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1 Abstract

The integral form of the instrument transmission function for a one-dimensional pixel in a two-
dimensional optical system is presented. The integral is solved explicitly in the paraxial ray
approximation for a single spatial Fourier component of a Lambertian object. The difference between
signals from adjacent pixels is derived. It is shown to have zero derivative with respect to focusing
error when the focusing error is zero, i.e., it is a weak source of range-from-focus information.
Describing the instantaneous focusing error as the sum of a fixed offset and a time-domain sinusoidal
dither, the power spectrum of the signal from each individual pixel is shown to contain large first and
second harmonic terms for physically reasonable values of the parameters. The first harmonic signal
is proportional to the product of the dither amplitude and the offset. The second harmonic signal is
proportional to the square of the dither amplitude and is independent of offset. The two coefficients
are identical exdept for an integral numerical factor. It is suggested that the ratio of second harmonic
to first harmonic signals is thus potentially a powerful measure of offset, /Ye., of focusing error in the
limit of zero dither, and thus of range-from-focus pixel-by-pixel. Extending the model to three
dimensions, removing the approximations, extending the model to natural scenes, and verifying and
implementing the results experimentally are outlined briefly.



2 Introduction

Image focusing [3] is conventionally regarded as a spatial-domain activity: the focus-controlling
parameter (lens-to-sensor plane distance in a camera, focal length in the eye) is presumed to be
adjusted with the goal of maximizing the amplitudes of the high spatial frequency image components.
The focusing signal, i.e., these amplitudes, is derived from pixel-to-pixel signal differences. The
focusing information available from these differences is in reality weak. Thus most practical focusing,
e.g., in film and video photography, is done indirectly, without reference to the image, by an open-
loop method using a rangefinder (e.g., a parallax based split-image method) arbitrarily coupled to the
image distance. In humans, depth perception is known to be derived from the fusion of focus and
binocular parallax cues. However the focusing cue is easily discounted: most people have no trouble
understanding stereo photos even though focus is confined to the screen-plane, while the conflicting
convergence cues are controlled by the offset between corresponding points in the left and right eyes1

images [6].

In this report I partially model the image, i.e., the signal associated with each pixel in the sensor
plane, simply and approximately described by:

• the object modeled as a Fourier amplitude for an arbitrary spatial frequency and phase;

• the object distance z, the image distance z', and their relationship via the lens equation;

• the sensor plane distance zn and the pixel diameter 2 p
in two dimensions, i.e., for cylindrical optics.

The result shows explicitly why pixel-to-pixel signal differences are a weak source of focusing
information: the derivative of the pixel-to-pixel signal difference with respect to sensor plane distance
z" is zero precisely at perfect focus zn = z', which makes it operationally difficult to find the exact focus
using only the spatial domain information.

I then examine the predictions that the model makes in the longitudinal direction. This is conveniently
imagined as an experiment in the time domain: the signal from each pixel is modulated by dithering
the sensor plane distance as sin ©r. The dominant AC signal appears at the fundamental dither
frequency, and precisely in phase with it, and the next largest harmonic is the second, corresponding
to a cos 2m term. The fundamental signal is proportional to the product of the dither amplitude and
the offset distance between the image plane and the sensor plane, whereas the second harmonic
signal is proportional to the square of the dither amplitude, and is independent of the offset distance.
The proportionality constant for the second harmonic is exactly one-fourth the proportionality constant
for the fundamental. I then use this model to show how a pair of synchronous amplifiers [4] tuned to
sin ox and cos 2cot could be used in a ratio mode to detect focus precisely, and thus robustly to
deduce range-from-focus pixel-by-pixel.

3 Model

For geometrical simplicity, and for the accompanying simplicity in the degree and limits of the
integrals representing the instrument transmission function1, in this introductory report I will model a
cylindrical rather than a spherical optical system. This will affect the power law behavior of some

11dealized instruments use point detectors to look at point sources through infinitesimal apertures; real instruments report the
integral over t ie r own detector area of signal received from a fete source ar^i trwoo^ %it© sized a|>©rtypes. The instrument
tommbsion function is a description, in terms of integrals over aperture and detector dimensions, of the signal tsat wi be
mn far any specified source description.



variables, e.g., the "exposure time" will be linear rather than quadratic in the f-number, and some
numerical coefficients may differ in the two cases by factors the order of unity, but the essential
conclusions should be the same in cylindrical and spherical models. To keep notation simple and
physical concreteness in the forefront, throughout the report I will illustrate with geometrically special
cases that involve no loss of physical generality.

