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Abstract 

A replicated object is a typed data object that is stored redundantly at multiple locations to enhance 
availability. Most techniques for managing replicated data have a two-level structure: at the higher level, 
a replica control protocol reconstructs the object's state from its distributed components, and at the lower 
level, a standard concurrency control protocol synchronizes accesses to the individual components. This 
paper explores an alternative approach to managing replicated data, presenting two replication methods 
in which concurrency control and replica management are handled by a single, integrated protocol. 
These integrated protocols permit more concurrency than independent protocols and they allow 
availability and concurrency to be traded off: constraints on concurrency may be relaxed if constraints on 
availability are tightened, and vice-versa. In general, constraints on concurrency and availability cannot 
be minimized simultaneously. 
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1. Introduction 
A replicated object is a typed data object whose state is stored redundantly at multiple locations to 
enhance availability. A replication method is an algorithm for managing the object's distributed 
components so that its functional behavior is equivalent to that of a single-site object, a property known 
as one-copy serializability[3]. A replication method must address two problems: concurrency control and 
replica management. A concurrency control protocol ensures that incorrect behavior cannot occur as a 
result of concurrent access by multiple clients, and a replica management protocol ensures that incorrect 
behavior cannot occur as a result of site crashes, network partitions, or timing anomalies. Many 
replication methods address these problems with independent mechanisms: at the lower level, a 
standard concurrency control protocol synchronizes access to the individual components, and at the 
higher level, a replica management protocol reconstructs the object's state from its distributed 
components without concern for concurrency. 

In this paper, we explore an alternative way to manage replicated data. We propose two new replication 
methods in which concurrency control and replica management are handled by a single, integrated 
protocol. These integrated protocols permit more concurrency than independent protocols, and they 
allow availability and concurrency to be traded off: constraints on concurrency may be relaxed by 
tightening constraints on availability, and vice-versa. We give a complete formal characterization of this 
interdependence, presenting examples where the constraints on concurrency and availability cannot be 
minimized simultaneously. These protocols also exploit type information to impose fewer constraints on 
concurrency and availability than techniques that rely on the conventional read/write classification of 
operations. 

Section 2 presents a brief overview of related work, and Section 3 presents our model of computation. In 
Section 4, we introduce consensus locking, a replication method in which concurrency control is based on 
predefined lock conflicts. Consensus locking minimizes constraints on availability but not on concurrency. 
In Section 5, we introduce consensus scheduling, a more general protocol in which concurrency control 
may use arbitrary state information. Consensus scheduling can realize more concurrency than 
consensus locking, but this additional concurrency may incur a cost in reduced availability. We conclude 
with a discussion in Section 6. Formal models and correctness arguments are given in the appendix. 

2. Related Work 
Early file replication methods did not attempt to preserve one-copy serializability; the value read from a 
file is not necessarily the value most recently written [1, 22, 32]. Non-serializable replication methods for 
directories have also been proposed [6,13, 29]. 

In the available copies replication method [4], failed sites are dynamically detected and configured out of 
the system, and recovered sites are detected and configured back in. Activities may read from any 
available copy, and must write to all available copies. Systems based on variants of this method include 
SDD-1 [16], ISIS [5], and Circus [8]. Unlike the methods proposed in this paper, these methods do not 
preserve one-copy serializability in the presence of network partitions. 

In the true-copy token scheme [27], a replicated file is represented by a collection of copies. Copies that 
reflect the file's current state are called true copies, and are marked by true-copy tokens. True copies can 
be moved to permit activities to operate on local data. This method preserves serializability in the 
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presence of crashes and partitions, but the availability of a replicated file is limited by the availability of the 
sites containing its true copies. 

The earliest use of quorum consensus is a file replication method due to Gifford[14]. A quorum-
consensus replication method for directories has been proposed by Bloch, Daniels, and Spector[7]. 
These methods can be viewed as specially optimized instances of general quorum consensus, a 
replication method for arbitrary data types [18]. Like the methods proposed in this paper, general quorum 
consensus systematically exploits type-specific properties to enhance availability. Unlike the methods 
proposed here, it relies on a concurrency control mechanism provided by a lower level of the system. 
General quorum consensus includes a reconfiguration technique that can readily be extended to the 
replication methods proposed in this paper. 

Extensions to quorum consensus that further enhance availability in the presence of partitions have been 
proposed for files by Eager and Sevcik[9], by El-Abbadi, Skeen, and Cristian [10], by El-Abbadi and 
Toueg [11] and for arbitrary data types by the author [20]. 

3. Assumptions and Terminology 
Distributed systems are subject to two kinds of faults: sites may crash and communication links may be 
interrupted. When a site crashes, its resident data becomes temporarily or permanently inaccessible. 
Communication link failures result in lost messages; garbled and out-of-order messages can be detected 
(with high probability) and discarded. Transient communication failures may be hidden by lower level 
protocols, but longer-lived failures can cause partitions, in which functioning sites are unable to 
communicate. A failure is detected when a site that has sent a message fails to receive a response after 
a certain duration. The absence of a response may indicate that the original message was lost, that the 
reply was lost, that the recipient has crashed, or simply that the recipient is slow to respond. 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to 
organize computations as sequential processes called transactions. Transactions are atomic, that is, 
serializable and recoverable. Serializability [30] means the execution of one transaction never appears to 
overlap (or contain) the execution of another, and recoverability means that a transaction either succeeds 
completely or has no effect. A transaction's effects become permanent when it commits, its effects are 
discarded if it aborts, and a transaction that has neither committed or aborted is active. A standard 
commitment protocol (e.g., [15,31]) aborts transactions interrupted by failures, and stable storage 
[26] ensures that the effects of committed transactions are not undone by later failures. 

Our model for atomic objects borrows from that of Weihl [33]. The basic containers for data are called 
objects. Each object has a type, which defines a set of possible states and a set of primitive operations 
that provide the only means to create and manipulate objects of that type. For example, a FIFO queue 
might be represented by an object of type Queue providing Enq and Deq operations. 

Enq = Operation(Item) 

Deq = Operation() Returns(Item) 
Enq places an item at the end of the queue, and Deq returns the item at the head of the queue. Deq is 
partial: it is undefined when the queue is empty. A transaction invoking a partial operation is blocked until 
the operation can return a response. 
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In the absence of failures and concurrency, a computation is modeled as a history, which is a finite 
sequence of operations. Histories are denoted by lower-case letters (g, h). An operation is written as <x 
op(args*)/term(res*)>, where x is an object name, op is an operation name, args* denotes a sequence of 
argument values, term is a termination condition, and res* is a sequence of results. The operation name 
and argument values constitute the invocation, and the termination condition and result values constitute 
the response. We use "Ok" for normal termination. The object name is omitted when it is clear from 
context. For example, 

Enq(a)/Ok() 
Enq(b)/Ok() 
Deq()/Ok(a) 

is a Queue history in which items a and b are enqueued and a is dequeued. 

An objqct subhistory, h|x (h at x), is the subsequence of operations in h whose object names are x. Each 
object has a serial specification, which defines a set of legal histories for that object. For example, the 
specification for a Queue includes all and only histories in which items are enqueued and dequeued in 
FIFO order. Specifications are prefix-closed: any prefix of a legal history is legal. A history h involving 
multiple objects is legal if each object subhistory h|x belongs to the serial specification for x. 

