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Abstract

Using known camera motion to estimate depth from image sequences is important in robotics
applications such as navigation and manipulation. For many applications, having an on-line,
incremental estimate of depth is important To permit the blending of new measurements with
old estimates, it is essential that the representation include not only the current depth estimate,
but also an estimate of the current uncertainty. Kalman filtering provides the needed framework
to integrate new measurements and reduce the uncertainty over time. Previous applications of
Kaman filtering to depth from motion have been limited to the estimation of depth at the location
of a gparse set of features. In this paper, we introduce a new pixel-based (iconic) algorithm that
estimates depth from an image sequence and incrementally refines its estimate over time. We adso
present a feature-based version of the algorithm which is used for comparison. We compare the
performance of both approaches mathematically, with quantitative experiments using images of a
flat scene, and with qualitative experiments using images of a realistic outdoor scene model. The
results show that the method is an effective way to extract depth from lateral camera trandlations.
Our approach can be extended to incorporate general motion and to integrate other sources of
information such as stereo. The agorithms which we have developed, which combine Kalman
filtering with iconic descriptions of depth, can thus serve as a useful and general framework for
low-level dynamic vision.



1 Introduction

Using known camera motion to estimate depth from image sequences is important in many
robotics applications such as navigation and manipulation. Depth from motion can also be an
important element of a multi-modal sensing strategy, and can be used to guide stereo matching.
For many applications, having an on-line, incremental estimate of depth is important. To develop
such an incremental agorithm, it is essential that the representation include not only the current
depth estimate, but also an estimate of the current uncertainty.

Previous work [Broida36] [Faugeias86] [Hallam83] [Matthies87c] [Matthies87b] [Rives36]
has identified Kalman filtering as a viable framework for this problem, since it incorporates
representations of uncertainty in the depth model and provides a mechanism for incrementally
reducing this uncertainty over time. To date, this framework has largely been restricted to
estimating the positions of a sparse set of trackable features such as points or line segments.
While this is adequate for many robotics applications, it requires reliably extracting features, and
it fails to describe large areas of the image. Another line of previous research has addressed the
problem of extracting dense displacement or depth estimates from image sequences. However,
these previous approaches have either been restricted to two frame analysis [Anandan85], or
have used batch processing of the image sequence (using the epipolar plane method [Bolles87]
or spatio-temporal filtering [Heeger87]).

In thi's paper we introduce a new image-based (iconic) approach to incremental depth esti-
mation and compare it mathematically and experimentally to a feature-based approach we have
used previously [Matthies87b]. This approach represents depth and depth variance at every pixel
and uses Kaman filtering to extrapolate and update these pixel-based maps. The algorithm uses
correlation to measure the optical flow and to estimate the variance in the flow, and converts
the flow field to a depth map using the known camera motion. It then uses the Kalman filter
to appropriately weight both the new measurements and prior estimates of depth to generate
an updated depth map. Regularization is employed to smooth the depth map and to fill in the
underconstrained areas. The resulting algorithm is parallel and uniform, and can take advantage
of mesh-connected or multi-resolution (pyramidal) processing architectures.

The remainder of this paper is structured as follows. In the next section, we give a brief
review of Kalman filtering, and introduce our overall approach to Kalman filtering of depth.
Next, we review the equations of motion, present a smple camera model, and examine the
potential accuracy of the method by analyzing its sengitivity to the direction of camera motion.
We then describe our new iconic incremental depth from motion algorithm. This is followed
by a description of the feature-based incremental depth from motion algorithm that is used for
comparison. The theoretica accuracy of these two methods is then derived and compared to
that of stereo matching. This anaysis is verified experimentally by using images of a flat scene.
We then show the performance of both methods on images of realistic outdoor scene models.



In the final section, we discuss the promise and the problems involved in extending the method
to arbitrary motion. We aso conclude that the ideas and results presented gpply directly to the
much broader problem of integrating depth information from multiple sources.

2 Edtimation framework

The depth from motion agorithms described in this paper use a sequence of images taken with
smd|l inter-frame displacements [Bolles87]. The advantage of using such a sequence is that the
correspondence problem between two successive images is reduced. The disadvantage is that
the individua depth measurements are less precise because of the very smdl basdlines involved.
To overcome this latter problem, information from each pair of frames must be integrated over
time. For many robotics applications it is desirable to- process these images using a rea-time
rather than batch process, with an updated depth estimate being generated after each new image
is acquired- The incremental agorithm aso has the advantage of requiring less storage, since
only the current estimate and its uncertainty model are required.

A powerful technique for doing real-time estimation of such dynamic sysems is the Kaman
filter. This formulation alows for the integration of information over time, and is robust with
respect to both system and sensor noise. The notation and equations of the Kaman filter are
presented first, dong with a smple example. The application of this framework to motion
sequence processing is then sketched, discussing those parts that are common to both iconic and
feature based agorithms (the details of these agorithms are in Sections 4 and 5, respectively).

2.1 Kalman filter

The Kaman filter is a Bayesian estimation technique used to track stochastic dynamic systems
being observed with noisy sensors. The filter is based on three separate probabilistic models, as
shown in Table 1. The firsd model, the system model, describes the evolution over time of the
 current dtate vector u,. The trangtion between states is characterized by the known trangition
matrix $ and the addition of Gaussian noise with a covariance Q.. The second mode, the
measurement (or sensor) modeU relates the measurement vector d; to the current state through a
measurement matrix H; and the addition of Gaussian noise with acovariance R.. The third modd,
theprior modeU describes the knowledge about the system staéte UQ and its covariance F, before
the first measurement is taken. The sensor and process noise are assumed to be uncoirelated
To explain the above equations, we will use the example of aping-pong playing robot which
must track a moving ball. In this example, the state congists of the ball postion and velocity,
U-fxy zxy z 1]", where x and y lie paralle to the image plane (y is up), and z is pardld to



Models system model lit = $tU-\ + T), 7] ~iV(0, Qy)
measurement model d=Hw + (i, £~N(O,R)
prior model E[wo]=wo, Covl[iio]=/>0
(other assumptions) Ethefl=0

Prediction | state estimate extrapolation | # = &8 ,

phase state covariance extrapolation | Py = @,_1P; BT | + 0,

Update state estimate update it=uj+KJd-HuT]

phase state covariance update © | PMI-KH]PT
Kalman gain matrix K=P+Hj[HP;Hj+R]-"

Table 1. Kaman filter equations

the optical axis. The state transition matrix models the ball dynamics, for example

[ OAt 0 0O O
0 0 At 0 O
1 0 0 At O
0.0 0 0 O
0O 0 i O -gAt
0
0

o =

O 0 -8 O
| O 0 O 1
where At is the time step, /? is the Coefficient of friction and g is gravitational acceleration.
The process noise matrix Q; models the random disturbances that influence the trgectory. If we
assume that the camera uses orthographic projection, and uses a simple algorithm to find the
"center of mass" (x,y) of the ball, the sensor can then be modeled by

o[ 1000000]
'"[0100000J

The uncertainty in the sensed ball position can be modeled by a 2 x 2 covariance matrix R.
Once the system, measurement and prior models (upper third of Table 1) have been specified,
the Kaman filter agorithm follows from the formulation in the lower two thirds of Table 1.
The algorithm operates in two phases. extrapolation (prediction) and update (correction). The
pluvious state estimate U is used to predict the current state ilj. At the same time, die
previous state covariance/ £, 2 is extrapolated to the predicted state covariance Pj. This predicted
covariaiice is used to compute the new Kaman gain matrix K; and the updated covariance matrix
P£. Findly, the measurement residua d; - Hf% is weighted by the gain matrix K; and added
to the predicted state uf to yield the updated state uj. A block diagram for the Kalman filter is

given in Figure L

cNoNoNoNoNo)i
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Figure 1. Kaman filter block diagram

2.2 Application to depth from motion

To goply the Kalman filter estimation framework to the depth from motion problem, we specidize
eech of the three modds (system, measurement .and prior) and define the implementations of
the extrapolation and update stages. This section briefly previews how these components are
chosen for the two depth from motion agorithms described in this paper. The detals of the
implementation are left to Sections 4 and 5.

