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ABSTRACT 

We consider stationary iterative methods for the solution of operator 

equations which use "generalized information". We seek methods with maximal 

order provided the points of iteration are in "good position". The new con­

cepts of order of information and "generalized" interpolatory methods are 

introduced. The main result states that the maximal order is equal to the 

order of information which depends on generalized information and on the 

position of iteration points. We show that the maximal order is achievable 

by the generalized interpolatory method. 



1. INTRODUCTION 

This paper deals with stationary iterative methods for the solution of 

operator equations. One of the characteristics of an iterative method is 

the information used at each iterative step. For fixed information we seek 

methods of maximal order. 

Papers in this area have generally assumed that the information is given 

by the values of the operator and its first s derivatives at n previous itera­

tion points. For this information, previous results are described below. 

The problem of maximal order was first posed by Traub [61,64]. Traub 1s 

conjecture states that the maximal order for the scalar case is no greater 

than s+2. This conjecture was proved by Brent, Winograd and Wolfe [7 3] for 

a particular class of non-stationary iterations. The maximal order of sta­

tionary iterative methods was considered by Kung and Traub [73a], Rissanen 

[71], Traub [64,72] and Wozniakowski [72,73]. For the scalar case the max-

imality of the interpolatory methods (see Traub [64], p. 60 and ff.) in cer­

tain classes of admissible stationary methods was proved by Traub [64] and 

Kung and Traub [73a] for n = 0 and s ^ 0, by Rissanen [71] for n = 1 and 

s = 0, and by Wozniakowski [73] for any n,s such that n+s ^ 1. 

For the operator case (which includes the multivariate case), Wozniakowski 

[73] proved that the maximal order does not depend on n and is equal to s+1. 

Hence the additional information contained at the previous points cannot in­

crease the maximal order. If, however, one assumes a certain position of the 

successive approximations, then there exist stationary methods with order 

greater than s+1 (see Barnes [65], Brent [72], Jankowska [73], Ortega and 

Rheinboldt [70], p. 269 and Wozniakowski [72]). 
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In this paper we study the subject based on the following two points 

of view. The first is to assume the suitable position of all approxima­

tions. In order to do this we define a set of admissible approximations, 

3K, and test sequences (Section 2) . 

The second is to use "generalized information 1 1, 91 (Section 3 ) . For 

many practical problems the information given by the values of the operator 

and its first derivatives is the most important. But for some other prob­

lems, other types of information could be used more effectively and it is 

interesting to investigate how other types of information can effect the 

maximal order. For instance, Kacewicz [73] considers iterative methods 

which use the values of the scalar function, its first s derivatives and one 

integral per step and proves that the maximal order for this class of itera­

tive methods is equal to s+3. (Note that the maximal order is s+1 if the 

value of the integral is not used.) 

Thus, for fixed TO - the set of admissible approximations and 9t - the 

"generalized information", we define the order of a stationary iterative 

method (Sections 4 and 5 ) . Next we determine the maximal order as a function 

of TO and and seek methods which attain maximal order (Section 6) . Specific­

ally we prove that the maximal order is equal to the order of information 91 

with respect toSQR. We show that maximal order is achievable by the generalized 

interpolatory method which is defined in Section 8. The last section contains 

examples of 91 , JDt and their order of information. 

The proof techniques in this paper are based on the concept of order of 

information and a new definition of the order of iterative methods. We hope 

that these concepts lead to effective and rather easy proofs of maximal order 

of one-point stationary iteration with memory. It seems that this technique 

could be useful for other problems such as the maximal order of multipoint 

iterations (see Conjecture 8.1 in Kung and Traub [73a],and Kung and Traub 

T73b1) . 
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2 e SET OF ADMISSIBLE APPROXIMATIONS 

Let us consider the problem of solving the nonlinear equation 

(2.1) F(x) = 0, 

where F: D^ c B^ -> a n c * ^1 ' B 2 a r e rea-*- o r c o m p l e x Banach spaces. We solve 

(2.1) by iteration. Properties of iterative methods depend on the regularity 

of F and on the multiplicity of the solution. Therefore we assume that F be­

longs to a class tP* defined as follows. 

