
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Programmable Strategy Theorem Prover:

An Implementation of the Linear MESON Procedure*

by

Hark E. Stieke I

Abstract
The Programmable Strategy Theorem Prover (PSTP) is a theorem proving
program for the first order predicate calculus using the linear MESON
procedure as the inference system. The linear MESON procedure is a new
variant of the model elimination theorem proving procedure for theories
with or without equality which is an affirmation rather than a refutation
procedure. It is profitably viewed as an extension of the problem-
reduction method. The fundamental element of a linear MESON procedure
deduction, the chain, is a representation of a set of goals to be solved
and their supergoals. PSTP is designed to be used interactively or in a
fully automatic mode. Some features of PSTP are a general mechanism for
specifying which chains are to be retained and manipulated, an automatic
procedure for storing and retrieving information about chains when this
information is requested, the capability of specifying an ordering function
which can be used for specifying search strategies, and a powerful set of
commands. Results of an experiment testing some simple search strategies
and comparisons with results from other theorem proving studies are
presented.

Research supported by NSF Gran. GJ-284S7X2 and by the Advanced Research

Projects Agency of the Office of the Secretary of Defense (F44628-73-C-
8874).

8. Introduction

The first section of this report describes a new theorem proving

procedure for the first order predicate calculus, the linear MESON

procedure, a variant of model elimination. Although the linear MESON

procedure is not substantially more powerful than related resolution

procedures except in the capability for restriction or differential

treatment of inferences by particular implicative forms of the axioms, it

represents a significant increase in the "naturalness" of proofs by

complete inference systems because it can be viewed as an extension of the

probIem-reduct ion method [93.

In addition to the standard "subgoaling" mechanism of the problem-

reduction method (by which a goal is replaced by a set of subgoals whose

solution constitutes a solution to the goal) represented in the linear

MESON procedure by the extension operation, the linear MESON procedure

provides a mechanism for solving a goal one of whose subgoals is its

logical negation requiring reasoning by contradiction (the reduction

operation), an operation for eliminating duplicate goals (factorization),

and operations for solving problems involving the equality relation (p-

extension, p-reduction) without requiring full axiomatization of its

properties. These added inference operations result in a complete

inference system for the first order predicate calculus with equality.

The second section describes the underlying concepts and overall

design of the Programmable Strategy Theorem Prover (PSTP), a theorem

proving program employing the linear MESON procedure as its inference

system and designed to be used interactively or fully automatically.

1

Although restricted to using the linear MESON procedure as its inference

system, PSTP provides substantial flexibility in specification of search

strategies, both in terms of deletion criteria (such as use of length,

level, and depth bounds) and of the order in which inference operations are

to be performed (such as depth first, breadth first, or diagonal search

strategies).

The third section presents the results of a performance study on a set

of problems previously tested in two other theorem proving performance

studies. Some conclusions are drawn concerning relative merits' of tested

search strategies on empirical and philosophical grounds and the power of

the linear MESON procedure relative to other procedures as exemplified by

results from the other studies.

2

1. The Linear MESON Procedure

The linear MESON procedure is a variant of the model elimination

theorem proving procedure [6,7,83 in which (1) each literal of the top

chain and the derived chains of a deduction is replaced by its complement

and (2) implications as well as disjunctions are permitted as axioms. It

is also the linear form of the MESON procedure [93 specified for goal-

subgoal trees (MESON stands for "model elimination subgoal oriented").

Advantages of the linear MESON procedure are (1) the linear MESON

procedure, though logically equivalent to model elimination, has the form

of an affirmation rather than a refutation procedure and its proofs have a

very natural interpretation in terms of goal-subgoal trees and (2) the

linear MESON procedure has greater expressive power than alternative

procedures in the potential use of implications rather than disjunctions to

restrict application of inference operations to certain literals of axioms

or (by replacing a disjunction by more than one implication) to facilitate

differential treatment of the various implicative forms of axioms during

the search for a solution (this capability is shared by model elimination

in which each length n input clause generates n auxiliary chains only the

last literal of which can be matched in inference operations).

In a theorem proving program permitting interaction between human user

and mechanical proof procedure, it is desirable that as human-oriented a

procedure as possible be employed. Uhile it is correctly argued that all

resolution type theorem proving procedures are machine-oriented and

notoriously unsuited to extensive human computation, it is our contention

that the linear MESON procedure is more human-oriented than other

resolution related procedures.

This is a direct consequence of the relationship of the linear MESON

procedure with the problem-reduction method. The linear MESON procedure is

an extension of the problem-reduction method which is complete for the

first order predicate calculus with equality. It augments the problem-

reduction method by inference operations which perform reasoning by

contradiction (reduction), which eliminate duplicate subgoals

(factorization), and which deal with the equality relation (p-extension, p-

reduction).

The linear MESON procedure represents the state of a search for

solution as a set of chains. Each chain represents a subtree of the search

space. The solution of all the subgoals represented in a chain constitutes

a solution of the top goal. Different chains represent different

alternative partial solutions of the top goal.

More specific claims of the linear MESON procedure being human-

oriented are (1) it is an affirmation rather than a refutation procedure,

(2) in keeping literals ordered in a chain, it automatically prevents (in

goal-subgoal tree terms) the start of an attempt to solve another subgoal

in the chain until the current one is solved, and (3) it is a procedure

which remains complete if only input deductions are used. An input

deduction is a deduction in which each element of the deduction (a linear

MESON procedure chain) is derived by an inference operation applied to its

predecessor or its predecessor and an (input) axiom.

In combination, the last two items permit the user to focus his

attention on a much smaller subset of the available data than is possible

for many resolution based procedures.

In preparing a problem for input to the linear MESON procedure, the

4

input formula is first converted to prenex form with its matrix in the form

of a conjunction of assertions implying a conclusion. An assertion is a

(possibly empty) conjunction of literals (antecedents) implying a

disjunction of literals (consequents). Note that if there are no

antecedents in the assertion, the assertion is just a disjunction of

literals (di s iuncts). i.e., a clause. A conclusion is a conjunction of

literals. Schematically, the transformed formula is in the form

Q ((A*, A . . . A A ^ C] V . .. vC^) A . . . A (A ^ A . . . A A ^ C ^ V . .. v C ^ -» (G , A . . . A G ^))

where A, C and G denote literals, Q denotes a list of quantifiers, and p>l,

q>l, each m-^0, each n 4>l.

The transformed formula is then Skolemized by (1) replacing for each

universal quantifier in the prefix all occurrences of the quantified

variable in the matrix by a unique Skolem function with all the

existentially quantified variables whose quantifiers precede the universal

quantifier in the prefix as arguments and (2) deleting the quantifier

prefix.

An alternate input form for the linear MESON procedure is a

conjunction of quantified assertions implying a conclusion. Schematically,

Q i (A, A . . . AA*j+Ct v... vC^) A . . . A Qp(Aj A . . . A A ^ C t v... vCn^) •* Q P V / G , A . . . A G . ^)

where A, C and G denote literals, Q denotes a list of quantifiers, and p>l,

q>l, each m->0, each n^>l.

This input form is Skolemized by (1) replacing in each assertion all

occurrences of each ex i stent ial ly quantified variable by a unique Skolem

function whose arguments are the variables of universal quantifiers

preceding the existential quantifier, (2) replacing in the conclusion all

occurrences of each universally quanti fied variable by a unique Skolem

5

function whose arguments are the variables of existential quantifiers

preceding the universal quantifier, and (3) removing all quantifiers from

the formula.

Example. The problem is: if a is a prime number and a times the

square of some number u is b then a divides b. The initial formula is:

VxVyVzVw (prime(x) A y*z=w A divides(x,w)
-» divides(xfy) v di vides(x.z))

A Vx x*x=square(x)
A VxVyVz (x*y=z -> y>vx=z)
A VxVyVz (xwy=z -> divides(x,z))
A 3u a*square(u)=square(b)
A prime (a)

-* divides(atb)

The Skolemized form ready for input to the linear MESON procedure is:

(prime(x) A y>vz=w A divides(x,w) -* divides(x,y) v divides(x,z))
A x*x=square(x)
A (xwy=z -> y*x=z)
A (x*y=z -> divides(x,z))
A a>vsquare(c)=square(b)
A prime(a)

-> divides(a,b)

Problems with equality (as above) can be introduced without the need

for specifying the symmetry, transitivity, and substitutivity axioms if the

special equality inference operations (p-extension, p-reduction) are used.

The equality reflexive (x=x) and functionally reflexive axioms (e.g.,

square (x) ̂ square (x), x*y=x>vy) theoretically are required. The latter are

not present in the above example since no special equality rules are

required for the problem's solution. (This is the same as the NUM1 example

studied in Section 3.)

By virtue of its derivation from model elimination, the linear MESON

procedure is complete (given that a compatible set of inference and

postprocessing operations are used) provided (1) the set of assertions is

6

consistent (this requirement is equivalent to the requirement that the top

chain of a model elimination deduction be in the minimally unsat i sf iable

set of input clauses) and (2) either the disjunctive axiom form is used or

all implicative forms of each assertion are included among the assertions.

The first condition can be eliminated by the addition of a special

contradiction mechanism defined for the MESON procedure but not included in

this formulation of the linear MESON procedure which permits the proof of

any conclusion from an inconsistent set of assertions. The second

condition can sometimes be eliminated in practice since it is often clear

from the problem structure (as in the case of Horn formulas) that use of a

subset of the implicative forms results in the possible deduction of all

the chains that the disjunctive form would. Also, although the resulting

procedure is, in general, incomplete it is sometimes desirable to restrict

the search for a proof by not presenting the procedure with all the

implicative forms of the assertions.

The fundamental element of a linear MESON procedure deduction is the

chain. A chain is an ordered sequence of literals. Two types of literals

are distinguished: A-1i terals and B-li terals. B-literals correspond to the

literals present in clauses in resolution theorem proving. A-literals

record ancestry information and represent (in goal-subgoal tree terms)

higher goals. All the literals in the theorem and axioms are B-literals.

An A-literal is created in a newly derived chain from a B-literal in the

parent chain when a set of literals whose conjunction implies the A-literal

(a set of subgoals whose solution constitutes a solution to the goal

represented by the A-literal) is added.

A linear MESON procedure deduction of chain K from problem P is a

7

sequence K 0,...,K^ of acceptable chains where K c is the conclusion of P. K h

is K f each K; (l<i^n) is derived from K 5 - 1 by extension (by an assertion

C.,), factorization, reduction, p-extension (by an assertion [}.,) or p-

reduction, and each C,.|is an assertion of P or a lemma (see lemma formation

operation below). A solution of P (a proof of the conclusion of P) is a

linear MESON procedure deduction of the empty chain from P. In general,

for the inference system to be complete, the negation of the conclusion

must be included among the assertions. The definitions of acceptable

chains and the inference operations are given below. Example proofs

illustrating most forms of the inference operations appear starting on page

17.

Matching. If the two arguments to the matching procedure are terms,

the matching procedure returns the most general unifier of the terms. If

the two terms are not unifiable, the matching procedure fails.

If the two arguments to the matching procedure are literals and are

both posi tive (unnegated) or both negative (negated) literals with

unifiable atomic formulae, the matching procedure returns the most general

unifier of the atomic formulae. If the two arguments are not both positive

or both negative or the atomic formulae are not unifiable, the matching

procedure fa iIs.

Extension. The extension operation takes an acceptable chain K and an

implication (alt., disjunction) C as its arguments. Let K* and C be

variable disjoint variants of K and C. If the last literal of K* matches a

consequent (alt., disjunct) of C*, the chain consisting of K* followed by

the antecedents and the complements of the remaining consequents (alt., the

complements of the remaining disjuncts) of C with matching substitution

8

applied can be inferred. Each literal of the derived chain descended from

a literal of K* is designated to be the same type of literal as i ts

ancestor except the last which is designated to be an A-literal; each

literal of the derived chain descended from a literal of C f is designated

to be a B-li teral.

Factorization. The factorization operation takes an acceptable chain

K as its argument. If the last literal of K matches a preceding B-l i teral

of K f the chain consisting of K with the last literal removed and with

matching substitution applied can be inferred. Each literal of the derived

chain is designated to be the same type as its ancestor.

Reduction. The reduction operation takes an acceptable chain K as its

argument. If the last literal of K matches the complement of a preceding

A-literal of K, the chain consisting of K with the last literal removed and

with matching substitution applied can be inferred. Each literal of the

derived chain is designated to be the same type as its ancestor.

