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ABSTRACT 

This is an expository invited paper presented at a Conference on the 

Influence of Computing on Mathematical Research and Education, at the summer 

meeting of the American Mathematical Society at Missoula, Montana, August, 

1973. 



AN INTRODUCTION TO SOME CURRENT RESEARCH 
IN NUMERICAL COMPUTATIONAL COMPLEXITY 

J. F. Traub 

This is a Conference on the Influence of Computing on Mathematical Re­

search and Education. I want to talk about a particular area of numerical 

mathematics, numerical computational complexity, which has a very large inter­

section with mathematics. On the one hand, it requires the development of new 

mathematical techniques while on the other hand, certain of the questions it 

tries to answer are primarily mathematical. 

In this talk I will focus on research rather than educational issues. 

However, I will mention that some non-trivial results and questions can be 

formulated so as to be accessible to both undergraduate and graduate students. 

This is at least partially the case because the field is so new. 

I fll not attempt a survey of current work in computational complex­

ity, rather, I'll restrict myself to problems and algorithms from 

numerical mathematics. Later in this conference, Professor Karp will discuss 

non-numerical complexity. Within numerical computational complexity, I will 

try to give you the flavor of some of the recent work and state a few open 

problems. I will draw on work done at Carnegie-Mellon University for many 

of my examples. 

A number of the papers I'll cite were presented at a Symposium on 

Complexity of Sequential and Parallel Numerical Algorithms at Carnegie-Mellon 

University in May, 1973. Incidentally, there have been at least four Symposia 

in the United States from April to July, 1973 devoted entirely or in major 

part to computational complexity. 
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I won't give a formal definition of complexity here. Instead I will 

begin by a particular problem, that of matrix multiplication, to illustrate 

some basic ideas. 

Matrix Multiplication 

Let A, B be (n,n) matrices and let C = AB. The definition of matrix 
2 

product gives us the following algorithm for forming the n elements of C - take 
o 

the scalar product of rows of A with columns of B. This algorithm takes 0(n ) 
3 

mult and 0(n ) additions. Until about five years ago no one asked if there 
might be better algorithms. Then Winograd [68] showed that matrix multi-

1 3 2 
plication could be done in ^n + 0(n ) multiplications and Strassen [69] 

3 

gave an algorithm which required fewer than 0(n ) arithmetic operations. 

Consider in particular the problem of multiplying two (2,2) matrices. Class­

ically, this requires eight scalar multiplications. Strassen showed how to 

multiply the matrices in seven scalar multiplications. Furthermore, his al­

gorithm does not depend on commutivity of multiplication of the elements and 

can therefore be applied to partitioned matrices. He showed that two (n<>n) 

matrices could be multiplied in 0(rJ~°^^ ) arithmetic operations. Since 
2 81 

log2? ~* 2.81, the multiplication of two matrices can be dona in 0(n " ) 

arithmetic operations. 

Now for very large matrices the fact that matrix multiplication can be 

2 81 
done in 0(n * ) arithmetic operations might be of interest. It is, however, 
the research engendered by this result and its theoretical consequences which 
is of greater interest than the practical applications. 

2 81 

Can we do better than 0(n - )? Not by using 2 by 2 matrices since it's 

been established that seven multiplications are optimal. What about using 3 
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by 3 matrices? The minimum number of multiplications for multiplying two '3 

by 3 matrices is open. 

Can we say anything in general about the minimum number of arithmetic 

operations needed to multiply any n by n matrices? Since the problem has 
2 2 2 

2n inputs and n outputs, 0(n ) must be a lower bound on the number of arith-
2 

metics. Now 0(n ) is linear in the number of inputs and outputs. is there 

a non-linear lower bound? We don't know. Our present state of knowledge is 

O(n^) ^ # of arithmetic operations <: 0(n*"°82^) . 

A survey of what is known is given by Borodin [73 \.-

I will use the matrix multiplication problem to illustrate some general 

features of algebraic complexity. There is a parameter which is a measure of 

the problem size. In the matrix problem this is the order of the matrix. 

