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ABSTRACT 

Let ui * U2* * * * , Ud b e t o t a l l-y ordered sets and let V be a set of n d-dimen-
sional vectors in X ̂  X X U^. A partial ordering is defined on V in 

a natural way. We consider the problem of finding all maximal elements of V 

with respect to the partial ordering. The computational complexity of the 

problem is defined to be the number of required comparisons of two components and 
2 

is denoted by C d(n). It is trivial that Cj (n) = n-1 and Cd(n) <> 0(n ) for 

d ^ 2. Previous results are C^(n) ^ 0(n log2 n) for d = 2,3. In this paper, 

we show 

2. Cd(n) £ flog2 nil for d £ 2. 

i 



1. INTRODUCTION 

Let U^U,^,...,^ be totally ordered sets and let V be a set of n dimen­

sional vectors in U 1 x U 2 X ... X Uj. Let x^v) denote the ith component of 

any vector v. A partial ordering is defined on V in a natural way, that 

is, for v, u 6 V, v ^ u if and only if x^v) £ x^(u) for all i « 1,...,d, 

where ^ is the total ordering on V,̂ . (We shall also write ^ for The con­

text should make clear the meaning of We consider the problem of finding 

all maximal elements of V. The computational complexity of the problem is 

defined to be 

C,(n) « min max c, (A,V) 
A V 

where cd(A,V) is the number of comparisons used by any algorithm A on any such 

set V. In other words, Cd(n) is the maximum number of comparisons used by the 

algorithm that solves the problem the fastest in the worst case. We are inter­

ested in obtaining the upper and lower bounds on C, (n) for all d. 
a 

If d » 1, V is a totally ordered set. It is obvious that 

C ] (n) - n-1 • 

If d > 1, V is a partially ordered set. It is not difficult to convince one­

self that to find the maximal elements of a general partially ordered set, any 
2 

algorithm requires order n comparisons in the worst case. However, for the 
special partial ordering f f^ f on V, we can do better. Recently, Luccio and 
Preparata [1] have shown that 

(1.1) Cd(n) £ 0(n log n) for d = 2 and 3. 

(In this paper, all logarithms are to base 2 and all comparisons are between 
components of the vectors in V.) 
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It remained an open problem to show whether such reduction is attainable for 

d ^ 4. In this paper, we prove 

(1.2) Cd(n) £ O(n(log n) d" 2) for d ;> 4, 

and 

(1.3) Cd(n) £[log nl] for d :> 2. 

Since log ni is about n log n, the bounds in (1.1) and (1.3) are sharp for 

d = 2 and 3, with respect to the magnitude of n. It remains an open problem 

to show whether the bounds in (1.2) and (1.3) are sharp for d ;> 4. 

In Section 2 we prove (1.3). In Section 3 we describe the basic recursive 

procedure for obtaining the upper bound in (1.2). This procedure leads to the 

problem of finding, from a given set, the elements which are not less than any 

element in another given set. Upper bounds on the number of comparisons for 

solving this problem are established by another recursive procedure, in the 

final section. 
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2. LOWER BOUND 

Lemma 2.1 

Cd_1(n) ^ Cd(n) for d £ 2. 

Proof 

Let A d denote an algorithm which finds the maxima of n d-dimensional vec­

tors with at most Cd(n) comparisons. It suffices to show that an algorithm 

A, - can be constructed from A, such that A, - finds the maxima of n (d-1)-&-1 a a-1 
dimensional vectors and uses the same number of comparisons as A d does. Let 
V, - be a set of n (d-1)-dimensional vectors. Define a set V, of n d-dimen-
sional vectors by 

V d = {(v1,v2,...,vd_1,vd_1)|(v1,...,vd_1) 6 V d _ 1 } . 

Let ̂ d^^ be constructed from A d by replacing every comparison between the dth 

components of two vectors in the algorithm A d by the comparison between the 

(d-l)st components of the vectors. Then A d ^ and A d will be same for the set 

V,. Since A finds the maxima of V,, so does A, -. Observe that (v-.•.•.v, ,,v, d a a' d-l 1 * ' d-1' d 
is a maximum of V d if and only if (v^,...,vd ^) is a maximum of y Therefore 
Ad_.j finds the maxima of Furthermore, by the definition of , it is 
clear that A d and A d use the same number of comparisons. We have proven the 
lemma. • 

Let S(n) denote the maximum number of comparisons used by the algorithm 

that sorts n records the fastest in the worst case. We have the following 

Lemma 2.2 

S (n) ̂  C 2 (n) . 
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Proof 
Consider any algorithm which finds the maxima of n 2-dimensional vectors. 

Let v,,...,v be 2-dimensional vectors such that for all i, x-(v.) are distinct I n 1 1 
and for all i, j, 

(2.1) x^v^ > ^(v ) if and only if x2(vj.) < x 2(v^). 