Definition 1 

Let f be a class of F, F: D_ c B- -> B 0 such that 
F 1 2 

(i) there exists a simple zero of = tf(F) 6 D p , that is, F(of) = 0 and 

[F*(a0] is a linear bounded operator, 

(ii) F(x) = X ^ ^ C o O C x - c y ) 1 

k=l R ? 

for x € S(<y,r) = | | x - c y | | <: T), V > 0, 

(k) 
where F (a) denotes the k-th Frechet derivative of F. flf 

For a fixed nonnegative integer n, let  X^9 K^ ^•••> x
(j n ^e different ap­

proximations of the solution or. As we mentioned in the introduction, the 

crucial point for the operator case is the assumption of suitable positions 

of x^,...,x^ ^ in B.j space. Hence we assume that these points belong to a set 

531 defined as follows. 
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Definition 2 

331 is called a set of admissible approximations (shortly, 331 is AA set) 

iff 
n-f*1 

(i) 3tt ~ B 1 = B-j X. . . XBj , 

n+1 times 

(ii) Va € B 1 , Vq ;> 1 , S f x ^ c B 1 such that 

(a) lim x # = os 

(b) (x
d>x

d_-| ,.. . ,x d_ n) (=3Jl where d = i(n+l) , i = 0,l,..., 

I I i i r¥ eo for q > 1 , 
(c) iim i' xd-j - * n <r 

^ llx. - . I l ^ I 1 for q = 1 , 
M-n 

for j = 0,1,.,. ,n-l . 

The sequence [x^} is called a test sequence of qth order in Sc. More 

briefly we shall say {x^} is of qth order. If the limits in (c) are all non­

zero, then we say that [x^] Is of exactly qth order. B 

The second condition of Definition 2 implies that for any point a. of B^ 

and for any q ^ 1 , 3JI contains at least one test sequence of qth order which 

converges to a-

Example 2.1 

a - b ^ 1 . 

In this case we do not assume any special position of the successive approxi­

mations. Many previous papers on iterative processes deal with this HI. Q 
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Example 2.2 

Let = = C n - nth dimensional complex space. 

B s « w i v :
 ' d e t ( n x n - x n " 1

1 i i - - > i | ! 1 "?n >i 
1 1 n n-1 1 1 1 1 1 0 1 1 

for a fixed c f (0,1) . 

Note that from the Hadamard inequality it follows that 
X — X -i Xi — x n 

I j n n-1 1 0 N I ^ -
| d e t ( i k - v , ! ! - " ! ! * ! - "oil' 1 

Thus, 3JI contains points for which the Hadamard inequality holds from below. 

It is easy to verify that Jft is an AA set. This set is especially important 

for the multivariate secant method (see Barnes [65], Jankowska [73], Ortega 

and Rheinboldt [70] and the next part of this paper). 

Let us consider 531 such that 

n-t-1 
(2.2) V6r € B 1 , ar > 0 such that S((y,r) c 301. 

This means that any points (x^,x^ -|,...,x^ ^) close enough to a belong to Kl 

and no assumptions of position are required. Therefore, if (2.2) holds, we 

say that 2Jt is an unconditional AA set and otherwise 331 is said to be a condi­ 

tional AA set. Example 2.1 gives an unconditional AA set while Example 2,2 

gives a conditional one. 
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3. INFORMATION 

Let the points (x,,x, ,. .. ,x, ) £331 be approximations to To ob-d a-I a-n 

tain the next approximation we need certain "generalized information11 of 

F at these points. This generalized information is defined as follows. 

Definition 3 

An operator 31 is called generalized information or Simply information 

iff 

(i) 91: D^ -> V 
n-fl £ 

where D^ c X u and V is a certain space, and 

(ii) V F € 3 ^ Ha) = 0, a r > 0 such that 

S { a , T ) W X [F) c fl 

The second condition implies that for any points (x , 0 . . , X q ) sufficiently 

close to a, 9l.(x ,... , X q ; F ) is well defined. Usually 9t (x ,... ,x Q ;F) is de­

fined to be the set of the values of F or its derivatives at the points 

x ,..., x^ • (See the following example.) 

