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ABSTRACT

Let U1,U2,...,U be totally ordered sets and let V be a set of n d-dimen-

d

sional vectors in U1 X U2 X ses X Ud’ A partial ordering is defined on V in
a natural way, We consider the problem of finding all maximal elements of V
with respect to the partial ordering. The computational complexity of the
problem is defined to be the number of required comparisons of two components and
is denoted by Cd(n). It is trivial that C1(n) = n-1 and Cd(n) = O(nz) for

d =z 2, Previous results are Cd(n) = 0(n 10g2 n) for d = 2,3. In this paper,

we show

1. Cd(n) < O(n(log2 n)d-z)for d =24,

2. Cd(n) = |'log2 nti for d =z 2.




1. INTRODUCTION

Let U]’UZ""’Ud be totally ordered sets and let V be a set of n dimen-
sional vectors in U] X U2 X aee X Uﬂ' Let xi(v) denote the ith component of
any vector v, A partial ordering "<" is defined on V in a natural way, that
is, for v, u € V, v € u if and only if xi(v) S& xi(u) for all i = 1,...,d,
where Si is the total ordering on Vi' (We shall also write =< for si’ The con-
text should make clear the meaning of =£,) We consider the problem of finding
all maximal elements of V. The computational complexity of the problem is
defined to be

C,(n) = min max ¢ (A,V)
d A v d

where cd(A,V) is the number of comparisons used by any algorithm A on any such

set V. 1In other words, Cd(n) is the maximum number of comparisons used by the

algorithm that solves the problem the fastest in the worst case. We are inter-
ested in obtaining the upper and lower bounds on Cd(n) for all d,

If d = 1, V is a totally ordered set, It is obvious that
C1(n) = n-1,

Ifd>1, Vvis a partially ordered set. It is not difficult to convince one-
self that to find the maximal elements of a general partially ordered set, any
algorithm requires order n2 comparisons in the worst case. However, for the
special partial ordering "<" on V, we can do better, Recently, Luccio and

Preparata {1] have shown that
(1.1) Cd(n) = 0(n log n) for d = 2 and 3,

(In this paper, all logarithms are to base 2 and all comparisons are between

components of the vectors in V,)
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It remained an open problem to show whether such reduction is attainable for

d 24, In this paper, we prove

(1.2) Cd(n) < 0(n{log n)d-z) for d =z 4,
and

(1.3) C4(n) =[log n.] for d = 2,

Since log n! is about n log n, the bounds in (1.1) and (1.3) are sharp for
d = 2 and 3, with respect to the magnitude of n, It remainsg an open problem

to show whether the bounds in (1.2) and (1.3) are sharp for d 2 4,

In Section 2 we prove (1.3), In Section 3 we describe the basic recursive

procedure for obtaining the upper bound in (1.2). This procedure leads to the

problem of finding, from a given set, the elements which are not less than any

element in another given set. Upper bounds on the number of comparisons for
solving this problem are established by another recursive procedure, in the

final section.



2. LOWER BOUND

Lemma 2.1

=
Cd_](n) Cd(n) for 4 = 2,

Proof
Let Ad denote an algorithm which finds the maxima of n d-dimensional wvec-
tors with at most Cd(n) comparisons., It suffices to show that an algorithm
Ad~1 can be constructed from Ad such that Ad-] finds the maxima of n (d-1)-
dimensional vectors and uses the same number of comparisons as Ad does, Let
Vd-] be a set of n (d-1)~-dimensional vectors, Define a set Vd of n d-dimen-

sional vectors by
Ya = L0V eensvy vy DIy, ) €V 3

Let Ad-] be constructed from Ad by replacing every comparison between the dth
components of two vectors in the algorithm Ad by the comparison between the

(d-?)gt components of the vectors. Then Ad-] and Ad will be same for the set

Va. Since Ad finds the maxima of Va, so does Ad-]' Observe that (VI,...,vd_],vd‘])
is a maximum of Vd if and only if (Vl""’vd-1) is a maximum of Vd—]‘ Therefore

Ad-l finds the maxima of Vd-l' Furthermore, by the definition of Ad—l’ it is
clear that Ad and Ad-l use the same number of comparisons. We have proven the
lemma, B

Let S(n) denote the maximum number of comparisons used by the algorithm

that sorts n reeords the fastest in the worst case. We have the following

Lemma 2.2

S(n) = Cz(n).




Proof
Consider any algorithm which finds the maxima of n 2-dimensional vectors.
Let V1""’Vn be 2-dimensional vectors such that for all i, x1(vi) are distinct

and for all i, j,
2.1 x1(vi) > x](vj) if and only if xz(vi) < x2(vj).

We apply the algorithm to the set {v1,v2,...,vn}.