P-extension. The p-extension ("p-" for paramodulation) operation

takes an acceptable chain K and an implication (alt., disjunction) C as its

arguments. Let K* and C be variable disjoint variants of K and C. (a) If

a consequent (alt., disjunct) of C is of the form a«b or b«a where a

matches a term in the last literal of K f, the chain consisting of K*

fol lowed by the antecedents and the complements of the remaining

consequents (alt., the complements of the remaining disjuncts) of C

followed by a copy of the last literal of K' with a single instance of the

term matching a replaced by b with matching substitution applied can be

inferred. Each literal of the derived chain descended from a literal of K*

is designated to be the same type of literal as its ancestor except the

9

last which is designated to be an A-literal; each literal of the derived

chain descended from a literal of C is designated to be a B-literal; the

last literal of the derived chain (in which an instance of a term matching

a was replaced by b) is designated to be a B-literal. This form of p-

extension is called p-extension from an assertion. (b) If the last literal

of K' is of the form a*b or b*a where a matches a term in a consequent

(alt., disjunct) of C , the chain consisting of K' followed by the

antecedents and the complements of the remaining consequents (alt., the

complements of the remaining disjuncts) of C followed by a copy of the

complement of the consequent (alt., disjunct) containing the term matching

a with a single instance of that term replaced by b with matching

substitution applied can be inferred. Each literal of the derived chain

descended from a literal of K* is designated to be the same type of literal

as its ancestor except the last which is designated to be an A-literal;

each literal of the derived chain descended from a literal of C9 is

designated to be a B-literal; the last literal of the derived chain (in

which an instance of a term matching a was replaced by b) is designated to

be a B-literal. This form of p-extension is called p-extension to an

assertion.

P-reduct ion. The p-reduction ("p-" for paramoduI ation) operation

takes an acceptable chain K as its argument. (a) If the last literal of K

contains a term matching the term a where a preceding A-literal of K is of

the form a*b or b*a. the chain consisting of K followed by a copy of the

last literal with a single instance of the term matching a replaced by b

with matching substitution applied can be inferred. Each literal of the

derived chain descended from a literal of K is designated to be the same

I B

type of literal as its ancestor except the last which is designated to be

an A-literal; the last literal of the derived chain (in which an instance

of a term matching a was replaced by b) is designated to be a B-literal.

This form of p-reduction is called p-reduction from an A-literal. (b) If

the last literal of K is of the form a*b or b*a where a matches a term in a

preceding A-literal of K or the last literal of K itself, the chain

consisting of K followed by a copy of the preceding A-literal or last

literal with a single instance of the term matching a replaced by b with

matching substitution applied can be inferred. Each literal of the derived

chain descended from a literal of K is designated to be the same type of

literal as its ancestor except the last which is designated to be an A-

li teral; the last literal of the derived chain (in which an instance of a

term matching a was replaced by b) is designated to be a B-literal. This

form of p-reduction is called p-reduction to an A-literal or self.

If the parent chain K in the p-extension or p-reduction operation is

itself derived by p-extension or p-reduction, the created A-literal in the

derived chain may optionally be omitted with completeness unaffected (see

[8]). There is a tradeoff here. If the A-literal is omitted, the derived

chain is shorter and easier to read, and some future possible reductions

and p-reductions may be eliminated. On the other hand, especially if the

postprocessing operation specifies rejection of chains containing an A-

I iteral followed by an identical A-literal or B-literal, retention of the

A-literal may result in rejection of more chains as being unacceptable.

For example, this could prevent repeated p-extension by a=b from creating

an endless sequence of chains ending alternately in Pa or Pb.

Postprocessing. A postprocessing operation takes a chain K (output

11

from the extension, factorization, reduction, p-extension or p-reduction

operation) as its argument and either rejects K as being non-acceptable and

t h u 3 unusable as input to any inference operation or transforms the chain

into an acceptable chain. Many different postprocessing operations can be

written with different effects regarding efficiency and completeness. Four

postprocessing operations are described in the following table. The table

expresses possible relationships between each pair of literals in the

chain. All the actions corresponding to true conditions are to be

performed on the chain, except, of course, that if the action is to reject

the chain then no other conditions need be checked or actions need be

performed.

Postprocessing operations

STRONG-
SAVE

STRONG-
DELETE

UEAK-
SAVE

WEAK-
DELETE

Condi tion Act i on Act i on Act i on Act i on
A-li teral followed by
identical A-li teral

reject
chain

reject
cha i n

reject
cha i n

reject
chain

A-li teral followed by
complementary A-literal

reject
chain

reject
chain

reject
chain

reject
cha i n

A-1i tera1 foil owed by
ident ical B-li teral

reject
chain

reject
chain

reject
chain

reject
chai n

A-literal followed by
complementary B-literal

de1ete
following
B-literal

de1ete
fo11owi ng
B-literal

B-li teral followed by
identica1 A-li tera1

reject
cha i n

reject
cha i n

B-literal followed by
complementary A-literal

reject
chain

reject
chain

B-li teral followed by
identical B-li teral

de1ete
following
B-literal

de1ete
following
B-li teral

B-literal followed by
complementary B-literal

reject
chain

reject
cha i n

12

If all the actions of the postprocessing operation specified in the

table have been performed and the chain is not rejected, all terminal A-

literaIs of the chain are deleted. This terminal A-literal deletion is

caI Ied contraction.

The deletion action associated with the "B-literal followed by

identical B-literal" condition is called around factorization since it

represents an instantiation-free usage of a generalized factorization

operation which can delete non-terminal B-literals. Similarly, the

deletion action associated with the "A-literal followed by complementary B-

li teral11 condition is called around reduction since it represents an

instantiation-free usage of a generalized reduction operation which can

delete non-terminal B-literals.

Several additional conditions and actions can be used in

postprocessing operations such as the following which are available in PSTP

but were not used in the present study: (1) rejecting chains containing a

non-terminaI A-literal that is an instance of a unit axiom (single literal

input assertion), (2) rejecting chains containing a non-terminaI A-literal

that is an instance of a unit lemma (single literal derived assertion, see

lemma formation operation below) by which the ancestor chain could have

been extended when the A-literal was created, (3) deletion of B-literals

which are instances of unit axioms, (4) deletion of B-literals which are

instances of unit lemmas, (5) removal of all literals including and

following the A-literal in the case of a B-literal followed by an identical

A-literal (this is called factorization truncation). (B) removal of all

literals including and following the second A-literal in the case of an A-

literal followed by a complementary A-literal (this is called reduction

truncation). All of these actions can be shown to preserve completeness.

13

For problems not involving the equality relation, the WEAK-SAVE and

WEAK-DELETE postprocessing operations yield a complete inference system

when the extension and reduction operations are used. The WEAK

postprocessing operations correspond closely to the chain admissabi Iity

criteria for model elimination of [63. Also for problems not involving the

equality relation, the STRONG-SAVE and STRONG-DELETE postprocessing

operations yield a complete inference system provided the factorization

operation is used in addition to extension and reduction. The STRONG

postprocessing operations correspond closely to the chain acceptability

criteria for strong model elimination of [73. Note that with these

postprocessing operations, if the conclusion is variable free, its negation

need not be included among the assertions since extension by the negation

of the conclusion in any deduction from the conclusion would result in a

non-acceptable chain with an A-literal followed by an identical B-literal

or an A-literal followed by a complementary A-literal.

For problems involving the equality relation, a postprocessing

operation which rejects a chain only if it has an A-literal followed by a

complementary A-literal yields a complete inference system when the

extension, reduction, p-extension and p-reduction operations are used.

Also for problems involving the equality relation, a postprocessing

operation which rejects a chain only if it has a A-literal followed by a

complementary A-literal or a B-literal followed by an identical A-literal

yields a complete inference system provided the factorization operation is

also used. This corresponds closely to the chain permissabiIity criteria

for model elimination with paramodulation of [81. We believe (but have no

proof) that for problems involving the equality relation, the WEAK-SAVE and

14

UEAK-DELETE postprocessing operations yield a complete inference system

when the extension, reduction, p-extension and p-reduction operations are

used and the STRONG-SAVE and STRONG-DELETE postprocessing operations yield

a complete inference system when the factorization operation is also used.

The equality reflexive (x=x) and functionally reflexive axioms (e.g.,

f (x, y) =*f (x, y)) theoretically are required in any case.

Lemma format ion. An additional inference operation is used to create

new assertions during contraction. A new assertion (called a Iemma)

consisting of the disjunction of the terminal A-literal being removed and

all preceding A-literals whose scope (see below) exceeds the number of A-

I iterate between them and the terminal A-literal and the complements of all

preceding B-literals whose scope exceeds the number of A-literals between

them and the terminal A-literal can be inferred.

The scope of each literal in the conclusion is 0 and the scope of each

literal added to a chain in the extension and p-extension operations is 0.

In the factorization and reduction operations (and also in ground

factorization and reduction performed by the postprocessing operation), the

scope of the leftmost involved literal is set to the maximum of its

previous scope and the number of A-literals between it and the rightmost

involved literal. In the p-reduction operation, the scope of a literal

descended from an involved A-literal is set to the number of following A-

li tera Is in the derived chain. Each other literal has the same scope as

its parent literal in the parent chain. After each contraction operation,

the scope of each literal is set to the minimum of its previous scope and

the number of A-literals following it in the chain, i.e., no literal will

be allowed to have a scope which exceeds the number of following A-

Ii terals.

15

T

Lemma formation creates assertions from solved goals. Removal of an

A-literal by contraction does not mean that the goal it represents has been

solved globally, but only that it has been solved in the environment of the

chain of which it was a part. Joined in disjunction with the A-literal is

the negation of each of the assumptions from the chain used in the solution

of the A-literal. Thus, the resulting lemma states either the "solved" A-

I i tera I is true or one or more of the assumptions was false. The

assumptions which could be used in the solution of the A-literal are the

negation of an A-literal (reduction, p-reduction) or a B-literal

(factorization). The scope mechanism keeps track of the assumptions made

with respect to the solution of each goal.

Lemma formation, while it may generate useful assertions during the

search for a proof, is not required for completeness.

Several heuristics are available to eliminate the generation of

redundant lemmas such as: (1) the first lemma to be generated after an

extension operation followed by zero or more factorization or reduction

operations is always redundant and (2) if the chain has two or more

terminal A-literals and the lemma associated with one subsumes the lemma

associated with another, the second need not be generated (specific cases

of this condition can readily be checked by examining the scopes of the

Ii terals involved).

Subsumotion. Redundant chains and assertions can be eliminated from

future use by subsumption. One chain is subsumed by another and can thus

be eliminated if an instance of the latter chain is an initial subsequence

of the former (sequences of B-literals between A-literals may be freely

reordered during the subsumption test). One assertion subsumes another if

16

the chain corresponding to the former assertion subsumes the chain

corresponding to the latter (the corresponding chain is formed by making a

list of B-literals being the consequents and complemented antecedents . of

implications or disjuncts of disjunctions) and, in the case where the

subsuming assertion is an implication, no disjunct or consequent of the

subsumed assertion is matched to an antecedent of the subsuming assertion.

The latter provision prevents the subsumption of an assertion by another

implicative form of the same assertion both of which may be required for

completeness. Stronger subsumption rules are possible (see [8]).

With relation to a search strategy, two additional classes of

subsumption are recognized: (1) forward subsumption is the subsumption of a

newly created chain or assertion by a previously available chain or

assertion and (2) backward subsumption is the subsumption of a previously

available chain or assertion by a newly generated chain or assertion. In

general, completeness is assured only if, when backward subsumption is

used, it is first checked whether the subsuming chain is eliminable by

forward subsumption.

Examples. This and the following proofs illustrate the usage of most

forms of the inference operations. Chains are represented as linear

strings of literals with A-literals bracketed. A-literals represent

"opened" goals, i.e., goals for which a solution is currently being

attempted in the chain. B-literals represent "unopened" goals, i.e.,

subgoals for which an attempt for solution has not yet started. Each A-

li teral is a logical consequence of all the literals to its right; thus,

the solution of each B-literal to the right of an A-literal solves the A-

li teral while also solving all the other A-literals to the right of the

17

solved A-literal. Deductions are represented as a vertical sequences of

chains, the ancestor of each derived chain being the chain above it. Each

derived chain is annotated to describe its derivation from its ancestor.

