NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Programmable Strategy Theorem Prover:

An Impiementation of the Linear MESON Procedures

by

Mark E. Stickel

Abstract

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving
program for the first order predicate calculus using the |inear MESON
Procedure as the inference system. The |inear MESON procedure is a new
variant of the model elimination theorem proving procedure for theorijes
with or Without equality which is an affirmation rather than a refutation
procedure. It is profitabiy viewed as an extension of the prablem-
reduction method. The fundamental element of a iinear MESON procedure
deduction, the chain, is a representation of a set of goals to be solved
and their supergoals. PSTP s designed to be used interactively or in a
fully automatic mode. Some features of PSTP are a general mechanism for
specifying which chains are to be retained and manipulated, an automatic
procedure for storing and retrieving information about chains when this
information is requested, the capabiiity of specifying an ordering function
Which can be used for specifying search strategies, and a powerful set of
commands. Resuits of an experiment testing some simple search strategies
and comparisons with results from other theorem proving studies are
presented.

%Research supported by NSF Grant GJ-28457X2 and by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (F44628-73-C-

8a74) .

B. Introduction

The first section of this report describes a new theorem proving
procedure for the first order predicate calculus, the I{inear MESON
procedure, a variant of model elimination. Although the |inear MESON
procedure is not substantially more powerful than related resolution
procedures except in the capability for restriction or differential
treatment of inferences by particular implicative forms of the axioms, it
represents a significant increase in the "naturalness" of proofs by
complete inference systems because it can be viewed as an extension of the
problem-reduction method (9],

In addition to the standard "subgoaling" mechanism of the problem-
reduction method (by which a goal is replaced by a set of subgoals wWhose
solution constitutes a solution to the goal) represented in the |inear
MESON procedure by the extension operation, the linear MESON procedure
provides a mechanism for soiving a goal one of whose subgoals is its
iogical negation reguiring reasoning by contradiction (the reduction
operation), an operation for eliminating duplicate goals (factorization),
and operations for solving problems involving the equality relation (p-
extension, p-reduction} wWithout requiring full axiomatization of its
properties. These added inference operations result in a complete
inference system for the first order predicate calculus with equality.

The second section aescribes the underlying concepts and overal!
design of the Programmable Strategy Theorem Prover {(PSTP}, a theorem
proving program empioying the linear MESON procedure as its inference

system and designed to be used interactively or fully automatical ly.

Although restricted to using the |inear MESON procedure as its inference
system, PSTP provides substantial flexibility in specification of search
strategies, borth 'ln_ terms of deistion criteria (such as use of length,
level, and depth bounds) and of the order in which inference operations are
to be performed (such as depth first, breadth first, or diagonal search
strategies).

The third section presents the results of a performance study on a set
of problems previously tested in two other theorem proving performance
studies. Some conclusions are draun concerning relative merits of tested
search strategies on empirical aﬁd philosophical grounds and the power of
the linear MESON procedure relative to other procedures as exemplified by

results from the other studies.

1. The Linear MESON Procedure

The linear MESON procedure is a variant of the model elimination
thecrem proving procedure (6,7,8] in which (1) each literal of the top
chain and the derived chains of a deduction is repiaced by its complement
and (2) implications as uWell as disjunctions are permitted as axioms. [t
is also the linear form of the MESON procedure [S] specified for goglé
subgoal trees (MESON stands for "model elimination gubgoal oriented").
Advantages of the linear MESON procedure are (1} the linear MESON
procedure, though logically equivalent to model elimination, has the form
of an affirmation rather than a refutation procedure and its proofs have a
very natural interpretation in terms of goal-subgoal trees and (2) the
linear MESON procedure has greater expressive power than alternative
procedures in the potential use of implications rather than disjunctions to
restrict application of inference operations to certain literals of axioms
or (by replacing a disjunction by more than cne implication) to facilitate
differential treatment of the various implicative forms of axioms during
the search for a solution (this capability is shared by model elimination
tn which each length n input clause generates n auxitiary chains only the
last literal of which can be matched in inference operations).

In a theorem proving program permitting interaction between human user
and mechanical proof procedure, it is desirable that as human-oriented a
procedure as possible be employed. UWhile it is correctly argued that ali
resolution type theorem proving procedures are machine-oriented and
notoriousiy unsuited to extensive human computation, it is our pontention
that the linear MESON procedure is more human-oriented than other

resolution related procedures.

This is a direct consequence of the relationship of the |inear MESON
procedure with the probiem-reduction'method. The |inear MESON procedure is
an extension of the problem-reduction method which is complete for the
first order predicate caiculus wWith equality., It augments the problem-
raduction method by inference operations which perform reasoning by
contradiction (reduction], uwhich eliminate duplicate subgoals
(factorization), and uwhich deal with the equaility relation (p-extension, p-
reduction}..

The linear MESON procedure represents the state of a search for
solution as a set of chains. Each chain represents a subtree of the search
space. The solution of ali the subgoals represented in a chain constitutes
a solution of the top goal, Different chains represent ldifferent
alternative partial solutions of the top goal.

More specific claims of the linear MESON procedure being human-
oriented are (1) it is an affirmation rather than a refutation procedure,
(2) in kéeping literals ordered in a chain, it automatically prevents (in
goal-subgoal tree terms) the start of an attempt to solve another subgoal
in the chain until the current one is solved, and (3) it is a procedure
khich remains complete if onily input deductions are used. An input
déduction is a deduction in uwhich each eiement of the deduction f(a Iinéar
MESON procedure chain) is derived by an inference operation appiied to its
predecessor or its prédecessor and an (input) axiom.

In combination, the last two items permit the user to focus his
attention on a much smalier sﬁbset of the available data than is possible

for many resolution based procedures.

In preparing a problem for input to the linear MESON procedure, the

input formuia is first converted to prenex form with its matrix in the form
of a conjunction of g;gg;jiggg implying a-gggglggigg. An assertion is a
{possibly empty) conjunction of |iterals (antecedents) implying a
disjunction of literals (consequents). Note that if there are no
antecedents in the assertion, the assertion is just a disjunction of
literals (disjuncts}, i.e., a clause. A conclusion is a conjunction of
literals. Schematically, the transformed formula is in the form'

QU Ao v AALECT Ve VEL) A ove A (AT ABDaCTve VET) & (G, ALl AB))
where A, C and G denote iiterais, Q denotes a list of quantifiers, and p2l,
gzl, each miaB, each n: 21,

The transformed formula is then Skolemized by (1} replacing for each
universal quantifier in the prefix all occurrences of the quantified
variable in the matrix by a unique Skolem function with ail the
existentially quantified variables whose quantifiers precede the universal
quantifier in the prefix as arguments and (2) deleting the quantifier
prefix,

An alternate input form for the linear MESON procedure is a
conjunction of guantified assertions implying a conclusion. ‘Schematicalig.

G, (A, A...AA:.;*C:V...VC:,'J A ver A Qplf A...AAi;c?v...vcf‘; > OgufGy Av v 2 AGy)
where A, C and G denote literals, O denotes a list of guantifiers, and p21,
gzl, each m;aa, each n;zl.

This input form is Skolemized by (1) replacing in each assertion all
occurrences of each existentially quantified variable by a unique Skolem
function whose arguments are the variables of universal quantifiers
preceding the existentiai quantifier, (2) replacing in the conclusion all

occurrences of each universally guantified variable by a unique Skolem

function whose arguments are the variables of existential quantifiers
preceding the universal quantifier, and (3} removing all quantifiers from
the formula,

Exampie. The problem is: if a is a prime number and a times the
square of some number u is b then a divides b. The initial formuia is:

VxVyVzVu (prime(x) A ywz=w A divides{x,u)
+ divides(x,y) v divides(x,z}]
A ¥x xux=sqguare (x)
A ¥xVuV¥z [xwy=z - yux=2z)
A ¥x¥uV¥z (xwy=z -+ dividesix,z))
A Ju awsquare (u) =square (b)
A primelal
» divides(a,b)
The Skolemized form ready for input to the linear MESON procedure is:
(prime(x) A ywz=w A divides{x,u} -+ dividea(x,yl v divides(x,z})
A xeex=square (x)
A (xwey=z -+ yiex=z)
A (xwy=2z -+ dividesix,z))
A awesquare (c} =square (b)
n primela)
» divides(a, b}

Problems with equality (as above) can be introduced without the need
for specifying the symmetry, transitivity, and substitutivity axioms if the
special equality inference operations {p-extension, p-reduction}) are used.
The equaiity reflexive (x=x) and functionally refiexive axioms (e.g.,
square (x) =square{x), xwy=x%y} theoretically are required. The latter are
not present in the above exampie since no special eqguality rules are
required for the problem’s solution. (This is the same as the NUMl example
studied in Section 3.)

By virtue of its derivation from model elimination, the !inear MESON.

procedure is complete {given that a compatible set of inference and

postprocessing operations are used) provided (1} the set of assertions is

consistent (this requirement is equivalent to the requirement that the top
chain of a modei elimination deduction be in the minimaliy unsatisfiable
set of input cliauses) and (2) either the disjunctive axiom form is used or
all implicative forms of sach assertion are included among the assertions.
The first condition can be eliminated by the addition of a special
contradiction mechanism defined for the MESON procedure but not included in
this formulation of the |inear MESON procedure which permits the proof of
any conciusion from an jnconsistent set of assertions. The second
conditioﬁ can sometimes be eliminated in practice since it is often clear
from the probiem structure (as in the case of Horn formulas) that use of a
subset of the implicative forms results in the possible deduction of all
the chains that ihe.disjunctive form wouid. Alsg, aIthougﬁ the resulting
procedure is, in general, incomplete it is sometimes desirable to restrict
the search for a proof by not presenting the procedure with all the
implicative forms of the assertions.

The fundamental element of a iinear MESON procedure deduction is the
ghain. A chain is an ordered sequence of l|iterals. Two types of literals
are distinguished: A-|iterals and B-literals. B-literals correspond to the
literals present in clauses in resolution theorem proving. A-~literals
record ancestry information and represent (in goal-subgoal tree terms)
higher goals. All the literals in the theorem and axioms are B-literals,
An A-literal is created in a neuly derived chain from a B-literal in the
parent chain when g set of literals whose conjunction implies the A-literal
(a set of subgoals whose solution constitutes a solution to the goal
represented by the A-iiteral) is added.

A linear MESON procedure deduction of chain K from problem P is a

sequence Ke,...,K, of acceptable chains uhere K, is the conclusion of P, K
is K, each K; (lgisn) is derived from Ki.i by extension (by an assertion
G, factorization, reduction, p-extension (by an assertion G, or p-
reduction, and each C,.,is an assertion of P or a iemma (see lemma formation
operation beliow). A solution of P (a proof of the conclusion of P} is a
linear MESON procedure deduction of the empty chain from P, In general,
for the inference system to be complete, the negation of the conclusion
must be included among the assertions, The definitions of acceptable
chains and the inference operations are given below. Example proofs
illustrating most forms of the inference operations appear starting on page
17.

Matching. [f the two arguments to the matching procedure are terms,
the matching procedure returns the most general unifier of the terms. If
the two terms are not unifiable, the matching procedure fails.

If the two arguments to the matching procedure are literals and are
both pogitive (unnegatedl or both negative (negatedl! Iliterals with
unifiable atomic formuiae, the matching procedure returns the most general
unifier of the atomic formulae. 1f the two arguments are not both positive
or both negative or the atomic formulae are not unifiable, the matching
procedure fails.

X h jon. The extension operation takes an acceptable chain K and an
implication (alt., disjunction) C as its arguments. Let K’ and C’ be
variable disjoint variants of K and C. [f the last literal of K' matches &
consequent {(alt,, disjunct) of C', the chain congisting of K' followed by
the antecedents and the complements of the remaining consequents (alt., fhe

compiements of the remaining disjuncts) of C’ with matching substitution

appiied can be inferred. Each literal of the derived chain déscended from
a literal of K' is designated to be the same type of literal as its
ancestor except the last which is designated to be an A-literal; each
literal of the derived chain descended from a literal of C' is designated
to be a B-literal.

Factorization. Thé factorization operation takes an acceptabie chain
K as its argument. If the last literal of K matches a preceding B-literal
of K, the chain consisting of K with the last |iteral removed and uwith
matching substitution applied can be inferred. Each i{iteral of the derived
chain is designated to be the same type as its ancestor,

eduction. The reduction operation takes an acceptable chain K as its

argument. [f the last literal of K matches the complement of a preceding
A-literal of K, the chain consisting of K Wwith the last literal removed and
With matching substitution applied can be inferred. Each literal of the
derived chain is designated to be the same type as its ancestor.