The first thing to specify when designing the Kaman filter is the representation used for the
date vector. For the iconic depth from motion agorithm, the state is a depth map, where the
vaue of depth a each point in the current image is estimated’. For the feature based approach,
the three dimensiona location of each feature (in our case edge eement) is edtimated. For
both methods, an uncertainty map is estimated and propagated®. For the iconic approach, the
measurement noise can be spatialy varying due to loca contrast in the image. For the festure
based approach, the accuracy of edge positions may aso vary. Thus for both methods, the initia
measurement stage produces not only a depth measurement, but also an associated variance.

The extrapolation stage for the two approaches shares the same motion equations (see Section
3.1), but differs because of the underlying representation. For the iconic method, the map is
warped to predict what it will look like in the next frame, and resampled to keep it iconic. For

Y1n our actua implementation, inverse depth (called "disparity”) is used. See Section 4.
?In the usua Kaman filter implementation, the covarianee of the measurement noise is known in advance, as
ate the system and measurement models, so that the gain matrix K; can be pre-computed,
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the feature based method, the three dimensional position of the features is extrapolated

Finaly, the prior model can be used to embed prior knowledge about the scene. In par-
ticular, smoothness constraints (that require nearby points to have similar disparity) can easily
be integrated into the iconic method, and can be used to reduce the noisy nature of the flow
estimates. For the edge tracking approach, figural continuity [MayhewSI] [Ohta85] could be
used (Le. connected edges must match connected edges), but this is currently not used.

3 Motion equations and camera model

Our system and measurement models are based on the equations relating scene depth and camera
motion to the induced image flow. In this section, we review these equations for an idealized
camera (focd length = 1) and show how to use a smple calibration model to relate the idealized
equations to real cameras. We also derive an expression for the relative uncertainty in depth
estimates obtained from lateral versus forward camera translation. This expression shows con-
cretely the effects of camera motion on depth uncertainty and reinforces the need for modeling
the uncertainty in computed depth.

3.1 Equations of motion

If the inter-frame cameramotion is sufficiently small, the resulting optical flow can be expressed
to a good approximation in tenns of the instantaneous camera velocity [Longuet80], [Brussd3],
[Waxman86]. We will specify this in terms of a translational velocity T and an angular velocity
R. In the camera coordinate frame (Figure 2), the motion of.a 3-D point P is described by the
equation

; |
® o T-RxR

Expanding this into components yieldsdt

dXfdi = -TeRZ+RY |
dTfdt « -T,RX+ RZ (1)
CdZidt = -T-RY+RX.

Now, projecting (X, Y,Z) onto an ideal, unit focal length image,

X

XIIE
- X
Y~ 7

&



Image plane

cP

Figure 2: Camera model

CP is the center of projection

taking the derivatives of (x,y) with respect to time, and substituting in from equation (2) leads
to the familiar equations of optical flow [Waxman86]

R
[Ax]_l[—l 0 x] T‘ +[ Xy -(1+x%) y][R’} .
= = _ ¥y 1 _ _ y - (2)
Ay Zi O 1 y T (1+/) Xy X R,

These equations rel ate the depth Z of the point to the cameramotion T, R and the induced image
displacements or optical flow [Ax Ay]". We will use these equations to measure depth, given
the cameramotion and optical flow, and to predict the change in the depth map between frames.

3.2 Camera modd

Relating the idea flow equations to real measurements requires a camera mode. If optical
distortions are not severe, a pin-hole camera model will suffice. In this paper we adopt a model
amilar to that originated by Sobel [Sobel 74] (Figure 2). This model specifies theorigin (cy, C;) of
the image coordinate system and a pair of scale factors (s, ;) rmat combine the focal length and
Image aspect ratio. Denoting the actual image coordinates with a subscript "a'\ the projection
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onto the actual image is summarized by the equation

X
X, 15 0 ¢ 1
e = CP.
[y,] Z[Osy CJ'][Y} 4 ®
Z
C is the known as the collimation matrix. Thus, the ideal image coordinates (x,y) are related to
the actual image coordinates by

Xa
Ja = Syy'i'Cy.

SpX + Cy

Equations in the balance of the paper will primarily use ideal image coordinates for cdarity*
These equations can be re-expressed in terms of actual coordinates using the transformations
above.

33 Sendgtivity analysis

Before describing our Kaman filter algorithms, we will analyze the effect of different camera
motions on the uncertainty in depth estimates. Given specific descriptions of real cameras and
scenes, we can obtain bounds on the estimation accuracy of depth-from-motibn algorithms using
perturbation or covariance analysis techniques based on first-order Taylor expansions [Wertz78].
For example, if we solve the motion equations for the inverse depth d in terms of the optical
flow, camera motion, and camera model, :

d=F(Ax, Ay; T,R; ¢, €, S S), 4)

then the uncertainty in depth arising from uncertainty in flow, motion, and calibration can be
expressed by
Sd=Jj S+ JIm+/c, ()]

where Jf; Jny, and J. are the Jacobians of (4) with respect to the flow, motion, and calibration
parameters, respectively, and S, S1x and Sc are perturbations of the respective parameters. We
will use this methodology to d"av some concrete conclusions about the relative accuracy of
depth estimates obtained from different classes of motion.

It is well known that camera rotation provides no depth information. Furthermore, for a
trandating camera, the accuracy of depth estimates increases with increasing distance of imagie
features from Himfocus of expansion (FOE), the point in the image where the trandation vector
(T) pierces the image. This implies thai the "best" trandations are parallel to the image plane
md that the *wcrsf are forward along the camera axis. A lengthy examination of the effects
of measurement uncertainty in depth from motion is given in [Snydbr87]; here we will give a
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shorter derivation that demonstrates the relative accuracy obtainable from forward and lateral

camera trandation.

) For clarity we consider only one-dimensional flow induced by trandation along the X or Z
axes. For an ideal camera, lateral motion induces the flow

whereas forward motion induces the flow

Axp = —-. (7)

1 —Ax
4 = zZ T,
Axf
% = T,

Therefore, perturbations of Sxi and Sx/ in the flow measurements Axi and Axj yield the following
perturbations in the disparity estimates:

5
gdi = X
\Ty\
oxp
8d = .
f x|

These equations give the error in the inverse depth as a function of the error in the measured
image displacement, the amount of camera motion, and position of the featurein the field of view.
Since we are interested in comparing forward and lateral motions, a good way to visualize these
equations is to plot the relative depth uncertainty, Sdf/Sdt. Assuming that the flow perturbations
Sxi-and Sxf are equal, the relative uncertainty is

&jf. _ 6Xf/\XTZ\ _ T"‘I ) g
6di  SXiNTy\  |xTel” (8)

The image coordinate x indicates where the object appears in the field of view. Figure 3 shows
that x equals the tangent of the angle 9 between the object and the camera axis. The formula
for the relative uncertainty is thus

Sdf # Ty ©)

sd; ~1Tran8t"



|

Figure 3: Angle between object and camera axis is 6

This relationship is plotted in Figure 4 for T, = T,. At 45 degrees from the camera axis,
depth uncertainty is equal for forward and lateral motions. At 18 degrees, which is the edge of
the image for the experiments in Section 6.2, the ratio of uncertainties is 3.1; at 9 degrees, the
ratio is 6.3. Thus, the accuracy of depth extracted from forward motion is effectively unusable
for a large part of the image. An dternative interpretation for this curve is that it expresses
the relative precision of stereo and depth-from-motion in a motion stereo system. By setting
Sf/Sdi = 1, equation (9) adso expresses the relative distances the camera must move forwaid
and laterally to obtain equally precise depth estimates.

