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ABSTRACT 

In an earlier paper [Bell, et al., 1973] a new set of digital modules* 

called Computer Modules, or simply CM's, is described. In that paper it 

was stated that the correct design of the CM i/o structure is critical to 

their success$ and moreover, the l/o structure of a CM is what distinguishes 

it from contemporary minicomputers* This report describes a preliminary 

design of the l/o structure for computer modules. 

The functions of the l/o ports are discussed here, and it is observed 

that they must allow sharing of memory and passing of control among inter­

connected CM's. CM's use a variation of the segmented address space scheme 

to implement the functions of the l/o port. A complete ISP description of 

the l/o port is included, as well as a number of examples of inter-CM com­

munications that illustrate the various ways the l/o ports can be used* 
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1. INTRODUCTION 

This report describes a preliminary design of the input/output ports 

of Computer Modules. Computer Modules are building blocks that will be 

used to construct a wide variety of digital systems, spanning a wide range 

of cost and performance. Our basic assumptions and the reasoning leading 

to the choice of Computer Modules as building blocks are described else­

where [Bell et a l M 1973] and will not be repeated here. For completeness* 

however, we will briefly note the assumptions that are necessary for under­

standing this report. 

Each Computer Module (CM) includes a processor of about the power of 

a minicomputer processor, local memory ranging from IK to 64K words, with 

8 or 16 bits per word, and a few input/output ports through which it com­

municates with other CM's. A few to perhaps several thousand CM's are used 

in any digital system, high performance being achieved by using multiple 

CM's in parallel. For CM systems to obtain high performance CM's must be 

able to communicate efficiently in a closely coupled manner. For this 

reason, the input/output port design is a critical aspect of the design of 

CM fs. 

This report is a design of the input/output port at an ISP level. The 

report does not address such important questions as the arbitration of re­

quests to use a communication bus. 

In the next section, Section 2, the functions of the l/o port are ex­

amined in detail. Section 3 follows with a description of the architecture 

of the l/o ports. Section 3 assumes the Pc of a CM is similar to a PDP-11 

[Bell et al #, 1970]. This was done for two reasons: choosing a reasonable 
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well known processor relieves us of the task of describing the processor; 

and at least the first few CM's will in fact use PDP-11 processors. Sec-

tion 4 gives a btfief example of a PDP-11 CM used as a Pio with block trans­

fer abilities. 

2. FUNCTION OF l/o PORTS 

At the most fundamental level, the l/o ports of the CM exist to facili­

tate inter-processor communication; the primary purpose of the l/o ports is 

not to boost the processing power of a CM. If CM's are being applied to a 

problem that can benefit from a powerful Pio (l/o processor), then one or 

more CM's should be used to build the Pio; the Pio should not be a component 

of a CM. 

Current multi-processor and multiple computer systems provide for two 

types of inter-processor communication. There exists schemes for: 

1. sharing data; 

2. passing control among processors (processes). 

2.1. Data Sharing 

There are many ways for processors to share data; they can share 

some secondary storage via separate controllers, they can have channel to 

channel links, or they can share part, or all, of Mp (e.g., the archetypical 

multi-processor structure). Clearly, thci most elegant solution here is to 

give all the processors in the system access to all the words in the address 

space. (Postpone for a moment the issue of protection.) 

C.mmp, a multi-processor with a complete crossbar switch [Bell and 

Wulf, 1972] allows all the Pc's to share the same address space. The 

*We use the PMS notation of Bell and Newell [1971] in this report to describe 
the hardware organization of CM's. 
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question must be answered: why should C.mmp not be the prototype of a 

large module (I2A) set of Pc's, Mp's, and Smp's (memory-processor cross­

bar switches)? There are at least two reasons: 

1. In C.mmp several hundred nanoseconds are lost in an Mp access 

by a P c This is because of Pc conflicts for Mp modules as well 

as switching delays„ 

2. A central Smp (crossbar switch) reduces the potential reliability 

of the system, Smp can be distributed among the Mp's (or Pc's) 

but then Problem 1 is further aggravated. 

A proposal to increase the performance of C.mmp involves attaching 

local cache memories to each Pc. Note C.mmp would then have Pc-Mp pairs: 

the first step toward CM's. 