In the presence of concurrency and failures, an object's behavior is modeled by a schedule, which is a 
sequence of steps of the form: <x q Q>, <x commit Q>, or <x abort Q>, where x is an object, q an 
operation, and Q a transaction name. The object name is omitted when it is clear from context. 
Schedules are denoted by upper-case letters (G, H). If H is a schedule, x an object, Q a transaction, and 
S a set of transactions, define H|x, H|Q, and H|S by analogy with object subhistories. 

A schedule is well-formed if transaction names are unique, no transaction executes an operation after it 
commits, and no transaction both commits and aborts. All schedules are assumed to be well-formed. For 
example, the following is a well-formed schedule for a Queue: 

Enq(a)/Ok() P 
Enq(b)/Ok() Q 
Commit P 
Deq()/Ok(a) Q 
Commit Q 

Here, transaction P enqueues a, Q enqueues b, P commits, Q dequeues a and commits. The ordering of 
operation executions in a schedule reflects the order in which the responses are returned, not necessarily 
the order in which the invocations occurred. 

Each object has a concurrent specification, which defines a set of legal schedules for that object. All 
concurrent specifications are assumed to be prefix-closed and on-line: an active transaction can choose 
to commit or abort at any time. 

Serial and concurrent specifications are related by the notion of atomicity Let « denote a total order on 
committed and active transactions, and let H be a schedule. The serialization of H in the order « is the 
history h constructed by reordering the operations in H so that for all transactions P and Q, if P <( Q, the 
subsequence of operations associated with P precedes the subsequence associated with Q. H is 
serializable in the order {{if h is a legal history; H is serializable if it is serializable in some order; and H is 
atomic if the subschedule associated with committed transactions is serializable. An object is atomic if 
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every schedule in its concurrent specification is atomic. All objects considered in this paper are atomic. 

4. Consensus Locking 

4.1. Introduction 
Consensus locking is the first of two integrated replication methods presented in this paper. Consensus 
locking ensures atomicity through predefined conflicts between pairs of operations. Conflict-based 
synchronization uses only some of the information available for scheduling: it does not consider 
interactions among more than two operations, and it does not take the object's state into account. 
Nevertheless, it is likely to be adequate for many applications, and it can be implemented efficiently by 
locking mechanisms. 

4.2. The Protocol 
Replicated objects are implemented by two kinds of sites: repositories and front-ends. Repositories 
provide long-term storage for the object's state, while front-ends carry out operations for clients. A client 
applies an operation to a replicated object by sending an invocation to one of the object's front-ends. The 
front-end reads data from some collection of repositories, carries out a local computation, sends updates 
to some collection of repositories, and returns the response to the client. The client must locate an 
available front-end for the object, and the front-end must in turn locate enough available repositories to 
carry out the operation. Front-ends can be replicated to an arbitrary extent, perhaps placing one at each 
client's site, implying that the availability of the replicated object is dominated by the availability of its 
repositories. 

A quorum for an operation is any set of repositories whose cooperation suffices to execute that operation. 
It is convenient to divide a quorum into two parts: a front-end executing an operation reads from an initial 
quorum and writes to a final quorum. (Either the initial or final quorum may be empty.) A quorum 
assignment associates each invocation with a set of valid initial quorums and each operation with a set of 
valid final quorums. An object's quorum assignment determines the availability of its operations, thus the 
constraints governing quorum assignment are the basic constraints governing the availability realizable by 
a replication method. 

Quorum assignments are constrained by a quorum intersection relation: certain initial and final quorums 
are required to have non-empty intersections. For example, any quorum assignment for a replicated file 
must ensure that each initial Read quorum intersects each final Write quorum; otherwise it would be 
impossible to guarantee that each value read is the value most recently written. If two operations are 
related by the quorum intersection relation, then their levels of availability can be traded off: if one 
operation's quorums are made smaller (rendering it more available) then the other's quorums must be 
made correspondingly larger (rendering it less available). 

At each repository, the operations of committed transactions are recorded in a log, which is a sequence of 
entries, where an entry is the timestamped record of an operation. For example, the following is a 
schematic representation of a Queue replicated among three repositories. For readability, a "missing" 
entry is marked by a blank. 
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R1 R2 R3 
1:00 Enq(a)/Ok() 1:00 Enq(a)/Ok() 

1:15Enq(b)/0k() 1:15 Enq(b)/Ok() 
1:30 Enq(c)/Ok() 1:30 Enq(c)/Ok() 

Here, three items have been enqueued, although no repository has an entry for all three. 

Each log entry has a two-part timestamp: 
• The low-order bits are occupied by an operation field that defines how this operation is 

serialized relative to other operations executed by the same transaction. This field is filled in 
when the operation is executed. 

• The high-order bits are occupied by a transaction field that defines how the transaction is 
serialized relative to other transactions. This field is filled in when the transaction commits. 

In our examples, a timestamp is represented as a single-digit transaction field separated by a colon from 
a two-digit operation field, and new timestamp values are generated sequentially. In practice, each field 
would be much longer, and successive values would be separated by arbitrary gaps. 

Each active transaction's operations are recorded in an intentions log, one per transaction, also partially 
replicated among the repositories. When a transaction appends an entry to its intentions log, the 
operation field is filled in, but the transaction field is left empty. When the transaction commits, the 
coordinator for the commitment protocol [15,31] generates a logical timestamp [25], which it distributes to 
the participating repositories. When the protocol is complete, each repository inserts that timestamp in 
the transaction fields of the committing transaction's entries, and merges its intentions log into the 
committed log. 

To model the timestamp assignment protocol, we extend our notation as follows. Each commit step 
includes a timestamp argument: <Commit(t) Q>, where t is the timestamp assigned to transaction 
Q. Timestamps are governed by an additional well-formedness constraint: if Q executes an operation 
after P commits, then Q's commit timestamp must be later than P's. 

For concurrency control, consensus locking employs a form of strict two-phase locking [2,12, 24]. Each 
repository maintains an initial lock for each invocation and a final lock for each operation. A repository 
grants a transaction an initial lock when the repository agrees to participate in an initial quorum for that 
invocation, and it grants a final lock when it agrees to participate in a final quorum for that operation. 
Certain initial and final locks conflict a repository will not grant an initial (final) lock while a conflicting final 
(initial) lock is held by a different transaction. Informally, the initial locks ensure that the operation cannot 
be invalidated by a concurrent operation, while the final locks ensure that the operation cannot invalidate 
any concurrent operations. Each transaction holds its locks until it commits or aborts. Like most locking 
protocols, consensus locking is subject to deadlock, which can be handled by standard techniques such 
as timeouts or deadlock detection [23]. 

An operation is executed in the following steps: 
1. The client sends the invocation and transaction identifier to a front-end, which consults an 

internal table of initial and final quorums, and forwards the client's request to an initial 
quorum for the invocation. 

2. Each repository in the initial quorum checks whether another transaction holds a conflicting 
final lock. If so, the call is delayed until the conflicting locks are released. When the initial 
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lock is granted, the repository sends its committed log and the client transaction's intentions 
log to the front-end. 