P-extension. The p-extension ("p-" for paramoduiation) operation
takes an acceptable chain K and an impiication (alt., disjunction) Cas its
arguments. Let K’ and C’ be variable disjoint variants of K and C. (a) I¥
a consequent (ait., disjunct) of C' is of the form a=b or b=a uwhere a
matches a term in the last literat of K', the chain consisting of X'
folliowed by the antecedents and the complements of the remaining
consequents (alt., the complements of the remaining disjuncts) of C'
followed by a copy of the last literal of K’ uwith a single fnstance of the
term matching a replaced by b with matching substitution applied can be
inferred. Each literal of the derived chain descended from a !iteral of K’

is designated to be the same type of literal as its ancestor except the

last which is designated to be an A-literal; each literal of the derived
chain descended from a literal of C' is designated to be a B-literal; the
last literal of the derived chain {in which an instance of a term matching
@ was replaced by b} is designated to be a B-iiteral. This form of p-
extension is called p-extension from an assertion. (b) [f the last literal
of K’ is of the form a=b or b=a where a matches a term in a consequent
(alt., disjunct) .of C’, the chain consisting of K' followed by the
antecedents and the complements of the remaining consequents (alt., the
complements of the remaining disjuncts) of C' foliowed by a copy of the
complement of the conseguent (alt., disjunct) containing the term matching
a with a single instance of that term repiaced by b with matching
substitution applied can be inferred. Each literal of the derived chain
descended from a literal of K' is designated to be the same type of literal
as its ancestor except the last which is designated to be an A-literal;
each literal of the derived chain descended from a |iteral of C' is
designated to be a B-literal; the last literal of the derived chain {in
which an instance of a term matching a was replaced by b} is designated to
be a B-literal. This form of p—extensio.n is called p-extension ig an
assertion.

P-reduction. The p-reduction ("p-" for paramcdulation) operation
takes an acceptable chain K as its argument. (a) 1f the last literal of K
contains a term matching the term a where a preceding A-literal of K is of
the form a=b or b=a, the chain consisting of K followed by a copy of the
iast iiteral With a single instance of the term matching a replaced by b
Wwith matching substitution applied can be inferred. Each literal of the

derived chain descended from a literal of K is designated to be the same

18

type of iiteral as its ancestor except the‘last which is designated to he
an A-literal; the last literal of the derived chain (in which an instance
of a term matching a uwas replaced by b) is designated to be a B-literal.
This form of p-reduction is cailed p-reduction from an A-literal. (b) If
the last iiteral of K is of the form a=b or b=a where a matches a term in a
preceding A-literal .of K or the iast literal of K itself, the chain
consisting of K followed by a copy of the preceding A-literal or last
literal With a single instance of the term matching a replaced by b with
matching substitution applied can be inferred. Each |iteral of the derived
chain descended from a literal of K is designated to be the same type of
literal as its ancestor except the last which is designated to be an A-
literal; the last literal of the derived chain (in which an instance of a
term matching a was replaced by b) is designated to be a B-literal. This
form of p;reduction is called p-reduction to an A-literal or self.

If the parent chain K in the p-extension or p-reduction operation is
itself derived by p-extension or p-reduction, the created A-literal in the
derived chain may optionally be omitted with compieteness.unaffected (see
{8J). There is a tradeoff here. ' If the A-literal is omitted, the derived
chain is shorter and easier to read, and some future possible reductions
and p-reductions may be eliminated. On the other hand, aspecially if the
postprocessing operation specifies rejection of chains containing an A-
literal followed by an identical A-iiteral or B-literal, retention of the
A-literal may result in rejection of more chains as being unacceptabie.
For example, this could prevent repeatéd p-extension by a=b from creating

an endless sequence of chains ending alternately in Pa or Pb.

Bostprocessing. A postprocessing operation takes a chain K {output

11

from the extension, factorization, reduction, p-extension or p-reduction
operation) as its argument and either rejects K as being non-acceptable and
thus unusable as input to any inference operation or transforms the chain
into an acceptable chain. Many different postprocessing operations can be
Wwritten with different effects regarding efficiency and completeness. Four
postprocessing operations are described in the following table. The table
expresses possible relationships betueen each pair of literals in the
chain. All the actions corresponding to true conditions are to be
performed on the chain, except, of course, that if the action is to reject

the chain then no other conditions need be checked or actions need be

per formed.
Postprocessing operations
STRONG- STRONG- WEAK - WEAK -
SAVE DELETE SAVE DELETE
Condition Action Action Action Action
A-literal followed by reject reject - reject reject
identical A-literal chain chain chain chain
A-literal followed by reject reject reject reject
complementary A-iiteral chain chain chain chain
A-literal followed by reject reject reject reject
identical B-literal chain chain chain chain
A-literal followed by delete delete
comp lementary B-|iteral fallowing fallowing
B-literal B-1literal
B-literal foliowed by reject reject
identical A-literal chain chain
B-literal followed by reject reject
complementary A-literal chain chain
B-literal followed by delete delete
identical B-literal foltowing fallowing
B-literal B-literal

B-literal followed by reject reject
complementary B-literal chain chain

12

If ail the actions of the postprocessing operation specified in the
table have been performed and the chain is not rejected, all terminal A-
literals of the chain are deleted. This terminal A-literal deletion is
called contraction.

The deletion action associated with the "B-iiteral! followed by
identical B-literal" condition is called ground factorization since it
represents an instanfiation—free usage of a generalized factorization
operation which can delete non-terminal B-iiterals. Similarly, the
deletion action associated with the "A-literal followed by comp!ementarg B-
literal" condition is called ground reduction since it represents an
instantiation-free usage of a generalized reduction operation which can
delete non-terminal B-literals,

Several additional conditions and actions can be wused in
postprocessing operations such as the foliowing which are available in PSTP
but were not used in the present study: (1) rejecting chains containing a
non-terminal A-iliteral that is an instance of a unit axiom (single literal
input assertion), (2} rejecting chains containing a non-terminal A-literal
that is an instance of a unit lemma (single literal derived assertion, see
lemma formation operation below) by which the ancestor chain could have

lbaen extended when the A-literal was created, (3) deletion of B-literals
which are instances of unit axioms, {4) deletion of B-literals which are
instances of wunit lemmas, (5) removal of all literals including and
follouwing the A-literal in the case of a B-|jteral foilowed by an identical
A-literal (this is called factorization truncation), (B) removal of all
literals including and following the second A-literal in the case of an A-
titeral followed by a compiementary A-literal (this is called reductign
truncation). Ail of these actions can be shoun to preserve completeness..

13

For problems not involving the equality relation, the WEAK-SAVE and
WEAK-DELETE postprocessing operations yield a complete inference system
when the extension and reduction operations are used. The WEAK
postprocessing operations correspond closely to the chain admissability
criteria for model elimination of [B]. Also for problems not involving the
equalitg_ relation, the GSTRONG-SAVE and STRONG-DELETE postprocessing
operations yield a complete inference system provided the factorization
operation is used in addition to extension and reduction. The STRONG
postprocessing operations correspond closely to the chain acceptability
criteria for strong model elimination of [7}. Note that with these
postprocessing operations, if the conclusion is variable free, its negation
need not be included among the assertions since extension by the negation
of the conclusion in any deduction from the conclusion would resuit in a
non-acceptable chain wWwith an A-literal followed by an identical B-literal
or an A-literal followed by a complementary A-literal,

For problems involving the equality relation, a postprocessing
operation which rejects a chain oniy if it has an A-literal foliowed by a
comp lementary A-Iitgral yields a complete inference system uhen the
extension, reduction, p-extension and p-reduction operations are used.
Also for problems involving the equality relation, a postprocessing
operation which rejects a chain only if it has a A-literal followed by a
complementary A-literal or a B-literal followed by an identical A-iiteral
yields a compiete inference system provided the factorization operation is
also used. This corresponds closely to the chain permissability criteria
for model elimination With paramodulation of [8]. We believe {but have no

proof) that for problems involving the equality relation, the WEAK-SAVE and

14

WEAK-DELETE postprocessing operations yield & complete inference system
When the extension, reduction, p-extension and p-reduction gperations are
used and the STRONG-SAVE and STRONG-DELETE postprocessing operations yield
a complete inference system when the factorization operation is also used.
The equality reflexive (x=x} and functionally reflexive axioms (e.g.,
fx,y)=Ff{x,y}) theoreticaliy are required in any case.

Lemma formation. An additional inference operation is used to create

new assertions during contraction. A neu assertion {(calied a lemma)l

consisting of the disjunction of the terminal A-literal being removed and
all preceding A-literals whose scope (see below) exceeds the number of A-
literals betusen theﬁ and the terminal A-iiteral and the complements of all
preceding B-literals whoss scope exceeds the number of A-literals between
them and the terminal A-literal can be inferred.

The scope of each literal in the conclusion is B and the scope of each
“literal added to a chain in the extension and p-extension operations is 8.
In the factorization and reduction operations (and also in ground
factorization and reduction performed by the postprocessing operation), the
scope of the leftmost involved literal is set to the maximum of its
previous scope and the number of A-literals between it and the rightmost
involved literal. In the p-reduction operation, the scope of a !iteral
descended from an involved A-literal is set to the number of following A-
literals in the derived chain. Each other |iteral has thé same scope as
its parent iliteral in the parent chain. After each contraction operatiﬁn,
the scope of each literal is set to the minimum of its previous scope and
the number of A-literals following it in the chain, i.e., no literal will

be allowed to have a scope uwhich exceeds the number of foilouwing A-

literals.

15

Lemma formation creates assertions from solved goals. Removal of an
A-literal by contraction does not mean that the goal it rapresehts has been
solved globally, but only that it has been solved in the environment of the
chain of which it was a part., Joined in disjunction with the A-literal is
the negation of each of the assumptions from the chéin used in tﬁe solution
of the A-literai. Thus, the resulting lemma states either the "solved" A-
literal is true or one or more of the assumptions wuas false. The
assumptions which could be used in the solution of the A-literal are the
negation of an A-literal (reduction, p-reduction) or a B-literal
(factorization). The scope mechanism keebs track of the assumptions made
With respect to the solution of each goal.

Lemma formation, uwhile it may generate useful assertions during the
search for a proof, is not required for completeness.

Severgl heuristics are aéailable to eliminate the generation of
redundant lemmas such as: (1) the first lemma to be generated after an
extension operation followed by zero or more factorization or reduction
operations is aluways redundant and (2) if the chain has two or more
terminal A-literals and the lemma associated with one subsumes the lemma
associated With another, the second need not be generated (specific cases
of this condition can readily be checked by examining the -scopes of the
literals involved). |

sumption. Redundant chains and assertions can be eliminated from
future use by subsumption. One chain is subsumed by another and can thus
be eliminated if an instance of the latter chain is an initial subsequence
of the former (sequences of B-literals betieen A-|iterals may be freely

reordered during the subsumption test). One assertion subsumes another if

16

the chain corresponding to the former assertion subsumes the chain
corresponding to the latter (the corresponding chain is formed by making a
list of B-literais being the consequents and complemented alnten:ecients_o{c
implications or disjuncts of di‘sjunctions) and, in the case uwhere the
subsuming assertion is an implication, no disjunct or consequent of the
subsumed assertion is matched to an antecedent of the subsuming assertion.
The latter provision prevents the subsumption of an assertion by another
implicative form of the same assertion both of which may be required for
completeness. Stronger subsumption rules are possible (see [81).

With relation to a search strategy, two additional classes of
subsumption are recognized: (1) forward subsumption is the subsumption of a
neuwly created chain .or' assertion by a previously available chain or
assertion and (2} backward gubsumption is the subsumption of a previously
available chain or assertion by a neuly generated chain. or assertion. In
general, completeness is assured only if, when backward subsumption ié
used, it is first checked whether the subsuming chain is eliminable by
forward subsumption.