Example 3.1 

9l(x n,..., X ( );F) = (F v (Xj): k = 0,1,...,s; j = 0,1,...,n} 

for a fixed s. 

More briefly, write 91 for9l( X > • • • yX^ ;F). This information is called 
s n u 

standard information and was considered by many authors (see, e.g., Traub 

[ 6 4 ] ) . The problem of finding maximal methods which use 91 with respect to 

9JI = B^" 1 has been settled (see, e.g., Wozniakowski [73]). • 
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Example 3.2 

Let B. = B - = C and n = 0. 
1 . 2 x Q 

«Jl(x0;F) = {F(x 0) ,F'(x 0) ,,,.,F ( s )(x 0) , J g F(t)dt}. 

s+3 F ( x 0 ) 

where s * 1 and a Q = x Q - ^ p ^ T " ) • 
U X 

In this case 3t(xQ;F) includes also the value of the integral J °F(t)dt. 

The particular choice of the a Q can be shown to be optimal in a certain sense, 

For details, see Example 9.3 of this paper and Kacewicz [73]. g 
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4. STATIONARY ITERATIVE METHODS 

For given 3ft and 9t a stationary iterative method is defined as follows. 

Suppose that (x^,...,x^ ^) £ 3ft are approximations sufficiently close to 

the solution Hence the information 9t(x d,...,x d ^;F) is well defined. The 

next y- approximation is given by a 

where 

( 4 , 2 > W X d ; F ) = < P < x d » " - ' x d . n ; 9 l ( x d » " " x d . n ; F ) ) 

for an operator cp, 

(4.3) cp: D ? -> B 1 , D^cffix V. 

If (y d> x
d> • • • *x

<j.ih-P € 3K one can set 

xd+n+1 = yd> xd+n-j = x d - j ' J = 0.1 

and perform the next iterative step with (x^ + n +^,... , x ^ ) . But if 

^ d , X d , # * # , X d ^ ^ one must define the next approximations ( x ^ , 0.. > x
d ..) 

in a different way and sometimes additional information of F is needed (see 

e.g. Jankowska [73] and Ortega and Rheinboldt [70], pp. 369-390). 

Definition 4 

An iterative method defined by (4.1), (4.2) and (4.3) is called a sta­

tionary iterative method ^ ^ o r » more briefly, a cp^ ̂ method. • 
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5. ORDER OF STATIONARY ITERATIVE METHODS 

Let Cfij^^jj b e a stationary iterative method. If jft is a conditional AA 

set then cannot generate, in general, sequences converging to the solu­

tion, since then (y d,x d,..„,x d .,) does not always belong to 3JL 

definition of the order of based on properties of generating sequences 

must fail and we therefore have to define an order of cp differently. We 

shall use test sequences instead of generating sequences. That is, let [x^} 

be a test sequence of qth order in the sense of Definition 2. 

Let 

( 5 J ) yd = t W v F > 
for any d = i(n+l) , i = 0,1,... . 

Further, let f F } c be a sequence of operators for which d 

(5.2) F d(a d) = 0 and lim &d = a 
d—> 

(5.3) lim F ^ k ) ( c v ) = G ( k ) ( ^ ) 
d-> a> 

where G(<y) = 0 and G € . 

Next we assume that the information on F and on F^ at the points 

the same, that is, d d-1 ' d-n ' 

(5.4) 3 l ( x
d " - ^ x

d - i n ' F
d ) = t t ( x

d > - ' - > x
d _ n

; F ) > v
d -

Hence, cp (x^F-) = cp (x,;F) for any stationary method cp 

\ jeer d d \ m  d vtm 
Definition 5 

If [Fd3 c ^ satisfies (5.2), (5.3) and (5.4) then we say that [F d] is 

equal to F with respect to 9t . (Or briefly, {F d} equals F.) • 
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We give an example of {F^} . 

