NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

OPTIMAL USE OF INFORMATION IN
CERTAIN ITERATIVE PROCESSES
Robert MEERSMAN
Vrije Universiteit Brussel

1. Introduction

To approximate numerically a zero α of a real analytic function f,

$$
f(\alpha)=0,
$$

iteration is most widely used. We will discuss socalled k-point stationary iterative processes without memory, ϕ, defined as follows. Let there exist an interval around α such that for all x_{1} in this interval, the following functions $\zeta_{i}, i=2, \ldots, k+1$ are well-defined :

$$
z_{1}=x_{1}
$$

$$
z_{2}=\zeta_{2}\left(z_{1}, N\left(z_{1} ; f\right)\right)
$$

$$
z_{3}=\zeta_{3}\left(z_{1}, z_{2}, N\left(z_{1}, z_{2} ; f\right)\right)
$$

:
$x_{2}:=\phi\left(x_{1}\right)=z_{k+1}=\zeta_{k+1}\left(z_{1}, \ldots, z_{k}, N\left(z_{1}, \ldots, z_{k} ; f\right)\right)$,
where
a) x_{2} is called the new approximation to α; we assume that x_{2} lies within the same interval a and that the process is converging, i.e. putting $x_{1}:=x_{2}$ and repeating the iterative step produces a sequence which converges to α. Also we assume $f^{\prime}(\alpha) \neq 0$.
b) $N\left(z_{1}, \ldots, z_{i} ; f\right)$ is called the information set at

This research was supported in part by the National Science Foundation under Grant GJ32111 and the Office of Naval Research under Contract N00014-67-A-0314-0010, NR 044-422.
the points z_{1}, \ldots, z_{i} and consists of the set of all evaluations of f and/or its derivatives used at those points when computing z_{i+1}. It is not necessary to give all derivatives up to a certain degree at any particular point z_{i}. Examples of specific N abound in the rest of the paper. Other kinds of information sets can be considered, but are not the topic of this paper ; see for instance Kacewicz [75]. The reader should also be more or less familiar with the work of Woźniakowski [74] [75a].
2. Some known results and conjectures

Definition 2.1.
Let $N\left(z_{1}, \ldots, z_{k} ; f\right)$ be given. We say that $\underline{f} \equiv \mathrm{f} \bmod N$ when for all $\mathrm{f}^{(j)}\left(z_{i}\right) \in N$,

$$
f^{(j)}\left(z_{i}\right)=f^{(j)}\left(z_{i}\right)
$$

As in Woźniakowski [75a] we adopt the following definitions:

Definition 2.2.

The order of iteration $p(\phi)$ is the largest number such that for all f with $f(\alpha)=0$, for all $\check{f} \equiv f \bmod N$ and having a zero $\tilde{\alpha}$ near α, we have

$$
\lim _{x_{1} \rightarrow \alpha} \frac{\left|\phi\left(x_{1} ; N\right)-\tilde{\alpha}\right|}{\left|x_{1}-\alpha\right|^{p(\phi)}}<\infty
$$

It can be shown this definition coincides with the usual definition in the literature (egg. Traub[64])
under weak assumptions on the asymptotical constant. Definition 2.3.
The order of information $p(N)$ is the largest numbbe such that for all f with $f(\alpha)=0$, for all $\underset{f}{f} \equiv \bmod N$ and having a zero $\tilde{\alpha}$ near α, we have

$$
\lim _{x_{1} \rightarrow \alpha} \sup \frac{|\alpha-\tilde{\alpha}|}{\left|x_{1}-\alpha\right|^{p(N)}}<\infty
$$

Remark that choosing a special f or $\mathfrak{f} \equiv \mathrm{fmod} N$ will give upper bounds on these orders, by definiLion. See also Wo乏niakowski [75b]. Extensive use will be made of the following two theorems.

Theorem 2.1. (Maximal Order Theorem)

The order $p(\phi)$ is bounded above by $p(N)$ for all ϕ using information N.

Theorem 2.2.

The maximal order is reached for the generalized interpolating methods $I_{N}: p\left(I_{N}\right)=p(N)$.
For definitions and proofs, see Woźniakowski [75a].
Two kinds of problems arise now.
Problem 1. Given N, compute $\mathrm{p}(N)$. (In other words, what is the maximal order achievable with informaLion N).