If a chain is the result of extension or p-extension by an assertion with

more than one consequent or disjunct, an alphabetic index is used to

designate which consequent or disjunct was used. Indices are "a", "b",

"c", etc., reading from right to left. The unannotated chains at the top

of each sequence of chains are the axioms. Here and elsewhere in this

paper, the conclusion and assertions of a problem will frequently be

referred to as theorem and axioms respectively.

This is a proof that -(Pa * Pb) -> a*b.

1. Pa v Pb first axiom from -(Pa <* Pb)

2. -Pa v -Pb second axiom from -(Pa *» Pb)

3. a*b theorem to be established

4. [a*b] --Pb -Pb p-extend to lb

This operation initiates a proof by contradiction. Assuming a=b
(the complement of the literal a*b), the truth of -Pb A -Pb
contradicts Pa v Pb.

5. [a*bl -Pb factor

It is only necessary to prove -Pb once.

8. [a*bl [-Pb] Pa extend by 2a

By axiom 2, if Pa is true then -Pb is true.

7. [a*bl [-Pbl [Pal Pb p-reduce from A-l i teral

Again assuming a=b to derive a proof by contradiction, if Pb is
true then Pa is true.

8. empty reduce

In chain 7, subject to the assumption that the conclusion a*b is
false and that a=b, there are the implications Pb •* Pa and Pa -»
-Pb. This leads to Pb -Pb, a contradiction if Pb is true.

18

Therefore, -*Pb must be assumed to be true. From chain 5, -Pb
a*b, so the theorem is proved.

The following four examples are adapted with some modification from

[91.

1.
2.
3.
4.
5.
6.
7.
8.
9.

18.
11.

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.

B
A
A H
A
C
[C]
[CJ
[C]
CCl
[C]

-> C
A -D
-• C v

B
[B]
tB]
[BJ
[B]

* B
-0

-0
t-D]

empty

b<a A a<b
b>8
a<b
b<a
a>8
[a>0]
ta>81
Ca>83
empty

-* a=b

b<a a<b b*8
b<a a<b
b<a

a>8 -*
-bs8
a>8
a*b
[a*b]
[a*b]
empty

a>0

a>8 ->b>0
a>0

a+b=2>vc -* a*b v a=c
b*c
a+b=2»vc
a*b
[axb] a+b=2»vc a*c
[axb] a+b»2>vc [axel b*c
[a*b] a+b=2>vc
empty

theorem
extend by 1
extend by 2
extend by 3a
reduce
factor
extend by 4

theorem
p-extend from 1
extend by 2
extend by 3
extend by 4

theorem
p-extend to 1
extend by 2
extend by 3

theorem
extend by lb
p-reduce from A-literal
extend by 2
extend by 3

19

2. The Programmable Strategy Theorem Prover

The Programmable Strategy Theorem Prover (PSTP) is a program written

in UCI LISP [3] for the DECsystem-18 computer implementing the linear MESON

procedure as described in Section 1.

The linear MESON procedure is a good inference system for an

interactive, programmable strategy theorem prover since, it being an

extension of the problem-reduction method, it is more human-oriented than

alternative systems, and its input procedure nature and the relatively

small number of operations that can be performed on any chain facilitates

the design and use of the programmable search strategy capability.

In addition, the linear MESON procedure is a suitable choice in terms

of performance since it appears to perform competitively with other

inference procedures when used as the inference system in a fully automatic

system. An implementation of the parent model elimination procedure at New

York University [4] using a depth first search strategy performed

competetively with a theorem prover employing the set of support refinement

and unit preference search strategy. Further evidence of the

competitiveness of linear MESON procedure based systems will be presented

in Section 3.

Chain properties. In the design of a theorem proving program, it is

necessary to allow for the computation and retention of certain information

about each chain (clause) generated during the search for a proof. An

example is the necessity of retaining information on parentage of each

chain so a proof can be traced when discovered. Another example is the

computation of the length of a chain or the maximum level of function

20

nesting in the chain if length or depth bounds are being employed. It

would be wasteful to always compute and store such information since it may

not always be needed. Also, the retention of computed information about

chains should be contingent on such variables as the computational effort

required to compute the information, frequency of use of the information,

and cost in memory of storing the information. (A more fundamental

objection to always storing computed information about a chain is that the

information might change with time. For example, the fact that, a

particular chain is the shortest chain in memory will probably be falsified

in the future.) Another important consideration in the design of an

information storage and retrieval mechanism for chains is the ability to

define new data which can be optionally computed for any chain.

This last consideration is especially important in an interactive

theorem proving program so that the user can cause to be computed whatever

information about a chain will be useful to him. It is also an important

consideration in the design of a theorem proving program which allows user

specification of search strategies.

The property storage and retrieval mechanism for chains in PSTP was

designed to possess the following characteristics. Uith the obvious

exceptions of the number of a chain and its ancestry information, no

information about a chain is computed unless and until this information is

requested. Retaining the information is a.user option. A new computable

datum about a chain can be defined be merely defining the LISP function

which computes the information.

The mechanism used is based on the concept of a chain property list.

This is a list of dotted pairs; the first component of each dotted pair is

21

a property name (the access name of a datum about the chain); the second

component is the value of the property. The information storage and

retrieval mechanism functions in the following way. If the value of the

property named, for example, NLIT (this represents in PSTP the number of

literals in the chain) is interrogated for a chain, that chain's property

list is examined for a dotted pair with first component NLIT. If such a

dotted pair is found, its second component is the desired information. If

property NLIT does not appear in the chain property list, the LISP function

NLIT is evaluated with the chain (including chain property Iist) as its

single argument. The value the function NLIT returns is then the desired

information. Further, if the LISP atom NLIT has non-NIL value, the

property name NLIT and newly computed value will be added to the chain

property Iist.

New properties are defined by the DP ("define property") function.

The DP function takes as arguments a function name, lambda variable list,

and expression (just like the UCI LISP DE, DF, and DM functions). It

creates a LISP function which performs all the chain property list lookup

and modification operations, and evaluates expression for the argument if

the property value is not found on the chain property list. For example,

NLIT is defined in PSTP by evaluating (DP NLIT (CHAIN) (LENGTH (CDDR

CHAIN))) where LENGTH is the LISP function which computes the length of a

list and (CDDR CHAIN) is the location of the list of literals of chain

CHAIN. (SETQ NLIT T) is then evaluated to order retention of values

computed by the NLIT function.

Some of the property functions already defined in PSTP compute the

number of A-literals in a chain (NALIT), the number of B-literals in a

22

chain (NBLIT), the total number of literals in a chain (NLIT), the maximum

function depth in a chain (DEPTH), the number of variables in a chain

(NVAR), the number of LISP CONS operations required to construct a chain

(SIZE) (this is a good size or complexity function), and the level (number

of inference operations in the derivation) of a chain (NEXPAND) •

Chain fiIters. This property storage and retrieval mechanism supports

a higher level chain storage and retrieval mechanism. Filters provide a

way of flexibly specifying which chains are to be operated upon and which

derived chains are to be stored. Two types of filters are distinguished by

usage: input filters and output filters. Input filters are employed by the

user to specify which chains are to be operated upon. Only chains

"selected by" an input chain filter will be processed. Output filters are

used to specify which derived chains are to be retained. A chain must be

"accepted by" an output filter to be stored. The general form for a filter

is a unary LISP function name or lambda expression which returns a non-NIL

value if the chain argument is selected or accepted, NIL otherwise.

Several abbreviated forms are also available: (1) an integer selects or

accepts a chain with that chain number, (2) a list of integers selects or

accepts chains with chain numbers in the list, (3) a three element list

(called a triple) consisting of a binary function name and 2 integers or

property names selects or accepts chains for which the value of the

function applied to the integers and property values is non-NIL, and (4) a

list of triples which selects or accepts chains for which each triple has

non-NIL value.

This chain storage and retrieval mechanism is very flexible. The user

can designate chains for processing directly by number or by the properties

23

they possess and can arbitrarily specify the necessary conditions for a

newly derived chain to be stored. This user specification of output

filters is a far more general form of the usual specification of bounds in

theorem proving programs.

Search strateau soeci ficat ion. One of the most important features of

PSTP is its capability for specifying the search strategy to be used in

searching for a proof. Several theorem proving programs (e.g., QA3.6 [113)

permit the user to specify a particular combination of refinements of

resolution (restrictions on pairs of clauses to be used as input to the

resolution operation (e.g., linear, merging, set of support, model

refinements)), but the capabiIi ty for ordering inference operations given a

particular refinement of resolution is uncommon. PSTP is, of course,

restricted to using the linear MESON procedure with variations restricted

to different postprocessing operations, but it does have a general

capability for specifying search strategies.

Before describing the search strategy specification capability of

PSTP, it is instructive to consider the proof strategy employed in many

other theorem proving systems in which search strategy is fixed with

possibly a few parameters which the user can specify to tailor the proof

search to a particular problem. Thus, the search strategy may be

fundamentally depth first or perhaps breadth first with a parameter

specifying the permitted amount of look-ahead using unit preference. Much

of the control the user has over such systems is the specification of which

chains to discard. However, even this decision is severely constrained.

Usually, the user is only permitted to specify the values of a few

parameters such as the maximum length or function depth of clauses to be

retained.

24

Ue have seen that output filters generalize the capability of

specifying retention of chains. Chain order functions provide the

capability of specifying the order of expansion of the search space.

Chain order functions. Associated with each list of chains is the

name of an order function. (The order function is actually a chain

property function as described above.) Uhenever a chain is stored in a

chain list, it is inserted according to the numerical value of the

corresponding order function applied to the chain. The chains with the

smallest values of the order function are stored at the top of the chain

list (in case of ties, the more recently stored chains will be on top of

the chain list). This maintenance of chain lists in sorted order in

combination with the SEARCH and SEARCH2 commands provides a quite general

capability for specifying search strategies.

Search commands. The SEARCH command is one of the fundamental

functions for automatically expanding the search space. The normal mode of

operation is for the SEARCH command to remove the top chain from a chain

list, derive all possible immediate successor chains from this chain (this

is known as expanding the chain), and store those successor chains selected

by an output filter in the original chain list according to i ts order

function. Thus by specifying an order function and using the SEARCH

command, the user can specify in what order chains are to be expanded and

thus partially control the search strategy. For example, if the default

order function (which merely returns 0) is used, the search strategy is a

depth first strategy. If the deduction level of a chain is used as order

function, the search strategy is a pure breadth first strategy (level

saturation). The SEARCH command can be viewed as an implementation of

25

NilssorTs A* algorithm [10] for graph searching as applied to theorem

proving. Each derived chain is a node in the graph and the generation of

all immediate successors to a chain by extension, factorization, etc.,

represents the expansion of a node in the A* algorithm.

Although the SEARCH command is very effective in ordering the

expansion of chains, the full expansion of a chain at each step often

results in generating a large number of chains that Nil I not be used

because the value of the order function for these chains exceeds the

maximum order function value of any chain appearing in some proof. This

presents two difficulties: (1) unused high order function valued chains

fill up memory too quickly and (2) their generation requires extra,

unnecessary work. The first of these problems could be solved by

specifying an output filter that rejects chains with order function value

exceeding a certain amount. However, this solution generates a bounded

search strategy, i.e., a parameterized incomplete strategy which may fail

to find a proof because the order function maximum is set too low.

Moreover, the specification of a bounded search strategy fails to solve the

problem of extra work required in the generation of rejected chains.

The solution adopted for PSTP includes a means for specification of

ordering of individual inference operations rather than just chains. The

form of the value of the order function was generalized to include sorted

lists of operations with numerical values. For example, the order function

value ((201 REDUCE) (302 EXTEND G)) could represents the order function

value for a chain with previously unperformed operations of reduction and

extension by chain number G. Chains with order function values of this

form are inserted into chain lists according to the numerical value of the

first specified operation (201 in the example).

26

The SEARCH2 command is designed to operate on chain lists with order

functions of the new form. The SEARCH2 command, rather than deleting and

expanding the top chain on the chain list, deletes and performs only the

first inference operation of the order function value of the top chain on

the chain list. If any inference operations remain in the order function,

the top chain is reinserted in the chain list according to the value of the

next specified inference operation. Thus, the chain list is always a list

of chains ordered according to the minimum value of the unperformed

inference operations for that chain. The SEARCH2 command will generate

successors of a single chain uninterruptedly only so long as none of the

successors of the chain or any other chain on the chain list has an

inference operation with lower numerical value than the next inference

operation to be performed on the current chain.