Wedraw severa conclusions from this analysis. First, it underscores the val ue of representing
depth uncertainty as we describe in the following sections. Second, for practical depth estimation,
forward motion is effectively unusable compared with lateral motion. Finally, we can relate these
results to motion stereo by noting that depth from forward motion will be of little value in a
motion stereo system. :

4 lconic depth estimation

This section describes the incremental (on-line) iconic depth estimation algorithm that we have
developed The agorithm processes each new image as it arrives, extracting optic flow at each
pixel using the current and previous intensity images, and then integrates this new information
with the current depth estimate*



Relative error: forward/lateral

L Py i 1 1 1
0 5 10 15 20 25 30 35 40 45
Angle from camera axis (degrees)

Figure 4: Relative depth uncertainty for forward vs. lateral trandation
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Figure 5: Iconic depth estimation block diagram

The agorithm consists of four main stages (Figure 5). The first stage uses correlation to
compute an estimate of the displacement vector and its associated covariance. It converts this
estimate into a disparity (inverse depth) measurement using the known camera motion. The
second stage integrates Ms information with the disparity map predicted at the previous time
step. The thixd stage uses regularizatioii-based smoothing to reduce measurement noise and to
fill 'm areas of unknown disparity. The last stage uses the known camera motion to predict the
disparity ield that will be seen in the next frame, and re-samples the field to keep iticonic (pixel

based).

41 Measuring disparity

The first stage of the Kafamen filter computes a disparity map from the difference in intensity
betwrai the canctnt image and the pwrims imalje. This computation proceeds in two parts.
Firg; a tWHKiiiciMcma displacement (or optic flow) vector is computed at each point using
a corofetibft based agorithm. The uncertainty in this vector is characterized by a bivariate
Gaussian distrilnitiaa. Second* Ms vector is converted into a disparity measurement using the
known camera motion and the motim equations ‘developed in Section 3.1.

This two stage fcraidttion is desirable for severa reasons. First, it allows probabilistic
dbmxfcsdEtikmM of uncertainty in flew to be trandated mto a probabilistic characterization of
the mecmimtf in diSparity. Has especialy valuable if the camera motion is also uncertain, since
the eqoatiaiis rotolsg flow to disparity am be extended to model this as well [Rives86]. Second,
It ifegntaes only that we can characterize the level of uncertainty in the flow, and allows us to
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evduate the potential accuracy of the agorithm independent of how flow is obtained. Findly,
bivariate Gaussian distributions can capture the distinctions between knowing zero, one, or both
components of flow [Anandan85],[Nagel 86],[Heeger87], and can thus subsume the notion of the
gperture problem.

Let us turn firg to the problem of extracting optical flow from a sequence of intendty
images, which has been extensvely studied in computer vision. Early approaches used the ratio
of the spatial and temporal image derivatives [Horn81], while more recent gpproaches have used
correlaion between images [Anandan85] or spatio-tempora filtering [Heeger87]. In this paper
we use a Smple version of correlation-based matching. This technique, which has been called
the Sum of Squared Differences (SSD) method [Anandan85], integrates the squared intensity
difference between two shifted images over a small area to obtain an error measure

e(Ax, Ay;Xy) = | rj -W(X, TN Ax+ Ay - Ay + r]) -fi(x + \y + r))]%dXdij,

where f; and f-\ are the two intendity images, and W(A,77) is a weighting function. The
SSD measure is computed at each pixel for a number of possible flow values. In Anandan's
agorithm, a coarse-to-fine technique is used to limit the range of possible flow values. In our
images the possible range of vaues is smal (since we are using smal-motion sequences), 0 a
single-resolution agorithm suffices®. The resulting error surface ef(Ac, Ay;x,y) is approximately
parabolic in shape. The lowest point of this surface defines the flow measurement and the shape
of the surface defines the bivariate covariance of the measurement.

To convert the displacement vector [Ax Ay] " into a disparity messurement, we assume that
the cameramotion (T, R) is given. The optica flow equation (2) can then be used to estimate
depth as follows. First we abbreviate (2) to

[ (10)

where dis the inverse depth and £ is an error vector representing noise in the flow measurement.
Thenoise £ is assumed to be bivariate Gaussian random vector with azero mean and a covariance
P computed by the flow estimation part. Equation 10 can be re-expressed in the following
gtandard form for linear estimation problems:

Ax = | _ Iy _ )
Ax-[dy]-[ry]—d[ry]+§—ffcf+£ (11)
The optimal estimate of the disparity d is then [Maybeck79]
d= (H'PHTH'P-nAx (12)

%It may be necessary to use a largo- search range at first, but once the estimator has **!ddifd 00* to a good
disparity map, the predicted disparity and disparity variance can be used to limit the seaidi by computing confidence
intervals.
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Figure 6: Parabolic fit to BSD error surface

and the variance of this disparity measurement is
of=HPH. (13)

The measurement process described in this section has been implemented in a smplified
form, under the assumption that the flow is parallel to the image raster. Each scanline of two
successive images is magnified by a factor of 4 by cubic interpolation. The SSD measure €* is
computed at each interpolated sub-pixel displacement v* using a5 x 5 [pixel] sguare window.
The minimum error (vj, g) is found and a parabola

e(v) =ov’+bv+c

isfit to this point and its two neighbors (vj_1,€% ;) and (vj+1,”+1) (Figure 6). The minimum of
this parabola establishes the flow estimate (to sub-sub-pixel precision). Appendix A shows that
the variance of the flow measurement is

202
Var{e) = -

where 0% isthe variance of the image noise process. The appendix also shows that adjacent flow

estimates are conekted over both space and time; the significance of this fact wil be consdered
in Section 6.L
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4.2 Updating the disparity map

The next stage in the iconic depth estimator is the integration of the new disparity measurements
with the predicted disparity map (this step is omitted for the first pair of images). For now, we
will assume that each value in the measured or predicted disparity map is not correlated with its
neighbors, so that the map updating can be done at each pixel independently. The extension of
this model to account for the correlated nature of disparity maps is discussed later.
To update a pixel value, we first compute the variance of the updated disparity estimate
-2

= —y-1 2y—1y-1 _.M
=@+ =2
and the Kalman filter gain K

L JD_L Pl

0% pr+ol
We then update the disparity value by using the Kaman filter update equation
u; =u; +K(d— 1)

where W and 1$ are the predicted and updated disparity estimates, and d is the new disparity
measurement This update equation can also be written as

. Jfu  d
= —_— — ],
=P (p:‘ aﬁ)

The latter form shows that the updated disparity estimate is alinear combination of the predlcted
and measured values, inversely weighted by thelr respective variances.

43 Smoothing the map

The raw depth or disparity vaues obtained from optica flow measurements can be very noisy,
especidly in areas of uniform intensity. We employ smoothness constraints to reduce the noise
and to "fill in" underconstrained areas. The earliest example of this gpproach is that of Horn
and Schunck [Hom81]. The optical flow fidd (w, v) is smoothed by jointly minimizing the error
in the flow equation

£, =EWUu+EV+E

(E isimage intensity) and the departure from smoothness
£2 = |Vul* + | Vv

The smoothed flow is that which minimizes the tota error

- //(sg + %) dx dy

14



where a is ablending constant Morerecently, this approach has been formalized using the theory
of regularization [Terzopoulos86a] and extended to use two-dimensional confidence measures
equivalent to local covariance estimates [Anandan85],[Nagel 86].