Examples. This and the following proofs illustrate the usage of most
forms of the inference operations. Chains are represented as |inear
strings of literais wWwith A-literals bracketed. A-literals represent
"opened”" goals, i.e., goals for which a solution is currently being
attempted in the chain. B-literals represent "unopened" goals, i.e.,
subgoals for which an attempt for solution has not yet started. Each A-
literal is a logical consequence of all the literals to its right; thus,
the solution of each B-literal to the right of an A-literal solves the A-

iiteral while also solving all the other A-literals to the right of the

17

solved A-literal. Deductions are represented as a vertica} sequences of
chains, the ancestor of each derived chain being the chain above it. Each
derived chain is annotated to describe its derivation from its ancestor.
If a chain is the result of extension or p-extension by an assertion with
more than one consequent or disjunct, an alphabetic index is used to
"

designate which consequent or disjunct was used. Indices are "a", "b",

c’, etc., reading from right to left. The unannotated chains at the top
of each sequence of chains are the axioms. Here and elsewhere in this
paper, the conclusion and assertions of a problem will frequently be
referred to as theorem and axioms respectively.

This is a proof that -{Pa & Pb) - a=b.

1. Pav Pb first axiom from -~{Pa o Pb)
2. -Pa v -Pb second axiom from —{(Pa ¢ Pb)
3. a=b theorem to be established

4, [a=b]l -Pb -Pb p-extend to lb |

This operation initiates a proof by contradiction. Assuming a=b
{the complement of the |iteral a=b), the truth of -Pb A =-Pb
contradicts Pa v Pb,

5. la=b] -Pb factor
1t is only necessary to prove -Pb once.
6. [a=b) [-Pbl Pa extend by 2a
By axiom 2, if Pa is true then -Pb is true.
7. la=b] [-Pbl [Pal Pb p-reduce from A-literal

Again assuming a=b to derive a proof by contradiction, if Pb is
true then Pa is true.

8. empty reduce
In chain 7, subject to the assumption that the conclusion a=b is

false and that a=b, there are the implications Pb » Pa and Pa -+
-Pb, This ieads to Pb » -Pb, a contradiction if Pb is true.

18

Therefore, -Pb must be assumed to be true.

a=b, so the theorem is proved.

From chain S,

-:Pb -»

The foliowing four examples are adapted with some modification from

(91,

—
QOO U L WN -

—
>
.

DO~ &~ WN -~

NP WN e

B-»C
An-D~+B
A-Cwv -0

A

C

(Cl1 B

[C] (Bl A -D

(Cl B A [-D) A =C
iCl [B] A [-D] A
[C] (Bl A

empty

. bsa n a<b -+ a=b

bz08

. ash

b=<a

a8

(a2B] bz<a asb b20
[a28] bsga asb
[a28) bza

empty

a>@ - a2p
-bz8

a>g

asb

la=b]l a>B -b>B
[a=b] a>@
empty

. atb=2Z2vwc ~» amb v a=g

b=c

a+b=2%c

a=b

[a=b] a+b=2wc a=c

[a=b] a+be2wc l[axc) bxc
[a=b] a+ba2Zwc

empty

18

theorem
extend by 1
extend by 2
extend by 3a
reduce
factor
extend by 4

theorem
p-extend from 1
extend by 2
extend by 3
extend by &

theorem
p-extend to 1
extend by 2
extend by 3

theorem

extend by lb

p-reduce from A-literal
extend by 2

extend by 3

2. The Programmable Strategy Theorem Prover

The Programmable Strategy Theorem Prover (PSTP) is a program written
in UCI LISP (3] for the DECsystem-18 computer implementing the |inear MESCN
procedure as described in Section 1.

The linear MESON procedure is a good inference system for an
interactive, programmable strategy theorem prover since, it being an
extension of the problem-reduction method, it is more human-oriented than
alternative systems, and its input procedure nature and the relatively
smal |l number of operations that can be performed on any chain facilitatee
the design and use of the programmabie search strategy capabiliity.

In addition, the |inear MESON procedure is a suitable choice in terms
of performance since it appears to perform competitively with other
inference procedures when used as the inference system in a fully automatic
system. An implementation of the parent model elimination procedure at New
York University (4] wusing a depth first search strategy performed
competetively with a theorem prover employing the set of support refinement
and unit preference search strategy. Further evidence of the
competitiveness of |inear MESON procedure based systems wWiil be presented
in Section 3. .

Chain properties. In the design of a theorem proving program, it is
necessary to allou for the computation and retention of certain information
about each chain (clause) generated during the ssarch for a prqof. An
example is the necessity of retaining information on parentage of each
chain so a proof can be traced when discovered. Another example is the

computation of the length of a chain or the maximum level of function

20

nesting in the chain if length or depth bounds are being employed. It
would be wasteful to always compute and store such information since it may
not always be needed. Also, the retention of computed information about
chains should be contingent on such variables as the computational effort
required to compute the information, frequency of use of the information,
and cost in memory of storing the information. (A more fundamental
objection to always storing computed information about a chain is that the
information might change with time. For exampte, the fact that a
particular chain is the shortest chain in memory wWill probably be falsified
in the future.} Another important consideration in the design of an
information storage and retrieval mechanism for chains is the ability to
define new data which can be optionally computed for any chain,

This last consideration is especially important in an interactive
theorem proving program so that the user can cause to be computed whatever
information about a chain will be useful to him. It is also an important
consideration in the design of a theoren proving program uhich alloWs user
specification of search strategies.

The property storage and retrieval mechanism for chains in PSTP was
designed to possess the following characteristics. With the obvious
exceptions of the number of a chain and its ancestry information, no
information about a chain is computed unless and until this information is
requested. Retaining the information is a user option. A neuw computabie
datum about a chain can be defined be merely defining the LISP function
Wwhich computes the information.

The mechanism used is based on the concept of a chain property iist.

This is a Iist of dotted pairs; the first component of each dotted pair is

21

a property name (the access name of a datum about the chain); the second
component is the value of the property. The information storage and
retrieval mechanism functions in the folliowing way. If the value of the
property named, for example, NLIT (this represents in PSTP the number of
literale in the chain) is interrogated for & chain, that chain’'s property
list is examined for a dotted pair with first component NLIT. If such a
dotted pair is found, its second component is the desired information. If
property NLIT does nqt appear in the chain property list, the LISP function
NLIT is evaluated With the chain (including chain property iist) as its
singie argument. The value the function NLIT returns is then the desired
information. Further, if the LISP atom NLIT has non-NIL value, the
property name NLIT and newly computed value will be added to the chain
property list. |

New properties are defined by the DP ("define property”) function.
The DP function takes as arguments a function name, lambda variable list,
and expression (just like. the UCI LISP OE, DF, and DM functions). It
creates a LISP function which performs all the chain property list lookup
and modification operations, and evaluates expression for the argument if
the property value is not found on the chain property list. For exémple,
NLIT is defined in PSTP by evaluating (OP NLIT (CHAIN)‘ (LENGTH (CDDR
CHAIN))) where LENGTH is the LISP function which computes the length of a
list and (CODR CHAIN)} is the location of the list on literals of chain
CHAIN. (SETQ NLIT T) is then evaluated to order retention of values

computed by the NLIT function.
Some of the property functions already defined in PSTP compute the

number of A-literais in a chain (NALIT), the number of B-literals in a

22

chain (NBLIT), the total number of literals in a chain (NLIT), the maximum
function depth in a chain {(DEPTH), the number of variables in a chain
(NVAR), the number of LISP CONS operations required to construEt a chain
{SIZE} (this is a good size or complexity function), and the level (number
of inference operations in the derivation) of a chain -(NEXPAND).

Chain filters. This property storage and retrieval mechanism supports
a higher lavel chain storage and retrieval mechanism. Filters provide &
way of flexibly specifying which chains are to be operated upon and which
derived chains are to be stored. Two types of filters are distinguished by
usage: input filters and output fiiters. Input filters are empioyed by the
user to specify which chains are to be operated wupon, Only chains
"selected by" an input chain filter will be processed. Output filters are
used to specify which derived chains are to be retained. A chain must be
"accepted by" an output filter to be stored. The general form for a filter
is a unary LISP function name or |lambda expression which returns a non-NIL
vaiue if the chain argument is selected or accepted, NIL otherwise.
Several abbreviated forms are also available: (1) an integer selects or
accepts a chain_uith that chain number, (2) a list of integers selects or
accepts chains with chain numbers in the list, (3) a three element |ist
(called a triple} consisting of a binary function name and 2 integers or
property names selects or accepts chains for which the value of the
function applied to the integers and property values is non-NIL, and (4) a
list of triples uhich selects or accepts chains for uwhich each triple has
non-NIL valus.

This chain storage and retrieval mechanism is very flexible...The user

can designate chains for processing directly by number or by the properties

23

they possess and can arbitrarily specify the necessary conditions for a
newly derived chain to be storled. This user specification of output
filters is a far more general form of the usual specification of bounds in
theorem proving programs.,

Search gtratequ specification. One of the most important features of
PSTP is its capabiiity for specifying the search strategy to be used in
searching for a proof. Several theorem proving programs (e.g., QA3.6 {111}
permit the user to specify a particular combination of refinements of
resolution (restrictions on pairs of clauses to be used as input to the
resolution operation (e.g., {inear, merging, set of support, model
refinements)), but the capability for ordering inference operations given a
particular refinement of resolution is uncommon. PSTP is,‘of course,
restricted to using the linear MESON procedure with variations restricted
to different postprocessing operations, but it does have a general
capability for specifying search strategies.

Before describing the s_ear'ch strategy specification capability of
PSTP, it ie instructive to consider the proof strategy employed in many
other theorem proving systems in which search strategy is fixed with
possibly a few parameters which the user can specify to tailor the proof
search to a particular problem, Thus, the search strategy may be
fundamentally depth first or perhaps breadth first with a parameter
specifying the permitted amount of look-ahead using unit preference. Much
of the control the user has over such systems is the specification of which
chains to discard. However, even this decision is severeiy constrained.
Usualiy, the user is only permitted to specify the values of a few
parameters such as the maximum length or function depth of clauses to be

retained.

24

We have seen that output filters generalize the capability of
specifying retention of chains. Chain order functions provide the
capability of specifying the order of expansion of the search space.

Chain order functions. Associated With each list of chains is the

name of an order function. (The order function is actually a chain
property function as described above.) UWhenever a chain is stored in a
chain Jist, it is inserted according to the numerical value of the
corresponding order function applied to the chain. The chains with the
smal lest values of the order function are stored at the top of the chain
list (in case of ties, the more recently stored chains will be on top of
the chafn list). This maintenance of chain lists in sorted order in
combination with the SEARCH and SEARCH2 commands provides a qui te general
capability for specifying search strategies.

Search commands. The SEARCH command is one of the fundamental
functions for automatically expanding the search space. The normal mode of
operation is for the SEARCH command to remove the top chain from a chain
list, derive all possible immediate successor chains from this chain (this
is knouwn as expanding the chain), and store those successor chains selected
by an output fiiter in the originali chain |ist according to its order
function. Thus by specifying an order function and using the SEARCH
command, the user can specify in what order chains are to be expanded and
thus partially controi the search strategy. For example, if the default
order function {(which merely returns 8) s used, the search strategy is a
depth first strategy. If the deduction level of 3 chain is used as order
function, the search strategy is a pure breadth first strategy (ievel

saturation). The SEARCH command can be viewed as an implementation of

25

Nilsson’s Ax algorithm [1B8] for graph searching as applied to theorem
proving. Each derived chain is a node in the graph and the generation of
all immediate successors to a chain by extension, factorization, etc.,
represents the expansion of a node in the A% algorithm.

Although the SEARCH command is very effective in ordering the
expansion of chains, the full expansion of a chain at each step often
results in generating a large number of chains that will not be used
because the value of the order fﬁnction for these chains exceeds the
maximum order function value of any chain appearing in some proof. This
presents two difficulties: (1) unused high order function vaiued chains
fill up memory too quickly and (2) their generation réquires extra,
unnecessary work, The first of these problems c¢ould be salved by
specifying an output filter that rejects chains with order function value
exceeding a certain amount. However, this solution generates a bounded
search strategy, i.e., a paremeterized incomplete strategy which may fai!
to find a proof bhecause the order function maximum is set too Ilow.
Moreover, the specification of a bounded search strategy fails to solve the
problem of extra Work required in the generation of rejected chains.

The solution adopted for PSTP includes a means for specification of
ordering of individual inference operations rather than just chains. The
form of the value of the order function was generalized to include sorted
{ists of operations with numerical values. For example, the order function
value ({281 REDUCE) (382 EXTEND B)} couid represents the order function
value for a chain with previously unperformed operations of reduction and
extension by chain number . Chains wWith order function‘values of thié
form are inserted into chain lists according to the numerical value of the

first specified operation (281 in the example).