We apply the algorithm to the set {v^,v2,...,v^}. 

For each v. the algorithm must determine whether v. is a maximal element or not, 

To prove v^ is maximal the algorithm must establish the relationships that, for 

each j ̂  i, either (v^ > x^ (vj) o r ^(v^) > x 2(v^). By (2,1) we know that 

all v^ are maximal elements0 The algorithm must establish the relationships 

that either x̂  (v^) > x-j (v..) or x̂  (v^) < x̂  (v_.) between all pairs (i,j). This 

implies the algorithm will sort x^(v^),...,x^(v ). Therefore, S(n) ̂  (n). I 

It is well known (for example, see Knuth [2, §5.3,1]) that 

S(n) £ Tlog nil. 

Therefore, by Lemmas 2.1 and 2.2, we have shown the following 

Theorem 2.1 

For any d a 2, 

Cd(n) ^ c
d - 1 ( n ) c

2
( n ) * r i ° 8 n i 1 , 

so that about n log n comparisons are needed for finding the maxima of n d-

dimensional vectors in the worst case. 
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3. ALGORITHMS FOR FINDING THE MAXIMA OF A SET OF VECTORS 

In this and the following sections we shall construct algorithms to 

achieve the upper bounds asserted in (1.2). In the rest of the paper, we 

assume that for any two vectors u,v in V, R or S, x^(u) ̂  x^(v) for all i 0 

Under this assumption it will be easier to describe the ideas of the algor­

ithms. The algorithms can be obviously modified if the assumption is removed 

(see [1]). Without loss of generality, we assume that n = 2 for some posi­

tive integer r, and that the elements of V have been arranged as a sequence 
v1»•••> v

n
 s o t^at 

(3.1) x^v ) > x ](v 2) > ... > x^v^. 

(Note that sorting takes 0(n log n) comparisons.) 

Like many other "fast" algorithms (e.g., FFT), our algorithms will first 

solve two subproblems and then combine the results of the subproblems. We 

shall first find R, the set of the maxima of {v^, • e. >v
n^2 ̂  a n c* »̂ t* i e s e t °^ 

the maxima of {v^^+i > • • • > v
n}° Observe that by (3.1) the elements of R are 

also maximal elements of V, but the elements in S are not necessarily maximal 

elements of V. In fact, an element in S is a maximal element of V if and only 

if it is not < any element in R. Therefore, we have the following algorithm: 

Algorithm 3.1 

We define a recursive procedure for finding the set of the maxima of 

V « {v-|,... ,v n}. To find V M, we find R, the set of the maxima of [v^,... >v

n/2}> 

find S, the set of the maxima of {v
n/2+-|>•••>v

n) and then find T, the set of 

elements in S which are not ^ any element in Re Then set V M R U Tfl 
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The number of comparisons required by Algorithm 3.1 depends on those re­

quired to find T. Define 

C, (r,s) = min max c,(A,R,S) 
d A |R|-r d 

|S|^ 

where R and S are any sets consisting of r and s, respectively, d-dimensional 
vectors, and c^(A,R,S) is the number of comparisons used by any algorithm A 
for finding the elements in S which are not ^ any element in R. Hence T can 
be found in C^(n/2,n/2) comparisons, since |R|,|S| ̂  n/2. Observe, however, 
that because of the relation (3.1), for u € R, v £ S , u ^ v i f and only if 
x^u) ^ x^(v) for i « 2,...,d. To find T, first components of the vectors do 
not have to be considered. We end up with considering (d-1)-dimensional vec­
tors. Hence T can be found in C, -(n/2,n/2) instead of C,(n/2,n/2) compari-
sons. Therefore, by Algorithm 3.1, we obtain the following recurrence rela­
tion on C,(n): 

a 

(3.2) Cd(n) ^ 2Cd(n/2) + Cd_1(n/2,n/2). 

In the following section, we shall show (Theorem 4.2) that 

d 3 
(3.3) Cd(r,s) < (adr+pds)(log r)(log s) + dr 

for d s 3, where Oj and $ d are constants. By (3.3), we have 

(3.4) C. .(n/2,n/2) £ O(n(log n) d" 3) for d s 4. 
a- I 

Therefore, from (3.2) and (3.4), we obtain the main result of the paper: 

Theorem 3.1 
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4. UPPER BOUNDS ON Cd(r,s) 

This section deals with the proof of the following result: For d ^ 3 

(4.1) Cd(r,s) £ (adr+Pds)(log r)(log s ) d ~ 3 + dr. 

We shall first prove (4.1) for d = 3 and then use induction on d to prove (4.1) 
for all d. We shall first describe the key idea used in the induction. 