For each 2 the algorithm must determine whether A is a maximal element or not.
To prove v, is maximal the algorithm must establish the relationships that, for
each j ¥ i, either x1(vi) > x](vj) or xz(vi) > xz(vj). By (2.1) we know that
all v, are maximal elements., The algorithm must establish the relationships
that either x1(vi) > x](vj) or x1(vi) < x](vj) between all pairs (i,j). This
implies the algorithm will sort xl(v1),...gﬁ(vn). Therefore, S{(n) < Czﬁﬂ. [

It is well known (for example, see Knuth [2, §5.3.1]) that
S{n) = [log n:l.

Therefore, by Lemmas 2.1 and 2.2, we have shown the following

Theorem 2,1

For any d = 2,

Cd(n) z Cd_1(n) 2.0 Cz(n) = [log nil,

so that about n log n comparisons are needed for finding the maxima of nd-

dimensional vectors in the worst case.




3. ALGORITHMS FOR FINDING THE MAXIMA OF A SET OF VECTORS

In this and the following sections we shall construct algorithms to
achieve the upper bounds asserted in (1.2), In the rest of the paper, we
assume that for any two vectors u,v in V, R or S, xi(u) % xi(v) for all i,
Under this assumption it will be easier to describe the ideas of the algor-
ithms. The algorithms can be obviously modified if the assumption is removed
(see [T1). Without loss of generality, we assume that n = 2" for some posi-
tive integer r, and that the elements of V have been arranged as a sequence

»2s3V_ 50 that
V.], ,n

(3.1) x](v]) > x1(v2) > oee. x1(vn).

(Note that sorting takes O(n log n) comparisons.)

Like many other "fast" algorithms (e.g., FFT), our algorithms will first
solve two subproblems and then combine the results of the subproblems. We
shall first find R, the set of the maxima of {vl"°°’vn/2} and S, the set of
the maxima of {Vn/2+1""’vn}° Observe that by (3.1) the elements of R are
also maximal elements of V, but the elements in § are not necessarily maximal

elements of V. In fact, an element in S is a maximal element of V if and only

if it is not < any element in R. Therefore, we have the following algorithm:

Algorithm 3,]

We define a recursive procedure for finding the set VM of the maxima of
vV = {v1,...,vn}. To find Vy,, we find R, the set of the maxima of {v],...,vn/z},
find S, the set of the maxima of {Vn/2+1""’vn} and then find T, the set of

elements in S which are not < any element in R, Then set Vy © R UT.



The number of comparisons required by Algorithm 3.1 depends on those re-

quired to find T. Define

C,(r,s) = min max c,(A,R,S)
d A |Rl=r d
|5]=s

where R and S are any sets consisting of r and s, respectively, d-dimensional
vectors, and cd(A,R,S) is the number of comparisons used by any algorithm A
for finding the elements in S which are not < any element in R. Hence T can
be found in Cd(n/Z,n/Z) comparisons, since |§|,|§[ < n/2. Observe, however,
that because of the relation (3.1), for u € R, v € S, u =z v if and only if
Xi(u) = Xi(V) for { = 2,...,d. To find T, first components of the vectors do
not have to be considered., We end up with considering (d-1)-dimensional vec-
tors. Hence T can be found in Cd_1(n/2,n/2) instead of Cd(n/2,n/2) compari-

sons. Therefore, by Algorithm 3,1, we obtain the following recurrence rela-

tion on Cd(n):

(3.2) cym) < 2¢,(n/2) + Cd-1(“/2’“/2)-

In the following section, we shall show (Theorem 4,2) that

d-3

(3.3) Cd(r,s) < (adr+Bds)(log r)(log s) + dr

for d = 3, where o, and Bd are constants. By (3.3), we have
d-3

(3.4) Cd_.’(n/Z,n/Z) < 0(n(log n)  ~) for d =4,

Therefore, from (3.2) and (3.4), we obtain the main result of the paper:

Theorem 3.1

d-
Cd(n) < 0(n(log n) 2) for d = 4,

N Y LTy~ LT




4. UPPER BOUNDS ON Cylr,s)
This section deals with the proof of the following result: For d = 3
d-3
(4.1) Cd(r,s) = (aar+Bds)(1og r)(log s) + dr.

We shall first prove (4.1) for d = 3 and then use induction on d to prove (4.1)
for all d, We shall first describe the key idea used in the induction.