For our application, smoothing is done on the disparity field, using the inverse variance of the
disparity estimate as the confidence.in each measurement The smoother we use is the generalized
piecewise continuous spline under tension [ Terzopoul0s86b] which uses finite element relaxation
to compute the smoothed field The agorithm is implemented with a three-level coarse-to-fine
strategy to speed convergence, and is amenable to implementation on a parallel computer.

After the initial smoothing has been performed, depth discontinuities are detected by thresh-
olding the angle between the view vector and the local surface norma (Appendix B) and doing
non-maximum suppression. This is superior to applying edge detection directly to the dispar-
ity image, because it properly takes into account the 3-D geometry and perspective projection.
Once discontinuities have been detected, they are incorporated into the piecewise continuous
smoothing algorithm, and a few more relaxation steps are performed. Our approach to discon-
tinuity detection, which interleaves smoothing and edge detection, is similar to Terzopoulos*
continuation method [Terzopoulos86b]. The alternative of trying to estimate the boundaries in
conjunction with the smoothing [Marroquin87] has not been tried, but could be implemented
within our framework. The detected discontinuities could also be propagated to the next frame,
but this has not been implemented.

The smoothing stage can be viewed as the part of the Kalman filtering algorithm that incor-
porates prior knowledge about the smoothness of the disparity map. As shown in [Szdliski87a]s
aregularization-based smoother is equivalent to a prior model with a correlation function defined
by the degree of the stabilizing spline (e.g. membrane or thin plate). The resulting covariance
matrix of the disparity map contains off-diagonal elements modeling the covariance of neighbor-
ing pixels. An optimal implementation of the Kalman filter would require transforming (warping)
the prior model covariance during the prediction stage, and would significantly complicate the
implementation of our algorithm. In practice, our current implementation which uses the same
amount of smoothing at each step has proved to be sufficient

4.4 Predicting the next disparity map

Thefinal step in defining the filter is to specify how the disparity estimates arc extrapolated from
the previous maps and the motion estimate. The process must predict both the new disparity
at each pixel in the image and the uncertainty in disparity. We will describe the disparity
extrapolation first, then consider the uncertainty extrapolation.

Ow approach is illustrated in Figure 7. At time r, the current disparity map and motion
estimate arc used to predict the optical |ow between images t and t+1, which in turn indicates




Xf+l

X N /X

Figure 7. Illustration of disparity prediction stage

where the pixels in frame t will ‘'move to' in the next frame:
Xl = X +Ax¢
Y1 = Y+ Ay

The flow estimates are computed with equation (2), assuming that Z, T, and R areknown®. Next
we predict what the new depth of this point will be using the equations of motion. From (2) we
have

AZ = -TARYHRX;
=—T:—RenZi+Ryx 2,
so that the predicted depth at Xt+i,yi+i is
Ziy =2y + AZ,
T = (FRWWHRYX)Z-T,
=aZ;—T;.
Rewriting this in terms of inverse depth, we obtain
Upy = B_—IATE | (14)

“There will be uncertainty in xm aid yi due to uncertainty in the motkm and disparity estimates. We ignore
this for now. '
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In generd this prediction process will yield estimates of disparity in between pixels in
/ image (Figure 7), so we need to resample to obtain predicted disparity at pixel locattc
%Na given pixd if in the new image, we find the square of extrapolated pixels that overlg
and compute the disparity at tf by bi-linear interpolation of the extrapolated disparities. H
that it may be possible to detect occlusons by recording where the extrapolated squares n
away from the camera. Detecting "disocclusions’, where newly visible areas become
is not possble if the disparity field is assumed to be continuous, but is possible if digoar
discontinuities have teen detected
Uncertainty wil increase in the prediction phase due to errors from many sources, indixfi
tmeartainty in the motion parameters, errors in calibration, and inaccurate models of the cam
optics. A smple goproach to modding these errors is to lump them together by inflating t
current variance estimates by a smal multiplicative factor in the prediction stage. Thus t
variance prediction associaied with the disparity prediction of equation (14) is

/fo-d+ekK - T

In the Kaman filtering literature this is known as exponential age-weighting of measuremel
fM*ybeck79J, because it decreases the weight given to previous measurements by an exponent!
function of time* TMs is the approach used in our implementation. We firg inflate the variaes
in the cwmnt disparity map using equation (15), then warp and interpolate the variance mapi
the ante wty as the disparity mgo* A more exact approach is to attempt to model the indivsia

scorees of enor tnd to pnoptgate their effects through the prediction equations. Append|x4
examines this for uncertain camera motion-

S Feature based depth estimation

He densg* iconic depth estimttiott adgorithm described in the previous section can bem
fwrtd with existing depth estiination methods based CM sparse feature tracking. Such ]
f Ayachc87] (IfaxklaBe] [Ha2am83] [MtftMesSThyj typically define the state vector to be the 'p
ftmeten of the 3-D object beimg sacked, wMda is usudly a point or straight line segment Th
3D moetion of tite object betiwcii frames defines the system model of the filter and tbe | jW
gpectivt p o' p ¢ ” of the object mm each image defines the measurement model TMs' nﬁ
lilt the iwftstmineiit *Btti”s (the perspective poja®ion) are non-linear functions of the s
vaiables (e.g. the 3-D psifiat vector); this requires linearization in the update equations ml
tef® thi die eniaf disoibiidaii of Ae 3-D axwlinates will not te Gaussian, In the ased
mbirary cvwm mmin® t fmtiier cmplicmkm is that it is difficult to reliably track fesam
betwees ftittn M M$ swtivi”~ we wil cfesoibe in detail an approach to feature-based KIAM
filering for [ateral MoKk, which tticks edgels along “esih scanline, and avoids the p)S&Ss
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associated with non-linear measurement equations. Extensions to arbitrary motion can be based
on the method presented here.

5.1 Kalman filter formulation for lateral motion

Lateral camera translation considerably simplifies the feature tracking problem, since in this
case features flow along scanlines. Moreover, the position of a feature on a scanline is a linear
function of the distance moved by the camera, since

Ax=Td & xi=x3+iTd

where g is the position of the feature in the first frame and d is the inverse depth of the feature.
The epipolar plane image method [Bolles87] exploits these characteristics by extracting lines in
"space-time" (epipolar plane) images formed by concatenating scanlines from an entire image
sequence. However, sequential estimation techniques like Kalman filtering are a more practical
approach to this problem because they allow images to be processing on-line by incrementally
refining the depth model.

Taking 30 and d as the state variables defining the location of the feature, instead of the 3-D
coordinates X and Z, keeps the entire estimation problem linear. This is advantageous because
it avoids the approximations needed for error estimation with non-linear equations. For point
features, if the position of the feature in each image is given by the sequence of measurements
% = [XQ;Xu —Xn]’, knowledge of the camera position for each image allows the feature location
to be determined by fitting a line to the measurement vector X:

1-H[*] (16)

where H is a (2 x n+ 1) matrix whose first column contains all Ts and whose second column
is defined by the camera position for each frame, relative to the initial camera position. This fit
can be computed sequentially by accumulating the terms of the normal equation solution for XQ
and d. The covariance matrix £ of XQ and d can be determined from the covariance matrix of
the measurement vector X.