The SEARCH2 command can also be viewed as an implementation of

Nilsson's A>v algorithm for graph searching with each node being a chain and

a single inference operation. Expansion of a node now merely consists of

applying that inference operation to that chain.

Using the SEARCH2 command, for example, it is possible to use an order

function which specifies a depth first search strategy that performs only

one inference operation on each level (until a level bound is reached

forcing a backup). A more realistic order function for use with the

SEARCH2 command was used in the experiment described Section 3. Note that

the performance of the single specified inference operation may actually

result in the generation of more than one successor chain as, for example,

when there are two ways of extending a chain by a particular axiom.

Format functions. An additional mechanism for altering the strategy

27

U9ed by PSTP is accomplished by the use of format functions. Format

functions can be used to reformat (edit) chains prior to their storage.

For example, a format function can be used to reorder the last B-literals

of a chain to accomplish the effect of Kowalski and Kuehner's literal

selection function mechanism [51. A format function is associated with

each chain list. Each chain is reformatted according to the order function

of the chain list into which it is being stored unless it is already in

that format. A chain may be stored in two different formats in two

different chain lists (formats are permitted to alter the sequence of

literals which constitutes the chain itself, but not the chain property

list). Default format functions are those which convert chains to x-

standardized or y-standardized form by renaming variables.

Command summaru. Following is a brief description of each of most of

the PSTP commands. These PSTP commands can be divided into four classes:

declarative commands (CHAINLIST. PARAMETERS. POSTPROCESSING. PROBLEM),

informative commands (ANCESTRY, COUNT, DISPLAY), manipulative commands

(COPY, DELETE, FOR, TRANSFER), and inference commands (EXPAND, SEARCH,

SEARCH2). An abbreviated syntax for each command is also presented;

linguistic variables are enclosed in angle brackets (e.g., "<sources>") and

optional command phrases are enclosed in square brackets (e.g., 11 [DELETE]11

and "[TO <dest inat ions>]"). If any phrase of a command is absent, a

default value will be used.

In the descriptions of the commands, the most important linguistic

variables are <sources> and <dest inations>. A source or destination

represents, in general, a chain list and a chain filter. For a chain to be

used by a command specifying <sources>, it must be a member of one of the

28

specified chain lists and be selected by the corresponding chain filter.

For a chain to be stored in the chain list of a destination by a command

specifying <destinations>, it must be accepted by the corresponding chain

filter. Note that in the syntax, <sources> and <destinations> are never

optional (except as part of an optional phrase). This is because the empty

specification for <sources> and <destinations> is legal and has a default

value.

Any of the non-declarative commands can be interrupted at any time by

typing any character. The command completes processing of the current

chain and then enters a "break". In this state, the user can execute any

PSTP command or LISP function and continue or abort the processing of the

interrupted command.

ANCESTRY command. The (ANCESTRY [DELETE] <sources>) command prints

the derivation of each chain designated by <sources>. If DELETE is

specified, each designated chain is also deleted from its chain list.

CHAINLIST command. The (CHAINLIST [<decIarations>]) command is used

to declare chain lists that will be used and their format and order

functions. If <declarations> is absent, the CHAINLIST command prints the

list of previously declared chain lists and their format and order

functions.

COPY command. The (COPY [DELETE] <sources> [TO <destinations>])

command copies each chain designated by <sources> to each of

<destinations>. If DELETE is specified, each designated chain is also

deleted from its chain list.

COUNT command. The (COUNT [DELETE] <sources>) command counts the

number of chains designated by <sources>. If DELETE is specified, each

designated chain is also deleted from its chain list.

29

DELETE command. The (DELETE <sources>) '19 the same as the (COUNT

DELETE <sources>) command, i.e., the COUNT command with chain deletion

specified.

DISPLAY command. The (DISPLAY [DELETE] <sources>) command prints each

chain designated by <sources>. If DELETE is specified, each designated

chain is also deleted from its chain list.

EXPAND command. The (EXPAND [EXTEND] [FACTOR] [REDUCE] [PEXTEND]

[PREDUCE] [DELETE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>] [AND

<destinations2>]) is the principal inference command for interactive use.

It will perform the designated inference operations on each of the chains

designated by <sourcesl> using each chain designated by <sources2> as

second argument to binary inference operations (extension and p-extension).

Derived chains will be stored in <destinationsl> and lemmas will be stored

in <destinations2> (chain filters permitting). If DELETE is specified,

each designated chain in <sourcesl> is also deleted from its chain list.

The EXPAND command is restricted to performing inference operations on

chains existing at the time of its invocation, i.e., it will not perform

any inference operations on chains it has just derived. The command

terminates when (1) the empty chain is generated, i.e., a proof has been

found, (2) all the specified operations have been performed, or (3) the

user suspends processing of the command by typing any character. If no

inference operations are designated, all inference operations will be used.

If at least one inference operation is designated, the word EXPAND may be

omi tted.

FOR command. The (FOR [DELETE] <sources> DO <function>) command

applies the unary LISP function <function> to each chain designated by

30

<sources>. If DELETE is specified, each designated chain is also deleted

from i ts chain Iist.

PARAMETERS command. The (PARAMETERS [<index>]) command is used to

declare the values of several global parameters. If an <index> (an

arbitrary LISP atom) is specified, it designates for use the predefined set

of parameter values associated with <index>. If an <index> is not

specified or <index> has no previously defined meaning, the PARAMETERS

command asks a series of questions requiring the user to define the value

for each parameter. Parameters set by the PARAMETERS command include:

whether newly generated chains are to be printed, the format in which

chains are to be printed, whether lemmas are to be generated, and whether

subsumption is to be performed.

POSTPROCESSING command. The (POSTPROCESSING [<index>]) command is

used to declare what postprocessing operation is to be employed. If an

<index> (an arbitrary LISP atom) is specified, this <index> designates the

postprocessing operation that will be used. Allowed <index>s include UEAK-

SAVE, UEAK-DELETE, STRONG-SAVE, and STRONG-DELETE, designating the

postprocessing operations described in Section 1. I f an <index> is not

specified or <index> has no previously defined meaning, the POSTPROCESSING

command asks a series of questions requiring the user to designate which

action among a list of alternative actions is to be taken for a given

condition. For example, the POSTPROCESSING command may ask whether, in the

case of an A-literal followed by an identical B-literal, the B-literal

should be saved, deleted, or deleted with the reduction operation recorded

in the ancestry of the chain.

PROBLEM command. The (PROBLEM [<declarations>]) command sets up a

31

problem for the theorem prover. It first makes the chainlist declarations

specified by <declarations> (if fewer than two chain list declarations are

specified, up to two default declarations will be made) and then asks the

user to type in the theorem and each axiom. The theorem is stored in the

first declared chain list; its negation and the axioms are stored in the

second declared chain list. The input format for the theorem and axioms is

the same as was used in the description of the linear MESON procedure

except that prefix form for predicate and function symbols is required, and

(due to character set limitations) A and v are omitted and — > is

substituted for Thus, Pab A Pba -> a=b v Qabx is typed in as Pab Pba — >

=ab Qabx. The theorem and axioms are then encoded into internal list form.

The PROBLEM command permits the user to save the encoded axioms so that

they will not need to be retyped in future proofs of the same problem.

SEARCH command. The (SEARCH [EXTEND] [FACTOR] [REDUCE] CPEXTENDJ

[PREDUCE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>] [AND

<destinations2>]) repeatedly deletes the first chain from <sourcesl> (a

chain with lowest order function value) and performs on it each designated

inference operation with the chains designated by <sources2> as second

argument to binary inference operations (extension and p-extension).

Derived chains will be stored in <destinationsl> and lemmas will be stored

in <destinations2> (chain filters permitting). So that newly generated

chains can be used as input to inference operations by the SEARCH command,

<sourcesl> and <destinat ionsl> will ordinarily specify the same chain

lists. The command terminates when (1) the empty chain is generated, i.e.,

a proof has been found, (2) <sourcesl> is empty meaning no more operations

can be performed and no proof could be found within the constraints of the

32

specified operations, initial chains, and chain filters, or (3) the user

suspends processing of the command by typing any character. If no

inference operations are designated, all inference operations will be used.

SEARCH2 command. The (SEARCH2 [EXTENDI [FACTOR] [REDUCE] [PEXTEND1

[PREDUCE] <sourcesl> [BY <sources2>] [GIVING <destinationsl>] [AND

<destinations2>]) repeatedly deletes the first chain from <sourcesl> (a

chain with lowest order function value) and performs on it the first

designated inference operation in the order function value. This inference

operation is then deleted from the order function value and, if any

inference operations remain in the order function value, the chain is

reinserted in <sourcesl> (now with the numerical value associated with the

next inference operation as the numerical value of the chain for insertion

into the sorted chain list). Derived chains will be stored in

<destinationsl> and lemmas will be stored in <destinations2> (chain filters

permitting). So that newly generated chains can be used as input to

inference operations by the SEARCH2 command, <sourcesl> and <destinationsl>

will ordinarily specify the same chain lists. The order function, using

variables of the SEARCH2 function, will construct a list of inference

operations with (in the case of binary inference operations) second

arguments as specified in <sources2> for derived chains as they are stored.

The command terminates when (1) the empty chain is generated, i.e., a proof

has been found, (2) <sourcesl> is empty meaning no more operations can be

performed and no proof could be found within the constraints of the

specified operations, initial chains, and chain filters, or (3) the user

suspends processing of the command by typing any character. If no

inference operations are designated, all inference operations will be used.

33

TRANSFER command. The (TRANSFER <sources> [TO <desfinations>])

command is the same as the (COPY DELETE <sources> [TO <destinations>3)

command, i.e., the COPY command with chain deletion specified.

34

3. Performance Study

In order to give some idea of the performance of PSTP with some simple

search strategies and to make some points about relative merits of some of

these strategies, the results of.PSTP runs on 9 examples using 4 strategies

are, presented here. Results are compared to results for two other theorem

proving programs tested on the same examples.

The examples. The examples are taken from a comparative study of

theorem proving strategies used by QA3.B by Reboh et a I [111 (additional

information on sources, theory, and previous uses of these examples are in

[11]); the same examples were also run for an SL-resolution theorem prover

(here called SLRTP) by Aubin [1,21. The examples are axiomatized just as

for QA3.6 with an occasional substitution of a disjunction for an

implication and, in the cases of unsatisfiable sets of axioms, the use of

the negation of one of the axioms as the theorem.

Inference operations used. All the examples were run with extension

as the only rule of inference except the NUfll example for which reduction

was also necessary. The UEAK-DELETE postprocessing operation was used for

all the examples. Its use, of course, permits ground factorization and

reduction. In some examples (BURSTALL, SHORTBURST, GR0UP1, GR0UP2), it is

readily apparent from the structure of the problem that no reduction is

possible (since every chain derived from the theorem has only positive

literals eliminating any possibility of matching an A-literal with a

complementary B-literal). The ANCES1 example is propositional and thus the

ground reduction in the UEAK-DELETE postprocessing operation is sufficient.

In the remaining three problems (HAS-PARTS1, HAS-PARTS2, PRIM) for which

35

reduction was not employed (although ground reduction was used in each),

the use of the reduction operation resulted in the generation of no

additional chains. Lemmas were not generated for any of the examples.

Search strategies used. The strategies used are characterized by 4

parameters: length multiplier, level multiplier, length maximum, and level

maximum. The length of a chain is defined to be its number of B-literals.

This is consistent with the notion of the length of a clause jn resolution

theorem proving being its number of literals since in a chain A-literals

record ancestry information and would not be present in the corresponding

clause form. The level of a chain is defined to be the number of inference

operations employed in deriving it from the alleged theorem excluding those

operations (ground factorization and reduction) automatical Iy performed by

the postprocessing operation.

The SEARCH2 search command was employed with projected inference

operations ordered according to the minimum values of a weighted sum of the

expected length and level of the result. The expected length of a chain

derived by extension is the length of its parent chain being extended plus

the length of the axiom minus 2. The expected length of a chain derived by

factorization or reduction is the length of its parent chain minus 1. The

actual length may be less (but never more) due to removal of B-literals by

the accepting transformation. The expected and actual level of a chain is

the level of its parent plus 1. Only inference operations whose results

have expected lengths and levels not exceeding the length or level maxima

will be attempted (this way of implementing length and level maxima was

also used by QA3.G and SLRTP).

