
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Parallel Processing with Agora

Alessandro Forin, Roberto Bisiani, and Franco Correrim

December 1987

CMU-CS-87-183 (1

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Copyright © 1986,1987,1988 A. Forin, R. Bisiani, F. Correrini

This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA
Order 5167, and monitored by the Space and Naval Warfare Systems Command under contract
N00039-85-C-0163. Views and conclusions contained in this document are those of the authors and
should not be interpreted as representing official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or of the United States Government.

i

Table of Contents
A b s t r a c t 1
1. I n t r o d u c t i o n 3

1.1. Why Agora ? 3
1.2. The User's View 5
1.3. Leveraging on Agora 6

2 . T h e C o m p i l e r 9
2.1. The Language 9

2.1.1. Data Definitions 9
2.1.2. Addressing 10
2.1.3. Access Function Definitions 11

2.2. Translation 12
2.3. The Output 13
2.4. Examples 14

3- A g o r a F r o m C a n d C + + 19
3.1. C Agents 19
3.2. The ASM library 21

4 . A g o r a F r o m L i s p 2 5
4.1. Lisp and Alien Languages 25

4.1.1. The Agora-Lisp Shell 25
4.1.2. Lisp Agents 26

4.2. Notes 26
5. T h e S h e l l 3 1

5.1. Extending the Unix Environment 31
5.2. The AgoraShell 32

5.2.1. Agent Control 33
5.2.2. Data Manipulat ion 35
5.2.3. Miscellaneous 35

5.3. Living in Agora 36
6. T h e N e t w o r k e d S h a r e d M e m o r y 3 7

6.1. Memory and Messages 37
6.2. The AgoraServer 38
6.3. Notes 40

7. A g o r a - E x t r a s 4 5
7.1. CFrames 45

7.1.1. Language Overview 46
7.2. Xlisp 50

8. O t h e r T o o l s 53
8.1. Garbage Collection 53
8.2. Performance Monitoring 54
8.3. Pattern Matching 56
8.4. Debugging 58
8.5. Data Storage 60
8.6. Loading of Agent Images 60

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA

9. E x a m p l e
9.1. A Name Service
9.2. A Distributed Make

10 . C o n c l u s i o n s
R e f e r e n c e s
I n d e x

1

Abstract

Agora n. 1. Greek The public square and marketplace in an ancient Greek city; 2. Comp. An environment for
the construction of large scale parallel and distributed systems, which supports multiple languages and
heterogeneous computer architectures.

This document is a detailed report on the current status of the Agora Project. Its aim is to describe the
current design and implementation as well as the immediate goals and future research directions of the
project. Its intended audience includes both fellow researchers and potential users of the system. The
material contained in this document is detailed enough to constitute a practical guide to parallel
programming with Agora.

Chapter 1 is an overview of the project's key ideas: mildly curious readers may wish to concentrate on
this chapter. Chapter 2 describes Agora's intended approach to programming parallel applications. Both
interested readers and potential users should look into it. Chapters 5, 3 and 4 describe in detail the core
components of the system, and Chapters 6, 7 and 8 describe the remaining components. These are
reserved for potential and actual users, although each Chapter typically contains an introductory section
that is of more general interest. Chapter 9 is a complete example. Most readers will probably want to
look at it, at least superficially.

Acknowledgements

Other past or present members of the Agora Project include, in alphabetical order, F. AUeva,
V. Ambriola, M. Bauer, A. Brown, E. Hughes, F. Lecouat, R. Lerner, D. Tomm: their contributions have
been invaluable in making Agora a reality. Special thanks are due to Duane Adams for his continuous
help and his precious comments while revising our documents.

2

3

1. Introduction
This chapter provides an overview of the Agora Project: it illustrates the basic motivations behind it,

and the key ideas that are being explored. Specific sections contain: a description of the role that Agora
plays for programming parallel applications on heterogeneous architectures and languages, a description
of a specific scenario for parallel programming, and a brief mention of research areas that can profitably
leverage on the results of the project. Chapter 10 summarizes the most novel features that Agora (as a
programming system) provides.

In this document we have attempted to be as complete as possible, previous documents [6, 7] contain
our initial ideas. The final word on implementation details is left to the Agora User Manual [21].

1.1. Why Agora ?
The solutions of many real-life problems encountered in science and industry require the integration of

parallel programs written in different languages and running on heterogeneous machines. We call the
development of such systems heterogeneous parallel programming. For example, sensor data acquisition
and signal processing might have to be integrated with planning, or electrical circuit simulation might
have to be integrated with expert system technology. The aim of the Agora project is to facilitate
heterogeneous parallel programming.

As a possible scenario, imagine a multi-media dialogue system like the one that the MINDS project
[43] is building at CMU. In this case, a dialogue manager, written in Lisp and running on a workstation,

uses as one of the input devices a parallel speech recognition subsystem largely written in C and running
on a shared memory multiprocessor. The speech recognition subsystem is the result of a separate
research project, but it must be tightly integrated with the rest of the system. Other input devices allow
textual and graphic input, and they run on another workstation. Another component of the system is a
moderately sized database, which is kept on a separate workstation and managed by a separate
subsystem. Applications like this one use heterogeneous architectures, including multiprocessors (in the
example Vax, IBM-RT and Encore Multimax), heterogeneous languages (C and Lisp), and need the
integration of large and separately developed subsystems.

Modern, general purpose operating systems like Mach [4] offer interprocess communication facilities
based on exchange of messages, sharing of memory, or both. There is a growing body of tools to deal
with message based interaction, and in large part these tools rely on the Remote Procedure Call (RPC)
paradigm. Message primitives, however, are bound to be relatively expensive: if correctly implemented
they require the protection that only operating system calls can provide. Shared memory can provide
higher efficiency with lower protection, but no existing system supports shared-memory-based
interaction between heterogeneous languages. Agora covers exactly this missing part, offering enough
tools and functionality to easily develop shared memory based system with heterogeneous components.
Agora also extends the notion of heterogeneous shared memory across a network of workstations, in a
totally transparent way. Agora can also be extended to ensemble machines like the Cosmic Cube [36], but
we have not done it yet.

The most common tool for message-based interprocess communication is a Stub Generator, e.g. a

4

compiler that takes the specification of a procedure as input, and generates code to pack/unpack
arguments in messages, send and receive them, and even structure the user's code in a client-server
scheme. After learning the use of such tool, a user can concentrate on an almost-sequential model of
parallel computing: clients invoke remote operations just like standard procedures, and writing a server
largely consists of writing those procedures. Therefore, the low learning cost is one of the most
appreciated characteristic of the Remote Procedure Call paradigm. Unfortunately, the notion of a client-
server relationship is easy to understand, but not general enough. A server can provide fair allocation of
common resources and a simple and safe interface to access them. Therefore, a server can be very useful
in implementing operating system functions but is not suited to other problem domains, e.g. symbolic
computing.