Problem 2. Given $\mathrm{n}=\# N$, the number of elements in N, determine $P_{n}^{*}=\max _{\sharp N=n} \max _{.} p(\phi)$, where ϕ uses information N.

Problem 2 is much harder than problem 1. Jung and

Traub conjectured (Kung and Traub [74al) that

$$
(2.3) \quad P_{n}^{*}=2^{n-1}
$$

and exhibited two families of methods which realize this bound for each n. In a later paper, Kung and Traub [74b], they proved (2.3) for $n=1$ and 2. Remark that in view of Theorems 2.1 and 2.2, (2.3) is equivalent to

$$
Q_{n}^{*}=2^{n-1}
$$

where $Q_{n}^{*}=\max _{\# N=n} p(N)$.
The conjecture has been settled by Wozniakowski in one very important case.

Definition 2.4.
N is hermitean iff for all i, $l \leqslant i \leqslant k$, we have

$$
f^{(k)}\left(z_{i}\right) \in N \Rightarrow f^{(k-1)}\left(z_{i}\right) \in N \text { for all } k>0
$$

Theorem 2.3. (Wozniakowski [75b])
The conjecture of (2.3) is true if the maximum is taken over hermitean N. We will show later that a partial converse is not true, i.e. that $p(N)=2^{\# N-1}$ does not imply that N is hermitean.
3. A solution to problem 1 for $n=3$

We will prove in this section that $P_{3}^{*}=4$, showing the correctness of the conjecture in this case. Our proof uses special cases of some general results on certain n-evaluations iterations one of which is to be treated in a later paper, namely

Theorem 3.1.

$$
\begin{aligned}
\text { If } N= & \left\{f\left(z_{1}\right), f^{1}\left(z_{2}\right), \ldots, f^{(n)}\left(z_{n+1}\right)\right\} \text { then } \\
& p(N) \leqslant 2 n
\end{aligned}
$$

Note : N is the so-called Abel-Coňarov information.

In the proof of the following lemma and the rest of the paper we assume that at each z_{i} used in ϕ, some new information is computed. This is not a restriction since otherwise we can substitute the expressions for these z_{i} in the other ζ_{j}, obtaining an equivalent iteration (with less points). Lemma 3.1.
Let ϕ be an iteration using two pieces of information, i.e.

$$
\begin{aligned}
& z_{1}=x_{1} \\
& z_{2}=\zeta_{2}\left(z_{1}, N\left(z_{1} ; f\right)\right)
\end{aligned}
$$

$x_{2}:=\phi\left(x_{1}\right)=z_{3}=\zeta_{3}\left(z_{1}, z_{2}, N\left(z_{1}, z_{2} ; f\right)\right)$ with $\# N=2$
(By the above convention, ϕ is a 1- or 2-point iteration).
Then, if there exists a (known) constant $C, C \neq 0$ and $C \neq 1$, such that for all f

$$
\begin{equation*}
\alpha-z_{2}=C\left(\alpha-z_{1}\right)+O\left(\alpha-z_{1}\right)^{2} \tag{3.1}
\end{equation*}
$$

then ϕ cannot be of second order.
Proof : If $C \neq 1$, then from (3.1) we could solve for α :

$$
\alpha=\frac{z_{2}-C z_{1}}{1-C}+O\left(\alpha-z_{1}\right)^{2}
$$

And $z_{2}^{*}=\frac{z_{2}-C z_{1}}{1-C}$ would therefore produce a second order approximation to α. Since $P_{1}^{*}=1$, both pieces of information must be used then at z_{1}, but then ϕ is a one-point iteration, i.e. $z_{3}=z_{2}$ by the convention, and from (3.1) and $C \neq 0$ it follows that ϕ is only of first order.

Theorem 3.2.

$$
P_{3}^{*}=4
$$

Proof : We prove that $\mathrm{p}^{*}(N) \leqslant 4$ for all N with $\# N=3$, where

$$
p^{*}(N)=\max \{p \mid \text { for all } \mathfrak{f}=f+G, G \equiv 0 \bmod N, \underset{f}{f}(\tilde{\alpha})=0,
$$ and G monic polynomial of degree < 3 ,

$$
\left.\lim _{x_{1} \rightarrow \alpha} \sup \frac{|\alpha-\tilde{\alpha}|}{\left|x_{1}-\tilde{\alpha}\right|^{p}}<\infty\right\}
$$

thereby restricting the class of \tilde{f} such that $\underset{f}{f} \equiv \mathrm{fmod} N$.