26

The SEARCH2 command is designed to operate on chain lists with order
functions of the new form., The SEARCH? eommand. rather than deleting and
expanding the top chain on the chain list, deletes and performs only the
first inference operation of the order function value of the top chain on
the chain list, [f any inference operations remain in the order function,
the top chain is reinserted in the chain tist according to the value of the
next specified inference operation. Thus, the chain Iist is aluways a list
of chains ordered according to the minimum vafue of the ﬁnperformed
inference operations for that chain. The SEARCHZ command will generate
successors of a single chain uninterruptedly only so. long as none of the
successors of the chain or any other chain on the chain list has an
inference operation with |ower numerical value than the next inference
Operation to be performed on the current chain.

The SEARCH2 command can also be viewed as an implementation of
Nilsson's Ax algorithm for graph searching with each node being a chain and
a8 single inference operation. Expansion of a node now mereiy consists of
applying that inference operation to that chain.

Using the SEARCHZ command, for example, it is possible to use an order
function which specifies a depth first search strategy that performs only
one inference operation on each level {until a level bound is reached
forcing a backup)., A more realistic order function for use with the
SEARCHZ command was used in the experiment described Section 3. Note that
the performance of the single specified inference operation may actually
result in the generation of more than one successor chain as, for example,
When there are two waus of extending a chain by & particular axiom.

Eormat functions. An additional mechanism for altering the strategy

27

used by PSTP is accomplished by the use of format functions. Format
functions can be used to reformat (edit) chains prior to their storage.
For example, a format function can be used to reorder the last B-literals
of & chain to accompiish the effect of Kowalski and Kuehner’'s |iteral
selection function mechénism (5], A format function is associated wuith
each chain list. Each chain is reformatted according to the order function
of the chain list into which it‘is being stored unless it is already in
that format. A chain may be stored in two different formats in two
different chain lists (formats are permitted to aiter the seguence of
literals which constitutes the chain itself, but not the chain property
list), Default format functions are those which convert chains to x-
standardized or y-standardized form by renaming variables.

Command summary. Following is a brief description of each of most of
the PSTP commands. These PSTP commands can be divided into four classes:
declarative commands ‘{CHAINLIST. PARAMETERS, POSTPROCESSING, PROBLEM),
informative commands (ANCESTRY, COUNT, OISPLAY), manipuiative commands
(COPY, DELETE, FOR, TRANSFER), and inference commands (E)(PAND. SEARCH,
SEARCHZ). An abbreviated syntax for each command is also presented:
linguistic variables are enclosed in angle brackets (e.g., "<sources>") and
optional command phrases are enclosed in square brackets {e.qg., " {DELETE) "
and "[TO <destinations>]"), If any phrase of a command is absent, a
default value wWill be used. |

In the descriptions of the commands, the most important linguistic
variables are <sources> and <destinations>. A source or destination
represents, in general, a chain list and a chain filter. For a chain to be

used by a command specifying <sources>, it must be a member of one of the

28

specified chain lists and be selected by the corresponding chain filter.
For a chain to be stored in the chain |ist of a destination by a command
specifuing <destinations>, it must be accepted by the corresponding chain
filter. Note that in the syntax, <sources> and <destinations> are never
optional (except as part of an optional phrase). This is because the empty
specification for <sources> and <destinations> is legal and has a default
value.

Any of the non-declarative commands can be interrupted at any time by
typing any character. The command completes processing of the current
chain and then enters a "break". In this state, the user can execute any
PSTP command or LISP function and continue or abort the processing of the
interrupted command.

ANCESTRY command. The (ANCESTRY [DELETE] <sources>) command prints
the derivation of each chain designated by <sourcess. If DELETE is
specified, each designated chain is also deleted from its chain list.

CHAINLIST command. The (CHAINLIST [<declarations>]} command is used
to deciare chain lists that will be used and their fqrmat and order
functions. [f <declarations> is absent, the CHAINLIST command prints the
list of previously declared chain lists and their format and order
functions.

COPY command. The (COPY [DELETE] <sources> [TO0 <destinations>1)
command copies each chain designated by <sources> to each of
<destinations>. If DELETE is specified, each designated chain is also
deleted from its chain |ist,

COUNT command. The (COUNT [DELETE] <sources>) command counts the
number of chains designated by <sources>. If DELETE is specified, each
designated chain is also deleted from its chain list,

23

DELETE coumand. The (DELETE <sources>) is the same as the (COUNT
DELETE <sources>) command, i.e., the COUNT command with chain deletion
specified.

DISPLAY command. The (DISPLAY [DELETE] <sources>} command prints each

chain designated by <sources>. I[f DELETE is specified, each designated
chain is also deleted from its chain |ist.

EXPAND command. The (EXPAND [EXTEND] [FACTOR} [REDUCEI [PEXTENDI]
[PREDUCE] [DELETE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>} [AND
<destinations2>)) is the principal inference command for interactive use.
It Wwill perform the designated inference operations on each of the chains
designated by <sourcesl> using each chain designated by <sourcesZ> as
second argument to binary inference operations {extension and p-extensionl).
Derived chains uWill be stored in <destinationsl> and lemmas Will be stored
in <destinations2> ({(chain filters permittingl. If DELETE is specified,
each designated chain in <sourcesl> is also deleted from its chain list.
The EXPAND command is restricted to performing inference ‘operations on
chains existing at the time of its invocation, i.e., it Wwill not perform
any inference operations on chains it has just derived. Tha command
terminates when (1) the empty chain is generated, i.e., & proof has been
found, (2) all the specified operations have been performed, or (3] the
user suspends processing of the command by typing any character. [f no
inference operations are designated, all inference operations Will be used.
[f at least one inference operation is designated, the word EXPAND may be
omi tted.

FOR command. The (FOR [DELETE] <sources> DO <function») command

applies the unary LISP function <function> to each chain designated by

38

<sources>, If DELETE is specified, each designated chain is also deleted
from its chain list,

PARAMETERS command. The (PARAMETERS [<index>]) command is used to
declare the values of several global parameters. If an <index> (an
arbitrary LISP atom) is specified, it designates for use the predefinéd set
of parameter values associated with <index>, I[f an <index> is not
specified or <index> has no previously defined meaning, the PARAMETERS
command asks a series of questions requiring the user to define the value
for each parameter. Parameters set by the PARAMETERS command inciude:
Whether newly generated chains are to be printed, the format in which
chains are to be printed, whether lemmas are to be generated, and whether
subsumption is to be performed.

POSTPROCESSING command. The (POSTPRGCESSING- (<index>]) .command is
used to declare what postprocessing operation is to be employed, [f an
<index> {(an arbitrary LISP atom) is specified, this <index> designates the
postprocessing operation that will be used. Allouwed <index>s include WEAK-
SAVYE, WEAK-DELETE, STRONG-SAVE, and STRONG-DELETE, designating the
postprocessing operations described in Section 1. If an <index> is not
specified or <index> has no previously defined meaning, the POSTPROCESSING
command asks a series of questions requiring the user to designate which
action among a list of alternative actions is to be taken for a given
condition., For example, the POSTPROCESSING command may ask whether, in the
case of an A-)iteral followed by an identical B-literal, the B-literal
should be saved, deleted, or deleted with the reduction operation recorded
in the ancestry of the chain.

PROBLEM command. The (PROBLEM [<deciarations>]) command sets up a

31

problem for the theorem prover. It first makes the chainiist declarations
specified by <declarations> (if fewer than tuo chain list declarations are
specified, up to two default declarations will be made) and then asks the
user to type in the theorem and each axiom. The theorem is stored in the
first declared chain list; its negation and the axioms are stored in the
second declared chain list. The input format for the theorem and axioms is
the same as was used in the description of the linear MESON procedure
except that prefix form for predicate and function symbols is required, and
{due to character set limitations) A and v are omitted and --> |is
substituted for ». Thus, Pab A Pba » a=b v (Qabx is typed in as Pab Pba -->
=ab Oabx. The theorem and axioms are then encoded into internal list form.
The PROBLEM command permits the ﬁser to save the encoded axioms so that
they will not need to be retyped in future proofs of the same problem.
SEARCH command. The (SEARCH ([EXTEND] [FACTOR] (REDUCE] [PEXTENDI]
[PREDUCE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>] [AND
<destinations2>]) repeatedly deletes the first chain froh <sourcesl> (a
chain with lowest order function value) and performs on it each designated
inference operation wWith the chains designated by <sources2> as second
argument to binary inference operations (extension and p-extension).
Derived chains Will be stored in <destinationsl> and lemmas will be stored
in <destinations2> (chain filters permitting). So that newiy generated
chains can be used as input to inference operations by the SEARCH command,
<sourcesl> and <destinationsl> will ordinarily specify the same chain
lists. The command terminates when (1] the empty chain is generated, i.e.,
a proof has been found, (2} <sourcesl> is empty meaning no moreioperations

can be performed and no proof could be found within the constraints of the

32

specified operations, initial chains, and chain filters, or (3) the user
suspends processing of the command by typing any character. If no
inference operations are designated, all inference operations will be used.

SEARCH2 command. The (SEARCH2 [EXTEND) [FACTOR] [REOUCE] [PEXTEND)
[PREDUCE] <sourcesl> [BY «<sources2>] I[GIVING <destinationsls>] [AND
<destinations2>]) repeatedly deletes the first chain from <sourcesl> (a
chain Wwith lowest order function value) and performs on it the first
designated inference operation in the order function value. This inference
operation is then deleted from the order function vaiue' and, if any
inference operations remain in the order function value, the chain is
reinserted in <sourcesl> (now with the numerical value associéted Hith the
next inference operation as the numerical value of the chain for insertion
into the sorted chain Ilist). Derived chains wWill be stored in
<destinationsl> and lemmas will be stored in <destinations2> (chain filters
permitting). So that newly generated chains can be used as input to
inference operations by the SEARCHZ command, <sourcesl> and <destinationsls
Will ordinariily specify the same chain l|ists. The order function, using
variables of the SEARCHZ function, wWill construct a |ist of inference
operations with (in the case of binary inference operations) second
arguments as specified in <sources2> for derived chains as they are stored.
The command terminates when (1) the empty chain is generated, i.e., a proof
has been found, (2) <sourcesl> is empty meaning no more operations can bg
performed and no proof could be found Within the constraints of thé
specified operations, initial chains, and chain filters, or (3) the user
suspends processing of the command by tgpihg any charaéter. If no

inference operations are designated, all inference operations will be used.

33

TRANSFER command. The (TRANSFER <sources> [T0 <destinations>])
command is the same as the (COPY OELETE <sources> [T0 <destinations>l)

command, i.e., the.CDPY command with chain deietion specified,

34

3. Performance Study

In order to give some idea of the performance of PSTP with some simple
search strategies and to make some points about relative merits of some of
these strategies, the results of. PSTP runs on 9 exampies using 4 strategies
are presented here. Results are compared to results for two other theorem
proving programs tested on the same examples.

The examples. The examples are taken from a comparative study of
theorem proving strategies used by 0A3.6 by Reboh et al [11] (additional
information on sources, theory, and previous uses of these examples are in
[111}; the same examples were also run for an SlL-resolution theorem prover
(here called SLRTP) by Aubin [1,2]. The examples are axiomatized just as
for 0A3.6 with an occasional substitution of a disjunction for an
impiication and, in the cases of unsatisfiable sets of axioms, the use of
the negation of one of the axioms as the theorem.

Inference operations used. All the examples were run With extension
as the only rule of inference except the NUML example for which reduction
was also necessary. The WEAK-DELETE postprocessing operation ués used for
ail the examples. Its use, of course, permits ground factorization and
reduction. [n some examples (BURSTALL, SHORTBURST, GROUP1, GROUPZ2), it is
readily apparent from the structure of the problem that no reduction is
possible (since every chain derived from the theorem has only positive
literals eliminating any possibility of matching an A-literal uWith a
complementary B-literal}. The ANCES1 example is propositional and thus the
ground reduction in the WEAK-DELETE postprocessing operation is sufficient.

In the remaining three problems (HAS-PARTS1, HAS-PARTS2, PRIM} for which

35

reduction was not employed {although ground reduction was used in eachl},
the use of the reduction operation resulted in the generation of no
additional chains. Lemmas were not generated for any of the examples.

