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Abstract

This paper presents an approach to using object-oriented programming for the generation of a
object recognition program that recognizes a complex 3-D object within ajumbled pile.

We generate a recognition program from an interpretation tree that classifies an object into an
appropriate attitude group, which has a similar appearance. Each node of an interpretation tree
represents a feature matching. We convert each feature extracting or matching operation into an
individual processing entity, called an object. Two kinds of objects have been prepared: data
objects and event objects. A data object is used for representing geometric objects (such as
edges and regions) and extracting features from geometric objects. An event object is used for
feature matching and attitude determination. A library of prototypical objects is prepared and an
executable program is constructed by properly selecting and instantiating modules from it. The
object-oriented programming paradigm provides modularity and extensibility.

This method has been applied to the generation of a recognition program for atoy wagon. The
generated program has been tested with real scenes and has recognized the wagon in apile.



1 Introduction

Traditionally, a recognition program is generated by a human expert who examines the
features of an object, develops a strategy for a recognition procedure, and writes a specialized
program for the individual object. However, this "hand writing™ of a recognition program
requires a long time for programming and testing. In order to reduce the development time,
severa researchers have investigated methods to automatically generate recognition programs
from object models [5, 7, 8].

Automatic generation of arecognition program requires severa key components:

* object models to describe the geometric and photometric properties of an object to
be recogni zed;

 sensor models to predict object appearances from the object model under a given
Sensor;

« strategy generation using the predicted appearances to produce a recognition
strategy;

* program generation converting the recognition strategy to executable program.
This paper concentrates on the final stage, i.c. program generation. We will investigate away to
automatically generate a program to localize an object under the assumption that its recognition
strategy is given.

We propose to prepare alibrary of modules to be used for converting a strategy into aprogram
and to construct the program by properly selecting modules from the library. Our method is
based on object-oriented programming. An object in object-oriented programming is a
processing unit, which can store several internal values in slots and execute various operations.
This paper identifies the necessary operations in recognition strategies and prepares the
prototypes of the objects to execute the strategies in the library. Then, this paper defines a
generation method for an executable program by instantiating the objects in the library. Finally,
this paper applies the method to atoy wagon to generate a recognition program and executes the
generated program in areal scene to demonstrate the validity of our method*

2 Generating a Recognition Strategy

This section overviews our recognition strategy which is to be converted into an executable
program in the following sections. Our paradigm is to generate a recognition program to localize
a 3D object within a jumbled pile under the assumption that its geometric Mid photometric



properties, sensor characteristics, and sensing conditions are known. The basic recognition
drategy isto classfy one unknown attitude (one object appearance) into one of severa possible
attitude groups by using various available features, and then to determine the precise attitude by
solving equations based on the visible features of the group. Each group consists of topologicaly
equivalent object gppearances and is referred to as an aspect [9].

Strategy generation is performed by recursive sub-divisions of possible aspects by available
features. Strategy generation starts with a root node which contains all possible aspects. After
that time, whenever anew classfication is done, new nodes are generated. At each node of the
interpretation tree, each available feature is examined to determine whether it can dassfy the
group of aspects in the node into a smaller number of aspects. If it can, the feature is stored at
the node and subnodes corresponding to classified subgroups of aspects are generated and
connected to the node. Thus, the generated recognition strategy is represented as atree, which
we cal an interpretation tree. Intermediate nodes of the interpretation tree correspond to
classfication stages and |eaf nodes correspond to classification into individual aspects [7].

Two kinds of features are used for matching: unitary features and relational features. A
unitary feature can be represented as scalar numbers, such as area and moment of avisible face,
while arelational feature is a detailed relationa description between visible faces, such as face-
face relations and face-edge relations.

At the completion of the aspect classification, each intermediate node of the interpretation tree
records the feature to be used for classification, and each leaf node contains one single aspect.
Suppose a this moment, we apply the interpretation tree to one object appearance’. Then, we
can cdassfy the appearance into the corresponding aspect at the leaf node by using the same
features and values recorded at each intermediate node of the interpretation tree.