3. The front-end merges the logs from the initial quorum, using the timestamps to discard 
duplicate entries. It constructs a history called the view by appending the client 
transaction's intentions to the history of committed operations, and it chooses a response 
consistent with the view. The front-end generates an entry for the new operation, filling in 
the operation field by reading its local logical clock, and sends the view and the new entry to 
a final quorum of repositories. 

4. Each repository in the final quorum checks whether another transaction holds a conflicting 
initial lock. If so, the call is delayed until the conflicting locks are released. When the final 
lock is granted, the repository merges the logs and returns an acknowledgment to the front-
end. 

5. The front-end returns the response to the client when a final quorum has acknowledged the 
update. 

To illustrate this protocol, we trace a brief history for a Queue replicated among three repositories. In this 
example, any two out of three repositories constitute an initial quorum for Deq and a final quorum for both 
Enq and Deq. Initial Deq locks conflict with final Enq and Deq locks, but initial and final Enq locks do not 
conflict. Initially, the queue is empty. Transaction B enqueues item c at R1 and R3, and transaction A 
enqueues item a at R1 and R2, and item y at R2 and R3. Both transactions proceed without interference. 
Locks are shown at the top of each column. 

R1 R2 R3 

Final(Enq) = {A,B} Rnal(Enq) = {A} Rnal(Enq) = {A,B} 

B:00 Enq(c)/Ok() B:00 Enq(c)/Ok() 

A:00 Enq(a)/Ok() A:00 Enq(a)/Ok() 

A:01 Enq(b)/Ok() A:01 Enq(b)/Ok() 

Here, "A:00" denotes a timestamp with an empty transaction field (to be filled when A commits) and an 
operation field of 0. 

Transaction C now attempts a Deq operation, choosing R1 and R2 as its initial quorum. Since initial Deq 
locks conflict with final Enq locks, C is delayed. Eventually, A commits with timestamp 1, B commits with 
timestamp 2, and each repository fills in its transaction fields and merges the intentions logs with the log 
of committed operations. 

R1 R2 R3 

1:00 Enq(a)/Ok() 1:00 Enq(a)/Ok() 

1:01 Enq(b)/Ok() 1:01 Enq(b)/Ok() 

2:00 Enq(c)/Ok() 2:00 Enq(c)/Ok() 

C acquires initial Deq locks at R2 and R3 and constructs a view by merging their logs, revealing that a is 
the first item in the queue. C appends a Deq entry to its view and sends its log to R2 and R3: 
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R1 R2 R3 

Initial(Deq) = {C} Initial(Deq) ={C} 
Rnal(Deq) = {C} Final(Deq) ={C} 

1:00 Enq(a)/Ok() 1:00 Enq(a)/Ok() 1:00 Enq(a)/Ok() 
1:01 Enq(b)/Ok() 1:01 Enq(b)/Ok() 

2:00 Enq(c)/Ok() 2:00 Enq(c)/Ok() 2:00 Enq(c)/Ok() 

C:00 Deq()/Ok(a) C:00 Deq()/Ok(a) 

Eventually, C commits with timestamp 3. 

The principal benefit of a replication model based on partially replicated logs is generality: the same 
model can be used to analyze the availability and concurrency of queues, stacks, directories, or any other 
data type of interest. We can reason abstractly about the fundamental constraints governing availability 
and concurrency without having to consider type-specific techniques for data representation. 
Nevertheless, it is worth emphasizing that this protocol is an idealized model for replication, not a literal 
design for an implementation. In practice, logs are too large and inefficient to be practical. Instead, an 
implementation must address the problem of log compaction, replacing a log with a more compact and 
efficient data structure. 

For example, Bloch et al. [7] give a type-specific compaction technique for replicated directories. A 
complementary approach is the following: whenever a repository's committed log includes a prefix of the 
object's history, that prefix can be replaced by a timestamped version, which is a compact single-site 
representation for the object. For example, a Queue version could be a list or array of items present in 
the queue. A repository might take active measures to assemble such a prefix, such as running periodic 
"garbage-collection" transactions, or it might respond to prefixes that arise naturally in the course of 
executing certain operations. 

In the example above, when C commits with timestamp 3, R2 and R3 may replace their committed logs 
with a single timestamped version, since the view assembled for the Deq included all earlier Enq and Deq 
entries, and the lock conflicts ensure that no active transaction will be serialized before C. 

R1 R2 R3 
1:00 Enq(a)/Ok() 

2:00 Enq(c)/Ok() 

3:00 [b,c] 3:00 [b,c] 

R1 cannot compact its entries, however, because it may be missing Enq entries whose timestamps lie 
between 1.00 and 2:00. 

4.3. Correctness 
As mentioned above, each transaction is issued a logical timestamp when it commits. A consensus 
locking implementation is correct if transactions are serializable in the order of their commit timestamps, a 
property known as hybrid atomicity [33]. Weihl has shown that hybrid atomicity is a local property: if H is 
a schedule such that H|x is hybrid atomic for all objects x, then H is atomic. Consensus locking is thus 
compatible with other protocols that guarantee hybrid atomicity, including the two-phase locking protocols 
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cited above. 

In this section we characterize the constraints on concurrency and availability necessary to ensure 
correctness. Let inv(p) denote the invocation part of operation p. Constraints on quorum assignment and 
lock conflict for consensus locking are expressed in terms of the following relations between operations: 

• The quorum intersection relation D Q : inv(q) D Q p s each initial quorum for inv(q) intersects 
each final quorum for p. 

• The lock conflict relation D L: inv(q) D L p s initial locks for inv(q) conflict with final locks for p. 
It is easy to see that D L and D Q cannot be chosen independently. For example, to ensure that two 
operations never execute concurrently, it is not enough for their locks to conflict; their quorums must also 
intersect to ensure that the conflict is detected at some repository. We define the effective conflict relation 
to be the intersection of the lock conflict and quorum intersection relations: 

• inv(q) D L Q p a inv(q) D L p A inv(q) D Q p 
In this section we characterize the constraints on D Q , D L, and D L Q that ensure the correctness of 
consensus locking. 

Let D be an arbitrary relation between invocations and operations. 

Definition 1 : A subhistory g of h is D-closed if, whenever g contains an operation q of h, it also 
contains every earlier operation p such that inv(q) D p. 

Definition 2: A subhistory g of h is a D-view of h for inv(q) if g is D-closed, and if it includes 
every p in h such that inv(q) D p. 

Informally, D is a serial dependency relation if, whenever an operation is legal for a D-view, it is legal for 
the complete history. More precisely, let denote concatenation: 

Definition 3: A relation D is a serial dependency relation if, for all operations p and all legal 
histories g and h such that g is a D-view of h for inv(p), g • p is legal implies that h • p is legal. 

Of primary interest are minimal relations having the property that no smaller relation is also a serial 
dependency relation. In the appendix, we show that consensus locking ensures hybrid atomicity if the 
effective confliction relation D L Q is a serial dependency relation, and that no weaker constraint ensure 
correctness. 

4.4. Examples 
The Queue data type has two distinct minimal serial dependency relations, shown in Figure 4-1 and 4-2. 
Each relation permits interleavings and quorum assignments the other does not. In Figure 4-1, Deq 
invocations depend on both Enq and Deq operations, implying that initial Deq quorums must intersect 
final Enq and Deq quorums, and that initial Deq locks must conflict with final Enq and Deq locks. Initial 
and final Enq quorums need not intersect, and their locks need not conflict. As a practical matter, it may 
sometimes be useful to introduce additional lock conflicts not strictly required for correctness. For 
example, if initial Deq locks conflict, then it would not be possible for concurrent Deq operations to 
deadlock by attempting to dequeue the same item. 