Search strategies used. The strategies used are characterizedlbg 4
parameters: length multiplier, level multiplier, length maximum, and level
maximum. The length of a chain is defined to be its number of B-literals.
This is consistent with the notion of the length of a clause in resoclution
theorem proving being its number of literals since in a chain A-literals
record ancestry information and uwould not bhe present in the corresponding
ciause form. The level of a chain is defined to be the number of inference
operations employed in deriving it from the afleged theorem excluding those
operations (ground factorization and reduction) automaticalliy performed by
the postprocessing operation.

The GEARCHZ search command was employed with projected inference
operations ordered according to the minimum vaiues of a weighted sum of the
expected length and level of the result. The expected length of a chaiﬁ
derived by extension is the Iength of its parent chain being extended plus
the length of the axiom minus 2, The expected length of a chain derivéd by
factorization or reduction is the length of its parent chain minus 1. The
actual length may be less (but never morel due to removal of-B—literals by
the accepting transformation. The expected and actual level of a chain is
the level of its parent plus 1. Only inference operations uwhose results
have expected lengths and levels not exceeding the length or level maxima
Will be attempted (this way of implementing iength and level maxima was
also used by QA3.6 and.SLRTP}.

Two sets of length and level multipliers were tried. The first has a

36

length multiplier of 181 and a leve! multiplier of 188 and is called the
1817188 strategy. In the 1B1/188 strategy, the projected inference
operation with highest merit is one with the smallest value of (188 times)
the sum of expected length and level of the result. Ties are resolved in
favor of |esser expected length (a 108/181 strategy would resoive ties in
favor of lesser expected levei). (It is assumed here that the expected
length of a chain will never exceed 188.) The most important thing to note
about the 181/18B8 strategy is that it is essentialiy the same as Kowalski
and Kuehner's upper diagonal search strategy [S]. It is an admissable
strategy [18) except for cases where the postprocessing operation removes
B-literals by ground factorization or reduction. First proofs discovered
by admissable strategies are guaranteed to be minimum level proofs.

The second strategy has a length muitiplier of 581 and a level
muitipiier of 188 and is cailed the 501/188 strategy. Ih the 581/100
strategy, the projected inference operation with highest merit is one wWith
the smallest value of (180 times} the sum of the expected ievel and 5 times
the éxpected length of the result. Ties are again resolved in favor of
iesser expected length, By multiplying length by § times as much as level,
@ strong length preference strategy is produced. The 581/188 strategy is,
of course, inadmissable since it is cleariy not always the case that it
requires at least S inference operations to remove a singte literal. (For
a strategy to be admissable, the estimated additional cost to solution mus@
alkays be less than or equal to the actual additional cost to solution,)

The.131/193 and 501/180 strategies were each tried with (bounded) and
Without (unbounded) length and level maxima. The length and level maxima

used were those used by 0A3.6 wherever possible.

37

Statistics. The perfofmance of strategies will be primarily
chafacterized by the "chains generated” statistic. Here, this information
is represented by a &-tuple: the first component is the number of ﬁhains
retained; the second component is the number of acceptable chains
generated; the third component is the total number of chains generated; the
fourth component is the number of attempted inference operations. The
number of retained chains is the number of acceptablie chains minus the
number of chains eliminated by subsumption, function depth tests, etc. No
such processes uere used to eliminate chains in this experiment, so the
number of retained chains is always equal to the number of acceptable
chains. The total number of chains generafed is the number of'acceptable
chains plus the number of non-acceptable chains generated, These
statistics and the time figures referred to below are automatically
accumulated by PSTP and printed out when & proof is found.

Nearly comparable statistics are presented uhere available for QA3.6
and SLRTP (except QA3.B statistics refer to clauses rather than chains).

Best and mean performance figures are presented for (0QA3.6 on each
example. For (0A3.6, the number of retained clauses is the number of
retained ciauses after subsumption and function depth tests; the nﬁmber of
acceptable clauses is computed as the number of successful resolutions and
factorings; the number of attempted inference operations is computed as the
number of attempted resolutions and factorings. The proportion of tested
UA3.6 strategies which discovered a‘proof is given on the same line as the
mean performance of OA3.B strategies; unsuccessful strategies were excluded

in computing the means.

Performance figures are presented for SLRTP where the set of support

38

for the refutation was the negation of the theorem in the PSTP proof on
each exampie. Due to the similarity of operations and terminalogy between’
the iinear MESON procedure and the inference system for SLRTP, SL-
resolution [S], we will here present a brief description of SL-resolution.

SL-resclution, a refutation procedure, can be vieued as a variant of
model elimination without equaiity with the foliowing features. {1} The
capability for reordering B-literals at the end of a chain is formalized in
the form of a literal selection function which designates the literal to be
extended on in succeeding extension operations. (2) Facterization is a
required operation for completeness in SL-resolution since the equivalent
of the STRONG-SAVE .postprocessing operation is employed. The model
elimination factorization and reduction operations are combined into the
SL-resolution reduction operation. (3) SL-resolution requires a fully
factored input set of clauses, i.e., every non-tautotogous factor of an
input axiom must also be 'input {or, as in SLRTP, derived). A benefit of
this is that Sl-resolution reduction operations need never be per formed
Wwith the leftmost invo_lved literal being or following the last A-literal of
the chain. (4) Any B-literal following the last A-literal of the chain is
@ candidate for removal by the reduction operation, not just the rightmost
as in model elimination. (5) Upper diagonal search is the prescribed
search strategy for SL-resoclution.

For SLRTP, the number of retained chains is the number of retained
chains after function depth tests and subsumption {subsumption ié only used
in eliminating redundant axiom chains or their factors during the process
of generating a fuily factored input set of axioms); the number of

acceptable chains is computed as the number of successful extensions,

39

reductions, and factorings (used only for generating a fully factored input
set of axioms); the number of attempted inference operations is computed as
the number of attempted extensions, reductions, and factorings. The GROUP1
and GROUPZ exampie statistics are taken from (21,

Iime statistics. The "search time" statistic represents the time
spent in searching for a proof by a compiled version of PSTP; it excludes
time spent in inputting the problem, outputting of final statistics and
proof, and garbage coliection, although it does include time required for
some trace output during the search. Search time is the only widely
variable component of total time to solution wuWith problem input and
statistics and proof output time relativeiy constant and smaili. Althoggh
PSTP is conservative of storage (performing LISP CONS operations only when
necessary when instantiating chains) and therefore ordinarily requires few
garbage collections, garbage collection time is excluded because (1)} time
consuming garbage collections occurring at random times in the search for a
proof tend to randomize the time statistics especially for short searches
(this problem could be overcome by always starting a search for a proof
immediately after a garbage collection) and (2) frequency of garbage
collection is dependent on the amount of storage available (Wwith infinite
storage, there need not be any garbage collections). Nearly all the proofs
presented here uere found with about 25888 words available for storing
chains and most were found with nb garbage collections,

Time statistics should not be used for comparison among strategies
used by different theorem provers uWithout considerable caution and more
information than is usualiy available. Such statistics are of course

influenced by the machine and operating system used, ianguage and coding of

48

the theorem prover, uwhether compiled (SLRTP, PSTP} or interpreted (QA3.6},
special conditions applying to the operation of the theorem prover f{(e.g.,
tracing), and some randomness in the times themselves (such randomness,
aitributable to variable load on the timeleharing system, is visible in
some anomalies in the statistics presented here).

Besuits. Four primary observations can be made from the results of
the experiment presented here: (1} PSTP pefforms competitively with QA3.6
and SLRTP, (2) the 581/188 strategy performs better than the 181/108
strategy (for these examples), (3) the 581/188 strategy is relatively
insensitive to length and level bounds, the 181/188 strategy ié much more
sensitive, and (4) elimination of some implicative forms of the axioms can
result in improved performance, |

The basis for comparison of the results of PSTP and QA3.8 is the
number of acceptable chains generated (equais the number of chains
retained) for PSTP versus the number of acceptable clauses generated
(equals the number of successful resolutions and factorings) for QA3.6.
This is a fairer comparison than one using the number of retained clauses
for QA3.6 since 0A3.6 eliminated clauses by function depth maxima and
subsumption. Even this comparison is stili somewhat unfair to PSTP éince
if function depth tests and subsumption had not been used in 0A3.8, the
number of generated clauses would presumably have been farger sfnce
eliminated clauses could now act as parent clauses in additional_
inferences.

Using this basis for comparison, the unbounded 501/100 strategy (the
strategy we prefer for reasons given below} performed better than the
average of 0QA3.6 strategies which found a proof in all the exampies except
PRIM, GROUP1, and GROUPZ.

41

In the PRIM example, the unbounded 581/188 strategy performed only
siightlg worse than the average of UA3.6 strategies.

In the GROUPL example, the absolute difference in performance is small
even if the number of chains generated by PSTP is double the number of
clauses generated by 0A3.6. In vieuw of the fact, for example, that by
reversing the order of presen{ation of the axioms to PSTP can cause the
performance of PSTP to exceed that of 0A3.6, we tend to regard this
difference as being relatively insignificant.

The difference in the case of GROUPZ is much more serious and has a
rather different explanation. MWhere the formulation of the GROUPZ example
has several unit axioms and two 4~literal associative axioms, the use of a
length maximum value of 3 can be seen to be extremely restrictive. In
resolution terms, this length maximum requires that only units be resoived
against the associative axioms, and in the case of GROUPZ if the negation
of the theorem is used as the set of support, the Ilength maximum
automatically restricts any tested strategg'to a further refinement of unit
resolution in wuwhich only the negation of the theorem can be directly
resoived against the associative axioms. PSTP was tested Wwith a variant of
the GROUPZ example in which axiom 3 was reordered so that a proof meeting
the length maximum vaiue of 3 restriction existed. On this example, the
unbounded 181/188 strategy generated 435 chains; all the other strategies
generated 23. MWe therefore feei that the better performance of QA3.6 on
this problem was more attributable to the restrictive length maximum than
to an intrinsic inferiority of PSTP,

The comments about the restrictive length bound used by 0A3.8 in the

GROUP2 example can be extended to severa! other examples. The BURSTALL,

42

SHORTBURST, HAS-PARTS1, HAS-PARTS2, PRIM, ANCES1, GROUP1, and GROUPZ
examples all had very restrictive length maxima, in every case set at or
below the minimum value required for PSTP to discover a proof. Level
maxima were often similarly restrictive although we perceive this to be
much less important in reducing the size of the search in the non-depth
first search strategies tested. We feel that use of such restrictive
length and level (especially length) bounds invalidates the results of [11]
to a degree, since their use imposes severe |imitations on the structure of
the search space. In this restricted search space, tests of different
strategies may fail to discriminate between strategies, or unfairly
discriminate betueen thenm,

Given the similarity of SL-resolution and the iinear MESON procedure,
one Hould anticipate substantial similarity in the results. for PSTP using
the bounded 181/188 strategy (upper diagonal search) and SLRTP. For B of
the examples (BURSTALL, SHDRTBURST. HAS-PARTS1, PRIM, ANCES1, and NUM1},
the results agree closely. Differences emerge for the remaining 3
exampies. MWe don’t know why PSTP did so much worse than SLRTP on the HAS-
PARTS2 example. In the GROUPl example, use of a fully factored input set
of clauses was clearly beneficial to SLRTP since the very short proof could
be shortened further by Using a factored form of one of the associative
axioms, PSTP with factorization could not match the SLRIP results, since
extension by the asso;iative axiom followed by factorization counted as 2
inference operations in computing the level of the resulting chain {uwhose
value is used to compute the order function value) whereas extension by the
factored associative axiom by SLRTP counts as only 1 inferencé operation.

(PSTP could be made to equal SLRTP's performance on this exampie by

43

inputting a futiy factored set of axioms, a perfectiy legal operation,
al though unnecessary for completeness.) In the case of the GROUPZ example,
for which SLRTP failed to find a solution, both the bounded and unbounded
181/188 strategies in PSTP showed relative difficulty in discovering a
soiution, In SLRTP, this difficulty was exacerbated by the very feature
Wwhich aided the quick solution of the GROUPL exampie: mandatory
factorization, PSTP with factorization and the STRONG-DELETE
postprocessing operation {resulting in an inference system very similar to
S{.-resolution) failed to find a proof with the unbounded 181/188 strategy
after 1507 chains were generated, discovered a proof while generating 418
chains with the unbounded 581/188 strategy, and discovered a proof while
generating 458 chains uith each of the bounded strategies. The proofs
~discovered were the same as those discovered without factorization.