Agora supports the Shared Data Type paradigm: processes (agents, in Agora terms) communicate via
controlled accesses to common data structures, rather then sending information inside messages. Sharing
in Agora goes beyond the boundaries of physical shared memory: the same data structure is accessible
and kept consistent across processors, and converted, if necessary, between different machine
architectures (e.g. Sun versus Vax architectures). Data structures are strongly typed: each has a runtime
type descriptor associated with it. Data structures are only accessed through user defined functions. Data
structures can be created dynamically, and their type must be indicated at creation time. The act of
modifying a data structure is an event that can be reported to all interested agents. This makes a shared
data structure behave as an active object, since touching it constitutes an interprocess communication
event. In this sense, execution in Agora is event-driven.

The notion of Shared Data Types borrows from Abstract Data Types [31] and Object Oriented
Programming [26,11]. In the sequential world, these techniques have gone a step beyond plain
procedural decomposition for code design and structuring. In particular, object oriented languages favor
the quick development of large evolutionary systems. We exploit these techniques in Agora because we
expect them to be even more effective for the parallel world: not for hiding the parallelism, but for
exposing and controlling it in a natural way. The notion of Monitors [29] is also related: procedures
inside a monitor are the only ones allowed to operate on the monitor's variables. The basic control
scheme that Agora exploits has also roots in BlackBoard Systems [17] and other AI environments [10].

In the same way a Stub Generator is a fundamental tool for defining (remote) procedural interfaces, a
similar tool plays a central role in defining shared data types. We call this tool Data Type Generator
because its purpose is to generate data type declarations to match the shared data structures, and
appropriate functions to access them. This is done by compiling a description given in a simple meta
language into each of the supported programming languages. Contrary to Stub Generators, the Agora
compiler also allows the definition of access functions (e.g. operators, methods) in the meta-language.
The Agora meta-language is a simple subset of Lisp, but the specific language syntax chosen should not
mat te r only control constructs that are compatible across many languages are used.

The choice of living in an heterogeneous environment has also intrinsic advantages. With Agora,
components can be coded in different languages, or new components incorporated in an existing system
without extra effort. Subsystems can be tailored to the languages and /o r architectures that are most
suited to their efficient execution. Having a larger set of choices for the implementation encourages

5

devising more portable algorithms.

1.2. The User's View
Parallel systems in Agora are designed around the definition of the shared data they use. This

definition is precise, unambiguous, and in form of a machine readable specification. The specification is
then refined into executable code. The specification language used has a Lisp-like syntax. The definition
of access functions follows the syntax of CommonLisp's defun, and includes forms like let, do, cond, etc.
The language and its compiler are described in detail in Chapter 2.

Agora is implemented as a collection of programs and libraries, with specific versions for the various
programming languages and machines. The core system includes:

• the AgoraShell, a modified version of the Unix C-shell;

• the AgoraCompiler;

• a runtime library (and lisp package) that defines the basic Agora primitives;

• the AgoraServers that take care of the network protocols.
Other basic tools include

• the Agora debugger,

• the parallel and incremental garbage collector,

• the performance monitor,

• a utility to save/restore on disk files the content of the runtime data-structures.

Programmers and users interact with Agora through a shell that could either be the AgoraShell or the
Lisp interpreter. Both offer interpretive access to the same set of Agora primitives, and they offer further
functionality to inspect and monitor the status of the shared memory. It is worth noting that Agora
extends the basic capabilities without sacrificing any of the features that either the C-shell or Lisp offer.
In this way the transition to a parallel environment becomes as easy as possible. Standard Unix/Lisp
tools are used for program composition: editors, compilers, linkers etc. A C-program written in Agora
(an Agora C-agent) looks to the AgoraShell exactly like any other Unix program. Therefore, Agora can
also be used to develop parallel programming tools (e.g. a parallel-make utility that can spread
compilations over more than one machine).

A shared data structure definition is nicknamed context. Agora provides a runtime library of standard
functions to create, destroy, read and write contexts as procedural extensions of each of the supported
languages. Users also define other custom access functions to provide operations that are more suited to
manipulate the specific abstractions they use. These functions are implemented using the standard
library functions.

The description in the meta language is handed to the AgoraCompiler which generates runtime type
descriptors and language specific code. The code is then used in the various agents that make u p the
final application. Each agent can be tested in isolation, and to this end the shell (under the user's control)
can provide all the stimuli that the other agents generate in the complete application. The shell is an
interpreter (of either Lisp or C), and therefore simple scripts/functions are easily created and thrown

6

away after use.

Systems can be developed on a single machine without any concern of the final assignment of agents to
processors in a distributed application. AgoraServers are the only components that are concerned with
extending the notion of a shared memory across separated processors. The only Agora primitive that
deals with the notion of separate processors is the one that starts a new agent, which optionally takes a
specific host name parameter.

Since Agora is used to build large distributed applications, the debugging phase becomes especially
important to shorten the development times. Agora provides a distributed debugger that is suited to the
Agora's requirements: it can cope with multiple languages through language-specific sub-tools which are
familiar to the programmers (e.g. modified versions of C and Lisp debuggers), it works across multiple
machines and has full control over the inner workings of the Agora shared memory, and finally promotes
a very simple and effective debugging protocol. The user executes the application without the debugger
and if-and-only-if something is wrong the debugger is invoked to replay the exact history of the
execution.

To allow faster access, data memory is largely managed in a write-once fashion in Agora. This makes it
necessary to recover reusable storage to minimize virtual shared memory requirements, and to cope with
limited addressing that certain architectures provide. Agora provides a garbage collector agent, startable
at any time, which incrementally and in parallel reclaims reusable storage. The user has full control of
the agent: in this way the garbage collection process will not interfere with time critical applications by
executing at inappropriate times.

In order to run experiments and exchange data, it must be possible to save and restore the runtime data
structures on disk files. This is done by invoking a simple agent that is also part of the Agora toolset. The
representation on files is machine independent, so that heterogeneous machines can access the same data
files, avoiding the waste of duplicating and converting them. Agora uses a binary representation because
using an ASCII representation is both slow and wasteful. The information about the type of the data
structure is used to convert it, when necessary, across incompatible architectures.

The following chapters provide more details about the various components of the system, and

appropriate material to provide the programmer's view of Agora. Chapter 9 contains example

applications.

1.3. Leveraging on Agora
Parallel programming is still at its beginning, and we should expect programming environments for

parallel applications to become a sensible area for research in the near future. Agora can be effectively
used as the basis for building advanced programming environments that use techniques from AI and
Software Engineering to simplify the management of large systems. To prove this, we have built
prototypes of the key components that such environments will use ([7,9]). This included a distributed
database based on a distributed frame language derived from SRL [22], a framework for easily defining
customized environments in an object oriented style (this included a language for defining database

7

methods, to be usable both from Lisp and C agents), a planner that uses the description of the system to
accomplish the user's goals via automatic invocation of the tools of the environment, and a graphical user
interface that allows the user to peruse the database in a friendly way.