2* 2« Control Passing 

Two structures are in common use in computer systems to implement 

control passing: message queueing and interrupt structures. Roughly, 

interrupt structures are important in real-time control computers, and 

mini-computers in general, because of demanding response requirements, 

while message queueing is used in multi-programming and time sharing 

operating systems because of its flexibility. If CM's are to be used as 

primitive components in digital system design, they must be adaptable to 

a wide range of performance requirements; hence some form of interrupt 

mechanism is essential. Message queueing can be implemented in software 

when needed. 
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2.3 Other l/o Port Functions 

Although CM l/o ports must implement some form of shared memory and 

inter-process control signaling* are these functions sufficient for the 

efficient operation of CM's? We don't know; experimentation with CM's 

should investigate this question* 

A function that is present in the l/o structure of most high-performance 

computers is the ability to transfer blocks of information in or out of Mp 

via an l/o port, independent of the Pc. Consideration should be given to 

enabling the l/o ports to supervise block transfers* in parallel with the 

operation of the Pc. 

This concludes the brief functional description of the CM's l/o port* 

Since the l/o ports are not implemented as stored-program processors* they 

will be called l/o controllers, i.e.* Kio's, rather than l/o processors. 

3. THE ARCHITECTURE OF A Kio 

3.1. Implementation of Data Sharing 

The most obvious scheme to allow Pc's to share data is to give them 

all the same global linear address space. This naive scheme is lacking on 
30 

a number of counts: the linear address space must be very large (^2 

Words) in order to handle contemporary problems; a linear address space for 

a CM network does not match the underlying multiple CM structure; and a pro­

tection scheme is not easily embedded in a linear address space. 

An addressing scheme that more closely matches the structure of CM sys­

tems is a segmented address space [cf. Denning, 1970 and Randell and Kuehner, 

1968]. Specifically, a CM fs address space will contain a set of segments; 
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segments will be called local segments or external segments, depending 

on their function. Local segments map words in the virtual address space 

into the physical memory space of the Mp local to the CM. External seg­ 

ments map words in the virtual address space out of the CM onto an inter-

CM bus, and ultimately into the physical memory space of another CM. One 

of the two major functions of the Kio's is to implement this inter-module 

address mapping function. There exists a bewildering variety of ways to 

implement a segmented address space (e.g., B5000, IBM 360/67 (and now the 

370's), GE 645, PDP-1l/45,...). The following design is driven by: 

1. a desire for simplicity in the Kio; 

2. delays in the Kio must be kept to an absolute minimum; 

3. realization the Pc of initial CM's is the PDP-11. 

The Broadcast Address Space 

There must exist some addressing, or tagging, scheme on the inter-CM 

bus so CM's can exchange messages over a shared bus. Initially, we gave 

unique names to each Kio on a bus and CM's sent messages to other CM's, 

using these names to route the calls. This scheme has the disadvantage 

that the instantaneous processor-process binding for all the CM's in the 

system has to be known by each CM initiating messages. 

The second scheme developed was to bind names to the messages, rather 

than the CM's. This is more reasonable and was the approach used in much 

of the early design. However, the concept of a broadcast address space has 

resulted in a startling simplification and unification of the concepts of 

CM memory sharing, even though it is really our second scheme in a clever 

disguise. 
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Let each bus in a CM system have a virtual address space, called a 

broadcast address space. To access a word not in the CM's local segment, 

the Pc requests a word from an external segment, and the appropriate Kio 

translates the address from the CM's address space into the broadcast ad­

dress space of the bus. The other CM's on the bus are monitoring the ad­

dress lines, and when an address is within the range of a bus segment, the 

Kio maps the bus address into the address space of the remote CM. 

The broadcast address space of a bus is analogous to the electromag­

netic broadcast spectrum. Like the broadcast spectrum, the broadcast ad­

dress space will become a limiting, critical resource when many CM's 

(stations) concurrently require segments (broadcast bands) for transmission 

of messages. Figure 3.1 shows how an address is mapped from CM A into CM B 

via the broadcast address space of bus 1. If an address is mapped into an 

external segment of CM B, then another level of mapping is initiated, as 

shown in Figure 3.2. The ability to have multi-level mapping allows a CM, 

e.g., CM B in Figure 3.2, to act as a switch. This circuit switching 

ability is crucial if networks of CM's need to interact in a closely-

coupled manner. If only relatively loose coupling is needed, as, for ex­

ample, in the ARPA network, then CM's can implement message switching by 

mapping addresses into local segments and then have the local Pc move the 

message from the local segment to an external segment; see Figure 3.3. The 

fact that CM's can function as circuit or message switches substantially 

enlarges the range of applications they can efficiently accommodate. 

