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OPTIMAL USE OF INFORMATION IN 
CERTAIN ITERATIVE PROCESSES 

Robert MEERSMAN 
Vrije Universiteit Brussel 

1, Introduction 
To approximate numerically a zero a of a real ana­
lytic function f, 

f(o) = 0, 
iteration is most widely used. We will discuss so-
called k-point stationary iterative processes 

without memory, <j>, defined as follows. Let there 
exist an interval around a such that for all x 1 in 
this interval, the following functions 

i=2,...,k+l are well-defined : 
z i = x i 

z 3 = C 3(z 1,z 2 /W(z 1,z 2;f)) 
• 

x 2 * = zk+1 = 1 ' * * * , 2 ] ^ / ^ ^ z j ' • • • ' zk' ̂  ^ 9 

where 
a) x 2 is called the new approximation to a ; we 

assume that x 2 lies within the same interval a 
and that the process is converging, i.e. put­
ting x^:= x 2 and repeating the iterative step 
produces a sequence which converges to a. Also 
we assume f'(a) ^ 0. 

b) W (z 1 #... #z^;f) is called the information set at 
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the points z^,...,z^ and consists of the set of 
all evaluations of f and/or its derivatives 
used at those points when computing 2^+^* J t is 
not necessary to give all derivatives up to a 
certain degree at any particular point z^. 
Examples of specific N abound in the rest of 
the paper. Other kinds of information sets can 
be considered, but are not the topic of this 
paper ; see for instance Kacewicz [75]. The read­
er should also be more or less familiar with the work of 
Wozniakowski [74] [75a]. 

2. Some known results and conjectures 

Definition 2.1. 
Let N (z1,...,zk;f) be given. We say that 
£ e f mod N when for all f ( j ) ( z ± ) e N, 

As in Wozniakowski 175a] we adopt the following definitions: 

Definition 2.2. 

The order of iteration p(c}>) is the largest number 
such that for all f with f(a) = 0, 
for all ^ = f mod N and having a zero a near a, 
we have 

|4>(xi;N) - a| 
Xj+a |x 1 - a | F v y / 

It can be shown this definition coincides with the 
usual definition in the literature (e.g. Traub[64]) 
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under weak assumptions on the asymptotical constant 

Definition 2.3. 
The order of information p(N) is the largest num­
ber such that for all f with f(a) = 0, 
for all £ E f mod N and having a zero a near a, 
we have 

i ^ 
lim sup 1 — : 
x ^ a |x x - a| 

Remark that choosing a special f or J = f mod N 
will give upper bounds on these orders, by defini­
tion. See also Wofniakowski [75b]. Extensive use will 
be made of the following two theorems. 

Theorem 2.1. (Maximal Order Theorem) 
The order p(<f>) is bounded above by p(N) for all (f> 
using information N. 

Theorem 2.2. 
The maximal order is reached for the generalized 
interpolating methods 1^ : p(Ijy) = p(W)« 
For definitions and proofs, see Wofniakoifski [75a]. 

Two kinds of problems arise now. 
Problem 1. Given N, compute p(N). (In other words, 
what is the maximal order achievable with informa­
tion N) . 

Problem 2. Given n = #N, the number of elements in 
N, determine P = max max p(<J>), where <j> uses in-

n #N=n . <J> 
formation N. 

Problem 2 is much harder than problem 1. Kung and 
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Traub conjectured (Kung and Traub [74a]) that 

(2.3) P* = 2 n

~
1 

and exhibited two families of methods which rea­
lize this bound for each n. In a later paper, Kung 
and Traub [74b], they proved (2.3) for n = 1 and 2. 
Remark that in view of Theorems 2.1 and 2.2, (2.3) 
is equivalent to 

Q* = 2 n

~
1  

w

n 
where Q = max p(N) . 

n #W=n 
The conjecture has been settled by Wofniakowski in 
one very important case. 

Definition 2.4. 
W is hermitean iff for all i, 1 < i < k, we have 

f
( k ) (z±)£N=>f

 ( к

~
Х ) (г ±)ем for all к > 0. 