Interest upon BlackBoard Systems is growing both in industry and academia. An important feature
that is lacking in existing systems is true parallelism: they all simulate it via interleaved or sequential
execution on a single processor. Agora has already the necessary basic components of a BlackBoard
system: it is easy to extend it into this direction. What is missing is a more powerful database definition
and browsing capability, like the one that GBB [15] offers.

The parallelism that currently Agora offers is not at the very fine grain: starting parallel computations,
and synchronizing them is still somewhat expensive. Agora should be able to use light-weight processes
to lower the cost of starting new agents. The only way to lower these costs is to use a parallel language
and its compiler: Multilisp [27] and Modula [42] among the best candidates. These languages can be
integrated in Agora just like any other sequential language: components written in these languages can
interface to other components using the Agora primitives. Integrating a language that covers fine-grain
parallelism would lead to a system that covers all the possible application requirements.

8

9

2. The Compiler
This Chapter describes a tool, the Data Type Generator, that plays a central role in Agora. The tool

takes as input a specification of the Shared Data Structures and generates type descriptors for the Agora
runtime system and data type and function definitions for the programming languages that Agora
supports. The specification is given via a meta-language, described in Section 2.1. The language is a
simple subset of Lisp that allows definition of the shared types and of the operations on instances of the
types, e.g. Shared Data Type definitions. The tool itself is described in Section 2.2, and the output it
generates is described in Section 2.3. Finally, section 2.4 contains some examples.

2.1. The Language
Parallel systems in Agora are designed around the definition of the shared data they use. This

definition is in the form of a machine readable specification. The specification is refined into executable
code, to be used by the programmers that code the various components (agents) of the application. The
specification is the sole mean by which interactions among agents are explicitly defined. The
specification language allows the definition of both data and access functions.

Shared data structures are nicknamed contexts. A description of a context is composed of two parts:
data definitions and access-function definitions. Data definitions specify the representation of the
abstract data type, e.g. the structure of the data elements. Access functions specify the permissible
operations on instances of the type, and how they are implemented. Agora provides standard functions
to create, destroy, read and write contexts as procedural extensions of each of the supported languages as
part of its runtime system. However, the standard functions may not suffice to express the exact
semantics of the type. The language can specify access functions that define operations more suited to
manipulate instances of the shared type. These functions are then compiled into each of the
programming languages.

Three kinds of definitions can be part of a compilation unit: data definitions, addressing definitions,
and access function definitions. These are each described in turn in the following. The language also
encourages the creation of modular specifications. Visibility is restricted to the single compilation unit (a
file), and it is possible to reuse specifications via the include operator. Including a file simply makes all
the definitions contained in it visible.

2.1.1. Data Definit ions

Data elements are typed and are described by using a set of primitive types (listed in the following)
and array and record constructors. A type can be used within other types, hierarchically. A type is
introduced by the keyword deftype and the name of the type that it defines. This is followed by a list of
fields. Each field declares its own type, name and, optionally, an array size. The type of a field can either
be a basic type or another user type. Recursive or incomplete definitions are not permitted, e.g. a type
cannot have a component of the type itself. There are no pointer types,

(d e f t y p e P o i n t
(i n t l 6 x)
(i n t l 6 y)
(i n t 8 s c o r e s 1 0))

10

In this example, the type Point includes two 16-bit coordinates x and y, and an array of 10 8-bit scores.

Enumerated types specify the set of values for the type before the type name, e.g. as in
(enuxn (r e d g r e e n b l u e) c o l o r 10)

The set of basic types includes the following:

• int8: byte

• intl6: signed small integer

• int32: signed integer

• uint8: unsigned byte

• uint l6: unsigned small integer

• uint32: unsigned integer

• float32: single precision floating point

• float64: double precision floating point

• enum32: enumerated type
The suffix in a name indicates the size in bits of values of the type. Array can have a variable size: a size
of zero indicates a variable sized array. There can be at most one variable sized component per data
element and it must be the last one (an implementation restriction). Using variable sized types in other
types makes them variable sized as well, and the same restriction applies.

• •

2,1.2. A d d r e s s i n g

Data elements define the granularity of the structured shared memory. A context definition includes a
number of these types, and the definition of how the context is addressed. Agora supports two forms of
addressing: through indexing in a linear array and through hashing of strings in a hash table. The
definition of the shared data type is introduced by the keyword defcontext and includes the name, the
specification of the addressing mode, and an indication of the types of the data elements in it. The
addressing specifier can be either :linear or .hash. This can be followed by an optional specification for
the range of the index (for linear addressing) or the size of the hash table (for hashed addressing). The
defaults are 0 through infinity and a small table size, respectively,

(d e f c o n t e x t S c r e e n : l i n e a r (1 1024*1024)
((d a t a - r e f p i x e l a p p o i n t)) ; ; l i s t o f r e f e r e n c e s
(d a t a a p p o i n t P o i n t)) ; ; d a t a e l e m e n t s

In this example, the context Screen accepts a linear index ranging from 1 to 1024*1024, and includes the
data element a_point of the previously defined type Point. Applying an address to a context yields a list
of references. In the example, the list contains only one reference, pixel. References could either be
(pointers to) data elements or addresses for other contexts. References to data elements are indicated by
the keyword data-ref, references to contexts by the keyword context-ref. In both cases the name of the
reference is given first, followed by the name of the referred-to object. These objects must be specified
separately to allow multiple references to the same data elements. Data elements are specified by the
data keyword and other contexts by the context keyword. In both cases the name of the object is

11

followed by its type.

For convenience, the type of a referred^to context can be defined in-line so that its components can be
referenced from the outside and viceversa. This allows the construction of arbitrarily complex data
structures. For example

(defcontext ColorScreen . .
(<definition of the references>)
(context Red . .

((d a t a - r e f red_pixel p i x e l s)))
(context Blue . .

((d a t a - r e f b l u e _ p i x e l p i x e l s)))
(data p i x e l s Point)

Note that the inner context definitions both refer to the same data elements, i.e. pixels.

2.1.3. A c c e s s F u n c t i o n D e f i n i t i o n s

Agora provides a set of basic functions for the creation and manipulation of contexts. These are
available in language-specific libraries or are synthesized by the compiler. They are listed in Table 2-1.

cx_create(cxjyye, initjnfo)

Creates a new instance of a context of the given type. The optional parameter initjnfo specifies a list of existing contexts to be shared.
cx_destroy(cx) Reclaims all the storage space of the named context and destroys i t
cx_atomic_execute(cx, function _caU)

Guarantees that, during evaluation of the given function call, modifications of the given context are deferred.
This is valuable in those cases where a large mutual exclusion grain is needed, e.g. across consecutive
read/write operations.

cx_read(cx, address)
Dereferences the given address for the given context and returns either nil or the list of references, e.g.
pointer(s) to element(s) and/or addresses) for other context(s).

cx_write(cx, address, values)

Stores a new data element(s) in the context and makes it(them) addressable through the given address. A
variation of cxjvrite allows for checking the values to see if they exist in shared memory, thus saving storage in
case of sparse structures.