There are one or more fundamental operations. In the matrix multiplication 

case this is the number of scalar multiplications or the number of scalar 

arithmetic operations. There is an algorithm for solving the problem in a 

finite number of fundamental operations. This algorithm gives us an upper 

bound on the difficulty of the problem. We also want lower bounds and prefer -
2 

ably tight lower bounds. For the matrix problem we saw 0(n ) was a lower 

bound linear in the number of inputs/outputs. We regard such a lower bound 

as trivial; we want non-linear lower bounds. Few such lower bounds are known 

today. 

The difficulty of a problem we call its computational complexity. We 

also refer to the complexity of a particular algorithm. How the difficulty 

is measured depends on what we designate as the fundamental operation or 

operations. For example, for a parallel computer it is usually the time rather 

than the number of operations that we try to optimize. I'll return to this later, 
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The area I fm discussing is often called concrete or specific complexity 

to distinguish it from the abstract complexity theory of Hartmanis, Blum and 

others, John Hopcroft wishes to reserve the name computational complexity 

to lower bound results. He feels that upper bounds represent computational 

simplicity. From a purely theoretical point of view this may be true. From 

a pragmatic point of view, good upper bounds provided by algorithms are very 

useful. 

1 find it convenient to divide computational complexity into two parts: 

algebraic computational complexity and analytic computational complexity. 

Algebraic computational complexity deals with problems for which there 

are finite algorithms. Analytic computational complexity deals with problems 

for which there are no finite algorithms. I will discuss analytic complexity 

later. Here I want to add several more examples of algebraic complexity to 

the matrix problem discussed above. 

The following problems deal with nth degree polynomials and they all 
2 

take 0(n ) operations if classical algorithms are used. 

Multiplication of two polynomials 

Division by a polynomial of degree n/2. 

Evaluation of a polynomial at n points 

Interpolation at n+1 points 

Evaluation of a polynomial and all its derivatives at one point 

Recently, algorithms have been developed for doing the first two problems 
2 

in 0(n log n) arithmetic operations and the last three in 0(n log n) arithmeti 

operations. Results here are due to Borodin, Horowitz, Kung, Strassen, and 
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others. (See Borodin [73].) Using arguments from algebraic geometry, Strassen 

[73] has shown that the interpolation problem requires 0(n log n) multipli­

cations. This is a non-linear lower bound. Thus for the interpolation 

problem we have tight bounds from above and below 

2 
0(n log n) ^ # of arithmetic ^ 0(n log n ) • 

The results above are asymptotic. But most problems arising in practice 

are for small n. For one of these problems, the evaluation of a polynomial 

and its derivatives at a point, we do have a result which is better than the 

classical algorithm for all n. The classical algorithm is the iterated Horner 

method which uses n ^ " ^ ^ multiplications 
a n d nfetll a d d i t 

ions. Shaw and Traub 

[73] have introduced an algorithm which requires 3n-2 multiplications and divi­

sions and n ^ 2 ~ ^ ̂  additions. Thus the number of multiplications and divisions 

are linear rather than quadratic. There are a number of open questions in­

cluding 

1. Is there an algorithm using only a linear number of additions? 

2. It is easy to show at least n+1 multiplications are required. An 

upper bound is 3n-2 multiplications and divisions. Can these bounds 

be tightened? 
3. How many multiplications are required if divisions are not permitted? 

An area which has seen a great deal of recent activity is the fast solu­

tion of linear systems, particularly of sparse systems arising, for example, 

from the discretization of partial differential equations. Recent surveys are 

given by Bunch [73] and Birkhoff and George [73]. 

\ 
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One particular problem is the solution of a linear system whose matrix M 

2 2 
is n by n and in block tridiagonal form, M « [-I,T,-I], where T is an n by n 

2 
tridiagonal matrix and I is the n by n identity. There are therefore 0(n ) 

2 

non-zero elements. Bank, Birkhoff, and Rose [ 7 3 ] give an 0(n ) algorithm. 