The model optical system is depicted in Figure 1. It consists of a simple, thin, aberration free lens of
aperture 2R, an object plane at distance z measured to the left of lens center, the corresponding
image plane at distance z measured to the right of lens center, and a sensor plane at distance z" also
measured to the right of lens center. Locations in the object, corresponding image, and sensor
planes are measured by x, if, and x" respectively, with the positive direction of x physically opposite to
the positive directions of y! and *". The optical model is geometrical, ignoring diffraction entirely.

The object plane is characterized by a source function W(x,Q) that in this introduction I will take as an
angularly Lambertian, spatially sinusoidal grating2 representing one Fourier component of the optical
power emitted or reflected by the object:

W(x,Q) = WaCOS (fcc+<J>)C0S6 watts-meter"i-radian"1 (1)

The constant k = ?£, where X is the spatial wavelength of the sinusoidal object feature. The constant

<j> is a phase factor that describes the symmetry (or lack of symmetry) of the sinusoid about the optical
axis. 4 = 0 is the special case of a sine function (antisymmetrical), and $ = 5 is the special case of a

cosine function (symmetrical). Direction angle 6 is with respect to the object plane normal.

Figure 1 also shows a typical ray connecting xo
n, the center of a pixel that extends from j c / - p to

x / + p , to the object plane, which it intersects at location xo and angle 9. The power collected by this

pixel3 is

o
= [xo +P f+a tan__ i f l r ^ e")t 9 ( * \ 8"))

As is often the case in modeling instrument transmission functions, the key features of the problem
reside in the limits of the integrals that describe the physical averaging performed by the various
apertures in the system.

2A unfaivn bacKgrcur.d, structureless in space and time, can be superimposed In the reader's mind if the negative values
i d by this function are dsconcering. The background rr.akes no net contribution to the spatial difference andy

temporal denvasve signals of interest In tm report

3t3©p©ndfag on the physical mmdm^m underlying tmtduefon, sensors may or may not generate output signals
mom-or-less ttear m tm incktent cpticaj power. In practice optical detectors, both electronic and' photochemical, when used
uncfer the condmovs recommended by their manufacturers, deliver efedicaJ voltage or developed optical density signals
wtiosd mmpSmdm m® ̂ vptommmfy Inear in ft® product of incident cpt:cai powers and integrating time, Le., these' detectors
mm Jnddint energy sens^ve. Tn:s Imdmmi reizi&r&hi? h not required in any fundamental sense: a detector could in
principle respond to tm @i®ctic ieid streng^ ^mm amp.itioe) -Ether than to power (wave intensity, essentially amplitude
«|UMd|v Thm smmMm ImliMomfy m®$^^
BSV^S r~s r^wsr ? r ^ Howler fcT coherent (sasern^rnJnation. where this averaging cbes
-z: ocort ^e d U m ^ i k im$mtmL ft s also in^oftartt h sonar rai^mg: typical modern acoustic transducers, e.g., the

(i ) ti S
g,

c$xbm gmmi® mkmpimmm k% «©plw» mM^&om% am (i Sijppose) potm sensitive. Sonar ranging modules that
m to wamwaAm wtti mng& by mkm an antptifer vAmm gafa h nmped ineariy witfi time are relying on she

$ f y , oTper«atkm<&>es
l B r a f l ^



From the geometry

x = x" + (z"-z/)tane" meters (3)

and

9 = atan*^**"*"9" radians (4)
Z

From the simple lens equation [1]

x = 4*' meters (5)

Substituting these relationships, and making small angle, near axis approximations

wo C0S(^ll^Zf2^2+<l)) dG" <fc" wow (6)

z"

which integrates to

7zn

Substituting some convenient definitions:

• ki m kff the object feature spatial frequency in the image plane;

• 4 s A, the half-aperture, approximately JL and exactly - L . where F is the focal length,

and/is the conventional f-number;

• k?A s kn, the object feature spatial frequency in the image plane times the half-
aperture, and thus a measure of the depth of field;

• ztf-z/ s £, the offset between the image and sensor planes;
the result is simply expressed as

S = AWo9A ^ £ £ f ^ p <x>s(*V+«» ^ (8)

777/s equation for the instrument transmission function of a pixel is the model in the approximation
stated. It describes the optical power received by a pixel as the product of several physically sensible
terms:

• the image function woco&(jfx0"+$) corresponding to the source function equation 1,
where in the small angle approximation cose = 1;

• the full pixel height 2 p;

• the full lens aperture 2A;

• a transverse spatial filtersmkfp;

• and a longitudinal spatial filter:

The features of this result that I want to investigate in this report are its transverse pixel-to-pixel
differences and its longitudinal derivatives (conveniently modeled as the temporal frequency
spectrum when £ undergoes forced oscillation). In a future report I will discuss the corresponding
three dimensional model, integration over multiple spatial frequencies (thus admitting realistic object
descriptions), and the effects of removing the paraxial and other smallness approximations.



