
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE I/O PORT ARCHITECTURE FOR COMPUTER MODULES

S. H. Fuller and R. C. Chen

Departments of Computer Science
and Electrical Engineering
Carnegie-MelIon University
Pittsburgh, Pennsylvania

March, 1973

This work was supported by the National Science Foundation under
Grant GJ-32758X.

ABSTRACT

In an earlier paper [Bell, et al., 1973] a new set of digital modules*

called Computer Modules, or simply CM's, is described. In that paper it

was stated that the correct design of the CM i/o structure is critical to

their success$ and moreover, the l/o structure of a CM is what distinguishes

it from contemporary minicomputers* This report describes a preliminary

design of the l/o structure for computer modules.

The functions of the l/o ports are discussed here, and it is observed

that they must allow sharing of memory and passing of control among inter­

connected CM's. CM's use a variation of the segmented address space scheme

to implement the functions of the l/o port. A complete ISP description of

the l/o port is included, as well as a number of examples of inter-CM com­

munications that illustrate the various ways the l/o ports can be used*

i

1. INTRODUCTION

This report describes a preliminary design of the input/output ports

of Computer Modules. Computer Modules are building blocks that will be

used to construct a wide variety of digital systems, spanning a wide range

of cost and performance. Our basic assumptions and the reasoning leading

to the choice of Computer Modules as building blocks are described else­

where [Bell et a l M 1973] and will not be repeated here. For completeness*

however, we will briefly note the assumptions that are necessary for under­

standing this report.

Each Computer Module (CM) includes a processor of about the power of

a minicomputer processor, local memory ranging from IK to 64K words, with

8 or 16 bits per word, and a few input/output ports through which it com­

municates with other CM's. A few to perhaps several thousand CM's are used

in any digital system, high performance being achieved by using multiple

CM's in parallel. For CM systems to obtain high performance CM's must be

able to communicate efficiently in a closely coupled manner. For this

reason, the input/output port design is a critical aspect of the design of

CM fs.

This report is a design of the input/output port at an ISP level. The

report does not address such important questions as the arbitration of re­

quests to use a communication bus.

In the next section, Section 2, the functions of the l/o port are ex­

amined in detail. Section 3 follows with a description of the architecture

of the l/o ports. Section 3 assumes the Pc of a CM is similar to a PDP-11

[Bell et al #, 1970]. This was done for two reasons: choosing a reasonable

-2-

well known processor relieves us of the task of describing the processor;

and at least the first few CM's will in fact use PDP-11 processors. Sec-

tion 4 gives a btfief example of a PDP-11 CM used as a Pio with block trans­

fer abilities.

2. FUNCTION OF l/o PORTS

At the most fundamental level, the l/o ports of the CM exist to facili­

tate inter-processor communication; the primary purpose of the l/o ports is

not to boost the processing power of a CM. If CM's are being applied to a

problem that can benefit from a powerful Pio (l/o processor), then one or

more CM's should be used to build the Pio; the Pio should not be a component

of a CM.

Current multi-processor and multiple computer systems provide for two

types of inter-processor communication. There exists schemes for:

1. sharing data;

2. passing control among processors (processes).

2.1. Data Sharing

There are many ways for processors to share data; they can share

some secondary storage via separate controllers, they can have channel to

channel links, or they can share part, or all, of Mp (e.g., the archetypical

multi-processor structure). Clearly, thci most elegant solution here is to

give all the processors in the system access to all the words in the address

space. (Postpone for a moment the issue of protection.)

C.mmp, a multi-processor with a complete crossbar switch [Bell and

Wulf, 1972] allows all the Pc's to share the same address space. The

*We use the PMS notation of Bell and Newell [1971] in this report to describe
the hardware organization of CM's.

-3-

question must be answered: why should C.mmp not be the prototype of a

large module (I2A) set of Pc's, Mp's, and Smp's (memory-processor cross­

bar switches)? There are at least two reasons:

1. In C.mmp several hundred nanoseconds are lost in an Mp access

by a P c This is because of Pc conflicts for Mp modules as well

as switching delays„

2. A central Smp (crossbar switch) reduces the potential reliability

of the system, Smp can be distributed among the Mp's (or Pc's)

but then Problem 1 is further aggravated.