The next task will be to determine the exact attitude of the object within that aspect. Once an
appearance is classfied into an aspect, the interpretation tree knows the correspondence between
image regions and object faces, in particular the correspondence between the entry region and
the corresponding object face. Thus, once we define the local coordinates of the object face by
the surface orientation of the face, the minimum moment direction of the face, ad the

Ipdore precisely, one imtgc legion of m object appearance is given to the interpretation tree. We will denote the
imtgeregtoQ fromwhichtibcprocess begins is the entry region.



relationship between visible faces, we can recover the local coordinates relative to the world
because those three piece of information can be obtained from the entry region. Then, the object
attitude can be recovered from the local coordinates and the transformation from the local
coordinates to the body coordinates of the object.

After the exact attitude of the object is obtained, the system generates an expected image by
using ageometric modeler. Edges in the expected image will be compared with the edges in the
input image to confiim the recognition. The voting index method provides a way to match the
expected edges with the extracted edges by giving the reliability of the recognition. For the
voting index see Appendix I1.

3 Object Library

This section will consider how to convert a given strategy into an executable program. A
recognition strategy is given as an interpretation tree in our system; each node of an
interpretation tree contains a group of aspects and one of the feature matching operations to be
used. We will identify necessary matching operations, and design objects to perform the
operations by using the object-oriented programming technique.

An object in object-oriented programming is aprocessing unit, which can store several internal
values in slots. We can define demon functions for each slot, where a demon function will be
invoked implicitly when we retrieve a value from the dlot or insert a value into the slot. An
object can execute an operation explicitly when we send a particular message to the objea. An
object can be defined as an instance of a prototypical object. An instance object can inherit dot
names, slot values, demon functions, and operations of the prototypical object?

Two kinds of objects are prepared in our object library. One is adata object* which is used in
representing geometric objects (such as edge and region) and extracting featufes from geometric
objects. The other is an event object, which is used to control the matching and determine the
exact attitude after the interpretation.

“Tfadie are several implementations to the objects, la our system* we use modified Eraniedt-f- oripmHy developed
at Carnegie Melon University [2].




3.1 Data Object
Our system uses photometric stereo to obtain region information [6], and uses a line extractor
to obtain edge information [1,10]. To represent these pieces of information, we creste two

prototypical data objectsinthe object library. They are:
* Region
* Edge

The following example shows the definitions of the two abstract objects; an abstract-region

and an abstract-edge.

(abstract -regi on-obj ect,
(i s-a program object)
(i d- nunber)
(area)
(maxi mum x)
(m ni mum x)
(maxi mumy)
(m ni mumy)
(nmass-center)
(nonent )
(orientation)
(regi on-sear ch-di st ance)
(regi on-i mage- nodel - di st ance- coef)
(regi on-i nage- nodel - ar ea- coef)
(regi on-i mage- nodel - nonent - coef)
(regi on-area
(i f-needed-denon regi on-area-func))
(regi on- nonent '
(i f-needed- denon regi on-nonent-ftnt))
(region-nonent-ratio
(i f-needed-denon regi on-nmonent -ration-func))
(region-orientation
(i f-needed-denon region-orientation-func))
(region-region-relation
(i f-needed-denon region-region-relation-func)))

(abstract - edge- obj ect
(is-a program obj ect)
(i d- nunber)
(start-point)
(end- poi nt)
(center)
(I engt h)
(direction)
(edge-region-rel ation
(i f-needed- denon edge-region-relation-func)))



In the definition of an abstract-region, the is-a dot represents that this abstract object is a
program object. Slots from id-number through orientation will store image properties of
individual regions by inheritance mechanism. Slots from region-search-distance through
region-image-model-moment-coefkeep global knowledge such as search distance for relational
features or coefficients between data in the geometric modeler and image data. Slots from
region-area through region-region-relation store features which are obtained from image
properties by demon functions attached to the slots.