In Figure 4-2, Enq invocations depend on earlier Enq operations, and Deq invocations depend on earlier 
Deq operations, but Deq invocations do not depend on Enq operations, and vice-versa. To see why this 
relation is a serial dependency relation, observe that if the view assembled for a Deq includes any Enq 
entry for an undequeued item, then because the view is closed it also includes the entry for the earliest 
undequeued item. A Deq invocation may block unnecessarily if it fails to observe any enqueued items, 
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but it will never return an incorrect item.1 Here, Enq quorums must intersect, and Deq quorums must 
intersect, but Enq quorums need not intersect Deq quorums. An enqueuing transaction can execute 
concurrently with a dequeuing transaction as long as the queue contains items enqueued by committed 
transactions. 

The queue example illustrates why constraints on quorum assignment and lock conflict cannot be 
specified independently: a replicated Queue would not be one-copy serializable if, for example, quorum 
intersections were governed by the relation in Figure 4-1 and lock conflicts by the relation in Figure 4-2, 
because the effective conflict relation would not be a serial dependency relation. 

Enq/Ok Deq/Ok 

Enq 

Deq X X 

Figure 4-1 : First Serial Dependency Relation for Queue 

Enq/Ok Deq/Ok 
Enq X 

Deq X 

Figure 4-2: Second Serial Dependency Relation for Queue 

Constraints on concurrency and availability can often be relaxed by introducing non-determinism into data 
type specifications. A Semiqueue provides Ins and Rem operations: 

Ins = Operation(Item) 

Rem = Operation () Returns(Item) 
Ins inserts an item in the Semiqueue, and Rem non-deterministically removes and returns an item from 
the Semiqueue. Like Deq, Rem returns only when there is an item to remove. There may be an 
additional probabilistic guarantee (not captured by our functional specifications) that the item removed is 
likely to be the oldest one. The Semiqueue data type has a unique minimal serial dependency relation 
shown in Figure 4-3. To ensure that no item is removed twice, initial and final Rem quorums must 
intersect and Rem operations cannot execute concurrently. Ins operations may execute concurrently with 
Rem operations and with one another. If a Semiqueue is intended to "approximate" a FIFO Queue, each 
front-end could remove the oldest item in its view. To increase the likelihood that a Rem operation will 
choose older items, a background process could propagate Ins entries among the repositories, effectively 
causing their final quorums to grow asynchronously. 

The notion of serial dependency can be extended to hold between pairs of operations instead of between 
operations and invocations. Such an extension can provide a slight increase in concurrency and 
availability, at the cost of a less efficient implementation. For example, an Account provides Credit and 
Debit operations: 

1 As discussed elsewhere [18], this relation would not be a serial dependency relation if a Deq applied to an empty queue were to 
signal an exception instead of blocking. 
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Ins/Ok Rem/Ok 

Ins 

Rem X 

Figure 4-3: Serial Dependency Relation for SemiQueue 

Credit = Operation(Dollar) 

Debit = Operation(Dollar) Signals (No) 
Credit increments the account balance by a specified amount, and Debit attempts to decrement the 
balance. If the balance cannot cover the debit, the operation returns with an exception, leaving the 
balance unchanged. If we allow serial dependency to take the invocation's results into account, then 
successful debits may be treated differently from attempted overdrafts, as illustrated by the relation shown 
in Figure 4-4. Here, transactions executing successful debits cannot execute concurrently, but a 
successful debit can execute concurrently with any number of overdrafts. 

Nevertheless, it may be difficult to exploit this additional concurrency in practice. How can a front-end 
executing a Debit predict whether it should acquire locks for a successful debit or an overdraft? An 
optimistic strategy is to "guess" that the debit will succeed, requesting locks for a successful debit. If the 
balance fails to cover the debit, the front-end releases its locks and restarts the operation (but not the 
entire transaction), "guessing" this time that the debit will fail. A pessimistic strategy is to acquire locks 
for both operations, which is equivalent to an initial lock on the invocation, but releasing the superfluous 
lock when the response becomes known. (Similar considerations arise if an operation's choice of initial 
quorums may depend on its anticipated result.) Either approach may require additional message traffic, 
and it remains unclear whether such refinements are cost-effective for replicated data. 

Credit/Ok Debit/Ok Debit/No 

Credit/Ok 

Debit/Ok X X 

Debit/No X 

Figure 4-4: Serial Dependency Relation for Account 

4.5. Remarks 
By exploiting type information, consensus locking places fewer constraints on quorum assignment than 
replication methods based on the conventional read/write classification of operations [14]. Each 
operation of the example data types reviewed above would be classified as a read followed by a write, 
since each modifies the object state in a way that depends on the operations' arguments and the object's 
current state. Since read and write quorums must intersect, all quorums for all operations must intersect, 
ruling out many of the quorum assignments permitted by consensus locking. 

Consensus locking is a generalization of general quorum consensus [18], a type-specific replication 
method that relies on an underlying concurrency control protocol to ensure atomicity. Consensus locking 
permits more concurrency because it exploits information about the data type specification and about the 
quorum assignment. For example, if transactions synchronize through two-phase read/write locks [12] at 
repositories, it would be impossible to distinguish between real synchronization conflicts (e.g., Enq/Deq 
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conflicts in Figure 4-1 or Enq/Enq conflicts in Figure 4-2), and spurious conflicts (e.g., Enq/Enq conflicts in 
Figure 4-1 or Enq/Deq conflicts in Figure 4-2). 

The two methods place identical constraints on quorum assignment: the quorum intersection relation 
must be a serial dependency relation. Clearly, no integrated replication method can permit more quorum 
assignments than general quorum consensus, simply because any quorum assignment that ensures one-
copy serializability in the presence of concurrency must also work if transactions appear to execute 
serially. Nevertheless, because consensus locking is no worse than general quorum consensus, it places 
the weakest possible constraints on quorum assignments. By contrast, the next section describes an 
integrated mechanism that permits more concurrency that consensus locking, but fewer quorum 
assignments. 

Consensus locking compares favorably to several locking protocols in the literature, even in the absence 
of replication. Korth [24] and Bernstein et al. [2] have proposed type-specific two-phase locking protocols 
for single-site objects whose operations are total and deterministic. In both protocols, operations that do 
not commute have conflicting locks. (Informally, two invocations commute if they can occur in either order 
and both orders yield the same final state.) It can be shown that failure to commute is a serial 
dependency relation, but not necessarily a minimal relation. Consequently, consensus locking can realize 
any level of concurrency permitted by commutativity-based locking schemes, but not vice-versa. For 
example, Enq operations do not commute, but Enq locks need not conflict (Figure 4-1). 

The notion of serial dependency also arises in a variety of conflict-based synchronization mechanisms, 
including optimistic techniques [19], multiversion timestamping techniques [21], and techniques in which 
quorum assignments change dynamically in response to failures [20]. Although we do not address the 
issue here, consensus locking can be extended to nested transaction systems by introducing lock 
inheritance rules similar to those proposed by Moss [28]. 