A proposal to increase the performance of C.mmp involves attaching

local cache memories to each Pc. Note C.mmp would then have Pc-Mp pairs:

the first step toward CM's.

2* 2« Control Passing

Two structures are in common use in computer systems to implement

control passing: message queueing and interrupt structures. Roughly,

interrupt structures are important in real-time control computers, and

mini-computers in general, because of demanding response requirements,

while message queueing is used in multi-programming and time sharing

operating systems because of its flexibility. If CM's are to be used as

primitive components in digital system design, they must be adaptable to

a wide range of performance requirements; hence some form of interrupt

mechanism is essential. Message queueing can be implemented in software

when needed.

-4-

2.3 Other l/o Port Functions

Although CM l/o ports must implement some form of shared memory and

inter-process control signaling* are these functions sufficient for the

efficient operation of CM's? We don't know; experimentation with CM's

should investigate this question*

A function that is present in the l/o structure of most high-performance

computers is the ability to transfer blocks of information in or out of Mp

via an l/o port, independent of the Pc. Consideration should be given to

enabling the l/o ports to supervise block transfers* in parallel with the

operation of the Pc.

This concludes the brief functional description of the CM's l/o port*

Since the l/o ports are not implemented as stored-program processors* they

will be called l/o controllers, i.e.* Kio's, rather than l/o processors.

3. THE ARCHITECTURE OF A Kio

3.1. Implementation of Data Sharing

The most obvious scheme to allow Pc's to share data is to give them

all the same global linear address space. This naive scheme is lacking on
30

a number of counts: the linear address space must be very large (^2

Words) in order to handle contemporary problems; a linear address space for

a CM network does not match the underlying multiple CM structure; and a pro­

tection scheme is not easily embedded in a linear address space.

An addressing scheme that more closely matches the structure of CM sys­

tems is a segmented address space [cf. Denning, 1970 and Randell and Kuehner,

1968]. Specifically, a CM fs address space will contain a set of segments;

-5-

segments will be called local segments or external segments, depending

on their function. Local segments map words in the virtual address space

into the physical memory space of the Mp local to the CM. External seg­

ments map words in the virtual address space out of the CM onto an inter-

CM bus, and ultimately into the physical memory space of another CM. One

of the two major functions of the Kio's is to implement this inter-module

address mapping function. There exists a bewildering variety of ways to

implement a segmented address space (e.g., B5000, IBM 360/67 (and now the

370's), GE 645, PDP-1l/45,...). The following design is driven by:

1. a desire for simplicity in the Kio;

2. delays in the Kio must be kept to an absolute minimum;

3. realization the Pc of initial CM's is the PDP-11.

The Broadcast Address Space

There must exist some addressing, or tagging, scheme on the inter-CM

bus so CM's can exchange messages over a shared bus. Initially, we gave

unique names to each Kio on a bus and CM's sent messages to other CM's,

using these names to route the calls. This scheme has the disadvantage

that the instantaneous processor-process binding for all the CM's in the

system has to be known by each CM initiating messages.

The second scheme developed was to bind names to the messages, rather

than the CM's. This is more reasonable and was the approach used in much

of the early design. However, the concept of a broadcast address space has

resulted in a startling simplification and unification of the concepts of

CM memory sharing, even though it is really our second scheme in a clever

disguise.

-6-

Let each bus in a CM system have a virtual address space, called a

broadcast address space. To access a word not in the CM's local segment,

the Pc requests a word from an external segment, and the appropriate Kio

translates the address from the CM's address space into the broadcast ad­

dress space of the bus. The other CM's on the bus are monitoring the ad­

dress lines, and when an address is within the range of a bus segment, the

Kio maps the bus address into the address space of the remote CM.