Example 5.1 
rH-1 Let B„ = B 0 = C, 3Jt = C and 31 = 31 be standard information (see Ex-1 2 s 

ample 3.1) „ 

We put 

n s+1 (5.5) F (x) = F(x) + TT (x - x d .) . 

One can verify that there exists {<x^\ such that 

n s+1 F fa ) = 0 and y - a = 0( TT (x - a ) ) . d d d j = Q d-j 

Clearly, (5.3) holds for G(x) = F(x) + (x - ^ ( n + 1 ) ( s + 1 ) # 

From (5.5), 

F ^ k )(x ) = F ( k ) ( x ) , k = 0,1,. ..,s; j = 0,1,... ,n. 

Hence, (F d) equals F. • 

By (5.4) the operators F and F d are same with respect to the information 

at the points x
< j > x

d x d ^. Hence, the next approximation y d defined by 

(5.1) is the same for F and F d # Using information (5.4) we do not know which 

operator, F or F^, is considered in the iterative process. Therefore, y d 

ought to be an approximation not only to & but also to ot^ at the same time. 

This discussion leads us to the following definition of order. 

Definition 6 

A number p = P ( ^ ^ ^ 1 is called an order of cp^ if the following 

conditions hold: 
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(i) VF € & , F(o>) = 0, V{x i} of qth order and V{F d} equals F, the 

values = q ^ ^ ( x d ; F ) are well defined for large d = i(rri-l) , 

i = 0,1,..., and for sufficiently small e > 0, 

I |yd- - « dl I 
(5.6) lim sup < +«> 

d^ co eM| 
a 

where \i « [min(q + e, p - e) ] and e d - | | x d _ n - a\ |, 

(ii) 3F € F(cy) = 0, {x } of pth order and (F d) equals F such that 
l l y d - « d H 

(5.7) lim sup ^ — = +», Ve > 0. I 
d-># (p+e) n 

e d 

In Definition 6 we compare y d with # . But if one sets F d = F for any 

d, then = ot and the distance between y d and is just | |y d - <y| | • 

It is easy to verify that if p exists, then p is unique. The new defini­

tion of order is based on test sequences {x^} and on sequences of operators 

{F d} equal to F. There are many relations between the order defined in this 

paper and the orders used by many other authors, especially when 931 is an un­

conditional AA set. But this subject is not the topic of this paper and will 

be deferred to a future paper. 



6. MAXIMAL METHODS 

Let be the class of stationary iterative methods cftĵ  gjj with well 

defined order PCtffy^ • 

Definition 7 

The next part of the paper deals with maximal methods. For fixed informa­

tion, we shall define an order of information, p(3l;3Jl) , and then prove that the 

maximal order is equal to the order of information. Note that the class YCJl;2Jl) 

contains all eft* ̂  methods with well defined order. In previous papers the 

maximality problem was solved for restricted classes of iteration methods, 

(See Brent, Winograd and Wolfe [73], Theorem 6.1 on the optimal order of one-

point iterations in Traub [64] and Kung and Traub [73a] and Wozniakowski [73].) 

Due to the new definition of order (Definition 6) we are able to solve the 

maximality problem without additional assumptions on the considered iterative 

methods. 

A method is called maximal if it has order as high as possible, i.e 
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7. ORDER OF INFORMATION 

The order of information is defined by the sequences {o?d - a) where o>d 

and a are the zeros of the operators F^ and F, respectively (see Definition 

5 ) . 

Definition 7 

A number p = p(3t;3tf) ^ 1 is called an order of information 3t with respect  

to 3ft (shortly an order of information) iff 

(i) VF 6 F ( Q ' ) = 0, v[x/| of qth order and v [ F D ) equals F , 

I | o f d - a\ 1 
(7.1) lim sup - < +* 

a 

holds for sufficiently small % > 0 where 

y, = [min(q + e, p - e) and e d = | | x d _ n - a \ \ , 

(ii) 3F 6 F ( o f ) = 0, [x } of pth order and { F D } equals F such that 

ll«d -of|| 
(7.2) lim sup = > 0. B 

d-> +co (p+e) 
e d 

It can be shown that if the order of information exists, then it is 

unique. We assume that for the considered 31 and 3JI, the order of information 

p(3t>3Jt) exists. 