Table 2-1: Context Access Functions

A user will often use only the set of functiqns of Table 2-1. These are automatically provided by the
description of the data structure. In particular, cxjcreate is always synthesized by the compiler, and
creates all the necessary maps used for address dereferencing. Sometimes, a user may wish to provide a
better encapsulation of a data structure, by defining other access functions in the same language that is
used to describe the data structures. Implementation of these customized operations is defined in terms
of the functions of Table 2-1.

An access function definition is similar to a Lisp function definition. It is introduced by the keyword
def access, followed by the name of the function, by the parameter list, and the function body. Note that
the parameter list will always contain at least a formal for the context instance. A function definition can
be introduced by the keyword defun, and in this case it is intended that the function will not be made
visible to the user.

12

(d e f a c c e s s <name> (<paraxas>)
< o p t i o n a l d o c u m e n t a t i o n
<code>)

It is a non-easy task to decide what to put in a language and what not to. In our case, things are a little
easier with Lisp, but still one would like to support as many features as possible. We do not, however,
want to make the task of supporting a new language exceedingly difficult or cumbersome. The
constructs that must be supported are repetition, conditional, assignment, and variable binding. In
CommonLisp these are expressible with the forms do cond set let, respectively. The most restrictive type
of these forms is always preferred. The rationale behind this is that access functions are likely to be used
if-and-only-if they are simple and generate efficient code.

It is conceivable that an access function may need to directly manipulate the maps that are used for
addressing, although this has not been the case for the applications we have seen so far. For instance, a
user may wish to implement addressing forms different from the standard one. The functions that
ijnanipulate the addressing maps are defined in Table 2-2.

map_update(map, address, references)
Updates the entry at address to refer to the given (list of) references.

map_find(map, address, allocate)
Dereferences the given address and returns the corresponding entry. If the entry does not exist, allocate tells
whether to create it or not

map_next(map, address)
Returns the first valid address that follows address, if any.

map_bounds(map, first, last)
Returns the lower and upper bound of a linear map.

Table 2-2: Map Access Functions

2.2. Translation
The Agora compiler actually consists of two components: the Agora Type Generator (atg) and the

Agora Type Encoder (ate). The first one does most of the work, the second one simply takes a readable
representation of the data structures produced by atg and packs it into a more compact form, atg has been
produced with the Unix compiler-compiler yacc, and includes a scanner, a parser, semantic checker, and
code generation. It contains multiple code generators, all of them working on the same parse tree. The
syntax is so simple that it does not create any parsing or translation problem. The only exception is the
translation of the Lisp code into C, which is done by a separate module.

atg takes as input a single description file and produces a number of output files. Agora currently
supports C (and C++) and Lisp, so the output files are ' .h' header files and '.c 7 code files for C/C++ and
'.lisp' files for Lisp. A file with a ' .dump' suffix contains the type descriptors needed at runtime. This last
file is produced by ate and can be directly loaded in shared memory either by the shell or any other agent,
using a standard library function.

13

2.3. The Output
Each Shared Data Type, described in the meta-language, is compiled into a number of representations.

These include representations specific to the the languages supported by Agora and a representation that
is used in the Agora runtime system (runtime type descriptors). These are briefly described in the
following. Examples can be found at the end of this Chapter, and in Chapter 9.

C and C++

The Agora types and addressing definitions are translated into C structures defining C types with the
same names and the same components. More precisely, each deftype produces a C structure definition for
the data element, and each defcontext produces a C structure that correspond to the reference list.

The basic types are translated as follows

int8 > char
intl6 > short
int32 > int
uint8 > unsigned char
uintl6 > unsigned short
uint32 > unsigned int
float32 > float
float64 > double
enum32 > enum

Lisp

The Lisp code makes use of the CMU-CommonLisp foreign-function facility [32]. It follows rules
similar to C: for each declaration atg generates a def-c-record call, which has effects similar to a struct
definition in C. This is the lowest level at which Lisp can access shared memory, and clearly the most
efficient. Direct use of the foreign-function facility is however quite user-unfriendly. The compiler
therefore creates an extra layer that masks the facility and provides access directly in terms of Lisp native
objects. At this level, each structure is defined as a defstruct type. Accessing a context is in terms of Lisp
structures. A defstruct type defines the reference list and other defstruct types define the data elements.

The basic types are translated as follows

int8 > fixnum, string if array
int 16 > fixnum
int32 > fix/bignum as appropriate
uint8 > fixnum
uintl6 > fixnum
uint32 > fix/bignum as appropriate
float32 > float
float 64 > float
enum32 > fixnum

Runtime System

The descriptors generated by ate for the shared data types are simple tables of field descriptors. Each
field describes an array of objects Each object is either an array, or a structured object. Structured objects
are expanded inline. Each descriptor has a tag, a field name, a field size, and a multi-purpose
informational field. These descriptors serve three purposes in Agora:

14

• type checking;

• data transformation across heterogeneous machine architectures;

• save-restore of data structures between memory and permanent storage.

2.4. Examples
In this section we describe two simple examples taken from the literature. They illustrate how

abstraction techniques are applied to parallel programming in Agora. The first example is the set of
integers described in [31], extended to support parallel operations. The second example is a classical
example for transaction processing: the example of a checking account. We took it from [2], and used it
to stress some features of Agora.

Parallel Set of Integers

The following data structure implements an unbounded set of integers e.g. a set in the mathematical
sense. As a data type, it supports operations like creation, insertion and deletions of a member, test for
membership, iteration over the set. Besides those defined in [31], we have added an extra operation that
is exported to the user: the test for emptiness of the set. Note also that we relax the restriction that size
only be applied to a non-empty set: the size of an empty set will be zero.