Let R and S be two sets consisting of r and s, respectively, d-dimensional 
vectors. Assume d ^ 4. Without loss of generality we assume that the 
elements of R have been arranged as u^,...,u and the elements of S as v^,,..,vc 

so that 

x-(u-) > x (u ) > ... > x-(u ), 
(4.2) 1 1 1 2 1 r 

x^v^ > x 1(v 2) > ... > x 1(v g) e 

Also, we assume that s = 2 m for some positive integer m. Define x̂  (u^) = 0 0 

and x.|(u j) = -«>. Using binary search we find k, 0 ̂  k ^ r, such that 

(4.3) Xl(uk) * X l(v s / 2) > V W ' 

We now divide R into two subsets R, and R 0 such that R, « fu.I1 ^ i < k) and 
R2 ~ ^ uJ k < 1 ^ r } * A l s o divide S into two subsets and S 2 such that 

- £v±|1 £ i £ s/2} and S 2 = {v±|s/2 < i ̂  s). 
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u 1 = (x (Uj), x 2(u ]), ... x d(u 1)) 
• • • 
• • • 

u k = ( X l(u k), x 2(u k) ... x d(u k)) 

"uk+i = ^T^k+P' V W ' ••• V V i " 
R2 

s1 

u_ = (x^u^, x 2(u r) ... x d(u r)) r 

S2 

V1 a (X-̂ V-j), X2 (Vj) , Xd(vi)) 
• • • • • • • • • 

Vs/2 = ^ s ^ ' *2{Vs/2>> Xd ( vs/2 ) : ) 

V
S/2+1 = ^s/l+J* *2{vs/2^> Xd ( v

s/2+1 } ) 

• • • 
• • • 

v g = (x-,(vs), x 2(v s), x d(v s)) 

Recall that our problem is to find all elements in S which are not less than 
any element in R. We let ^ J denote this problem. It is trivial to see that 

H LbJ PR -I fR 2l fR 1 fR2] 

can be done by doing four subproblems, , , and 
fR 2i LsiJ LbiJ Lb

2J Ls2-
Observe that the problem J is trivial, since by (4.2) and (4.3) we know there 

is no element in R 0 which is greater that any element in S-. Thus, we do not 

have to worry about the problem J. Furthermore, observe that by (4.2) and 

(4.3) the first component of any element in R1 is greater than that of any 

element in S 0. Hence by the same reason as we used in the previous section, 

to do the problem c we only have to consider (d-1)-dimensional vectors rather 
L S 2 J M 

than d-dimensional vectors. Thus, to solve the problem 
vectors, we can instead solve the three subproblems: 

fRil 
1. the problem g for d-dimensional vectors, 
2. the problem for d-dimensional vectors, 

3. the problem |̂ s J f o r (d-1)-dimensional vectors. 

for d-dimensional 
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Therefore, we have shown 

(4,.4) Cd(r,s) ^ Cd(k,s/2) + Cd(r-k,s/2) + Cd_.,(k,s/2). 

In the rest of the section we shall first prove (4.1) for d = 3 then use (4G4) 
to prove (4.1) for general d by induction., 

Theorem 4.1 

C3(r,s) £(c*3i4-p3s) (log r) 

for constants <Xj and ĝ . 

Proof 

Let [v.,,...,v } be the elements of S. We establish the theorem by ex-• s 

hibiting an algorithm which is adapted from a result in [1]G  

Algorithm 4.1 

This algorithm finds all elements in S which are not less than any element 
in R for d = 3. 

1. Arrange the elements of R as a sequence u^,...,u^ such that 

x^u-j) > x ] (u2) > ... > x.j(ur). 

2. Arrange the elements of S as a sequence vi>«»«» v
s such that if a(j) 

is the largest value of the index i such that x^(u^) ^ x^(v^) then 

a(l) £ a(2) ^ ... ̂  a(s). 

(x^(UQ) is defined to be ».) 

3. Set j «- 1. 
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4. If a(j) » 0, v. is not less than any element in R and go to step 9. 

5. Construct T . . v , the set of maxima of {(x0(u.), x0(u.))|i = l,...,a(j)}> 
a \J / Z l 3 1 

and arrange its elements as a sequence w^,,..,w^ such that 

X2^ WP > x2^ w2^ > # ,° > X2^ Wv^ # 

6. If x2(Vj) > x^Cw^, is not less than any element in R and go to 

step 9. 

7. Determine the largest value i of the index i such that 

x2(wt) * x 2( V j) for w. € T a ( j ) . 

If x0(v.) > x 0 ( w . * ) , v. is not less than any element in R and go to 3 j 3 l ' j 8. 
step 9. 

9. If j < s, j *- j+1 and return to step 4. 

10, Terminate the algorithm. 