Two sets of length and level multipliers were tried. The first has a

3G

length multiplier of 101 and a level multiplier of 100 and is called the

101/100 strategy. In the 101/100 strategy, the projected inference

operation with highest merit is one with the smallest value of (100 times)

the sum of expected length and level of the result. Ties are resolved in

favor of lesser expected length (a 100/101 strategy would resolve ties in

favor of lesser expected level). (It is assumed here that the expected

length of a chain will never exceed 100.) The most important thing to note

about the 101/100 strategy is that it is essentially the same as Kowalski

and Kuehner's upper diagonal search strategy [5]. It is an admissable

strategy [10] except for cases where the postprocessing operation removes

B-literals by ground factorization or reduction. First proofs discovered

by admissable strategies are guaranteed to be minimum level proofs.

The second strategy has a length multiplier of 501 and a level

multiplier of 100 and is called the 501/100 strategy. In the 501/100

strategy, the projected inference operation with highest merit is one with

the smallest value of (100 times) the sum of the expected level and 5 times

the expected length of the result. Ties are again resolved in favor of

lesser expected length. By multiplying length by 5 times as much as level,

a strong length preference strategy is produced. The 501/100 strategy is,

of course, inadmissable since it is clearly not always the case that it

requires at least 5 inference operations to remove a single literal. (For

a strategy to be admissable, the estimated additional cost to solution must

always be less than or equal to the actual additional cost to solution.)

The 101/100 and 501/100 strategies were each tried with (bounded) and

without (unbounded) length and level maxima. The length and level maxima

used were those used by QA3.6 wherever possible.

37

Statistics. The performance of strategies will be primarily

characterized by the "chains generated" statistic. Here, this information

is represented by a 4-tuple: the first component is the number of chains

retained; the second component is the number of acceptable chains

generated; the third component is the total number of chains generated; the

fourth component is the number of attempted inference operations. The

number of retained chains is the number of acceptable chains minus the

number of chains eliminated by subsumption, function depth tests, etc. No

such processes were used to eliminate chains in this experiment, so the

number of retained chains is always equal to the number of acceptable

chains. The total number of chains generated is the number of acceptable

chains plus the number of non-acceptable chains generated. These

statistics and the time figures referred to below are automatically

accumulated by PSTP and printed out when a proof is found.

Nearly comparable statistics are presented where available for QA3.6

and SLRTP (except QA3.G statistics refer to clauses rather than chains).

Best and mean performance figures are presented for QA3.B on each

example. For QA3.6, the number of retained clauses is the number of

retained clauses after subsumption and function depth tests; the number of

acceptable clauses is computed as the number of successful resolutions and

factorings; the number of attempted inference operations is computed as the

number of attempted resolutions and factorings. The proportion of tested

QA3.G strategies which discovered a proof is given on the same line as the

mean performance of QA3.G strategies; unsuccessful strategies were excluded

in computing the means.

Performance figures are presented for SLRTP where the set of support

38

for the refutation was the negation of the theorem in the PSTP proof on

each example. Due to the similarity of operations and terminology between

the linear MESON procedure and the inference system for SLRTP, SL-

resolution [53, we will here present a brief description of SL-resolution.

SL-resolution, a refutation procedure, can be viewed as a variant of

model elimination without equality with the following features. (1) The

capability for reordering B-literals at the end of a chain is formalized in

the form of a literal selection function which designates the literal to be

extended on in succeeding extension operations. (2) Factorization is a

required operation for completeness in SL-resolut ion since the equivalent

of the STRONG-SAVE postprocessing operation is employed. The model

elimination factorization and reduction operations are combined into the

SL-resolut ion reduction operation. (3) SL-resolut ion requires a fully

factored input set of clauses, i.e., every non-tautoIogous factor of an

input axiom must also be input (or, as in SLRTP, derived). A benefit of

this is that SL-resolution reduction operations need never be performed

with the leftmost involved literal being or following the last A-literal of

the chain. (4) Any B-literal following the last A-literal of the chain is

a candidate for removal by the reduction operation, not just the rightmost

as in model elimination. (5) Upper diagonal search is the prescribed

search strategy for SL-resolution.

For SLRTP, the number of retained chains is the number of retained

chains after function depth tests and subsumption (subsumption is only used

in eliminating redundant axiom chains or their factors during the process

of generating a fully factored input set of axioms); the number of

acceptable chains is computed as the number of successful extensions,

39

reductions, and factorings (used only for generating a fully factored input

set of axioms); the number of attempted inference operations is computed as

the number of attempted extensions, reductions, and factorings. The GR0UP1

and GR0UP2 example statistics are taken from [2] •

Time statistics. The "search time" statistic represents the time

spent in searching for a proof by a compiled version of PSTP; it excludes

time spent in inputting the problem, outputting of final statistics and

proof, and garbage collection, although it does include time required for

some trace output during the search. Search time is the only widely

variable component of total time to solution with problem input and

statistics and proof output time relatively constant and small. Although

PSTP is conservative of storage (performing LISP CONS operations only when

necessary when instantiating chains) and therefore ordinarily requires few

garbage collections, garbage collection time is excluded because (1) time

consuming garbage collections occurring at random times in the search for a

proof tend to randomize the time statistics especially for short searches

(this problem could be overcome by always starting a search for a proof

immediately after a garbage collection) and (2) frequency of garbage

collection is dependent on the amount of storage available (with infinite

storage, there need not be any garbage collections). Nearly all the proofs

presented here were found with about 25000 words available for storing

chains and most were found with no garbage collections.

Time statistics should not be used for comparison among strategies

used by different theorem provers without considerable caution and more

information than is usually available. Such statistics are of course

influenced by the machine and operating system used, language and coding of

40

the theorem prover, whether compiled (SLRTP, PSTP) or interpreted (QA3.6),

special conditions applying to the operation of the theorem prover (e.g.,

tracing), and some randomness in the times themselves (such randomness,

attributable to variable load on the time sharing system, is visible in

some anomalies in the statistics presented here).

Resul ts. Four primary observations can be made from the results of

the experiment presented here: (1) PSTP performs competitively with QA3.B

and SLRTP, (2) the 501/188 strategy performs better than the 101/100

strategy (for these examples), (3) the 501/100 strategy is relatively

insensitive to length and level bounds, the 101/100 strategy is much more

sensitive, and (4) elimination of some implicative forms of the axioms can

result in improved performance.

The basis for comparison of the results of PSTP and QA3.S is the

number of acceptable chains generated (equals the number of chains

retained) for PSTP versus the number of acceptable clauses generated

(equals the number of successful resolutions and factorings) for QA3.6.

This is a fairer comparison than one using the number of retained clauses

for QA3.G since QA3.G eliminated clauses by function depth maxima and

subsumption. Even this comparison is still somewhat unfair to PSTP since

if function depth tests and subsumption had not been used in QA3.G, the

number of generated clauses would presumably have been larger since

eliminated clauses could now act as parent clauses in additional

inferences.

Using this basis for comparison, the unbounded 501/100 strategy (the

strategy we prefer for reasons given below) performed better than the

average of QA3.G strategies which found a proof in all the examples except

PRIM, GR0UP1, and GR0UP2.

41

In the PRIM example, the unbounded 501/100 strategy performed only

slightly worse than the average of QA3.G strategies.

In the GR0UP1 example, the absolute difference in performance is small

even if the number of chains generated by PSTP is double the number of

clauses generated by QA3.G. In view of the fact, for example, that by

reversing the order of presentation of the axioms to PSTP can cause the

performance of PSTP to exceed that of QA3.G, we tend to regard this

difference as being relatively insignificant.

The difference in the case of GR0UP2 is much more serious and has a

rather different explanation. Uhere the formulation of the GR0UP2 example

has several unit axioms and two 4-literal associative axioms, the use of a

length maximum value of 3 can be seen to be extremely restrictive. In

resolution terms, this length maximum requires that only units be resolved

against the associative axioms, and in the case of GR0UP2 if the negation

of the theorem is used as the set of support, the length maximum

automatically restricts any tested strategy to a further refinement of unit

resolution in which only the negation of the theorem can be directly

resolved against the associative axioms. PSTP was tested with a variant of

the GR0UP2 example in which axiom 3 was reordered so that a proof meeting

the length maximum value of 3 restriction existed. On this example, the

unbounded 101/100 strategy generated 435 chains; all the other strategies

generated 29. We therefore feel that the better performance of QA3.G on

this problem was more attributable to the restrictive length maximum than

to an intrinsic inferiority of PSTP.

The comments about the restrictive length bound used by QA3.G in the

GR0UP2 example can be extended to several other examples. The BURSTALL,

42

SHORTBURST, HAS-PARTS1, HAS-PARTS2, PRIM, ANCES1, GROUP1, and GR0UP2

examples all had very restrictive length maxima, in every case set at or

below the minimum value required for PSTP to discover a proof. Level

maxima were often similarly restrictive although we perceive this to be

much less important in reducing the size of the search in the non-depth

first search strategies tested. We feel that use of such restrictive

length and level (especially length) bounds invalidates the results of [11]

to a degree, since their use imposes severe limitations on the structure of

the search space. In this restricted search space, tests of different

strategies may fail to discriminate between strategies, or unfairly

discriminate between them.

Given the similarity of SL-resolution and the linear MESON procedure,

one would anticipate substantial similarity in the results, for PSTP using

the bounded 101/108 strategy (upper diagonal search) and SLRTP. For 6 of

the examples (BURSTALL, SHORTBURST, HAS-PARTS1, PRIM, ANCES1, and NUM1),

the results agree closely. Differences emerge for the remaining 3

examples. Ue don't know why PSTP did so much worse than SLRTP on the HAS-

PARTS2 example. In the GROUP! example, use of a fully factored input set

of clauses was clearly beneficial to SLRTP since the very short proof could

be shortened further by using a factored form of one of the associative

axioms. PSTP with factorization could not match the SLRTP results, since

extension by the associative axiom followed by factorization counted as 2

inference operations in computing the level of the resulting chain (whose

value is used to compute the order function value) whereas extension by the

factored associative axiom by SLRTP counts as only 1 inference operation.

(PSTP could be made to equal SLRTP*s performance on this example by

43

inputting a fully factored set of axioms, a perfectly legal operation,

although unnecessary for completeness.) In the case of the GR0UP2 example,

for which SLRTP failed to find a solution, both the bounded and unbounded

181/108 strategies in PSTP showed relative difficulty in discovering a

solution. In SLRTP, this difficulty was exacerbated by the very feature

which aided the quick solution of the GR0UP1 example: mandatory

factorization. PSTP with factorization and the STRONG-DELETE

postprocessing operation (resulting in an inference system very similar to

SL-resolution) failed to find a proof with the unbounded 101/100 strategy

after 1507 chains were generated, discovered a proof while generating 410

chains with the unbounded 501/100 strategy, and discovered a proof while

generating 458 chains with each of the bounded strategies. The proofs

discovered were the same as those discovered without factorization.

Ue believe the detrimental effects of factorization as demonstrated in

the GR0UP2 example results are more typical than the beneficial effects

illustrated in the GR0UP1 example. In our experience, even in cases where

factorization does shorten a proof (as it did not in the GR0UP2 example),

the proliferation of highly instantiated chains caused by the use of

factorization still often outweighs the benefits. (These negative comments

clearly refer only to general factorization where literals must be unified;

factorization in the ground case is clearly beneficial and is included in

the postprocessing operations we used here.) Should future experience

prove this judgment about factorization wrong, the linear MESON procedure

still permits factorization as a legal though optional operation.

Another point can be made here concerning SLRTP's efforts to discover

a solution to the GR0UP2 example. SLRTP uses a literal selection function

44

to designate which literal of each derived chain is to be used in future

extension operations. The only literal selection function tested was the

function which always selects a literal which has the fewest matching

literals among the axioms. This has the obviously desirable characteristic

of reducing the branching rate of the search tree since the selected

literal has the fewest matches among the axioms and. further, removal of

the selected literal after some inference operations will usually

instantiate the remaining literals and reduce the number of literals among

the axioms matching them. However, this literal selection function is, in

the case of problems with structure similar to the GR0UP2 example,

inconsistent with the use of length maxima. In GR0UP2, for example, the

literal selection function will show a preference for literals capable of

being extended upon only by the associative axioms (since any positive

literal matches the consequent of the associative axioms, any literal

matching a unit axiom also matches the associative axioms). Thus, the

effect of the use of this literal selection function is to increase the

length of chains appearing in a deduction possibly requiring the increase

of the length maximum used.