This gives an upper bound linear in the number of non-zero elements and we 

can't hope for better than that. However, stability is crucial in this area 
and this algorithm is not stable. P. Swartztrauber (private communication) 

2 

has developed a stable 0(n log log n) algorithm. 

So far, I've confined myself to problems for which there are finite 

algorithms. I used the adjective algebraic to characterize the complexity of 

problems in this area. I will now turn to an area where there are no finite 

algorithms. I'll refer to this area as analytic computational complexity. 

Recent work in this area which I will not describe further today includes 

Eisenstat and Schultz [ 7 3 ] on the complexity of partial differential equations, 

Rice [ 7 3 ] on approximation, Brent [73b] on systems of non-linear equations, 

Brent, Winograd and Wolfe [ 7 3 ] on optimal iteration. 

As a simple first illustration of a problem in analytic complexity,let 1s 

consider the calculation of a, a = A well-known method for calculating <y 

is as the limit of the sequence {x^} defined by 

<" xi+i - K + i>-
i 

2 

This is Newton iteration applied to f = x -A. We can ask about the complexity 

of JST. An upper bound is obtained from the complexity of the particular algor­

ithm specified by (1). We'll return to this problem after we've developed 

some tools. 
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Let X Q be given and let 

xi+l = 

be a scalar iteration with x^ -» Thus CD, X ^ defines an algorithm for 

computing <Y. What is the "efficiency 1 1 of this algorithm? I have to first 

introduce the basic concept of order. Let p = p(cp) denote the order of cp. 

Roughly speaking 

x ± + 1 - a = 0[(x.-(y) P]. 

Let C(cp) denote the "cost 1 1 of calculating x
i +-| from x^. We will give examples 

of various costs later. They have the critical property that C (cp ° cp) = 2C(CD). 

Define the efficiency of co by 

C(cp) * 

All logarithms are to base two. 

This efficiency has the following properties: 

1. It is inversely proportional to the total cost of estimating a 

to within e, for a small e > 0. 

2. It is invariant under self composition. That is, 

e(cp«cp) = e(cp). 

There are various quantities that can be used for C. For example, we 

can take 

1. C = M = Number of multiplications or divisions to compute 

from x.. l 

2. C = M . This is the same as M except that multiplication by 

constants is not counted. 
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Let 

Clearlv 
e ^ e. 

Kung [73a] proved that if cp is any rational function, then 

e <: 1 

and this bound is sharp. Therefore e ^ 1. Since a computer performs rational 

operations, this is not restrictive. Next, Kung [73b] asked for what itera­

tions is e = 1 and for what iterations is e = 1? He completely settled this 

question as follows: 

If e = 1, then a is rational. 

If e = 1, then a is rational or quadratic irrational. 

Thus only easy problems have optimal efficiency. 

The above result concerns optimal cp over all problems of . Now let's con­

sider a particular a* To fix ideas, let a = What's the best iteration 

for calculating A/5? The most widely known algorithm is 

Thus in the e measure, Newton-Raphson iteration is optimal. This was first 

pointed out by Paterson [72]. However, in the e measure, the question is open. 

x i+1 

Then p = 2, M = 1, M = 2, and therefore 
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What's the optimal iteration for computing a quadratic irrational in the 

multiplicative efficiency measure e? One can ask similar questions for 

classes of mathematical problems. 

Observe that the cost in the above development is limited to multiplica­

tions. The reason for this is technical. Multiplications can affect the 

degree growth of a polynomial. Additions do not cause polynomial degree to 

increase and therefore analysis based on degree growth cannot be used for 

additions. Morganstern [73] has made recent progress on using other growth 

arguments for addition. 

I'm going to change gears here and talk about approximating a zero a of 

a scalar function f by a sequence of iterations x^. This problem is a pro­

totype of many problems of applied mathematics where we seek a zero of an 

operator equation (Traub [72]). Examples are the numerical solution of integral 

equations and partial differential equations. With the exception of recent 

work by Brent [73b] and Wozniakowski [74] on finding a zero of a vector-valued 

function, that is solving a system of non-linear equations, almost all work 

has dealt with zeros of scalar functions. 