4 Example

For concreteness I will assign "typical" values to the parameters, and use these values for illustration
and comparison throughout the rest of this report:

• source function Wo = 1000watts-meter~l-radiari~l\

• pixel size 2 p = 13 \xm\

• lens focal length F = 20mm, lens aperture 2R = 10mm, thus f-number = 2 and A = 0.25;

• object distance z = 2meters, i.e., magnification 0.01.

An interesting choice for the object feature size is the one for which kf p = |, so that for the 13 \m pixel

size k' = 2.4166 x 105 meters"1 and k = 2.4166 x 103 meters"1. These correspond to a spatial
wavelength in the object plane of 2.6mm or 26\im in the image plane, I.e., exactly two pixel widths: a
Sight band falling on one pixel and a dark band falling on an adjacent pixel maximumize contrast. The
pixelation is then an optimally matched filter for the spatial wavelength.

Finally, *" =£ /A = 6.042 x 10*meters"1, corresponding to a longitudinal wavelength (for the specified
f-number) of 104 nm, twice the f-number times the transverse wavelength. "Small" in the longitudinal
direction means small with respect to this distance.

5 Differences Between Adjacent Pixels

Consider a pixel centered on axis at x0" = 0 and an adjacent pixel centered at xo" = 2 p. By symmetry,
when the sensor plane has a pixel centered on-axis (in contrast to having two pixels straddle the
axis), the most visible object features will be those for which <j> = 0. The difference in signal between
the on-axis pixel and an adjacent pixel is then

AS = AWopA^l ! ^ £ i (COS0 - COS2^p) watts (9)

which expands exactly to

AS = —^ sin3Jf p ! ^ £ i watts (10)

and for small focusing errors kn C « 1

AS * VOjjt sin3Jfp U ~ p ] watts (11)

The absolute value of the difference signal clearly has a local transverse extremum for any integer n
satisfying U p = Hi ami a local longitudinal extremum for any integer m satisfying kn £ = —. Because

of the U in the denominator of the numerical coefficient the difference signal has a global maximum
when n = L The best contrast between adjacent pixels is obtained when the image plane feature size
has a spatial half-wavelength equal to the pixel diameter.

For this best-contrast condition, with the feature size optimally matched to the pixel size kfp = 5 but

perhaps away from precise focus:

When the sensor plane also coincides with the image ptane C = 0 the value of 5^l£li is unity so



This is the largest difference signal that can ever be obtained between adjacent pixels (for an object
focused

with a single sinusoidal feature). It is thus convenient to use So = /yi^c/ted as the unit relative to

which to measure other signal powers.

With this notation the instrument transmission function is

S = !ff !!j££ f j £ i cos(*V+<» ™» (14)

and the difference between signals from adjacent pixels for object features optimally matched to
pixelation is exactly

* W w « ™o *j£ watts (15)

and in the limit of small k" £

^ft (16)

The physical interpretation is that at focus, with the feature's spatial wavelength and phase matched
to the pixelation, the on-axis pixel sees So, an adjacent pixel sees -$o, and when the sensor plane

fails to coincide with the image plane the difference signal is attenuated as 2l^£5, or approximately

quadratically in the focusing error.

The matched condition is optimal for focusing on contrast. Its sensitivity to £ is given by the derivative
dtsmatched o c .„ /Cosr; sin= 2S k ~2S k ~ f - x) watts-meter L (17)

which to first-order in £, and recalling JT = k'A, is

watts-meter-1 (18)

which, of course, could have alternatively been obtained by directly differentiating ecp^wi 16.

Two poWs are worth noting:
• the sensitivity improves rapidly with increasing aperture (and might be predicted to do so

even more rapidly with spherical optics);

• nevertheless, the situation is hopeless at £ = 0: the effect we would use to detect a
discrepancy between the image plane and the sensor plane has zero slope when the
discrepancy is zero.