Theorem 2.3. (Wofniakowski [75b]) 

The conjecture of (2.3) is true if the maximum is taken over 
hermitean А/. We will show later that a partial converse is 
not true, i.e. that p(/V) = 2 does not imply that А/ is 
hermitean. 

3. A solution to problem 1 for n = 3 

We will prove in this section that = 4, showing 
the correctness of the conjecture in this case. 
Our proof uses special cases of some general re­
sults on certain n­evaluations iterations one of 
which is to be treated in a later paper, namely 



Theorem 3.1» 

If W = {f (Zj) ,f 1(z 2) ,...,f ( n ) < z
n + l ) } t h e n 

p(W) « 2n 

Note : W is the so-called Abel-Condarov informa­
tion . 

In the proof of the following lemma and the rest 
of the paper we assume that at each z^ used in <f>, 
some new information is computed. This is not a 
restriction since otherwise we can substitute the 
expressions for these z^ in the other Cj# obtai­
ning an equivalent iteration (with less points). 

Lemma 3.1. 
Let <t> be an iteration using two pieces of informa­
tion, i.e. 

z l = x l 
z 2 = S 2

( z l ' W ( z l ; f ) ) 

x 2 :=<J> (Xj) = z 3 = C 3 (z 1 #z 2,W(z z 2;f) ) with %bi = 2 

(By the above convention, <b is a 1- or 2-point 
iteration). 
Then, if there exists a (known) constant C, C ^ 0 
and C ^ 1, such that for all f 

a - z 2 = C(a-z x) + O f a - z ^ 2 , (3.1) 

then <J> cannot be of second order. 

Proof : If C ^ 1, then from (3.1) we could solve 
for a : 
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* Z 2 ~ C Z l And z 9 = — — — - would therefore produce a 
second order approximation to a. Since = 1, 
both pieces of information must be used then at z^, 
but then (|) is a one-point iteration, i.e. = z 2 

by the convention, and from (3.1) and C ? 0 it fol­
lows that <j> is only of first order. 

Theorem 3.2. 

P* = 4 

Proof : We prove that p*(W) £ 4 for all N with 
#W = 3, where 

p*(W)=max {p|for all 2=f+G, G=0 mod W, £(a)=0, 
and G monic polynomial of degree < 3, 

lim sup 1 1 < <»} 
x ^ a iXj^-ap 

thereby restricting the class of £ such that 
J = f mod N. 

Step 1 
We need one evaluation of f at Zj to assure con­
vergence so W is of the form 

W = {f (z x) , f ( i ) (z2) , f ( j ) (z 3) } 

(Kung and Traub [74a]). 
We will suppose z 2 and z^ not necessarily diffe­
rent, unless of course i or j equals 0 or i = j. 
It is clear this does not affect the bounds on the 
optimal order. 
Since now G is a monic polynomial of degree < 3, 
we can take i and j * 2. Indeed, if i or j > 3, 
G E O mod N is automatically satisfied ; if 
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i < j = 3, we can interpolate the zero function 
for this information at z 1 and z 9 with a monic 
polynomial of degree < 2 - from P 2 = 2 it follows 
that the optimal order is 2 < 4, and similarly if 
j < i = 3. If i = j = 3 we can even take 
G(z) = z - Zj in which case the order of informa­
tion evidently is equal to 1 < 4. 

Remark 
The above argument can of course be generalized to 
any n : it is closely related to the Pólya condi­
tions on the set W, see Wo^niakowski [75b], Sharma 
[72] . 