5. Consensus Scheduling 

5.1. Introduction 
Consensus locking has two limitations: it makes scheduling decisions exclusively on the basis of pair-
wise lock conflicts, and it cannot be used in systems based on local atomicity properties other than hybrid 
atomicity. This section introduces consensus scheduling, a generalization of consensus locking that can 
be used to construct replicated objects satisfying arbitrary concurrent specifications. This additional 
power comes at a cost: relaxing constraints on concurrency may require strengthening constraints on 
quorum assignment. In general, constraints on availability and concurrency cannot be minimized 
simultaneously. 

The limitations of conflict-based scheduling can be illustrated by the following example. Committed 
transaction A has credited $10 to a replicated Account in two separate $5 credits at different final 
quorums. Transaction B has tentatively credited another $5. 
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R1 R2 R3 

Final(Credit) = {B} Final(Credit) = {B} 

1:00 Credit($5)/0k() 1:00 Credit($5)/0k() 

1:01 Credit($5)/0k() 1:01 Credit($5)/Ok() 

B:00 Credit($5)/0k() B:00 Credit($5)/0k() 

If transaction C attempts to debit $10, it will be delayed by conflicts with B's Credit locks. This delay is 
unnecessary, however, because the account balance covers the debit regardless of the order in which B 
and C commit. If, instead, C had attempted to debit $15, it would indeed have to wait until B commits or 
aborts, because B's outcome will determine whether the balance covers the debit. Consensus locking 
cannot distinguish between these scenarios, and therefore C must be delayed in both cases. 

An inability to take full advantage of state information for scheduling is a characteristic of any concurrency 
control scheme implemented at the individual repositories. In the example above, no single repository 
has enough information to recognize that the committed balance covers the attempted debit. In general, 
no information about the account balance can be ascertained from the entries residing at any single 
repository, because there may be unobserved Credit and Debit entries recorded elsewhere. 

5.2. The Protocol 
The basic idea behind consensus scheduling is the following: rather than using partially replicated logs to 
represent serialized histories, we use the logs to represent concurrent schedules, explicitly representing 
information about interleavings, commit and abort steps, and steps of active transactions. Scheduling 
decisions are made at front-ends, rather than repositories, using information merged from an initial 
quorum. Timestamps need no longer be split into transaction fields and operation fields, since commit 
orderings can be reconstructed by inspecting the commit steps directly. 

For example, the replicated Account shown above might be represented as follows: 

R1 R2 R3 

0:00 Credit($5)/Ok() A 0:00 Credit($5)/Ok() A 

0:01 Credit($5)/Ok() A 0:01 Credit($5)/Ok() A 

0:02 Commit(2) A 0:02 Commit(2) A 

0:03 Credit($5)/Ok() B 0:03 Credit($5)/Ok() B 

The absence of a transaction field is indicated by a leading zero in each timestamp. All the information 
used by the consensus locking protocol (such as commit timestamps and locks) can be reconstructed 
from this schedule. 

An operation is executed in the following steps. 
1. The client sends the invocation and transaction identifier to a front-end, which forwards 

them to an initial quorum of repositories. 

2. Each repository in the initial quorum responds by sending its entire log to the front-end. 

3. The front-end merges the logs from the initial quorum to construct a view. Note that the 
view is a schedule, not a history. It chooses a response consistent with the object's state 
as reconstructed from the view. The front-end generates an entry for the new operation, 
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appends it to the view, and sends the view to a final quorum of repositories. If the front-end 
cannot choose a response, perhaps because it must await the outcome of another 
transaction, it waits for the object's state to change, and restarts the protocol. 

4. Each repository in the final quorum merges the view with its log and returns an 
acknowledgment to the front-end. 

5. As soon as the front-end receives acknowledgments from a final quorum, the response is 
returned to the client. 

When a transaction commits or aborts, an appropriate entry is inserted in the log of each repository 
visited by that transaction. 

Some form of short-term synchronization is needed to ensure that the steps of the protocol are executed 
atomically. One solution is to place at each repository a short-term mutual exclusion lock. The front-end 
acquires a short-term lock at each repository in its initial quorum in Step 1, and at its final quorum at Step 
3. The front-end releases its short-term locks in Step 4. Repositories may break short-term locks in 
response to suspected deadlocks, but the interrupted operation must be restarted. 

Returning to our example, let us trace how transaction C could debit $10 from the replicated account. 
Under consensus locking, C would be unable to acquire initial Debit locks until B releases its final Credit 
locks. Under consensus scheduling, however, when R1 and R2 receive the request, they grant short-
term locks to the front-end, and respond with their logs. Merging these logs yields the following view: 

0:00 Credit($5)/Ok() A 
0:01 Credit($5)/Ok() A 
0:02 Commit(2) A 
0:03 Credit($5)/Ok() B 

The view indicates that the ten dollars deposited by A will cover the debit regardless of B's outcome, so 
the front-end appends the entries for the new Debit operation to its view, which it sends to R2 and R3. 
When the front-end confirms that the view has been merged with the repositories' logs, it releases all its 
short-term locks. The account's final state is: 

R1 R2 R3 
0:00 Credit($5)/Ok() A 0:00 Credit($5)/Ok() A 

0:01 Credit($5)/Ok() A 0:01 Credit($5)/Ok() A 0:01 Credit($5)/Ok() A 
0:02 Commit(2) A 0:02 Commit(2) A 

0:03 Credit($5)/Ok() B 0:03 Credit($5)/Ok() B 0:03 Credit($5)/Ok() B 
0:04Debit($l0)/Ok() C 0:04 Debit($10)/Ok() C 

If C had attempted to debit $15 dollars, however, the front-end, unable to choose a response, would have 
released its short-term locks and waited for B to commit or abort. 

5.3. Constraints on Availability 
Let D be an arbitrary relation between invocations and operations. We extend the notion of D-closed and 
D-view to schedules. 

Definition 4: G is a D-closed subschedule of H if whenever G contains on operation step <q 
Q> of H it also contains every preceding operation step <p P> such that inv(q) D p and neither 
P nor Q is aborted. 
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Definition 5: G is a D-view of H for inv(q) if G is D-closed, and if it includes every <p P> in H 
such that inv(q) D p and P is not aborted. 

These definitions are intended to avoid constraining the behavior of aborted transactions. 

Let Concur be an arbitrary concurrent specification. 

Definition 6: Let G be a D-view of H for inv(q). D is an atomic dependency relation for Concur 
if G • <q Q> is in Concur implies H • <q Q> is in Concur. 

In the appendix, we show that a replicated atomic object implemented by consensus scheduling satisfies 
the concurrent specification Concur if and only if the quorum intersection relation is an atomic 
dependency relation for Concur. 