Step 1

We need one evaluation of f at z_{1} to assure convergence so N is of the form

$$
N=\left\{f\left(z_{1}\right), f^{(i)}\left(z_{2}\right), f^{(j)}\left(z_{3}\right)\right\}
$$

(Kung and Traub [74a]).
We will suppose z_{2} and z_{3} not necessarily different, unless of course i or j equals 0 or $i=j$. It is clear this does not affect the bounds on the optimal order.
Since now G is a monic polynomial of degree $\leqslant 3$, we can take i and $j \leqslant 2$. Indeed, if i or $j>3$, $G \equiv 0 \bmod N$ is automatically satisfied ; if
$i<j=3$, we can interpolate the zero function for this information at z_{1} and z_{2} with a monic polynomial of degree $\leqslant 2$ - from $P_{2}^{*}=2$ it follows that the optimal order is $2<4$, and similarly if $j<i=3$. If $i=j=3$ we can even take $G(z)=z-z_{1}$ in which case the order of information evidently is equal to $1<4$.

Remark

The above argument can of course be generalized to any n : it is closely related to the Polya conditions on the set N, see Wǒniakowski [75b], Sharma [72].

Step 2

The different cases for the information N. With an obvious notation, in the following cases the answer is already known :

Case 1 : $\left\{f_{1}, f_{2}, f_{3}\right\}$: Hermitean N, order $\leqslant 2^{3-1}=4$ Case 2 : $\left\{f_{1}, f_{2}^{\prime}, f_{3}^{\prime}\right\}:$ "Brent information with $m=0$ ", applying the results of Sec. 4, we find

$$
\begin{aligned}
& \text { if } z_{1} \neq z_{2}: p(N) \leqslant m+2(k-1)-1=0+4-1=3<4 ; \\
& \text { if } z_{1}=z_{2}: p(N)=m+2(k-1)+1=1+2+1=4
\end{aligned}
$$

Case 3 : $\left\{f_{1}, f_{2}^{\prime}, f_{3}^{\prime \prime}\right\}$: "Abel-Goncarov" N, by Theorem 3.1. : order $\leqslant 2.2=4$

Case 4 : $\left\{f_{1}, f_{2}^{\prime \prime}, f_{3}^{\prime \prime}\right\}:$ Take again $G(z)=z-z_{1}$ as in Step l ; order $\leqslant 1$ < 4 (here the polya conditions are not satisfied).

Step 3
Exhaustive checking of the remaining cases. Let us set

$$
G(z)=\left(z-z_{1}\right)\left(z^{2}+a z+b\right)
$$

Case $5:\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\}$
Now $G(z)=\left(z-z_{1}\right)\left(z-z_{2}\right)(z-c)$.
The condition $\mathfrak{f}^{\prime}\left(z_{3}\right)=0$ gives

$$
\left(2 z_{3}-z_{1}-z_{2}\right)\left(z_{3}-c\right)+\left(z_{3^{-}}^{-z_{1}}\right)\left(z_{3}-z_{2}\right)=0
$$

So in general, c is a function of z_{1}, z_{2} and z_{3} which itself is also a function of z_{1} and z_{2}. Since $P_{2}^{*}=2, \alpha-c$ cannot be of higher order than $\left(\alpha-z_{1}\right)^{2}$. Therefore
$\tilde{\alpha}-\alpha=O(G(\alpha))=O(\tilde{f}(\alpha))=O\left(\alpha-z_{1}\right)\left(\alpha-z_{2}\right)(\alpha-c)$
cannot be of higher order than $\left(\alpha-z_{1}\right)^{4}$ since $\alpha-z_{2}$ is at most of order $\left(\alpha-z_{1}\right)$ because $P_{1}^{*}=1$. Thus $p^{*}(N) \leqslant 4$ for this N.