We can make instance objects of these abstract objects. When the instance objects are
generated, the image prdperties of each region or edge are extracted from an image and stored in

the corresponding slots. Thus, for example, an instance object of an region looks like;

(RIO

(i nstance abstract:-region)

(i d-nunmber 100)

(maximum”y 100)

(maxi num~y 100)

(mnimum—~x 50)

(m ni mumy  50)

(mass-center (75 75))

( monrent (8000 200 0.2))
1.0))

(orientation (0.0 0.0 )

The global knowledge and demon functions can be accessed from an instance object through
the inheritance mechanism if necessary. For example, if the feature, region-area of the instance
object, R10 is accessed by arecognition process, there is no slot in R10. Thus, an inheritance
mechanism is invoked and the region-area slot of the abstract-region is accessed. The demon
function attached to the region-area slot of the abstract-region is invoked. Then, the demon
function calculates the region-area of RIO by using region-image-model-area-coefficient in the
abstract region and the areavalue in RIO and returns the feature val ue to the recognition process.

This mechanism makes the access format of the image features (say, xegkxi-area) by the
recognition process independent of the output format of image properties (say, image area) given
by asensor. In particular, thismechanism is convenient when we handle multiple sensorst Each
sensor has a particular output format and model-image coefficients. Thus, if we use the
conventional method without demon functions* we have to exchange access functions of the
recognition process depending on sensors and features. However, if we use this demon



mechanism, we not need to change the access functions of the recognition process; we only need
to redefine demon functions. Since the global knowledges and all the demon functions are
attached only to the abstract region and the abstract edge, necessary changes are localized at the
level of the abstract region and abstract edge.

The relational features such as region-region or region-edge are aso repfeeented by usng
demon functions. These relational features are represented relatively with respect to each region.
If we use the conventiona method, we have to calculate dl relational features with respect to dl
regions beforehand, even though most of them are unnecessary. Since the caculaion of a
relational feature is expensive, it is desirable to reduce the amount of calculation by using demon
functions which calculate those features only when they are actualy required.

3.2 Event Object

Event objects aie used to convert nodes of an interpretation tree into executable modules for
feature matching and attitude determination. There are two kinds of features to be used for
matching; unitaly features such as area or moment and relational features such as region-region
relation or region-edge relation. We convert anode for a unitaly feature into an object which
chooses one of the descendant nodes smply based on the value of the unitary feature of aregion.
On the other hand, we will convert anode for arelationa feature into an object which examines
the similarity of the relational feature to al possible cases and determines the node
corresponding to tbe most likely case.

32.1 Unitary feature object

When a nock of an inteipietation tree is required to examine a unitaiy feature, an unitary
feature Object is generated and attachéd to the node. A node of an interpretation tree contains the
information about descendant nodes, the name of unitary feature used for matching, axd its
threshold value. According to these pieces of information, a unitary feature object Is generated.

Thus, the prototype of aunitary iestuxe object in the object library has the following format
{onitary-festure-ocbject
(is-a prograia-object)
(execution)
(tlumahold)
{branch-left)
(brmodh-rigfat))

Whbon % instance unitary fegture object is gengrated” It contains a method name in the




execution slot to be used for the comparison, the threshold value in the threshold dot. For
example, if an interpretation tree requires area comparison a a particular node, then the

following object will be generated at the node.

(branch-exanpl e-1
(instance unitary-feature-objecrt)
(execution area-conpari son-mnet hod)
(threshol d 100)
(branch-1eft branch-exanpl e-10)
(branch-right branch-exanpl e-11))

The threshold value, branch-left, branch-right, and the execution method name are obtained
from the interpretation tree and inserted by this conversion process. The object library contains

the following function.