Let R and S be two sets consisting of r and s, respectively, d-dimensional
vectors. Assume d = 4, Without loss of generality we assume that the
elements of R have been arranged as Ugsees,l and the elements of § ag v1,...,vs
so that
x, () > x (u) > ... > x. (u ),
(4.2) 1771 1272 1 r

x1(v]) > x](vz) > oeae > x](vs)°

Also, we assume that s = 27 for some positive integer m. Define x](uo) = @

and x](ur+]) = -®. Using binary search we find k, 0 < k < r, such that

(4.3) x](uk) = x1(vs/2) > xT(uk+1).

We now divide R into two subsets R, and R, such that Ry = {uifl =i <k} and

Ry = {uifk < i S r}. Also divide S into two subsets S] and S, such that

S; = {vill =i = 5/2} and 82 = {vils/Z < i =s]).



uy = (x1(u1), xz(u]), ces Xd(ul))

R, < . . .
\uk = (x1 (uk), Kz(uk) en s xd(uk))

Uy = Gy, LSSCURD FIREE xq (U g
R, ; : :
\ur = (x1(ur), XZ(ur) ces Xd(ur))
.V-I = (X](V]), xz(v]), ey xd(v-l))
5, : . :
Va2 = (x1(vs/2)’ Xz(“s/z)’ AL xd("s/z))
Vs/2+1 ='("1(“'5/2+1)' x2(Vs/2+1)’ e Xd(vs/2+1))
o A A
2 .

N oees

(x1(vs), xz(vs), cens xd(vs))

Recall that our problem is to find all elements in § which are not less than

R
any element in R. We let [;:]denote this problem. It is trivial to see that

R SINE LA )
the problem can be done by doing four subproblems, s . and .
g ] S] S, 5

1

R
Observe that the problem [? ] is trivial, since by (4.2) and (4.3) we know there
1

is no element in R2 which is grea;er that any element in S1. Thus, we do not
have to worry about the problem [SiJ. Furthermore, observe that by (4,2) and
(4.3) the first component of any element in R, is greater than that of any
element in 82. Hen;e by the same reason as we used in the previous section,

to do the problem [ﬁl} we only have to consider (d-1)-dimensional vectors rather
than d-dimensional vectors. Thus, to solve the problem [;] for d-dimensional

vectors, we can instead solve the three subproblems:

‘R
1. the problemLS1 for d-dimensional vectors,
14
)
2., the problem g for d-dimensional vectors,
2—1
R]'1
3. the problem [S for (d-1)—dimensiona1 vectors.
2.J



Therefore, we have shown
“.4) Cylrys) = Cy(k,8/2) + Cy(x-k,s/2) + ¢ ,(k,s/2).,

In the rest of the section we shall first prove (4.1) for d = 3 then use (4.4)

to prove (4.1) for general d by induction,

Theorem 4,1

Cy(r,s) <(a,rtBy8) (log 1)

for constants Oq and 83.

Proof
Let {V1""’Vs} be the elements of S. We establish the theorem by ex-

hibiting an algorithm which is adapted from a result in (171,

Algorithm 4.1

This algorithm finds all elements in S which are not less than any element

in R for 4 = 3,
1. Arrange the elements of R as a sequence u],...,ur such that
x](u]) > x](uz) P e > xl(ur).

2, Arrange the elements of S as a sequence ViseeesV, such that if a(j)

is the largest value of the index i such that XT(ui) 2 X1(Vj) then
a(l) =a(2) ... < a(s).
(x](uo) is defined to be «.)

3. Set j« 1,
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4, 1f a(j) =0, vj is not less than any element in R and go to step 9.

5. Construct Ta(j)’ the set of maxima of {(XZ(ui)’ x3(ui))|i = 1,...,a(D},

and arrange its elements as a sequence w1,...,wv such that
xz(w]) > xz(wz) > aee > xz(wv).

6, If xz(vj) > XZ(W])’ Vj is not less than any element in R and go to
step 9.
e
7. Determine the largest value i of the index i such that

xzﬁwi) = xz(vj) for wi € Ta(j)'

8, If x3(vj) > x3(wi*), vj is not less than any element in R and go to

step 9.
9, 1If j<s, j<« jt1 and return to step 4,
10. Terminate the algorithm,

Step 5 can be efficiently performed by using, for example, an AVL binary
tree [2, §6.2,3] as the information structure which stores the elements of
Ta(j)’ For details of this information structure and for the proof of the
validity of the algorithm, see [1]., We now estimate the number of comparisons
used in the algorithm. It is shown in [1] that the total number of comparisons
needed for step 5 is = O(r log r)., Clearly, step 1 also takes O(r log r) com-
parisons, By using the binary search technique, steps 2 and 7 take O(s log r)

comparisons, Hence the total number of comparisons for the whole algorithm is

0(r log r) + O(s log r). [ |
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Theorem 4,2

For d = 3,

(4,5) Cd(l',s) = (Qﬂdr-l-ﬁds)(]_og r) (log s)d-3 + dr,

- -(d-3)
where oy % + 3+ 4+ ...+ (d-1) and By = 2 B,

(03, B3 are given by Theorem 4,1,)

Proof

We shall prove the theorem by induction on d. By Theorem 4.1, (4.5)
holds tor d = 3, Assume that (4.5) holds for d = g-1, Without loss of gen-

erality, we assume that s = 2" for some positive integer m. Then we have
m m 24

(4.6) Cz_](r,Z ) < (G£_1r+BE_12 }(log T)m + (4~-Tr.