Case $6:\left\{f_{1}, f_{2}, f_{3}^{\prime \prime}\right\}$
Completely analogous to case 5, the condition at z_{3} now is

$$
\left(z_{3}-c\right)+\left(2 z_{3}-z_{1}-z_{2}\right)=0
$$

Case $7:\left\{\mathrm{f}_{1}, \mathrm{f}_{2}^{\prime \prime}, \mathrm{f}_{3}\right\}$
Now $G(z)=\left(z-z_{1}\right)\left(z-z_{3}\right)(z-c)$.
The condition at $z_{2}: c=3 z_{2}-z_{1}-z_{3}$, again gives that $(\alpha-c)$ is at most of second order in $\left(\alpha-z_{1}\right)$.
Now $\left(\alpha-z_{3}\right)$ is at most of first order in $\left(\alpha-z_{1}\right)$
since the function

$$
\tilde{G}(z)=z-z_{1}
$$

interpolates the zero function at the points z_{1} and z_{2} for the given information. Thus with an obvious notation,
$\tilde{\alpha}(\tilde{G})-\alpha=O\left(\alpha-z_{1}\right)$, and by theorem 2.1 and 2.2 ,

$$
\left(\alpha-z_{3}\right)=0\left(\alpha-z_{1}\right) \text { at most. }
$$

Consequently,

$$
\tilde{\alpha}(G)-\alpha=0(\tilde{f}(\alpha))=0\left(\alpha-z_{1}\right)\left(\alpha-z_{3}\right)(\alpha-c)
$$

is again at most of order $\left(\alpha-z_{1}\right)^{4}$.
Case $8:\left\{f_{1}, f_{2}^{\prime \prime}, f_{3}^{\prime}\right\}$
This is a permutation of the Abel-Gontarov information. It is an easy consequence of the proof of Theorem 3.1 that also here we have,

$$
p(N) \leqslant 2-2=4 .
$$

A direct proof for this case can also be found, and is left to the reader.

Case $9:\left\{\mathrm{f}_{1}, \mathrm{f}_{2}^{\prime}, \mathrm{f}_{3}\right\}$
$G(z)=\left(z-z_{1}\right)\left(z-z_{3}\right)(z-c)$.
Again, $(\alpha-c)$ being of $3 r d$ order or more in $\left(\alpha-z_{1}\right)$ would contradict $P_{2}^{*}=2$, so if $\left(\alpha-z_{3}\right)$ is of order 1 in $\left(\alpha-z_{1}\right)$ we are done. However $\left(\alpha-z_{3}\right)$ and $(\alpha-c)$ cannot be both of second order, since the condition $G^{\prime}\left(z_{2}\right)=0$ reads

$$
\left(2 z_{2}-z_{1}-z_{3}\right)\left(z_{2}-c\right)+\left(z_{2}^{-z_{1}}\right)\left(z_{2}-z_{3}\right)=0
$$

which is easily seen to be equivalent to

$$
e_{3}(\alpha-c)=e_{2}\left(2 e_{1}-3 e_{2}\right)-\left(e_{1}-2 e_{2}\right)\left(e_{3}+(\alpha-c)\right)
$$

where $e_{i}=\alpha-z_{i} ; i=1,2,3$.
Now $e_{3}(\alpha-c)$ cannot be of order 4 while by lemma 3.1 with $C=\frac{2}{3}, e_{2}\left(2 e_{1}-3 e_{2}\right)$ is at most of order 2 and $\left(e_{1}-2 e_{2}\right)\left(e_{3}+(\alpha-c)\right)$ is at least of third order. Note that if $2 z_{2}-z_{1}-z_{3}=0$, this case becomes non-poised (Sharma [72]) and the function $G(z)=\left(z-z_{1}\right)\left(z-z_{3}\right)$ interpolates zero with respect to this N, giving a maximal order of 3 .

Theorem 3.3.
Hermitean information is not uniquely optimal.
Proof : We exhibit two examples for $n=3$
a) Consider again case (6) of Theorem 3.2.