The last point is not so serious if the goal of focusing is just to obtain a sharp image: that the
derivative of the difference signal is small simply says that the endpoint is not critical. But if part of
the goal of focusing is to obtain range-from-focus, this result makes the prospects seem grim indeed.

Returning to the ongoing numerical example So = 4.138mW, so A S , , ^ ^ = S216BmJrt'mW. Then how

big does the focusing ,emor £ have to be to make a one-bit difference in AS? Suppose (to be
generous) that we can digitize the difference to 8-btts when AS Is a half scale signal. We want to
know the value of jfc"£ that makes ASO differ from unity by 1/128. The answer (obtained graphically) is
FC«0.216» which for F = 6.042* 104 metertf"*1 corresponds to a focusing error £S3.6|XJH. The



corresponding range error is found by resubstituting the lens equation into its own derivative with
respect to z':

To a good approximation, the fractional range error is the fractional focusing error times the reciprocal
of the magnification, 100 in this example. Thus a one bit signal change that corresponds to a 3.6[im
focusing error in a QJOmm focal length corresponds to 1.8% range error, or 36mm range error in
Imeters. In any but the lowest precision real world application this range error would be
unacceptable.

The rest of this report suggests a class of data collection and processing technologies that show
on-paper promise of being able to use the longitudinal structure of the image to obtain range-from-
focus with high accuracy.

6 The Temporal Dimension

I now investigate the signal observed in the time domain from a single pixel when the sensor plane is
both offset from the image plane and is driven in a small amplitude oscillation:

C = Co+«Sin a>f meters (20)

In the absence of practical three dimensional image sensors4, imagining a pixel plane in longitudinal
oscillation, especially with the recognition that synchronous detection can then be employed, is a
useful expository tool as well as a proposal for a practical implementation.

For a pixel on-axts xo" = 0, an object symmetrical about the axis # = 0, and object feature and pixel
sizes satisfying H p = |

(L car)
S(t) = So „„ ° . watts (21)

^ K ^ * a s m car) v '

For small £

r2(C + astncar)2

S(t) = SJ.1 - i-j. ] watts (22)

which expands to

SO) = SJX - ^ (t^+l^a&inm+at&ln2™)} wans (23)

In unite of s@ we then have for the power spectrum:

• a DC term 1 - J* > which is just hai the adjawrrt pixel difference equation 16;

2FILa
• an AC term syiichswiaus mWi the cWvl^ term — — - — (which can alternatively be

interpreted as a positive ampftude ami a phase shift of % wth respect to the driving
term);

• a tBtm whose time dependence mmmpomis to sin ^ arxl mtmse ampMttxie ~(*ra*; is,

4Smm aotfopts m t x * * ^ i poamfoQ ^ w » W*wl mating kymm mm mdmm$ {2}, faut I an unara i of any efforts to
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independent of t^o, i.e., independent of focus, and is thus a measure of the product of all
the uncertain intensity and geometry related weights.

2cor = * ~ o o s 2 f l* the sin2c

2

Noting that sin2cor = * ~ o o s 2 f l* t the sin2cof amplitude is further interpreted as

another DC term of power

• an i4Cterm of power ^^ with frequency and phase corresponding to cos 2cor.

The net power accounting is then:

• for the DC term: P = 1-

• for the sin cor term: PM =Q 31

• for the cos 2cw term: P-M •
312

-aThe ratio of the signals at the second harmonic and the fundamental driving frequencies is - ~ i , which

becomes arbitrarily large as £a approaches zero, i.e., as focus is achieved. This ratio might thus
provide a high sensitivity, high accuracy focusing criterion.

How much useful AC signal there is depends on Jt", the depth of field in the image distance in relation
to the object feature size. If the transverse matching condition K p = 5 is satisfied then the longitudinal

condition is kn = J L , Recall that in the ongoing numerical example, corresponding to these conditions

and some typical parameters, k?**6SWlxltf meters"1, or i» 16.55 \un. For offset and dither

amplitudes of this order-of-magnitude the longitudinal smallness approximation is valid to about 1%.
As a practical matter, displacements of this size could be easily obtained piezoelectrically. Then
continuing the example, if we take a = Ca = p = — the relative signal powers are

Po• Pm• P2m = 0.75•-0.3333•0.0833. Since P2m grows quadratically as a, even higher modulation
fractions are obtainable within the realm of plausible electronically driven sensor plane
displacements.