We believe the detrimental effects of factorization as demonstrated in
the GROUPZ example results are more typical than the beneficial effects
iliustrated in the GROUPL example. In our experience, even in cases where
factorization does shorten a proof (as it did not in the GROUP2 examplel,
the proliferation of highly instantiated chains caused by the use of
factorization still often outweighs the benefits. (These negative comments
clearly refer only to general factorization where |iterals must be unified;
factorization in the ground case is clearliy beneficial and is included in
the postprocessing operations we used here.) Should future experience
prove this judgment about factorization wrong, the |inear MESON procedure
still permits factorization as a iegal though optional operation.

Another point can be made here concerning SLRTP's efforts to discover

a solution to the GROUPZ exampie. SLRTP uses a literal selection function

44

to designate which literal of each derived chain is to be used in future
extension operations. The only literal seiection function tested was the
function which alwauys selects a literal which has the fewest matching
literals among the axioms. This has the obviously desirable characteristic
of reducing the branching rate of the search tree since the selected
literal has the fewest matches among the axioms and, further, removal of
the selected literal after some inference operations will wusually
instantiate the remaining iiterals and reduce the number of literals among
the axioms matching them. However, this lfteral selection function is, in
the case of problems uith structure similar to the GROUP2 example,
inconsistent with the use of length maxima. 1In GROUP2, for example, fhe
literal selection function Will show a preference for |iterals capasble of
being extended upon only by the associative axioms ({since any positive
literal matches the consequent of the associative axioms, any |iteral
matching & unit axiom also matches the associative axioms). Thus, the
effect of the use of this literal selection function is to jncrease the
léngth of chains appearing in a deduction possibly requiring the increase
of the length maximum used.

One final point remains about the comparison of results betueen PSTP
and SLRTP. This concerns the very small number of attempted inference
operations by SLRTP. This is due to the use of a literal classification
tree which automaticailly selects out likely matches for literals to be
extended upon from among the literals in the axioms. The extension
operation is onily attempted for axioms containing literals séfected bg the
literal classification tree. This probably represents a fairly smatl

(though real) saving in computational ‘effort since one must cohnt the cost

45

of creating and accessing the literal classification tree and the cost
saved is that of attempting unifications destined to fail, usually a fairly
quick operation. The reaf benefit of use of the |iteral classification
tree is the elimination of the muitiple attempts at unifying literals that
would ordinarily result from use of the literal selection function
requiring discovery of the number of matches for a literal among literals
in the axioms.

In comparing the four strategies tested by PSTP among themselves, one
first discovers that the 581/1B8 strategy invariably performed as well as
or better than the 181/188 strategy for the same choice of length énd level
maxima. This is especially true of the results for the BURSTALL, GROUPZ,
and PRIM examples in the absence of length and level maxima. A further
demonstration of the supefioritg of the 581/108 strategy is its reiative
insensitivity to length and level bounds. Only in the BURSTALL example did
the bounded 581/188 strategy perform significantly better than the
unbounded strategy. Also, in the PRIM and GROUP2 examples, the addition of
length and level bounds actually degraded the performance of the 581/180
strategy since the bounds excluded proofs discovered by the unbounded
strategy. In contrast, performance of the 181/168. strategy was often
improved by the addition of length and level bounds, but (as stated above)
never improving upon the performance of the 501/108 strategy. The
demonstrated insensitivity of the 581/188 strategy to the addition of
length and level bounds seems especially significant in view of the often
extreme restrictiveness of the bounds tested.

Due to its generally good performance and lack of improvement with the
addition of bounds, we regard the unbounded 581/188 strategy as the best

among those tested.

46

We feel generally that, provided it per forms adequately, a complete
{e.g., length preference) strategy |ike the unbounded 5@1/188 strategy is
to be preferred to an incomplete {e.g., length bounded) strategy |ike the
bounded 181/1088 strategy, even if the latter, with appropriate choice of
bounds, can often match the performance of the former.

Finaliy, we merely note that judicious elimination of various
implicative forms of the axioms can result in significantly improved
performance as demonstrated in the results for the HAS-PARTSI, HAS-PARTSZ,
and PRIM exampies. Of course, this elimination of implicative forms of the
axioms destrous the completeness property of the |inear MESON procedure.
However, this controlled incompieteness may be desirable in cases where
significant improvement in performance results. Compieteness could be
preserved and nearly the same effect gained by presenting PSTP with all the
implicative forms of the axioms, but (via the order function definition)
giving PSTP a strong preference for using one instead af another.

One feature of the |inear MESON procedure not previously discussed is
the length of its proofs. It is ch;racteristic of linear theorem proving
strategies that they require longer proofs than some other strategies.
This and past studies (1,4] indicate that |inear strategies can overcome
this increased proof length énd perform competitively with other
procedures, The linear resolution strategy tested in 0OA3.6 was less
successful since the special chain rejection criteria of variants of the
model elimination procedure were not used.

“UWhile the length of a proof is one measure of its complexity, we feel
that the increased length of |inear MESON procedure proofs is not a great

disadvantage in terms of readability. The problem-reduction method

47

oriented form of such proofs often makes them more comprehensible than
ordinary resolution proofs relying on converging |ines of deduction

resuiting in a refutation.

48

4. Summary

We have presented the |inear MESON procedure, a procedure we feel to
be one of the most natural avéilable systems of complete jnference in the
first order predicate calculus due to its linear format and relationship to
goal-subgoal trees. It also has advantages in the capability for inputting
multipie implicative variants of individual axioms so that individual
variants can be differentiaily treated {or ignored). Another advantage of
the |inear MESON procedure as compared With, for exampie, SL-resciution is
the optional nature of the factorization operation. Although the point is
not elaborated upon here, it is our observation (also made by Fleisig et al
[41) that factorization (except ground factorization) is usual ly harmful
and results in instantiating chaing too greatly.

The Programmable Strategy Theorem Prerr (PSTP) is a theorem proving
program using the linear MESON procedure as its inference system.
Especially significant features of PSTP are the general capabilities for
specifying information to be computed or retained about chains, for
specifying which chains are to be retained or manipulated by a given
command, and for specifying the order in which inference operations are to
be performed in fully automatic searches for a proof.

We have presented the results for PSTP solutions of 9 exampies
previously tested in two other theorem proving studies. From these results
We concluded that PSTP performed competitively as compared with the other
tested theorem provers. We feel that the potential significanée of PSTP is
not that it perform spectaculariy using simple search strategies such as

those tested (it doesn't), but that it provides an inference system and

48

- system features which facilitate the user specification of more complex and
effective search strategies and chain elimination criteria.

We also demonstrated empirically the inferiority of the diagonal
search strategy to similar strategies which have a strongér length
preference component and that such length preference oriented strategies
all but eliminate the need for length maxima for problems of this level of
complexity. MWe prefer search strategies that have, for example, length
preference built in to the‘added imposition of length bounds: the use of
preference strategies in the absence of bounds results in complete
strategies guaranteed to find a solution if one exists.

We have also criticized some of the methodology used in previous
theorem proving studies.l Resu[ts in such studies are often heavily
dependent on -the length and level! [(especially length) bounds ﬁsed in
restricting the search for a solution. In consequence, success in finding
a solution in reasonable time and space is often more attributable to the
bounds used than the tested strategy. Thus, such results fail to
adequately discriminate betueen different fheorem proving procedures. MWe
urge that future studies test theorem proving procedures in the abseﬁce of

- artificially imposed bounds.

50

Acknouledgments

I uwish to thank Prof. Donaid W. Loveland (Department of Computer
Science, Duke University) for his guidance during the development of PSTP
and for his continuing development of the mode! elimination and MESON
procedures. 1 aiso wish to thank Profs. Jack Buchanan, Alien Newe!ll (both
at Department of Computer Science, CMU) and Peter B. Andreus {Department of
Mathematics, CMU), and René Reboh (Datalogiiaboratoriet, Uppsala
University) who, in addition to Prof. Loveland, ail reviewed an earlier

version of this paper.

51

18.

11.

Bibliography

Aubin, R. Some experimental results on SL-resolution. Memo No 6B,
Department of Computational Logic, School of Artificial Intelligence,
University of Edinburgh, Edinburgh, July 1973,

Aubin, R. Personal communication. Dec. 1973,

Bobrow, R. J., Burton, R. R., Jacobs, J. M. and Lewis, D, UCGI LISP
Manual. University of California, Irvine, Calif., 1973,

Fleisig, S., Loveland, D., Smiley, A. K. IIl and Yarmush, D. L. An
implementation of the model elimination proof procedure. J. ACM 21, 1
(Jan. 1974), 124-138,

Kouwaiski, R. and Kuehner, D. Linear resolution uith selection
function. Artificial Intelligence 2 (1971), 227-268.

Loveland, D. W. A simplified format for the model elimination theorem-
proving procedure. J. ACM 16, 3 (July 1968}, 343-363.

Loveland, D. W. A unifying view of some |inear Herbrand procedures. J.
ACM 19, 2 (Apr. 1972}, 366-384.

Loveland, D. W. Forthcoming book. North-Holland, Amsterdam.

Lovetand, D. W. and Stickel, M. E. The hole in goal trees: some
guidance from resolution theory. Advance Papers 3rd Int. Joint Conf. on
Artificial Intelligence, Stanford, Calif., 1973, pp. 153-161.

Nilsson, N. J. Problem-Solving Methods in Artificiel Intelligence. McGraw-Hill,
New York, 1971.

Reboh, R., Raphael, B., Yates, R. A., Kiing, R. E. and Velarde, C.
Study of automatic theorem-proving programs. Technical Note 75,
Artificial Intelligence Center, Stanford Research Institute, Menio
Park, Calif., Nov. 1972.

52

Examples
1. BURSTALL Exampie
Axioms:

1. has(pl,ass(j,nd))

2. follous(p2,pl)

3. has(p2,assik,nl))

4. labels(loop,p3)

5. follous(p3,p2)

6. has(p3,ifthanlequal (j,n),pé))

7. has(pd,goto{out))

8. folious(p5,pd)

9. foliows{pB,pd)

18. has(pB,ass(k, times(n2,k)))

ii. foltows(p?,pb)

12, has(p?,ass(j,plus(j,nl))}

13. tollous(p8,p?)

14, has(p8,goto(loop))

15, follows (xp,yp) =+ succeeds(xp,yp)

18. succeeds(xp,zp) A succeeds{zp,yp) + succeeds{xp,yp)
17. has(xp,gotol(zp)) A labels(zp,yp) + succesds(yp,xp)
18. hasixp, ifthen(ze,yp)) + succeeds{yp,xp)

Theorem:
19. succeeds{(p3,p3)
2. SHORTBURST Example
Axioms:

1. labels(loop,p3)

2. has(p3,ifthen(equal (j,n},pd))

3. has(pé,gotolout))

4. foliows(p5,pé)

5. follows(p8,pd)

6. has(p8,gota(lioop))

7. foltows{xp,yp) - succeeds{xp,yp)

8. succeeds (xp,zp) A succeeds(zp,yp) + succeeds (xp,yp)
9. hasixp,goto(zp)} A labels(zp,yp) + succeeds(yp,xp)
18. has (xp, | fthen(ze,yp)) + succeads (yp,xp)

Theorem:

li. succeeds{p3,p3)
3. HAS-PARTS Example 1

Axioms:
1. in{John,boy)
2. ini{x,boy} =+ in{x,human)
3. hpilx,xm,y) = in(skllx,y,z,xm,xn},y) v hpix,t(xm,xn},z)
4. hplx,xm,y) + <hpiskllx,y,z,xm,xn¥,xn,2} v hplx,t{xm,xn),z)
5. in(x,hand) + hp(x,n5,fingers)
6. in(x,human) + hpix,n2,arm)
7. ini{x,arm) -+ hpGi,nl,hand}

Theoream:

8. hp(John, t(n2,nl},hand)

53

Examples
4. HAS-PARTS Example 2
Axiomst

L. in{John,boy}

2. in(x,boy) + in(x,human)

3. hpOe,xm,y) » inlsklix,y,z,xm,xn),y) v hplx, t{xm,xn},2)

G. hp(x,xm,y) » -hp(skilx,y,z,xm,xn),xn,z) v hplx,tixm,xn),2)
5. inlx,hand) +» hp(x,n5,{ingers)

6. in(x,human) + hp(x,n2,arm)

7. in(x,arm} + hp(x,nl, hand)