Kung and Traub [73b]introduced a new measure for the efficiency of an 

algorithm cp with respect to a problem f (see also Traub [73b]). I don't 

want to get into technical details here other than to mention that they 

include the combinatorial cost of cp, which is the number of arithmetic 

operations used by an iteration even if the evaluation of f and its deriva­

tives were free. It turns out to be crucial to include the combinatorial cost. 

There is a major open conjecture in the area of iteration algorithms for 

calculating zeros of a function f. I remind you that, roughly speaking, the 
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order of an iteration cp is a number p such that 

x . + 1 - a = 0((x.-a) p). 

Let the total number of evaluations of f or its derivatives that cp uses in 

going from x^ to x^_J_-J be n. 

Kung and Traub [73a] have constructed an algorithm using n evaluations 
n -1 

which is of order 2 and they conjecture this to be optimal. That is, the 

order of any iteration without memory (iteration is precisely defined by Kung 

and Traub [73a]) based on n evaluations is of order at most 2 n for every 

positive integer n. The conjecture has been proven for n = 1,2 (Kung and 

Traub [73c]. 

Up to now we have implicitly assumed we were dealing with a sequential 

computer. Thus the cost associated with an algorithm has been in terms of 

fundamental operations, such as the number of arithmetics. On a parallel 

machine, the cost associated with an algorithm is time and this is the 

quantity we optimize. 

To a first approximation you can think of a parallel computer as consist­

ing of a set of arithmetic units which you can use simultaneously. I emphasize 

this is a first approximation only. There are major differences in the parallel 

and vector computers now becoming available. Furthermore, when preparing pro­

grams for these machines, matters of data handling and data structure become 

paramount. 

I think algorithms for parallel computers are one of the most interesting 

new research areas in numerical mathematics for a number of reasons: 

1. From a practical point of view, because the parallel machines are 

coming. Machines which should be available within a year or so 
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include Carnegie-Mellon University's Multi-Mini Computer, CDC 

STAR, Burroughs 1 ILLIAC 4, Texas Instruments ASC. We need 

algorithms to put on them. In general, the best classical al­

gorithms will not be very good on parallel machines. 

2. From a theoretical point of view, because constructive mathematics 

has been implicitly sequential. The problems raised by parallel­

ism raise a whole new world of interesting mathematical issues. 

On a parallel machine we will be concerned with the time taken by an 

algorithm. One basic quantity to be analyzed is the parallel speed-up ratio 

defined as follows. For a problem of size m, the speed-up is defined as 

c/ - optimal computation time on a one-processor computer 
optimal computation time on a k-processor computer 

In general we do not know the optimal times and therefore can only get esti­

mates and bounds on S(m,k). 

Stone [73a] considers the maximal speed-up which can be achieved for 

various problems. Trivially, S(m,m) <. m. A simple example of a problem 

with linear speed-up is the addition of two matrices of order m. On a sequen 

2 2 tial machine this takes m addition times. On a parallel machine with m pro 

cessors this can be done in one addition time. Hence the speed-up is linear 

in the number of processors. Problems such as linear recurrence investigated 

by Stone [73b] and Heller [ 7 3 ] , polynomial evaluation (Munro and Paterson 

[ 7 3 ] ) , rational evaluation (Brent [73a| ) , havd speed-up at least — which 
log m 

is close to linear. The numerical solution of partial differential equations 

also seems amenable to parallel computation. The solution of tridiagonal 

systems, which arise in the discretization of partial differential equations, 

is analyzed by Traub [ 7 3 a ] . 



The study of parallel algorithms is in an embryonic state. I believe 

it will be one of the major research areas in numerical mathematics in the 

next decade. 

I've tried to give you a taste of some of the current research in numerical 

computational complexity. I'd like in conclusion to summarize some of my 

reasons for studying complexity: 

1. To construct good new algorithms. There are, however, many 

components besides complexity to be considered in constructing 

a good algorithm. 

2. To filter out bad algorithms. 

3. To create a theory of algorithms which will establish theoretical 

limits on computation. 

4. To investigate the intrinsic difficulty of mathematical problems. 
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