Step 5 can be efficiently performed by using, for example, an AVL binary 

tree [2, §6.2.3] as the information structure which stores the elements of 

T ,.N, For details of this information structure and for the proof of the 
a ( j ) 

validity of the algorithm, see [1]. We now estimate the number of comparisons 

used in the algorithm. It is shown in [1] that the total number of comparisons 

needed for step 5 is ^ 0(r log r). Clearly, step 1 also takes 0(r log r) com­

parisons. By using the binary search technique, steps 2 and 7 take 0(s log r) 

comparisons. Hence the total number of comparisons for the whole algorithm is 

0(r log r) + 0(s log r). • 
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Theorem 4.2 

For d £ 3. 

(4.5) Cd(r,s) £ (adr+pds)(log r)(log s ) d ~ 3 + dr, 

where ad
 g a3 + 3 + 4 + ... + (d-1) and gd = 2"(d"3)g^. 

(of3, P3 are given by Theorem 4.1.) 

Proof 

We shall prove the theorem by induction on d. By Theorem 4.1, (4.5) 

holds for d • 3. Assume that (4.5) holds for d = A-l. Without loss of gen­

erality, we assume that s = 2 m for some positive integer m. Then we have 

(4.6) C^(r92m) <; ( c ^ r + g ^ ' V l o g r)mA"4 + (jM)r. 

By (4.4) we know that there exist P-j (- k/r) and (= (r-k)/r) such that 

(4.7) Cz(v92m) £ CJ^(p1r,2m"1) + C ^ r ^ " 1 ) + ( P ]r 92 m^) . 

Note that 

(4.8) 0 <: P ] , q1 £ 1 and p + q - 1. 

We shall use (4.6) and (4.7) to prove that 

C^(r,2m) £ (c^+p/Vlog r) m ^ 3 + ix9 

that is, (4.5) for d = j£. The proof below is elementary but tedious. The 
essential idea is to apply (4.7) recursively. It is not difficult to see from 
(4.7) we can prove that 
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(4.9) C.(r,2m) £ E [C (A 
* i =1 * 1i»• L1 

r,1) + C (B r,1)] 
•'Sn 1 V " " m 

m 
+ E S C. .(D r,2 m' J), 

i =1 2 

where A and D. . are defined as follows: 

A. . » p. . E. . , 
xl Su 11'*** , 1m V***' m 

(4.10) ) 
m 

k i E i i ' 

D. . = p. . E. . , 

where E- = E = 1 and the E. . are defined recursively by 

(4.11) E, 
p. E. , if i = 1 , 

= W , E if i - 2, 
i-| » • • • » 1 j_] 1-| » • • • > j-1 J 

and the p. . , q. . a r e constants satisfying the following conditions 
i-| » • • • J 1!,

 ll » • • • »Xv •1 
like (4.8) 

(4.12) 
0 * P. < , q ± i * 1, 

1. 

We first establish some properties of A . , B 
T * * * ' m 1 * ' 

i » D i '•»lm 1 1 " 
and E i-j » • • • » 1 j 

(4.13) S E , - 1. 
i-1 V ' ^ j 
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The proof of (4.13) follows from the fact that E E. . 
1,-1 *V 
Ì 2 - 1 . 2 

P 1 + q, = 1 and E E = 2 (p 

%,...,!.,) = = / N ° t e t h 3 t b? <4-10>» 
• 1 n rk ik=1,2 

. + B. 
» m I m 

m i r...,i m i l f... fi m i,,-..,^ 

= E , 
11 
i m 

Hence by (4.13), we have 

(4.14) S (A. . + B. ) « i. 

Similarly, we can show that 

(4.15) I D . . £ 1. 
i=1 
ik=l,2 

Furthermore, from (4.10), (4.11) and (4.12), it is trivial to 

1 T , , , ' 1 m XV""\ V " 1 

Therefore, by (4.14), 
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E [C (A r,l) + C (B . r,1)] 
i =1 1'***' m * V " m 

£ E (M. + r + №. . r) 

4=1,2 
= 4r. 

By (4.6) and (4.15), we have 

E E C (D .r,2
m

-J) 
j-1 1. -1

 A 1 V ' ^ j 
4=1,2 

m m-1 
£ E E C U - D D r + (a D . r + 0 2 )(log 

j-1 i-1 tr.--^j V ' ^ j 
1^=1,2 

£ E [(Jt-l)r + a^r + 2 J

" 0^2 "•'](log r)m 

*
 [ ( a

jM
+ j M ) r + <Pjn/ 2 ) 2 m ] ( l 0 8 r

>
mA

"
3

-

Hence by (4.9) we obtain that 

C^(r,2
m

) <: jir + (aAr + g / V l o g r)m^
3

. 

where = + (¿-1) and = P^/
2 -

We have proven the theorem. • 
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