(defun area-conparison-nethod (schema slot entry-region)
(cond((unitary-conparison
(get-value entry-region 'region-area)
(get-value schema 'threshold))
(send (get-value schema 'branch-Ileft)
‘execution entry-region))
(t (send (get -val ue schema ' branch-right)
‘execution entry-region))))

(defun unitary-conparison(arg-a arg-b)
(cond((>= arg-a arg-b) t) (t nil))))

The area-comparison-method is invoked by sending an execution message to the object such
as
(send 'branch-example-1l ' execution entry-region) .
In the arguments of the method function, schema and slot are the corresponding schema and dot
which invoke this function and inserted by the system; in our example, branck-example-1 and
execution are inserted automatically, while the argument, -entry-region is given to this method
function 'directly by the send function®. Depending on the result from unitaiy-comparison,

another execution message will be sent either to branch-example-10O or branch-example~lh

Similarly, we can define various discrimination functions, whexe required functions arc
dependent on the strategy generation. In the present implementation, the foUowing functions are
prepared in the object library;

3Noce thai (gei-vmhe entry+region "region-area) Invokes a itgton-aita demon function attached to the abstract-
regioo.




» area-comparison-method,

e moment-comparison-method,

e moment-rati 0-comparison-method,

« surface-characteristic-compari son-method,

* surrounding-nth-face-area-comparison-method,

* surrounding-nth-face-moment-compari son-method,

* suTrounding-nth-face-moment-ratio-comparison-method,

* surrounding-nth-face-surface-characteristics-comparison-method.

It is quite easy to include different unitary features. This only requires addition of the
necessary feature matching methods and the feature slot with the feature extraction demon to the
library; itis not necessary to modify any other existing objects.

322 Relational feature object

If anode of an interpretation tree is required to examine arelational feature, aparallel tracking
mechanism is adopted which examines the similarity of the relational features of al immediate
descendant nodes against those of the entry region and sends the next execution message to the
node corresponding to the highest similarity.

Since the parallel tracking mechanism is relatively complicated, we divide it into the following
four kinds of objects; a message handling object, feature matching objects, festure matching
demon objects, and a comparing object. See Figure 1. A message handling object sends
execution messages to feature matching objects, A feature matching object measures a Smilarity
between the feature of the entry region and one of the model features with the help of a feature
matching demon object, and then sends the similarity measure to the comparing object, and t
finish notice message to the message handling object. Once the message handling object recaives
all finish notice messages from all feature matching objects, it invokes the comparing object. The
comparing object examines the similarity measures and sends the next execution message to the
appropriate object.

Message handling object

Hie message handling object controls the parallel matching mechanism. It sends the modd




Message Handling
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Feature Feature Feature
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Figure1: Paralel tracking mechanism
features to each feature matching object one by one. The prototype of the message handling

object has the following format.

(nmessage- handl i ng- obj ect
(is-a program object)
(execution nessage- handl i ng- net hod)
(finished-notice finished-notice-nethod)
(sendi ng-obj ect-1ist)
(finished-object-1list)
(nodel -feature-1list)
(next-node-1list)
(conpari ng- obj ect)

The dot, model-feature-list contains the model relational features given from the node of the
interpretation tree. The dot, sending-objecf-list contains the feature matching objects® where
those feature matching object will be generated while the system converts the interpretation tree
into an executable code and registers them in this slot, while the dlot, finished-object-list contains
the feature matching object which finishes the matching operation and sends the notice to this
object. Once al model matching is done, a comparing object is invoked. The object to be
invoked is stored in the comparing-object slot.
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Hie object library contains the following message-handling-method and

fini shed-noti ce-method.

(defxin message-handl i ng-netliod (schema slot entry-region)
(do ((nodel -list (get-value schema ' nodel -feature-1list)

(cdr nodel -1ist))

(sendi ng-11i st
(get-val ue schema 'sendi ng-object-1list)
(cdr sending-list))

(node-list (get-value schema 'next-node-Ii st
(cdr node-list)))

((nul'l nodel -1ist))

(send (car sending-list) ‘execution
entry-region (car model-list)
(car node-list))))

Basicdly, this method sends modd relational features one by one to feature matching objects

In order to make a correspondence between a feature and the corresponding descendant node,

this method a s0 send the names of the descendant nodes to the festure matching objects.