;; Context definition

(defcontext parintset :linear (0 infinity)
((context-ref rep parintset)))

Exported functions

(defaccess create ()
"Creates a new empty set of integers'*
(let ((pset (parintset-create)))

(parintset-write pset 0 0)
pset))

(defaccess size (pset)
"Returns the number of members of the set pset"
(parintset-rep (parintset-read pset 0)))

(defaccess emptyp (pset)
"Tests if the set pset is empty"
(= 0 (size pset)))

(defaccess insert (pset val)
"Adds the integer val to the set pset"
(parintset-with-locked-cx pset

(seq-insert pset val)))

15

(defaccess delete (pset val)
"Removes the integer val from the set pset"
(parintset-with-locked-cx pset

(seq-delete pset val)))

(defaccess member (pset val)
"Tests if the integer val is a member of the set pset"
(getindex pset val))

(defaccess choose (pset)
"Returns an arbitrary member of the set pset"
(parintset-read pset (random (size pset))))

t r

;; Non exported functions

(defun seq-insert (pset val)
(cond

((member pset val))
(t (parintset-write pset

(parintset-write pset 0 (+ 1 (size pset)))
val))))

(defun seq-delete (pset val)
(let ((idx (getindex pset val)))

(cond
(idx

(parintset-write pset idx
(parintset-rep (parintset-read pset (size pset))))

(parintset-write pset 0 (- (size pset) 1))))))

(defun getindex (pset val)
(let ((high (size pset)))

(do ((i l l)
(or

(> i high)
(= val (parintset-rep (parintset-read pset i))))))

(cond
((> i high) nil)
(t i>)))

To implement the set we use a simple linear context, with a map that contains a single reference. Since
references to linear contexts are integers, they can be used directly to represent the members of the set.
All functions with the parintset- prefix are automatically defined when the context is declared and can be
used in the definition of the access functions. In particular, parintset-read takes the context and an index as
parameters and returns the corresponding entry in the map, while parintset-write takes the context, the
index and the new value to be written in the context.

The access function create calls the standard context creation operation that has been defined for the
type parintset, and then sets the first entry of the map to 0. We use this entry to hold the number of
members of the set, which is what the size operation returns. Note the wrapping of parintset-rep around
the reading of the context, to select the field rep of the map: in general maps can hold multiple fields,
therefore the returned value is a record. The operation emptyp uses size, since we defined an empty set to

16

have size 0.

The insertion and deletion functions modify the set through a sequence of operations: the call to the
sequential versions of the operations is therefore wrapped in a with-locked-cx form to guarantee mutual
exclusion. This form is the only one that explicitly refers to mutual exclusion, all other basic functions
manage locks internally but do not need to let the user know it. Locks are recursive, e.g. the same agent
can call with-locked-cx within itself, but there is no magic against deadlock: shared data structures that
provide operations with mutually recursive locks should be considered with suspicion, as they probably
originate from a poor design. If two data structures are so closely related to require mutual locks, they
are indeed better defined as a single, hierarchical data structure.

The member operation calls the internal function getindex, which returns the index of the member in the
map. The choose access function is an iterator [31]. Iterators are very useful operations that provide a
mean for e.g. iteration over the members of a composite data type. Like choose, iterators for shared data
structures must avoid keeping state in the shared data structure itself, since the next call could be from a
different agent. The correct scheme is to define iterators similar to the successor function for integers, e.g.
functions without side-effects. The specifics of the iterator depend very much on the intended use,
especially when performance is important (e.g. inner loops) .

The non-parallel implementation of the insertion function uses the size indicator to put the new
member at the highest index in the map, unless the integer is already part of the set. Removing the
membership test would lead to a different kind of mathematical object: a set with repetitions, e.g. where
each member also has a multiplicity associated with it. Similarly, the deletion function checks whether the
value is part of the set, and if so moves the last member of the set at the value's position and shortens the
size indicator accordingly.

Checking Account

A checking account is a data type that supports operations like balance inquiry, deposit and

withdrawal. Our implementation will automatically keep a log of all transactions that involve the

checking account.

Each entry in the log file will include:

(deftype account-info
(int32 balance)
(enum32 (CREATE DELETE DEPOSIT WITHDRAW ..)

operation)
(int32 amount)
(int32 date))

;; The context is a minimal one: a
;; linear map with a single entry to
;; point into the log

(defcontext checking :linear (0 0)
((data-ref status log))
(data log account-info))

17

Operations of the type

(defaccess create (amount)
"Creates a new checking account"
(let ((account (checking-create))

(init (make-account-info
:balance amount
.-operation CREATE
: amount amount
.date (time))))

(checking-write account 0 init)
account))

(defaccess balance (account)
"Returns the current balance"
(account-info-balance

(checking-status
(checking-read account 0))))

(defaccess deposit (account amount)
"Make a deposit in the account"
(checking-with-locked-cx account

(seq-deposit account amount)))
(defaccess withdraw (account amount)
"Withdraw from the account"
(checking-with-locked-cx account

(seq-withdraw account amount)))

Non exported functions

(defun seq-deposit (account amount)
(let* ((last (checking-status

(checking-read account 0)))
(new (make-account-info

:balance
(+ amount (account-info-balance last))

.'Operation DEPOSIT
: amount amount
.date (time))))

(checking-write account 0 new)))
(def\in seq-withdraw (account amount)

(let* ((last (checking-status
(checking-read account 0))

(new (make-account-info
:balance

(- (account-info-balance last) amount)
:operation WITHDRAW
: amount amount
.date (time))))

(cond
((< (account-info-balance new) 0) (overdraft account new))
(t (checking-write account 0 new)))))

We use here a context that does have an associated data element. We keep the current status of the
account in this element. The semantics of a context-write is such that Agora adds a new value in shared

18

memory, and only garbage collection will remove the old, unreferenced value(s). The garbage collector
can be controlled from an application like this one, so that it runs only after the logs have been retrieved
and saved on disk . In this way, keeping a log of the transactions becomes a separate activity from
transaction processing, with some performance gain.

19

3. Agora From C and C++
This chapter describes the pogrammer's view of the Agora system, as seen by the C language

programmer. Not surprisingly, the basic interface is defined by a set of functions that are included in a
library. This is then augmented by the functions that the compiler generates, specific to the user's
defined shared data structures. Section 3.1 is an overview of the capabilities offered, and offers some
hints on how to program a C agent. Section 3.2 lists all the functions available in the library. The C++
language is so closely related to C that no basic code had to be written to especially support it. To see
how C++ interfaces to the Agora shared memory, e.g. via appropriate class definitions, see [6].

3.1. C Agents
It is difficult to hide anything from C: the language offers no support at all for separating the

specifications from the implementations of modules [42], nor for control of visibility [16]. For a C
programmer it is natural to look inside the code of the most remote function, to "see what it does". There
is possibly only one exception to this, the Operating System itself (e.g. Unix, of course). In this case, a
brief functional description (the specification) of the system calls that it provides seems to suffice. This
approach also applies to modules that are not strictly part of the Unix operating system, e.g. the so called
system libraries. In this case the interface is a set of function calls, and again they are specified via brief
functional descriptions along with their C interface. It has become commonplace to provide the
description of a module in the form of "man pages", e.g. more or less standardized documents that are
available online to users.

This solution, e.g. extending the language with a set of well-defined and well-documented functions, is
the least-costly one. Designing a new language, more or less derived from C, is definitely inappropriate
in our case: we cannot call "multilanguage programming" a situation where each language has been
changed to the point that it bears little resemblance to the original. An intermediate solution, e.g. a
preprocessor for a limited set of well defined syntactic-semantic extensions is appealing [38], but again it
is specific to each language, and possibly requires a sizeable amount of work for each language.
Supporting a new language requires paying the same effort all over again.