The approach outlined above uses the position of the feature in the first frame XQ as one
of the two state variables. We can reformulate this in terms of the current frame by taking x
and d to be the state variables. Assuming that the camera motion is exact and that measured
feature positions have normally distributed uncertainty with variance <J%» the initial state vector
and covariance matrix are expressed in terms of ideal image coordinates as

Xy =

2 20
i
&

d A
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where T\ is the camera trandation between the first and second frame. The covariance matrix
comes from applying standard linear error propagation methods to the equations for X\ and d
[Maybeck79]- :
After initialization, if T; is the trandation between frames r— 1 and f, the motion equations
that transform the state vector and covariance matrix to the current frame are

RN ERAIE 2 I
c-[2]-[o T[] -om &
Py =8P if, (18)

The superscript minuses indicate that these estimates do not incorporate the measured edge
position at time L The newly measured edge position % is incorporated by computing the
updated covariance matrix P£y a gain matrix K, and the updated parameter vector u}:

P; = {eri+s}"t whCTe s=i[° 0]

o201
—_— 0"
K _Mlll

w = u +KE—x).

Siix:e these equations are linear, we can see bow uncertainty decreases as the number af
measurements increases by computing the sequence of covariance matrices P, given only the
measurement uncertainty <g* and the sequence of cameramotions T;. Thisisaddressed in Section
6.1.

Notetibat the equations above can be generalized to arbitrary, uncertain camera motion using
either the x; y; d image-basal parameterization of point locations or an X; F, Z three-dimensiona
parameterization. The choice -of parameteization may prove to be an important factor in the
success-of general depth from motion agorithms* but we have not thus far addressed this question,

52 Feature extraction and matchi ng

To Implement the featare-based depth estimator, we must specificy how to extract feature posi-
tions, how to estimate the noise level in those positions, and how to track features from frame
to frame. For lateral motion, with image flow parallel to the scanlines, tracking edgels on each
sctulne is the most natural implementation. Therefore, in this section we will describe how we
extract edges to sub-pixel precision, bow we estimate the variance of the edge positions, and
how we track edges from frame to frame.
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For one-dimensiona signals, estimating the variance of edge positions has been addressed in
[Canny86]. We will review this analysis before considering the general case* In one dimension,
edge extraction amounts to finding the zero crossings in the second derivative of the Gaussan-
amoothed signal, which is equivalent to finding zero-crossings after convolvmg the image with
a second derivative of Gaussan operator,

d*G(x)

Foy=—=

* I(x).

We assume that the image/ is corrupted by white noise with variance cr\. Splitting the response
of the operator into that due to the signal, Fg and that due to noise, F,,, edges are marked where

F,(r)+F5(x) = O. (19

An expression for the edge variance is obtained by taking a first-order Taylor expansion of the
determinigtic part of the response in the vicinity of the zero crossing, then taking mean square
values. Thus, if the zero crossing occurs at XQ in the noise free signa and XQ + Sxin the noisy
sgnd, we have

F(x0 + ) « F{{x0) +Fi(xb)fo+ Fnixo+ S) =0, (20)

fm-(%»m—ﬂ;&%imb». 1)

The presence of a zero crossing implies that F{xQ) = 0 and the assumption of zero mean noise
implies that E[F,(x0)] = 0. Therefore, the variance of the edge position is

_ 2 _ G2E[(Fa(x0)¥]
BSx] =0t = =P

In a discrete implementation, E[(F.(x0))?] is the sum of the squares of the coefficients in the
convolution mask. FxQ) is the dope of the zero crossing and is approximated by fitting aloca
curve to the filtered image. The zero crossing of this curve gives the estimate of the sub-pixe
edge position.

For two-dimensional images, an analogous edge operator is a directional derivative filter
with a derivative of Gaussian profile in one direction and a Gaussian profile in the orthogonal
direction. Assuming that the operator is oriented to take the derivative in the direction of the
gradient, the analysis above wiU give the variance of the edge position in the direction of the
gradient (see [Nalwa36] for an aternate approach). However, for edge tracking along scanHnes,
we require the variance of the edge position in the scanline direction, not the gradient direction.
This is dtraightforward to compute for the difference of Gaussan (DOG) edge operator; the
required variance estimate comes directly from equations (19) - (22), replacing F with the DOG

0 that

22)
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and F' with the partial derivative dfdx* Details of the discrete implementation in this case are
similar to those described above. Experimentally, the cameras and digitizing hardware we use
provide 8-bit images with intensity variance a\ « 4.

It is worth emphasizing that estimating the variance of edge positions is more than a math-
ematica nicety; it is valuable in practice. The uncertainty in the position of an edge is affected
by the contrast of the edge, the amount of noise in the image, and, in matching applications
such as this one, by the edge orientation. For example, in tracking edges under lateral motion,
edges that are close to horizontal provide much less precise depth estimates than edges that are
vertical. Estimating variance quantifies these differences in precision. Such quantification is
important in predictive tracking, fitting surface models, and applications of depth from motion
to constraining stereo. These remarks of course apply to image features in general, not just to
edges.

Tracking features from frameto frameis very simpleif either the camera motion is very smal
or the feature depth is dready known quite accurately. In the former case, a search window is
defined that limits the feature displacement to a small number of pixels from the position in the
previous image. For the experiments described in Section 6, tracking was implemented this way,
with a window width of two pixels. Alternatively, when the depth of a feature is aready known
fairly accurately, the position of the feature in a new image can be predicted from equation (17)
to be

Il- =x:-—1 +Tld;—1$

the variance of the prediction can be determined from equation (18), and a search window can be
defined as a confidence interval estimated from this variance. This allows tight search windows
to be defined for existing feastures even when the camera motion is not small. A smplified
version of this procedureis used in our implementation to ensure that candidate edge matches arc
consistent with the existing depth model. The predefined search window is scanned for possible
matches, and these arc accepted only if they lie within some distance of the predicted edge
location. Additional acceptance criteriarequire the candidate match to have properties smilar to
those of the feature in the previous image; for edges, these properties are edge orientation and
edge strength (gradient magnitude or zero-crossing slope). Given knowledge of the noise level
in the image, this comparison function can be defined probabilistically as well, but we have not
pursued this direction.

Finally, if the noise level in theimage is unknown it can be estimated from theresiduals of the
observations after x and d have been determined. Such methods are discussed in [Mkhai T76J far
batch oriental techniques analogous to equation (16) and in [Maybeck82] for Kalman filtering,
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6 Evaluation

In this section, we compare the performance of the iconic and feature-based depth estimation
algorithms in three ways. First, we perform a mathematical analysis of the reduction in depth
variance as afunction of time. Second, we use a sequence of images of aflat scene to determine
the quantitative performance of the two approaches and to check the validity of our analysis.
Third, we test our algorithms on images of realistic scenes with complicated variations in depth.

6.1 Mathematical analysis

We wish to compare the theoretical variance of the depth estimates obtained by the iconic method
of Section 4 to those obtained by the feature-based method of Section 5. We will also compare
the accuracy of both methods to the accuracy of stereo matching with the first and last frames of
the image sequence. To do this, we will derive expressions for the depth variance as a function
of the number of frames processed, assuming a constant noise level in the images and constant
camera motion between frames. For clarity, we will assume this motion is T, = 1.