Step 2 
The different cases for the information W. 
With an obvious notation, in the following cases 
the answer is already known : 

3 — 1 
Case 1 : ^ f

1 f f 2 ' f 3 ^ : Hermitean N, order < 2 =4 
Case 2 : { f ^ f ^ f ^ } : " B r e n t information with m=0", 

applying the results of Sec, 
4, we find 

if z 1^z 2:p(W)*m+2(k-1)-l=0+4-l=3<4 ; 
if z 1=z 2:p(W)=m+2(k-1)+1=1+2+1=4 

Case 3 : { f ^ f ^ f p : "Abel-Goncarov" N, by Theo­
rem 3.1. : order * 2.2 = 4 

Case 4 : {fjyfjff^} • Take again G(z)=z-z x as in 
Step 1 ; order < 1 < 4 (here 
the Pólya conditions are not 
satisfied). 
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Step 3 
Exhaustive checking of the remaining cases. Let us 
set 

G(z) = (z-z^ (z2+az+b) 

Case 5 : ^ i i ^ 2 , f 3 ^ 

Now G(z) = (z-z^ (z-z2) (z-c) . 
The condition (z^) = 0 gives 

(2z 3-z 1-z 2) (z3-c) + (z 3-z 1) (z 3^z 2) = 0 

So in general, c is a function of z 1 # z 2 and z 3 

which itself is also a function of z, and z 9. 
Since P 9 = 2, a-c cannot be of higher order than 
(a-z^ . Therefore 

a - a = 0(G(a)) = 0(£(a)) = Ofa-z^ (a-z 2) (a-c) 
4 

cannot be of higher order than (a-z,) since a-z 9 * 
is at most of order (a-z^ because P 1 = 1. Thus 
p*(W) * 4 for this N. 
Case 6 : { f ^ f ^ f j } 

Completely analogous to case 5, the condition at 
z 3 now is 

(z 3-c) + (2z 3-z 1-z 2) = 0. 

Case 7 : { f ^ f ^ , ^ } 

Now G(z) = (z-z1) (z-z3) (z-c) . 
The condition at z 2 : c = 3z 2 - z^ - z 3, again 
gives that (a-c) is at most of second order in 
(a-zx) . 
Now (a-z3) is at most of first order in (a-z^ 
since the function 
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G(z) = z - z 1 

interpolates the zero function at the points z^ 
and z 2 for the given information. Thus with an ob­
vious notation, 

a(£) - a = O(a-z^), and by theorem 2.1 and 2.2, 

(a-z^) = Oia-z^) at most. 

Consequently, 

a(G)-a = 0(^(a) )=0(a-z 1) (a-z3) (a-c) 
4 

is again at most of order (ot-z^ . 

Case 8 : {^1^2'f3^ 

This is a permutation of the Abel-Gon#arov infor­
mation. It is an easy consequence of the proof of 
Theorem 3.1 that also here we have, 

p(W) £ 2 - 2 = 4. 
A direct proof for this case can also be found, 
and is left to the reader. 

Case 9 : {f 1,f^,f 3> 

G(z) = (z-zx) (z-z3) (z-c) . 
Again, (a-c) being of 3rd order or more in (a-z.) 
would contradict P 2 = 2, so if (a-z 3) is of order 
1 in (a-Zj^) we are done. However (a-z3) and (a-c) 
cannot be both of second order, since the condi­
tion G f (z2) = 0 reads 

(2z 2-z 1-z 3) (z2-c) + (z2~z1) (z 2-z 3) = 0 

which is easily seen to be equivalent to 

e 3(a-c)=e 2 (2e1~3e2)- (e 1-2e 2) (e 3+ (a-c)) 



where e i = a - ; i=l,2 , 3 . 

Now e^(a-c) cannot be of order 4 while by lemma 
2 

3 . 1 with c = "3# 62(26^^-362) ^ s a t m o s t °^ order 2 
and ^ - 2 6 2 ) (e3+(ot-c)) is at least of third order. 
Note that if 2Z2 - - z-j = 0, this case becomes 
non-poised (Sharma [72]) and the function 
G(z) = (z-Zj^) (z-z^) interpolates zero with respect 
to this N, giving a maximal order of 3 . 

Theorem 3 . 3 . 

Hermitean information is not uniquely optimal. 

Proof : We exhibit two examples for n = 3 

a) Consider again case (6) of Theorem 3.Î. 
We have G (a) = (a-z^) (<x-z2) (a~c) 

where c = 3z^ - z^ - z 2. 