Lemma 1 n 

Let p. ^ 0, X p.t n ^ ^ 1 and let p be the unique positive zero of the 
J j=0 J 

polynomial n 

(7.3) t n + 1 p.t n"J. 
j-0 J 



-14-

If the following conditions hold 

(i) VF £ Jr , F(<*) = 0, v { X i } of qth order and v(F d) equals F, 

(7.4) lim sup n p 

cu -H» n I |x. — 1 1 J 

holds, and 

(ii) £F € J f f(Q>) = o, fx^ of exactly pth order and [F } equals F 

such that 

(7.5) lim sup > 0, 
j , n p 9 

^ TT I I Ml n, l l ^ - . l l 

then p is the order of information 51 with respect to St. 

Proof 

Since {x } is of qth order; then 

n ~ " J L p.q J 

n 

If q < p then q n + 1 < X p q n" j and for small g > 0, (7.4) and (7.6) give 
j=0 J 

(7.7) ||(*d - 0f|| = 0 ( e < q + c ) ) . 

Otherwise, if q ^ p, then 

n n 
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and from (7,4) and (7.6) follows 

n+1 

(7-8) \\ad - of| | = 0(eP ) . 

Hence, (7.7) and (7.8) give (7.1). 

Let F, [x 5̂ and {F^} be as in condition (ii) of Lemma 1 , Now {x^} is 

of exactly pth order which means that 

n p. n+1 
H I lx

d < " 0f| | J = C where lim inf C d > 0. 
j=0 J d-> -H» 

From (7.5) follows 

|ord - a\ lim sup ^ > 0 
<H 0 0 .P 

d 

which proves (7.2) and completes the proof. • 

Example 7.1 
i*4-1 

Let IL = B 0 = C and Tft = C . Let 91 be the standard information 91 (see 1 Z s 
Examples 3.1 and 5.1). Assume that [F d} equals F. Then 

F £ k ) ( x d ) = F ( k ) ( x d ^ ) , k = 0,1,. ..,s; s = 0,1,... ,n. 

From the remainder formula we get 

n s+1 (7.9) F(x) - F,(x) = G,(x) H (x - x ) 
d j=0 J 

where G^) - *gL_ [F - F / r + 1 ) (0 

for |>(x)l 5 l , r = (nH-1)(s+1) - 1 and ! € conv(x,x d >... ,x d_ n) . 
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Setting x = or in (7.9) , we have 

n ^+1 (7.10) a , - a = 0( n (x . - a) ) 
j=0 d " J 

due to (5.3). Moreover (7.10) is sharp. From Lemma 1 follows that the order 

of standard information is equal to the unique positive zero of the polynomial 

n 

(7.11) t 1* 1 - (s+1) I t j, 
J=0 
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8. MAIN RESULTS 

In this section we prove that the maximal order is equal to the order 

of information. 

Theorem 8.1 

If c p ^ € YCtlJiUO then pCcft̂  < p(9t*Dt) . • 

Proof 

Suppose that cft̂  ̂  has order p > p = p(9l;5Ji) . By (7,2) there exist F, [x/\ 

of pth order and (F^} equals F such that 

(8.1) lim sup = +co 
d-> -H» 

a 

where e, = llx, -evil and u , = (p+e)*1"*^ for small e > 0 a From the definition 
d 1 1 d-n 1 1 p 

of the order of ^ it follows that for the same F, {x^} and {F^} the next 

approximations {y^} satisfy 

i|yd - *dn 
(8.2) lim sup < +*>. 