Figure 3.4 illustrates another way the broadcast address space can be 

used. In Figure 3.4(a) several CM's are set up to map the same bus segment 
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iri to their local segments. This arrangement gives CM systems a broad­

cast or one-to-many mapping ability; for example, CM A in Figure 3.4(a), 

by writing into external segment 1 simultaneously sends information to the 

other CM's in the figure* On the other hand, Figure 3.4(b) shows how a 

CM system can implement a many-to-one mapping. This arrangement is needed 

whenever several concurrent processes share a common data structure. 

Variable Segment Size 

A number of schemes have been used to specify a segment in the address 

space: 

1. Fixed size segments, i.e., pages. This naturally suggests 

pages be mapped into page frames, rather than an arbitrary place 

in memory. 

2. Arbitrary segment size, e.g., B5000. The extent of a segment is 

specified by a base, limit register pair. This is completely gen­

eral, but problems with memory fragmentation arise, and addition 

rather than equality testing must be used to map an address into 

the segment. 

3. Paged, variable size segments. Classic implementation of virtual 

memory systems, e.g., S360/67 and GE 645 [cf. Dennis, 1965; Arden 

et al., 1966]. 

The more complex of the above schemes are not appropriate for CM's 

because the address mapping must be an efficient process if CM's are to be 
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able to cooperate in a closely-coupled manner. On the other hand, it is 

important that the external segments be variable size. There are three 

reasons for this: 

11 • CM address space. At present, assuming PDP-11 CM's, a CM has a 

variable number of external segments and to fix external segment 

size would put an upper limit on the number of external segments 

per CM. 

2» Protection. In order to efficiently access data structures, ex­

ternal segments must be as large as the largest data structures, 

but to protect adjacent data structures from unwarranted destruc­

tion, external segments need to be as small as the smallest data 

structures. 

3 # Broadcast address space. Some applications will require a large 

number of Ql's per bus, and unless external segments are of vari­

able size the internal fragmentation of bus segments will result 

in a critical shortage of words in the broadcast address space* 

ISP Description of a Kio 

The next page gives the ISP of a Kio. See Bell and Newell [1970] for 

details of the ISP notation and Bell et al. [1970] for the ISP of the PDP-11 

processor, the processor we will be using in the initial CM's. 

Figure 3.1 should help clarify the address translation processes from 

CM to bus and back again. By giving the bus a broadcast address space, the 

symmetry between CM to bus and bus to CM translation is sufficiently complete 
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ISP Description of a Kio 

Kio State 

CMUJSegmentulRegister/cSR[0:15 ]<15: 0> 

Bus^jSegmentJRegis ter/BSR[ 0:15 ]<15: 0> 

Controljtegis ter/CR [ 0:15 ]<15: 0> 

Logarithmujof uiSegmentuSize/LSSO: 0> 

Write^protect/WP 

Referenced it/RB 

ChangeJ>it/CB 

Interruptuenable/IE 

Interruptupending/IP 

i/o^bit/lOB 

NXM 

Spare bits 

Mask Register/MR<15:0> 

CR<15:12> 

CR<11> 

CR<10> 

CR<9> 

CR<8> 

CR<7> 

CR<6> 

CR<5> 

CR<4:0; Currently utiMsigned bits, 

< a pseudo register that is the 
unary encoding of LSS field in 
CR. 

Address Translation Process 

y<15:0> :« (IOB - 0) - ( 

(z A MR - CSR A MR) •* 

(BSR A MR) V (as A (~i MR)) 

) 

z<15:0> :« (IOB - 1) - ( 

(y A M R m BSR A MR) -> 

(CSR A MR) V (y A (- i MR)) 

map from CM to bus. 

effective address is 
within external segment. 

concatenation process 

map from bus to CM. 

broadcast address is 
within bus segment. 

concatenation process. 

Where: 
and 

z effective address of operand in CM address space 
y effective address of operand in bus broadcast address space. 



to allow CSR/BSR pairs to translate addresses in either direction, the 

current direction being specified by the l/Ouibit in the CR. 