(defun finished-notice-mnethod

(schema. sl ot sender entry-region)
(add-val ue schena. ' fini shed-object -list sender)
(oond((=

(length (get-values schema ' finished-object-list))
(I ength (get-val ues schema ’ sendi ng- obj ect-1ist)))
(send (get-value schenma 'conparing-object)
'execution entry-region))

This method adds the senders name in the finished-object-list everytime it receives a finished
notice from afeature-matching object. If al the feature matching objects, invoked by this object,

finish their matching operations* the message handling object sends an execution message to the
comparing object.

Feature matching object

The feature matching object performs the relational feature matching. The prototype of the
feature matching object has the following format.



(f eat ur e- mat chi ng- obj ect
(is-a programobject)
(execution feature-matching-nethod)
(finished-notice finished-notice-nethod)
(conpari ng- obj ect)
(nmessage- handl i ng- obj ect)
(feature-mat chi ng- denon- obj ect)
(node))

Those comparing-object, message-handling-object, and feature-matching-demon-object
contain object names corresponding to those slot names and are filled by the conversion process.
The dot, feature-matching-method contains an execution method to examine the similarity
between the feature sent by the message handler and those of the entry region, while the main
body of the calculation is done by feature-matching-demon-object. These methods can be

represented in the library as

(defun feat ure-matchi ng- net hod
(schema slot entry-regi on nodel -feature node)
(newval ue schema 'node node)
(send (get-value schema ' feature-matching-denon-object)
"execution entry-region nodel -feature)))

(defun finished-notice-nethod
(schema slot score)
(send (get-value schema 'conparing-object)
"add- val ue
(get-val ue schema 'node)
score)))

Feature matching demon object

The feature matching demon object measures the similarity between the model-feature and
features of the entiy-region. This function further invokes demon functions attached to the entry
region to get either region-region relations or region-edge relations and, then, calculates the
smilarity measure between them by using a similarity measuring method. The resulting measure
will be returned to the feature matching object and then sent to the comparing object. The

prototypical object inthe library has the following format;
(feature-mat chi ng- denon- obj ect
(is-a program object)
(executi on)
(f eat ure-mat chi ng-obj ect))

The dlot, feature-matching-object contains the object name which invokes this object. This will
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be done by the conversion process. The dot, execution contains a sSimilarity measuring method.
In the present implementation, the following two methods are prepared in the library.

* region-region similarity measuring method

* region-edge similarity measuring method
Similarity of the region-region relationa feature and the iegion-edge relational feature are
measured based on the voting index. For relational features, see Appendix |, and for voting
indices see Appendix Il. If adifferent smilarity measure is necessary, it is only necessary to add
the method to the library and to insert the method name into the execution dlot of this object.

Comparing object

Each time a comparing object recelves a message add-score with the similarity measure and
the node from a feature matching object, it will add the measure to the score list and the node to
the next node list. After the message handling objea finishes its sending to the feature matching
objects, it sends an execution message to a comparing object and invokes it. The comparing
object examines the similarity measures in dot "score-list", chooses the highest measure, and
sends the next execution message to the node corresponding to the highest measure. Thus, the

prototype of the comparing object has the following format.

( conpar e- obj ect
(i s-a program obj ect)
(execution conpare-obj ect - met hod)
(add-score add-score-net hod)
(score-list)
(next-node-list))

The following two methods axe also prepared inthe library.

(defun conpar e-obj ect-nmet hod (schena sl ot entry-region)
(send (the-nost-hi ghest-node
(get-val ue schema 'score-1list)
(get-val ue schema "next-node-1ist))
‘execution entry-region))

(def un add-score' - et hod (schema sl ot score node)
(add-val ue schenma *score-list score)
(add-val ue schema "next-node-1ist node))

where the function the-most~highe$t~node returns the node in the next-node-list which has the
highest value in the score lig*
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3.2.3 Attitude determination object

An attitude determination object is generated at a leaf node of an interpretation tree. At each
leaf node, the interpretation tree knows the correspondence between the image regions and
model faces, in particular one between the entry region and the corresponding model face. If we
recover the Ioéal coordinate of the model face from the information of the entry region, then we
can obtain the body coordinate by using the local coordinate and the transformation from the
local coordinate to the body coordinate obtained from the geometric model. In our system, we
define the local z axis by the surface orientation, x axis by the minimum moment direction and
visble face relationships. Once this object determines the body coordinate, it sends the
coordinate to the verification object.