I conic approach

For the iconic method, we will ignore process noise in the system model and assume that
the variance of successive flow measurements is constant. For lateral motion, the equations
developed in Section 2 can be simplified to show that the Kalman filter simply computes the
average flow [Gelb74]. Therefore, a sequence of flow measurements Ax\, Ax2, ., AX IS
equivalent to the following batch measurement equation

[ Axy [ 17
AX2_ 1
Ax=| - |=|-i{d=Hd
| Ax | L1

Estimating d by averaging the flow measurements implies that
1 t
TAx ==Y Ax. (23)
¢ g

If the flow measurements were independent with variance 2a£/ag where a, is the noise level in
the image (Appendix A), the resulting variance of the disparity estimate would be
202

Y (24)
ta
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However, the flow measurements are not actually independent Because noise is present in every
image, flow measurements between framesi— 1 and / will be correlated with measurements for
frames / and i +1. Appendix A shows that a sequence of correlation-based flow measurements
that track the same point in the image sequence will have the following covariance matrix:

[ 2 -1
1 2 -1
. 1 .
P - N
a
2 -1
P2

where <€ is the level of noise in the image and a reflects the local slope of the intensity surface.
With this covariance matrix, averaging the flow measurements actually yields the following
variance for the estimated flow:

o Yoo g 207
dl(r)—}iHPmH—ﬂ—a° (25)

This is interesting and rather surprising. Comparing equations (24) and (25), the correlaion
structure that exists in the measurements means that the algorithm converges faster than we first
expected

With correlated measurements, averaging the flow measurements in fact is a sub-optimal
estimator for d. The optimal estimator is obtained by substituting the expressions for H and Py,
into equations (12) and (13). This estimator does not give equal weight to all flow measurements,
instead, measurements near the center of the sequence receive more weight than those near the
end The variance of the depth estimate is

O DD

Hie optimal convergence is cubic, whereas the convergence of the averaging method we im-
plemented is quadratic. Developing an incremental version of the optimal estimator requires
extending our Kalman liter formulation to model the correlated nature of the measurements.
TMs extension is currently being investigated

Feature-based approach

For the feature based approach, the desired variance estimates come from computing the sequence
of covtriance matrices P,, as mentioned at the end of Section 5.1. A closed form expression far
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this matrix is easier to obtain from the batch method suggested by equation (16) than from the
Kaman filter formulation and yields an equivalent result Taking the constant camera translation
to be T, = 1 for simplicity, equation (16) expands to

XQ "1 01
X 11

- _ Xo | _

X = = [ d l Hu. (26)
%l L1t

Recall that X; are the edge positions in each frame, X, is the best fit edge position in the first
frame, and d is the best fit displacement or flow between frames. Since we assume that the
measured edge positions X\ are independent with equal variance &%, we find that

O'E <JIxd 2 2::0 1 ZL@I -1
The summations can be expressed in closed form, leading to the conclusion that
1202
2 2
op(f) = —————. 28
70 <F+H)<F+ 2) (28)

The variance of the displacement or flow estimate d thus decreases as the cube of the number of
images. This expression is identical in structure to the optimal estimate for the iconic approach,
the only difference being the replacement of the variance of the SSD minimum by the variance
of the edge position. Thus, if our estimators incorporate appropriate models of measurement
noise, the iconic and feature-based methods theoretically achieve the same rate of convergence.
This is surprising, given that the basic Kalman filter for the iconic method maintains only one
state parameter (d) for each pixel, whereas the feature-based method maintains two per feature
(pco and d). We suspect that an incremental version of the optimal iconic estimator will require
the 'same amount of state as the feature-based method-

Comparison with stereo

To compare these methods to stereo matching on the first and last frames of the image sequence,
we must scale the stereo disparity and its uncertainty to be commensurate with the flow between
frames. This implies dividing the stereo disparity by t and the uncertainty by i** For the iconic
method, we assume that the uncertainty in a stereo measurement will be the same as that for an
individual flow measurement Thus, the scaled uncertainty is

L]

Cfrzs(f) = E
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This is the same as is achieved with our incremental algorithm which processes al of the
intermediate frames. Therefore, processing the intermediate frames (while ignoring the temporal
correlation of the measurements) may improve the reliability of the matching, but in this case it
does not improve precision.
For the feature-based approach, the uncertainty in stereo disparity is twice the uncertainty of
in the feature position; the scaled uncertainty is therefore
2
ol = 2;‘.

In this case using the intermediate frames helps, since

" Thus, extracting depth from a small-motion image sequence has severa advantages over
stereo matching between the first and last frames. The ease of matching is increased, reducing
the number of correspondence errors. Occlusion is less of a problem, since it can be predicted
from early measurements. Finally, better accuracy is available by using the feature based method
or the optimal version of the iconic method.

6J2 Quantitative experiments. flat images

The goals of our quantitative evaluation were to- examine the actual convergence rates of the
depth estimators, to assess the validity of the noise models, and to compare the performance of
the iconic and feature-based algorithms. To obtain ground truth depth data, we used the facilities
of the Calibrated Imaging Lab at CMU to digitize a sequence of images of aflat-mounted poster.
We used a Sony XC-37 COD camera with a 16mm lens, which gave a field of view of 36
degrees. The poster was set about 20 inches (51 cm) from the camera. The camera motion
between frames was 0-04 inches (1 mm), which gave an actual flow of approximately two pixels
per frame in 480x512 images. For convenience, our experiments were ran on images reduced
to 240x256 by Gaussian convolution and subsampling. The image sequence we will discuss
here was taken with vertical camera motion. This proved to give somewhat better results than
horizontal motion; we attribute this tojitter in the scanUne clock, which induces more noise in
horizontal flow than in vertical flow:. '

Figure 8 shows the poster and the edges extracted from it For both the iconic and the
feature-based algorithms, a ground truth value for the depth was determined by fitting a plane
to the measured values. The level of measurement noise was then estimated by computing
the RMS deviation of the measurements from the plane fit Optical aberrations made the iow
measurements consistently smaller near the periphery of the image than the center, so the RMS
calculation was performed over only the center quarter of the image. Note that all experiments
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Figure 8. Tiger image and edges

described in this section did wo/ use regularization to smooth the depth estimates, so the results
show only the effect of the Kaman filtering algorithm.

To determine the reliability of the flow variance estimates, we grouped flow measurements
produced by the SSD agorithm according to their estimated variances, took sample variances
over each group, and plotted the SSD variance estimates against the sample variances (Figure
9), The strong linear relationship indicates fairly reliable variance estimates. The deviation of
the dope of the line from the ideal value of 1 isdue to an inaccurate estimate of the image noise
(»%)-

To examine the convergence of the Kalman filter, the RMS depth error was computed for
the iconic and the feature-based algorithms after processing each image in the sequence. We
computed two sets of statistics, one for "oarse** depth and one for "dense" depth. The sparse
datistic computes the RM S error for only those pixels where both algorithms gave depth estimates
(that is, where edges were found), whereas the dense statistic computes the RMS error of the
iconic agorithm over the full image. Figure 10 plots the relative RMS errors as a function of
the number of images processed. Comparing the sparse error curves, the convergence rate of
the iconic dgorithm is dower than the feature-based agorithm, as expected. In this particular
experiment, both methods converged to an error level of gpproximately 0.5% percent after
processing eleven images. Since the poster was 20 inches from the camera, this equates to a
depth error of 0-1 inches. Note that the overall basdline between the first and the e eventh image
was only 0.44 inches.

To compare the theoretical convergence rates derived earlier to the experimenta rates, the
theoretical curves were scaled to coincide with the experimental error after processing the first two
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(Figure Ila). As can be seen, the disparity estimate (Figure lie) is biased low (away from the
“true" vaue in the centra flat part) on one side of the discontinuity, and biased "high" on the
other. This bias can aso be confirmed by using an analytic model of aramp edge. Fortunately,
the variance estimates (Figure lid) reflect this larger error, so regularization-based smoothing
can compensate for this systematic error. We conclude that the dense depth estimates do provide
fairly good depth information.

6.3 Qualitative experiments. real scenes

We have tested the iconic and edge-based algorithms on complicated, redistic scenes obtained
from the Calibrated Imaging Laboratory. Two sequences of ten images were taken with camera
motion of 0.05 inches (1.27mm) between frames, one sequence moved the camera verticaly,
the other horizontally. The overal range of motion was therefore 0.5 inches (1.27 cm); this
compares with distances to objects in the scene of 20 to 40 inches (51 to 102 cm).