The formal similarity between serial and atomic dependency belies some interesting differences. If T is a 
serial specification, let Hybrid(T) be the concurrent specification consisting of all hybrid atomic schedules 
for T. Let D H be a minimal atomic dependency relation for Hybrid(T). Clearly, D H must be a serial 
dependency relation, since it must ensure hybrid atomicity even when all operations are executed serially 
by a single transaction. It follows that that every quorum assignment permitted by a consensus 
scheduling implementation of Hybrid(T) is permitted by a consensus locking implementation of T. The 
converse, however, is false. For example, let D s be the minimal serial dependency relation for the 
Account data type shown in Figure 4-4. Let H be the following hybrid atomic schedule, 

Debit($20)/No() C 
Credit($10)/Ok() B 

and let G be the subschedule consisting of the first step. Recall that Credit operations are unrelated by 
D s , thus G is a Ds-view of H for Credit. Now suppose A attempts to credit $10 to the account. G • 
<Credit($10)/Ok() A> is hybrid atomic, but H • <Credit($10)/Ok() A> is not, because an illegal serialization 
results if the transactions commit in the order A, B, and C. It follows that a consensus scheduling 
implementation of Hybrid(Account) requires initial and final Credit quorums to intersect, while a 
consensus locking implementation of Account, which permits less concurrency, does not. 

For an account replicated among n identical repositories, consensus locking permits f"n/2l distinct minimal 
quorum assignments: Credit and Debit quorums must respectively encompass m and n-m+1 
repositories, where m ranges between 1 and Tn/2l. By contrast, a consensus scheduling implementation 
of Hybrid(Account) permits exactly one minimal quorum assignment: both Credit and Debit require a 
majority. A similar argument shows that if Static(Account) is the full set of static atomic schedules, a 
consensus scheduling implementation of Static(Account) also permits only a single quorum assignment. 
Curiously, it can be shown that for any data type T, any quorum assignment permitted by Static(T) is also 
permitted by Hybrid(T), but not vice-versa [17]. 

5.4. Remarks 
Consensus scheduling may require more message traffic than consensus locking. Under consensus 
locking, any operation that is not partial can be executed in a fixed number of messages. Under 
consensus scheduling, however, additional messages may be needed to manage short-term locks, and to 
retry operations blocked by synchronization conflicts. Consensus locking can be viewed as a specially 
optimized instance of consensus scheduling in which message traffic has been reduced by moving 
scheduling decisions from the front-ends to the repositories, and by synchronizing operations in two 
phases instead of one. 
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Although we do not address the issue here, the consensus scheduling algorithm and the notion of atomic 
dependency can be extended to a nested transaction model by introducing additional well-formedness 
conditions. 

6. Conclusion 
Replication methods in which concurrency control and replica management are handled by distinct 
protocols at different levels have an appealing simplicity. Each protocol can be designed and understood 
in isolation, and a variety of replication methods can be constructed by combining different techniques. 
Nevertheless, we have argued here that combining concurrency control and replica management in a 
single protocol permits greater concurrency, as well as more flexibility in trading concurrency against 
availability. 

Consensus locking is a replication method that relies on predefined lock conflicts derived from the object's 
type specification and its quorum assignment. Consensus locking minimizes constraints on availability 
and concurrency: no replication method, integrated or not, can impose weaker constraints on quorum 
assignment, and no conflict-based concurrency control protocol permits more operations to execute 
concurrently. Consensus locking also supports more concurrency than a number of locking schemes in 
the literature, even in the absence of replication. Nevertheless, the concurrency realizable by consensus 
locking is limited by an inability to take the object's state into account. 

Consensus scheduling is a generalization of consensus locking that can be used to construct replicated 
objects satisfying arbitrary concurrent specifications, including specifications satisfying local atomicity 
properties other than hybrid atomicity, and specifications in which scheduling decisions take the object's 
state into account. This additional power may come at the cost of additional message traffic and tighter 
constraints on quorum assignment. 

Availability and concurrency are not independent properties: the availability and concurrency realizable 
by replication are governed by a common set of constraints, formally characterized by the notion of an 
atomic dependency relation. In particular, there exist data types for which the constraints on availability 
and concurrency cannot be minimized simultaneously: the more interleaving permitted by the concurrent 
specification, the more restrictive the constraints on quorum assignment. 

I. Formal Definitions and Proofs 

1.1. Consensus Locking Automata 
For consensus locking, a replicated object is modeled by a non-deterministic consensus locking 
automaton that accepts certain schedules. The automaton's state is defined using the following primitive 
domains: REPOS is the set of repositories, TRANS the set of transaction identifiers, INV the set of 
invocations, RES the set of responses, and TIMESTAMP a totally ordered set of timestamps. x -» Y denotes 
the set of partial maps from x to Y. We use the following derived domains: OP = INV X RES is the set of 
operations, QUORUM = 2 R E P 0 S the set of quorums, and a log is a map from a finite set of timestamps to 
operations: LOG = TIMESTAMP OP. 

Two logs L and M are coherent if they agree for every timestamp where they are both defined. The 
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merge operation u is defined on pairs of coherent logs by: 

(L u M)(t) = if L(t) is defined then L(t) else M(t). 

Every log corresponds to a history in the obvious way. For brevity, we sometimes refer to a log L in place 
of its history, e.g., "L is legal" instead of "the history represented by L is legal." 

A consensus locking automaton has the following state components: 

Intent: REPOS - » (TRANS LOG) 

l-Lock: REPOS - > (INV - » 2 T R A N S ) 

F-Lock: REPOS - » (OP - » 2 T R A N S ) 

Clock: TIMESTAMP 

Committed: TRANS - » TIMESTAMP 

Let R be a repository and Q a transaction. lntent(R,Q) is the log of entries for Q recorded at R, initially 
none. l'Lock(RJnv) and F-Lock(R,q) are respectively the sets of transactions holding initial and final locks 
for inv and q at R, initially none. Clock models a system of logical clocks, and Committed maps 
committed transactions to their timestamps. 

If S is a set of repositories, and Q a transaction, let lntent(S,Q) = u R € S lntent(R,Q) and similarly for 
l-Lock(S,inv) and F-Lock(S,q). Let {P v...,P k} be the sequence of committed transactions sorted in the 
order of their commit timestamps. Define: 

Perm(S) - Intent fS^) •... • lntent(S,Pk), 
the history constructed by appending the intentions in timestamp order. If Q is an active transaction, 
define: 

View(S.Q) = Perm(S) • lntent(S,Q), 

the history constructed by serializing committed transactions in timestamp order, followed by Q. 

The automaton's transition relation is defined using the following sets. 
• A serial specification Serial. 

• A lock conflict relation D L c INV X OP. 

• Initial: INV - > 2 Q U O R U M assigns initial quorums to invocations. 

• Final: OP - » 2 Q U 0 R U M assigns final quorums to operations. 

Initial, Final, and D L induce the relations D Q and D L Q defined above. 

For brevity, we assume that all input schedules are well-formed. (Well-formedness could be checked 
explicitly by adding more state components and preconditions.) 

The precondition for accepting an operation step <q Q> is the following. There must exist IQ in 
lnitial(inv(q)) and FQ in Final(q) such that: 
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If inv(q) D L p, then F-Lock(IQ,p) — {Q} = 0 , 

If inv' D L q, then l-Lock(FQ,inv') — {Q} = 0 , and 

View(IQ,Q) • q is in Serial. 

No repository in the initial quorum has granted a conflicting final lock, no repository in the final quorum 
has granted a conflicting initial lock, and appending the operation to the transaction's view yields a legal 
history. 