The prototypical attitude determination object has the following format.
(attitude-determ nation-object
(is-a program object)
(execution attitude-determ nation-nethod)
(transformation)
(verification-object))
32A Verification object
The verification object is used to generate an expected image and verify the recognition result.
After the exact attitude is determined, the verification object will create an expected image by
using a geometric modeler. From the expected image, it will extract 2D edge informations and

match this with the input scene to confirm the recognition.

(verification-object
(is-a program object)
(execution verification-nethod) )

4 Generating an Executable Code for a Toy Wagpe

We choose atoy wagon to demonstrate our ideas. We use a geometric modeler to generate a
model of the toy wagon. Figure 2 shows the model of the toy wagon. It is areatively complex
geometric object. In order to derive possible aspects, we sample possible views and group them
into 17 aspects based on the visible faces. Figure 3 shows the given interpretation tree, which
defines the necessary feature matchings at each node.

Once the interpretation tree is obtained, its nodes are converted to objects using the object

library.
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Figure2: Themode of atoy wagon

At the nodes, bl, bll; bill of the interpretation tree, one unitary feature matching node is
converted into one unitary feature matching object.

For example* at node bl of the inteipretation tree, the following object is generated,

(bl
(execution rnoser.t-cos™arison-nethod)
(threshold 5000)
(branch-I#ft bll)
(branch-right bl2))

where threshold value 5000 is given from the interpretation tree. A similar object is generated at
bll, bill by usng the same moment feature and different threshold value.

A relaiona feature feature is matched usng a paralel tracking mechanism. A pardld
tracking mechanism is divided into four objects, message handling object, feature matching
object, festure matching demon object, and compare objects. These objects are generated when
a, paralel tracking mechanism isrequired by the conversion program.

Tliosc nixies bl2Jbl12Jbl22J>121JbUIIJbl112J)1121Jbl1121  require relationa  festure
matching, and thus, are converted into objects to execute the parallel tracking mechanism. Let
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Figure 3. Interpretation tree for atoy wagon
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us consider the case of hill, a which node a region-region relationa feature is used in
matching. The conversion program instantiate one message handling object b!'12, four feature
matching  objects,  bllI2-f-I>»jbll2-f-4  four feature matching demon  objects,
bll2-f~1-d,..,bl12-f-4-d and one comparing object, bl!2-c from those prototypical objects in the
library.

First, amessage handling object such as
(bl12
(i nstance ' nessage-handl i ng- obj ect)
(sendi ng- obj ect-11i st
"(bl'12-f-1 bll2-f-2

bl 12-f-3 bll2-f-4)
(finished-object-list nil)
(model-feature-list

"(((10 20 30 0.5)) =-..))
(next-node-list

"(al3 al2 all bl121))
(compare-object bll2-c))

Is generated. The contents in the modeUfeature-list dot is obtained from the relaionship
between the entry region and surrounding visible regions consulting a mode data base, ad
represent  region-region relationd features such as the distance between regions and the
difference between two surface normas. More precise definitions can be found in Appendix |
region-region festure.

Then, four festure matching objects are indantiated from the prototype in the object library.

One of them lookslike this:
(bl12-£-1
(instance featiire-matcfaing-object)
(conparing-object bll2-c)
(raessage-handler-object h!12)
(feature-iiatcliing-ciemon-object
bll2-f-1-d))

Then four fcaftnerEacdMng-daBaii-objects ingtantiated from the prototypica object in the
libraly; have the samefoixnat as & e featuie-matdixng-objects.