In the ISP, a Kio is shown to have 16 CSR/BSR/CR sets. This is not 

meant to imply that all, or even most, Kio's will have this many register 

sets. Two to four register sets are presently seen as a practical number 

to have on a single Kio. In fact, if only one CSR/BSR/CR set is included 

in each Kio* no power is lost because nowhere is it necessary to make the 

restriction a CM can only have one Kio per bus. However, to conserve bus 

drivers and receivers it is appropriate to group several register sets on 

a single Kio. 

Note in the above ISP we have solved the segment size problem. Only 

segment sizes that are powers of two are allowed: 1,2,4,8,#..f64K. By re­

stricting our segment sizes to powers of two we avoid the addition implicit 

in more conventional base/limit schemes. We also ease the memory fragmenta­

tion problem in the broadcast address space since we can now use the buddy  

system. This novel memory allocation scheme was independently discovered 

by H. Markowitz (1963) and K. Knowl ton (1965) and is analyzed by Knuth [1968]. 

The DEC Unibus window [DEC, 1972] also limits its segment (window) size to 

be a power of two. However, the Unibus window sets a lower limit on segment 

size, 512 bytes, and this appears to be a mistake. Many data structures 

that are shared between processors are smaller than 512 bytes, yet the cost 

to provide smaller segment sizes is negligible. 

Most of the fields in the control register are self-evident. The 

fields dealing with inter-CM interrupts will be discussed in the next sec­

tion. The NXM bit is used to enable/disable the CM-bus translation for the 

associated CSR/BSR pair. 
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3.2 Implementation of Intermodule Interrupts 

It is useful to consider inter-CM interrupts to be a generalisation 

of subroutine calls. Specifically, we need a jump to subroutine (JSR) 

instruction that passes control to the called procedure, as is now done, 

and we need JSR's that initiate new loci of control, without suspending 

the locus of control in the calling program. In other words, we need to 

implement, in the context of CM's, what has been variously called fork, 

begin parallel, split! etc. This new JSR (let's call it ISR, for initiate 

subroutine) also seems to have utility within a CM as a clean way to imple­

ment multi-programming and multi-processing. 

While the format of the ISR instruction looks similar to the JSR in­

struction in the calling CM, to the target CM the ISR looks like an inter­

rupt. If the interrupt enable (IE) is on in the Kio of the target CM, 

then the address of the ISR instruction Is used as the interrupt vector 

for the target CM. The data lines of the inter-CM bus are used to pass the 

current value of the program counter to the target CM. If the interrupt 

enable is off, then the interrupt pending bit is set in the CR and the inter 

rupt vector is stored in a buffer register. This buffer register is not 

directly accessible by any CM in the system, but it is effectively cleared 

by clearing the interrupt pending bit of the CR. 

If a Pc executes a JSR, rather than an ISR, into an external segment 

of its address space, we will simply have a situation where the Pc of one 

CM is fetching its instructions from the Mp of another CM. 

It would be consistent with the above implementation of interprocessor 

interrupts to generalize the Wait instruction of the PDP-11 to implement 
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the join, or merge, function needed in parallel processor systems. How­

ever, either the increment-and-skip-if-zero (ISZ) instruction common to 

most mini-computers or the f,read-pauseff feature of C.mmp [Wulf and Bell, 

1972] is sufficient. 

4. ASYNCHRONOUS BLOCK TRANSFERS 

In many contemporary computer systems the ability of l/o processors 

to transfer large blocks of information, independent of the Pc, is impor­

tant for the efficient operation of the system. This report proposes that 

the Kio !s of CM's not have this direct memory access (IMA) ability. If a 

DMA channel or Pio is needed, it can be built from a CM. Figure 4.1 shows 

a CM functioning as a DMA channel. 
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these 
buses could' 
be the same 
bus 

Kio 

CM.dma 

Kio 

Kio 

CM.destination 

Now if we have the simple PDP-11 code sequence in the CM.dma: 

MOV (Sr)+, (Dr) + 
CMP Sr, Limit^Register 
BNE *-2 

The Sr and Dr point to words in external segments of the CM.dma1 s address space. 

FIGURE 4.1. Using a CM as a DMA Channel. 
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