Let View* be the result of appending the new step to the view: 

View'(S,Q)(t) = if (t=Clock) then q else View(S,Q)(t) 

Following the operation execution, the automaton's new state satisfies the following postconditions, where 
x' denotes the new value of component x: 

Clock' > Clock 

For all R in IQ, l-Lock'(R,inv(q)) = l-Lock(R,inv(q)) u {Q}. 

For all R in FQ, F-Lock'(R.q) = F-Lock(R.q) u {Q}. 

For all R in FQ and P in TRANS, lntent'(R,P) = lntent(R,P) u View'(IQ,Q)|P. 

The clock is advanced, the transaction is granted locks, and the view is merged with the logs in the final 
quorum. 

The precondition for accepting a commit step <Commit(t) Q> is true. After accepting the commit step, the 
following postcondition holds: 

Clock' > max(Clock,t), 

Committed'(P) = if (P=Q) then t else Committed(P), 

For all inv in INV and R in REPOS, l-Lock'(R,inv) = l-Lock(R,inv) — {Q}, and 

For all p in OP and R in REPOS, F-Lock'(R,p) = F-Lock(R.p) — {Q}. 

The commit advances the clock beyond the commit time, the transaction is marked as committed, and its 
locks are released. The precondition for an abort step is true, and the postcondition advances the clock 
and releases locks. 

I.2. Correctness Arguments 
A schedule is hybrid atomic [33] if transactions are serializable in commit timestamp order. A schedule is 
on-line hybrid atomic if the result of committing any set of active transactions yields a hybrid atomic 
schedule. Henceforth, we say simply "hybrid atomic" for "on-line hybrid atomic." A hybrid serialization of 
H is a history constructed by committing some set of active transactions, and serializing them in commit 
timestamp order. A schedule is hybrid atomic if all its hybrid serializations are legal. We will show that 
the schedules accepted by a consensus locking automaton are hybrid atomic if the effective conflict 
relation is a serial dependency relation, and that no weaker constraints on quorum intersection and lock 
conflict preserve hybrid atomicity. 
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We use the following technical lemma. 

Lemma 7: If D is an arbitrary relation between invocations and operations, the result of merging 
D-closed sublogs of a particular log is itself a D-closed sublog. 

The following lemma is proved elsewhere [19]. 

Lemma 8: If D is a serial dependency relation, g and h histories, and q an operation such that g 
• q and g • h are legal, and there is no p in h such that inv(p) D q, then g • q • h is legal. 

The locks ensure that conflicting operations cannot execute concurrently. 

Lemma 9: If a consensus locking automaton has accepted a schedule H containing operations 
p and q executed by distinct active transactions, then inv(q) ~ D L Q p and inv(p) ~ D L Q q. (~D L Q 

is the complement of the relation DL.) 

Proof: If not, some repository in the intersection of the quorums for p and q has granted 
conflicting locks. 

Lemma 10: Let h be a hybrid serialization of the accepted schedule H, S a set of repositories, 
and Q an active transaction. The following property is invariant: View(S,Q) is a D L Q-closed 
subhistory of h. 

Proof: By Lemma 7, it is enough to show that View(R,Q) is D L Q-closed for a single repository 
R. We argue by induction on the length of the accepted schedule. The base case is immediate. 
Assume the automaton has accepted the schedule H, and let h be a hybrid serialization of 
H. By induction, h is legal. 

Suppose the automaton accepts the operation step <q Q>. If h is a hybrid serialization of H in 
which Q aborts, then h is also a legal hybrid serialization of H • <q Q>. Otherwise, h can be 
written as h 1 • h 2 and the corresponding hybrid serialization h' of H • <q Q> as h 1 • q • h 2 . Let P 
be an active transaction distinct from Q. By induction View(S,P) is D L Q-closed in h. If 
View'(S,P) is not D L Q-closed in h\ then it includes an operation p in h 2 such that inv(p) D L Q q. 
If P executed p, then p and q contradict Lemma 9. If a committed transaction executed p, the 
well-formedness constraints on commit timestamps ensure it is serialized before Q in every 
hybrid serialization, thus p cannot appear in h 2 . Therefore, View'(S,P) must be D L Q-closed in 
h\ 

The commit step for Q shrinks the set of hybrid serializations. If R is not part of a final quorum 
for Q, View'(R,P) = View(R,P), which remains D L Q-closed. Otherwise, 

View'(R,P) = View(R,P) u View(R,Q) 

which is closed by Lemma 7. 

The abort step <Abort Q> shrinks the set of hybrid serializations, but leaves View(S,P) 
unchanged. 

Lemma 11 : Let h be a hybrid serialization of the accepted schedule H in which Q commits. If Q 
has acquired initial locks for inv(q) at IQ in initial(inv(q)), then View(IQ,Q) is a D L Q-view of h for 
inv(q). 

Proof: View(IQ,Q) is an D L Q-closed subhistory of h (Lemma 10). If inv(q) D L Q p and 
transaction P executed p, then either P is committed or P is the same transaction as Q (Lemma 
9). In either case, p appears in View(IQ,Q) because the initial quorum for inv(q) intersects the 
final quorum for p. 

We are now ready for the basic correctness result. 

Theorem 12: If D L Q is a serial dependency relation, then every schedule accepted by a 
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consensus locking automaton is hybrid atomic. 

Proof: We argue by induction that every hybrid serialization of every schedule accepted by the 
automaton is legal. The property is immediate after accepting the empty schedule, and it is 
clearly preserved after accepting a commit or abort step. 

Assume the automaton has accepted the schedule H, and let h be a hybrid serialization of 
H. By induction, h is legal. Suppose the automaton accepts the operation step <q Q> with 
initial quorum IQ. If h is a hybrid serialization of H in which Q aborts, then h is also a legal 
hybrid serialization of H • <q Q>. Otherwise, h can be written as h 1 • h 2 and the corresponding 
hybrid serialization h' of H • <q Q> as h 1 • q • h 2 . View(IQ,Q) is a D L Q-view of h 1 • h 2 for inv(q) 
(Lemma 11), but since every operation in View(IQ,Q) is serialized before q, it is also a D L Q-view 
of h v The precondition for accepting an operation step ensures that View(IQ,Q) • q is legal, 
and because D L Q is a serial dependency relation, h 1 • q is also legal (Definition 3). There is no 
p in h 2 such that inv(p) D L Q q (Lemma 9), thus h 1 • q • h 2 is legal (Lemma 8). 

We now show that no weaker set of constraints on lock conflicts and quorum intersection can guarantee 
correctness. Our argument relies on the following lemma, proved in [19]: 

Lemma 13: Let D be a relation between invocations and operations. If D is not a serial 
dependency relation, then there exist histories g and h and an operation q such that (1) g is a 
D-view of h for inv(q), (2) g • q is legal, (3) h • q is illegal, and g is missing exactly one operation 
of h. 

No quorum consensus method can place weaker constraints on quorum assignment. 

Theorem 14: If D is not a serial dependency relation, there exists a consensus locking 
automaton with quorum intersection relation D that accepts a schedule that is not hybrid atomic. 

Proof: Let h, g, and q satisfy the conditions of Lemma 13, let h = g 1 • p • g 2 , and g = g 1 • g 2 . 
Consider an automaton with two repositories, R1 and R2. Transaction Q executes the 
operations in g v choosing {R1.R2} for initial and final quorums. It then executes p, choosing 
{R2} for initial and final quorums, and g 2 , choosing {R1} for initial and final quorums. Q 
executes q and commits, choosing an initial quorum of {R1}, assembling the view g. These 
quorum intersections satisfy D, but the automaton has accepted an illegal schedule. 