A C Agora agent therefore is not much different from a normal sequential program. Indeed, execution
is strictly sequential inside it. Explicit synchronization with other activities is provided by a single
function, waitjictivation1. Most functions return to the call point, possibly with errors, in a fixed amount
of time. A limited number of functions can use a variable amount of time to execute, for the following
reasons:

• the operation requires O(n) time, n being the size of its input. This is the case for cx_write,
eval_events, asm_statistics

• the operation involves more than one machine: this can be the case for newsagent, cx_share,
cx_write, cx_atomic_execute, map_update

• there is implicit synchronization: this is the case for cx_atomic_execute and potentially for
shared_malloc/free.

'The RPC package, e.g. ajyc and friends, and Set/Unset pattern are built on top of wait.acnvation.

20

A model for a C agent is depicted in Table 3-1.

/* A modal for structuring agents */
void parse__args(argc, argv)
int argc; char **argv;
{ command line parsing code }

void init(...)
{ (reinitialization code }

void cleanup (...)
{ cleanup code }

void fi(...)
{ code for activation tag i }

int halted - 0; /* global termination flag */
main(argc, argv)
int argc; char **argv;
{

agora_init();
parse__args(argcr argv); while (!halted) {

switch(wait_activation(BLOCK, ANY_ACTIVATION)){
case 0:

init(...);
break;

case i:
fi(. . .) ;
break;

case TERM_ACTIVATIOK:
cleanup(...);
agora_finished(0);
break;

default:
fprintf(stderr, "Wrong act-type.\n");

}
}
agorâ finished(halted);

>

Table 3-1: Agent Template

This template illustrates one simple way of structuring an agent. It is applicable to any language, not
to C alone. The main routine initializes the interface to Agora first, then calls a function to do the parsing
of the command line switches. The global flag halted is available to this and to other routines to terminate
the program. The value of halted is the value the agent returns, unless terminated normally with a
termination activation (tag TERM_ACTIVATION) in which case 0 (normal termination in Unix) is
returned.

After command parsing, the main loop is entered. The first activation each agent receives is the
initialization activation, with a tag of 0. This activation is generated automatically by Agora at agent
creation time. The init function in the example is invoked every time this activation is received. It is a
wise design decision to write this function so that it always brings back the agent in the same initial state:
in this way it is straightforward to restart the agent and any application it may become part of. In a

21

similar way, on receipt of an activation of type TERM_ACTIVATION the agent should be ready to
cleanup properly and invoke agora Jinished to exit gracefully.

The real work is done in the functions fx ..fN, to which the main loop dispatches based on the activation
tag. The agent will recognize a number of these tags, but it should be ready to deal with error situations
in an appropriate way. The overall structure of this agent is therefore Dataflow-like: each activation tag
triggers a specific function. Note, however, that an activation tag is not necessarily bound to one data
structure. Indeed a function fi could receive input from multiple places, as well as enter more
complicated synchronization phases using wait_activation explicitly.

One frequent case of synchronization between two agents is the Remote Procedure Call scheme (Ada
lovers would call it rendez-vous): the two agents exchange data among themselves in the same way as
parameter passing happens in a normal procedure call. The invoking agent sends the in-parameters to
the callee, who does the computing and sends back the out-parameters. In Agora, this is done using a
context as the callee's request queue, and another context for each caller to wait for the replay. This case
is so frequent and well-known in the literature that we wrote a simple package to support it. The longest
function in the package is 9 lines long, and indeed the performance is, at it should be, better than the
standard operating system message primitives. See the functions ajrpc a__snd ajrcv for details, and the
User's Manual.

3.2. The ASM library
This section lists the functions that are available to a C programmer. For a precise specification, the

reader should refer to the User's Manual. Some of the functions have been already illustrated in Chapter
5, here we have attempted to avoid repetitions wherever possible.

asm_init - Creates and initializes the Agora Shared Memory. This function is called once by the shell,
creates the shared segment and initializes global state and the memory pool.

agora_init - Initializes an agent. Sets u p the agent's descriptor, initializes the interface to the
AgoraServer.

agora.f inished - Termination. Cleans u p the agent descriptor and terminates the process.

newsagent 2 - Creates a new agent. Forks a new process and possibly loads a new image, reserves a
unique id for the agent, passes it the arguments list. If a hostname is provided, the agent is started on
that host.

self - (macro) Finds who am I. A quick way to refer to this agent's name, unique id etc.

find_agent - Gets information about an agent. A generalization of self.

22

terminate - Terminates an agent. Sends an activation with a distinguished tag to the agent.

shoot.agent - Brute force assassination. Needless to say, a distasteful way to terminate an agent.

set_event - Installs an event for an agent. Any time the given data structure is modified, an activation

with the given tag will be posted for the agent.

unset_event - Removes one (or more) event for an agent.

eval_events - Evaluates the events for a data structure. This is called by Agora automatically as

needed, but a user's Pattern Matcher may find it useful.

wait_activation - Waits till an activation is available. The agenfs process will be suspended (with a

sigpause(2) in Unix) until the request can be satisfied.

get_activation - Retrieves the information for this activation. Indicates which specific data structure,

and which component of the data structure has changed.

agent_status - Returns the agent's status code, machine location and the number of pending

activations.

regulate - Controls scheduling of the agent. On Unix, raises or lowers the process' priority.

asm_statistics - Returns a number of statistical data about the running agents.

set.statistics - Toggles statistics bookeeping. Some data is always collected, but the most expensive

gatherings can be suspended.

get_shared_mem_usage - Gives the current usage of shared memory in bytes, a peak indicator of the

in-use memory pool.

put_activation - Posts an activation for an agent. Includes the activation tag and an optional indication

of a data structure's component.

ag_err - Prints an explanation of the latest error condition, if any.

set_agent_name - Changes the Agenfs name.

cx_create - Creates a new context of the given type.

cx_share - Explicit cacheing of a remote context.

cx_destroy - Context destruction.

cx_top_map - Returns the top level map of a context.

cx_read - Reads a context's entry. An entry is a list of elements (pointers to data) and other context

23

addresses.

cx_write - Updates an entry in the context.

cx_write_s - Same as above, optimize for sparse data. Data elements are searched first to see if similar
values are already in memory.

cx_atomic_execute - Calls a function in mutual exclusion within a given context. Can recur on the
same or on a different context.

map_create - Creates a new mapping. A map is an internal component of a context used for address
translation. Certain access functions may need to directly manipulate maps.

map_share - Share a map.

map_destroy - Destroy a map.

l_map_update - Update an entry in a linear map.

h_map_update - Update an entry in a hashed map.

map_deref - Dereference an address through the map.

map_underef - Un-Dereferencing, e.g. reverse mapping.

map_f ind - Dereferencing and optional allocation of an entry.

map_gfree - Reserves a free entry.

map.iterate - Browse through a map.

map_bounds - Bounds of the index in a linear map.

set.pattern - Sends a pattern to a Pattern Matcher. A standard interface.

unset_pattern - Asks for pattern removal.

a_rpc - Remote procedure calling (RPC) through contexts, a little package built on top of the basic
primitives. Very efficient, used internally too. This function sends a request and waits for the replay.

a_snd - The sending part of an RPC.

a_rcv - The receiving part of an RPC.

a_ron - Prepare to receive-on a context. Can be considered a port-creation primitive.

a_roff - Stop receiving on a context. Port destruction primitive.