Theorem:
8. hp{John, t(tinZ,nl),n5), {ingers)
5. PRIN Example
Rxioms:

1. Dxx

2. Dxy A Dyz + Dxz

3, Px v Dglxix

4. Px v Lnig(x)

5. Px v Lgi{x)x

B. Lnilx A Lxa =+ Pf(x}
7. Lnlx A Lxa + DfGx
8. Lnla

Theorem:

(9. -Px v -Dxa negation of theorem)
18. Pxl A Dxla

6. ANCESL Example
Rxiomst

ls sdvAvH
2. KvHvJ
3. KvHvl)
‘- ﬂn v ﬂB

5. -!RVB

8., -H v =L

Theorem:

7. HaSC
7. NUN1l Example

RAxioms:
1. Px A Myzu A Dxw + Dxy v Dxz
2. Hxxs(x)
3. Mxyz » Myxz
4, Mxyz + Dxz
5. Has(e)s(b)
6. Pa

Theorem:

7. Dab

54

Examp ies
8, GROUPl Exampie
Axioms:
l. Pxyu A Pyzv A Pxvi + Puzu
2. Pxyu A Pyzv A Puzu + Pxve
3. Pglxydxy
4. Pxh{xyly
5. Pxyf {xy)

Theorem:

B, =-Pj(x)xj{x) negation of theorsm)
7. Pjixl)xljixi)

9. GROUP2 Example
Ax ioms:
1. Pxex
2. Pexx
3. Pxyu A Pyzv A Puzu + Pavw
4, Pxyu A Pyzv A Pxvi 4 Puzu
5. Pxxe
6. Pabe

Theorem:

7. Pbac

5%

Statistics

Length Level Length Level Proof Chains Search
Multi- Nulti- Maximum Haximum Code Generated Time
alier _plisr. fret/acc/tot/att) _(sec)

1. BURSTALL Example

181 108 - - A 191/191/215/3129 46.3
581 198 - - B 74/ 74/ 7571228 16,1
181 108 2 12 - R 45/ 45/ 45/741 9.8
581 - le® 2 12 R 45/ 45/ 457741 9.2
QA3.6 best 2 12 38/ 42/ /1462
QA3.6 mean 16/19 2 12) 99/118/ /3222
. SLRTP 3 13 48/ 48/ /122
2. SHORTBURST Example
§1:3Y leo - - A 18/ 18/ 18/144 3.8
561 ie0 - - R 18/ 16/ 16/128 2.1
isi g8 2 18 A 16/ 16/ 167128 2.2
581 lee 2 10 R 16/ 16/ 16/128 2.1
(UR3.6 best 2 1@ 127 12/ /255
QA3.6 mean 14/14 2 18 208/ 21/ /325
SLRTP 3 ie 167 16/ /7 42
3. HAS-PARTS Example i
Implicative form for axioms:
161 188 - - A N NMe 8.7
561 180 - - A 1T T Y) 8.7
161 189 3 18] 71 147 i.8
501 lee 3 18 R N A7 8.8
Disjunctive form for axiomst
181 189 - - R 12/ 127 12/12% 1.8
581 108 - -] 127 127 12/124 1.7
jot 108 3 e R 127 127 12/124 1.5
581 188 3 18] 127 127 12/124 1.5
0R3.6 best 2 BY: | 8/ 18/ /112
QA3.6 mean 6/8 2 16 28/ 24/ /343
SLRTP 2 10 12/ 127 129
4. HAS-PARTS Example 2
Implicative form for axiomst
1gl 189 - -] 117 11/ 11/ 83 1.3
581 158 - - A 117 11/ 11/ 83 1.3
191 188 3 10 A 11/ 11/ 11/ 83 1.3
581 108 3 18 R 11/ 117 11/ 83 1.9
Disjunctive form for axioms:
101 ied - - A S8/ 50/ S0/478 8.1
581 180 - - B 38/ 38/ 38/438 5.7
181 100 3 10) 38/ 38/ 38/438 5.7
501 ies 3 10 8 38/ 38/ 387438 6.4
QR3.6 best 2 ie 127 14/ /265
QR3.6 mean 6/7 2 19 467 51/ /938
SLRTP 3 13 29/ 28/ [/ 4l

56

Length Leval

Length

Level

Proot

Multi- Multi- Maximum Haximum Code

5. PRIM Exampie

Implicative form for axioms:

-

3
3

18
18

Disjunctive form for axioms:

161 1le@
561 1688
1ol 1oa
581 188
18l ieg
581 180
lel lés
581 bY:1)
lel 100
581 loé
QR3.6 best

QA3.6 mean 8/10

SLRTP

6. RANCESL Exampie

101 188
501 160
181 180
501 108
(QR3.6 best

QR3.6 mean 19/28

SLRTP

7. NUML Exampie

lal 188
581 168
181 188
501 188
QA3.6 best

QR3.6 meoan 11/11

SLRTP

8. GROUP1 Example

161 lee
S8l 188
iel ieg
581 leo
QR3.6 best

"UR3.6 mean 9/9

SLRTP

W Wwwi

w W

NN ~N

L]

[,]

w

w w

18
la
18
18

ie
18

11

10
ie

ig
18

ie

1¢
18

ie
18

i8

1s
10

18
18

19

P DI

DR DD OoOmooo O

DD D

DDDOD®Z DD

Statistics

Chains Search
Generated Time
{rat/dcc/sot/atl) _(sec)

812/812/1052/8672 280.7
57/ 57/ 64/648 11.6
78/ 78/ 82/816 12.3
54/ 54/ 68/688 8.2

165/165/187/1883 28.5
19ir1@1/113/1228 18.8
138/13@/146/1532 28.2
138/138/146/1532 18.8
138/138/146/1532 21.7
181/181/113/1226 18.8

13/ 19/ /208
367 97/ /999

122/134/ /243

23/ 23/ 23/248 3.2
13/ 13/ 13/188 1.3
13/ 13/ 13/1e8 1.8
13/ 13/ 137188 1.4

5/ 12/ /158
6/ 13/ /129
14/ 14/ /26

18/ 198/ L1/ &7 1.2
19/ 18/ L1/ 47 1.1
las 18/ 117 47 8.8
18/ 16/ 11/ &7 8.9

8/ 18/ / 68
8/ 11/ /83
8/ 8 /21

16/ 14/ 147 54
14/ 14/ 14/ 54
14/ 147 14/ 54
14/ 14/ 147 54

b N
M
~ N @

1 733
1 7

8/ 12/ /35

57

Statistics

Length Level Length Level Proof Chains - Search

Multi- Hulti- Maximum Maximum Code Generated Time
Llisr _plier fret/acc/tot/att) _(sec) .

9. GROUP2 Example

il 188 - - A 576/576/752/2488 97.2
581 led - - B 119/119/149/588 17.8
18l laé 4 18 A 225/225/325/938 28.8
581 leg 4 18 R 225/225/325/938 38.7
QA3.6 best 3 18 S4/7 74/ /324
QA3.6 mean 8/8 3 18 6o/ 82/ /517
SLRTP ? ? no proof found

58

1, BURSTALL Example

Proo#

13,
20,
21.
22.
23.
24.

25,
26.

27,

28.
29.

39.
3l.
Proof
19,
20.
21.
22.

23.
24.

25.
26.
27.

28.
29,

38,
31.

R

succeads (p3,p3)

[succeads {(p3,p3)]
[succeeds (p3,pI)])
[succeeds (p3,p3))

[succeeds (p3,p3)l

[succeeds (p3,p3)]
follious(x],p6)

[succeeds (p3,p3))
[succeeds (p3,p3))
succeeds (x1,p7)

[succeeds {p3,p3)]
lsucceeds (x1,p7)]
{succeeds (p3,p3))
isucceeds (p3,p3)]

Proots

succeeds (p3,x1) succeeds(xl,p3}
succeeds (p3,x)) (succesds(xl,p3)] follows(xi,p3)

succeeds (p3,pb)
[succeeds (p3,p6))
[succeeds (p3,p6)}

[succeeds (p3,p6)]
[succeods(pa,fs)l

{succeeds {p3,ps)]
follons (xl,p?)

[succeeds (p3,p6))
[succeeds (p3,p6)]

has (p8,goto(x1)) labels(xl,p3)

[succeeds (p3,p3))

has (p8,goto(loop))

emply
8

succeeds (p3,p3)
Tsucceeds (p3,p3)]
{succeeds (p3,p3})
succeeds (x2,p3)
[succeeds (p3,p3)]
[succeeds (x2,p3))
[succeeds {p3,p3)]
[succeeds (p3,p3))
fol lows{xl,ps)
[succeeds (p3,p3)]
[succeeds (p3,p3)]
{succeeds (p3,p3)]
follows(xi,p?}
[succeeds (p3,p3))
[succeeds (p3,p3)}
labe|s{xi,p3)
{succeeds (p3,p3)]
empty

2. SHORTBURST Example

Proot

i1,
12.
13,
14,
18.
16,
17.

succeeds (p3,p3)
[succeeds (p3,p3)]
{succeeds (p3,p3}}
{succeeds (p3,p3)]
[succeeds (p3,p3)]
[succeeds (p3,p3)]
empty

.succeads(p3,x1)

‘succeads (p3,x1)

[succeeds (p3,pB)]

succccd:tpS,xl) succi!ds(xl,pS)
succeeds (p3,x1) [succeeds (x1,p6)]

succeeds (p3,p7)
[succeeds (p3,p?)] succesds (p3, x1)

[succeeds (p3,p7)] sugcoedc(pa;xll

[succeeds (p3,p7)] succeads (p3,p8)

[succeeds (p3,p7)] [succeeds (p3,pd)]

[succeeds (p3,p7)] I[succeeds(p3,pd)]

succeeds (p3,x1) succeeds(xl,p3d)

succaeds (p3,x]) [succeeds (xl,pd)]

fol lows (x2,p3)
succeeds (p3,x1)

succeeds (p3, p7)
[succeeds (p3,p7)]
[succeeds (p3,p7))

[succeeds(g3,p7ll
[succeeds (p3,p7))

[succeeds (p3,p7))

[succeads (x1,p3))

{succeeds (x1,p3)]
{succeads (x1,pd)]

succeads (x1,x2)
succeeds (xi,x2)
succeads (x1,p6)

[succeeds (x1,p6)]

succeeds (p3,x1)
succeeds (p3,x1)

succeeds (xl,p7)
[succeeds (x1,p7)]

succeeds {p3, pd)
[succeeds (p3,p8)] has(p8,gotoixi))

[succeeds {p3,p8)] has(p8,gotollioop))

succeads (p3,x1) succeeds(xl,p3)
succeeds (p3,x]) [svucceeds(x1,p3)] follous(x1,p3}

succoeds (p3,p8)

[succends (p3,p8)] has(p8,goto(x1)) labels(xl,p3)
[succeeds (p3,p8}] has(p8,goto(loop))

59

theorem
extend
extend
extend
extend

extend
extend

extend

extend
aextend

axtand

extend
extend

theorem
extend by
extend

extend
extand

extend
axtand
axtend

axtend
extend

extend
extand
axtend

theorem

extend by
extend by
extend by
extend by
extend by
extand by

15

16

15
11

ie

i5
13

17

16

16

15
il
16

15
13

17

14

e 0 U N

6

Proofs
3. HRS-PRRTS Example 1
Proof R
8. hp{John,t(n2,nl),hand) theorem

9. [hp(John, t(n2,nl) ,hand)} hp(John,n2,x1) hp(skl{John,xl,hand,n2,nl),nl, hand) extend by
18. fhp (John,1(nZ,nl), hand)] hp{John,n2,x1)

{hp (zkl (John, %1, hand, n2,nl) ,nl,hand}] in(skl (John,xi,hand,n2,nl),arm) extend by
11. {hp{John,t(nZ,nl},hand)] hp(John,n2,arm) extend by
12. Thp{John,t(n2,ni),hand}]) [hp{John,n2,arm)]) in{John,human) axtend by
13. [hptJohn,t(n2,nl) hand)] [hp(John,n2,arm)] (in{John,human)] in(John,boy) extend by
14, empty _ extend by

&, HRS-PARTS Exampile 2

Proof A
8. hp(John, t (t(n2,n1),n5}, fingers) ; theorem
9. [hp(John, t(t(n2,nl),n5),fingers)] hplJohn,t{n2,nl), xi)
bp (sk1{John,xl, fingers, t(n2,nl) ,n5},n5, fingers) extand by