One final point remains about the comparison of results between PSTP

and SLRTP. This concerns the very small number of attempted inference

operations by SLRTP. This is due to the use of a literal classification

tree which automatically selects out likely matches for literals to be

extended upon from among the literals in the axioms. The extension

operation is only attempted for axioms containing literals selected by the

literal classification tree. This probably represents a fairly small

(though real) saving in computational effort since one must count the cost

45

of creating and accessing the literal classification tree and the cost

saved is that of attempting unifications destined to fail, usually a fairly

quick operation. The real benefit of use of the I i teral - class] ficat ion

tree is the elimination of the multiple attempts at unifying literals that

would ordinarily result from use of the literal selection function

requiring discovery of the number of matches for a literal among literals

in the axioms.

In comparing the four strategies tested by PSTP among themselves, one

first discovers that the 501/100 strategy invariably performed as well as

or better than the 101/100 strategy for the same choice of length and level

maxima. This is especially true of the results for the BURSTALL, GR0UP2,

and PRIM examples in the absence of length and level maxima. A further

demonstration of the superiority of the 501/100 strategy is its relative

insensitivity to length and level bounds. Only in the BURSTALL example did

the bounded 501/100 strategy perform significantly better than the

unbounded strategy. Also, in the PRIM and GR0UP2 examples, the addition of

length and level bounds actually degraded the performance of the 501/100

strategy since the bounds excluded proofs discovered by the unbounded

strategy. In contrast, performance of the 101/100. strategy was often

improved by the addition of length and level bounds, but (as stated above)

never improving upon the performance of the 501/100 strategy. The

demonstrated insensi tivi ty of the 501/100 strategy to the addition of

length and level bounds seems especially significant in view of the often

extreme restrictiveness of the bounds tested.

Due to its generally good performance and lack of improvement with the

addition of bounds, we regard the unbounded 501/100 strategy as the best

among those tested.

4G

He feel generally that, provided it performs adequately, a complete

(e.g., length preference) strategy like the unbounded 501/100 strategy is

to be preferred to an incomplete (e.g., length bounded) strategy like the

bounded 101/100 strategy, even if the latter, with appropriate choice of

bounds, can often match the performance of the former.

Finally, we merely note that judicious elimination of various

implicative forms of the axioms can result in significantly improved

performance as demonstrated in the results for the HAS-PARTS1, HAS-PARTS2,

and PRIM examples. Of course, this elimination of implicative forms of the

axioms destroys the completeness property of the linear MESON procedure.

However, this controlled incompleteness may be desirable in cases where

significant improvement in performance results. Completeness could be

preserved and nearly the same effect gained by presenting PSTP with all the

implicative forms of the axioms, but (via the order function definition)

giving PSTP a strong preference for using one instead of another.

One feature of the linear MESON procedure not previously discussed is

the length of its proofs. It is characteristic of linear theorem proving

strategies that they require longer proofs than some other strategies.

This and past studies [1,4] indicate that linear strategies can overcome

this increased proof length and perform competitively with other

procedures. The linear resolution strategy tested in QA3.G was less

successful since the special chain rejection criteria of variants of the

model elimination procedure were not used.

While the length of a proof is one measure of its complexity, we feel

that the increased length of linear MESON procedure proofs is not a great

disadvantage in terms of readability. The problem-reduction method

47

oriented form of such proofs often makes them more comprehensible than

ordinary resolution proofs relying on converging lines of deduction

resulting in a refutation.

48

4. Summary

Ue have presented the linear MESON procedure, a procedure we feel to

be one of the most natural available systems of complete inference in the

first order predicate calculus due to its linear format and relationship to

goal-subgoal trees. It also has advantages in the capability for inputting

multiple implicative variants of individual axioms so that individual

variants can be differentially treated (or ignored). Another advantage of

the linear MESON procedure as compared with, for example, SL-resolution is

the optional nature of the factorization operation. Although the point is

not elaborated upon here, it is our observation (also made by Fleisig et a I

[41) that factorization (except ground factorization) is usually harmful

and results in instantiating chains too greatly.

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving

program using the linear MESON procedure as its inference system.

Especially significant features of PSTP are the general capabilities for

specifying information to be computed or retained about chains, for

specifying which chains are to be retained or manipulated by a given

command, and for specifying the order in which inference operations are to

be performed in fully automatic searches for a proof.

Ue have presented the results for PSTP solutions of 9 examples

previously tested in two other theorem proving studies. From these results

we concluded that PSTP performed competitively as compared with the other

tested theorem provers. Ue feel that the potential significance of PSTP is

not that it perform spectacularly using simple search strategies such as

those tested (it doesn't), but that it provides an inference system and

49

system features which facilitate the user specification of more complex and

effective search strategies and chain elimination criteria.

We also demonstrated empirically the inferiority of the diagonal

search strategy to similar strategies which have a stronger length

preference component and that such length preference oriented strategies

all but eliminate the need for length maxima for problems of this level of

complexity. We prefer search strategies that have, for example, length

preference built in to the added imposition of length bounds: the use of

preference strategies in the absence of bounds results in complete

strategies guaranteed to find a solution if one exists.

We have also criticized some of the methodology used in previous

theorem proving studies. Results in such studies are often heavily

dependent on the length and level (especially length) bounds used in

restricting the search for a solution. In consequence, success in finding

a solution in reasonable time and space is often more attributable to the

bounds used than the tested strategy. Thus, such results fail to

adequately discriminate between different theorem proving procedures. We

urge that future studies test theorem proving procedures in the absence of

artificially imposed bounds.

58

Acknowledgments

I wish to thank Prof. Donald U. Loveland (Department of Computer

Science, Duke University) for his guidance during the development of PSTP

and for his continuing development of the model elimination and MESON

procedures. I also wish to thank Profs. Jack Buchanan, Allen Newell (both

at Department of Computer Science, CMU) and Peter B. Andrews (Department of

Mathematics, CMU), and Rene Reboh (Datalogi laboratoriet, Uppsala

University) who, in addition to Prof. Loveland, all reviewed an earlier

version of this paper.

51

Bibliography

1. Aubin, R. Some experimental results on SL-resolut ion. Memo No 68.
Department of Computational Logic. School of Artificial Intelligence.
University of Edinburgh. Edinburgh, July 1973.

2. Aubin, R. Personal communication. Dec. 1973.

3. Bobrow, R. J., Burton, R. R., Jacobs, J. M. and Lewis, D, UCI LISP
Manual. University of California, Irvine, Calif., 1973.

4. Fleisig, S., Loveland, D., Smiley, A. K. Ill and Yarmush, D. L. An
implementation of the model elimination proof procedure. /• ACM 21, 1
(Jan. 1974), 124-139.

5. Kowalski, R. and Kuehner, D. Linear resolution with selection
function. Artificial Intelligence 2 (1971), 227-260.

6. Loveland, D. U. A simplified format for the model elimination theorem-
proving procedure. /. ACM i6, 3 (July 1969), 349-363.

7. Loveland, D. U. A unifying view of some linear Herbrand procedures. J .
ACM 29, 2 (Apr. 1972), 366-384.

8. Loveland, D. W. Forthcoming book. North-Holland, Amsterdam.

9. Loveland, D. U. and St i eke I, M. E. The hole in goal trees: some
guidance from resolution theory. Advance Papers 3rd Int. Joint Conf. on
Artificial Intelligence, Stanford, Calif., 1973, pp. 153-161.

10. Ni Isson, N. J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hi I I,
New York, 1971.

11. Reboh, R., Raphael, B., Yates, R. A., Kling, R. E. and Velarde, C.
Study of automatic theorem-proving programs. Technical Note 75,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, Calif., Nov. 1972.

52

Examples

1. BURSTALL Example

Axioms:

1. has(pl,ass(j,n9))
2. follows(p2,pi)
3. has(p2,ass (k,nl))
4* labels (loop,p3)
5. follows(p3,p2)
6. has(p3,ifthen (equal(j,n),p4))
7. has(p4,goto(out))
8. follows(p5,p4)
9. follows(p6,p3)

10. has(p6,ass(k,times(n2,k)))
11. follows(p7,p6)
12. has(p7,ass(j,plus(j,nl)))
13. follows(p8,p7)
14. has(p8,goto(loop))
15. fol lows(xp,yp) succeeds (xp,yp)
16. succeeds(xp,zp) A succeeds(zp,yp) -» succeeds(xp,yp)
17. has(xp,goto(zp)) A labels(zp,yp) -» succeeds(yp.xp)
18. has (xp, i f then (ze,yp)) succeeds (yp.xp)

Theorem:

19. succeeds(p3,p3)

2. SHORTBURST Example

Axioms:

1. labelsdoop,p3)
2. has(p3,if then(equal(j,n),p4))
3. has(p4,goto (out))
4. follows(p5,p4)
5. follows(p8,p3)
6. has(p8,goto(loop))
7. fol lows(xp,yp) -» succeeds (xp,yp)
8. succeeds(xp,zp) A succeeds(zp,yp) •» succeeds(xp,yp)
9. has(xp,goto(zp)) A labels(zp,yp) -» succeeds(yp,xp)
10. has (xp, i f then (ze,yp)) -» succeeds (yp,xp)

Theorem:

11. succeeds(p3,p3)

3. HAS-PARTS Example 1

Axioms:

1. in(John,boy)
2. in(x,boy) •• in(x,human)
3. hp(x,xm,y) in (ski (x,y,z,xm,xn) ,y) v hp(x,t(xm,xn),z)
4. hp(x,xm,y) + -hp(ski(x,y,z,xm,xn),xn,z) v hp(x,t(xm,xn),z)
5. in (x,hand) -» hp (x,n5, f ingers)
6. in(x,human) -» hp(x,n2,arm)
7. in(x,arm) -» hp(x,ni,hand)

Theorem:

8. hp(John,t(n2,ni),hand)

53

Examples

4. HPS-PARTS Example 2

Axioms:

1. in(John,boy)
2. in(x,boy) «• ln(x,human)
3. hp(x,xm,y) •> in(skl(x,y,z,xm,xn),y) v hp(x,t(xm,xn),z)
4. hp(x,xm,y) •* -*hp (ski (x,y,z,xm,xn) ,xn,z) v hp(x,t(xm,xn),
5. In (x,hand) «• hp (x,n5, f ingers)
6. In(x,human) -» hp(x,n2,arm)
7. in(x,arm) * hp(x,ni,hand)

Theorem!