Tliea, findly* acomparing object isindantiated.
b1l 2-£-C
(i nstance conpari ng-obj ect)
(score-list nil)
(next-noda-list nil))
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At each leaf node, attitude determination objects and verification objects are generated. For

example, at node a9, the following two objects are generated.

<a9
(instance attitude-determ nation-object)
(transformation
((0.0 0.0 1.0) ...)))
(verification-object a9-v))

(a9-v
(instance verification-object))
Note that some of the instance objects do not have execution slots, which are inherited from

their prototypes in the object library.

Similar operations are applied to al nodes in the interpretation tree and give the executable
program as shown in Figure 4. This conversion program is implemented using a rule
representation language OPS5 [4],

5 Running the Code

This section shows an example of the obtained program running on areal scene. Figure 5 is
the input scene for' recognition. Figure 7 shows those regions whose surface orientation can be
determined as shown in Figure 6 by using photometric stereo. By using a dua photometric
stereo system, we can determine the depth of each region. We also use an edge extractor. Three
images obtained under different lighting conditions are processed. The resulting edges are
shown in Figure 8. The system instantiates region objects and edge objects for al the regions
and edges in the scene by using the .abstract-region object and the abstract-edge object in the
object library. *

The largest region at the top of the pile is selected as the entry region (in this case, region r90
in Figure 5(c)) and sent to bl .
(send 'bl 'execution entry-xegion)
where entry-region = R90. Then, since bl's execution ot contains the moment-comparison-
method, the moment comparison method is invoked. This function sends a message to region
R90 to get legion-moment, which can be calculated by the region-moment demon function and
the moment value of R90. Notice here that the moment in an image is converted into a moment

value in the geometric model by the demon function. See Figure 9.

3
5
i
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tn miiisy feature matching object; A M node xcpreseois a message handlkg
ck8m: A F «xk rgaeseats a idaticma feature matohing object; A C node
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Figure5: Input scenefor therecognition
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Figure 6: Needlemap obtained by Photometric Stereo
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Figure7: Regions obtained from the needie map
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Figure8: Edgesobtained by MiwalLine
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(SEND'BI 'EXECUTION'R90)

REGION-R90

(GET-VALUE 'R90
*REGION-MOMENT)
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Figure9: Retrieving feature valuefrom aregion.
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From the comparison between the threshold value in the unitary feature matching object, bl
and the feature value obtained from R90, the object sends an execution message and the entry
region to bll. The object bll repeats the similar operation and sends an execution message and
the entry region to bill. Since bill is a message handling object, it send messages bll2-f-,
bl 12~f-2,bl12-f-3,bl 12-/-4, one by one with model relational features. At each feature matching
object, a smilarity measure for the region-region relational feature obtained from the region-
region relationship (R0 and R85) against one model relational feature, is obtained and sent to
the comparing object, b!12-c. From the accumulated score, the comparing object, bl!'2-c send

an execution message to node all with the entry region.

At this point, the system finds the correspondence between the entry region and the roof face
of the toy wagon. The attitude determination object then determines the local coordinates of the
face by using the surface normal, the minimum moment direction, and the region-region relation
between R90 and R85. The bold lines in Figure 10 indicate the tracks of the message passings.
Finally, the body coordinates are recoverted using the local coordinates and the transformation
between the roof face of the toy wagon and the body coordinates. The attitude determination
object, all sends an execution message to all-v with the entry region and the body coordinates.

The verification object, all-v generates an expected image (Figure 11) by using a geometric
modeler based on the body coordinates, extracts edges from the expected image which are longer
than a certain threshold, and compares them with the edges from the line finder. The result is
shown in Figure 10(c), where the bold lines indicate the expected edges and thin lines indicate
the image edges. The voting index obtained from this matching represents the reliability of the
recognition. For this example, the reliability of the recognitionis 0.8.