Setting F d = F we get 

l|yd " all 
(8.3) lim sup < +=° 

cU + o o ê  
Hence, from (8.2) and (8.3), 

I Icv, - or| | I |y d - Qfl + |yd ~ <*d" ^ ^ 
lim sup £ lim sup — < + c o 

d-* + • e1^ d-» » 

which contradicts (8.1) and completes the proof. 
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From Theorem 8.1 it follows that the order of information is an upper 

bound on the order of stationary iterative methods. We now shall define a 

method whose order achieves this upper bound. 

Let F be any operator from O , F(QO = 0, and let [x^J be any test sequence 

of qth order. For these F and (x.}, let {F^} be any sequence of operators 

equal to F. Note that at least one such sequence exists, for instance, F^ = F. 

We define a generalized interpolatory method 1^ ̂  (shortly an interpolatory 

method by 

where is the zero of F^, lim <y = os The terminology "interpolatory 1 1 is 
* d-> co 

used because F, has the same values as F at the points x,,x, X - with d * d* d-1' 9 d-n 

respect to the informational, i.e., 

(8.5) ^ ( x
d > - - - > x

d - n ; F d ) = !Jt(x d,...,x d_ n;F). 

Note that F d is not uniquely defined by (8.5) , in general y but we shall prove 

that any such F d gives the same maximal order. However, the uniqueness of 

F d can be assured for certain 91 and 3QR. For instance, we can demand that F d 

be the minimum degree "interpolatory polynomial in case where that is unique. 

(Compare the scalar case with the standard information 91. , Traub [64], p.60 
s 

and ff.) 

Theorem 8.2 
The interpolatory method is maximal, i.e., 
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Proof 

Recall that F 6 F(a) = 0, {x^} is of qth order and the next approxi-

mat ion in the 1^ ^ method is equal to a^y where [a^] are zeros of (F^j 

equals F # 

Let [F^} be any sequence equal to F. We want to show (5.6), i.e., 

\\yd -«dll 
(8.6) lim sup - -— < +oo 

d-> oo 
a 

n+1 
where as always e, = I |x, - <J I u = [min(q+e ,p-e) ] for p = p(3l;2R) • a 1 1 a-n 1 

From (7.1) follows 

i * all - 0(e»i) and a . - a\ \ = O(e^) 
Hence 

l|yd - * d|| * Ik* - *U + ll*d - *ll = o(ej) 
and (8.6) holds. 

Now we wish to show (5.7) . Let F, [x^ of pth order and [F^ equal to 

F satisfy (7.2), i.e., 

I l<*d - <y| I ^ , x n+1 (8.7) lim sup = +^ for v = (p+e) 

d-> +oo e^ 
Let 

(8.8) C =" lim sup df . I | y d " «' 

d-> oo e ̂ 

If C < +oo then 
l l y d - a d l l H g d - " y d - g H 4 -

lim sup - — s lim sup - lim sup = +» 
d-» » e^ d^ » e^ d-» » e d 

and (5.7) holds for the same F, {x/} and [F^ as above. Otherwise, if C = +» 
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then (5.7) holds for the same F and {x^) as above and for F^ s F. 

This completes the proof that the order of information is the order of 

the interpolatory method Igj gjj*. 1 ) 1 1 6 to Theorem 8.1 the 1^ ̂  method is maximal. • 

The basic ideas of the interpolatory method are 

(i) to find an operator F^ which fits the given information, 

(ii) and to define the next approximation as the zero of F^. 

Note that it is essential that F^ tends with all derivatives to an operator G of 

the class <T (see (5.3)). 

Theorems 8 #1 and 8 #2 lead to 

Corollary 8»1 

A cftjj ̂  method is maximal iff its order is equal to the order of informa­

tion. •• 
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9. EXAMPLES 

We shall illustrate the above results for some examples of 9t and 32. 

In Examples 9.1 to 9.3 we consider the scalar case, and we assume that 

= B 2 = (L , and 3Jt is an arbitrary AA set. 