8. hp (John, t (t (n2,ni) ,n5), f ingers)

5. PRIM Example

Axioms:

1. Oxx
2. Dxy A Oyz -» Dxz
3. Px v Og(x)x
4. Px v Lnlg(x)
5. Px v Lg(x)x
6. Lnlx A Lxa Pf(x)
7. Lnlx A Lxa * Of(x)x
8. Lnla

Theorem:

(9* -»Px v ->Dxa negation of theorem)
10. Pxl A Dxla

6. ANCES1 Example

Axioms:

1. -d v A v H
2. K v H v J
3. -»K v H v J
4. «iA v -*B
5. -A v B

6. -M v -»C

Theorem:

7. H A «*C

7. NUtll Example

Axioms:

1. Px A MyzM A DXM •* Oxy v Dxz
2. Mxxs(x)
3. Mxyz flyxz
4. Mxyz -» Dxz
5. Mas(c)s(b)
6. Pa

Theorem:

7. Dab

54

ExampIes

55

8. GROUPi Example

Axioms:

1* Pxyu A Pyzv A PXVW Puzw
2. Pxyu A Pyzv A P U Z H «* Pxvw
3. Pg(xy)xy
4. Pxh(xy)y
5. Pxyf(xy)

Theorem:

(6. -*Pj(x)xj(x) negation of theorem)
7. Pj(xl)xlj(xl)

9. GR0UP2 Example

Axioms:

1. Pxex
2. Pexx
3. Pxyu A Pyzv A PUZM Pxvw
4. Pxyu A Pyzv A PXVW «» Puzw
5* Pxxe
6* Pabc

Theorem:

7. Pbac

Length Level Length Level
Multi- Multi- Maximum Maximum
p i l a r pi ier

1. BURSTALL Example

101 100
501 100
101 100 2 12
501 100 2 12

QA3.6 best 2 12
QA3.6 mean 16/19 2 12

SLRTP 3 13

2. SHORTBURST Example

101 100
501 100
101 100 2 10
501 100 2 10

QA3.6 best 2 10
QA3.6 mean 14/14 2 10

SLRTP 3 10

3. HAS-PARTS Example 1

Implicative form for axioms:
101 100
501 100
101 100 3 10
501 100 3 10

Disjunctive form for axioms:
101 100 -
501 100 -
101 100 3 10
501 100 3 10

QA3.6 best 2 10
QA3.6 mean 6/6 2 10

SLRTP 2 10

4. HAS-PARTS Example 2

Implicative form for axioms:
101 100
501 100
101 100 3 10
501 100 3 10

Disjunctive form for axioms:
101 100
501 100
101 100 3 10
501 100 3 10

QA3.6 best 2 10
QA3.6 mean 6/7 2 10

SLRTP 3 13

Statistics

A 191/191/215/3129 46.3
B 74/74/ 75/1229 16.1
A 45/ 45/ 45/741 9.8
A 45/ 45/ 45/741 9.2

38/ 42/ /1462
99/118/ Z3222

48/ 48/ /122

A 18/ 18/ 19/144 3.0
A 16/ 16/ 16/128 2.1
A 16/ 16/ 16/128 2.2
A 16/ 16/ 16/128 2.1

12/ 12/ /255
20/ 21/ /325

16/ 16/ / 42

A 7/ 7/ 7/ 47 0.7
A 7/ 7/ 7/ 47 0.7
A 7/ 7/ 7/ 47 1.0
A 7/ 7/ 7/ 47 0.8

A 12/ 12/ 12/124 1.8
A 12/ 12/ 12/124 1.7
A 12/ 12/ 12/124 1.5
A 12/ 12/ 12/124 1.5

8/ 10/ /112
20/ 24/ /343

12/ 12/ 7 29

A 11/ 11/ 11/ 83 1.3
A 11/ 11/ 11/ 83 1.3
A 11/ 11/ 11/ .83 1.3
A 11/ 11/ 11/ 83 1.9

A 50/ 50/ 50/478 8.1
B 38/ 38/ 38/430 5.7
A 38/ 38/ 38/430 5.7
B 38/ 38/ 38/430 6.4

12/ 14/ /205
44/ 51/ /938

20/ 20/ / 41

56

Proof Chains Search
Code Generated Time

(rflt/acc/lQt/filU (sec?

Statistics

Length Level Length Level Proof Chains Searcl
flulti- Multi- Max inn Lim flax i mum Code Generated Time

. c l i e r oiler (ret/aec/tof/att) (sec)

RIM Example

Implicat ive form for axioms:
101 100 - A 9 812/812/1052/8072 200.7
581 100 - - A 57/ 57/ 64/640 11.6
101 100 CO

18 A 70/ 70/ 82/816 12/3
501 100 3 18 A 54/ 54/ 60/609 8.2

Disjunctive form for axioms:
101 100 - - B 165/165/187/1883 28.5
501 100 - - C 101/101/113/1220 18.6
101 100 CO

10 B 130/130/146/1532 20.2
501 100 CO

10 B 130/130/146/1532 18.8
101 100 CO 18 B 130/130/146/1532 21.7
501 100 3 18 C 101/101/113/1220 16.8

QA3.6 best 3 10 13/ 19/ /208
QA3.6 mean 9/10 3 10 36/ 97/ /999

SLRTP 3 11 122/134/ /243

6. ANCES1 Example

101 100 - - A 23/ 23/ 23/240 3.2
501 100 - - A 13/ 13/ 13/108 1.3
101 100 CM 10 A 13/ 13/ 13/188 1.6
501 100 10 A 13/ 13/ 13/188 1.4

QA3.6 best CM 10 5/ 12/ /158
QA3.6 mean 19/20 2 10 6/ 13/ /129

SLRTP 3 10 14/ 14/ / 26

7. NUm Example

101 100 - - A 10/ 10/ 11/ 47 1.2
501 100 - - A 10/ 10/ 11/ 47 1.1
101 100 5 10 A 10/ 10/ 11/ 47 0.9
501 100 5 10 A 10/ 10/ 11/ 47 0.9

QA3.6 best 5 10 8/ 10/ / 68
QA3.6 mean 11/11 5 10 9/ 11/ / 83

SLRTP 5 10 9 / 9 / / 21

DUPi Example

101 100 - - A 14/ 14/ 14/ 54 2.0
501 100 - - A 14/ 14/ 14/ 54 1.5
101 100 3 10 cc 14/ 14/ 14/ 54 1.5
501 100 CO

10 A 14/ 14/ 14/ 54 1.4

QA3.6 best 3 10 7/ 7/ / 33
QA3.6 mean 9/9 3 10 7/ 7/ / 34

SLRTP 3 10 9/ 12/ / 35

57

Length Level Length Level
Multi- Multi- Maximum Maximum
pl ier plifii:

9. GR0UP2 Example

i e i 198 - -581 100 - -
101 100 4 10
501 100 4 10

QR3.6 best 3 10
QR3.6 mean 8/8 3 10

SLRTP ? ?

Statistics

R 576/576/752/2408 97.2
B 119/119/149/500 17.0
R 225/225/325/938 28.8
R 225/225/325/938 36.7

54/ 74/ /324
60/ 82/ /517

no proof found

58

Proof Chains Search
Code Generated Time

t r f i t / a c e / t o t / a t t) (§BC) •

I

Proofs

1. BURSTALL Example

Proof A

19. succeeds(p3,p3)
29. [succeeds(p3,p3)]
21. [succeeds(p3,p3)3
22. [succeeds(p3,p3)3
23. [succeeds(p3,p3)3
24. [succeeds(p3,p3)3

follows(xl,p6)
25. [succeeds(p3,p3)3
26. [succeeds(p3,p3)3

succeeds(xl,p7)
27. [succeeds(p3.p3)3

[succeeds(xl,p7)3
28. [succeeds(p3,p3)3
29. [succeeds(p3,p3)3

has(p8,goto(xi)) I
30. [succeeds(p3,p3)3

has(p8,go to(loop))
31. empty

Proof B

succeeds(p3,xl) succeeds(xl,p3)
succeeds(p3,xl) [succeeds(xi,p3)3 foI lows(xi,p3)
succeeds(p3,p6)
[succeeds(p3,p6)3 succeeds(p3,xl) succeeds(xi,p6)
[succeeds(p3,p6)3 succeeds(p3>xl) [succeeds(xl,p6)3

[succeeds (p3,p6)3 succeeds(p3,p7)
[succeeds (p3,p6)3 [succeeds(p3,p7)3 succeeds(p3,xl)

[succeeds(p3,p6)3 [succeeds(p3,p7)3 succeeds(p3,xl)
follows (xi,p7)
[succeeds(p3,p6)3 [succeeds(p3,p7)3 succeeds(p3,p8)
[succeeds(p3.p6)3 [succeeds(p3,p7)3 [succeeds(p3,p8)3
abels(xl,p3)
[succeeds(p3,p6)3 [succeeds(p3.p7)3 [succeeds(p3,p8)3

19. succeeds(p3.p3)
20. [succeedsCp3,p3)3
21• [succeeds<p3,p3)3

succeeds(x2,p3)
22. [succeeds(p3,p3)3

[succeeds(x2,p3)3
23• [succeeds(p3,p3)3
24• [succeeds(p3,p3) 3

follows(xi,p6)
25. [succeeds(p3,p3)3
26. [succeeds(p3,p3) 3
27. [succeeds(p3,p3)3

follows(xi,p7)
28. [succeeds(p3,p3)3
29. [succeeds(p3,p3)3

Iabels(xi,p3)
30. [succeeds<p3,p3)3
31. empty

succeeds(p3,xi) succeeds(xl,p3) *
succeeds(p3,xl) [succeeds(xl,p3)3 succeeds(xi,x2)

succeeds (p3,xl) [succeeds(xl,p3)3 succeeds(xl,x2)
follows (x2,p3)
succeeds(p3,xl) [succeeds(xi,p3)3 succeeds(xl,p6)
succeeds(p3,xl) [succeeds(xi,p3)3 [succeeds(xl,p6)3

succeeds(p3,p7)
[succeeds(p3,p7)3 succeeds(p3,xi) succeeds(xl,p7)
[succeeds(p3,p7)3 succeeds(p3.xl) [succeeds(xl,p7)3

[succeeds (p3,p7)3 succeeds(p3,p8)
[succeeds(p3,p7)3 [succeeds(p3,p8)3 has(p8,goto(xl))

[succeeds (p3, p7) 3 [succeeds(p3,p8)3 has <p8,go to(Ioop))

2. SHORTBURST Example

Proof A

11. succeeds(p3,p3)
12. (succeeds(p3,p3)3 succeeds(p3,xl) succeeds(xl,p3)
13. [succeeds(p3,p3)3 succeeds(p3,xl) (succeeds(xl,p3)3 foI lows(xi,p3)
14. [succeeds(p3,p3)3 succeeds(p3,p8)
15. [succeeds(p3,p3)3 [succeeds(p3,p8)3 has(p8,goto(xl)) Iabels(xi,p3)
16. [succeeds (p3,p3) 3 [succeeds (p3,p8) 3 has (p8, go to (I oop))
17. empty

theorem
extend by 16
extend by 15
extend by 9
extend by 16

extend
extend

by 15
by 11

extend by 16

extend
extend

by 15
by 13

extend by 17

extend
extend

by 4
by 14

theorem
extend by 16

extend by 16

extend by 15
extend by 9

extend by 15
extend by 11
extend by 16

extend by 15
extend by 13

extend by 17
extend by 4
extend by 14

theorem
extend by 8
extend by 7
extend by 5
extend by 9
extend by 1
extend by 6

59

Proofs

3. HPS-PARTS Example 1

Proof P

8. hp(John,t (n2,ni),hand) theorem
9. [hp(John, t(n2,ni),hand)] hp(John,n2,xl) hp(ski(John,xl,hand,n2,nl),nl,hand) extend by 4a
18* [hp(John,t(n2,nl),hand)] hp(John,n2,xl)

Chp(skl(John,xl,hand,n2,ni),ni,hand)] in(skl(John,xl,hand,n2,nl),arm> extend by 7
11. [hp (John, t(n2,nl), hand)] hp (John, n2, arm) extend by 3b
12. [hp (John, t(n2,nl),hand)] [hp (John, n2, arm)] in (John, human) extend by 6
13. [hp (John, t(n2,nl), hand)] [hp (John, n2, arm)] [in (John, human)) in (John, boy) extend by 2
14. empty extend by 1

4. HPS-PPRTS Example 2

Proof P

8. hp(John,t(t (n2,ni),n5),f ingers)
[hp (John, t (t (n2,nl) ,n5), f ingers)) hp (John, t (n2,nl) ,xl)
hp (ski (John,xl, f ingers, t (n2,nl) ,n5) ,n5, f ingers)
[hp (John, t (t(n2,nl),n5), fingers)] hp (John, t (n2,nl) ,xl)
[hp(ski (John,xl, f ingers, t (n2,nl) ,n5) ,n5, f ingers))
in (ski (John,xl, f ingers, t (n2,nl) ,n5),hand)
[hp (John, t (t (n2,nl) ,n5), f ingers)) hp (John, t (n2,nl) ,hand)
[hp(John,t (t(n2,ni),n5),fingers)) [hp(John,t(n2,ni),hand)) hp(John,n2,xi)
hp (sk 1(John,xl,hand,n2,nl),nl,hand)
[hp(John, t(t (n2,nl),n5),f ingers)) [hp(John,t(n2,nl),hand)] hp(John,n2,xi)
[hp (ski (John, xl, hand, n2, nl) ,nl,hand)] in (ski (John, xl, hand, n2, nl), arm)
[hp (John, t (t (n2,ni) ,n5), f ingers)! [hp (John, t (n2,nl) ,hand)) hp (John,n2,arm)
[hp(John, t (t (n2,ni) ,n5), f ingers)) [hp(John, t (n2,ni) ,hand))
[hp(John,n2,arm)) in (John,human)
[hp (John, t (t (n2,nl) ,n5), f ingers)) [hp(John, t (n2,ni) ,hand)]
[hp (John,n2,arm)] I in (John,human)] in (John,boy)

17. empty

18.