24

shared.malloc - Shared memory management primitives. There is no reason why a user should

them directly, but they do exists and work well.

shared_free - See above.

25

4 . A g o r a F r o m L i s p

This chapter describes the programmer's view of the Agora system, as seen by the Lisp language
programmer. The basic interface is defined in a CommonLisp package, and makes extensive use of the
foreign-function facility of CMU-CommonLisp [32]. Other code is generated by the compiler when
translating the user's defined shared data structures and access functions. The overview in Section 4.1
illustrates how Lisp can be integrated with other components in a complete application and describes
both the case in which the Lisp interpreter is used as the user's Shell, and the case in which it is used
non-interactively and mixed with other agents within an application. Section 4.2 contains some practical
considerations about the use of the system, as currently implemented in the CMU-CommonLisp
environment on the IBM RT PC workstation.

4.1. Lisp and Alien Languages
Lisp is usually considered a closed-world by its users, and anything that lives outside Lisp is bound to

live a separate and minor life. Most of this prejudice originates from the difficulties of interfacing to
other languages that Lisp had in the past, but nowadays things are changing. Various Lisp
implementations have introduced a more or less sophisticated foreign-function (note the choice of the
adjective) facility that allows other code, usually C on Unix machines, to be used by Lisp [18,12,32].

This facility solves the problem (or at least it goes a long way towards solving it) for sequential
programs, but does not help as far as parallelism is concerned. Although various research is being
performed to provide primitives for parallel programming to Lisp [27,23], this has not yet resulted in
production-quality Lisps that can be put in widespread use. As far as medium and large grain
parallelism is concerned, the best available facilities are packages for Remote Procedure Calling, e.g.
where a Lisp process can invoke procedures that are actually executed by a different process. This is the
case, for instance, of graphics apj lications [25] or operating system services [35],

From this point of view, Agora is an attempt to make Lisp useful for building parallel systems without
changing anything of the standard Lisp semantics, and without the limits of parameter passing protocols.
The Lisp program is still a sequential process, but it can interact with other processes and share very
complicated data structures.

4.1.1. The Agora-Lisp Shell
One of the reasons for the good productivity of Lisp programmers is the fact that Lisp is, almost by

definition, an interpretive system. This provides complete freedom for experimentation: many little
functions can be easily written, tested, integrated or thrown away. This makes programming more
productive because what eventually filters out to disk files is a refined set of small, flexible and highly
reusable tools. The programmer has also directly available a huge amount of code that is already part of
the system, and which can be constantly re-used without need for re-invention. For this reason, we not
only made it possible to use Lisp from Agora, but also to use Agora from Lisp. Which is to say that one
can program in Lisp both the parts of the application that must be coded in Lisp and the code that
controls the overall working of the application. Since Lisp is definitely more powerful than the C-Shell,
we expect a good payoff from this choice also in terms of flexibility.

26

The applications that will most likely benefit from the availability of a Lisp interface, besides those that
are developed in Lisp or which make predominant use of Lisp agents such as in Distributed AI systems,
are those where the system is composed of a user interface on a workstation and a number-crunching
parallel system on a multiprocessor. In this later case, the user can benefit from a sophisticated
environment on the workstation which is often not available on a multiprocessor. In addition, the load
on the multiprocessor (which is still an expensive resource) is limited to the execution of the application
and possibly its compilation.

4.1.2. Lisp Agents
This is an idea that a Lisper may find difficult to grasp: using Lisp non-interactively. Starting u p a Lisp

process is usually expensive but this limitation can be circumvented: if Lisp can communicate with other
processes then the startup price may become acceptable, because it is distributed among various
invocations. This idea is not uncommon, for instance the CMU Lisp system is being extended with the
ability to connect to remote Lisp processes, and transfer to them parts of the compilation loads. In this
case, the master Lisp process is able to send to slave processes (called EvalServers) arbitrary Lisp
expressions that are evaluated remotely. Since the two processes do not share memory, there are limits to
what can be communicated, but the flexibility is superior to simple Remote Procedure Calls.

There are cases in which it is inappropriate to choose Lisp as the primary interface for a system. For
example. Lisp may not be available on a specific machine, or the implementation may be too inefficient or
use too many resources on a general purpose machine. Finally, it just may be the case that other
interfaces are preferred by the intended (Unix-addicted) users. Nonetheless, a growing body of software
tools are developed or only available in Lisp, e.g. prototypes of AI systems, expert systems of various
sorts, tools for manipulation of symbolic expressions, etc. When building an application, one would like
to make use of these tools as subsystems, e.g. where it is not the final user but other subsystems that
interact with the tools. Agora can solve the problem in all these cases. The tool can be transformed into
an Agora agent and interfaced with other subsystems via definition of appropriate shared data
structures. It will execute locally or on a remote machine as appropriate. The model for C agents
depicted in Table 3-1 can easily be transliterated in Lisp, to serve as a scheme for structuring Lisp agents
as well.

4.2. Notes
This section contains some notes about problems we faced in the integration of Lisp with Agora.

Potential users of the system will find these notes useful since they provide a flavor of the practical

aspects of the system.

All of the Agora code is contained in a single package, the "AGORA" package. Listing the exported
functions and describe-ing them should provide enough documentation, we will not repeat the listing
here (it can be found in Chapter 3). Care has been taken to minimize the number of exported names, so
that bad interactions or conflicts with other packages are avoided. Therefore, all of the standard code
that is part of the CMU CommonLisp core works as usual. All of the editor, the Common Lisp Object
System, the interface to the X window manager, and all the other packages do not interfere with Agora in

27

any way. Memory management is also largely unaffected. Agora reserves a memory segment which is
not normally used by Lisp for sharing memory with other processes. This memory segment is totally
invisible to Lisp, and is garbage collected separately by the Agora Garbage Collector. The space for Alien
objects, which are not garbage collected by Lisp, is kept constant by the code generated by the Agora
Compiler.