To obtain order 4, this suggests we must have 
2 

a - c = 0 (a-zx) , or 
Z l + Z 2 1 2 

( 3 . 1 ) z 3 = 3 + 3Y with Y-a=6(a-z x) 

To find such a y, take 

z l = x l 
z 2 = Z l + f ( z l > 

S t 
and y the root of the interpolating (1 degree) 
polynomial at these two points, i.e. 

z
2 " z i 

7 " Z l f ( 2 x ) - f (Z x) f ( Z l ) 

Then construct by (3.1) and 

x 2:= (J> (x^ : = z 4 

as the root of the (2 degree) polynomial inter-



polating f with respect to the information at z^, 
z 2 and z^. This method is easily seen to be of 
fourth order. 

b) Case 3 with z ^ = z 2 * 

and G" (z^) = 0 gives 3z^ = 2z 1 + c 

Now G(z) = (z-z^ (z-c) 

By taking 
2 1 2 z^ = + -j y where again a - y = Oia-z^) , for 

example by a Newton-step, it is easy to show that 
the following method has fourth order : 

z l = x l (= z 2' 
z = 2 1 
z 3 3 z l 3 

f (zx) 
( z i - F T F T * 

X2s=^(x 1):= z^ = zero of the second degree polyno­
mial interpolating f with respect to the informa­
tion at and z^. 

Remarks 
The previous arguments permit the determination of 
all arrangements of the information (#N = 3) which 
can give optimal order. They are denoted by their 
incidence matrices (Sharma [72]) as follows : 

A) fl 1] B) fl lj C) t 
1 0 0 D) [1 1 Ol 

1 0 lo IJ 1 
1 

0 
0 

0 
0 

[o 0 lj 

E) f 0 0] F) 
f 
1 o] G) fl 0 Ol 

1 0 0 1 0 0 1 0 
0 0 IJ 0 1 0 

Ik 
0 1 

J 

The cases A) and C) have optimal generalizations 
for all n > 3, it will be shown in a later paper 
that also case F) can be generalized to a non-hev-

mitean optimal case for all n. 



4. A solution to a "problem 2" for N = Brent infor­
mation . 

Definition 4.1. 

W m , i t . , k = { f ( 2 l ) ' f , ( z l ) f ( m ) ( 2 l > ' 
f ( l ) (z 2),...,f ( i ) (z k)} 

is called Brent-information, where the are dis­
tinct, m ^ 1, k ^ 2 and A ^ 1. 
Brent has shown the following 

Theorem 4.1. (Brent [74]) 
Assume & * m + 1. 
There exist methods using W 0 , of order m+2k-l. 

We will now prove that the Brent methods make op­
timal use of the information N 0 , (with respect 
to order). 

Theorem 4.2. 

Let M o . be as in definition 4.1. Then if &*m+l, 

p(W) = m + 2k - 1 

If & > m + 1, p(N) = m + 1. 
Proof : A technique is used similar to theorem 3.2. 
If A. > m + 1, a function G(z) = 0 mod W is given 
by 

G(z) = ( z - Z j ) " 1 * 1 

And consequently |a-a| = (?(2:(a)) = 0 (a-z^ m" h l. 
By theorem 2.1 the maximal order is not more than 
m + l. Methods realizing this order exist and are 
trivial to find. Thus p(W) = m + 1. 
If i. < m + 1, we construct G(z) as follows. 



To satisfy the conditions at z 2,...,z^ we must have 

G { 1 ) (z) = ( z - z 1 ) m ^ + 1(z-z 2) (z-z3) ... (z-zk)H(z) 

where H(z) is any (sufficiently regular) function. 
Integrating I times, 

G(z) = (t-z)* 1 ( t - z 1 ) n i * (t-z2) • . . (t-zk)H(t)dt. 