By (4.4) we know that there exist p](= k/r) and q1(= (r-k)/r) such that
m m-1 m-1 m-1

(4.7} Cz(r,Z ) = CE(P1T,2 )+ Cﬂ(qrr,Z ) + Cz_](P]r,z ).

Note that

4.8 0 =< Pys 4y S 1 and Py * q = 1.

We shall use (4.6) and (4.7) to prove that

Cﬂ(r,Zm) s (a£r+B£2m)(10g ) ¥+ i,

that is, (4.5) for d = 4, The proof below is elementary but tedious. The

essential idea is to apply (4.7) recursively. It is not difficult to see from

(4.7) we can prove that
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4.9 c,(r,2") s £ [C (A, 1)+ C (B, 1,1
ik=1,2
m m—i
+ £ L C, 0 T2,
j=1 i]=1 125°°27
i, =1,2
where A, ., 3 B, , and D, . are defined as follows:
l-l’ﬁ..’lm l1’...,1~m 11,-..,1j
f
A, . = p. . E. .
iyseeesi pl],...,ﬁn 1],...,1m’
(4.10) ( B, . = q, . E, .
< 1?’...’1m Q11,..-’1m 11,'..,1m’
D, . =P . E, P
k l]’..ﬂ’lj l]’..-’lj 1]’-n-,1j
where E1 = E2 = 1 and the E, , are defined recursively by
11,ooo,l.
]
P. . . . if i, =1,
l.sseesl, 1,400yl 1
4.0 E, Lol 3= i-1
177°° 27 q. i Ei i if i, = 2,
11,10-, j-] ]’lun, j-] J
and the p, are constants satisfying the following conditions

SR qi],...,ik
like (4.8):

0=<p =1,

i]’...,ik, qi1,-oo,ik

(4.12)

='|.

igsenerdy qiT,...,ik

We first establish some properties of A, . ) . . .
P P 11,.5-’1m, ]..I’Qooglm, l.’,.--,lj

and E, . .
11""’1j

(4.13) z E, . = 1.
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The proof of (4.13) follows from the fact that L E, , =E J+E
= 3

i i1, 1,2
1;=1,2
=p,+tg, =1land T E, . = T (p, . . . + q,
1 1 i1=] 11""’1j i1=1 11""’lj-1 11""’1j-1 Lise
i'=1,2 i=1,2
k k
E, . E, . + Note that b 4,10
11""’1j-1) = E] l1"°"1j-1 y )5
1
1= »2
A, i + B, i
1]".."[['[ l],cna’m
=Py E tq

PR T T | i h I S |
1?2 st M0 stn 11,--°s m *1° ol

= E- ] L ]
Lyseeast

Hence by (4.13), we have

4.14 z A, . + B, L) =1,
( ) = ( 1]’.-.,1m 1],ooo’lm)

Similarly, we can show that

(4.15) z D, . =1,
i, =1 Tpaeeendy

1,=1,2

Furthermore, from (4,10), (4.11) and (4.12), it is trivial to see

A, i B, D, .o=1,
1]’00., " 1],-0-, o lT’o.-,lj

Therefore, by (4,14),
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z C, (A, . T, +
s = L€ 11500t > CE(BiP...,imr’”]
1,=1,2
s T (4 t + 1B, LT
i =1 ]..I,---im 11’...1111 )
i,=1,2
= fr,
By (4,6) and (4.15), we have
m .
b T ¢, (D, Cr,2m
j=1 ]:"[E:Il . £-1 11,...,1j ?
s
m ) .
< z -1)D m-] L=
RO [(2-1) i-’,...,i,r+ (aﬂ-1Di1,..n,i.r+Bf,—12 Y (log T)m~ ]
1 ] 3
1k=1,2
m . -I .
< ¥ [(4-Dr+ o, T+ 237'g 2™ I (1log r)mz—a
j=-] 2:-1 2"1
< m £-3
[Cary y* 4-Dr + (B 1/2)271(log Du™".

Hence by (4.9) we obtain that

¢ (r:2") = ar + (ax + B2 (log a3,

where o) = o, + (2-1) and B£= B£_1/2_
We have proven the theorem. B
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