We have $G(\alpha)=\left(\alpha-z_{1}\right)\left(\alpha-z_{2}\right)(\alpha-c)$
where $\quad c=3 z_{3}-z_{1}-z_{2}$.
To obtain order 4 , this suggests we must have

$$
\begin{align*}
& \alpha-c=O\left(\alpha-z_{1}\right)^{2}, \text { or } \\
& z_{3}=\frac{z_{1}+z_{2}}{3}+\frac{1}{3} \gamma \text { with } \gamma-\alpha=\theta\left(\alpha-z_{1}\right)^{2} \tag{3.1}
\end{align*}
$$

To find such a γ, take

$$
\begin{aligned}
& z_{1}=x_{1} \\
& z_{2}=z_{1}+f\left(z_{1}\right)
\end{aligned}
$$

and γ the root of the interpolating ($1^{\text {st }}$ degree) polynomial at these two points, i.e.

$$
\gamma=z_{1}-\frac{z_{2}-z_{1}}{f\left(z_{1}\right)-f\left(z_{1}\right)} f\left(z_{1}\right)
$$

Then construct z_{3} by (3.1) and

$$
x_{2}:=\phi\left(x_{1}\right):=z_{4}
$$

as the root of the ($2^{\text {nd }}$ degree) polynomial inter-
polating f with respect to the information at z_{1}, z_{2} and z_{3}. This method is easily seen to be of fourth order.
b) Case 3 with $z_{1}=z_{2}$. Now $G(z)=\left(z-z_{1}\right)^{2}(z-c)$ and $G "\left(z_{3}\right)=0$ gives $3 z_{3}=2 z_{1}+c$. By taking $z_{3}=\frac{2}{3} z_{1}+\frac{1}{3} \gamma$ where again $\alpha-\gamma=0\left(\alpha-z_{1}\right)^{2}$, for example by a Newton-step, it is easy to show that the following method has fourth order :

$$
\begin{aligned}
& z_{1}=x_{1}\left(=z_{2}\right) \\
& z_{3}=\frac{2}{3} z_{1}+\frac{1}{3}\left(z_{1}-\frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\right)
\end{aligned}
$$

$x_{2}:=\phi\left(x_{1}\right):=z_{4}=$ zero of the second degree polynomial interpolating f with respect to the information at z_{1} and z_{3}.
Remarks
The previous arguments permit the determination of all arrangements of the information ($\# N=3$) which can give optimal order. They are denoted by their incidence matrices (Sharma [72]) as follows :
A) $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
B) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
C) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
D) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
E) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
F) $\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$
G) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

The cases A) and C) have optimal generalizations for all $n>3$, it will be shown in a later paper that also case F) can be generalized to a non-hermitean optimal case for all n .
4. A solution to a "problem 2" for $N=$ Brent information.

Definition 4.1.

$$
\begin{array}{r}
N_{m, \ell, k}=\left\{f\left(z_{1}\right), f^{\prime}\left(z_{1}\right), \ldots, f^{(m)}\left(z_{1}\right) ;\right. \\
\left.f^{(\ell)}\left(z_{2}\right), \ldots, f^{(\ell)}\left(z_{k}\right)\right\}
\end{array}
$$

is called Brent-information, where the z_{i} are distinct, $m \geqslant 1, k \geqslant 2$ and $\ell \geqslant 1$.
Brent has shown the following
Theorem 4.1. (Brent [74])
Assume $\ell \leqslant m+1$.
There exist methods using $N_{m, \ell, k}$ of order $m+2 k-1$.
We will now prove that the Brent methods make optimal use of the information $N_{m, \ell, k}$ (with respect to order).

Theorem 4.2.
Let $N_{m, \ell, k}$ be as in definition 4.1. Then if $\ell \leqslant m+1$,

$$
p(N)=m+2 k-1
$$

If $\&>m+1, p(N)=m+1$.
Proof : A technique is used similar to theorem 3.2. If $\ell>m+1$, a function $G(z) \equiv 0 \bmod N$ is given by

$$
G(z)=\left(z-z_{1}\right)^{m+1}
$$

And consequently $|\tilde{\alpha}-\alpha|=0(\tilde{f}(\alpha))=O\left(\alpha-z_{1}\right)^{m+1}$.
By theorem 2.1 the maximal order is not more than $m+1$. Methods realizing this order exist and are trivial to find. Thus $p(N)=m+1$.
If $\ell \leqslant m+1$, we construct $G(z)$ as follows.