There are two ways of starting u p Lisp: as an Agora shell, or as an Agora agent. In the first case, there
is a simple script that takes care of the various details and lets the user type simply "agora lisp" to get to
lisp. In other words, it looks like the normal command "lisp <args>" is prepended with the keyword
agora. In the second case, the user must be running the Agora C-Shell, and the command is "newjigent
lisp <args>". Note that Lisp can obviously be started remotely, like any other agent with the "-h
<hostname>" switch. The two cases are not identical: in the first case the script uses the Agora version of
the Lisp core, in the second the default is the standard core. To get an agora agent that uses the Agora
core one would use the Lisp switch "<" as in "newjigent lisp -c $AUSPIlib/alisp.core". The idea here is that
the most common use of Lisp is in acting as the primary shell, which should start quickly and have all of
Agora ready. Lisp agents are most likely refined applications, which use different corefiles that contain
more user code, beside Agora. Building a new corefile that contains Agora is no more complicated than
usual, and a simple example script is provided.

Use of the Alien facility is not very friendly. The subtleties involved, especially in getting the best
possible performance, are not easy to grasp. We are therefore implementing a more friendly interface to
the user code, which works on top of the interface that uses aliens. The loss in performance appears
negligible so far: the times of the basic operations are no more than doubled even without too many
optimizations (about 400jisec for a write compared to about 200|isec of the alien layer, on an IBM RT-PC).
The gain in usability is invaluable. Table 4-1 and 4-2 show (parts of) the code that is generated by the
latest Agora compiler. The input is the specification of one of the examples of Chapter 9 (see Table 9-1).

The interface defined in Table 4-1 is simpler: two defstruct define all the user needs to know about the
shared type, and no special operators (e.g. alien-xxx) are needed. The functions for the shared type
accept an instance of a name-service structure and take care of all the details of transferring the data back
and forth in shared memory. Note that the compiler uses static buffers for converting the Lisp structures
into the Agora representation, avoiding extra memory consumption. There is unquestionably an
overhead in the extra copy operation, and for very large structures (e.g. huge arrays) this may be
noticeable. For this reason the Alien interface has been maintained. A user can use it directly to solve
any performance problem. We have found, however, that most times the shared types themselves have
pretty small representations, and that large structures are built by replicating and composing them in
hierarchies. This leads us to believe that the overhead of the new interface will be acceptable in most
cases.

28

;;; File created by ATG (Agora Type Generator) version 1.30

(use-package '("LISP" "SYSTEM" "EXTENSIONS"))

;; These are the Lisp types
(defstruct handle

(value :type 'fixnum))

(defstruct name-service
(value :type 'handle))

;; These are the support functions

(defun name-service-write (ns address list)
"Write operation for contexts of type name-service"

(declare (type fixnum ns)
(type string address)
(type name-service list))

(alien-bind
((cx-tmp name-service-write-buf cOOl-name-service t)
(data-tmp handle-write-bufl cO01-handle t))

(setf (alien-access (cO01-name-service-value (alien-value cx-tmp)) 'alien)
(alien-value data-tmp))

(setf (alien-access (cO01-handle-value (alien-value data-tmp)) 'alien)
(handle-value (name-service-value list)))

(if (name-service-writeO ns address (alien-sap (alien-value cx-tmp)))
list
nil)))

(defun name-service-read (ns address)
"Read operation for contexts of type name-service"

(declare (type fixnum ns)
(type string address))

(let (c-var 1-var)
(declare (type cO01-name-service c-var)

(type name-service 1-var))
(setq c-var (name-service-readO ns address))
(unless c-var

(setf 1-var (make-name-servica))
(setf (name-service-value 1-var) (make-handle))
(alien-bind ((cx-tmp c-var cOOl-name-service t))

(setf (name-service-value 1-var)
(alien-access (cO01-handle-value

(alien-access (cO01-name-service-value
(alien-value cx-tmp)) 'alien))))))

1-var))

Table 4-1: The Interface Without Aliens

;;;;; — THE ALIEN WORLD — ;;;;;

;; Alien type definitions

(def-c-record cO01-handle
(value int))

(def-c-record cO01-name-service
(value *c001-handle)) ;;; to a_handle

;; Alien functions and buffers

(def-c-routine ("cx__read" name-service-readO) (*c001-name-service)
(context int)
(address asm: :c-string))

(def-c-routine ("cx_write" name-service-writeO) (*cOQl-name-service)
(context int)
(address asm::c-string)
(list *c001-name-service))

(defvar handle-write-bufl (maJce-cO01-handle))
(proclaim '(type cO01-handle handle-write-bufl))

(defvar name-service-write-buf (make-cOOl-name-service))
(proclaim '(type cOOl-name-service name-service-write-buf))

Table 4-2: The Interface With Aliens

30

31

5. The Shell
This chapter describes the basic user interface to the Agora environment: the AgoraShell. This is a

modified version of the Unix C-shell, extended to incorporate most of the Agora's functionality. Section
5.1 describes the motivations, the advantages and tradeoffs behind this choice. Section 5.2 illustrates the
extra functions that are available at the shell level. Section 5.3 illustrates some examples of use of the
shell, special features and limitations. For an alternative way to use the Agora environment, e.g. via the
Lisp interpreter, see Section 4.2.

5.1. Extending the Unix Environment
There are many alternatives available when one wants to provide an environment for users to work

and experiment with (parallel) programs. They range from the bare minimum, e.g. a single tool like a
compiler for a parallel language [41] or a library of functions [40], to the overly sophisticated, e.g.
language-based integrated environments [34] that allow for editing, compiling, testing, etc. all from
within the same framework. On the one hand, providing minimum support leaves the beginner with
many unanswered questions (although it gives a lot of freedom to experienced users). On the other
hand, building integrated solutions that work well in realistic cases is still very difficult and time
consuming.

We decided to pursue a solution that lies somehow in the middle: provide an extensive set of non-
integrated tools, and a mean to add and combine them. In pursuing this goal, we noted that Unix is a
well known and successful operating system and programming environment that follows exactly this
approach. It provides for experimentation since it does not put too many constraints on the users. It also
provides a very large body of building-blocks, and simple means to put them together to build more
powerful tools. We decided to work inside the Unix environment, and extend it by modifying the shell,
rather than hide it.

The main practical advantage we see in this approach is the ability to experiment with ideas for
extending the system and at the same time limit the amount of work required and the price to be paid for
failures. There are other more mundane considerations that also play a non minor role: availability of
software and leveraging on other research work [4,32,37], portability of the final products, and a lower
learning cost for users since they probably already have some knowledge about the Unix world.

The most productive programming systems, e.g. Lisp systems, allow for quick experimentation via
interpretive techniques. We conjecture that it is again the building-blocks approach that makes them
successful: many little functions can be written, tested, integrated or thrown away easily. This makes
programming more productive because what eventually filters out to disk files is a refined set of small,
flexible and highly reusable tools. The Unix C-shell brings together interpretive capabilities with other
(primitive) facilities for tool integration. This may very well be the key to its success, and it definitely is
one of the reasons why we chosed it.

Looking at the C-shell as an interpreter of a language makes it clear how to integrate Agora into it:
integrate at the command-level the functional extensions that Agora provides to any language. The
Agora shared memory then becomes a powerful mean for tool integration: not only bytes as in Unix, but