Example 9.1 

Let 3t(x n,...,x 0;F) = t F ( k ) < V j ) : k = 0,1,...,s; j = 0,1,...,n}. From 

Example 7.1 it follows that the order of information p = p(9l;3J0 does not 
n, s 

depend on 331 and is equal to the unique positive zero of the polynomial 
n 

(9.1) t n + 1 - (s+1) I t j. 
j = 0 

Using Kalian's estimations of p (see Traub [72]) we get 
n, s 

s+1 . / . o s+1 
— — — — - ^ D < s+2 -8 + 2 ' (., 2 )n + r " ( 8+1)(n+1)+1 * Pn,s ^ S ^ " ( s + 2 ) n + l > 
s+2 

and 
lim p = s+2. 

rn,s 
n-> co > 

Now we can assume that functions {F^} which defines the interpolatory method 

(see (8.4)) are the minimum degree interpolatory polynomials. Thus, F^ is 

given by 

* ( k ) (k) 
F d ( x d - j ) = F ( x d - j ) f k " °' 1'--> s> J = 0,1,...,n, 

and the degree of F^ is at most r = (n+1)(s+1) - 1. The interpolatory method 

denoted now by I is maximal due to Theorem 8.2. Similar results in certain 
J n,s 

classes of admissible iterative methods have been given by Traub [64] and Kung 

and Traub [73a] for n = 0 and s ^ 1, by Rissanen [71] for n = 1 and s = 0 by 

Wozniakowski [73] for any n,s such that n+s ^ 1. 
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Example 9.2 

Let 
x, (x.-t) 1 

(9.2) 3t(x x.;F) = {f j — f r — F ( t ) d t , F ( k ) ( x . ) : i = 0,1,...,m-1, 
0 " # 3 

k = 0,1,...,s-m, j « 0,1,...,n) 

where 0 ^ m < (n+1)(s+1) - 1. 

We define 

( 9 - 3 ) 8 < * > - J ^ § 3 ) : F ( t ) d t ' 

It is easy to verify that 

x , ^ xm-l-k 
8 ( x ) = I (m-1-k)! F ( t ) d t for k = 0,l,...,m-1 

g ( m ) ( x ) = F(x) 

g ( k ) ( x ) = F ( k ~ m ) ( x ) for k = m+l,...,s. 

Thus, the problem F(x) = 0 is equivalent to the solution of the equation 

(9.4) g ( m ) ( x ) = 0. 

The information (9.2) means that for (9.4) we use 

(k) 

Note that F' (a) ^ 0 means that g^"]\ot) ^ 0. 

Let 

(9.5) m = m ^ s + l ) + m 2 , 0 £ m 2 £ s, 

for nonnegative integers m^, m^. 

Using a similar technique as in Example 7.1 one can prove that the order 

of information p (m) doesn't depend on 3R and is equal to the unique positive n, s 
zero of the polynomial 



-23-

n-m^-1 

n-m. 
(9.6) t n + 1 - (s+l-m 9)t 1 - (s+1) I t j . 

j=0 
It can be shown that 

(9.7) p n > g ( m ) < P n + 1 ) S ( m ) and lim^ p ^ O n ) = p s(m) 

where p (m) is the unique positive zero of the polynomial s 

m +2 m +1 
(9.8) t 1 - t - (s+l-m 2)t - m 2 = 0, 

(see (9.1)). If m ^ s+1 then 

2 
/o A\ / \ s+2-m + J(s+2-m) + 4m (9.9) P s(m) = 

Conditions (9.7), (9.8) and (9.9) state, in a certain sense, the affirmative 

answer on Brent, Winograd and Wolfe's [73, p. 340] conjecture 0 

The most important case is m = 1 or 2. (m = 0 was considered in Example 

(9.1).) For m = 1, from (9 06) and (9.9) follows 

where 

t o ) < p ( i ) - s + i - f - / < r 1 ) 2 + 4 

s n.s s 2 

r P 2 , o ( 1 ) s = °« 
C s - < 2 s - l , 

8 ' s s £ 2. 