The broadcast address space of a bus is analogous to the electromag­

netic broadcast spectrum. Like the broadcast spectrum, the broadcast ad­

dress space will become a limiting, critical resource when many CM's

(stations) concurrently require segments (broadcast bands) for transmission

of messages. Figure 3.1 shows how an address is mapped from CM A into CM B

via the broadcast address space of bus 1. If an address is mapped into an

external segment of CM B, then another level of mapping is initiated, as

shown in Figure 3.2. The ability to have multi-level mapping allows a CM,

e.g., CM B in Figure 3.2, to act as a switch. This circuit switching

ability is crucial if networks of CM's need to interact in a closely-

coupled manner. If only relatively loose coupling is needed, as, for ex­

ample, in the ARPA network, then CM's can implement message switching by

mapping addresses into local segments and then have the local Pc move the

message from the local segment to an external segment; see Figure 3.3. The

fact that CM's can function as circuit or message switches substantially

enlarges the range of applications they can efficiently accommodate.

Figure 3.4 illustrates another way the broadcast address space can be

used. In Figure 3.4(a) several CM's are set up to map the same bus segment

-7-

Bus A<*

C M # 1 ' 3

ADOBES* S P A C *

FIGURE 3 . 1

ADDRESS MAPPING ON A CM BUS

CM*!'*
Soft As

A»0a*s* CM «2'*

VIA 5VS ft

FICURB 3 . 2

CIRCUIT SWITCHING

CM*T*
Bus As

APP&S&5 Sp/»ce CM * 2'*
Aax*2«5S Sfwoe

CjCT. SCCa.

U>CAt-

T* CM#5
VIA &u» £>

FIGURE 3 . 3

MESSAGE SWITCHING

-9~
' 1 %

CM*i
Aft>pc£ss Space

LOCAL

0'

•

CM-#3
topees* SP*C*

riCURE 3 . 4 («)

MAHY-TO-ONE MAPPING .
C M # 1

Aocritess Space

raw- M4r

LOCAL.
\ C M # 3

/
LOCAL.

C M * 2

ONE-TO-MANY HAPPING3* (BROADCASTING)

FIGURE 3 . 4 CM*Z
SHARED SEGMENTS IN BROADCAST ADDRESS An»*c*s *p«C<2

SPACE

-10-

iri to their local segments. This arrangement gives CM systems a broad­

cast or one-to-many mapping ability; for example, CM A in Figure 3.4(a),

by writing into external segment 1 simultaneously sends information to the

other CM's in the figure* On the other hand, Figure 3.4(b) shows how a

CM system can implement a many-to-one mapping. This arrangement is needed

whenever several concurrent processes share a common data structure.

Variable Segment Size

A number of schemes have been used to specify a segment in the address

space:

1. Fixed size segments, i.e., pages. This naturally suggests

pages be mapped into page frames, rather than an arbitrary place

in memory.

2. Arbitrary segment size, e.g., B5000. The extent of a segment is

specified by a base, limit register pair. This is completely gen­

eral, but problems with memory fragmentation arise, and addition

rather than equality testing must be used to map an address into

the segment.

3. Paged, variable size segments. Classic implementation of virtual

memory systems, e.g., S360/67 and GE 645 [cf. Dennis, 1965; Arden

et al., 1966].

The more complex of the above schemes are not appropriate for CM's

because the address mapping must be an efficient process if CM's are to be

-11-

able to cooperate in a closely-coupled manner. On the other hand, it is

important that the external segments be variable size. There are three

reasons for this:

11 • CM address space. At present, assuming PDP-11 CM's, a CM has a

variable number of external segments and to fix external segment

size would put an upper limit on the number of external segments

per CM.

2» Protection. In order to efficiently access data structures, ex­

ternal segments must be as large as the largest data structures,

but to protect adjacent data structures from unwarranted destruc­

tion, external segments need to be as small as the smallest data

structures.

3 # Broadcast address space. Some applications will require a large

number of Ql's per bus, and unless external segments are of vari­

able size the internal fragmentation of bus segments will result

in a critical shortage of words in the broadcast address space*

ISP Description of a Kio

The next page gives the ISP of a Kio. See Bell and Newell [1970] for

details of the ISP notation and Bell et al. [1970] for the ISP of the PDP-11

processor, the processor we will be using in the initial CM's.