7 Temporal-Longitudinal vs Spatial-Transverse Domains

Combining the results of the two previous sections, the ratio of the maximum difference between
signals from adjacent pixels to the time domain single pixel signals at DC, first harmonic, and second
harmonic is

3! "312"

Substituting C = C^+ctsin cor into the expression for M ^ ^ ^ and averaging over time, i.e., making
a DC measurement, shows that 2PO is effectively the same as

The DC components ^Sfm^ihed and Po m% unable to distinguish between signal due to foots error and
extraneous signals (m>Sse) induced 'by motion and vtoratfon of the object or the camera, changes in
Illumination, changes in thermal dark current in the sensor, electronic noise In t i e detection system,
etc. In contrast the AC signals from indivicfeiai pixels tmm several properties that make them



potentially immune to fluctuations and noise, and thus sensitive to focus with a high signal-to-noise
ratio:

• ratiometric measurement the ratio of the first harmonic signal to the second harmonic

signal is —, independent of illumination, optical system uncertainties, small motions,

vibrations, fluctuations, etc;

• zero crossing: the first harmonic signal and the ratio signal have zero crossings at offset
C = 0, Le., at exact focus, and this is a desirable condition for detectability;

• synchronous detection: the first and second harmonic signals are phase-locked to the
dither; synchronous detection methods5 can thus cleanly extract these signals from noisy
environments;

• insensitivity to flicker noise: modulation (dither) and AC detection move the
measurement from near DC to a higher frequency regime in which flicker (or I) noise

may be dramatically lower.
Hands-on experience in different but analogous problem domains [7] leads me to expect that these
methods could yield an advantage of several orders-of-magnitude with even cursory attention to good
engineering practice.

8 Extensions and Pitfalls

Extending the model to spherical optics looks straightforward, although the additional integration over
an azimuthal coordinate may involve some messy intermediate algebra. 1 expect the result will look
very similar to the one presented here, with the complication of a transverse filter term for the
direction, signal proportional to the square of the lens aperture, and slightly different numerical
coefficients.

Removing the paraxial ray approximations should be straightforward, although the more general
results are usually regrettably less revealing of the intuitive physics and geometry.

Removing the smallness approximation on the arguments of the transverse and longitudinal spatial
filter functions should similarly be straightforward. The result could bring some surprises, especially
longitudinally, since the longitudinal scale distance Ij is typically rather small.

By far the most important restriction to remove is the description of the object as a simple sinusoidal
grating. When the object space is described as a Fourier integral over a spatial frequency continuum
instead of as a single spatial frequency, will the effect be to wash out the structures I am counting on
detecting, /.e., as many optical interference effects are washed out when a monochromatic light
source is replaced by a polychromatic fight source, or will the pixelation act as a matched spatial fitter
that selects exactly what is needed to focus on surface texture? If the answer is washing out rather
than selecting out, then my method will be useful only for artificially simple scenes.

Experimental verification can 'be envisioned as real-time and dbect, by electromechanical^ driving the

sA§S0 Irayn in tMmmt knfimmtmiom md contests as tacWn ampiicaian, phase semltiv© ampliation, and
i ladNcaiKm, t» methods m pmmlui far mmdkm mwM signals with Jh» spectra from

*h I t f l f t m b
p m g p p ^

tatqpoundi **h commmm wprnMu, I t » afgnl from m mtmmm mcmm both modotateR th# aowce (in tffe caw: dttters
fha wmmm plant) and in sffect cfals in the owner frequency of t» detector Input ttv, Sfnchmmm detection nwftocfe are
refaur t in tm *m mpmm out oorrinuum note by ^ ^ l h
«*t»ii m Ina mpmmm signal loss wMi ¥®§mmm o « ^ * r frtqiWMy cWt
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sensor plane (or, more-or-less equivalent^, the lens or even the focal length) at an audio frequency
and analog parallel processing of the signals from a few pixels. High temporal bandwidth detectors,
e.g., photodiodes, would be desirable. Alternatively, an indirect, non-real-time equivalent would
involve stepping the sensor plane a fraction of the longitudinal scale distance between successive
frames from a conventional video camera, with after-the-fact digital analysis. The direct real-time
approach is preferred: it could take full advantage of synchronous detection, whereas the indirect
simulation, with little practical prospect for averaging over many cycles, could easily be disabled by
fluctuation noise.

A final potential pitfall is that real photosensors do not necessarily stop all the light incident on them in
effectively zero thickness. The sensor thickness is manifested as an averaging operation in the
longitudinal direction that attenuates the signals developed by the method proposed. With some
sensor types this attenuation-by-thickness might be a fatal flaw.
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