A natural way to compare the concurrency permitted by locking schemes is to compare which operations 
may execute concurrently. For consensus locking, this set is determined by the symmetric conflict 
relation: 

p - q s inv(p) D L Q q v inv(q) D L Q p. 

If p - q, the two operations cannot execute concurrently because one operation's initial locks will conflict 
with the other's final locks. By a minor abuse of notation, we say that - is a serial dependency relation if 
the relation is a serial dependency relation, where inv(q) - ' p if q ~ p. If D L Q is a serial dependency 
relation, so is ~. Moreover, any such - can be generated by some serial dependency relation D L Q , thus 
any scheme for choosing an effective conflict relation that permits more concurrency than our scheme 
must induce a symmetric conflict relation that is not a serial dependency relation. We now show that no 
such scheme is possible. 

Theorem 15: Let - be a symmetric relation between operations. If ~ is not a serial dependency 
relation, there exists a consensus locking automaton with effective conflict relation - that 
accepts a schedule that is not hybrid atomic. 

Proof: Since ~' is not a serial dependency relation, pick h, g, and q to satisfy the conditions of 
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Lemma 13, and let h = g 1 • p • g 2 , g - g 1 • g 2 . Consider an automaton with two repositories, R1 
and R2. Transaction A executes each of the operations in g 1 and commits, choosing both R1 
and R2 as initial and final quorums for each operation. Transaction B executes p, choosing R2 
as its initial and final quorums. Let g 2 • q = q 1 •... • q k . Transaction C executes g 2 • q, choosing 
the following quorums. If inv(q{) D Q p, choose the initial quorum {R1,R2}, otherwise choose 
{R1}. If inv(p) D Q q j f choose the final quorum {R1.R2}, otherwise choose {R1}. These quorums 
satisfy D Q , and no lock conflicts arise because if inv(qj) D L p, then the initial quorum for q does 
not intersect the final quorum for p, and similarly if inv(p) D L q {. The accepted schedule is not 
hybrid atomic because it has the illegal hybrid serialization h • q. 

1.3. Consensus Scheduling 
For consensus scheduling, a replicated object is modeled by a non-deterministic consensus scheduling 
automaton, having the following components. Let STEP = OP U "Commit" u "Abort." It is convenient to 
redefine LOG to be TIMESTAMP - » STEP. 

State: REPOS - » LOG 

Clock: TIMESTAMP 

Visited: TRANS -> 2 R E P 0 S 

Visited(Q) is the set of repositories that participated in a quorum for Q, and State(R) is the log at R. If S is 
a set of repositories, define State(S) in the usual way. 

The automaton's state transition relation is defined using the following sets. 
• The concurrent specification Concur, 

• Initial: INV -> 2 Q U 0 R U M , and 

• Final: OP -> 2 Q U 0 R U M . 
As before, Initial and Final define a quorum intersection relation D Q . 

The precondition for accepting an operation step <q Q> is the following. There must exist an initial 
quorum IQ in lnitial(inv(q)) such that 

State(IQ) • <q Q> is in Concur. 

The schedule constructed by merging the logs from an initial quorum and appending the new step must 
lie within the concurrent specification. The postcondition is the following. There must exist a final quorum 
FQ in Final(q) such that: 

Clock' > Clock 

For all R in FQ, State(R)(t) - if (t-Clock) then <q Q> 
else (State(R) u State(IQ))(t) 

The front-end's log is merged with the logs at a final quorum and the clock is advanced. 

Commits and aborts are treated as operations with dummy invocations: the clock is advanced, and a 
commit or abort entry is appended to the log at each repository visited by the transaction. 
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I.4. Correctness Arguments 
We first show that the view assembled for each operation is a DQ-closed subschedule of the schedule 
accepted by the automaton. 

Lemma 16: The result of merging logs from any set of repositories is DQ-closed. 

Proof: It suffices to show the property holds for any single repository R; the more general result 
follows from Lemma 7. The argument is by induction on the length of the accepted schedule. 
The base case is immediate, and the result is clearly preserved when a commit or abort step is 
accepted. 

Let <q Q> be an operation step accepted in a state satisfying the lemma. If R is outside the 
final quorum for q, then State(R) = State'(R), which remains DQ-closed. Otherwise, 

State'(R) = State(R) u State(IQ) • <q Q>, 

where "•" is shorthand for appending the new entry to the log as defined above. State(IQ) is 
DQ-closed because it is the merger of closed logs (induction hypothesis and Lemma 7). 
State(IQ) • <q Q> is DQ-closed by construction, and State(R) is DQ-closed by the induction 
hypothesis, therefore State'(R) is DQ-closed by Lemma 7. 

Constraints on quorum intersection yield: 

Corollary 17: If the automaton has accepted the schedule H, and IQ is in lnitial(inv(q)), then 
State(IQ) is a DQ-view of H for inv(q). 

We are now ready to present the basic correctness result: 

Theorem 18: If the quorum intersection relation D Q is an atomic dependency relation for 
Concur, every schedule accepted by a quorum consensus automaton is in Concur. 

Proof: By induction on the length of the accepted schedule H. The base case is immediate. 
Because Concur is on-line, and result holds when the automaton accepts commit or abort 
steps. Suppose the automaton accepts the operation step <q Q>. State(IQ) is a DQ-view of H 
for inv(q) (Corollary 17), State(IQ) • <q Q> is in Concur, and D Q is an atomic dependency 
relation for Concur, hence H • <q Q> is also in Concur (Definition 6). 

No set of constraints on quorum intersection weaker than atomic dependency guarantees that all 
schedules accepted by a consensus scheduling automaton are in Concur. 

Theorem 19: If D is not an atomic dependency relation for Concur, there exists a consensus 
scheduling automaton for which D Q = D that accepts a schedule that is not in Concur. 

Proof: By Definition 6, if D Q is not a serial dependency relation, there exist schedules G and H 
in in Concur and an operation q such that G is a D-view of H for inv(q), G • <q Q> is in Concur, 
but H • <q Q> is not. We construct a consensus scheduling automaton with quorum 
intersection relation D Q that accepts H • <q Q>. 

The automaton has two repositories: R1 and R2. It accepts H, choosing the following quorums 
for each operation. For each operation in G, choose an initial quorum of {R1} and a final 
quorum of {R1 ,R2}. For operations in H but not in G, choose an initial quorum of {R1 ,R2} and a 
final quorum of {R2}. The view assembled for each operation in G contains all and only the 
prior steps in G, and the view assembled for every other operation contains all prior steps. 

These quorums satisfy D Q , because all initial and final quorums intersect except the initial 
quorums for operations in G and the final quorums for operations not in G. If any of these 
quorums were required to intersect, then G would not be DQ-closed, a contradiction. 
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The automaton then accepts <q Q>, choosing an initial quorum of {R1} and a final quorum of 
{R1,R2}. This transition is legal because the automaton assembles the view G, and G • <q Q> 
is in Concur. The accepted schedule H • <q Q> is not in Concur, thus the automaton is 
incorrect. 

7. Notes 

Make use of visited more explicit. 
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