According to the remark at (2.2), we obtain an 
upper bound by choosing a special H. 
Take H(t) = (t-z 2) ... (t-z^) , making 

G(z) = fZ (t-z) t" 1(t-z 1) m" t + 1[ (t-z2) ... (t-z k)] 2 dt. 
1 

Consider now G(a) = r (a) • Transform G(a) to the 
interval [-l, + l] ; after some easy calculations we 
obtain 
£(a) = K ( a - z 1 ) 4 " 1 ( a - z 1 ) m " i + 1 ( a - z 1 ) 2 ( k " 1 > (a-z^ .1(a) 

where K ^ 0 does not depend on a or any of the z^ 
and where 

1(a) = f + 1 il-D^il+v)"-1*1 n ( T + ^ i ) 2 adx. 
J-l i=2 a ~ z l 

As is well known, 1(a) is minimized when 
k zl""zi 
II (T + -) is equal to the (k-l) s monic 

i=2 a ~ z l 
Jacobi polynomial corresponding to the weight 
function ( 1 - T ) * ~ 1 ( 1 + T ) m ~ l * l . 

Then 1(a) ^ c where c is independent of the z i. 
(See for example G. Natanson : "Konstruktive Funk-
tionentheorie"). 
So |a-a| = 0(£(a)) = 0(a-z ] [) p 



with p = (¿-1) + (m-*+l) + 2(k-l) + 1 
= m + 2k - 1. 

Thus p(W) < m + 2k - 1, but by Brent's theorem and 
theorem 2.1, we have equality. 

Note : The previous theorem was independently dis­
covered by Wofniakowski. A generalization of this 
theorem is possible. 

Theorem 4.3. 
Let now N = {f (zx) ,f'(z 1) ,...,f ( m l ) (z^ ; 

f ( A ) ( z 2 ) f < * ^ > ( z 2 ) ; 

f U ) U 3 ) f U + m 3 > ( z 3 ) ; 
• • • 

f U ) ( z k ) , . . . , f U + m k ) ( Z k ) } m ^ l f 

h i . 

Then if I > m1 + 1, p(W) = + 1, and if Unij + 1, 
k rmj+ll 

(4.1) p(W) < 1 + mx + 2.^Z \^T'\ 

Proof : The proof runs analogously, with H replaced 
by 

k e. 
H(t) = n (t-zx) with e i = JO if m ± odd 

\1 if m^ even 
k 

(The Jacobi polynomial is now of degree 
i = 2 l ~ n 

Remark 4.1. 
Let iru = 1 for i = 2,...,k. Then p(W) < m + 2k - 1, 
so we gain nothing compared to the Brent informa­
tion case I In general the order cannot be raised 
if all are even and we add the pieces of infor-



mation f (z i) for i = 2 / • • • / k. 

Remark 4.2. 
Contrary to Theorem 4.2 the inequality (4.1) is not 
yet known to be an equality in general. If all m^ 
are equal, methods can be constructed by means of 
so-called "s-polynomials" realizing the bound. For 
a definition of these, see Ghizetti and Ossicini, 
"Quadrature Formulae". Again, for details we refer 
to a forthcoming paper on this subject. 

Remark 4.3. 
Kung and Traub's conjecture states that the optimal 
order for a given number of pieces of information 
will double by adding one extra piece of informa­
tion. That it is however possible to increase the 
order more than twofold when it is not optimal, is 
shown by the following example : 

By theorem 4.3 and remark 4.1 any method using this 
information must have order at most 5. Adding the 
element {f(z2)} to W, we get however an information 
at which allows us to obtain order 12, as is easi­
ly shown. Although of course not a counterexample 
to the conjecture - we believe it is true - it will 
complicate any possible proof by induction. 

Finally, we state without proof the following re­
sult, used in the proof of Theorem 3.1 : 

Let N = {f ( 2 l) ,f 1 (z x) ,f"( Z l) ; f ( z 2 ) , f" (z2) }. 



Theorem 4.4. 
If in Theorem 4.3 = 0 (and consequently, to 
avoid trivial cases, 1 = 1 ) the order of informa­
tion is bounded by 

P(W) c 1 + m 2 + 
k 
Z 

i=3 L 

itk + 1 
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