6 Conclusion

This paper has discussed how various modules are prepared and used for generating a
recognition program from a given interpretation tree so that we can generate a recognition
program from a geometric model automaticaly. We designed the module set as the object
lifavay using object-oriented programming. The object-oriented programming paradigm provides
modularity and extensibility to the object library. The objects in the object library are divided
into two categories. data objects and event objects. A data object is used for representing
geometric objects and extracting festures from geometric objects. An event object is used for
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Figurell: Superimposed image of the geometricmodd ontotheimage
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Figure 12: Verification by the extracted edges
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feature matching and attitude determination. We generate an executable program by properly
selecting and instantiating modules from the object library. This method has been applied to the
generation of a recognition program for atoy wagon. The generated program has been tested
with real scenes and has recognized the wagon in apile. The generation method developed here
provides auseful tool for the automatic generation of recognition programs.
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|. Relational Features

L1 Region-region Relationa Feature
The relationship between two regions can be described as (Figure 1-1):
* d : The distance between the mass centers of two regions.
* a: The angle between the minimum moment directions of two regions.
* P : The angle between the surface orientations of two regions.
* A : The area of the region other than the entry region.

We form a four-dimensional feature vector (d a (3 A) to represent the relational festure
between the entry region and the other region. A demon function will be invoked when fegture
extraction is requested. Then a set of feature vectors relative to the entry region are found. These
feature vectors will be used in feature matching.

In the four-dimensiona feature space (dap A), we test a hypothesis by comparing dl the
feature vectors with the predicted feature vector that is generated by the model. If they are dose
in the four-dimensional feature space, we accept this hypothesis, and conclude the festure
matching process. If the matching fails, we then regject the hypothesis, and generate ancther
hypothesis. TMs hypothesis generation and test can be done by using aparallel tracking schema

12 Region-edge Relationa Feature

We use aline finder to obtain 2-D information about an edge from its projection onto the
image plane. In order to recover the 3-D information about an edge, we will transform the 2-D
edge into 3-D space via an &ffine transformation- Let the surface orientation of the entry region
be (p q), where p= njng and g= ujJiir The &ffine transformation P will transform an edge
surrounding the entry region to the 3-D plane that the edge lies on.

Vi+p? pgHI+p*
P= L+q2N1+p?
0 0

Figure 12 shows the X-view of an affine transformation. The new view direction is on the Z*

axis* We can determine the original leegih of an edge from this view direction.
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Figure1l-1: Relation Between Two Regions
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Light Source

z’ A

w/ px+ay+2=0

Figurel-2. X-view of afine transform

After the affine transformation, we can use four parameters to describe the reationship

between an edge and the entry region (Figure 1-3).

Figure 1-3: Relation between edge and region

«* 1. The perpendicular distance between an edge and aicgion.
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* 0 : The angle from the minimum moment direction of aregion to the perpendicular
line of an edge.

* 0 : The angle from the minimum moment direction of aregion to the middieline of
an edge.

1. The length of the edge after an affine transformation.

For dl the edges within the search distance, we generate feature vectors relative to the entry
region. For each model edge, we search the feature vectors in the scene to find the voting index
[3]. The summation of the voting index is compared with the total length of the model edges
that surround the entry region. If the values are close, then we conclude this matching is
successful, otherwise we refect this hypothesis and generate another hypothesis.
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Il1. Voting Index

We generate region-edge relationa features for the edges within a certain distance from the
entry region. These features will be compared with the model's region-edge features generated
in advance. The length of an edge in the scene is considered as a vote for the presence of a

model edge if the following conditions are satisfied:
» The valuer of the edge is within a certain range of the model edge ry,, or say,
0.9rp<r<l.lry.
» The vaue f: of the edge is within a certain range of the model edge 0,,,, say,
-0.2+€e,<e<0.2+e,,.

* The value of co of the edge is within the maximum and minimum values of the
model edge cop,:

[ [2+4r tan(w -GJ\/ J/2-r fc"*(0>-8J

fryyo

m r m r
® Thelength 1 of the edge is less than the length 1" of the model edge,

1<,
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