18, [hp(John, t{t{n2,nl},n5), fingers)] hplJohn,t(n2,nl),xl)
[hp (sk) (John,x1, fingers, t (n2,n1),n5},n5, fingers)]

in(skl(dohn,xl, fingers, t (n2,nl},n5) hand) ' extend by
i11. ibhp{Jobn,t(t(n2,nl),n5),fingers)} hp(John, t(n2,nl},hand) aextend by
12. [hp{John,t(t(n2,nl},n5),Fingers}} [hp(John,1(n2,nli),hand)] hp(John,n2,x1)

hp (sk 1 (John,x1,hand,n2,ni),ni,hand) extend by
13. [hpQobn, t(t(n2,n1),n5), tingers)] [hp(John,t(n2,nl),hand}] hp{John,n2,xl)

[hp{sk 1 (John,x1i,hand,n2,nl),nl,hand)] iniskl{John,xl,hand,n2,nl), arm) extend by

14, [hp(John,t(t(n2,nl),n5),fingers)] [hp(John,tin2,nl),hand)] hplJohn,n2,arm} extend by
15, [hp(John, t{t(n2,nl),nS),fingars)l [hp(John, t(nZ,nl),hand)]

. [hplJdohn,n2,arm}] in(John,human) extend by
16. [hp(John, t(t(n2,nl),n5),fingers)] [hp(John,t(n2,nl) hand)]}

(hp (John,n2,arm)] [in(John,human)] in(John,boy) extend by
17. empty extend by

Proof B

8. hplJohn,t{1(n2Z,nl),nS), fingers) " theoren
9. [hp(John,t (t{n2,nl),n5),{fingers)]) hp(John,t(nZ,nl),x1)

=in{skl{John,xl, fingers, t (n2,nl),n5),x1) extend by

18. [hp(John,t(t(n2,nl),nS), fingers)] hpllohn, t(n2,nl),hand)
[=in(ski(John,hand, f ingers, t(n2,nl),n5),hand}]

=hp (sk § (John, hand, f ingers, t (nZ,n1) ,nb},n5, fingars} axtend by
11. (hp(John, t(t(n2, nl) n5), fingers}) hp(John,!(nZ nl},hand} ' extend by
12, [hp(John, t(t(n2,nl),n5), fingars)] [hp(John,t(n2,nl),hand)] hp{John,n2,x1)

hp (sx 1 (John,x1,hand,n2Z,nl),nl, hand) extand by
13, [hp(John,t(t(n2,n1),n5),fingers)] Lhp (John, t (nZ,nl) ,hand)] hplJohn,n2,x1)

Lhp (sk 1 {John,x1,hand,n2,nl) ,n], hand)). in(skl(John,x1,hand,n2,nl),arm) extend by

14, [hp{John,t(t(n2,n)),n5}, fingers)] LhplJohn,tin2,ni),hand)] hpliohn,n2,arm) extend by
15, [hp(John, t(t(n2,nl),n5), fingers)] [hp(John,t(n2,nl),hand)]

[hp (John,n2,arm)] in{John, human) extend by B
16. [hp(John,1(t(n2,nl1),n5),fingers)} [hp(John,t{n2,nl),hand)] .

[hp (John,n2,arm)) {inlJohn,human)] in(John,boy) - extend by 2
17. empty extend by 1

68

8 0 W~

5. PRIN

Proot

.la.
11.
12.
130
14,
15,
1B,
17.
18,
19,
ze,
21.
22.
23.
24,
5.
28.
27,
28,

Proof

18.
11,
12.
13.
14,
18,
18,
17.
18.

Proof

ia.
11,
12.
13.
14,
15.
18,
17.
18.
19.
28.

Proofs

Example
A

Pxl Dxla

Pxl iDxlal Dxlx2 Dx2a

Pxl [Dxlal Dxlgla) [Dgla)a) -Pa

Pxl [Dxla) Oxlg(a) [Dg(a)al [-Pal Daa

Pxl [Dxia) Dxlg{a)

Pflgla)) [Df(gla¥)al IDi(gla)igla)) Lnlg(a) Lg(ala
Pi{g(a)) [Di(g(a))a) [(Df(gla))gla)) Lnigla) [Lg{a)al =Pa
Pf{gla)) iDf(gla)da) [(Di(gladigla)] Lnig{a) (Lgla)al (-Pal Daa
Pi{glar) [Df(glad)a) [Dilgla)lg(a)} Lnigfa)

Pi{gfa)) [Df{gla)la) [Df(gla))gla)] (Lnig(a)] -Pa
Pilgta)) [Dflgla)lal [Df(gla)igla)] [Lnig(a)) [-Pal Daa
Pélgla))

[Pf(gla))] Lnig(a) Lglada

[Pfi{g(a))] Lnigla) [Lglalal -Pa

[Pfi(gla))] Lnlgla) [Lg(a)al [-Pa) Daa

[Pfi{gla))] Lnlgla)

iPf(g(a)}] [Lnlg(a)) -Pa

(Pf{g{a))] [Lnlg(a)l [-Pal Daa

ampty

Pxl Dxla

Pa

[Pal -Lnlg{a)

(Pa) [-Lnlg(a}] Lgla)a -Ptig(a))

[Pa} 1-Lnlg(a)] Lg(a)a [-Pfi(g(a))) Df(glalla

[Pa] [-Lnlg{a)) Lglada [~Pf(g(a))) [Dfigca))al Dfigla))x]l Dxja
[Pal [-Lnig(a)} Lgla)a [-Pil(gla))} [(Dilgladral Dt(gla)iglal
(Pal [-Lnlg(a}] Lg(a)a

empty

c

Pxl Dxla

Pa

{Pa) -Dg(ala

[Pa] [-Dgla)a) Dxlg(a) -Dxla

[Pal [-Dgla)al Dxlg(a) [-Dxla) Pxi

{Pa) [-Dgla)al Dftxilg(a) [-Df(x1)al [Pf(xl)] Lnlxl Lxla
iPal [-Dg(a)al Df(g(a)Igla) [-~Df(g(a)}al [Pf(g(a))] Lnlgla)
(Pal [-Dgla)al Df(g{a))gla)

(Pa) [-Dgla)al [D#(g(a))g(al) Lnig(a) Lg(ala

[Pa) [-Dg(a)al [Df(gla))g(ad) Lnlg(a)

empty

6. ANCESL Exampie

Proot

7.
8.
9.
la.
11,
12,
13.

H-C

H

Hl J -4

[Hl J [-R] B
[Hl 4

[H) [J} =K

ampty

1

theorem

extend by
extend by
extend by
extend by
axtend by
axtend by
extend by
extend by
extand by
extand by

‘extend by

extend by
extend by
extend by
extand by
extend by
extend by
extend by

theorem

extend by
extend by
extend by
extend by
extend by
axtend by
extend by
extend by

theoram

extend by
extend by
extand by
extend by
extend by
extend by
extend by
extend by
extend by
extend by

thaorem

extand hy
extend by
extend by
axtend by
extond by
extend by

4b
6c
Sk

3a

Sa

3b
2b
8a

Sa
da-

Sa
da

Ba
la
&b
Sa
2a
3c

7. NUML

Proof

7.
8.
8.
18.
il.
iz.
13.

Procis

Example

Dab

fDabl
[Dab]
[Dabl
[Dab]
[Dabl
ampty

Pa Mxlbx2 Dax2 -Daxl

Pa Mbbxl Daxl .
Pa Mbbxl [Daxi] Max2xl
Pa Hbbs (b}

Pa

8. GROUPL Example

Proof

7.
8.
9.
18.
11.

A

Pjixlyxljixl)
[P} (x1Ix1](x1}) Px2x3j(x1l) Px3xixé Px2x4j(x1)
[IPj(x1)x1jx1)) Pyg(x2j(x1)Ix3jixl) Px3xlx2

P (h(x1x2))h(x1x2) j{h(x1x2))] Pgix2(h(x1x2)))xij(h(x1x2)}

shpty

8. GROUP2 Exampie

Proof

7.

8'

9'
18,
11,
12.
13.
14,
15.
16,
17.

Proof

7.

8.

9.
ia,
il.
iz,
13,
14.
15.
16.
i7.
is.
i9.
28.

Phac
tPbacl
[Pbac)
[Pbac)
[Pbac]
[Pbac)
iPhac]
{Pbacl
[Pbacl
[Phac)
empty

B

Pbac

{Pbacl
[Phac)
(Phac]
tPbac]
iPbac)
[Pbac]
[Pbacl
[Pbac]
[Pbac]
[Phac]
[Pbac]
[Pbac)

ampty

Pbx1x2 Pxlx3a Px2x3c

Pbxla Pxlea)

Phxle [Pxlcal Px2x3xl Px3cxé Px2xéa

Pbxle [Pxlcal Pax2xl Px2c¢e

Pbxle [Pxlcal Paexl

Pbxle I[Pxlcal [Pacx1) PaxZx3 Px2xéc Px3xdxl
Pbxle [Pxlcal [Pacxl] Pax2e Px2xlc

Pobe [Pbcal [Pack) Paae

Pbbe

Pbxix2 Pxix3a Px2x3c

Pbxla Pxlba :

Pbxla [Pxlbal Px2x3xl Px3bxé Px2xéa
Pbxla i{Pxlbal Pax2xl Px2be

Pbxla [Pxlbal Pabxi

Pbca

[Pbcal Pxlx2h Px2cx3 Pxix3a

{Pbca) Paxlb Pxlice

[Pbcal Pacb

[Pbecal [Pachl Paxlx2 Pxlx3c Px2x3b
[Pbcal (Pach]l Paxle Pxlbe

[Pbcal [Pach] Paae

62

theoram
extend by
reduce
extend by
extend by
extend by
extend by

theorem

extand by
extend by
extend by
extand by

theorem

extend by
extend by
aextend by
extend by
aextend by
axtend by
extend by
extend by
extend by

axtand hy -

theorem

‘extand by

extend by
extend by
extend by
extend by
extend by
extond by
axtend by
extend by
extend by
extend by
axtend by
extend by

o N e

W W -

AN WL =N W

N ONWA =N = 0w

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

~

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT NUMBER 2. GOVT ACCESSION NO.

RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtiile)

THE PROGRAMMABLE STRATEGY THEOREM PROVER: AN
IMPLEMENTATION OF THE LINEAR MESON PROCEDURE

TYPE OF REPORT & PERIOD COVERED

PERFORMING ORG. REPORT NUMBER

Air Force Office of Scientific Research

NM) Agenc
1400 Wilson Boulevard ¢ 8 7

7. AUTHOR(S) #. CONTRAGT OR GRANT NUMBER(s)
Mark E. Stickel F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Carnegie-Mellon University

Department of Computer Science

Pittsburgh enn ia 15213

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency Iune . 197/

1400 Wilson Boulevard '3: NUMBER OF'BAGES

Arlingto irgi &4 :

14. MONITORING AGENCY MAME & ADDRESS({{ different from Controlling Office) 18, SECURITY CLASS. (of thia report)

unclassified

Arlington, Virginia 22209

15a. DECLASSIFICATION/ OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Reportf)

Released for public #istribution; unlimited.

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

. SUPPLEMENTARY NOTES

19. KEY WORDS (Coniinue on reverse aide if nocessary and identffy by block number)

20. ABSTRACTY (Continue on reverse side !f necessary and identily by block number}

FORM
JAN 73

DD , 1473

EDITION OF | NOV 65 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dala Entered)

SECURITY CLASBIFICATION OF THIS PAGE(When Data Entered)

The Programmable Strategy Theorém Prover (PSTP) is a theorem proving
program for the first order predicate calculus using the linear MEBON
procedure as the inference system. The linear MESON procedure is a new
variant of the model elimination theorem proving procedure for theories with
or wihout equality which is an affirmation rather than a refutation procedure.
It is profitably viewed as an extension of the problem - reduction method.

The fundamental element of a linear MESON proceudre deduction,the chain, is

a representation of a set of goals to be solved and their supergoals. PSTP

is designed to be used ineractively or in a fully automatic mode. Some

f eatures of PSTP are general mechanism for specifying which chains are to

be retained.and manipulated, an automatic procedure for storing and retrieving
information about chains when this information is requested, the capability
of specifying an ordering function which can be used for specifying search
strategies, and a powerful set of commands. Results of an experiment testing
some simple search strategies and comparisons with results from other

theorem proving studies are presented.

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