Figure 12 shows one of the images (a picture of a miniature town). Figures 13a-d show
a reduced version of the image, the edges extracted from it with an oriented Canny operator
[Canny86], and depth maps produced by applying the iconic algorithm to the horizontal and
vertical image sequences, respectively. Lighter areas in the depth maps are nearer. The man
structure of the sceneis recovered quite well in both cases, though the results with the horizontal
sequence are considerably more noisy. This is most likely due to scanline jitter, as mentioned
earlier. Edges oriented parallel to the direction of flow cause some scene structure to be observ-
able in one sequence but not the other. This is most noticeable near the center of the scene,
where athin vertical object appears in Figure 13c but is not visible in Figure 13d. This object
corresponds to an antennaon the top of a foreground building (Figure 13a). In genera, motion
in orthogona directions will yield more information than motion in any single direction.

Figure 14 shows intensity-coded depth maps and 3-D perspective reconstructions obtained
with both the iconic and feature-based methods® These results were produced by combining
disparity estimates from both horizontal and vertical camera motion. -The depth map for the
feature-based approach was produced from the sparse depth estimates by regularization. It is
difficult to make quantitative statements about die performance of either method from this data,
but qualitatively it is clear that both recover the structure of the scene quite well.

The iconic agorithm was aso used to extract occluding boundaries from the depth map of
Figure 13c (iconic method with vertical camera motion). We first computed an intrinsic "grazing
angle" image giving the angle between the view vector through each pixel and the norma vector
of the local 3-D surface. Edge detection and thresholding were applied to this image to find
pixels where the view vector and the surface norma were nearly perpendicular. The resulting
boundaries are shown along with the depth map in Figure 15. The method found most of the
prominent building outlines and the outline of the bridge in the upper |&ft.
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Figure 12: OL image
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Figure 13: CS$L depth maps
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Figure 14; QL orthogonal motion results

(t) iconic method depth map (b) perspective view (c) feature-based method depth map (d)
perspective view
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Figure 15: Occluding boundaries

(&) vertical motion depth map (b) -occluding boundaries
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Figure 16: QL -2 depth maps

(a) first frame (b) edges (c) horizontal motion depth map (d) vertical motion depth map
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Figure 17: CIL-2 orthogona motion results

(@ iconic method depth map (b) perspective view (c) feature-based method depth map (d)
perspective view
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Figures 16 and 17 show the results of our agorithms on a different model set up in the
Cdlibrated Imaging Laboratory. The same camera and cameramotion were used as before. Figure
16 shows the firg frame, the extracted edges, and the depth maps obtained from horizontal and
vertical motion. Figure 17 shows the depth maps and the perspective reconstructions obtained
with the iconic and feature-based methods. Again, the agorithms did a good job in recovering
the dtructure of the scene.

Findly, we present the results of usng the first 10 frames of the image sequence used in
[Bolles87]. Figure 18 shows thefirst framefrom the sequence, the extracted edges, and the depth
maps obtained from running the iconic and feature-based agorithms. As expected, the results
from using the feature-based method are smilar to those obtained with the Epipolar-Plane Image
technique. The iconic dgorithm produces a densr edtimate of depth than is available from
elther edge-based technique. These results show that the parse (edge-based) batch processing
agorithm for smal motion sequences introduced in [Bolles37] can be extended to use dense
depth maps and incremental processing.

7 Conclusions

This paper has presented a new dgorithm for extracting depth from known motion. The algorithm
processes an image sequence taken with samal inter-frame displacements and produces an on-line
estimate of depth that is refined over time. The agorithm produces a dense, iconic depth map
and is suitable for implementation on pardle architectures.

The on-Mne depth-estimator is based on Kaman filtering. A correlation-based flow algorithm
measures both the local displacement at each pixd and the confidence (or variance) of the
displacement - These two Measurement images' are integrated with predicted depth and variance
maps using a weigihted least squares technique derived from the Kadman filter, Regularization-

- based smoothing is used to reduce the noise in the flow estimates and to fin in areas of unknown
. digparity. The current maps are extragpolated to the next frame by image warping, using the

knowledge of the camera motion* and are resampled to keep the maps iconic.
‘Timalgorithm has been implemented, evauated mathemeatically and experimentally, and com-

| peeted with a featere-based agorithm that uses Kaman filtering to estimate the depth of edges.
- The: matheootitical analysis shews that the iconic approach will have a sower convergence rate

because it only keeps one element of state per pixel (the disparity), while the feature-based
approach keeps both the disparity and the sub-pixd position of the festure. However, an optimal
Implementation of the iconic method (which lakes into account temporal correlations in the mea-
surements) has the potential to equa the conver"Dnce rate and accuracy of the symbolic method.
Experiments with Images of a lat poster have confirmed this analyss and given quantitative
measures of the perfoimaiice of both dgorithms- Findly, experiments with images of a reaEstic
outdoor scene modd htve shown that the new dgorithm performs weE on images with large
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Rgiro 18: SRI EPI sequence results

(@) first frame (b) edges (c) iconic method depth map (d) feature-based method depth map
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variations in depth and that occluding boundaries can be extracted from the resulting depth maps.

Extensions

The algorithms described in this paper can be extended in several ways. The most straightforward
extension is to the case of non-lateral motion. As sketched in Section 4, this can be accomplished
by designing a correlation-based flow estimator that produces two-dimensional flow vectors and
an associated covariance matrix estimate [Anandan85]. This approach can aso be used when the
camera motion is uncertain, or when the camera motion is variable (e.g. for widening baseline
stereo [Xu85]). The dternative of searching only along epipolar lines during the correlation
phase may be easier to implement, but is less general.

More research is required into the behavior of the correlation based flow and confidence esti-
mator. In particular, we have observed that our current estimator produces biased estimates in the
vicinity of intensity step edges. The correlation between spatially adjacent flow estimates, which
is currently ignored, should be integrated into the Kalman filter framework. More sophisticated
representations for the intensity and depth fields are also being investigated [Szeliski87b].

Finaly, the incremental depth from motion algorithms which we have developed can be used
to initiate stereo fuson* Work is currently in progress investigating the integration of depth-
from-motion and sterao [Matthies87a]. We believe that the framework presented in this paper
will prove to be useful for integrating information from multiple visual sources and for tracking
such information in a dynamic environment '
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A Optic flow computation

In this appendix, we will analyze the performance of a simple correlation based flow estimator,
the sum of squared differences (SSD) estimator [Anandan85]. This estimator selects at each
pixel the disparity which minimizes the SSD measure

e(@&x) = f WO +d+X) = folx + NP dA,

where/O(JC) and/i(x) are the two successive image frames, and w(x) is a symmetric, non-negative
weighting function. To analyze its performance, we will assume that the two image frames are
generated from an underlying true intensity image,/(JC), to which uncoirelated (white) Gaussian
noise with variance a\ has teen added:
Jo(*) =S + ng(x),
AL ) +m&).

Using this model, we can rewrite die error measure as’

e@Gx) = [ WG+ +X) = fGr+ N+ mx+X) = nolx+ V).

il If d =d, we can use a Taylor series expansion to obtain

i
£
.
4
j
;

e(d; X) = j WOOM(x + X)] (d -d)* + 2w{XF(x + A)
[0t + A) - note+ A)](S - d) + wX)[n(x + A) - “o(x + A)]%dX
= a(x)(d -0)* + 2AfG(x) - 6b(X)](2 - 4)+clx),

where
aw = [ wONF G+ NP,
bim) = [ wOX G+ N+ X)X,

ox) = J HAXHI(X + A) - %(C + A)dA.

TTie four coefficients A5x)» &0 N W Md AOc) 'define the shape of the error surface e(d:x)*
Timfirst coefficient, aQc), is related to the avera™ ~roughness” or “sof »*' of the intensity surface, .