11.
12.

13.

14.
15.

16.

theorem

extend by 4a

extend by 5
extend by 3b

extend by 4a

extend by 7
extend by 3b

extend by 6

extend by 2
extend by 1

Proof B

8. hp (John,t(t(n2,nl),n5),fingers) theorem
9. [hp (John, t (t (n2,nl) ,nS), f ingers)) hp (John, t (n2,ni) ,xi)

-in(skl(John,xi,f ingers, t (n2,ni),n5),xi) extend by 3a
[hp(John, t(t(n2,ni),n5), fingers)] hp (John, t (n2,nl), hand)
[-tin (ski (John, hand, f ingers, t (n2,nl) ,n5) ,hand))
-*hp (ski (John,hand, f ingers, t (n2,nl) ,n5) ,n5, fingers) extend by 5b
[hp (John, t (t(n2,nl),n5), fingers)] hp (John, t (n2,nl), hand) extend by 4b
[hp(John, t (t (n2,nl) ,n5), f ingers)) [hp(John, t (n2,nl) ,hand)] hp(John,n2,xl)
hp (ski (John,xl,hand,n2,nl),nl,hand) extend by 4a
[hp(John, t (t (n2,ni) ,n5), f ingers)) [hp(John, t (n2,nl) ,hand)) hp(John,n2,xi)
[hp(skl(John,xl,hand,n2,nl) ,ni,hand)] in (ski (John,xl,hand,n2,nl),arm) extend by 7
[hp (John, t (t (n2,ni),n5), fingers)] [hp (John, t (n2,ni), hand)] hp (John, n2, arm) extend by 3b
[hp (John, t (t (n2,ni) ,n5), f ingers)) [hp(John, t (n2,ni) ,hand))
[hp (John,n2,arm)] in (John,human) extend by 6
[hp(John,t(t(n2,nl),n5),fingers)] [hp(John,t(n2,nl),hand))
[hp (John, n2, arm)) [in (John, human)] in (John, boy) extend by 2

17. empty extend by 1

10.

11.
12.

13.

14.
15.

16.

60

Proofs

5. PRIM Example

Proof fl

10. Pxl Dxla
11. Pxl [Dxla] Dxlx2 Dx2a
12. Pxl [Dxla] Dxlg(a) [Dg(a)a] -Pa
13. Pxl COxla] Oxlg(a) [Dg(a)al [-Pa] Oaa
14. Pxl CDxia] Dxlg(a)
15. Pf(g(a)) [Of(g(a))a] [Of <g<a>)g(a>] Lnlg(a) Lg(a)a
16. Pf(g(a)) [Df(g(a))a] COf(g(a))g(a)] Lnlg(a) CLg(a)a) -Pa
17. Pf(g(a>) C0f(g(a))a3 (Of(g(a))g(a)] Lnlg(a) [Lg(a)a] I-Pa] Oaa
18. Pf(g(a>) CDf(g(a))a] [Of(g(a))g(a)] Lnlg(a)
19. Pf(g(a)) [Df(g(a))a] COf(g(a))g(a)3 CLnlg(a)] -Pa
28. Pf(g(a)) [Df(g(a))a] COf(g(a))g(a)] CLnlg(a)) C-Pa] Oaa
21. Pf(g(a))
22. CPf(g(a))] Lnlg(a) Lg(a)a
23. [Pf(g<a>>] Lnlg(a) CLg(a)a3 -Pa
24. [Pf(g(a>>] Lnlg(a) tLg(a)a) [-Pa] Oaa
25. [Pf(g(a))3 Lnlg(a)
26. CPf(g(a))3 [Lnig(a)] -Pa
27. [Pf(g(a))] ILnlg(a)] [-Pa] Oaa
28. empty

Proof B

10. Pxl Dxla
11. Pa
12. [Pa] -Lnlg(a)
13. [Pa] C-Lnig(a)] Lg(a)a -Pf(g(a))
14. [Pa] C-Lnig(a)] Lg(a)a C-Pf(g(a))] Of(g(a))a
15. [Pa] [-Lnig(a)] Lg(a)a C-Pf(g(a))] [Df(g(a))a] Of(g(a))xl Dxla
16. [Pa] [-Lnlg(a)] Lg(a)a [-Pf(g(a))] [Df(g(a))a] Df(g(a))g(a)
17. [Pa] [-Lnig(a)] Lg(a)a
18. empty

Proof C

10. Pxl Dxla
11. Pa

[Pa] -Dg(a)a
[Pa] [-Og(a)a] Dxlg(a) -Oxla
[Pa] (-Dg(a)a] Dxlg(a) [-.Dxla] Pxl
[Pa] [-Dg(a)a] Df(xl)g(a) [-Df(xi)a] [Pf(xi)] Lnlxl Lxla
[Pa] C-Dg(a)a] Of(g(a))g(a) C-Df(g(a))a] [Pf(g(a))] Lnlg(a)

17. [Pa] [-Og(a)a] Df(g(a))g(a)
18. [Pa] [-Dg(a)a] [Of (g(a))g(a)] Lnlg(a> Lg(a)a
19. [Pa] [-Dg(a)a] [Of(g(a))g(a)] Lnlg(a)

20. empty

6. flNCESi Example

Proof fl

12.
13.
14.
15..
16.

theorem
extend by 2
extend by 3a
extend by 9b
extend by 1
extend by 7
extend by 5a
extend by 9b
extend by 1
extend by 4a
extend by 9b
extend by
extend by
extend by
extend by
extend by
extend by 4a
extend by 9b
extend by 1

theorem
extend by 1
extend by 4b
extend by 6c
extend by 9b
extend by 2
extend by 3a
extend by 7
extend by 5a

1
6
5a
9b
1

1
3b
2b

theorem
extend by
extend by
extend by
extend by 9a
extend by 6
extend by 5a
extend by 4a
extend by 7
extend by 5a
extend by 4a

7.
8.
9.

18.
11.
12. [H] [J] -K
13. empty

H -I
H
M]
[H]
CM

J -fl
J [-fl] B
J

theorem
extend by 6a
extend by la
extend by 4b
extend by 5a
extend by 2a
extend by 3c

61

Proofs

7. NUfll Example

Proof fl

7.
8.
9.

18.
11.
12.

Dab
[Dab]
[Dab]
[Dab]
[Dab]
[Dab]

Pa Mxlbx2 Dax2 -*Daxl
Pa flbbxl Daxl
Pa Mbbxl [Daxl] Max2xi
Pa rtbbsCb)
Pa

13. empty

theorem
extend by
reduce
extend by
extend by
extend by

l a

4
5
2

extend by 6

8. GROUP! Example

Proof fi

7. Pj(xl)xlj(xl) theorem
8. [Pj<xl)xlj(xl>] Px2x3j(xl) Px3xlx4 Px2x4j(xl) extend by 1
9. [Pj(xl)xlj(xl)J Pg(x2j(xl))x3j(xl) Px3xlx2 extend by 3

18. [Pj(h(xlx2))h(xlx2)j<h<xlx2))l Pg(x2j (h(xlx2)))xlj (h(xlx2)) extend by 4
11. empty extend by 3

9. 6R0UP2 Example

Proof A

7. Pbac
8. [Pbac] Pbxlx2 Pxlx3a Px2x3c
9. [Pbac] Pbxle Pxlca
18. [Pbac] Pbxle [Pxlca] Px2x3xl Px3cx4 Px2x4a
11. [Pbac] Pbxle [Pxlca] Pax2xl Px2ce
12. [Pbac] Pbxle [Pxlca] Pacxl
13. [Pbac] Pbxle [Pxlca] [Pacxl] Pax2x3 Px2x4c Px3x4xl
14. [Pbac] Pbxle [Pxlca] [Pacxl] Pax2e Px2xlc
15. [Pbacl Pbbe [Pbca] CPacb] Paae
16. [Pbacl Pbbe
17. empty

theorem
extendPby
extend by
extend by
extend by
extend by
extend by
extend by
extend by
extend by
extend by

Proof B

7. Pbac theorem
8. [Pbac] Pbxlx2 Pxlx3a Px2x3c extend by 3
9. [Pbac] Pbxla Pxlba extend by 6
18. [Pbac] Pbxla [Pxlba] Px2x3xl Px3bx4 Px2x4a extend by 4
11. [Pbac] Pbxla [Pxlba] Pax2xl Px2be extend by 1
12. [Pbac] Pbxla [Pxlba] Pabxl extend by 5
13. [Pbac] Pbca extend by 6
14. [Pbac] [Pbca] Pxlx2b Px2cx3 Pxlx3a extend by 4
15. [Pbac] [Pbca] Paxlb Pxlce extend by 1
16. [Pbac] [Pbca] Pacb extend by 5
17. [Pbac] [Pbca] [Pacb] Paxlx2 Pxlx3c Px2x3b extend by 3
18. [Pbac] [Pbca] [Pacb] Paxle Pxlbc extend by 2
19. [Pbacl [Pbcal [Pacb] Paae extend by 6
26. empty extend by 5

62

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Pete Entered) f
R E P O R T D O C U M E N T A T I O N P A G E READ INSTRUCTIONS

BEFORE COMPLETING FORM
1 R E P O R T N U M B E R 2. G O V T ACCESSION NO. 3 R E C I P I E N T ' S C A T A L O G N U M B E R

4 . TITLE (and Subtitle)

THE PROGRAMMABLE STRATEGY THEOREM PROVER: AN
IMPLEMENTATION OF THE LINEAR MESON PROCEDURE

5. TYPE O F REPORT ft PERIOD COVERED 4 . TITLE (and Subtitle)

THE PROGRAMMABLE STRATEGY THEOREM PROVER: AN
IMPLEMENTATION OF THE LINEAR MESON PROCEDURE

6. P E R F O R M I N G O R G . R E P O R T N U M B E R

7 . author^;
Mark E. Stickel

8. C O N T R A C T OR G R A N T N U M B E R f s j

F44620-73-C-0074

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D AODRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, P E N N S V L V A N I A I S ? T *

10. P R O G R A M E L E M E N T . P R O J E C T , TASK
A R E A ft WORK U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N D ADDRESS

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington. V I R G I N ! * 9??ftQ

12. R E P O R T D A T E

T u n * 1Q7/,

11. C O N T R O L L I N G O F F I C E N A M E A N D ADDRESS

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington. V I R G I N ! * 9??ftQ

13. N U M B E R O F ' P A G E S

U. M O N I T O R I N G A G E N C Y N A M E ft A D D R E S S f / different from Controlling Office)
Air Force Office of Scientific Research (NM) Agency
1400 Wilson Boulevard •
Arlington, Virginia 22209

15. S E C U R I T Y CLASS, (of thle report)
unclassified

U. M O N I T O R I N G A G E N C Y N A M E ft A D D R E S S f / different from Controlling Office)
Air Force Office of Scientific Research (NM) Agency
1400 Wilson Boulevard •
Arlington, Virginia 22209 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. D I S T R I B U T I O N S T A T E M E N T (of thia Report)

Released for public distribution; unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the abatract entered In Block 20, It different from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on reverae aide if necessary and identity by block number)

20. A B S T R A C T (Continue on reverae aide If necessary end identify by block number)

D D i j2nM

73 1 4 7 3 E D I T I O N O F 1 NOV 65 IS O B S O L E T E

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Wh*n Data Entered)

SECURITY CLASSIFICATION OF THIS PkQ€(Whm Dmf Bnfrfd)

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving
program for the first order predicate calculus using the linear MEBON
procedure as the inference system. The linear MESON procedure is a new
variant of the model elimination theorem proving procedure for theories with
or wihout equality which is an affirmation rather than a refutation procedure.
It is profitably viewed as an extension of the problem - reduction method.
The fundamental element of a linear MESON proceudre deduction,the chain, is
a representation of a set of goals to be solved and their supergoals. PSTP
is designed to be used ineractively or in a fully automatic mode. Some
f eatures of PSTP are general mechanism for specifying which chains are to
be retained.and manipulated, an automatic procedure for storing and retrieving
information about chains when this information is requested, the capability
of specifying an ordering function which can be used for specifying search
strategies, and a powerful set of commands. Results of an experiment testing
some simple search strategies and comparisons with results from other
theorem proving studies are presented.

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAGEflWian Dmtm Enfrmd)