To satisfy the conditions at z_{2}, \ldots, z_{k} we must have $\mathrm{G}^{(\ell)}(\mathrm{z})=\left(z-z_{1}\right)^{m-\ell+1}\left(z-z_{2}\right)\left(z-z_{3}\right) \ldots\left(z-z_{k}\right) H(z)$
where $H(z)$ is any (sufficiently regular) function. Integrating \& times,
$G(z)=\int_{z_{1}}^{z}(t-z)^{l-1}\left(t-z_{1}\right)^{m-l+1}\left(t-z_{2}\right) \ldots\left(t-z_{k}\right) H(t) d t$.
According to the remark at (2.2), we obtain an upper bound by choosing a special H.
Take $H(t)=\left(t-z_{2}\right) \ldots\left(t-z_{k}\right)$, making
$G(z)=\int_{z_{1}}^{z}(t-z)^{l-1}\left(t-z_{1}\right)^{m-\ell+1}\left[\left(t-z_{2}\right) \ldots\left(t-z_{k}\right)\right]^{2} d t$.
Consider now $G(\alpha)=\underset{f}{f}(\alpha)$. Transform $G(\alpha)$ to the interval $[-1,+1]$; after some easy calculations we obtain
$\mathfrak{Y}(\alpha)=K\left(\alpha-z_{1}\right)^{\ell-1}\left(\alpha-z_{1}\right)^{m-\ell+1}\left(\alpha-z_{1}\right)^{2(k-1)}\left(\alpha-z_{1}\right) . I(\alpha)$
where $K \neq 0$ does not depend on α or any of the z_{i} and where
$I(\alpha)=\int_{-1}^{+1}(1-\tau)^{\ell-1}(1+\tau)^{m-\ell+1} \prod_{i=2}^{k}\left(\tau+\frac{z_{1}-z_{i}}{\alpha-z_{1}}\right)^{2} \alpha d \tau$.
As is well known, $I(\alpha)$ is minimized when
$\prod_{i=2}^{k}\left(\tau+\frac{z_{1}^{-z} i_{i}}{\alpha-z_{1}}\right)$ is equal to the $(k-1)^{\text {st }}$ monic
Jacobi polynomial corresponding to the weight function $(1-\tau)^{\ell-1}(1+\tau)^{m-\ell+1}$.
Then $I(\alpha) \geqslant c$ where c is independent of the z_{i}.
(See for example G. Natanson : "Konstruktive Funktionentheorie").
So $|\tilde{\alpha}-\alpha|=O(f(\alpha))=O\left(\alpha-z_{1}\right)^{p}$

$$
\text { with } \begin{aligned}
\mathrm{p} & =(\ell-1)+(m-\ell+1)+2(k-1)+1 \\
& =m+2 k-1
\end{aligned}
$$

Thus $\mathrm{p}(N) \leqslant \mathrm{m}+2 \mathrm{k}-1$, but by Brent's theorem and theorem 2.1 , we have equality.

Note : The previous theorem was independently discovered by Woźniakowski. A generalization of this theorem is possible.

Theorem 4.3.
Let now $N=\left\{f\left(z_{1}\right), f^{\prime}\left(z_{1}\right), \ldots, f^{\left(m_{1}\right)}\left(z_{1}\right)\right.$;

$$
\begin{aligned}
& f^{(\ell)}\left(z_{2}\right), \ldots, f^{\left(\ell+m_{2}\right)}\left(z_{2}\right) ; \\
& f^{(\ell)}\left(z_{3}\right), \ldots, f^{\left(\ell+m_{3}\right)}\left(z_{3}\right) ; \\
& \left.\ldots f^{(\ell)}\left(z_{k}\right), \ldots, f^{\left(\ell+m_{k}\right)}\left(z_{k}\right)\right\} \quad m_{1} \geqslant 1, \\
& \\
& l \geqslant 1 .
\end{aligned}
$$

Then if $\ell>m_{1}+1, p(N)=m_{1}+1$, and if $\ell \leqslant m_{1}+1$,

$$
\begin{equation*}
p(N) \leqslant 1+m_{1}+2 \cdot \sum_{i=1}^{k}\left[\frac{m_{i}+1}{2}\right] \tag{4.1}
\end{equation*}
$$

Proof : The proof runs analogously, with H replaced by

$$
H(t)=\prod_{i=2}^{k}\left(t-z_{1}\right)^{\varepsilon_{i}} \text { with } \varepsilon_{i}=\left\{\begin{array}{lll}
0 & \text { if } m_{i} \text { odd } \\
1 & \text { if } m_{i} & \text { even }
\end{array}\right.
$$