Figure 3.1 should help clarify the address translation processes from

CM to bus and back again. By giving the bus a broadcast address space, the

symmetry between CM to bus and bus to CM translation is sufficiently complete

• 12

ISP Description of a Kio

Kio State

CMUJSegmentulRegister/cSR[0:15]<15: 0>

Bus^jSegmentJRegis ter/BSR[0:15]<15: 0>

Controljtegis ter/CR [0:15]<15: 0>

Logarithmujof uiSegmentuSize/LSSO: 0>

Write^protect/WP

Referenced it/RB

ChangeJ>it/CB

Interruptuenable/IE

Interruptupending/IP

i/o^bit/lOB

NXM

Spare bits

Mask Register/MR<15:0>

CR<15:12>

CR<11>

CR<10>

CR<9>

CR<8>

CR<7>

CR<6>

CR<5>

CR<4:0; Currently utiMsigned bits,

< a pseudo register that is the
unary encoding of LSS field in
CR.

Address Translation Process

y<15:0> :« (IOB - 0) - (

(z A MR - CSR A MR) •*

(BSR A MR) V (as A (~i MR))

)

z<15:0> :« (IOB - 1) - (

(y A M R m BSR A MR) ->

(CSR A MR) V (y A (- i MR))

map from CM to bus.

effective address is
within external segment.

concatenation process

map from bus to CM.

broadcast address is
within bus segment.

concatenation process.

Where:
and

z effective address of operand in CM address space
y effective address of operand in bus broadcast address space.

to allow CSR/BSR pairs to translate addresses in either direction, the

current direction being specified by the l/Ouibit in the CR.

In the ISP, a Kio is shown to have 16 CSR/BSR/CR sets. This is not

meant to imply that all, or even most, Kio's will have this many register

sets. Two to four register sets are presently seen as a practical number

to have on a single Kio. In fact, if only one CSR/BSR/CR set is included

in each Kio* no power is lost because nowhere is it necessary to make the

restriction a CM can only have one Kio per bus. However, to conserve bus

drivers and receivers it is appropriate to group several register sets on

a single Kio.

Note in the above ISP we have solved the segment size problem. Only

segment sizes that are powers of two are allowed: 1,2,4,8,#..f64K. By re­

stricting our segment sizes to powers of two we avoid the addition implicit

in more conventional base/limit schemes. We also ease the memory fragmenta­

tion problem in the broadcast address space since we can now use the buddy

system. This novel memory allocation scheme was independently discovered

by H. Markowitz (1963) and K. Knowl ton (1965) and is analyzed by Knuth [1968].

The DEC Unibus window [DEC, 1972] also limits its segment (window) size to

be a power of two. However, the Unibus window sets a lower limit on segment

size, 512 bytes, and this appears to be a mistake. Many data structures

that are shared between processors are smaller than 512 bytes, yet the cost

to provide smaller segment sizes is negligible.

Most of the fields in the control register are self-evident. The

fields dealing with inter-CM interrupts will be discussed in the next sec­

tion. The NXM bit is used to enable/disable the CM-bus translation for the

associated CSR/BSR pair.

-14

3.2 Implementation of Intermodule Interrupts

It is useful to consider inter-CM interrupts to be a generalisation

of subroutine calls. Specifically, we need a jump to subroutine (JSR)

instruction that passes control to the called procedure, as is now done,

and we need JSR's that initiate new loci of control, without suspending

the locus of control in the calling program. In other words, we need to

implement, in the context of CM's, what has been variously called fork,

begin parallel, split! etc. This new JSR (let's call it ISR, for initiate

subroutine) also seems to have utility within a CM as a clean way to imple­

ment multi-programming and multi-processing.

