d - n e t *(
(c l y d e > r o y a l . e l e p h a n t)
(c l y d e > e l ephant)
(r o y a l . e l e p h a n t > e l ephant)
(e l ephant > g r a y . t h i n g)
(r o y a l . e l e p h a n t - / - > g r a y . t h i n g)))

F i l e : Nixon-Diamond.Lisp

; ; ; The c a n o n i c a l ambiguous network.

(l o a d - n e t 9 (
(n ixon > republ i can)
(n ixon > quaker)
(quaker > p a c i f i s t)
(r e p u b l i c a n - / - > p a c i f i s t)))

48

A . 3 S a m p l e runs

(l o a d "Preemption-Example.Lisp")
(CLYDE ROYAL.ELEPHANT ELEPHANT GRAY.THING)

(show-theory-of ' c l y d e)
CLYDE — > ROYAL.ELEPHANT
CLYDE — > ELEPHANT

CLYDE — > ROYAL.ELEPHANT — > ELEPHANT
CLYDE — > ROYAL.ELEPHANT - / - > GRAY.THING
NIL

(show-theory)
ELEPHANT —-> GRAY.THING
ROYAL-ELEPHANT — > ELEPHANT
ROYAL-ELEPHANT - / - > GRAY.THING
CLYDE — > ROYAL.ELEPHANT
CLYDE — > ELEPHANT

CLYDE — > ROYAL.ELEPHANT -—> ELEPHANT
CLYDE — > ROYAL.ELEPHANT - / - > GRAY.THING
NIL

49

(l o a d "Nixon-Diamond.Lisp")
(QUAKER PACIFIST REPUBLICAN NIXON)

(show-theory)
qUAKER — > PACIFIST
REPUBLICAN - / - > PACIFIST
NIXON — > QUAKER
NIXON — > REPUBLICAN
NIL

R E F E R E N C E S

[l] N. Belnap. How a computer should think. In G. Ryle (ed.), Contemporary Aspects of
Philosophy. Oriel Press (1977), pp . 30-56.

[2] N. Belnap. A useful four-valued logic. In J. Dunn and G. Epstein (eds.), Modern Uses
of Multiple-valued Logic. D. Reidel (1977), pp. 8-37.

[3] G. Carlson. Generic terms and generic sentences. Journal of Philosophical Logic,
vol. 11 (1982), pp. 145-181.

[4] D. Etherington. Formalizing nonmonotonic reasoning systems. Artificial Intelligence,
vol. 31 (1987), pp . 41-85.

[5] S. Fahlman. NETL: a System for Representing and Using Real-world Knowledge. The
MIT Press (1979).

[6] S. Fahlman. Design sketch for a million-element NETL machine. Proceedings of AAAI-
80 (1980), pp . 249-252.

[7] S. Fahlman, D. Touretzky, and W. van Roggen. Cancellation in a parallel semantic
network. Proceedings of IJCAI-81 (1981), pp. 257-263.

[8] W. D. Hillis. The Connection Machine. The MIT Press (1985).

[9] J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial Intelli
gence, vol. 13 (1980), pp . 27-39.

[10] D. McDermot t and J. Doyle. Non-monotonic logic I. Artificial Intelligence, vol. 13
(1980), pp . 41-72.

[11] M. Quillian. Semantic memory. Ph .D. Dissertation, Carnegie Inst i tute of Technology
(1966). Reprinted in M. Minsky (ed.), Semantic Information Processing, The MIT
Press (1968).

[12] R. Reiter. A logic for default reasoning. Artificial Intelligence, vol. 13 (1980), pp. 8 1 -
132.

[13] R. Roberts and I. Goldstein. The FRL Manual AI Memo No. 409, MIT Artificial
Intelligence Laboratory (1977).

51

[14] E. Sandewall. Non-monotonic inference rules for multiple inheritance with exceptions.

Proceedings of the IEEE, vol. 74 (1986), pp. 1345-1353.

[15] R. Thomason, J . Horty, and D. Touretzky. A calculus for inheritance in monotonic

semantic nets. Technical Report CMU-CS-86-138, Computer Science Depar tment ,

Carnegie Mellon University (1986).

[16] D. Touretzky. The Mathematics of Inheritance Systems. Morgan Kaufmann (1986).

[17] D. Touretzky, J . Horty, and R. Thomason. A clash of intuitions: the current s ta te of
nonmonotonic multiple inheritance systems. In Proceedings of IJCAI-87 (1987).

52