°IM$ coptikm h actudly inxxrect, sio» It should comian ni(x+ 5— d+ A) instead of ni{x+ A). The rffectof
incbxliag the omw| torn isto aid smal randkwi termsinvaicing integrals of M<A), H/(A),/(X+A),/*(X+A) and
nt(x) to i» goalmfc axfficiat a(r), fti(x) and c(x) that MC cterivai Mow. This intentional omisson has been
made to amplify the presentation.
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and determines the confidence given to the disparity estimate (see below). The second and third
coefficents, bo(x) and b\(x\ axe independent zero mean Gaussian random variables that determine
the difference between d and d, i.e. the error in flow estimator. The fourth coefficient, X\ is
a chi-squared distributed random variable with mean (2</*/w(A) d\), and defines the computed
arorad=<£

To estimate the disparity at point x given the error surface &(3;jc), we find the d such that

e(d;x) = min(5;jc).
d

From the above quadratic® equation, we can compute d(X) as

bolx) — hi(x)

dx)=d+ 20 -

To calculate the variance in this estimate, we must first calculate the variance in bi(x\
Var(b;(x)) = a\ J M2(OX)\{x + A)]* dX.

If we set w(xX) =1 on some finite interval, and zero elsewhere, this variance reduces to o2a(x),
and we obtain
" 202

Var(d) 20"

In addition to calculating the disparity estimate variance, we can compute its covariance with
other estimates either in the same frame or in a subsequent frame. As described in Section 6.1,
knowing the correlation between adjacent or successive measurements is important in obtaining
good overdl uncertainty estimates.

To determine the correlation between two adjacent disparity estimates, d(x) and d(x + Ax\
we must first determine the correlation between bi(x) and bfa + Ax),

{bi(xX)bi(x+ AX)) = JIw(X)W(r)f(x + X)f(x+ Ax+ 7) (m(X+ X)m(Xx + Ax+ 77) dX drj
AfJ VY(X)W(< nNf(x + X)f(x + Ax + rj))§X -Ax- rfyx\ dX dff
=02 ] WAWA - AV(x + A)? dX.

For a dowly varying gradientf(x), this correlation is proportiona to the autocorrelaion of the
weighting function,
RuW(AX) = _;I WAWA + Ax) dA.

6The true equation (when higher order Taylor series terms are included) is a polynomia series in (5- d) with
random coefficients of decreasing variance. This explains the "rough” natore of the e(d; X) observed in practice.
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For the smple case of w(x) = 1 on [s, 5], we obtain
Ry(x,x+ Ax) = %(1 - §_) for x| <2s
The correlation between two successive measurements in time is easier to compute. Since
" falx+2d) = f(x) + my(x),

we can show that the flow estimate obtained from the second pair of frames is
2 ) — b

The covariance between a\(_x) and az(x) is

Cov(@ (x), BiX)) = ((fax) - d)0(X) - wh) =~—

and the covariance matrix of the sequence of measurements at is

" 2 -1
1 2 -1
~1
2
p,=Z
a
2 -1
1 2]

This structure is used in Section 6.1 to estimate the theoretical accuracy and convergence rate
of the iconic depth from motion agorithm.

B Three-dimensonal discontinuity detection

To calculate a discontinuity in the depth map, we compute the angle between the local normal
N and the view vector V. The surface nornia at pixel value (r, ¢) is computed by using the 3-D
locations of the three points

Po=Xo, Yo, Z) = (Ko, 0, 1= where xo=CC yp=-"2
dO S( ' S)
T, c+1l—cy _
P‘ =a:hyhzl)=(xhyl, l)d_ X = =Xo+ ':'L'ayl =-I—% =Yo
1 S Sx s’
I C-Cx rtl—c 1
P= Y, = 7 ,1_ - = =-..—’_—,, —_——
2= X0 Y1, 20) =G, 7m )dz X =5 ST 5 Yo 5,
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We can obtain the normal from the cross product of the two vectors

P : _ _1 N DN
Qi=Pi-Po : ule +=xo(“1( dﬂ@s)’o( ! do)’( ! do))
= d;dl C XOAI, —ygAh —AA:|) where AA\ d\ do

Q:=P2-Py = FAL__J% I—+yo(I o') (I

T o
= dd -xoﬂz,—g — Yod2,—42) where A; =d; ~do
O X0 o (_10ML h0%2 b xdA YodoAs y
- C ey e | Spby & Sy
Simplifying, we obtain
N = (SA| $42 —do +Xo5: D1 — YoSyAz)
V = (xo,yo,D
N-V = -db
cosd N-V
INI{V|

To implement the edge detector, we require that
COSD < cosé,

oT
(ZAP + 5%+ (~dy +X0SAI - YoYA)I)(4 +$+1)> 4 sec? 6.

If the field of view of the camera is small, we have near orthographic projection, and the
above equations smplify to

SxAI S,Az
N = (- % -D=0,q,—
VvV = (toyﬂa 1)

and this reduces to the familiar gradient-based threshold

pz +q2 - tanza;.
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C Prediction equations

To predict the new disparity map and variance map from the current maps, we will first map
each pixel to its new location and value, and then use interpolation to resample the map. For
simplicity, the development given here only shows the one-dimensional case, i.e. disparity d as
a function of x. The extension to two dimensions is straightforward

The motion equations for a point in the pixel map (x, d) are

jd = x+td+ry
d = d+t2.

We will assume that the points which define the patch under consideration have the same ry, ry,
and t, values. These three parameters are actualy stochastic variables, due to the uncertainty
in camera motion. For the lateral motion case, we assume that the mean of t, is known and

non-zero, white the means of r, and t, are zero.
We can write the vector equations for the motion of the points in a patch as

4
dl

[

x+td+re
d+re

whore
X - N(i,iy, fe~N(&,<jJ), r~N(0<7%>
d - N2, r~N(0,a2), axde=[1.-.1]".

The Jaoohian of this vector equation is

o, dQ I
a(x, d, 1, Nyit) |0

and the variance af the predicted points is

P S &E& + ddTo‘,zl +eeraf‘ 393
L2 Za +&T0';":

adeO
|OOJ

Var(x', d') =

To obtain the new depth and variance at a point x, we must define an interpolation function
for Ac parch surrounding this point. For alinear interpolant, the equation is

d‘%l—x)+ - —x)

d = a0 TR
= (1 —V\)di+\dM, where A :—M
Kier - Xi)




dd_ - pan7x) _

ddi (Xm - xd
dd_ __ (&M -d) (Xile—_ xd__ -m(l - A), where m= __(Gw-ad
dxi (XM-Xi)? (i1 — x:)

an(_ll the associated Jacobian is
_I 0 — m 1 A X 1 A
A(x;, xi.i, di, di+y) [~ ( ~ ) ~Mm ( ~ ) A ]

The variance of the new depth estimate is thus

Var(d) = m’[(1 — Mok + %62 1+ 1 — tm)[(1 — )02 +A%03, ]
+mP{do? + o]+ a2,

Each of the above four terms can be analyzed separately. The first term in the above equation,
which involves <T”, depends on the positional uncertainty of the points in the old map. It
can either be ignored (if each disparity element represents the disparity at its center), or ¢\
can be set to \. The second term is a blend of the variances at the two endpoints of the
interpolated interval. Note that for A = |, the variance is actudly reduced by hdf (the average
of two uncertain measurements is more certain). It may be desrable to use a pure blend
(A— A>™ +Acr”) to eiminate this bias. The second term also encodes the interaction between
the disparity uncertainty and the disparity gradient m. The third term encodes the interaction
between the disparity gradient and the camera trandation and pan uncertainty. The fina term is
the uncertainty in camera forward motion, which should in practice be negligible.
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