While the format of the ISR instruction looks similar to the JSR in­

struction in the calling CM, to the target CM the ISR looks like an inter­

rupt. If the interrupt enable (IE) is on in the Kio of the target CM,

then the address of the ISR instruction Is used as the interrupt vector

for the target CM. The data lines of the inter-CM bus are used to pass the

current value of the program counter to the target CM. If the interrupt

enable is off, then the interrupt pending bit is set in the CR and the inter

rupt vector is stored in a buffer register. This buffer register is not

directly accessible by any CM in the system, but it is effectively cleared

by clearing the interrupt pending bit of the CR.

If a Pc executes a JSR, rather than an ISR, into an external segment

of its address space, we will simply have a situation where the Pc of one

CM is fetching its instructions from the Mp of another CM.

It would be consistent with the above implementation of interprocessor

interrupts to generalize the Wait instruction of the PDP-11 to implement

-15-

the join, or merge, function needed in parallel processor systems. How­

ever, either the increment-and-skip-if-zero (ISZ) instruction common to

most mini-computers or the f,read-pauseff feature of C.mmp [Wulf and Bell,

1972] is sufficient.

4. ASYNCHRONOUS BLOCK TRANSFERS

In many contemporary computer systems the ability of l/o processors

to transfer large blocks of information, independent of the Pc, is impor­

tant for the efficient operation of the system. This report proposes that

the Kio !s of CM's not have this direct memory access (IMA) ability. If a

DMA channel or Pio is needed, it can be built from a CM. Figure 4.1 shows

a CM functioning as a DMA channel.

ACKNOWLEDGMENTS •

This report discusses work that is part of a larger project that in­

cludes Gordon Bell, John Grason, Daniel Siewiorek, Douglas Clark, Satish

Rege, and Richard Swan. All have made suggestions that have improved the

design presented here.

16-

these
buses could'
be the same
bus

Kio

CM.dma

Kio

Kio

CM.destination

Now if we have the simple PDP-11 code sequence in the CM.dma:

MOV (Sr)+, (Dr) +
CMP Sr, Limit^Register
BNE *-2

The Sr and Dr point to words in external segments of the CM.dma1 s address space.

FIGURE 4.1. Using a CM as a DMA Channel.

-17-

REFERENCES

1. Arden, B. W., Galler, B. A., O'Brien, T. C , and Westervelt, F. H.
(1966), "Program and addressing structure in a time-sharing environ­
ment." J. ACM 13, 1 (Jan., 1966), 1-16.

2. Bell, C. G. and Newell, A. (1971), Computer Structures: Readings and
Examples. McGraw-Hill Book Company, New York, N. Y. (1971).

3. Bell, C. G., Cady, R., McFarland, F., Belagi, E., O'Laughlin, J.,
Noonan, R., and Wulf, W. (1970), "A new architecture for minicomputers -•
the DEC PDP-11.11 Proc. AFIPS SJCC 1970, 657-675.

4. Bell, C G., Chen, R. C , Fuller, S. H., Grason, J., Rege, S., and
Siewiorek, D. (1973), ,fThe architecture and application of computer
modules: a set of components for digital design.11 IEEE CompCon '73
(March 1973), 177-180.

5. DEC (1972) DA11-F Unibus Window Maintenance Manual. DEC-11-HDAFA-A-D,
Digital Equipment Corporation, Maynard, Mass.

6. Dennis, J. B. (1965), "Segmentation and the design of multiprogrammed
computer systems." J. ACM 12, 4 (October 1965), 589-602.

7. Denning, P. Jtt (1970), "Virtual Memory." Computing Surveys 2, 3
(September 1970), 153-191.

8. Knuth, D. E. (1968), The Art of Computer Programming, Volume 1 /Funda­
mental Algorithms. Addision-Wesley Company, Reading, Mass. (1968).

9. Randell, B. and Kuehner, C. J. (1968), "Dynamic storage allocation
systems." Comm. ACM 11, 5 (May 1968), 297-305.

10. Wulf, W. A. and Bell, C G. (1972), "C.mmp — a multi-mini-processor." Proc. AFIPS FJCC 1972, 765-777.