(The Jacobi polynomial is now of degree $\sum_{i=2}^{k}\left[\frac{m_{i+1}}{2}\right]$)
Remark 4.1.
Let $m_{i}=1$ for $i=2, \ldots, k$. Then $p(N) \leqslant m+2 k-1$, so we gain nothing compared to the Brent informatron case ! In general the order cannot be raised if all m_{i} are even and we add the pieces of infor-
mation $f^{\left(\ell+m_{i}+1\right)}\left(z_{i}\right)$ for $i=2, \ldots, k$.
Remark 4.2.
Contrary to Theorem 4.2 the inequality (4.1) is not yet known to be an equality in general. If all m_{i} are equal, methods can be constructed by means of so-called "s-polynomials" realizing the bound. For a definition of these, see Ghizetti and Ossicini, "Quadrature Formulae". Again, for details we refer to a forthcoming paper on this subject.

Remark 4.3.
Kung and Traub's conjecture states that the optimal order for a given number of pieces of information will double by adding one extra piece of information. That it is however possible to increase the order more than twofold when it is not optimal, is shown by the following example :

Let $N=\left\{f\left(z_{1}\right), f^{\prime}\left(z_{1}\right), f^{\prime \prime}\left(z_{1}\right) ; f^{\prime}\left(z_{2}\right), f^{\prime \prime}\left(z_{2}\right)\right\}$.
By theorem 4.3 and remark 4.1 any method using this information must have order at most 5. Adding the element $\left\{f\left(z_{2}\right)\right\}$ to N, we get however an information at which allows us to obtain order 12, as is easily shown. Although of course not a counterexample to the conjecture - we believe it is true - it will complicate any possible proof by induction.

Finally, we state without proof the following result, used in the proof of Theorem 3.1 :

Theorem 4.4.

If in Theorem $4.3 \mathrm{~m}_{1}=0$ (and consequently, to avoid trivial cases, $1=1$) the order of information is bounded by

$$
p(N) \leqslant 1+m_{2}+\sum_{i=3}^{k}\left[\frac{m_{i}+1}{2}\right]
$$

References

Brent [74] Brent. R., "Efficient Methods for Finding Zeroes of Functions whose Derivatives are Easy to Evaluate," Department of Computer Science Report, Carnegie-Mellon University, December, 1974.

Kacewicz [75] Kacewicz, B., "An Integral-interpolatory Methof for the Solution of Non-linear Scalar Equations," Department of Computer Science Report, Carnegie-Mellon University, January, 1975.

Kung and Traub [74a] Kung, H. T. and Traub, J. F., "Optimal Order of One-point and Multipoint Iteration," JACM 21, 643-651.

Kung and Traub [74b] Kung, H. T. and Traub, J. F., "Optimal Order and Efficiency for Iterations with Two Evaluations," to appear in SIAM J. Numer. Anal.

Sharma [72] Sharma, A., "Some Poised and Non-poised Problems of Interpolation," SIAM Review 14, 1972.

Traub [64] Traub, J. F., Iterative Methods for the Solution of Equations, Prentice-Ha11, 1964.

Woźniakowski [74] Woźniakowski, H., "Maximal Stationary Iterative Methods for the Solution of Operator Equations," SIAM J. Numer. Anal. 11, 1974, 934949.

Woźniakowski [75a] Woźniakowski, H., "Generalized Information and Maximal Order of Iteration for Operator Equations," SIAM J. Numer. Anal. 12, 1975, 121135.

Woźniakowski [75b] Woźniakowski, H., "Maximal Order of Multipoint Iterations Using N Evaluations," to appear in Analytic Computational Complexity, edited by J. F. Traub, Academic Press, 1975.

UNCLASSIFIED
5ECURITV CLASSIFICATION OF THIS PAGE (Whan Date Enterod)

17 DISTRIEUTION STATEMENT (Of the abatract entered in Biock 20, If differont from Report)
18. SUPDI EMENTARY NOTES
19. KEY WORDS 'Continue on reverse slde if necessary and tdentity by block number)
20. ABSTAA * Continue on reverae ofde If necestary and fidentify hy biack numbar)
none submitted