For m = 2 orders p (2) lie in the interval (H , w ) where 
n.s s s 

P 3 > 0 ( 2 ) s - 0, 

H s \ (1+7l3)/2 s = 2, 
s-1 s ̂  3, 

and 
v 
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^P 0(2) s = 0 
i 

W s = < 

s±Js2+8 
S ^ 1 . 

From (9.7) and (9.8) the asymptotic formulas for P g(m) follow: 

1. Let m be fixed. Then 

P c(*0 
P s(m) < P s + 1 ( m ) and lim ~ ̂  • • 1, 

2. Let s be fixed. Then 

p (m+1) < p (m) and lim p (m) * 1. s s s m-> o° 

The interpolatory method I (m) can be defined as follows. Let g, be 
n s u 

an interpolatory polynomial of degree at most r = (n+1) (s+1) •» 1 given by 

(k) (k) 

We put 

and the next approximation is a zero of F^ which converges to a when d -* +00, 

(See Brent [73] where the case s = 0 and n = m+1 was considered in detail.) 

Example 9.3 

Let n = 0 and 

(9.10) *(x0;F) = {F(x 0),F'(x 0),...,F ( s )(x 0), f°F(t)dt} 
a o 

where . * , a„d , 0 - *„ . | ± | ^ 1 . 
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One can prove that the order of information does not depend on 9ft and is equal 
(k) 

to s+3 # Note that using only the standard information F (x^), k = 0,1,...,s, 

the order of this information is equal to s+1• Thus, the value of the integral 

increases the order of information by 2. 

The particular choice of the lower limit a^ is optimal in the following 

sense. If one considers information (9.10) with 

a o = a o ( F ( x o ) ' # - # » F ( s ) ( x o ) ) 

and tries to maximize the order of information, then it can be shown (Kacewicz 

[73]) that if a^ is given by, for instance, 

a 0 " X 0 " s+2 F ' C x ^ ' 

then we have the maximal order of information. I 

We pass to the multivariate and operator cases. 

Example 9.4 

Let dim(B^) = dim(B 2) £ 2 and 9ft be any unconditional AA set. Let 

9l(x n,...,x 0;F) = [ F ( k ) ( x n - j ) : k = 0,1,. ..,s; j = 0,1,...,n}. 

Using the same proof as for Theorem 5 in Wozniakowski [73] one can show 

p(9l;9ft) = s+1, Vn. 

Hence, the order of information does not depend on n. This implies that the 

additional information contained in the previous points of iteration cannot 

increase the order of information. 

s+3 F ( X 0 } 
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Example 9,5 

Now we consider a conditional AA set. Let = B 2 = (£ n, n £ 2, and let 

X — X .j X . j — X q 

where £ € [0,1] and c is a positive constant such that c 6 (0,1] if £ - 0. Let 

9 l ( x n , . . . , x 0 ; F ) = i F ( x
n . j > : J = 0,1,...,n}. 

From Theorem 3 in Jankowska [73] it follows that the order of information 

p(£) = p(9t;3JD is equal to the unique positive zero of the polynomial 

t
n + i . t

n . ( 1 . c ) . 

The order p(£) is a decreasing function of £. Hence, the best case is when 

£ = 0. One can show (Jankowska [73]) that 

P(0) € [1 + C^fh*, 1 + 

Note that p(0) > 1 although we use only the values of the function. (Note 

that here 331 is a conditional AA set!) 

The considered 51 and 9K are closely related to the multivariate secant 

method which is defined as follows. (See Barnes [65], Jankowska [73] and 

Ortega and Rheinboldt [70], p. 360 and ff.) Let 

F.(x) = A j X + b, a a a 

be an interpolating polynomial of F given by 

F d ( x d - j } = F ( x d - j } > j = °^>--^ n-
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The next approximation is the zero of F^. The existence of F^ and its zero 

follow from the assumption that (x^,•••> x
d_ n) € 9K. Due to Theorem 8.2 the 

secant method is maximal. 

One can find other examples of iterative methods with conditional AA 

sets in Brent [72] and Wozniakowski [72]. I 
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